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SECTION 1

INTRODUCTION

This report summarizes the results of the work performed under NASA
contract NAS1-18098 from September 1985 through August 1986. The report is
divided into five sections. Section 2 presents a new class of closed-form
solutions for finite-time linear-quadratic optimal control problems, which
is shown to be computationally more efficient than previously known closed-
form solutions. Section 3 utilizes the closed-form solutions of Section 2
for the feedback gains in the free-final-time perturbation feedback
problem, where the initial conditions and terminal constraints may be
assigned off-nominal values. Section 4 presents a control scheme for
general nonlinear three-axis slewing maneuvers of flexible spacecraft.
Under this control scheme, an open-loop rigid body nominal solution is
applied to the spacecraft while a perturbation feedback controller reduces
the elastic response and causes the system to closely follow the nominal
rigid body trajectory. A modified Kalman filter is implemented for
estimating the states of the system. Section 5 presents a summary and
conclusions for this report. Reference 9 documents the detailed

derivations of results presented in this report.




SECTION 2

CLOSED-FORM SOLUTIONS FOR FINITE-TIME LINEAR-QUADRATIC
OPTIMAL CONTROL PROBLEMS

2.1 Introduction

During the design and analysis phases of optimal control synthesis,
state and control trajectories are often computed to help the control
engineer evaluate the control design. The most straightforward and most
widely practiced method of computing the state and control trajectories is
by numerically integrating the governing differential equations. This may
be costly for flexible space structures which may have many elastic degrees
of freedom. The reason for the high cost is two-fold: first, the large
number of elastic degrees of freedom requires a large number of states to
be integrated; and second, since the highest frequency of the system to be
simulated increases as the number of elastic modes 1is increased, the
integration step-size must be decreased correspondingly. Thus, the
computational cost of the simulation increases rapidly as more elastic

degrees of freedom are included.

This section presents a new class of closed-form solutions for
finite-time linear-quadratic optimal control problems when the plant is
time~invariant. With a closed-form solution, one can compute the response
of the entire system at any point in time. Thus, the engineer can compute
the system response at any desired interval, independent of system
frequency. (Of course, 1if one needs time-history plots with good
resolution, the time interval does depend on system frequency.) In
addition, numerical roundoff errors are greatly reduced, because the number

1

of floating point operations’' (flops) required for computing closed-form

1A floating point operation is more or less the amount of work needed to do
a floating point add, a floating point multiply, and a little subscripting.



solutions is much 1less than for numerical integration. Sensitivity

partials may also be computed easily when closed-form solutions are

available [35].

Other forms of closed-form solutions exist. For example, classical
state and co-state solutions can be obtained from matrix exponential
solutions where the system Hamiltonian matrix is used. However, such
solutions either suffer from numerical instability or require too much
computation. With a numerically stable and efficient closed-form solution
and with the rapid development of parallel processing technology, one may
envision the day when feedback gains may be computed on-orbit in real time.
Whether the solutions proposed in this chapter can fulfill such a goal is

of great interest, and is a subject for further research.

Although there are many different finite-time optimal control
problems, their solutions can be written as differential equations of only
a few basic forms. The closed-form solutions of these basic differential
equations are presented in Section 2.2, and example applications are

provided in Section 2.3 for illustration.

2.2 Closed-Form Solutions of Basic Differential Equations

The solution of finite~-time linear-quadratic optimal control
problems involves the solution of differential equations which may be

classified into five basic types:

Type 1

P(t) = - P(t)A - ATP(t) + P(t)EP(t) - Q , (2.2.1)
Type 2

i1(t) =-[A- EP(t)]TX1(t) + F (t) (2.2.2)




Type 3

X,(t) = [A = EP(£)]X,(t) + F,(t) , (2.2.3)
Type 4

¥ (6) = X3 (£)EX, (t) , and (2.2.4)
Type 5

1,(0) = X3 (0027 (£)EZT (£)X,y (E) . (2.2.5)

Type 1 represents the well-known differential matrix Riccati
equation with constant coefficients. Its solution, P(t), couples into the
differential equations of Type 2 and Type 3. The functions x1a(t) and
X1b(t) are solutions of differential equations of Type 2, and the functions
x2a(t) and X2b(t) are solutions of differential equations of Type 3. 1In
the above equations, A, E, and Q are (n x n) constant matrices, and the

variables have the following dimensions:

P(t) (n x n)
X, (t) (n x p)
X5(t) (n x q)
Y, (t) (r x 8)
X;,(t) (n x r)
X1pt) (n x s)
Y, (t) (1 x m)
Xpa(t) (n x 1)
Xop(t) (n x m) .

The matrices E, Q, and P(t) must be symmetric. The function Fi(t)

is a term representing the forcing functions for the Xi(t) differential



equations, and accordingly has dimension (n x p) for i = 1 and (n x q) for
i=2, For scalar control problems, the five types of differential
equations become scalar differential equations. However, for multivariable
control problems, P(t) is always a square matrix; Xi(t) (i=1,2) may
represent either a matrix or a vector; and Y;(t) (i=1,2) may be either a

matrix, vector, or scalar.

2.2.1 Solution for Type 1 Differential Equations

The Type 1 differential equations are defined by

P(t) = - P(t)A - A'P (£) + P(t)EP(t) - Q . (2.2.6)

The solution of the above differential matrix Riccati equation is well-
known and, in fact, can be expressed in several different forms. One of
the most useful forms of the solution is due to Potter [5,17,22,26-28], and
is given by the sum of the steady-state solution (i.e. the solution to an

algebraic Riccati equation) [1,5,17,22,25], and a transient term:
=1
P(t) = PSs + 2 (t), (2.2.7)

where

T
0 = PssA + A Pss - PssE Pss + Q.

In order to obtain the differential equation for Z(t), one needs

the following expression for the derivative of a matrix inverse:

dr.-1 -1 . -1

E[Z (L)l = -Z (£)Z(t)Z (t). (2.2.8)
Substituting (2.2.7) into (2.2.6), and making use of (2.2.8), one obtains

Z(t) = Az(t) + Z(v)AT - E , (2.2.9)




where

A = A - EPss

is the closed-loop system dynamiecs matrix. The solution for Z(t) can be

cast in either of the following two forms [11,17,31]:

At-t ) AT (t-t ) »
2(t) =z +e [z(t )-2_ le L 2(b) = [P(t )-P_ 17
or
-A(t,t) K (tmt) »
Z2(t) =2 + e [2(t.)-Z, e . 2(t,) = [P(t)-P_ 17

(2.2.10)

where Z ., satisfies the algebraic Lyapunov equation [2,13,17,24]:

0 = iz _+2Z A -E.
SSs SS

It can be shown that Z(t) and Z_1(t) exist for well-posed optimal

control problems.
As shown in Sections 2.2.2 - 2.2.5, the symmetric matrix Z(t) plays
a central role in the solution of differential equations of Types 2, 3, 4,

and 5,

2.2.2 Solution for Type 2 Differential Equations

The Type 2 differential equations are characterized by differential
equations with time-varying coefficient matrices, where the coefficient
matrices are functionally dependent upon the Type 1 equations. The general

form for the Type 2 equations is given by



k1(t) = - [A- EP(t)]TX1(t) + F, (L) . (2.2.11)
On assuming a solution of the form
X, (t) = 7 (ewe) (2.2.12)

where W(t) 1is unknown, it can be shown that the solution of (2.2.11) is
given by [9]

t
x1(t) = @1(t,t°)x1(to) + Jto¢1(t,T)F1(T)dt , (2.2.13)
where
1 K(t-to)
@1(t.to) = Z (t)e Z(to)

is the staie transition matrix for the homogeneous part of (2.2.11). The
integral term in (2.2.13) is easily obtained when F,(t) can be expressed in

terms of exponential matrices.

2.2.3 Solution for Type 3 Differential Equations

Like the Type 2 differential equations, the Type 3 differential
equations are characterized by differential equations with time-varying
coefficient matrices, where the coefficient matrices are functionally
dependent on the Type 1 equations. The general form for the Type 3

equations is given by

x2(t) = [A - EP(t)]Xz(t) + F2(t) . (2.2.14)



On assuming a solution of the form

xz(t) = Z(t)W(t) , (2.2.15)

where W(t) is unknown, it can be shown that the solution of (2.2.14) is

given by
Jt
xz(t) = ¢2(t,to)X2(to) + to¢2(t,T)F2(T)dT , (2,2.16)
where
—KT(t—to) -
¢2(t,to) = Z(t)e z (to)

is the state transition matrix for the homogeneous part of (2.2.14). The
integral term in (2.2.16) can be easily evaluated when Fy(t) is expressed

in terms of products of Z(t) and exponential matrices.

2.2.4 Solution for Type 4 Differential Equations

The Type 4 differential equations are characterized by products of
Type 2 solutions. The general form for the Type 4 equation is given by

g T
Y1(t) = X1a(t)EX1b(t) , (2.2.17)

where the equations for X1a(t) and X1b(t) are, in general, inhomogeneous:

T
1a(t) = - [A - EP(t)] X1a(t) + F1a(t) , (2.2.18)

and

x1b(t)

- [a - EP(t)]TX1b(t) + F_ (t) . (2.2.19)

1b

From Reference 9, the solution for Y1(t) is shown to be



T T
Y,(t) = X1a(t)Z(t)X1b(t) + Y1(to) - x1a(to)Z(to)xlb(to)

t

t T
- jtox1a(r)Z(T)F1b(t)dr - Jt

OF:;(T)Z(T)X1b(T)dT .

(2.2.20)

The integral terms in (2.2.20) are easily computed when Fq,(t) and Fq,(t)

are functions of exponential matrices.

2.2.5 Solutions for Type 5 Differential Equations

The Type 5 differential equations are characterized by products of
Type 3 solutions and 2-1(t). The general form for the Type 5 equations is
given by

; T -1 =1
Yz(t) = X2a(t)Z (t)EZ (t)XZb(t) ’ (2.2.21)

where the differential equations for X2a(t) and X2b(t) are, in general,

inhomogeneous:

X2a(t) = [A - EP(t)]Xza(t) + F2a(t) ’ (2.2.22)
and

X2b(t) = [A - EP(t)]XZb(t) + FZb(t) . (2.2.23)

From Reference 9, the solution for Y2(t) is shown to be

T -1 T =1
Y2(t) - X2a(t)Z (t)XZb(t) + Y2(to) + X2a(to)Z (to)x2b(to)

b

¢ T =1
+ I X5, (02 " (1)F, (1)dT + Jt Foa
)

-1
t, 2a (1)Z (T)Xzb(T)dr .

(2.2.24)



The integral terms in (2.2.24) are easily computed when F,,(t) and F,,(t)

can be expressed as products of Z(t) and exponential matrices.

Throughout the developments of this section, one can observe the
close relationship between equations of Type 2 and Type 3, and also between
equations of Type U4 and Type 5. 1Indeed, this follows because equations of

Type 2 and Type 3 are formal adjoints of one another.

Tables 2-1 and 2-2 provide a summary of the five basic differential

equations and their solutions.

2.3 Example Applications of Closed-Form Solutions

Reference 9 presents solutions of three finite-time linear-
quadratic optimal control problems using the closed-form solutions of
Section 2.2. For comparison, alternative closed-form solutions based on
the state transition matrix of the state-costate system are presented. The
comparison of the amount of computational work required for each type of
solution clearly demonstrates that the new class of solutions 1is more

efficient.

In particular, using Potter's solution of Section 2.2.1, the

propagation of the Riccati matrix is written as

P(t + AL) = P__ + 2 e+ at) (2.3.1)

where Z(t + At) is computed via

=T - =T
A At AAt A" At
ss " © Zsse . (2.3.2)

Z(t + At) = C + eAAtz(t)e , C =

N
t

Equation (2.3.2) requires roughly 3n3/2 flops for the propagation of the
symmetric Z(t) matrix. In computing the Riccati solution of (2.3.1), the
symmetric definite matrix inversion requires n3/2 flops. Thus, a total of
2n3 flops are required to propagate the Riccati solution over one time-

step.

_lo_
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An alternative way of computing the matrix Riccati solution is the
well-known Kalman-Englar method [18], where P(t) is propagated at intervals
of At by

(t+at,t)P(t)]

P(t+At) = [621(t+At,t) + 022(t+At,t)P(t)][®11(t+At,t) *0,, ’

(2.3.3)

j(t+At,t) are partitions of the transition matrix for the state-

costate system; that is,

where Oi

e(t + At,t) = o(At) = At (2.3.4)

and

For linear time-invariant systems, © is only a function of At, and hence

need only be computed once.

The number of operations required for the propagation of P(t) via
(2.3.3) is n3 flops for each of the ©,,P and 012P products, n3/3 flops for
the L-U decomposition (with partial pivoting) of the [011 + 912P] ternm,
n3/2 for forward elimination, and n3/6 for back-substitution, where
symmetry of P(t) is taken into account. The total number of operations
adds up to about 3n3 flops. Thus, the Kalman-Englar method requires about
50% more operations than Potter's method for propagating P(t) at intervals
of At. Moreover, numerical difficulties arise in the Kalman-Englar method
when At is chosen too large, causing the term to be inverted to be nearly
singular [21]. For the propagation based on Potter's solution, such
difficulties do not occur. Another solution approach is the negative
exponential solution derived by Vaughan [38], which produces a numerically
stable algorithm. However, since this method involves complex eigenvectors

of the Hamiltonian matrix, the use of complex arithmetic causes the

_13_



operation count to be many times higher than that for the Kalman-Englar

method.

Table 2-3 summarizes the solutions for state and control
trajectories of the three example problems presented in Reference 9, which
include the optimal 1linear regulator, the controller with terminal
constraints, and the tracking/disturbance accommodating controller. A
remarkable fact is that despite the differences between the three control
problems, the state and control trajectories may be cast into the same

general form, namely,

x(t) = Zssa(t) + b(t) , (2.3.5)
and
u(t) = - D1a(t) - D2b(t) , (2.3.6)
where
I P ¢
D, = R B {PSSZSS 1],
and
-1 T
02 = R B Pss .

The definitions of a(t) and b(t) , however, are slightly different for each

problem.

2.4 Subspace Reduction for the Hamiltonian Matrix

It can be shown }hat the neq-class of solutions, which involves the
7 oAt -2Tt
ss? ss?

variables P , and e , are related to the closed-form
solutions involving partitions of the state transition matrix by means of

reducing subspace transformations of the Hamiltonian matrix:

-1h-
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A -E I yA A 0 I+Z__P -z
ss Ss ss S8

T B =T
Q A Pss PSSZSS+I 0 A Pss I
(2.4.1)

In (2.4.1), the left hand side represents the Hamiltonian matrix, @, of
(2.3.4). Exponentiation of (2.4.1) 1leads to the following block-

diagonalizing transformation for the state transition matrix:

E(t-to)
LTI PO N Zgs € r 0
- -A"(t-t )
O21 e22 Pss Psszss 1 0 e °
I1+2Z P -
x 83 88 88
-Pss I . (2.4.2)

where eij = Gij(t,to) are partitions of the state transition matrix

n(t-to)
@(t,to) = e . (2.4.3)

_17_



SECTION 3

SPACECRAFT SLEWING MANEUVERS USING A CLOSED-FORM SOLUTION
FOR THE NEIGHBORING EXTREMAL PATH PROBLEM

3.1 Introduction

The optimal control problem in this section 1is specified by
defining a performance index which consists of a penalty on elapsed time,
a quadratic penalty on the terminal states and controls, and an integral
of quadratic penalties on the states, controls, and control rates. The
final time is free, and specified terminal constraints produce a terminal
manifold which also may be a function of the final time. Assuming that
the nominal contreol and state trajectories are known, one seeks the
perturbation feedback gains which cause the system to follow a neighboring
extremal path when subjected to small perturbations in the initial
conditions and terminal constraints. Necessary conditions for the
perturbed system are stated, and the solution for the nominal trajectory
is shown. Solutions for the perturbation feedback gains are developed
based on the results of Section 2. Perfect plant knowledge and perfect
state estimation is assumed. A time-to-go indexing scheme is used for
applying the feedback gains so that the controller does not run out of
feedback gains if the actual final time is longer than the nominal final
time. Slight numerical modifications are presented for overcoming the
numerical sensitivities of this type of controller. Two retargeting
example maneuvers are shown, involving a spacecraft model consisting of a
rigid body with four flexible appendages. An extension is proposed for
using the closed-form solutions in control problems involving nonlinear
systems Dby linearizing the nonlinear plant equations about the nominal

trajectory.
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3.2 Statement of the Control Problem

Let us assume that we have obtained the p-dimensional nominal

control vector uN(t), which minimizes the quadratic performance index

t

1T 1 f. . T T
J = wttf + Exfsfxf t 3z Ito[x wxxx +u wuuu]dt , (3.2.1)
subject to
X = Ax + Bu , x(to) = X given , (3.2.2)
N o
w[x(tf),tf] = Mx(tf) Yy (tf) = 0, and t, unspecified .

(3.2.3)

In the above equations, x is the n-dimensional state vector, A and
B are the time-invariant state dynamics and control influence matrices, ¢

is a gq-dimensional vector of terminal constraints, Sf = Sg 2 0 and wXX =
T . . - T
wxx > 0 are weighting matrices for the state, wuu = wuu

matrix for the control, and We 2 0 is a weight for the final time. The

> 0 is a weighting

following necessary conditions must be satisfied by the nominal optimal

control and state trajectories [7]:

¥ = Ax + Bu , x(to) given , (3.2.4)

L= W x - A, At = Sx(b) ¢ My, (3.2.5)

u o= - w;;BTA , (3.2.6)

Wlx(ty),t.l = 0, (3.2.7)

Q = ‘%%|t +-% [xwaxx + uTwuuu]ltf = 0, (3.2.8)
f
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where

T.N T T .
at - W TV balte) ¢ [xgSp v viMIX,

A(t) 1is the n-dimensional costate vector, and v is the q-dimensional

vector of Lagrange multipliers for the terminal constraints.

Let us now consider small perturbations in the 1initial states
Gx(to), and in the terminal constraints dy., The perturbation problem is
then to seek the the correction to the control, Su(t), which causes the
perturbed system to minimize the original performance index subject to the
new 1initial conditions and new final constraints. Moreover, we sSeek a
feedback form for the solution of Su(t), which involves the perturbations
in the state, 8x(t), and the perturbations in the final conditions dy.
The necessary conditions which must be satisfied by the perturbed system

are given by the following equations [7]:

§x = ASx + Béu, dx(to) given , (3.2.9)
sk = - W 8% - aTs) , (3.2.10)
su = - w;lBTsx , (3.2.11)
2 T T
379 ) 39
§A(tp) = [ax2 ][t 6xp + [3;]|t dv + [3;]|t dt.
£ f £
T T T
= Spex + Mdv [Sfxf +ASX, v AMV+ wxxxf]dtf , (3.2.12)
_ray dyq T B . LN
dy = [ax]|t 8, + [dt]!t dt, = Mex, + [Mk, - dy(t.)lde,
f f
(3.2.13)
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and

T
. [oe dy daa -
g = [ax]lt 8xp + [dt]lt dv + [dt]lt dt, = 0
£ f £
T T T T N T
= [%pS, + xpS.A + vMA xW, Jox, + [Mk, - wd(tf)] dv
T.. LT T T T .
+ [-v baltp) + (ReSp + X S.A + vMA + xfwxx)xf]dtf .
(3.2.14)
3.3 Solution for the Nominal Trajectory

The solution for the nominal trajectory may be obtained by using
the state transition matrix and an exponential form for J. For a given

final time tf, the final states and costates can be written as

x(t.) G(t -t ) x(t )
f - [e T °] S (3.3.1)
A(tf) A(to)
where
-1.T
A BW, B
G = T ,
-W -A
XX
and
eG(tf-to) _ L LN
B %

is the state transition matrix for t = tf; By introducing the terminal
constraint of (3.2.3) into (3.3.1), and using the boundary condition of
(3.2.5), one obtains
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I 0 o) Lo} 0
x(to)
S M = [} Lo} + 0 .
v At )
0 N
M 0 0 0 wd(tf)

(3.3.2)

Upon rearranging and placing the unknown variables on the left hand side,

one obtains

I 0 .\ x(tf) L 0
T x(to)
sf M =0, v = L 0 N »(3.3.3)
wd(tf)
M 0 0 A(to) 0

from which x(tf), v, and A(to) may be obtained via Gaussian elimination.

The above solution assumes that tf is known. However, for a free-
final-time problem, the optimality condition, @ = 0, of (3.2.8) must be
satisfied as well. This conditon produces a local minimum for J. To
obtain the global minimum, one can numerically compute the value of J over
a reasonable range of tf and find which value of tf produces the lowest
value of J. Efficient propagation algorithms for J are presented in

Reference 9 for computing values of J for different final times.

Using (3.2.1), (3.2.8), (3.3.3), and the propagation equations for
J, one can numerically compute values of J and @ over a range of final
times, and hence find the optimal te. For the case where one wishes to
adjust wt so that the optimal final time is at a desired value, one merely
computes Q using (3.2.8) and (3.3.3) at the desired final time and obtain

the required value of wt to make Q@ = 0.

Having found the values of the optimal final time and initial

costates, the nominal state and control trajectories are given by
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G(t-to) x(to)

xN(t) = [I0le , (3.3.4)
At )
(o]
and
_ G(t-t ) x(t )
ey = - WULBT[O Ile ° ot L. (3.3.5)

A(t)

3.4 Solution for the Feedback Gains

We now seek the solution for 8u(t) in the form

su(t) = = K (£)8x(t) - K(t)dy , (3.4.1)
where

u(t) = uN(t) + sult) ,

sx(t) = xM(t) - x(t) ’

K; and K, are the required feedback gains, and u(t) and x(t) are the
perturbed controls and states. By manipulating the terminal conditions of
(3.2.12) through (3.2.14) into the following form, which is assumed to be
valid for to < t £ tf, the costate perturbations are expressed in a

feedback form which leads to (3.4.1):

SA(t) S(t) R(t) m(t) §x(t)
dv - | &%y aw Act) ~dy . (3.4.2)
dt, al(t) AT (t) alt) -dQ = 0
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where

§(tf) - 5-R'RY, ﬁ(tf) - -Rr3", m(te) = RO A - @,
A ==1 ~ ==1._ ~ “T=-1._ -
Q(tf) = -Q , n(tf) = Q f, a(tf) = -AQ A-a,
§ - s-m R .og-m 5.0
o o o
- nn - n — 1
Q = Q 0’ n = ’ a"a ’
) 3y, T 907, T
S = [—]l y R = [_]l y M = [""']' ’
ax% t X1y ox
f f f
and
dy dan
Q@ = 0, no= [HEJlt SRR [Eg]lt )
_ f f
Notice that Q is singular because Q = O.

Treating dv, dte, dy, and d@ as constants, one can differentiate
(3.4.2) using (3.2.9) through (3.2.11) and collect terms to obtain the

differential equations for the coefficient matrices:

1 - ~ Ta  ~ -
( S =-SA-AS+SES-W,_, (3.4.3)
| R = -r[a-ES1R, (3.4.4)
I.\ ’\Ta
m = -[A-ES]m, (3.4.5)
3 - RER, (3.4.6)
[ J
A o= REm, (3.4.7)
®
& = mEM, (3.4.8)
s ) I




where

-1BT
uu

The matrices S(t) and R(t) are used for the perturbation feedback,
while the vectors fi(t) and fi(t) are used for the estimation of the change

in the final time. The matrix a(t) and the scalar &(t) are not needed for

solving the control problem.

The solution of the Type 1 differential Riccati equation for S(t)

is shown in Section 2.2.1 to be

S(t) = Sy * Z (t) , (3.4.9)

~

where Sss satisfies the steady-state Riccati equation

0 = -8 A-2"S +8ES-w_ .
Ss Ss XX

From Table 2-2, the solution for Z(t) can be shown to be

< =T
ACt-t ) AT (t-t)

2(t) = Z  +e ° [2(t) -z  Je , (3.4.10)

where A = A - E§ss and Zss satisfies the steady-state Lyapunov equation

for Z(t) defined following (2.2.10). Since R(t) and A(t) satisfy differ-

ential equations of Type 2, their solutions are given by (see Tables 2-1
and 2-2):

o Be-t) .
Z (t)e Z(to)R(to) , (3.4.11)

R(t)

and

At-t )

~ -1 o) ~
m(t) Z (tle Z(to)m(to) . (3.4.12)
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Since n(t) satisfies a differential equation of Type 4, its solution is

obtained from Table 2-1 as
ACL) = RI(E)Z(L)R(L) + Alt,) - ﬁT(to)Z(to)m(to) X (3.4.13)

The initial conditions for §(t), ﬁ(t), f(t), and fA(t) are required for
propagating the feedback gains forward in time; these are 1listed in

Reference 9.

Using (3.2.11) and (3.4.2), one can write the feedback gains of
(3.4.1) as

-1_Ta
K1(t) Wo.B s(t) , (3.4.14)

and

..1 T~
- Wuu B'R(t) , (3.4.15)

[}

K2(t)

where the solutions of §(t) and ﬁ(t) are given by (3.4.9) and (3.4.11),

respectively.

3.5 Time-To-Go Indexing Scheme

On observing the time arguments in (3.4.1) and recalling the fact
that the final time is free, it quickly becomes apparent that if the
optimal final time of the perturbed system lies beyond the nominal final
time, then the feedback gains are undefined for part of the time (t > tg)
along the neighboring extremal path. One of the methods suggested for
eliminating this problem is the use of time-to-go indexing [3,20,33] so
that the time-to-go on the perturbed trajectory is the same as the time-
to-go on the nominal trajectory (see Figure 3-1). Equation (3.4.1) is

then re-written as

su(t) = - Kq(tp)ex(t) - Ky(tp)dy , (3.5.1)
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Figure 3-1. Time-To-Go Indexing Scheme
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where

N _ - -
tp -t = tp-t,

N
dtf = t - tI = tf = tf ’

t is the current time, tI is the indexed time, t? is the nominal final

time, and te is the final time on the perturbed trajectory.

To compute the indexed time, let us re-write the last row of

(3.4.2) for the change in final time:

dty = @ (tpex(t) - A (tp)dy , (3.5.2)

where the time arguments for ﬁT(t) and ﬁT(t) have been changed to ty.
Since the feedback gains §(t), ﬁ(t), m(t), and n(t) are efficiently
propagated at fixed time intervals, let us define EI as the points in
time at which the values of the feedback gains are available:

EI = nAt, n = 1,2,3, ... (3.5.3)

where At 1s the propagation time step. On assuming that the perturbed

terminal manifold is given by

Mx(tf) = wd(tf) ’ (3.5.4)
the vector dy of (3.5.2) is computed via
N
dy = wd(tf) - wd(tf). (3.5.5)

Since ty of (3.5.5) depends on the value of dtg, (3.5.2) represents an

implicit equation for dte.

To interpolate the gains to the indexed time, we define

08~



dt. = t. -t , (3.5.6)

where EI is a discrete time-point which is close to tp, so that dEI is
smaller than At in magnitude. The 1local quadratic fit for a generic

variable V(tI) is then given by [9]

1,2 - 2 -
vij(tl) ~ 3z -d)Vij(tI-At) + (1-d )Vij(tl)

1,2 -
iy (d +d)Vij(tI+At) , (3.5.7)

where

d = dtI/At ’

and Vi. may represent an element of either §, ﬁ, fi, or fi.

J
The solution for the indexed time is obtained by guessing a value

for dEI, computing the error in satisfying (3.5.2) via

e = mT(tI)Gx(t) - ﬁT(tI)dw -t B iy, (3.5.8)

and updating the value of dt; via

dt, := dt, - €. (3.5.9)

Equations (3.5.8) and (3.5.9) are iteratively applied [33] until the value
of dEI converges. The previously converged value of dEI is used as the

starting guess in the iteration.

The logic for propagating the gains is as follows. If dEI > At,
then EI is incremented by At, and the gains are propagated forward by one
time-step. If df; < -At, then t; is decremented by At, and the gains are
propagated backwards by one time-step. The above propagation is repeated,
if necessary, until IGEI| < At. When t; is incremented until t; = t?,
then the end of the maneuver is reached. Backward propagation of the

gains, though not occuring often, may be needed when there are
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disturbances acting on the system, or when there is a sudden change in the
terminal manifold during the control interval. Figure 3-2 shows the block

diagram for the free-final-time perturbation feedback controller.

3.6 Illustrative Examples

The specific model considered in this section consists of a rigid
hub with four identical elastic appendages attached symmetrically about
the central hub, and is derived from the experimental structure of [6],
using - NASTRAN data (see Fig. 3-3). In particular, the following
idealizations are considered: (i) single-axis maneuvers, (ii) in-plane
motion, (iii) antisymmetric deformations, (iv) small 1linear flexural
deformations, (v) only the linear time-invariant form of the equations of
motion are considered, and (vi) the control actuator is modeled as a
concentrated torque generating device. Figure 3-4 shows the first three
antisymmetric modes, which, with the rigid body mode, defines the full-
order model. The control system for the vehicle consists of a single
controller in the rigid part of the structure. The structural parameters
of the model are presented in [6]. Because of the above assumptions, only
the antisymmetric modes are used for the example cases in this section.

In addition, full state feedback is assumed.

The rigid body mode and the first elastic mode are chosen for
inclusion in the state vector for the control problem. Hence, the second
and third elastic modes represent residual modes. Control smoothing is
done by penalizing the first and second time derivatives of the control in
the performance index, and augmenting the state vector with the control

and its first time derivative. The state vector is given by

x = [n,n, A f uwall, (3.6.1)

where U and nq are the amplitudes of the rigid mode and first elastic

mode, and u is the control torque.
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Figure 3-2. Block Diagram for the Free-Final-Time Perturbation
Feedback Controller
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Figure 3-3. Mcdel Structure
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As a result of many numerical simulations, it has been found that
without modifications, the optimal perturbation feedback control, as
presented in this chapter, performs poorly, especially towards the final
time when the gains are large and vary quickly. One source of difficulty
is due to the singularity of 5. Since 6 is singular, all of the feedback
gains Dbecome infinite at the final time. Because of numerical
inaccuracies, this results in randomly large gains near the final time. A
remedy is to use Q = ~e1I, where €1 is a small positive number. The
negative sign for Q is due to the fact that if Q were to be a function of
time, it can be shown that Q < 0 for t < te. With this modification, the

gains become large in a well-behaved manner near the final time.

Another difficulty manifests itself in the numerical instability of
the final time estimation. Since the correction variable, e, of (3.5.8)
is computed as the difference of potentially large numbers (relative to
€), the calculation is easily numerically unstable when the values of
ﬁ(tI) and ﬁ(tI) are large or corrupted by numerical inaccuracy. This
results in values of € alternating in sign and increasing in magnitude at
each successive iteration, leading to an unstable algorithm. A remedy for
this problem is to increase the magnitude of a in the expression following

(3.4.2), using

dq
d—t]lt . (3.6.2)

f

a = (1 +¢€5) [

where €5 is a small positive number. It is found that on choosing
€5 = 0.02, the final time estimates become much better behaved, and the
errors in satisfaction of the terminal constraints are reduced by about
two or three orders of magnitude. If we use €, = 0.5, the terminal errors
are reduced by almost four orders of magnitude. However, with €y = 0.5
the free-final-time controller behaves as if it were a fixed-final-time
controller. From these observations, it is clear that the performance of
the controller is extremely sensitive to the value of a. It is not
obvious, however, that a should be modified rather than any other
variable. Nor is it obvious what the mechanism is for the improvement of

system performance, since the modification of o affects all of the gain
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variables. However, it 1is 1interesting to note that the modified
variables, Q and a, are diagonal blocks of the matrix coefficient of
(3.4.2). The remaining diagonal block, S = Sf, also greatly affects
system performance, as discussed in [10]. For the results of this

section, values chosen for €1 and €, are 10_10 and 0.02, respectively.

Cases 1 and 2 represent retargeting maneuvers, where the final hub
orientation, angular rate, angular acceleration, and third time derivative
of the hub angle are required to match a moving target whose motion is
presumably known. The nominal target motion is a linear fly-by (see Fig.
3-5), where the target travels in a straight line at constant velocity.
The structure is assumed to rotate about the z axis, with the appendages
moving in the x-y plane. The components of the Y vector are given in the

following equations:

- - = ey
0(ty) - on(t) = 0, o (t.) = tan (3),
. . . vx
o(ty) - GT(tf) = 0, o5(ty) 5 >
X +y
6(t.) - B8.(t,) = O 6.(t.) = vy
f T °f T °f (x2 . y2)2
and
3.2 3
o . .se 8v-xy 2v'X
o(t.) - o (t) = 0, o.(t.)) = - )
f T °f T °f (x2 + y2)3 (x2 + y2)2
(3.6.4)
where x = X, and y = Yo * vtf. The perturbed target motion is also a

constant-velocity linear fly-by, but with a different starting location
and different velocity. The target parameters and weighting matrices are
shown in Table 3-1. The weight on the elapsed time is adjusted so that
the nominal final time is 5.0 s, for convenience. The terminal state
weighting is computed using a modified version of the algorithm in [10].
Because of the large terminal weights on ny and ﬁ1, the final values of
the remaining state variables are more or 1less constrained via the

terminal constraint conditions of (3.6.3). Therefore, the elements in the
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Figure 3-5. Linear Fly-By for Cases 1 and 2
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Table 3-1. Maneuver Specifications for Cases 1 and 2

Weights

2.63(3) Symmetric

3.95(3) 3.09(6)

7.90 ~7.31(2)  2.63(3)
S =
f 1.18(1)  4.12(4) 3.95(3) 2.68(5)
6.24(-3) -3.38(1) 4,16 1.98(2) 1.00(5)
| 4.73(-6) -3.52(-2) 4.23(-3) 2.01(-1) 1.55(2) 3.23(3) |
W, = Block diagonal [Wyy, Wy,, 1.00(-5), 1.00(-5)]
2.63(-5) 3.95(-5) 2.63(-5) 3.95(-5)
Wip = Woo =
s 3.95(-5) 6.91(~5) 3.95(-5) 6.91(-5)
Wy, = [10]

Nominal conditions:
o(ty) = 8(ty) = ny(ty) = A;(t.) = ulty) = at)) =

x, = 2.7T), y, = -4.0(4), v = 8.0(3)

Perturbed Conditions:
0(ty) = 2(-5)rad , 6(ty) = -=2(-5) rad/s
n(ty) = Aylty) = ulty) = a(ty)) = 0

Xo = 2-5(7)’ yo - -4.1()")9 v = 7.8(3)

a(n) indicates a x 10"
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rows and columns of Sf corresponding to No» ﬁo, u, and G can be set to
very small numbers. However, because of numerical considerations, these
elements are set to larger numbers to decrease the condition number of the
Z(t) matrix. The perturbed trajectory information for Case 2 1is
introduced into the feedback law at t = 2.5 s. This simulates the case

when target information is updated during a maneuver,

The time history plots for Cases 1 and 2 are shown in Figures 3-6
through 3-8. For Case 1, note that all the terminal constraints are
satisfied for both the nominal and perturbed trajectories. (The target
angular acceleration, éT’ and third angular rate, %}, are virtually zero
at the final time for both the nominal and perturbed targets.) For Case
2, the hub angular acceleration shows a small terminal error. However,
all other states reach their desired terminal values, including the
control and its first derivative. The second derivative of the control
torque shows a very small spike near the final time in Figure 3-8. Such
spikes are typical when the final gains are large, and may be removed by

appropriately adjusting Sg, Q, or a of (3.4.2).
3.7 Extensions

The closed-form solutions given in this paper are only applicable
for control problems where the plant dynamics is linear time-invariant.
For nonlinear systems, closed-form solutions are much more difficult to
obtain, Nevertheless, one may use the following method with the closed-
form solutions of this section to approximate the solution of the feedback
gains for a nonlinear system. First, one obtains the nominal state and
control time-histories, using numerical techniques such as shooting
methods [23,30] and boundary-value continuation (see Sections 4.3.1 and
{.3.5). Second, the state differential equations are linearized about the
nominal solution at discrete points in time. Third, piecewise linear
time-invariant intervals are defined about these discrete points in time.
Fourth, assuming that the feedback gains are continuous at the boundaries
of these intervals, one can transfer the terminal conditions for §(t),
ﬁ(t), m(t), and n(t) into initial conditions by sequentially computing

the boundary conditions at each of the interval boundaries, using the
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closed~form solutions, starting from the interval nearest the final time
and going backwards in time. Finally, one can use the initial conditions
for §(t), ﬁ(t), m(t), and n(t), with closed-form solutions and piece-
wise linear time-invariant system differential equations to apply the
feedback gains to the perturbed states and perturbed terminal constraints.
The length of the linear time-invariant intervals may need to be adjusted
depending on the degree of nonlinearity present at a given time along the

nominal trajectory.
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SECTION 1

NONLINEAR THREE-AXIS MANEUVERS FOR FLEXIBLE SPACECRAFT
WITH CONTROL SMOOTHING

4.1 Introduction

This section presents formulations for general nonlinear three-axis
slewing maneuvers for flexible spacecraft. The approach used here is to
find the optimal solution for the rigid body model, and then to apply this
open-loop rigid body optimal control to the fully flexible spacecraft with
a perturbation feedback controller. The perturbation feedback controller
controls several flexible modes in addition to the rigid body modes, and
the feedback gains are computed using the flexible plant linearized about
the rigid body nominal solution at several points along the maneuver. An
extended Kalman filter is implemented to estimate the plant states.

Example maneuvers are shown using the model of a generic space vehicle.

Section 4.2 presents a discussion of model development and
simulation issues. Section 4.3 presents the solution to the nonlinear
rigid body problem. The flexible body perturbation formulation is
developed in Section 4.4, and the extended Kalman filter is discussed in
Section 4.5.

.2 Model Development

The spacecraft model used for the example maneuvers of this section
is based on a satellite model similar to the N-ROSS satellite, which
consists of a more or less rigid bus and several flexible appendages
(Figure 4-1). For this study, the spacecraft bus is assumed to be rigid,
and only two of the appendages, namely the radiometer and the solar array,
are assumed to be flexible. The frequencies and mode shapes of the

flexible appendages are in the form of NASTRAN output data.



SOLAR RRRAY

RIGID BUS

- RADIONETER

22 ft

Figure L4L-1. Spacecraft Model
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The original spacecraft design has one rigid body and six flexible
appendages. Since only two of the appendages are considered flexible for
this study, the remaining appendages and the rigid body are lumped
together to form one rigid body. The total system inertia matrix about

the system center of mass is given in units of slug—ft2 by

3888 -468.7 590.7
(1] = ~-468.7 yoy2 570.2| . (4.2.1)
590.7 570.2 2105

The flexible appendages are each assumed to have five elastic degrees of
freedom, and their frequencies are listed in Table 4-1, Every mode is

assumed to have 0.1% damping.

4,2.1 Multibody Dynamics Simulation

The numerical simulation for the example maneuvers was carried out
using a program called DISCOS (Dynamic Interaction Simulation of Controls
and Structures) [4], which is a well-known package of software developed
for the National Aeronautics and Space Administration (NASA) and
distributed by Computer Software Management and Information Center
(COSMIC). In DISCOS, a complex structure may be modeled as several rigid
or flexible structures connected together at specific points, called
hinges. The equations of motion for each body may then be written in the
same general form for a single body, with the coupling between bodies
provided by Lagrange multipliers which maintain the desired interface

constraints.

4.2,2 Recent Issues in Multibody Dynamics Simulation

Doubts have recently been cast on the validity of multibody
computer programs such as DISCOS [4], NBOD [12], ALLFLEX [15,16] and
TREETOPS [32]. Since DISCOS was chosen to simulate the three-dimensional
nonlinear slews of this section, an investigation was carried out to

determine the validity of such claims [19].
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One of the claims was that current multibody computer programs do
not include rotational inertia terms for the individual elements of a
finite element model. However, as shown in Reference 9, by computing the
inertia matrix for a single body from first principles, and comparing the
result with the documentation for DISCOS [4], it is found that DISCOS does
include rotational inertia terms for the individual elements of a finite-

element model.

Another issue of concern is the absence of a gyroscopic stiffening/
arc length correction term in current multibody computer programs. The
arc length correction involves the difference in distance to a point on a
long slender beam when measured along the deformed beam and when measured
as the projection onto the beam's undeformed position. Inclusion of this
correction term lea@s to a stiffening term in the equations of motion,
which increases with higher angular velocities, hence the term gyroscopic
stiffening. Since this effect is applicable only to long slender rods,
and is important only for high angular velocities, it 1is often not
included in general multibody computer programs. For the example cases of
this study, the angular velocites are small, hence the neglected

gyroscopic stiffening/arc length correction terms are not important.

4.3 Optimal Nonlinear Three-Dimensional Maneuvers with Control

Smoothing for Rigid Structures

This subsection deals with the solution for the open-loop nominal
control profile which is based on a rigid body model. The solution to the
nonlinear optimal control problem is obtained by first solving the problem
of a single-axis maneuver with a diagonal inertia matrix, and then using a
continuation method to introduce the three-axis boundary conditions and

off-diagonal elements of the inertia matrix.
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4,3.1 Continuation Method

The continuation method [29], also known as homotopy chain method,
is a process by which a continuation parameter, a, is imbedded into the
equations of a problem so that when o is set to zero, the modified problem
becomes easy to solve, and when a is set to one, the modified problenm
reverts to the original hard-to-solve problem. Typically, the
continuation parameter is used to multiply terms which make the problem

difficult to solve.

There are many ways of sweeping the value of the continuation
parameter from zero to one. One way is by numerical integration which
requires the calculation of the derivative of the solution with respect to
the continuation. For some problems, is is difficult to compute this
derivative. Instead, a prediction~correction type of integration may be
performed, where previously converged intermediate solutions are used to
estimate the required derivative by means of finite differences. A more
crude but simple approach is to slowly increment the value of a, and
perform an iterative correction at each increment. This approach is less

efficient, but involves the least amount of programming.

4.3.2 Equations of Motion

For the rigid body control problem, let us select as state
variables Euler parameters, B8, body angular velocities, w, pseudo-
controls, Uy and pseudo-control rates, Uy . The pseudo-control vector is

defined as

u o= (117 4 u b, (4.3.1)
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where

Ixx -Ixy _Ixz
1] = -1 I -1
(1] yX yy yz |’
-I -I I
ZX zy ZZ

and u and u, are torques about the x, y, and z axes, respectively.

x? Yy z

The torquis are assumed to be applied by concentrated torque generating
devices acting on the rigid spacecraft bus. The inclusion of the pseudo-
controls and pseudo-control rates is for control smoothing, as described
in Reference 9. Pseudo-controls are used instead of the actual applied
torques because the use of applied torques results in large values for the
angular velocity costates when the moments of inertia are large. By using
pseudo-controls, the problem is normalized so that the values of the
states and costates are close to the same order of magnitude. The

equations of motion can be shown to be

B = (w)p , (4 x 1) (4.3.2)

0w = u, * Glw) , (3 x 1) (4.3.3)

l:lo = u] s (3 X 1) (u.3ou)
and

lZl1 = U, (3 x 1) (4.3.5)
where
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0 Wy -wy w,
w 0 w -w
aw) = 2| * S
wy W, 0 W
[ w, wy "Wy 0 ]
-1,
Glw) = -1[1I] [(&)M1]w ,
T
w = [wx wy wZ] ,
and
0 W, wy
(6] = w, 0 W .
-~w w 0
y X

In the above equations, (4.3.2) is the kinematic equation relating the
Euler parameter rates and the body angular velocities, and (4.3.3)

represents Euler's equation in terms of pseudo-controls.

4,3.3 Optimal Control Problem and Necessary Conditions

For rigid body nonlinear three-dimensional slews, let us define the
optimal control problem as the minimization of a finite-time quadratic

performance index

t x(t)
J = %Itf[xT(t) ug(t)] W dt , (4.3.6)
o uz(t)
where
X = [BT wT ug u?JT ,
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and

) 0 0 0 0 ]
0 Q 0 0 0
2
W = 0 0 I 0 I/w ,
B
0 0 0 0 0
i 0 0 I/wg 0 I/wg ]

subject to the state dynamics equations, (4.3.2) through (4.3.5), with
specified initial and final states. The symbol I represents the (3 x 3)
identity matrix. In the performance index of (4.3.6), the weight matrix,
W, does not include penalties on the Euler parameters, since the angular
displacements may be large. A weighting matrix is placed on the angular

velocity terms so that the angular velocities may be kept small. The

penalty terms on the pseudo-controls and pseudo-control rates are the
time-domain equivalent of frequency-domain penalties on the pseudo-

control, where the frequency range above wg is penalized {(see Ref. 9).

The Hamiltonian for the performance index of (4.3.6) and the state

dynamics of (4.3.2) through (4.3.5) may be written as

1r T T T Y T 2
H = E{w Quw + ujug * u2u2/wB + 2uou2/wB]
T T T T
Y ws + A (ug + Glw)) *+ uuy + o, (4.3.7)

where Y (4 x 1), x (3 x 1), u, (3 x 1), and uqy (3 x 1) are costate or
adjoint variables for 8, w, Uy and uq, respectively. The necessary

conditions can then be derived from the Hamiltonian as
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(25T - 8 - aws, (4.3.8)
[%IAE]T = b = uy + G, (4.3.9)
[_SBTI':]T = a4 = u, (4.3.10)
[;TP:]T = b = ou,, (4.3.11)
- [g_g]T = ¥ = awY, (4.3.12)
[%g_]'r = % = -Q- [%(YTQB)]T - [%]TA , (4.3.13)
- [g%i]T = 0, = Cug - u2/w§ -, (4.3.14)
- [%1_]'1" = ho= -, (4.3.15)
and
[g%%]T = 0 = uzlwg + uo/wg U (4.3.16)

where the following notation has been used

oV,
i

oV
[W]ij = eTJ.’

for general vectors (or scalars) v and w. In the equations above, the
initial and final values for B8, w, U, and uq are specified. However, no

boundary conditions are known for Y, A, Ug» and Mqe.
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4.3.4 Starting Guess for the Continuation Method

The necessary conditions for the rigid body slewing problem shown
in (4.3.8) through (4.3.16) represent a set of difficult nonlinear
differential equations with split boundary conditions. To solve the
differential equations, a continuation method is used, as discussed in
Section 4.3.1. The first step is to find a starting guess which is easy
to solve. For this, we choose a single-axis maneuver about a principle
axis. To further simplify the calculations, we assume initially that the
inertia matrix of the spacecraft is diagonal, with the non-zero off-

diagonal terms introduced during the continuation process.

A reasonable choice of axis for the starting guess solution is to
use the axis with the highest peak angular momentum if the single-axis
maneuver were to be accomplished via bang-bang control. This is also the
axis about which the largest bang-bang torque would be applied. Denoting
this axis by k, where k¥ = 1, 2, or 3 corresponds to the x, y, or z axis,
one may write a modified subset of the necessary conditions of (4.3.8)

through (4.3.16) for rotation about axis k:
x(t) = [KIx(t), (4.3.17)
where

[0, (t) = ¢, (t )]
w, (t)

Lu (£3],

(o) - Cu, ()], }
Cu (21,

[“1(t)]k

£(t)

L C
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[ 0 1 0 0 0 0 0 0]
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 -w2 0 0 -w" 0 0
B B
[K] = 2 ’
Q 0 0 0 0 wg -1 0
0 0 0 0 -1 0 0 0
0 0 0 0 0 0 0 —15
0 0 0 0 0 0 0 0
E(t) = A (t) -~ (t-t ) C
B k"o 2 o] ’
C = Yk(to)sec(¢k(to)/2) ,

and ¢k(t) is the angular displacement about axis k. In deriving (4.3.17),

we have imposed the orthogonality constraint:

(4.3.18)

P~
w
=<
)
O

i
to ensure uniqueness of the Euler parameter costates.

Since (4.3.17) represents a linear time-invariant system, the final
values of x(t) can be related to the initial values by an equation of the

form
K(t .-t )

X(t) = e fo x(ty) . (4.3.19)

Observing that the initial and final values for ¢,, wy, (ugy)y, and (uy)y
are known, one can perform the partitioned matrix multiplication in
(4.3.19) for the upper partition of x(tg), and solve for the unknown

initial values of (ug)y, (uq)y, &, and the unknown constant C, via
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[ (1) (8)) [0, (tp)-0, (t ) ) o )
o, () () | w, (te) 6 w, () ,
E(t,) () () () (t,)
. ¢ [ )t [ (ug), (tg)
(4.3.20)

where

The initial values of Bor By YO, Yy, and Ak are then given in

terms of elements of x(t,) by

Bo(to) = oS (¢k(to)/2) . (4.3,21)

B (t)) = sin (¢ (t )/2) (4.3.22)

Y,(t ) = - Csin (¢k(to)/2J , (4.3.23)

Y (t)) = Coeos (ot )/2), (4.3.24)
and

ANt = E(t) . (4.3.25)

The initial conditions of (4.3.21) through (4.3.25), together with
we(ty)y Tug(ey) 1y, [ug (b)), Cug(ty) 1y, and Cuq(ty) Iy of x(ty) comprise a
complete set of 1initial conditions for a single-axis maneuver with a

diagonal inertia matrix.
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4.3.5 Continuation for Inertia Matrix and Boundary Conditions

Given the single-axis rotation with diagonal inertia matrix
starting guess of Section 4.3.4, the three-axis optimal maneuver with
fully populated inertia matrix may be obtained through a continuation
process. The continuation approach used is one where the continuation
parameter, o, is incremented at discrete steps, with convergence at each

step achieved via a Newton—-Raphson iteration.

Since there are two different quantities introduced during the
continuation process--off-diagonal elements of the inertia matrix and
three-axis boundary conditions--the continuation process may be performed
separately or combined together 1in one process. When one combined
continuation process is used, it may be advantageous to retain the ability
to use separate continuation parameter increments for the two quantities

when handling extremely difficult problems.

For the inertia matrix continuation, the inertia matrix of (4.3.1)

is replaced by

I -a, 1 -a, 1
XX 17Xy 17xz
[I(a1)] = oLy . T, | - (4.3.26)
-a,l -a, I I
17zx 17zy ZZ

Setting o = 0 produces the diagonal inertia matrix used in Section 4.3.4,

and setting a4 = 1 produces the original fully populated inertia matrix.

For the boundary condition continuation, let us define the modified

terminal Euler angles as

¢j(tf) , J =k

wj(tf,az) = (4.3.27)

a2¢j(tf) ) J=*k

where k represents the axis used for the starting guess of Section 4.3.4,

and ¢j(tf), (j=1,2,3), are the desired final Euler angles of the three-
axis maneuver. For each value of the continuation parameter, a,, the
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modified final Euler parameters are computed from the values of wj. The
modified final conditions for the angular velocities, pseudo-controls, and

pseudo-control rates are similarly defined as

w, (£ i=k,
w, (t.,a.) = J (4.3.28)
VAR aw,(t,) j=*k
2°j °f ’
(u ). (t.) =k,
(W) .(t.,a.) o’y f (4.3.29)
oj £ a (u).(t.) j ek
2 Y0’ r ’
and
(u,).(t.) i=k,
(W) (to,0,) = LA (4.3.30)
) ap(uy) (te) ik,

The modified initial conditions are defined in the same manner as for the

modified final conditions.

After each increase of the continuation parameters, the previously
converged values of the initial costates no longer generate trajectories
which satisfy the final boundary conditions. As a result, an iterative
correction scheme is needed to correct the initial costates based on the
error in satisfying the final boundary conditions. For this purpose, a
Newton-Raphson first-order correction scheme is used. This is
accomplished by Taylor expanding the terminal values of the states as
functions of the initial costates. As a result, the partial of the final
states with respect to the initial costates must be computed. To obtain
quicker convergence, one may use extrapolated values of the initial

costates based on previously converged values and back o values [8,29,34].

For each iteration, the modified state-costate vector is integrated
from t, to ty, and the error in satisfaction of the modified final
conditions is computed. To obtain the partial of the final states with
respect to the initial costates, one must integrate the partials of the
state-costate vector with respect to the initial costates, along with the

integration of the state-costate vector. That is, the matrices
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2y (t) and aACE)

aA(to) eA(to)

are integrated from to to tf, where

S AP RS L (4.3.31)

and yx 1is defined following (4.3.6). The 1initial conditions and
differential equations for integrating these partials are presented in
Reference 9. The corrected costates for the next iteration are obtained

as follows:

-=1r- -
Mg (te) = At ,a) = ¢ [Xp(tea) = Xy(tp0] (4.3.32)
where
o = [a1 a2]T R
- T T T.T
- T T T,T
xI(tf,a) = [0 B, 8, 83 woug u1]I }tf,a ,
Bo(to,a) . . e 83(t°,a) 0 e v e 0
¢ o}
- XZAI . XZAIS
Q = »
% ‘ ¢
- X, .0 Xxs 13
and
] _ axi(tf,a)
xiAj BAj(to,a) I
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In (4.3.2), the subscript d for xd(tf,a) indicates the desired modified
final values, and the subscript I for XI(tf,a) indicates the integrated
final values for the current iterate. The variables id(tf,a), iI(tf,a),
and ¢ represent modified forms of xd(tf,a), XI(tf,a), and
ax(tf,a)/aA(to,a), where the modification has been performed by replacing
the first row of the Taylor expansion for x(tf,a) by the orthogonality

constraint [36]
8T(t ,a)Y (t ,a) = O (4.3.33)
o’ d OI ?
where Yd(to,a) is the desired initial Euler parameter costate.
The entire continuation process is summarized in algorithmic form

as follows. (The single-axis diagonal inertia matrix starting guess of

Section 4.3.4 is assumed to have been computed.)

Step 1. 1If a7 = 1 and a, = 1, stop. (end of continuation). Otherwise,

increment a, and a,, and compute [I(a1)], x(tg,as), and x(te,as).
Step 2. Integrate state-costate differential equations ((4.3.8) through

(4.3.15)), and state-costate partials with respect to initial

costates (Reference 9).

Step 3. Compute error in satisfaction of modified final boundary

conditions. If small, go to Step 1.

Step 4. Compute new initial costates ((4.3.32)). Go to Step 2.

4.3.6 Numerical Results

A 60 second rest-to-rest maneuver with angular displacements of 1
radian about each axis (using a 1-2-3 Euler sequence) is simulated. The
weighting matrix for the angular velocity is arbitrarily chosen as

Q = 10-31, where I is the (3 x 3) identity matrix. In choosing the value

...58_



for the break frequency, wg, it is found that it is best to choose wpg SO

that it corresponds to the frequency of the maneuver; that is,

wgy = (—tf_ito—) (4.3.34)
For the above value of wg» the resulting maneuver has pseudo-controls with
smooth profiles (Figure 4-2). For higher values of wg) the pseudo-control
profiles of the resulting maneuver have more undulations (see Figure 4-3).
This reflects the higher frequency content of the controls, directly
resulting from the higher value of wg. For 1lower values of wg, the
resulting trajectories are similar to the case where wg is chosen
according to (4.3.34). However, the number of Newton-Raphson iterations
required for convergence 1is increased slightly, indicating that the
partial derivative matrix of (4.3.32) may have become numerically stiffer.
To illustrate the effect of the choice of wp on the frequency content of
the resulting control, Figure .4-4 shows the frequency spectra of the
pseudo-control for the single-axis starting guesses with wp corresponding
to Figures UW-2, and U4-3, Because the penalty function of (4.3.6)
penalizes the frequency content of the pseudo-controls for values of

frequency above wpg, One sees a sharp roll-off near wg in Figure 4-4,

4.y Perturbation Feedback for Controlling the Flexible Body Response

4.4.1 Plant Linearization and Gain Calculation

This section presents a perturbation feedback scheme for control-
ling the elastic deformations of a flexible body when subjected to the
nominal rigid body torque profile of Section 4.3. The flexible plant
dynamics is linearized about the rigid body nominal solution at several
points in time. Steady-state feedback gains are computed based on these
linearized plants and an infinite-time performance index with control-rate

penalty.

The state perturbations used for the flexible plant model for the

perturbation feedback are
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T .T T T T
§x = [Smx Swy Gwz ES ER ES ER 6¢X 5¢y 6¢z] , (4.4.1)

where Gmx, 6wy, and Gwz are the perturbed body angular velocities of the
spacecraft bus, ES and ER are the modal amplitudes of the solar array and
the radiometer, respectively, and 6¢x, 6¢y, and 6¢Z are angular
displacements of the spacecraft bus. The modal amplitudes, ES and ER’
represent a reduced order elastic model. The numerical simulation
includes several additional elastic modes to represent the residual mode

responses.

From DISCOS, the linearized system dynamics and control influence
matrices are obtained numerically through a quadratic finite difference
approximation. The 1linearized differential equation for the state
perturbations is then
A(l)dx(t) . B(l)

s§x(t) = Guo(t) , t = t., (4.4.2)

where ti is the instant in time at which the plant is linearized, A(i) and
B(i) are the linearized state dynamics and control influence matrices at

t =t;, and uo(t) is the pseudo-control.

For control-smoothing, the above differential equations are augmented by

the differential equations for the perturbed pseudo-control:

6uo = <Su1 ’ (4.4.3)
and

su, = du, . (4.4.4)

The performance index used for computing each set of steady-state
gains is



§x(t)
- su (t)
J = %It [oxT(t) suL(t) sui(t) sus(e)Iwq °© p dt ,  (U4.4.5)
(o} 1 2
o 6u1(t)
[ su,(t) |
where
" Q 0 0 0 ]
0 I 0 I/wg
W = .
0 0 0 0
| 0 I/wg 0 I/wg_

The penalties on the pseudo-controls, and their rates are in the form used

in Gupta's frequency-shaped control smoothing where the break frequency,
wg, Mmay be different from the one used for the rigid body nominal. For
each linearized plant, steady-state gains are computed based on the
performance index of (4.4.5), and the dynamics equations of (4.4.2)
through (4.4.4). Since the performance index is not rigorously minimized
for the nonlinear plant, this feedback approach is suboptimal with respect

to the performance index of (4.4.5).
For a given plant, described by A(i) and B(i), the optimal steady-

state feedback solution for minimizing the performance index of (4.4.5) is

given by

-1r~T_ (i Ty._
suy(t) = - R '[B p;;) + NTlex(t) (4.4.6)

where

o N

fo 1/w_, 071,

=}
]
—
~
€
=
]
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[ Q 0 0 _

- Q N

Q = 0 I 0 ’ W = ’

NT R

| 0 0 0 | - -
rA(i) B(i) 0

- ~T

A = 0 0 g B = [0 0 1],
|0 0 0 |

i)y ST (1) i)y -1 T . =T (1) ~
0 = P A+ AP [Pss B+ NJR '[N + B Pos ] +q,
and
sx(t) = [6xT(t) 6u2(t) 5u$(t)] T,

During the perturbation feedback, the feedback gains are linearly

interpolated between the points in time at which the gains are computed.

4,4,2 Numerical Results

Example cases are generated with the assumption of perfect state
estimation. (Section 4.5 shows example cases where the Kalman filter is
used for state estimation.) The 60 second rest-to-rest maneuver discussed
in Section 4.3.6 is used for the nominal trajectory. The flexible plant
is linearized about the rigid body nominal solution at 12 second
intervals. Several off-nominal cases are studied. For all cases, the two
lowest solar array modes and the two lowest radiometer modes are chosen
for inclusion in the feedback formulation. The other higher frequency
modes represent residual modes. All modes are assumed to have 0.1%
damping. The break frequency for the perturbation controller, wp» is
chosen to be half the frequency of the highest controlled mode, so as to
minimize the excitation of the residual modes. Figure U4-5 shows the
frequency spectra of the pseudo-control corrections when the perturbation

feedback controller is subjected to initial conditions.
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Case 1 (Figure L4-6) is the 'nominal' flexible body case, with
perfect plant knowledge and nominal initial conditions. The controlled
modal amplitudes and residual modal amplitudes for the solar array
(denoted as S/A) and the radiometer are plotted separately. Note that all
the modal amplitudes are very small by the end of the maneuver. The angle
errors take a slightly 1longer time to settle. The pseudo-control
corrections (denoted by Del u), take about 20 seconds beyond the maneuver
time to damp out. For the case where the moments of inertia of the rigid
bus are altered by 10%, the modal amplitude profiles are almost identical
to those of Case 1, while the angle error histories and pseudo-control

corrections are altered in amplitude.

Case 2 (Figures 4-7 and 4-8) is the same as Case 1, except that
initial angular errors are specified for Case 2. The error in the initial
angle 1is chosen to be 5% of the total angular displacement about each
Euler axis. The sign of each of the errors is arbitrarily assigned. Note
that the initial angular errors are an order of magnitude higher than the
peak angular errors shown in Case 1, After about 20 seconds, the angular
error and modal amplitude time histories approach the general shapes of
the corresponding plots for Case 1. Since the peak values for the pseudo-
control corrections are more than an order of magnitude higher than those
for Case 1, the peak modal amplitudes are also higher than in Case 1. It
appears that the oscillations in the pseudo-control corrections near the
initial time may have excited the third radiometer mode (a residual mode).

Additional example cases are presented in Reference 9.

4.5 Kalman Filter for Observing the System States

4.,5.1 Gain Calculation

This section presents a modified Kalman filter to estimate the
system states used in the perturbation feedback scheme of Section 4.4,
The approach presented here involves the use of linearized plant equations

similar to those used for the perturbation feedback.

-67-



ORIGINAL PAGE IS
OE POOR QUALITY

6.0 o Angérrt
o AngErr2
4'0‘ [ 3 N\gb‘rl ?
? 20 1 .
- &
00 3
} o i
2 20 s
H z
~40 1
-0 ’ r -0.10 —
0 30 60 90 o 60 90
Time (se0) Time (se0)
10 0 8/A1% 13 D 8/A3
4 ¢ 8/A2 $ 1.0 o 8/A4
£ A o
. )
2 00 1 00 /\
4 § 0s-
< 03 <
S @ -104
-10 Y -13 r
0 30 60 90 o 60 %0
Time (se0) Time (se0)
10 O Radiometer § 10 2 Radiometer 3
g o Radlometer2| 8 o Radiometer 4
M w 0S5 & Radiomweter S
e 0351 .
; j -
0.0 4 —
§ t o)
§ 03 - ; -1.0 -
-10 T T ~13 Y
0 30 60 ) 0 60 90
Time (se0) Time (se0)
Figure L4-6. Case 1. 'Nominal' Perturbation Feedback

-68-



AL pap
OF POOR o CE Is
ALITY
e o Anglrri
° AngErr2
1 s AmErs
HES
:
PO
F
_401
-0 Y '
0o 30 60 90
Time (se0)
20 o S/A1 '8 8 $/A3
15 o $/A2 1.0 1 o 8/A4
g 107 E‘ o2 ' i
- « 00
2 037 A 2-05- V
g 0.0+ g -1.0 -
< =03 < -15
p B
® 40 ~2.0
".5 Y T -2-5 T T Y
0 30 60 %0 0 20 60 90
Time (se0) Time (se0)
13 o Radlometer 1 23 a mﬂw:
o Radiometer 2 " 20 ©  Radiometer
g 10 g P & Radlemeter 3
- . 1
0.3 1 1.0
2 + % 0
g 00 11 R , 0.0
§ 03
0.3 § 0
'1.0 T v "5 T T
0 0 60 90 ] 30 60 90
Time (se0) Time (se0)
Figure kL=, Case 2. Off-Nominal Initial Angles

_69_




30

20
10 ﬂ/\
S TATAVN

=10 -

Del ul (mrad/sec®#2)

-20 ‘

-3.0 1
4.0

¥ T LB

Del u2 (mrad/sec® #2)
o -
0o O
1
e
>
P
>
D
4

30
20 1
1.0 1

A A n Af\vf\AAA

o |[[VIVOV

-1 0 4
=2.0 1

-30 ﬂ
40
-50 ' '

0 30 60 90
Time (se0)

Del u3 (mrad/sec ®#2)

Figure 4-8. Pseudo-Control Corrections for Case 2

-70-



T———————— ———

Let us assume that in addition to the system dynamics matrix, A(i),
and the control influence matrix, B(i), of (4.4.2), the measurement
influence matrix, C(i), is also linearized about the nominal trajectory at
several points in time. For the calculation of the Kalman gains, let us
assume that the linearized plant dynamics and measurements are subjected

to Gaussian white noise disturbances:

(i)

x(t) = A(i)x(t) + B uo(t) + wit) , t = ti , (4.5.1)
and
y(t) cDyie) + viry (4.5.2)
where
Wit,) wit,) T Q 0
E = - 6(t2‘t1) 1
v(t1) v(t2) | | 0 R |
E[w(t)] = 0, and E[v(t)] = 0 .

Let us assume a linear estimator of the form

~

x) = AWz 8 o)+ k Py - ¢ Prrr, wesy

where K(i) is a set of constant observer gains.

It can be shown that the gain matrix which minimizes the error

covariance is given by 3§

(1) (1) (1) T=-1
K = xss[c J'R , (4.5.1)

where X&ig is the steady-state error covariance matrix for the linearized

plant:
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T T=-1 -
0 = AXSS + XSSA xssc R cxss +Q, (4.5.5)

and the superscript notation has been dropped.

During the simulation of the estimator, the variables A(i), B(i),
c(1) . ana k1) are 1linearly interpolated as in Section 4.4 for the

perturbation feedback gains.

4.,5.2 Numerical Results

As in Section 4.4.2, the flexible plant is 1linearized about the
rigid body nominal solution at 12 second intervals for the results of this
section. The measurement variables used for the results of this section
are the spacecraft Euler angles relative to the inertial frame; the body
angular velocities of the spacecraft bus; the out-of-plane deformations
and velocities of diagonally opposite corners of the solar array (points 3
and 6); and the deformations and velocities of two points on the
radiometer (points 9 and 10). It is assumed that raw data from sensors,
such as accelerometers on the solar array, has already been processed to
provide the measurements stated above. Due to the limited scope of this
study, the sensor locations are not optimized for best performance. The
process and measurement noise variances are chosen as small percentages of
the peak values experienced in the 'nominal' Case 1 of Section 4.4.2.
Case 3 (Figs. 4-9 through 4-11) shows the result of replacing the true
state variable by the state estimate in computing the perturbation
feedback for Case 1 of Section 4.4, Figure U4-9 shows that the Euler
angles converge to their desired final values of 1 radian, with slight
overshoot for the first and third Euler angles. The sensor point
deformations shown in Figure 4-9 have very smooth profiles which converge
to zero near the final maneuver time. Points 3 and 6 correspond to the
two corners of the solar array, and points 9 and 10 correspond to two
points near the center of the radiometer. The pseudo-control corrections
of Figure 4-10 have higher peak values than the corresponding plots in
Case 1 of Section 4.4, The angular estimate.errors show the result of
linearization at discrete points in time. One remedy is to linearize the

plant at shorter time intervals. A Dbetter solution 1is to perform
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perturbation estimation about the nominal rigid body trajectory rather
than estimation for the entire state. Figure 4-11 shows the amplitudes of
the controlled modes and their estimates. One can see that the first
solar array and radiometer modes are not estimated very well. This is due
to observation spillover from the residual modes. In order to minimize
the effects of observation spillover, one must choose optimal locations
for the sensor points. Since there are 271 grid points on the radiometer
with 5 modes, and 1000 grid points on the solar array with 4 modes (the
original model has 15 modes), and six degrees of freedom to choose from,
an automated procedure must be used for the selection of sensor locations
[4,37]. However, this 1is Dbeyond the scope of the current study.

Additional examples are shown in Reference 9.



SECTION 5

SUMMARY AND CONCLUSIONS

This report has covered three different, yet interrelated topics.
Section 2 has dealt with a new class of closed-form solutions for finite-
time 1linear-quadratic optimal control problems. These closed-form
solutions are used in Section 3, which presents the solution for the
neighboring extremal path problem, as applied to spacecraft slewing
maneuvers. Section 4 has dealt with general nonlinear slewing maneuvers
for flexible spacecraft, for which the results of Section 3 are useful
when the terminal conditions are slightly perturbed. A more detailed

summary of each section follows.

Section 2 has dealt with a new class of closed-form solutions for
finite-time linear-quadratic optimal control problems where the plant is
linear time-invariant. This class of closed-form solutions is based on
Potter's solution, which consists of a steady-state plus transient tern,
for the differential matrix Riccati equation. Five basic differential
equations are identified for the solution of finite-time linear-quadratic
optimal control problems. Closed-form solutions are presented for these
five basic differential equations, and example control problems are
presented where these solutions are used to obtain closed-form analytie
expressions for the feedback gains, state trajectories, control
trajectories, and residual state trajectories, with the assumptions of

perfect plant knowledge, and perfect state estimation.

For each example control problem, comparisons are made with closed-
form solutions based on the Kalman-Englar method, and on the state
transition matrix. For each case, it is found that the new class of
closed-form solutions is more efficient than the Kalman-Englar type of
solution based on the state transition matrix. Furthermore, it is well
known that the Kalman-Englar solution for the Riccati matrix is

numerically unstable when the propagation time-step is large, or when the
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Riccati solution is not symmetrized at each time-step. Such numerical
problems do not occur in Potter's solution for the Riccati matrix. Thus,
it seems that the new class of solutions is numerically superior to the
Kalman-Englar type of solutions for feedback gains and state transition
matrix solutions for state and control trajectories. However, a rigorous
analysis of the numerical stability and error propagation characteristics
of the new class of closed-form solutions remains a topic for further

research.

The relationship between the new class of solutions and the state
transition matrix solutions is illustrated by means of reducing subspace

transformations for the Hamiltonian matrix.

The closed-form solutions developed in Section 2 are applied to the
free-final-time neighboring extremal path problem with 1linear terminal
constraints, a quadratic performance index, and a linear time-invariant
plant. Closed-form solutions are presented for the perturbation feedback
gains which cause the system to follow a neighboring extremal path when
subjected to small perturbations in the initial conditions and terminal
constraints. Numerical experiments indicate that slight numerical
modifications can greatly reduce the sensitivity of the feedback gains
near the final time. An extension is shown for using the closed-form

solutions for problems with nonlinear plants.

Section U4 has presented a formulation for general nonlinear slewing
maneuvers for flexible spacecraft, whereby a rigid body nominal control
profile is applied while a perturbation feedback controller 1limits the
flexible body response and controls the plant to follow the rigid body
nominal trajectory. The use of control smoothing in both the rigid body
nominal solution and the perturbation feedback controller greatly reduces

the excitation to the elastic degrees of freedom.

Numerical results show that the break frequency used for the
control smoothing formulation for the rigid body nominal solution should
be linked to the maneuver time in order to produce good results.

Numerical results for the perturbation feedback controller show that it
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performs very well under off-nominal conditions for a 60 second maneuver.
For further research, it 1is recommended that the maneuver time be
shortened so that the break frequency for the rigid body nominal solution
overlaps some of the structural frequencies. Such a case should prove
challenging, since this would involve more interaction between the rigid

modes and the elastic modes.

A modified Kalman filter is presented for estimating the system
states. Numerical results indicate that the approach 1s feasible.
However, for further work, it is recommended that a sensor 1location
optimization be performed to minimize the possibliity of observation
spillover. Furthermore, a perturbation estimation approach may be used,
whereby one estimates the state perturbations rather than the states

themselves.

For maneuvers where the desired final conditions are different from
the nominal final conditions, one must use the optimal perturbation
feedback of Section 3, with the modifications for nonlinear plants. Such
an approach would result in near-optimal time-varying feedback gains,
using the same type of linearized plant as used for the results of Section
y,
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