AEROSPACE MEDICINE
AND BIOLOGY

A CONTINUING BIBLIOGRAPHY
WITH INDEXES

(Supplement 307)

A selection of annotated references to unclassified reports
and journal articles that were introduced into the NASA
scientific and technical information system and announced
in January 1988 in

- *Scientific and Technical Aerospace Reports (STAR)*
- *International Aerospace Abstracts (IAA).*
INTRODUCTION

This Supplement to Aerospace Medicine and Biology lists 203 reports, articles and other documents announced during January 1988 in Scientific and Technical Aerospace Reports (STAR) or in International Aerospace Abstracts (IAA). The first issue of the bibliography was published in July 1964.

In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which man is subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects of biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. In general, emphasis is placed on applied research, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion.

Each entry in the bibliography consists of a bibliographic citation accompanied in most cases by an abstract. The listing of the entries is arranged by STAR categories 51 through 55, the Life Sciences division. The citations, and abstracts when available, are reproduced exactly as they appeared originally in IAA or STAR, including the original accession numbers from the respective announcement journals. The IAA items will precede the STAR items within each category.

Seven indexes — subject, personal author, corporate source, foreign technology, contract, report number, and accession number — are included.

An annual index will be prepared at the end of the calendar year covering all documents listed in the 1988 Supplements.

Information on the availability of cited publications including addresses of organizations and NTIS price schedules is located at the back of this bibliography.
TABLE OF CONTENTS

Category 51 Life Sciences (General) ... 1

Category 52 Aerospace Medicine
 Includes physiological factors; biological effects of radiation; and effects of weightlessness on man and animals. ... 12

Category 53 Behavioral Sciences
 Includes psychological factors; individual and group behavior; crew training and evaluation; and psychiatric research. 25

Category 54 Man/System Technology and Life Support
 Includes human engineering; biotechnology; and space suits and protective clothing. .. 28

Category 55 Space Biology
 Includes exobiology; planetary biology; and extraterrestrial life. ... N.A.

Subject Index ... A-1
Personal Author Index ... B-1
Corporate Source Index .. C-1
Foreign Technology Index .. D-1
Contract Number Index ... E-1
Report Number Index .. F-1
Accession Number Index .. G-1
An attempt was made to modify factors which promote disuse osteoporosis and thereby prevent it from occurring. Since fluoride is currently used to enhance bone formation in the treatment of low turnover osteoporosis, it was hypothesized that if the fluoride ion was available over a long period of time that it would slow the demonstrated loss of calcium by inhibiting bone resorption and enhancing bone formation. This study was used to determine whether oral medication with sodium F will modify or prevent 5 weeks of bed rest induced disuse osteoporosis, to determine the longitudinal effects of 5 weeks of bed rest on PTH, CT and calcitriol, to measure muscle volume changes and metabolic activity by magnetic resonance imaging and magnetic resonance spectroscopy during prolonged bed rest, to measure changes in peak muscle strength and fatigability, and to measure bone turnover in bone biopsies. Subjects were studied during 1 week of equilibration, 4 weeks of control ambulation, 5 weeks of bed rest, and 1 week of reambulation.

E.R.

Use of on-line high-precision mass densitometry for the continuous monitoring of blood volume changes in humans was demonstrated by recording short-term blood volume alterations produced by changes in body position. The mass density of antecubital venous blood was measured continuously for 80 min per session with 0.1 g/l precision at a flow rate of 1.5 ml/min. Additional discrete plasma density and hematocrit measurements gave linear relations between all possible combinations of blood density, plasma density, and hematocrit. Transient filtration phenomena were revealed that are not amenable to discontinuous measurement.
AEROSPACE MEDICINE
AND BIOLOGY

A Continuing Bibliography (Suppl. 307)

FEBRUARY 1988

51

LIFE SCIENCES (GENERAL)

Includes genetics.

A88-10221
THE ROLE OF INDIVIDUAL TYPOLOGICAL FEATURES OF HIGHER NERVOUS ACTIVITY IN THE FORMATION AND THE RADIATION RESISTANCE OF CONSOLIDATED MOTOR-DEFENSIVE CONDITIONED REFLEXES IN RATS (ROL' INDIVIDUAL'NYKH TIPOLOGICHESKIKH OSOBNOSTEI VYSSHAI NERVVOI DEIAETEL'NOSTI V FORMIROVANII I YVSHEI NERVNOI DEIAETEL'NOSTI V FORMIROVANII I RADIATIONNOI US'TOICHIVOSTI UPROCHNENNYKH DVIGATEL'NO-OBORONITEL'NYKH USLOVNYKH REFLEKSOV U KRYS)

The dynamics of the formation of consolidated motor-defensive conditioned reflexes in rats irradiated with gamma rays were studied together with the radiation resistance of these reflexes. In a preliminary study of the parameters of higher nervous activity in individual animals, rats were divided into two typological groups on the basis of excitability, activity, and emotion: high reactivity (group 1) and low reactivity (group 2) groups. It was found that, in the rats of the second group, the postradiation dynamics of the conditioned motor-defensive reflex activity was much better retained than in the rats of the first group in the phase of rehabilitation, but less well retained in the phase of progressive inhibition. The present conditioned reflex was better retained than the trace reflex.
I.S.

A88-10222
DIRECT EFFECT OF HYPOXIA ON THE FUNCTIONS OF SKELETAL MUSCLE VESSELS IN CATS (PRIAMOI EFFEKTE GIKOPSSII NA FUNKTSII SOSUDOV SKELETNYKH MYSHTS U KOSHEK)
S. I. POLENOV and G. V. CHERNIAVSKAIA (AMN SSSR, Nauchno-Issledovatel'skii Institut Experimental'noi Meditsiny, Leningrad, USSR) Fiziologicheskii Zhurnal SSSR (ISSN 0015-329X), vol. 73, June 1987, p. 775-782. In Russian. refs

The direct effects of low-, medium-, and high-level hypoxias on various characteristics of peripheral vessels (the capacitance and resistance, the elasticity of venous walls, the capillary filtration coefficient, and the mean capillary pressure) of decentralized hind-limb muscles of cats were measured in animals breathing O2/N2 mixtures that contained 18, 14, and 8 percent oxygen, respectively. The low-level hypoxia did not significantly affect the measured vessel parameters. Moderate and severe hypoxias, on the other hand, reduced the perfusion pressure (by 3.5 and 9 percent, respectively), and increased the capillary filtration coefficient (by 16 and 19 percent). However, the vascular capacity, the distensibility of veins, and the capillary hydrostatic pressure in these animals remained at the control levels.
I.S.

A88-10223
EFFECT OF MICROWAVES ON THE IMPULSE ACTIVITY OF CEREBELLAR PURKINJE CELLS IN CATS [DEISTvie MIKROVOLN NA IMPUL'SNUUI AKTIVNOST' KLETOK PURKIN' VE MOZZHECHKA KOSHEK]
O. A. KRYLOV, R. A. GRIGOR'IAN, and A. A. MAGERRAMOV (Tsentr'nyi Nauchno-Issledovatel'skii Institut Kurotorologii i Fizioterapii; Moscow; AN SSSR, Institut Evoliutsionnoi Fiziologii i Biokhimii, Leningrad, USSR) Fiziologicheskii Zhurnal SSSR (ISSN 0015-329X), vol. 73, June 1987, p. 724-728. In Russian. refs

The cerebella of anesthetized cats were irradiated with microwaves of 460-MHz-frequency administered to the temple area of the animals (at the rates of 80, 400, and 1200 mW/sq cm), and the impulse responses of the Purkinje cells were registered extracellularly with microelectrodes placed at the V-VI vermis cerebelli section. The reactions of the Purkinje cells included a shortening of the latent reaction period, a change of the impulse activity rate, a shortening of the inhibitory pause, an increase in the frequency of first simple and then complex spikes, and finally, the appearance of bursts in the Purkinje cell impulse activity.
I.S.

A88-10224
THE DYNAMICS OF LOCAL BLOOD FLOW IN DIFFERENT AREAS OF THE HYPOTHALAMUS DURING THE SLEEP-WAKEFULNESS CYCLE [DINAMIKA MESTNOGO KROVOTOKA V RAZLICHNYKH OBLASTIAX GIPOTALAMUSA V TSIKLE BODRSTVOVANIE-SON]
L. S. NIKOLAISHVILI and M. I. DEVDARIANI (AN GSSR, Institut Fiziologii, Tbilisi, Georgian SSR) Fiziologicheskii Zhurnal GSSR (ISSN 0015-329X), vol. 73, June 1987, p. 750-755. In Russian. refs

The kinetics of complex polymeric enzymes, such as phosphofructokinase or glutaminase, is described using Ising's (1925) model of cooperative interactions which makes it possible to account for the cooperative interaction of the protomers of a highly complex enzyme with each other. Thus, two levels of cooperative interactions could be examined. The cooperative interaction of the neighboring protomers of a polymeric enzyme were described on the basis of Ising's one-dimensional model, and the interaction of polypeptide subunits that compose each protomer were described by analogy with the model of indirect cooperation of Monod-Wyman-Changeux (1965). A detailed analysis of a one-ligand model of a polymeric enzyme is presented.
I.S.
The phenomenon is demonstrated. The functional significance of the SS P system in endotherms are examined, and the role of the system and to changes in SS under psychological disorders and in the THE SYSTEM ORGANIZATION OF CORTICAL ACTIVITY

The temperature dependence of photoelectrogenesis in the bacteriorhodopsin cycle was studied by comparing the kinetic and the amplitude parameters of the negative phase of photopotential generation in bacterial purple membranes (PMs) at 282 and 160 K. Photopotentials were measured in oriented films of PMs, using the preparation and the measurement techniques described by Maksimychev and his coworkers (1984). It was shown that the negative phase of the light-induced potential remains fast (the rate of the potential drop was shorter than 300 ns at temperatures up to 113 K); the time constant of the potential drop at the cryogenic temperatures was near that measured at room temperature, but the breakup of the negative phase at low temperatures was much slower than at room temperature. These data were analyzed in the framework of the Chernavskaia-Chernavskii model (1981). The results indicate that this phase of the membrane potential generation can be related to electron movement along the rational for the distance of 10 A.

I.S.

Respiration velocities, the respiratory control coefficients, and the ADP/O ratios were measured for coupled and uncoupled oxidation reactions in intact mitochondria of the rat heart prepared by the method of Deshpande et al. (1961). The mitochondria were found to possess high oxidizing efficiency with pyruvate and malate as substrates in the presence of ADP. On the other hand, the oxidation of succinate was more efficient in the absence of ADP. It is suggested that the uncoupled oxidation observed in the intact mitochondria is likely to be the result of the presence in the rat heart of a mitochondrial population with a highly permeable inner membrane. The nature and the origin of the uncoupled respiratory system in endothelium are examined, and the role of the system in heat generation is discussed.

I.S.

A88-10724 EXPERIMENTAL AND THEORETICAL BASES OF THE HYPERPOLARIZATION THEORY OF INTERNAL INHIBITION [K EKSPERIMENTAL'NOMU I TEORETICHESKOMU OBOSNOVANIU GIPERPOLARIIZATSIONNOI TEORII VNUTRENNEGO TORMOZHENIIA]

During the development of internal inhibition in the neo cortex and in other cerebral structures, the EEG records exhibit an increase of phase-related characteristics, together with indicators of alternating activation/inhibition of impulse activity and the related slow potential oscillations. These activities are shown to be related to hyperpolarization of new-cortex neurons which takes place due to an increasing response of cortical inhibitory systems to a new stimulus, which acquires inhibitory significance in the learning process. Fluctuations (dissimilar in different brain structures) in the excitability of the neuronal populations taking place during increased inhibitory hyperpolarization are considered to have regulatory effect on the conductance of stimuli to the effectors.

I.S.

It is shown that the analysis of the patterns of the spatial synchronization (SS) of cerebral electrical activity can be used in investigations of mental activity. Evidence is presented for the fact that the individual characteristics and the functional state of an organism can be deduced from the characteristics of the SS of the cortical potentials. The results of a topographic analysis of synchronous electrical processes are presented.

I.S.

A88-10819* #* Rice Univ., Houston, Tex.

MECHANISMS OF CELL DAMAGE IN AGITATED MICROCARRIER TISSUE CULTURE REACTORS

ROBERT S. CHERRY and E. TERRY PAPOUTSAKIS (Rice University, Houston, TX) World Congress on Chemical Engineering, 3rd, Tokyo, Japan, Sept. 1986, Paper 4 p. refs (Contract NAS9-17403)

Cells growing on microcarriers may be damaged by collisions of the microcarrier against another microcarrier or the reactor agitator. Bead-bead collisions are caused by small-scale turbulence, which can also cause high local shear stress on the cells. The
SEPARATION OF CELLS FROM THE RAT ANTERIOR PITUITARY GLAND

Data concerned with analyzing the cellular organization of the rat anterior pituitary gland are examined. The preparation of the cell suspensions and the methods used to separate pituitary cell types are described. Particular emphasis is given to the separation of various cells of the pituitary gland using continuous-flow centrifugation or density gradient sedimentation. C.D.

A88-10823* Pennsylvania State Univ., University Park.
HOLLOW FIBERS - THEIR APPLICATIONS TO THE STUDY OF MAMMALIAN CELL FUNCTION

The use of hollow fiber technology in cell culture and transplantation is examined. The morphology of encapsulated pituitary cells before and after implantation into the rat is described. Implantation experiments using hollow fibers to study mammalian cell functions are described. Consideration is given to examining somatotroph, prolactin, prostrate, fibroblast, and retinal cell functions. These experiments demonstrate that hollow fiber technology is applicable for studying mammalian cell functions. I.F.

A88-10887 Indiana Univ., Bloomington.
ISOTOPIC COMPOSITIONS AND PROBABLE ORIGINS OF ORGANIC MOLECULES IN THE EOCENE MESSEL SHALE

It is shown here that the carbon isotopic compositions of biomarkers from the Eocene Meszel SHALE, accumulated 47 \pm 0.2 million years ago in anoxic waters at the bottom of a lake, allow identification of specific sources for some materials and reconstruction of carbon flows within the lake and its sediments. Total CO$_2$ content of organic matter synthesized by lacustrine bacterial primary producers can be estimated from the observed C-13 content of the gaeophyrophyrin derived from their chlorophylls. Total organic material in the shales is depleted in C-13 by 6% per thousand relative to that input. This difference cannot be explained by selective loss of components enriched in C-13, nor, as shown by isotopic compositions of other biomarkers, by inputs from land plants surrounding the lake or from methanogenic bacteria. C.D.
macrophages and an increase in the killing of T. cruzi by IFN-γ-primed murine macrophages. For spleen cells infected with T.b. rhodesiense in vitro, it is detected that live trypanosomes cannot induce IFN in cells from normal mice, but can in cells from immunized mice; and that trypanosome-lysates induce IFN in vitro in cells from normal mice. The data suggest that there is a two-step mechanism for mice against T. cruzi and T.b. rhodesiense.

I.F.

(Contract NIH-CA-23248; NCA2-OR-589-101; NAS9-15566)

Various techniques for separating the hormone-producing cell types from the rat anterior pituitary gland are examined. The purity, viability, and responsiveness of the separated cells depend on the physiological state of the donor, the tissue dissociation procedures, the staining techniques used for identification of cell type, and the cell separation technique. The chamber-gradient setup and operation, the characteristics of the gradient materials, and the separated cell analysis of velocity sedimentation techniques (in particular Staput and Celsep) are described. Consideration is given to the various types of materials used in density gradient centrifugation and the operation of a gradient generating device. The use of electrophoresis to separate rat pituitary cells is discussed.

I.F.

Responses of isolated perfused cat lung to norepinephrine (NE) were measured under four conditions of NE infusion: (1) during normoxia; (2) after vascular resistance (RpG was increased by serotonin (S); (3) after RpG was increased by hypoxia (H), at 27-56 Torr of oxygen pressure; and (4) after lobar pressure was raised by an increase in flow. It was found that the NE response was unchanged during S (which raised RpG to a greater extent than did the average hypoxic stimulus), and that the response to NE did not correlate with the increase in RpG during acute H. S infusion, or NE increase in pressure after an increase in flow. In contrast, a correlation was found between P(02) and the NE response during H, which was disrupted by beta-blockade. The results suggest that the alteration of NE vascular activity during acute H was independent of the prevailing level of vascular tone.

I.S.

A88-12322 HYPOXIA-INDUCED INHIBITION OF CONVERTING ENZYME ACTIVITY - ROLE IN VASCULAR REGULATION HONGKUI JIN, SUZANNE CPARIL, HYUNG SOO ANN, RENHUI YANG, and ROBERT M. JACKSON (Alabama, University, Birmingham) Journal of Applied Physiology (ISSN 0161-7567), vol. 63, Sept. 1987, p. 1012-1018. Research supported by the American Lung Association and USVA refs (Contract NIH-HL-25544; NIH-HL-25451)

The functional significance of hypoxia-induced inhibition of angiotensin-converting enzyme activity in vascular control was assessed by determining pressor responses in pulmonary and systemic arteries of hypoxia-exposed (10 percent O2 for 14 and 28 days) and air control rats to intravenous administration of graded doses of angiotensin I (Ang I) and Ang II. Exposure to hypoxia led to progressive pulmonary hypertension but did not alter systemic arterial pressure. Systemic pressor responses to Ang I and Ang II were significantly less in the hypoxic rats than in the controls rats, and the changes were reversible. Pulmonary pressor responses to Ang I were significantly less at 14 days of hypoxia, than in controls rats, whereas responses to Ang II were greater at 28 days of hypoxia. It is suggested that the altered systemic and pulmonary pressor responsiveness to Ang I and Ang II in hypoxic rats is related to mechanisms specific to the renin-angiotensin system.

I.S.

A88-12426 INTERNATIONAL UNION OF PHYSIOLOGICAL SCIENCES, COMMISSION ON GRAVITATIONAL PHYSIOLOGY, ANNUAL MEETING, 8TH, TOKYO, JAPAN, NOV. 4-8, 1986, PROCEEDINGS ORR E. REYNOLDS, ED. Physiologist, Supplement (ISSN 0031-9376), vol. 30, Feb. 1987, 161 p. For individual items see A88-12427 to A88-12473.

The topics discussed in this volume include current concepts of gravitational physiology; recent space flight results in gravitational physiology; space flight results and topics in terrestrial environment; body position and the simulation of gravity; mammalian gravireception and brain function; the models of weightlessness, fluid shifts and electrolytes; human and animal models of weightlessness; hypogravity and gravireception; and gravitational physiology. Papers are presented on the physiological limitations of human tolerance to Gz acceleration, magnetic effect on cardiopulmonary function in man, cardiovascular effects of head-up tilting on muscle sympathetic activities in man, and sensory interaction in weightlessness. Attention is also given to the mechanism of plasma volume increase during head-out water immersion in dogs, metabolic adaptation to hypokinesia in humans, controlled water immersion as a model of weightlessness, and cardiovascular responses to central hypovolemia in man.

I.S.

The pressurized Spacelab module was designed and built to allow investigators to conduct research in space in an environment approximating that of a ground-based laboratory. It is configured to allow multiple investigations employing both human and nonhuman subjects. This flexibility is exemplified by the SLS-1, SLS-2, and SLS-3 experiment complement. A total of 21 experiments were scheduled for these missions; the areas to be investigated are renal/endocrine function, cardiovascular/cardipulmonary function, hematology, immunology, metabolic activity of muscle, Ca metabolism, the vestibular system, and general biology. A plan for integration of measurements will allow each investigator to use data from other experiments. The experiments make up a scientifically balanced payload that addresses fundamental biomedical problems associated with space flight and provides the first opportunity to study the acute effects of weightlessness in a comprehensive, interrelated fashion.

Author

A88-12431# GRAVITATIONAL CARDIOVASCULAR ADAPTATION IN THE GIRAFFE ALAN R. HARGENS (California, University; USVA, Medical Center, San Diego) (International Union of Physiological Sciences, Commission on Gravitational Physiology, Annual Meeting, 8th, Tokyo, Japan, Nov. 4-8, 1986) Physiologist, Supplement (ISSN 0031-9376), vol. 30, Feb. 1987, p. S-15 to S-18. Research supported by the National Aeronautics Society. refs (Contract NIH-HL-32703; NSF DCB-84-09253)

The results of the hemodynamics and fluid balance studies in the giraffe are reported. In eight 3-4 m giraffes, arterial and venous blood pressures were determined in terms of 'starling pressures' (Starling, 1966) along with interstitial fluid pressure, colloid osmotic pressure, and jugular vein pressures. These measurements were correlated with venous valve spacing studies in dissected veins
and local blood flows (by Xe-133 washout procedure). A radiotelemetry system, mounted at the base of each giraffe's neck allowed continuous monitoring of blood and interstitial fluid pressures. Two giraffes were killed, and multiple tissue samples were harvested for histologic examination. The results detected the existence of the following edema-preventing mechanisms: (1) variable and sometimes negative Starling pressures, (2) protein-impermeable capillary membranes, (3) arterial wall hypertrophy and vasoconstriction, (4) a prominent lymphatic system, and (5) skin and facial "g-suit" combined with one-way valves in the veins and lymphatics.

I.S. A88-12432#
BIODYNAMIC RESPONSE OF SUBHUMAN PRIMATES TO VIBRATION

A program was initiated to develop a method to directly measure transmissibility up the spinal column and determine the impedance of subhuman primates to vertical sinusoidal vibration. Accelerometers were implanted on the spine. This report presents the results obtained (1) on the impedance and transmissibility characteristics of both species of primates; (2) on the application of a recently developed model to the data to obtain a better approximation of the biodynamic response; and (3), to a small extent, on an effort toward interspecies scaling to humans. Author

I.S. A88-12435#
PHYSIOLOGICAL INVESTIGATIONS OF PRIMATES ONBOARD BIOSATELLITES COSMOS-1514 AND COSMOS-1687

The development of the space adaptation syndrome was studied in four rhesus monkeys flown aboard the Cosmos-1514 (5-day flight) and Cosmos-1687 (7-day flight) in 1983 and 1985, respectively. It was found that at an early period of adaptation, the excitation of vestibular neurons connected with the semicircular canals and the otoliths increases. No significant variation of the blood flow velocity in the common carotid artery was revealed. It was concluded that the cause of unpleasant sensations reported by cosmonauts in the early stages of flight, such as head heaviness and blood rush to the head, is caused not by an increased arterial flow to the upper body but by some other mechanism or factor. It is suggested that the outflow of the venous blood and the cerebrospinal fluid might become hampered. By the end of 5-7 days in weightlessness, most parameters under study tended to return to normal. Author

I.S. A88-12438#
EFFECTS OF 7-DAY SPACE FLIGHT ON WEIGHT-BEARING AND NON-WEIGHT-BEARING BONES IN RATS (COSMOS 1687)

The paper discusses the results of histomorphometric studies of space-flight-induced bone changes in proximal metaphysis of the tibia and the femur (weight-bearing bones) and in the thoracic and lumbar vertebral bodies (non-weight-bearing bones) of 105-day-old rats flown aboard Biocosmos 1687 for 7 days. Neither bone loss nor changes in bone parameters were observed in the thoracic and lumbar vertebrae. On the other hand, in the proximal tibial metaphysis, the space flight caused significant decline in the trabecular bone volume; decreases were demonstrated in number and thickness, leading to an alteration of bone mechanical properties. Furthermore, marked differences were observed between areas with and without muscular insertions, emphasizing the important role of mechanical factors in the preservation of trabecular bone mass. I.S.
51 LIFE SCIENCES (GENERAL)

decrement of the blood flow in the carotid artery, but not in the vessels of the lower leg.

Author

A88-12452# ORGANIZATION OF MACULO-OCULAR PATHWAYS VIA Y-GROUP NUCLEUS AND ITS RELEVANCE TO CEREBELLAR FLOCCULUS IN CATS

The topographical localization of floccular Purkinje cells projecting to the y-group nucleus in cats is studied using the retrograde axonal transport of horseradish peroxidase method. The efferent projections of target neurons of floccular caudal- zonal inhibition are investigated. The functional differences between dorsal-y-group and ventral-y-group nuclei are investigated. It is observed that the dorsal-y-group nucleus receives floccular caudal-zone inhibition and transmits otolith input to the contralateral caudal half of the oculomotor nuclei. Saccules innervating superior rectus and inferior oblique muscles through the crossing ventral tegmental tract, and the ventral-y-group nucleus is free from floccular inhibition and transmits gravity inputs from the sacculae to the other structures of the brain.

I.F.

A88-12453# CHARACTERISTICS OF VESTIBULAR REACTIONS TO CANAL AND OTOLITH STIMULATION AT AN EARLY STAGE OF EXPOSURE TO MICROGRAVITY

The mechanism underlying the alteration of transcapillary fluid flow in the carotid artery, but not in the vessels of the lower leg.

Author

A88-12454# National Aeronautics and Space Administration.

Ames Research Center, Moffett Field, Calif.

IMPLICATIONS OF OTOCONIAL CHANGES IN MICROGRAVITY

The mechanism underlying the alteration of transcapillary fluid flow in the carotid artery, but not in the vessels of the lower leg.

Author

A88-12455# Louisville Univ., Ky.

PHYSIOLOGICAL RESPONSES DURING WHOLE BODY SUSPENSION OF ADULT RATS

J. MICHAEL OVERTON and CHARLES M. TIPTON (Arizona, University, Tucson) (International Union of Physiological Sciences, Commission on Gravitational Physiology, Annual Meeting, 8th, Tokyo, Japan, Nov. 4-8, 1986) Physiologist, Supplement (ISSN 0031-9376), vol. 30, Feb. 1987, p. S-89. refs

The mechanism underlying the alteration of transcapillary fluid flow in the carotid artery, but not in the vessels of the lower leg.

Author

A88-12456# Arizona Univ., Tucson.

INFLUENCE OF SIMULATED WEIGHTLESSNESS ON MAXIMAL OXYGEN UPTAKE OF UNTRAINED RATS

J. MICHAEL OVERTON and CHARLES M. TIPTON (Arizona, University, Tucson) (International Union of Physiological Sciences, Commission on Gravitational Physiology, Annual Meeting, 8th, Tokyo, Japan, Nov. 4-8, 1986) Physiologist, Supplement (ISSN 0031-9376), vol. 30, Feb. 1987, p. S-77 to S-80. refs

The mechanism underlying the alteration of transcapillary fluid flow in the carotid artery, but not in the vessels of the lower leg.

Author

A88-12457# MECHANISM OF THE INCREASE IN PLASMA VOLUME DURING HEAD-OUT WATER IMMERSION (WI) IN DOGS

KENJU MIKI (University of Occupational and Environmental Health, Kitakyushu, Japan), SUK KI HONG, and JOHN A. KRASNEY (New York, State University, Buffalo) (International Union of Physiological Sciences, Commission on Gravitational Physiology, Annual Meeting, 8th, Tokyo, Japan, Nov. 4-8, 1986) Physiologist, Supplement (ISSN 0031-9376), vol. 30, Feb. 1987, p. S-94, S-95. refs

The mechanism underlying the alteration of transcapillary fluid flow in the carotid artery, but not in the vessels of the lower leg.

Author

A88-12458# National Aeronautics and Space Administration.

Ames Research Center, Moffett Field, Calif.

OTOCONIA OF MACULAS OF SPROUT-DAYLITE RATS (Taconic Farms) flown aboard Spacelab-3 showed no signs of demineralization. Other findings were accumulations of immature otocyst at the lateral border of utricular patches and a smoothing of surfaces of saccular otocyst. These features were not observed in age- and weight-matched ground controls. Subsequent study showed otocorial asymmetry to be normal in this strain. Further research in space, taking this into account, is clearly required. Findings of ground-based studies would suggest that neural structures of maculas are adaptable to microgravity but might show changes over time. Moreover, maculas have the potential for integration of the sort ascribed to brain and retina, although on a less complex scale. They may act as comparators, and asymmetry may be an important property. Coordinated studies in space and on the ground could lead to new understanding of how maculas function and adapt to new acceleratory environments; and to insights about the functioning of neural tissue in general.

Author
that the negative hydrostatic pressure gradient for fluid movement across the capillary wall plays a major role in the increase in plasma volume which occurs during WI.

Author A88-12458*# Louisville Univ., Ky.

PHYSIOLOGICAL COMPARISON OF RAT MUSCLE IN BODY SUSPENSION AND WEIGHTLESSNESS

Hind limb unloading is achieved with whole body suspension (WBS) and with tail suspension (TS). Comparable levels of muscle mass loss and decreases in protein levels result during one to three weeks of exposure to microgravity (microG), WBS, and TS. Losses are most apparent in soleus (S), intermediate in gastrocnemius (G) and least in extensor digitorum longus (EDL). Comparisons of S and EDL type I and II fiber changes (numbers and area) after seven days of microG flight and WBS showed, in S, an increase in Type I and Type II fiber density and a decrease in area. Except for a decrease in Type I fiber density in EDL, all other parameters remain comparable. The general conclusion was that the S under microG and WBS responds in a similar manner. The EDL, for the most part, shows little change under both conditions.

Author A88-12459#

NEUROPHYSIOLOGICAL RESPONSES IN SUSPENDED ANIMAL MODELS

YUTAKA OOMURA and TOSHIIKO KATAFUCHI (Kyushu University, Fukuoka, Japan) (International Union of Physiological Sciences, Commission on Gravitational Physiology, Annual Meeting, 8th, Tokyo, Japan, Nov. 4-8, 1986) Physiologist, Supplement (ISSN 0031-9376), vol. 30, Feb. 1987, p. S-106 to S-109. refs

The effects of a hypogravic condition induced by horizontal and head-down suspensions on single neuron activity in the lateral hypothalamic area (LHA) and paraventricular nucleus (PVN) of rats are studied. It is observed that horizontal suspension causes a change in the discharge frequency of 21 of 44 LHA neurons; seven of the 21 neurons increase activity immediately after raising the rat from the ground level (type I), three decrease activity immediately (type II), and 11 gradually decrease activity (type III). In the 10 neurons tested using the head-down suspension, three were of type I and seven of type III. It is detected that the activity of eight of 34 PVN neurons change due to horizontal suspension: six display a gradual decrease and two a gradual increase in activity; and eleven neurons exhibited gradual decreases in activity during head-down tilting. Signals that may induce changes in the neural activity and the role of the hypothalamus in the regulation of the automatic nervous and endocrine systems are examined.

I.F.

Author A88-12460#

EFFECTS OF GRAVITY ON RHYTHMIC ACTIVITIES IN THE PHRENIC AND SYMPATHETIC NERVE DISCHARGES

TAKEHIKO HUKUHARA, NOOFUMI KIMURA, KAZUO TAKANO, and FUSAO KATO (Jikei University, Tokyo, Japan) (International Union of Physiological Sciences, Commission on Gravitational Physiology, Annual Meeting, 8th, Tokyo, Japan, Nov. 4-8, 1986) Physiologist, Supplement (ISSN 0031-9376), vol. 30, Feb. 1987, p. S-109 to S-112. refs

Effects of passive postural changes on the cardiac-related sympathetic nerve activity and high-frequency oscillation in the phrenic nerve discharge were quantitatively analyzed by spectral analyses. Experiments were performed on vagotomized rabbits with intact sinus nerves, anesthetized with ether, paralyzed and artificially ventilated. In the power spectrum of renal sympathetic nerve discharge, cardiac-related component was decreased by head-up tilting (30 deg) and was increased by head-down tilting (30 deg). Coherence between sympathetic nerve discharge and arterial pulse at the frequency of cardiac rhythm was decreased by head-up tilting and was increased by head-down tilting. In the power spectrum for phrenic nerve discharge, the peak-area corresponding to the high frequency oscillation, which was estimated by nonlinear least-squares method, was increased by both the head-up and head-down tiltings.

Author A88-12461*

COMPARATIVE ASPECTS OF HEMATOLOGICAL RESPONSES IN ANIMAL AND HUMAN MODELS IN SIMULATIONS OF WEIGHTLESSNESS AND SPACE FLIGHT

R. D. LANGE, J. B. JONES (Tennessee University, Knoxville), and P. C. JOHNSON, JR. (NASA, Johnson Space Center, Houston, TX) (International Union of Physiological Sciences, Commission on Gravitational Physiology, Annual Meeting, 8th, Tokyo, Japan, Nov. 4-8, 1986) Physiologist, Supplement (ISSN 0031-9376), vol. 30, Feb. 1987, p. S-113 to S-116. refs

This paper reviews some human and animal responses to space flight as well as in control models in simulations of weightlessness. Astronauts after space flight have been found to have a decreased red blood cell mass and plasma volume. The reason for these changes is unknown but appears to be caused primarily by a decrease in the need of red blood cells in the weightless condition. Similar though more moderate changes have been found in human subjects subjected to prolonged bed rest or water immersion. What happens to the red cell mass of laboratory rats flown in microgravity is not known but rats have shown an increase in the rate of random red cell loss in flight suggesting a probable decrease. Rat models subjected to either head-down suspension or restraint alone have shown a decrease in red blood cell masses and a decrease in their plasma volume.

Author A88-12462# LOCAL FLUID SHIFTS IN HUMANS AND RATS - COMPARISON OF SIMULATION MODELS WITH ACTUAL WEIGHTLESSNESS

CHARLES M. TIPTON, J. MICHAEL OVERTON, MICHAEL J. JOYNER, and ALAN R. HARGENS (Arizona University, Tucson; California University, San Diego) (International Union of Physiological Sciences, Commission on Gravitational Physiology, Annual Meeting, 8th, Tokyo, Japan, Nov. 4-8, 1986) Physiologist, Supplement (ISSN 0031-9376), vol. 30, Feb. 1987, p. S-117 to S-120. refs

Animal and human models for simulated weightlessness are described, and the effects of head-down suspension on fluid shifts in humans and rats are evaluated. It is determined that the -5 deg head-down tilt should be used for human studies and a -30 deg head-down tilt for rats. It is noted that additional data are necessary to understand the time course of fluid shifts.

I.F.

Author A88-12465#

DIRECTIONAL DIFFERENCE IN EFFECTS OF LONG-TERM HYPER-GRAVITY UPON THE CARDIAC SYSTEM OF THE HAMSTERS

HIROTAKA SATAKE, KENICHI MATSUUMI (Gifu University, Japan), YOSHIO MIZUNO (Daido Institute of Technology, Nagoya, Japan), and SATORU WATANABE (Nagoya University, Japan) (International Union of Physiological Sciences, Commission on Gravitational Physiology, Annual Meeting, 8th, Tokyo, Japan, Nov. 4-8, 1986) Physiologist, Supplement (ISSN 0031-9376), vol. 30, Feb. 1987, p. S-129 to S-130.

The cardiac responses of 56 anesthetized Syrian golden hamsters under hypergravity for over 10 minutes are studied. The hamsters were divided into three groups and exposed to various hypergravity conditions and centrifugal acceleration of 2, 4, 6, 8, and 10 G. Group one was exposed to hypergravity from the back to the abdomen (-Gy); in group two the direction of hypergravity was from the foot to the head (-Gy); and in group three the hypergravity was in the head to foot direction (-Gz). It is observed that the heart rate, stroke volume, and cardiac output all decreased during exposure to all three directions, and the hamsters had the highest tolerance to -Gy followed by -Gy and -Gz.

I.F.
CHRONIC ACCELERATION AND ORGAN SIZE IN DOMESTIC FOWL

A. H. SMITH (California, University, Davis) (International Union of Physiological Sciences, Commission on Gravitational Physiology, Annual Meeting, 8th, Tokyo, Japan, Nov. 4-8, 1986) Physiologist, Supplement (ISSN 0031-9376), vol. 30, Feb. 1987, p. S-131, S-132. refs

The masses of some visceral organs in three groups of accelerated male fowls are estimated. It is observed that there is no statistically significant covariance of relative organ size with the gravitational field for the heart, lungs, or spleen; the relative kidney and liver sizes increase and the relative gastrointestinal tract size decreases with increasing gravitational field strength. The kidney and liver determine the metabolic rate, their size is proportional to the metabolic rate, and the metabolic rate increases with increasing acceleration field. Bone mass and the bone/muscle ratio in two of the groups are evaluated. It is detected that bone mass and the bone/muscle ratio increase and muscle mass decreases proportionally to the increasing acceleration field. I.F.

CHANGES OF CARDIAC SYSTEMS OF DECEREBELLATED HAMSTERS IN HYPERGRAVITY CONDITIONS

Cardiovascular regulation in response to hypergravity conditions is investigated using 15 control and 13 decerebellated hamsters. The hamsters were tested in a centrifugal accelerator with accelerations in the 3-6 G range and in the back to abdomen (-Gx) direction. EKG and impedance plethysmograms were recorded and heart rate (HR), stroke volume (SV), cardiac output (CO), and P-R and R-R intervals are analyzed. The data reveal that: (1) in the control group the HR decreased after 4 and 6 G exposure and in the decerebellated group the HR increased slightly at 2 G and decreased at 4 and 6 G; (2) in the control group the SV showed a slight decrease during exposure to 2 and 4 G and in the decerebellated group the SV decreased; (3) the CO for both groups was similar to that of the SV; and (4) in both groups the first degree of atrioventricular block was observed during exposure to 4 and 6 G.

CARDIOPULMONARY RESPONSE OF RATS TO CENTRIFUGAL ACCELERATIONS

MASAMICHI SUDOH, KUMIKO SHIODA, MIHARU KOHNO, SATIO IKAWA, KENJI KAWAKAMI (Jikei University, Tokyo, Japan) et al. (International Union of Physiological Sciences, Commission on Gravitational Physiology, Annual Meeting, 8th, Tokyo, Japan, Nov. 4-8, 1986) Physiologist, Supplement (ISSN 0031-9376), vol. 30, Feb. 1987, p. S-135, S-136.

The cardiopulmonary responses of female rats to centrifugal accelerations in the 3-6 G range and in the back to abdomen (-Gx) head to tail (+Gz), and tail to head (-Gz) directions are investigated. Cardiopulmonary responses are measured in terms of heart rate, blood pressure, and respiration rate. The data reveal that the heart rate does not change during -Gx and +Gz and it decreases during -Gz; the mean arterial pressure decreases during all three loads; transthoracic impedance decreases during the -Gx and -Gz load and increases during +Gz; and the respiration rate increases during the -Gx load and is relatively stable during +Gz and -Gz.

THE RESPONSE OF SKELETAL MUSCLE MASS TO CHANGES IN ACCELERATION

GROVER C. PITTS (Virginia, University, Charlottesville) (International Union of Physiological Sciences, Commission on Gravitational Physiology, Annual Meeting, 8th, Tokyo, Japan, Nov. 4-8, 1986) Physiologist, Supplement (ISSN 0031-9376), vol. 30, Feb. 1987, p. S-137, S-138. refs

The effects of stretch on muscle mass and anti-gravity and syn-gravity muscles are investigated using rats, rabbits, guinea pigs, and chickens. It is observed that stretch causes hypertrophy and the absence of stretch results in atrophy; also hypertrophy and atrophy can occur simultaneously at the same joint. The responses of muscles to weightlessness and centrifugation are examined. It is detected that weightlessness causes anti-gravity muscles to atrophy and syn-gravity antagonist muscles to hypertrophy; and centrifugation results in stretch with hypertrophy of extensors and shortening with atrophy of flexors.

RECEPTOR MECHANISM AND NEURONAL CIRCUIT SUBSERVING GRAVITATIONAL RESPONSES IN CRAYFISH

MITUKO ISHIDA, MASAYOSHI SHIRAI, TAKAHATA, TOSHIKI NAKAYAMA, and MASAMI YOSHINO (Hokkaido University, Sapporo, Japan) (International Union of Physiological Sciences, Commission on Gravitational Physiology, Annual Meeting, 8th, Tokyo, Japan, Nov. 4-8, 1986) Physiologist, Supplement (ISSN 0031-9376), vol. 30, Feb. 1987, p. S-139, S-140. refs

Neural mechanisms underlying the equilibrium reflexes of crayfish are briefly reviewed, with special reference to the gating of the reflex circuit by local nonspiking interneurons. Positional change of the animal body is detected by a pair of statocysts that are specialized equilibrium sense organs in crayfish. Basically, each statocyst transmits information about the magnitude and direction of body tilt within a certain range.

PHYSIOLOGICAL ROLES OF CALCIUM IN LIGHT-INDUCED GRAVITROPISM IN ZEA PRIMARY ROOTS

ATSUSHI MIYAZAKI and TADASHI FUJI (Tsukuba University, Sakura, Japan) (International Union of Physiological Sciences, Commission on Gravitational Physiology, Annual Meeting, 8th, Tokyo, Japan, Nov. 4-8, 1986) Physiologist, Supplement (ISSN 0031-9376), vol. 30, Feb. 1987, p. S-141, S-142.

No asymmetric redistribution of plant hormones (indoleacetic acid and abscisic acid) was observed between upper and lower halves of elongation zones during the latent period (0-60 min after stimulation) of the gravitropic response in Zea primary roots. The content of Ca increased in the lower half of horizontally oriented roots which had been briefly exposed to light, while there was no marked difference in the distribution between the upper and lower halves of nonirradiated roots. The Ca increase in the lower half was observed 15-30 min after irradiation in root caps and 30-60 min after irradiation in elongation zones.

BIOPHYSICAL EFFECT OF MICROWAVE RADIATION

(BIOFIZICHESKOE DEISTVIE SVCH-IZLUCHENII)

EL'DER SHAFIEVICH ISMAILOV (United Technologies Corp., Pratt and Whitney, West Palm Beach, FL) Moscow, Energoatomizdat, 1987, 144 p. In Russian. refs

The physical principals of the interaction between microwaves and matter are considered along with the physical-chemical mechanisms for the absorption of microwave energy by biological tissue. Consideration is given to studies of the effects of microwaves on cells, subcellular structures, and membranes. Medical applications of microwaves are discussed along with the development of health standards for the use of microwaves.
ADAPTATION AND HABITUATION OF MOTION-INDUCED VOMITING IN SQUIRREL MONKEYS
CHESTER R. WILPIZESKI, LOUIS D. LOWRY, ROBERT A. MILLER, B. DAVISON SMITH, JR., and WENDY GOLDMAN

Nonrestrained adult squirrel monkeys were found to be prolific vomiters when rotated in the horizontal plane for at least 1 h with visual cues available. When multiple daily spins were given, monkeys that vomited early during the first session tended to habituate during subsequent rotations. Subjects who vomited late during the first spin tended to vomit increasingly earlier for several days before the trend reverted to habituation. Adaptation effects were transient.

EFFECTS OF HYPOKINESIA AND HYPODYNAMIA UPON PROTEIN TURNOVER IN HINDLIMB MUSCLES OF THE RAT

Hypokinesia/hypodynamia was induced in the hindlimb muscles of the rat, using a suspension technique. This caused differing degrees of atrophy in different muscles. However, this atrophy was reduced in muscles held in a lengthened position. The greatest degree of wasting was observed in the unstretched soleus, a slow postural muscle, where both Type 1 and Type 2a fibers atrophied to the same degree. However, wasting of the gastrocnemius muscle was associated with a reduction in the size of the Type 2b fibers. In both slow-postural and fast-phasic hindlimb muscles, atrophy was brought about by a reduction in the rate of protein synthesis in conjunction with an elevation in the rate of protein degradation. When inactive muscles were passively stretched, both protein synthesis and degradation were dramatically elevated. Even periods of stretch of as long as 0.5 h/d were found to significantly decrease atrophy in inactive muscles.

EYE MOVEMENTS PRODUCED BY UTRICULAR AND SACCULAR STIMULATION
IAN S. CURTHOYS (Sydney, University, Australia) (NASA, Universities Space Research Association, Baylor University, and International Academy of Astronautics, International Man in Space Symposium, 7th, Houston, TX, Feb. 10-13, 1986) Aviation, Space, and Environmental Medicine (ISSN 0095-6562), vol. 58, Sept. 1987, p. A192-A197. Research supported by the National Health and Medical Research Council of Australia.

This study investigated the direction of eye movements produced by localized high frequency electrical stimulation of spots on the utricular and saccular macula in lightly anesthetized guinea pigs using fine bipolar stimulating electrodes to minimize current spread and attempting to keep the other labyrinthine sensory regions functional. Threshold stimulating currents produced upward or upward-torsional movements of the ipsilateral eye. There was no evidence of different directions of eye movements corresponding to different hair cell orientations, nor was there evidence of opposite directions of eye movements produced by stimulation on opposite sides of the striola. These results are not consistent with the
earlier reports of Fluhr and Mellstrom (1970 and 1971) and reasons for this conflict are considered.

A88-12999* Baylor Univ., Houston, Tex.
ROLE OF OTOLITH ENDORGANS IN THE GENESIS OF VESTIBULAR-VISUAL CONFLICT SICKNESS (PITCH) IN THE SQUIRREL MONKEY (FIRST REPORT)
MAKOTO IGARASHI, TETSUO HIMI, WALTER B. KULECZ, and KAZUTOYO KOBAYASHI (Baylor University, Houston, TX) (NASA, Universities Space Research Association, Baylor University, and International Academy of Astronautics, International Man in Space Symposium, 7th, Houston, TX, Feb. 10-13, 1986) Aviation, Space, and Environmental Medicine (ISSN 0095-6562), vol. 58, Sept. 1987, p. A207-A211. refs
(Contract NAG2-298)

The effects of ablation of the macula utriculi and macula sacculi on vestibular-visual conflict emesis in squirrel monkeys are investigated. An optokinetic drum and a turntable were used for the direction conflict experiment. A significant difference between the preoperative condition and postunilateral and postbilateral utriculo-sacculectomy conditions is observed. It is detected that, after unilateral sacculectomy the conflict sickness decreases and no sickness occurs; however, 4.5 months after sacculectomy, the animals regain their conflict sickness. The data reveal that macular afferents are important in the genesis of sensory conflict emesis and two submodalities may be needed to cause conflict sickness onset.

A88-12997

A NEW ASPECT IN PATHOGENESIS OF EXPERIMENTAL HYDROPS - ROLE OF CALCIUM
ANGELA M. MEYER ZUM GOTTESBERGE (Duesseldorf, Universitaet, Federal Republic of Germany) and OSAMU NINOUY (Kansai Medical University, Osaka, Japan) (NASA, Universities Space Research Association, Baylor University, and International Academy of Astronautics, International Man in Space Symposium, 7th, Houston, TX, Feb. 10-13, 1986) Aviation, Space, and Environmental Medicine (ISSN 0095-6562), vol. 58, Sept. 1987, p. A240-A246. Research supported by the Ministerium fuer Forschung und Wissenschaft des Landes Nordrhein-Westfalen. refs

An imbalanced Ca(2+) homeostasis in the inner ear was demonstrated using an animal model for Meniere's disease (MD). An increase of Ca(2+) concentration in the endolymph, as well as in some cells of the inner-ear tissue, causes a rise of osmotic pressure and decrease of electric potential. Based on these results, it is proposed that the common denominator of MD, experimental endolympathic hydrops, and space motion sickness is primarily a shift of the inner-ear Ca(2+) homeostasis toward a higher concentration of free Ca(2+) in the fluid compartments and adjacent intracellular spaces.

CAT VESTIBULAR NEURONS THAT EXHIBIT DIFFERENT RESPONSES TO ACTIVE AND PASSIVE YAW HEAD ROTATIONS
(Contract NAG2-155; NIH-NS-17585)

Neurons in the vestibular nuclei were recorded in alert cats during voluntary yaw rotations of the head and during the same rotations delivered with a turntable driven from a record of previous voluntary movements. During both voluntary and passive rotations, 35 percent (6/17) of neurons tested responded at higher rates or for a larger part of the movement during voluntary movements than during the same rotations delivered with the turntable. Neck sensory input was evaluated separately in many of these cells and can account qualitatively for the extra firing present during active movement.

A88-13000

ROTATION TEST IN THE WEIGHTLESS PHASE OF PARABOLIC FLIGHT

Human test-persons and pigs were subjected to pendular swing movements during parabolic flight. The rotary-induced nystagmus frequency in pigs increased during a parabola from about 15 to 5-10 Hz. In the trajectory from zero G to 1.5 G the nystagmus SPV in pigs increased. In human subjects, weightlessness suppressed the rotary-induced nystagmus, and gravitational conditions over 2 G increased the nystagmus amplitude. Nystagmus responses in experienced test-persons proved to be independent of changes in G-load. The differences in the results in man and pig support the assumption that rotary-induced nystagmus is not solely a response of the cupulae and the otoliths, but is also affected by tactile and somatosensory stimulation.

A88-13001

ROTATION SPEED OF LABYRINTHECTOMIZED FISH DURING SHORT-DURATION WEIGHTLESSNESS

This study used blind unilaterally labyrinthectomized goldfish of 5-15 cm body length. These goldfish were flown in parabolic flights to temporarily effect the loss of one second vestibular apparatus. Flights took place between 1 and 72 h after the operation. Attitude in 3 axes was recorded on video and analyzed from single-frame pictures for speed and direction of rotation about the roll (fish's body longitudinal) axis. Labyrinthectomy resulted in consistent behavior in 5 to 15 cm body length. These goldfish were flown in parabolic flights to temporarily effect the loss of one second vestibular apparatus. Flights took place between 1 and 72 h after the operation. Attitude in 3 axes was recorded on video and analyzed from single-frame pictures for speed and direction of rotation about the roll (fish's body longitudinal) axis. Labyrinthectomy resulted in consistent behavior.
The research possibilities offered by the prototype of a long-term maintenance system for aquatic organisms, Aquarack, are discussed. The reproduction biology of the genus Xiphophorus was investigated. The Xiphophorus system and its possible applications for biological studies in a microgravity environment were examined. Long term investigations of the growth, metabolism, and reproduction of fish under conditions close to weightlessness are proposed. The functional plasticity of the nervous system of vertebrates was investigated. The influence of weightlessness on behavior, reproduction, and metabolism of the freshwater snail Biomphalaria glabrata was studied. The usefulness of microalgal structures as an element of closed ecological systems is discussed. The state of the art of space life support systems for biological experiments under weightlessness is surveyed.

The reproduction biology of the genus Xiphophorus was investigated in the long term maintenance system Aquarack. The availability of a long term maintenance system and a successful reproduction in this system are discussed as prerequisites for biological studies and application-oriented research, dealing with boney fish in consecutive generations in a microgravity environment. The particular suitability of the genus Xiphophorus as experimental animal is explained, and the most important endocrine system regulating reproduction is outlined.

The investigation of growth, metabolism, and reproduction of several generations of fish of the genus Xiphophorus, in a future space station, is proposed. The different subjects to be investigated are outlined. The proposed materials and methods are presented. The data are planned to be collected indirectly, i.e., by video cameras and photoelectric cells. Cooperation with other research projects is planned. Findings for the development of closed ecological life support systems are expected.
51 LIFE SCIENCES (GENERAL)

N88-10475# Hamburg Univ. (West Germany). Inst. fuer Zoologie.
THE INFLUENCE OF WEIGHTLESSNESS ON THE METABOLISM OF THE BIOMPHALARIA GLABRATA
WILHELM BECKER in DFVLR, Aquarack: Aims and Possible Research Projects p 61-68 Dec. 1986 In GERMAN; ENGLISH summary
Avail: NTIS HC A05/MF A01; DFVLR, Cologne, West Germany DM 33.50
The influence of weightlessness on behavior, reproduction, and metabolism of the freshwater snail Biomphalaria glabrata (Pulmonata) was investigated. A method for the continuous recording of heartbeat frequency and heart minute volume in the uninjured animal was developed and successfully tested under gravity conditions. The results are planned to be used to determine the effect of the gravitational force on the open circulatory system of this snail.

N88-10476# Bonn Univ. (West Germany). Inst. fuer Botanik.
THE USEFULNESS OF MICROALGAL STRUCTURES AS AN ELEMENT OF CLOSED ECOLOGICAL SYSTEMS LIKE AQUARACK AND CELSS
KARLHEINZ KREUZBERG in DFVLR, Aquarack: Aims and Possible Research Projects p 69-76 Dec. 1986 In GERMAN; ENGLISH summary
Avail: NTIS HC A05/MF A01; DFVLR, Cologne, West Germany DM 33.50
The usefulness of continuous cultures of green algae, such as Scenedesmus, Chlorella, Chlamydomonas, and Chlorogonium, was examined with respect to the regeneration of oxygen and the reassimilation of CO2 and ammonia. The most important advantages of microalgal cultures are a low demand of space, controlled and self-regulated cell growth, high metabolism rates, efficient energy transfer, a well balanced carbon and nitrogen recovery, and suitability for human food. Further investigations for the development of a practicable algal module for closed ecological systems are proposed.

N88-10477# Dornier-Werke G.m.b.H., Friedrichshafen (West Germany).
LIFE SUPPORT SYSTEMS FOR BIOLOGICAL EXPERIMENTS UNDER WEIGHTLESSNESS IN THE GERMAN AND EUROPEAN SPACE PROGRAMS
WOLFRAM LORK and RAINER STOEPLER in DFVLR, Aquarack: Aims and Possible Research Projects p 77-93 Dec. 1986 In GERMAN; ENGLISH summary
Avail: NTIS HC A05/MF A01; DFVLR, Cologne, West Germany DM 33.50
The state of the art of space life support systems is surveyed. The tendency to the development of closed loop systems is emphasized. The configuration of several life support systems, such as the Spacelab Environmental Control and Life Support System, biorack and biological incubators, a botany facility and solar plant growth facility, a fish incubator, the Environmental Life Support System and Biological Life Support System, the Controlled Ecological Life Support Systems, and Aquarack, is described. Proposals for further research are given.

N88-10484*# Tennessee Technological Univ., Cookeville.
RAPID TOXICITY DETECTION IN WATER QUALITY CONTROL UTILIZING AUTOMATED MULTISPECIES BIOMONITORING FOR PERMANENT SPACE STATIONS
Avail: NTIS HC A19/MF A01 CSCL 06B
The objective of this study was to evaluate proposed design characteristics and applications of automated biomonitoring for real-time toxicity detection in water quality control on-board permanent space stations. Simulated tests in downlinking transmissions of automated biomonitoring data to Earth-receiving stations were simulated using satellite data transmissions from remote Earth-based stations.

N88-11365# Louisiana State Univ., Baton Rouge.
A PHYSICO-CHEMICAL STUDY OF SOME AREAS OF FUNDAMENTAL SIGNIFICANCE TO BIOPHYSICS ANNUAL REPORT 1986-1987
S. P. MCGLYNN 1 Jul. 1987 57 p (Contract DE-FG05-87ER-60503)
(DE87-013457; DOE/ER-60503/295) Avail: NTIS HC A04/MF A01
The thirteen (13) titles (Nos. 283 to 295) of the Bibliography for the 1986 to 1987 Annual Report constitute the gist of this document. These titles represent work completed and published (or in process of publication). The scientific report which follows is intended to provide a brief summary of the ongoing research efforts of the Molecular Spectroscopy Group. The titles covered are as follows: Rare Gas Density Effects on High-M Rydberg States, Electric Field Dependence of the Total Excimer Luminescence of Xenon Excited Below the Atomic Ionization Limit, Term Value/Band-Gap Energy Correlations for Solid Rare Gas Excitons, Laser Optogalvanic Spectroscopy of Iodine and Cesium, Photolization Spectroscopy of Highly Polar Aromatic, and Photochemistry of Polyatomic Molecules. There are six individual papers listed separately in this report.

52 AEROSPACE MEDICINE

Includes physiological factors; biological effects of radiation; and weightlessness.

A88-10220 ENERGY HOMEOSTASIS AND ADAPTATION CAPABILITIES OF MAN IN EXTREME CONDITIONS [ENERGETICHESKIĬ GOME-
OSTAĬ I ADAPTATSIYONNYE VOZMOZHNOSI CHELOVEKA V EKSTREMAĬNYKH USLOVIYAKH]
The paper considers the status of the energy homeostasis of an organism under extreme conditions. It is shown that total entropy changes of a metabolic system and changes in the entropy of internal and external environments and of their rate parameters under conditions of adequate and inadequate adaptive metabolic reactions to the external stress are determined by the rate of the heat flow from the organism to the environment and by the efficiency of the coordination of the metabolic processes. This in turn depends on the condition of the phosphate potential. The interrelation between the changes in the entropy parameters and the changes in phosphate potential processes determines the state of energy homeostasis as a condition of the fitness of an organism under stress.

A88-10222 INVESTIGATION OF CORTICAL ELECTRICAL ACTIVITY AND OF THE TIME OF RESPONSE TO SOUND AND LIGHT STIMULI
[ISSLIEGOVANIE ELEKTRICHESKOĬ AKTIVNOSTI KORY I VREMENI REAKTСII NA ZVUKOVYЕ I SVETOVOYЕ STIMULI]
The electrical activity of the occipital, sensorimotor, and frontal zones of the left and right cerebral hemispheres was measured together with the time of bimanual motor responses in normal adults subjected to sequential series of sound, light, and sound
signals (11 in each series) administered with an increasing (from 15 to 25 Hz) and decreasing (from 15 to 5 Hz) frequency. Both nonspecific and specific (i.e., depending upon the parameters of the stimuli) responses were observed. It was found that light stimuli caused more pronounced delays in manual responses than sound signals. Light stimuli presented in the mode of increasing frequencies were more effective than the decreasing-frequency stimuli, causing more pronounced alpha-range oscillations in brain activity and significant changes in the asymmetry of bimanual motor responses. The physiological reactions of subjects were also found to depend upon their subjective condition; stimuli increasing in frequency affected the emotional status of subjects more adversely than the decreasing-frequency stimuli.

I.S.

A88-11722 PREDICTION OF THE INCIDENCE OF MOTION SICKNESS FROM THE MAGNITUDE, FREQUENCY, AND DURATION OF VERTICAL OSCILATION

ANTHONY LAWTHER and MICHAEL J. GRIFFIN (Southampton, University, England) Acoustical Society of America, Journal (ISSN 0001-4966), vol. 82, Sept. 1987, p. 957-966. refs

A88-12077 ASSESSMENT OF THE FUNCTIONAL RESERVES OF AN ORGANISM (K OTSENKE FUNKTSIONAL'NOY REZERVOV ORGANIZMA)

V. V. PASTUKHOV, N. N. PLAKHOV, and Z. K. SULIMO-ŠAMULIO Voenno-Meditsinskii Zhurnal (ISSN 0026-9050), May 1987, p. 38-39. In Russian

The role of preliminary tests to assess functional reserves in individuals assigned for work under stressful physical or environmental conditions is discussed. Special consideration is given to particular physiological tests which make it possible to identify individuals with low levels of functional reserves. These workers must be given training consisting of gradual exposures to the particular type of the occupational/environmental stress to which they will be subjected in the future. It was shown that such preliminary training is very effective in ameliorating changes in cardiorespiratory indices that characterize physical stress and/or exhaustion.

I.S.

A88-12084 CORRELATION BETWEEN SOME INDICES OF MICROELEMENT METABOLISM, VITAMIN-C SUFFICIENCY, AND IMMUNE PROTECTION OF AN ORGANISM (I.KORRELIATSIKH NEKOTORYM POKAZATELJAM OBIMENKA MIKROELEMENTOV, C-VITAMINNOI OBESECHENNOY I IMMUNNOY ZASHCHITY ORGANIZMA)

V. V. NASOLDIN, V. IA. RUSIN, and V. A. Suvorov Voenno-Meditsinskii Zhurnal (ISSN 0026-9050), May 1987, p. 40-42. In Russian. refs

Correlations between the characteristics of iron and copper metabolism on the one hand and indices of vitamin-C sufficiency and immunity status on the other were investigated in 28 young human subjects. A table is presented showing the correlation coefficients for various combinations of the following factors analyzed in these subjects: plasma and/or blood-cell concentrations of iron, copper, hemoglobin, peroxidase, lysozyme, erythrocytes, alpha-2-glycoprotein, and vitamin-C. Evidence concerning the effects of vitamin-C, Fe, and/or Cu insufficiency is discussed.

I.S.

A88-12110 EFFECT OF ACUPUNCTURE ON THE GENERAL STABILITY OF THE ORGANISM AND ON THE WORK CAPACITY OF SEAMEN (VLIIANIE IGLOREFEKTSOTERAPII NA NESPET- SIPICHESKUIU USTOICHIVOST' ORGANIZMA I RABOTOS- POSSOBNOST' MORSHCHI).

A. A. ARZUMANOV and V. N. BORTNOVSKII Voenno-Meditsinskii Zhurnal (ISSN 0026-9050), May 1987, p. 46. In Russian.

A88-12320 OZONE EXPOSURE ALTERS TRACHEOBRONCHIAL MUCO- CILIARY FUNCTION IN HUMANS

W. MICHAEL FOSTER, D. L. COSTA, and E. G. LANGENBACK (New York, State University, Stony Brook; USVA, Medical Center, Northport) Journal of Applied Physiology (ISSN 0161-7567), vol. 63, Sept. 1987, p. 996-1002. USVA-supported research. refs

The effect of chamber exposure to concentration of ozone within the ranges commonly recorded during urban pollution on the airway mucociliary function was determined in nonsmokers, using noninvasive techniques to measure deposition and retention of insoluble radiolabeled particles on airway mucous membranes. Exposure to 0.4 ppm ozone caused reduction in particle retention, which was coincident with impaired lung function. Peripheral mucous flow into central bronchi was increased after 2 h of 0.2 ppm ozone and may indicate an early response by the lung to ozone at a concentration which, while it exceeds the limit established under the Clean Air Act, is often imposed on one-third of the urban population of the United States.

I.S.

A88-12321* NATIONAL AERONAUTICS AND SPACE ADMINISTRATION. Ames Research Center, Moffett Field, Calif.

CONTINUOUS MONITORING OF BLOOD VOLUME CHANGES IN HUMANS

H. HINTHOFER-SZALKAY and J. E. GREENLEAF (NASA, Ames Research Center, Moffett Field, CA; Graz, Universitaet, Austria) Journal of Applied Physiology (ISSN 0161-7567), vol. 63, Sept. 1987, p. 1003-1007. Research supported by the Oesterreichische Akademie der Wissenschaften. refs

Use of on-line high-precision mass densitometry for the continuous monitoring of blood volume changes in humans was demonstrated by recording short-term blood volume alterations produced by changes in body position. The mass density of antecubital venous blood was measured continuously for 60 min per session with 0.1 g/l precision at a flow rate of 1.5 ml/min. Additional discrete plasma density and hematocrit measurements gave linear relations between all possible combinations of blood density, plasma density, and hematocrit. Transient filtration phenomena were revealed that are not amenable to discontinuous measurements.

I.S.

A88-12323 EFFECT OF BRAIN BLOOD FLOW ON HYPOXIC VENTILATORY RESPONSE IN HUMANS

M. NISHIMURA, A. SUZUKI, Y. NISHIURA, H. MIYAMOTO, K. MIYAMOTO (Hokkaido University, Sapporo, Japan) et al. Journal of Applied Physiology (ISSN 0161-7567), vol. 63, Sept. 1987, p. 1100-1106. refs

The effect of brain blood flow on hypoxic ventilatory response was assessed by simultaneously measuring arterial and internal jugular venous blood gases and ventilation in healthy male humans subjected to either progressive and subsequently sustained hypoxia or to stepwise and progressive hypercapnia. A withdrawal test (modified transient CO2 test) was performed on another day. The average of the estimated depressant effect due to increased brain blood flow in progressive isocapnic hypoxic ventilatory response was about 122 percent of the original response. The value of the withdrawal test correlated significantly with the hypoxic response in each subject. The results suggest that the wide interindividual variation of the hypoxic response that was observed more likely depends on the activity originated from the peripheral chemoreceptor rather than the magnitude of central depressant effects due to the change of brain blood flow.

I.S.
A88-12324
CARDIOVASCULAR RESPONSES TO MILITARY ANTIShock
TROUSER INFLATION DURING STANDING ARM EXERCISE
ALEXANDER V. NG, PETER HANSON, ELIZABETH A. AARON,
ROGER B. DEMMENT, JASON M. CONVISER (Wisconsin,
University, Madison) et al. Journal of Applied Physiology (ISSN
0161-7567), vol. 63, Sept. 1987, p. 1224-1229. refs
The effect of lower-body positive pressure on the hemodynamic
variables of cardiac output, i.e., heart rate (HR), stroke volume
(SV), blood pressure, total peripheral resistance (TPR), and O2
consumption were determined in healthy males wearing military
antishock trousers (MAST) inflated to 50 mm Hg. Subjects were
studied while standing at rest and at 25, 50, and 75 percent of
maximal arm-cranking O2 consumption. MAST inflation resulted in
an increase in SV and cardiac output during rest and during arm-cranking exercise at 32, 50, and 71 percent maximal arm-cranking O2 consumption. There were no differences, however, in the oxygen consumption or in the cardiac output-to-oxygen-consumption ratios between the inflated and control conditions.
I.S.

A88-12427#
MECHANISMS OF ACUTE AND CHRONIC EFFECTS OF
MICROGRAVITY
O. G. GAZENKO, A. I. GRIGOR'EV, and I. B. KOZLOVSKAIA
(Institut Mediko-Biologicheskikh Problem, Moscow, USSR)
(International Union of Physiological Sciences, Commission on
Gravitational Physiology, Annual Meeting, 8th, Tokyo, Japan, Nov.
4-8, 1986) Physiologist, Supplement (ISSN 0031-9376), vol. 30,
Feb. 1987, p. S-1 to S-5. refs
The intrinsic mechanisms responsible for homeostasis in altered
gravity fields are examined with respect to specific adaptation
processes in motor systems and in systems of neuro-humoral
regulation. The data reviewed indicate the complexity of these
mechanisms and their heterogeneous and sometimes opposite
different character at different stages of exposure to microgravity, and show
significant differences in the mechanisms of the acute and the
delayed adaptive responses. The results are interpreted in the
framework of a hypothesis, according to which these processes
occur as independent reactions controlled by different systems
and induced by different triggers: (1) by microgravity that causes
immediate, acute reactions and (2) by microgravity-induced
variations in the inner medium that lead to delayed (secondary)
reactions.
I.S.

A88-12429#
THE ESA ANTHRORACK PROJECT - INTEGRATED RESEARCH
IN HUMAN PHYSIOLOGY
D. LINNARSSON (Karolinska Institutet, Stockholm, Sweden)
(International Union of Physiological Sciences, Commission on
Gravitational Physiology, Annual Meeting, 8th, Tokyo, Japan, Nov.
4-8, 1986) Physiologist, Supplement (ISSN 0031-9376), vol. 30,
Feb. 1987, p. S-10 to S-12. refs
The ESA project for studying human physiology under the
conditions of space flight, termed Anthrorack, is discussed. Consideration
is given to the projected experiments, which will study the control of balance and locomotion, cardiovascular
dynamics, endocrine responses to fluid and blood shifts, pulmonary
function, and metabolism, as well as to the hardware involved in
the project. The first flight opportunity for the Anthrorack
experiments will be with the Spacelab flight D-2 in the early
1990's.
I.S.

A88-12430#
THE EFFECT OF HEAD-DOWN TILT ON THE EEG RESPONSE
TO MENTAL ANTIShock ANXIETY
JINHE WEI, GONGDONG YAN, ZHIQUANG GUAN, and XIANYUN
SHEN (Institute of Space Medico-Engineering, Beijing, People's
Republic of China) (International Union of Physiological Sciences,
Commission on Gravitational Physiology, Annual Meeting, 8th,
Tokyo, Japan, Nov. 4-8, 1986) Physiologist, Supplement (ISSN
The effect of weightlessness on the status of brain function
was investigated by comparing the responses of EEG spectra to
mental arithmetic performed during 45-deg head-up tilt (HUP) with
those performed during 10-deg head-down tilt (HDT). It was found
that the increase, from the base level, of the EEG activity occurring
during the performance mental arithmetic was significantly less
during HDT than during HUT, especially at the scalp area
corresponding to right associate cortex. It is suggested that the
responsiveness of brain declines during HDT, and that the status
of the brain function, especially in the posterior right brain, is
readjusted during the exposure to weightlessness.
I.S.

A88-12433#
PHYSIOLOGICAL LIMITATIONS OF HUMAN TOLERANCE TO
GZ ACCELERATION
ULF I. BALLDIN (Karolinska Institutet; Forsvarets Forskningsanstalt,
Stockholm, Sweden) (International Union of Physiological Sciences,
Commission on Gravitational Physiology, Annual Meeting, 8th,
Tokyo, Japan, Nov. 4-8, 1986) Physiologist, Supplement (ISSN
High-performance aircraft of today may expose the pilot to
rapid-onset (up to 6 G/s) high (up to 9 G) sustained G-loads.
This paper discusses the physiological limitations of human
tolerance to Gz acceleration, the precautions that can be followed
to help prevent the G-induced loss of consciousness, and the
measures that can be taken in the event of its occurrence.
Consideration is given to great variability in Gz tolerance in different
subjects and in the same subject under different conditions, the
predictors of good future tolerance in an individual; the
environmental factors affecting Gz tolerance; and to the exercises,
voluntary straining maneuvers, and devices that can raise tolerance.
It is suggested that in an event of consciousness loss during
rapid acceleration, an autopilot system should be available to
temporarily take over the controls of the aircraft.
I.S.

A88-12436#
CENTRAL CIRCULATION DURING EXPOSURE TO 7-DAY
MICROGRAVITY (HEAD-DOWN TILT, IMERSION, SPACE
FLIGHT)
V. E. KATKOV, L. I. KAKURIN (Institut Mediko-Biologicheskikh
Problem, Moscow, USSR), V. V. CHESTUKHIN (Nauchno-Issledovatel'skii Institut Transplantologii i Ikusstvennykh Organov, Mos-
cow, USSR), and K. KIRSCH (Berlin, Freie Universitaet, Federal
Republic of Germany) (International Union of Physiological Sciences,
Commission on Gravitational Physiology, Annual Meeting, 8th,
Tokyo, Japan, Nov. 4-8, 1986) Physiologist, Supplement (ISSN
The effects of simulated-microgravity exposure by 7 days of
15-deg head-down tilt (HDT) on water immersion on central
circulation were investigated and compared. It was found that
in the first 7 hours of exposure, the effects on the parameters of
central circulation were more distinct in immersion than in HDT.
The circulation parameters ceased to change on test days 2 or 3,
and the absolute values of most circulation parameters became
identical by the end of both exposures. The CVP measured during
space flights was found to agree closely with the values measured
during both simulations.
I.S.

14 52 AEROSPACE MEDICINE
Hormonal Regulation in Space Flights of Varying Duration

Changes in the blood content of various hormones and in the responses of target organs to each of these hormones were studied as functions of the space-flight time, using data obtained during the short-term and the prolonged space flights. It was found that flights of up to 14-day duration induce a moderate stress on the sympathetic-adrenal system, but the effect of catecholamines at the tissue level remains adequate. The long-term flights, on the other hand, lead to changes that suggest a reduction of the functional activity of receptors in response to space flight effects. Similar changes were detected in prolonged bed rest studies; cell sensitivity to hormones varied in the fashion observed in weightlessness.

Body Impedance Measurement during Spacelab Mission D1

Body fluid redistribution and loss during space flight was investigated along with the effects on the heart. The impedance of two body segments (Z-torso and Z-body) to a 100-kHz 1-mA constant current, the first derivative of the torso segment, and the ECG were recorded with 24-hr personal recorder. Data were obtained from two women during bed rest and during the flight from another two. The recumbent period prior to launch was decisive for fluid redistribution in the compartments covered by this method. The amount of fluid shifted is comparable to that produced by daily positional changes. A fluid loss of about 2.5 liters can be inferred from the values of Z-body and anthropometric factors. Cardiac output, as assessed by dZ/dt, was increased by more than 50 percent of control even on inflight day 2; on day 4 its values were, however, lower than preflight. Heat rate and its variability strongly suggest increased cardiac parasympathetic activity.

Magnetic Effect on Cardiopulmonary Function in Man

The effect of a magnetic field on pulmonary function was investigated, using human subjects placed between the poles of a magnet whose maximum field intensity could be varied. The subjects were requested to maintain voluntary apnea by holding their breath for 30 sec, while their oxygen saturation curve, ECG, pulse wave, and respiratory wave were recorded. During apnea, the mean time ECG exhibited no change, the amplitude of the pulse wave was reduced, and the respiratory wave did not appear. The oxygen saturation curve descended to the minimum point of oxygen saturation, and, thereafter, ascended to the normal level. The application of a magnetic field of 1.2 kg caused a significant fall in the oxygen saturation decrease ratio. The results are attributed to the fact that the magnet attracts oxygen and deoxyhemoglobin, but not oxyhemoglobin, which gravitates downward.

Cardiovascular Responses during 70 Deg Head-Up Tilt - The Effect of Elevated Body Temperature and High Alcohol Blood Levels

Research supported by the Simon Fraser University. The effects of elevated body temperature and alcohol on the blood pressure, stroke volume, and heart rate of humans subjected to head-up tilt (HUT) were investigated in subjects who had either ingested 2.5 ml of 40-percent alcohol or had undergone immersion for 60 min in a 40-deg C bath prior to being placed on a tilt table and, after 5 min in the horizontal position, subjected to a 70-deg HUT. The results showed a reduction (by alcohol) in mean arterial blood pressure (which rises in response to HUT) with a concomitant rise in heart rate, indicating that alcohol acts synergistically with elevated body temperature in increasing peripheral perfusion by decreasing peripheral resistance.

The Effect of Body Position on Ventilation and Perfusion in the Lung

The effects of 45-deg head-up tilt (HUT) and 45-deg head-down tilt (HDT) on the parameters of lung ventilation and perfusion were investigated. Pulmonary pulsations, base transthoracic impedance, and cardiac output were measured in six healthy men, and total peripheral resistance was calculated from cardiac output and blood pressure; changes in pulmonary blood volume were measured using Tc-99-labeled RBCs. Compared to supine position, HUT and HDT (less significantly than HUT) increased blood pressure; HUT resulted in significant decrease in the cardiac output. As a result, total peripheral resistance in HUT remained higher than in the other two positions. On the other hand, the HDT caused a significant decline in blood gas, implying that some unknown changes have occurred in the pulmonary-circulatory system.

Effects of Graded Head-Up Tilting on Muscle Sympathetic Activities in Man

The effect of graded (every 5-10 deg) head-up tilting, from the supine position to 90 deg, on the discharge responses of sympathetic nerve fibers of skeletal musculature was investigated in human subjects, using a tungsten microelectrode inserted into the tibial nerve and a neuromicrograph. During the tilting, muscle sympathetic nerve activity (MSA), expressed as burst rate increased. The MSA increased when the arterial blood pressure (ABP) decreased, and became silent when ABP increased. A significant positive linear correlation was established between the sine of the tilting angle and the MSA burst rate. It is concluded that the changes of MSA burst with head-up tilting may be related to the homeostatic mechanism for the maintenance of systemic blood pressure during gravity changes.
CARDIOVASCULAR EFFECTS OF HEAD-UP TILT AS AFFECTED BY A VASOPRESSIN ANALOGUE

The effect of triglyceridyltriglycine vasopressin (TGLVP) on cardiovascular responses to head-up tilt (HUT) were investigated in humans subjected to 20 min of 70-deg HUT. In supine subjects, an intravenous dose of 50 ml/kg body weight of TGLVP induced an increase in mean arterial pressure, a drop of heart rate (HR), and a rise in total peripheral resistance (TRP), with no change in stroke volume (SV). During the HUT, the TGLVP caused an exaggerated curtailment of SV, an exaggerated fall in cardiac output, and an exaggerated increase of TRP values, as compared to placebo; head-up values for HR were not altered by TGLVP. In the post-tilt period the TRP of the TGLVP-injected subjects remained significantly higher than in the placebo controls, an indication of the prolonged action of the drug.

TEN-DEGREE HEAD-DOWN AND -UP TILTING ON THE WATER INTAKE AND CARDIOVASCULAR RESPONSES DURING MILD EXERCISE IN WOMAN

KIKUKO YOKOZAWA, SHIGEYO TORIKOSHI, MIYAKO INAZAWA (Tokyo Women's Christian University, Japan), KATSUKO ITOH (Tsurumi University, Japan), YASUKO FUKASE (Rikkyo Saint Marguerite Women's College, Japan) et al. (International Union of Physiological Sciences, Commission on Gravitational Physiology, Annual Meeting, 8th, Tokyo, Japan, Nov. 4-8, 1986) Physiologist, Supplement (ISSN 0031-9376), vol. 30, Feb. 1987, p. S-66, S-67.

The effects of head-up tilt (HUT) and head-down tilt (HDT) on water intake and cardiovascular responses during mild exercise were investigated in female subjects performing a 300-kpm/min pedaling exercise in 10-deg or -10-deg tilts. Water intake at 50 min of exercise was 14 percent lower in HDT than in HUT. Mean arterial blood pressure (MAP), cardiac output, stroke volume (SV), and forearm blood flow (FFB) measured just before drinking water were significantly lower in HDT than in HUT, although VO2, heart rate, skin temperature, and audiomus temperature were not different. Water intake was significantly correlated to the values of SV, FBF, and arteriovenous oxygen difference (but not to the MAP). The results indicate that the increase in central blood volume inhibits water intake during mild exercise in HDT.

CARDIOVASCULAR RESPONSES OF AGED MEN TO ORTHOSTATISM DURING HEAT EXPOSURE

The effect of age on cardiovascular responses to passive tilting was investigated using six old (61-73 yr) and ten young (21-35 yr) men. Experiments were carried out at 26 C and after acute exposure to 40 C. Continuous measurements of esophageal and skin temperatures and heart rate were made. Blood pressure, forearm blood flow, and cardiac output were measured at 4-5 min intervals. Measurements were made in supine position and after 70-deg head-up tilt for 15 min. Cardiac acceleration during the tilt test was greater in the young than in the old. Old men did not show significant decrease in forearm blood flow during tilting, suggesting a possible defect in the sympathetic nervous reflex. However, other circulatory adaptations seem to overcome this deficiency, resulting in orthostatic tolerance similar to that of the young. During head-up tilt at 26 and 40 C, the esophageal temperature in the old responded differently, which may suggest an alteration of flow distribution.

EFFECTS OF LBPP STOCKING ON CARDIOVASCULAR RESPONSES DURING REST AND EXERCISE IN LBPN AND UPRIGHT POSITION IN WOMAN

JUNKO NAGANO (Bunka Women's University, Tokyo, Japan), SHIGEYO TORIKOSHI, KIKUKO YOKOZAWA, MIYAKO INAZAWA (Tokyo Women's Christian University, Japan), KATSUKO ITOH (Tsurumi University, Japan) et al. (International Union of Physiological Sciences, Commission on Gravitational Physiology, Annual Meeting, 8th, Tokyo, Japan, Nov. 4-8, 1986) Physiologist, Supplement (ISSN 0031-9376), vol. 30, Feb. 1987, p. S-72, S-73.

The effect of wearing a lower body positive-pressure stocking (LBPPS) with about 20-mm Hg pressure on cardiovascular responses during rest and exercise (pedaling or treadmill running) was investigated in young women subjected to lower-body negative pressure (LBNP). Systolic and diastolic arterial pressures (SAP and DAP, respectively), pulse pressure (PP), cardiac output (CO), stroke volume (SV), and arteriovenous oxygen difference (AV) difference were measured at rest, exercise, and recovery. Wearing the LBPPS resulted in lower HR and PP, indicating that the positive pressure was accelerating venous return. In addition, during the exercise, the LBPPS affected increases in CO and SV and a decrease in AV02 difference. The results demonstrated that the 20-mm Hg lower-body positive pressure lowers the defensive cardiovascular responses to gravity stimulation.
A88-12464#
CONTROLLED WATER IMMERSION AS A MODEL OF WEIGHTLESSNESS

The use of a controlled water immersion model to simulate weightlessness is examined. The control parameter for the model is a variable level of hydrostatic pressure exerted by the immersion medium on the lower body; methods for achieving this effect are discussed. The capabilities of the model are described. Some data derived using the model are presented. The controlled water immersion model is applicable to: a short-time simulation of qualitatively different states of gravity tolerance; a study of the cause/effect relationship between controlled changes in the blood distribution pattern and resulting reactions; and an analysis of space physiology problems. I.F.

A88-12472#
CARDIOVASCULAR RESPONSES TO CENTRAL HYPOVO-LAEMIA IN MAN - PHYSIOLOGY AND PATHOPHYSIOLOGY

Cardiovascular and hormonal responses to lower body negative pressure (LBNP) are examined. Afferent and efferent relations in human cardiovascular reflex responses to central hypovolemia are studied. It is observed that exposure to low levels of LBNP causes a reduction in central venous pressure, forearm vasoconstriction with little increase in splanchnic vascular resistance, no tachycardia, and no changes in systemic arterial systolic or diastolic blood pressure; and high levels of LBNP cause a reduction in central venous and systemic arterial blood pressure, forearm and splanchnic vasoconstriction, and tachycardia. Cardiovascular processes in patients with various pathophysiological conditions, such as orthostatic hypotension and diabetic autonomic neuropathy, are also investigated. I.F.

A88-12473#
THE EFFECTS OF EXERCISE TRAINING ON FACTORS AFFECTING ORTHOSTATIC TOLERANCE
PETER B. RAVEN, MICHAEL L. SMITH, DONNA L. HUDSON, and HOWARD M. GRAITZER (Texas College of Osteopathic Medicine, Fort Worth) (International Union of Physiological Sciences, Commission on Gravitational Physiology, Annual Meeting, 8th, Tokyo, Japan, Nov. 4-8, 1986) Physiologist, Supplement (ISSN 0031-9376), vol. 30, Feb. 1987, p. S-147 to S-150. refs

The physiological responses during lower body negative pressure to -40 torr on three distinct groups of subjects with full cardiac efferent autonomic blockade using metoprolol tartrate and atropine sulfate are studied. The control parameter for the model is variable levels of hydrostatic pressure exerted by the immersion medium on the lower body; methods for achieving this effect are discussed. The capabilities of the model are described. Some data derived using the model are presented. The controlled water immersion model is applicable to: a short-time simulation of qualitatively different states of gravity tolerance; a study of the cause/effect relationship between controlled changes in the blood distribution pattern and resulting reactions; and an analysis of space physiology problems. I.F.

A88-12490#
NONLINEAR DYNAMICS, CHAOS AND COMPLEX CARDIAC ARRHYTHMIAS
L. GLASS, M. COURTEMANCHE, A. SHRIVER (McGill University, Montreal, Canada), and A. L. GOLDBERGER (Beth Israel Hospital, Boston, MA) (Royal Society, Discussion on Dynamical Chaos, London, England, Feb. 4, 5, 1987) Royal Society (London), Proceedings, Series A - Mathematical and Physical Sciences (ISSN 0080-4630), vol. 413, no. 1844, Sept. 8, 1987, p. 9-26. Research supported by the Canadian Heart Foundation, NSERC, and NASA. refs

Periodic stimulation of a nonlinear cardiac oscillator in vitro gives rise to complex dynamics that is well described by one-dimensional finite difference equations. As stimulation parameters are varied, a large number of different phase-locked and chaotic rhythms are observed. Similar rhythms can be observed in the intact human heart from the interaction between a pacemaker site and a rhythm generator. The data are presented, which show a correspondence to clinical observations. Author

A88-12951#
PHYSIOLOGIC ADAPTATION OF MAN IN SPACE; PROCEEDINGS OF THE SEVENTH INTERNATIONAL MAN IN SPACE SYMPOSIUM, HOUSTON, TX, FEB. 10-13, 1986
ALBERT W. HOLLAND, ED. Symposium sponsored by NASA, Universities Space Research Association, Baylor University, and International Academy of Astronautics. Aviation, Space, and Environmental Medicine (ISSN 0095-6562), vol. 58, Sept. 1987, 288 p. For individual items see A88-12952 to A88-13004.

Topics discussed in this volume include space motion sickness, cardiovascular adaptation, fluid shifts, extravehicular activity, general physiology, perception, vestibular response modifications, vestibular physiology, and pharmacology. Papers are presented on the clinical characterization and etiology of space motion sickness, ultrasound techniques in space medicine, fluid shifts in weightlessness, Space Shuttle inflight and postflight fluid shifts measured by leg volume changes and the evaluation of oxygen toxicity in an 8-psi space suit. Consideration is also given to the metabolic and hormonal status of crewmembers in short-term space flights, adaptive changes in perception of body orientation and mental image rotation in microgravity, the effects of a visual-vestibular stimulus on the vestibulo-ocular reflex, rotation tests in the weightlessness of parabolic flight, and various mechanisms of antimotion sickness drugs. I.S.

A88-12952#
CLINICAL CHARACTERIZATION AND ETIOLOGY OF SPACE MOTION SICKNESS

An inflight, clinically-oriented investigation of space motion sickness (SMS) was begun on STS-4 and revealed the following: compared to motion sickness (MS) on earth, automatic signs are significantly different in SMS vs. MS in that sweating is not present, pallor or flushing may be present, and vomiting is episodic, sudden, and brief. Postflight there is a period of resistance to all forms of MS. There is some evidence for individual reduction in sensitivity on repeated flights. Electrooculogram, audio-evoked potentials, measurement of fluid shifts, and other studies are inconsistent with a transient vestibular hypodys or increased intracranial pressure as a cause. Author
AEROSPACE MEDICINE

A88-12953* National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, Tex.

THE USE OF THE LOGISTIC MODEL IN SPACE MOTION SICKNESS PREDICTION

(Contract NAS9-17200)

The one-equation and the two-equation logistic models were used to predict subjects' susceptibility to motion sickness in KC-135 parabolic flights using data from other ground-based motion sickness tests. The results show that the logistic models correctly predicted substantially more cases (an average of 13 percent) in the data subset used for model building. Overall, the logistic models ranged from 52 to 65 percent predictions of the three endpoint parameters, whereas the Bayes linear discriminant procedure ranged from 48 to 65 percent correct for the cross validation sample.

Author

A88-12954* National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, Tex.

GASTROINTESTINAL MOTILITY IN SPACE MOTION SICKNESS

WILLIAM E. THORNTON, BARRY J. LINDER, THOMAS P. MORE, and SAM L. POOL (NASA, Johnson Space Center, Houston, TX; Washington University, Saint Louis, MO; Methodist Hospital of Indiana, Indianapolis) (NASA, Universities Space Research Association, Baylor University, and International Academy of Astronautics, International Man in Space Symposium, 7th, Houston, TX, Feb. 10-13, 1986) Aviation, Space, and Environmental Medicine (ISSN 0095-6562), vol. 58, Sept. 1987, p. A15-A21. NASA-supported research. refs

Gastrointestinal symptoms in motion sickness (SMS) are significantly different from those in ordinary motion sickness (MS). Recording and tabulation of sounds was the only technique that could be used as a measure of motility during spaceflight operations. There were 17 subjects, six unaffected by SMS, who made ambulatory recordings prefight and inflight. With one exception, all those affected had sharply reduced sounds, while those unaffected had increases or moderate reductions. The mechanism of vomiting in SMS appears to be secondary to this ileus, in contrast to vomiting in ordinary MS, where the emesis center is thought to be directly triggered by the vestibular system.

Author

A88-12956* Essex Corp., Orlando, Fla.

TRANSFER OF PERCEPTUAL-MOTOR TRAINING AND THE SPACE ADAPTATION SYNDROME

(Contract NAS9-17278)

Perceptual cue conflict may be the basis for the symptoms which are experienced by space travelers in microgravity conditions. Recovery has been suggested to take place after perceptual modification or reinterpretation. To elucidate this process, 10 subjects who repeatedly experienced a visual/vestibular conflict over trials and days, were tested in a similar but not identical perceptual situation (pseudo-Coriolis) to determine whether any savings in perceptual adaptation had occurred as compared to an unpracticed control group (N = 40). The practiced subjects experienced lessening dizziness and ataxia within and over sessions.

Author

A88-12957 A COMPARISON OF TWO METHODS OF TRAINING RESISTANCE TO VISUALLY-INDUCED MOTION SICKNESS

(Contract N00205-84-M-2632)

This report concerns the use of two methods of training subjects to tolerate visually-induced motion sickness. Sixteen subjects were selected on the basis of their response to a motion sickness history questionnaire and assigned to one of four groups on the basis of their ability to tolerate visually-induced motion (VM). One group received 10 sessions of confidence building and desensitization training (BT); a second group received 10 sessions of EMG and temperature biofeedback (FB); a third group received 10 sessions of BT and 10 sessions of FB (BTFB); and a fourth group received no treatment (C). The results indicated that the BT and BTFB groups exhibited significant increases in tolerance to VM when pretreatment measures were compared to posttreatment measures, while no significant increases in prepost measures were observed in the FB or C groups.

Author

A88-12959* National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, Tex.

RELIABILITY OF PROVOCATIVE TESTS OF MOTION SICKNESS SUSCEPTIBILITY

D. S. CALKINS, M. F. RESCHKE, R. S. KENNEDY, and W. P. DUNLOP (NASA, Johnson Space Center, Houston, TX; Essex Corp., Orlando, FL; Tulane University, New Orleans, LA) (NASA, Universities Space Research Association, Baylor University, and International Academy of Astronautics, International Man in Space Symposium, 7th, Houston, TX, Feb. 10-13, 1986) Aviation, Space, and Environmental Medicine (ISSN 0095-6562), vol. 58, Sept. 1987, p. A50-A54. refs

Test-retest reliability values were derived from motion sickness susceptibility scores obtained from two successive exposures to each of three tests: (1) Coriolis sickness sensitivity test; (2) standard velocity movement test; and (3) parabolic flight static chair test. The reliability of the three tests ranged from 0.70 to 0.88. Normalizing values from predictors with skewed distributions improved the reliability.

Author

A88-12960 CENTRAL AND CORONARY CIRCULATION OF THE NORMAL MAN DURING ORTHOSTATIC AND LOWER BODY NEGATIVE PRESSURE TESTS

The effects of the tilt test (60-70 deg for 20 min) and lower body negative pressure (LBNP) test (-30 and -60 mm Hg for 20 min each) on the basic parameters of circulation (15 subjects) and coronary circulation (11 subjects) were investigated. The study was performed using thermistor-equipped catheters implanted into the pulmonary artery and coronary sinus and Teflon catheters implanted into the brachial artery. The effect of the tilt test and LBNP test on the basic parameters of central and coronary circulation, blood acid-base equilibrium, and oxygenation was compared.

Author
HEART VOLUME DURING SHORT-TERM HEAD-DOWN TILT (-6 DEG) IN COMPARISON WITH HORIZONTAL BODY POSITION

The immediate effect of head-down tilt (5 min, -6 deg) on heart volume was investigated in nine healthy male volunteers. Heart volumes were determined by the x-ray method of Kahlstorf and Rohrer as modified by Musshoff and Reindell (1956). Biplane chest orthodiagrams were taken after 5 min of rest in a prone horizontal position (control values) and 5 min after tilting the examination table into a -6-deg head-down tilt position. After 5 min head-down tilt, cardiac volumes had increased significantly (+5.2 percent). The results indicate that head-down tilt leads to an immediate increase in heart volume.

FLUID CONTROL MECHANISMS IN WEIGHTLESSNESS

Experiments performed on Space Shuttle flights have emphasized study of the earliest effects of the cephalad fluid shift resulting from microgravity. Analysis of one subject’s urine collected during flight showed that a sharp increase in antidiuretic hormone occurred within 2 h of launch, followed by an increase in cortisol excretion. Although this subject had symptoms of the space adaptation syndrome (SAS), infight data from Spacelab missions suggested that these transient changes were not caused by SAS. Unpaired t-tests and Mann-Whitney tests showed that before and after flight, plasma thyroxine and urine osmolality were significantly higher in Shuttle crewmembers who exhibited more severe symptoms of SAS than in asymptomatic crewmembers.

BODY VOLUME CHANGES DURING SIMULATED WEIGHTLESSNESS - AN OVERVIEW

It has been hypothesized that many of the adaptive processes that occur in man during exposure to space involve the rapid headward shift of tissue fluids, blood, and other fluids during the first few hours of space flight. A total of 53 men and women between the ages of 22 and 55 years were tested during four bed-rest studies lasting between 4 h and 7 d to define the segmental volume changes that took place during simulated weightlessness. Impedance plethysmography can be used to measure baseline resistance (R0) changes of the calf, thigh, total leg, pelvic, torso, and arm segments before, during, and after each bed-rest exposure. Records of R0 were analyzed to determine the fluid volume and volume change of each segment during each test sequence.

FLUID SHIFTS IN WEIGHTLESSNESS

WILLIAM E. THORNTON, THOMAS P. MOORE, and SAM L. POOL (NASA, Johnson Space Center, Houston, TX; Methodist Hospital of Indiana, Indianapolis; NASA, Universities Space Research Association, Baylor University, and International Academy of Astronautics, International Man in Space Symposium, 7th, Houston, TX, Feb. 10-13, 1986) Aviation, Space, and Environmental Medicine (ISSN 0095-6562), vol. 58, Sept. 1987, p. A86-A90. refs

Studies of leg volumes in space by multiple girth measurements showed reductions of 1.9 percent of the leg volume, with 1.1 I from the nondominant leg, on Skylab 4. On landing, 65 percent of postflight leg volume increase was complete at 1.5 h. Measurement of the dominant leg during the equivalent period on Shuttle showed a mean loss of 0.9 l which was 90-percent complete at 150 min. Postflight increases were 87-percent complete at 1.5 h postlanding. Mass measurements during and after Skylab 4 showed a loss of 2.5 kg over the first 4 d on orbit, with a gain of 2.7 kg over the first 4 d of recovery. These changes are assumed to be tissue fluids secondary to changes in hydrostatic pressures and are much greater than those seen in bed rest. Rate and magnitude of inflight and postflight changes have significant operational impact.

SPACE SHUTTLE INFLIGHT AND POSTFLIGHT FLUID SHIFTS MEASURED BY LEG VOLUME CHANGES

This is a study of the inflight and postflight leg volume changes associated with spaceflight on Space Shuttle missions. The results show an inflight volume loss of 2 I from the lower extremities, 1 I from each leg, representing an 11.6 percent volume change. The vast majority of this change appears to be a shift in body fluids, both intravascular and extravascular. The fluid shift occurs mostly on Mission Day One and is essentially complete by 6 to 10 hr. The regional origin of shift and leg volume changes shows a far greater absolute volume (708 ml vs. 318 ml) and percentage (69 percent vs. 31 percent) of the total change coming from the higher as compared to the lower leg. Postflight, the return of fluid to the lower extremities occurs rapidly with the majority of volume return complete within 1.5 hr postlanding. At 1 week postflight, there is a net leg volume decrement of 283 ml or 3.2 percent, which is probably due to tissue loss secondary to atrophic deconditioning and weight loss.

THE EFFECTS OF EXERCISE ON BUBBLE FORMATION AND BENDS SUSCEPTIBILITY AT 9,100 M (30,000 FT; 4.3 PSIA)

This study assessed the value of controlled exercise in a bends susceptibility test. Healthy male subjects were exposed to a pressure altitude of 9100 m for a period not exceeding 8 h on two separate days at least one week apart. During one exposure, subjects performed five deep knee bends followed by five upward arm motions with 5-lb weights every 15 min; during the other exposure, they remained sedentary. Exercise and no-exercise altitude exposures were randomized between subjects. A precordial Doppler monitoring technique was used to record venous bubbling at 15-min intervals. Bends was diagnosed from subjective
Aerospace Medicine

Effects of microgravity on tissue perfusion and the efficacy of astronaut denitrogenation for EVA

A potentially flight-applicable, breath-by-breath method for measuring N2 elimination from human subjects breathing 100 percent O2 for 2-3 hr periods has been developed. The present report describes this development with particular emphasis on required methodological accuracy and its achievement in view of certain properties of mass spectrometer performance. A method for the breath-by-breath analysis of errors in measured N2 elimination profiles is also described.

A88-12970

A likelihood analysis of experiments to test altitude decompression protocols for shuttle operations

Maximum likelihood was applied to 548 individual altitude exposures from 30 experimental pressure profiles tested by NASA and the Air Force. Twelve decompression models were studied, including modified Haldane models and models which assume that stationary bubbles cause Type I decompression sickness. The data were best represented by a model in which a bubble in tissue is surrounded by a diffusion barrier, but this representation was statistically indistinguishable from a single tissue Haldane model with a halftime of 508 min. By providing a quantitative measure of the agreement between theory and data, the principle of maximum likelihood offers an opportunity for improving the understanding of decompression mechanisms and for developing safer and faster decompression procedures.

A88-12971

The effect of extended O2 prebreathing on altitude decompression sickness and venous gas bubbles

The purpose of this study was to determine the effect of extended O2 prebreathing on symptom and bubble incidence during decompressions simulating extravehicular activity. The 38 subjects breathed O2 for a 6-hr period prior to decompression to 4.3 psi. The subjects performed upper body exercises for 6 hr. Eight subjects were exposed to the same protocol after an 8-hr prebreath. Venous bubbles were detected in 18 of 38 subjects decompressed after the 6-hr prebreath. Four of these subjects reported symptoms of altitude decompression sickness. No symptoms or bubbles were detected in the eight subjects who had pre breathed 8 hr. The incidence of symptoms and bubbles, when combined with prior data on 3.5- and 4.0-hr prebreaths, showed an inverse correlation to prebreathing time. The incidence of symptoms was higher than has been reported for subjects exposed to decompression of shorter duration with less activity.

A88-12972

Probability of oxygen toxicity using an 8 psi space suit

Oxygen toxicity has been studied extensively, and a review of the literature suggests that continuous exposure to a PO2 of 8 psi can be tolerated indefinitely and should not present the astronaut with a problem for the EVA scenarios projected for Space Station. However, the cause of the decrease in circulating red blood cell mass, which has been shown to accompany exposure to microgravity as well as hyperoxia, is not as well defined when both conditions are simultaneously present.

A88-12973

Metabolic and hormonal status of crewmembers in short-term spaceflights

In order to clarify biochemical adaptation of the human body to short-term microgravity, metabolic and hormonal parameters were investigated in 20 cosmonauts who performed orbital flights of 4 to 14 d in duration. The specific feature of adaptation to this exposure is the transition to a new level of hormonal regulation with a significant increase of the content (production) of glucocorticoids, catecholamines, components of the renin-angiotension-aldosterone system (which determines a modified activity of tissue hormones), and fluid-electrolyte homeostasis, as well as simultaneous increase of insulin secretion (which diminishes the metabolic effects of glucocorticoids and catecholamines).

A88-12974

Possible role of brain stem respiratory neurons in mediating vomiting during space motion sickness

The object of this study was to determine if brain stem respiratory neurons control abdominal muscle activity during vomiting. The activity of 27 ventral respiratory group expiratory neurons, which are known to be of primary importance for control of abdominal muscle activity during respiration, was recorded. It is concluded that abdominal muscle activity during vomiting was not controlled only by some brain stem expiratory neurons but also by other input(s).

A88-12974

Rockefeller Univ., New York.

Possible role of brain stem respiratory neurons in mediating vomiting during space motion sickness

The object of this study was to determine if brain stem respiratory neurons control abdominal muscle activity during vomiting. The activity of 27 ventral respiratory group expiratory neurons, which are known to be of primary importance for control of abdominal muscle activity during respiration, was recorded. It is concluded that abdominal muscle activity during vomiting was not controlled only by some brain stem expiratory neurons but also by other input(s).

Author
MEASURES OF AUDITORY EVOKED POTENTIALS DURING OPTOKINETIC STIMULATION

Auditory brainstem responses elicited by click stimuli were recorded before, during, and after optokinetic stimulation in subjects that were (N = 10) or were not (N = 10) prone to visually induced motion sickness. The latency of Wave I, and the I-II and I-IV interwave intervals were measured. Results suggest that optokinetic stimulation may alter neural activity in the region of the superior olivary complex, a structure known to be important in sound-source localization.

SIMULATION OF SPACEFLIGHT WITH WHOLE-BODY HEAD-DOWN TILT - INFLUENCE ON INTRAOCULAR PRESSURE AND RETINOCORTICAL PROCESSING

Cephalad fluid shifts occur in the microgravity environment of space flight. Whole-body head-down tilt was used to simulate the influence of these fluid shifts upon intraocular pressure (IOP) and the bioelectrical activity of neural elements in the retinocortical pathway. Noninvasive techniques were used to monitor IOP, pattern reversal electroretinograms, and pattern reversal visual evoked cortical potentials when subjects were oriented either upright or in a head-down position (6 or 90 deg). The results indicate that there is a significant elevation in IOP when an individual is oriented in a head-down position. Significant alterations of neurophysiological processing in the retinocortical pathway also occur when individuals are oriented in a head-down position.

THE NATURE OF SENSORIMOTOR ADAPTATION TO ALTERED G-LEVELS - EVIDENCE FROM MASS DISCRIMINATION

HELEN E. ROSS (Stirling, University, Scotland), EDWIN SCHWARTZ (DFVLR, Institut fuer Flugmedizin, Cologne, Federal Republic of Germany), and PAUL EMMERSON (Aston, University, Birmingham, England) (NASA, Universities Space Research Association, Baylor University, and International Academy of Astronautics, International Man in Space Symposium, 7th, Houston, TX, Feb. 10-13, 1986) Aviation, Space, and Environmental Medicine (ISSN 0095-6562), vol. 58, Sept. 1987, p. A148-A152. Research supported by the Medical Research Council, University of Stirling, and BMFT. refs

Mass discrimination is impaired under zero G compared to 1 G. This is partly due to loss of weight information (a reduction in z-axis pressure stimulation), and probably also to incomplete adaptation to the reduced G-level. Maladaptation to an increased G-level postflight causes objects to feel too heavy and weight discrimination to be impaired. Video tapes of hand movements while shaking test objects were made before, during, and after the D-1 Spacelab mission. Movements were faster infight than preflight, slowed down postflight and returned to baseline by about the third day. Corresponding changes in movement amplitude also occurred. Errors of weight or mass perception during the maladaptation phase may be due to both inadequate monitoring of command signals and to inappropriate scaling offferent signals. High-intensity shaking was found to improve mass discrimination but impair weight discrimination.

VESTIBULO-OCCULAR REFLEX DURING MAGNIFIED VISION - ADAPTATION TO REDUCE VISUAL-VESTIBULAR CONFLICT

JOSEPH L. DEMER, JEFFIM GOLDBERG, HERMAN A. JENKINS, and FRANKLIN I. PORTER (Cullen Eye Institute; Clayton Foundation for Research; Baylor University, Houston, TX) (NASA, Universities Space Research Association, Baylor University, and International Academy of Astronautics, International Man in Space Symposium, 7th, Houston, TX, Feb. 10-13, 1986) Aviation, Space, and Environmental Medicine (ISSN 0095-6562), vol. 58, Sept. 1987, p. A175-A179. Research supported by the Clayton Foundation for Research. refs

This report describes the short-term effect of 2.2X telescopic spectacles on the vestibuloocular reflex (VOR) in seven volunteers. VOR gain was initially measured in darkness and light during passive sinusoidal rotations. Subjects were then rotated in light for 15 min while wearing telescopic spectacles. Dynamic visual acuity (DVA), vision during head rotation, was measured with telescopic spectacles. Initial VOR gain in darkness was 0.74 + or - 0.1; VOR gain with unmagnified vision was 1.07 + or - 0.04.
Initial VOR gain with magnified vision was 1.37 ± or - 0.53. DVA was poorer than static acuity in three of four subjects. After adaptation, VOR gain in darkness increased to 0.83 ± or - 0.12, with six of seven subjects exhibiting a gain increase of 7-23 percent. Adapted VOR gain with magnified vision was 1.54 ± or - 0.25. Adapted performance was more consistent, and oscillopsia was reduced. Adapted DVA improved 30-100 percent in four subjects. These changes indicate VOR adaptation to telescopic spectacles decreases visual-vestibular conflict.

Author

A88-12905
Good Samaritan Hospital and Medical Center, Portland, Oreg.

OPTOKINETIC AND VESTIBULO-OCULAR REFLEX RESPONSES TO AN UNPREDICTABLE STIMULUS

ROBERT J. PETERKA, F. OWEN BLACK, and MONIKA B. SCHOENHOFF (Good Samaritan Hospital and Medical Center, Portland, Or.) (NASA, Universities Space Research Association, Baylor University, and International Academy of Astronautics, International Man in Space Symposium, 7th, Houston, TX, Feb. 10-13, 1986) Aviation, Space, and Environmental Medicine (ISSN 0095-6562), vol. 58, Sept. 1987, p. A180-A185. refs

Abstract

Horizontal plane optokinetic (OKR) and vestibuloocular reflex eye movements were obtained from normal subjects in response to pseudorandom rotational stimulation. Results showed large intersubject variability in OKR responses. Typical OKR responses had approximately constant gain over 0.02-1.5 Hz. Response phase was near zero below 0.1 Hz with increasing phase lags as frequency increased consistent with time delays of 180 ms. Results suggested that visual motion information could be significant in the control of eye movements up to 6.1 Hz. Pseudorandom optokinetic stimulation induced motion sickness symptoms in approximately 20 percent of the 213 subjects tested.

Author

A88-12909

EFFECTS OF A VISUAL-VESTIBULAR STIMULUS ON THE VESTIBULO-OCULAR REFLEX

DANIEL WOODARD, DONALD PARKER, and HENNING VON GIERKE (Wright State University, Dayton; USAF, Wright-Patterson AFB; Miami University, Oxford, Oh.) (NASA, Universities Space Research Association, Baylor University, and International Academy of Astronautics, International Man in Space Symposium, 7th, Houston, TX, Feb. 10-13, 1986) Aviation, Space, and Environmental Medicine (ISSN 0095-6562), vol. 58, Sept. 1987, p. A198-A202. refs

Abstract

Exposure before flight to an environment that provides altered visual-vestibular relationships similar to those seen in weightlessness might facilitate adaptation to spaceflight. Fifteen normal subjects were exposed for 0.5, and 20 min to an abnormal visual-vestibular environment in which the vestibular sensation of lateral tilt was associated with the visual impression of lateral translation. Lateral eye movement elicited by similar tilt in darkness was measured before and at intervals after the exposure. Of the 15 subjects, 12 showed increased VOR amplitude following the exposure, but this increase appeared unrelated to the duration of exposure to the visual stimulus and may be an effect of the VOR measurement procedure. Most subjects showed little shift in the phase relationship between tilt and eye motion. Three subjects showed changes in VOR and five reported changes in perception of motion which appear clearly related to the visual-vestibular exposure.

Author

A88-12990

VESTIBULAR RESPONSE TO PSEUDORANDOM ANGULAR VELOCITY INPUT - PROGRESS REPORT

CHARLES S. LESSARD and WING CHAN WONG (Texas A & M University, College Station) (NASA, Universities Space Research Association, Baylor University, and International Academy of Astronautics, International Man in Space Symposium, 7th, Houston, TX, Feb. 10-13, 1986) Aviation, Space, and Environmental Medicine (ISSN 0095-6562), vol. 58, Sept. 1987, p. A203-A206. refs

Abstract

Space motion sickness was not reported during the first Apollo missions; however, since Apollo 8 through the current Shuttle and Skylab missions, approximately 50 percent of the crewmembers have experienced instances of space motion sickness. One of NASA's efforts to resolve the space adaptation syndrome is to model the vestibular response for both basic knowledge and as a possible predictor of an individual's susceptibility to the disorder. This report describes a method to analyze the vestibular system when subjected to a pseudorandom angular velocity input.

Author

A88-12992

HEAD MOVEMENTS IN LOW AND HIGH GRAVITATIONAL FORCE ENVIRONMENTS ELICIT MOTION SICKNESS - IMPLICATIONS FOR SPACE MOTION SICKNESS

Abstract

Astronauts report that head movements in flight tend to bring on symptoms of space motion sickness (SMS). The effects of head movements in pitch, yaw, and roll (made both with normal vision and with eyes occluded) on susceptibility to motion sickness in the zero G phase of parabolic flight maneuvers were evaluated. The findings are clear-cut: pitch head movements are most provocative, yaw least provocative, and roll intermediate. These experiments suggest that SMS is not a unique nosological entity, but is the consequence of exposure to nonterrestrial force levels. Head movements during departures in either direction from 1 G elicit symptoms.

Author

A88-12993

THE INFLUENCE OF GRAVITATIONAL FORCE LEVEL ON OCULOMOTOR AND PERCEPTUAL RESPONSES TO CORIOLIS CROSS-COUPLING STIMULATION

Abstract

The goal of the present experiment was to determine whether gravitational force magnitude influences ocularmotor and perceptual responses to Coriolis cross-coupling stimulation. Blindfolded subjects who were rotating at constant velocity were asked to make standardized head movements during the free-fall and high-force phases of parabolic flight, and the characteristics of their horizontal nystagmus and the magnitude of their experienced self-motion were measured. Both responses were less intense in the free-fall periods than in the high-force periods. These findings suggest that the response to semicircular canal stimulation depends on the background level of gravitational force. R.R.
rotation during the free-fall, high, and terrestrial force phases of parabolic flight maneuvers. The pattern of findings is consistent with the responses that were observed earlier to constant levels of Coriolis cross-coupled stimulation during parabolic flight maneuvers both in terms of the mode of nystagmus suppression and the effect of G-level.

Author

A88-12995

A NEW AND SIMPLE CALIBRATION OF THE ELECTRO-OCULAR SIGNALS FOR VESTIBULO-OCULAR MEASUREMENTS

Reliable calculation of the gain of the vestibuloocular reflex depends on a reliable way of calibrating the eye movements. During the new calibration maneuver, the subject fixes the eyes at a point about 1 m away and moves the head either in pitch or yaw approximately + or -30 deg. The head movements are recorded by means of an angular rate sensor. The eye movements are recorded with standard surface electrodes. By integrating the angular rate signal, the precise head position angle is calculated. The fixating eyes will compensate for this angle, and thus the signal level of the eye movements is defined.

Author

A88-13002

MECHANISMS OF ANTIMOTION SICKNESS DRUGS

Eight subjects, male and female, were rotated using the step method to progressively increase the speed of rotation (+2 rpm) after every 40 head movements to a maximum of 35 rpm. The end point for motion sickness was the Graybiel Malaise Ill total of symptoms short of frank nausea. The drug treatments were placebo, scopolamine 0.6 mg and 1 mg, scopolamine 0.6 mg/d-amphetamine 10 mg, scopolamine 1 mg/d-amphetamine 10 mg, and amphetamine 10 mg. Scopolamine increased tolerated head movements over placebo level by +81; scopolamine 1 mg +183; d-amphetamine by +118; scopolamine 0.6/d-amphetamine by +165; and scopolamine 1 mg/d-amphetamine 10 mg by +201. The drugs effective in preventing motion sickness are considered to be divided into those with acetylcholine blocking activity and those which enhance norepinephrine activity. A combination of both of these actions produces the most effective antinmotion sickness medications. It is concluded that the balance between the acetylcholine and norepinephrine activity in the CNS appears to be responsible for motion sickness.

Author

A88-13003

National Aeronautics and Space Administration. Lockheed B. Johnson Space Center, Houston, Texas.

HORMONAL RESPONSES OF METOCLOPRAMIDE-TREATED SUBJECTS EXPERIENCING NAUSEA OR EMESIS DURING PARABOLIC FLIGHT

The concentrations of adrenocorticotropic hormone (ACTH), vasopressin (AVP), epinephrine (EPI), and norepinephrine (NE) in 22 subjects administered 10 to 20 mg of metoclopramide prior to parablic flight are measured. The effect of metoclopramide on motion sickness is examined. It is observed that metoclopramide is ineffective in the modulation of motion sickness due to stressful linear and angular acceleration and orbital flight, and it does not affect serum hormones prior to parabolic flight. It is detected that the serum level of AVP declines following emesis induced by parabolic flight and stressful angular acceleration; the serum levels of ACTH and EPI are elevated by parabolic flight and stressful angular acceleration; and serum NE is significantly increased immediately following emesis. The possible roles of these hormones in the etiology of space motion sickness are discussed.

I. F.

A88-13004

PHARMACOLOGICAL INTERVENTIONS FOR MOTION SICKNESS - CARDIOVASCULAR EFFECTS

Motion sickness (MS) was provoked in healthy volunteers subjected to simultaneous rotation through the vertical axis with head movements (HM). Arterial blood pressure (BP), heart rate (HR) and forearm blood flows (BF) were intermittently monitored. Forearm BF was measured by venous occluding plethysmography. Rotation at 20 rpm and cyclic HM were continued for 10 min or until the subject requested cessation of HM because of imminent emesis. There were no consistent changes in BP or HR, but marked increases in BF were observed with MS. There was an inverse correlation between duration of HM tolerance and increments in BF. Antimotion sickness medications scopolamine:d-amphetamine (0.4:5.0 mg) or promethazine:ephedrine (25:60 mg) failed to significantly increase the duration of HM; the latter mixture, however, did significantly reduce the HM-induced-hyperemic responses. Administration of naproxyn (275 or 550 mg) did not significantly alter HM duration or BF responses. These studies suggest that BF changes may be an objective index of MS susceptibility.

Author

N88-10475# The Institute for Perception RVO-TNO, Soesterberg (Netherlands). Thermal Physiology Group.

DETERMINATION OF THE INDIVIDUAL STATE OF ACCLIMATIZATION

G. HAVENITH and H. VANMIDDENDORP Oct. 1986 23 p

AUTHOR

DETERMINATION OF THE INDIVIDUAL STATE OF ACCLIMATIZATION

G. HAVENITH and H. VANMIDDENDORP Oct. 1986 23 p

N88-10479# Oak Ridge National Lab., Tenn.

RADIATION EFFECTS IN SPACE

R. J. M. FRY Jul. 1987 6 p

Presented at the 8th International Congress of Radiation Research, Edinburgh, Scotland, 19 Jul. 1987 (Contract DE-AC05-84OR21400) (DE87-012529; CONF-870701-3) Avail: NTIS HC A03/MF A01

A subject's state of acclimatization was defined in terms of sweat rate, core temperature, and heart rate to a heat stress test. The overall effect of acclimatization is similar to results in the literature; lower heart rate, higher sweat sensitivity, lower core temperature. Individual effects, however, are more difficult to interpret. Qualitatively, they all show the mentioned changes, but comparing their individual physiological reactions, differences are observed. Ranking orders for their acclimatization state, based on heart rate response, are different from those based on core temperature and sweat rate-core temperature relation responses. It appears that the heart rate, core temperature and sweat rate-core temperature relations are correlated to the acclimatization state, whereas the heart-rate response is also strongly influenced by fitness level.

Author
mission duration. This document considers the risk of radiation effects in space workers and explorers.

LOCAL HUMAN SKIN POTENTIAL: SPATIAL DISTRIBUTION, MAGNITUDE AND ORIGIN Ph.D. Thesis
C. CULLANDER Apr. 1987 174 p

The sources and distribution of the slowly varying electric potential across hairy skin and the spatial distribution of the eccrine gland pores, which may be related to the skin potential, are investigated. The transdermal electrical potential in the same area on the back of the hands of eight subjects was measured under experimental conditions designed to minimize eccrine gland activity. The mean potential over all subjects was 24.86 +/- 8.16 mV. The pore distribution was evaluated by transferring the imprint of pilocarpine-stimulated gland secretions on special paper to digitized arrays. The average gland count over all records for the mean electrode radius (1 mm) was 9.09 +/- 3.55 glands. The correlation between the measured potential and the number of glands at each measurement site was calculated, and in general, the measured potential was independent of gland count. This lack of correlation was consistent with an equivalent circuit model for non-sudorific potential generation. This model predicted a minimal contribution from the passive glands and the existence of at least one other source of potential. One such source is regional variability in the permeability barrier of the skin. The pore arrays were also used to make a spectral analysis of the spatial frequencies present in the point pattern. Radial profiles of the power spectra and autocorrelation estimates demonstrated that the inter-pore distance is nearly constant (0.49 +/- 0.043 mm). The larger scale periodicity of 1.84 +/- 0.35 mm is related to the absence of glands surrounding hair follicles. Simulations of gland distributions by a stochastic model were used to verify the uniqueness of the findings.

N88-10481# Stockholm Univ. (Sweden). Inst. of Physics.
FAST DYNAMIC STUDIES WITH PC384-7B: SYSTEM IMPROVEMENTS AND DEVELOPMENT OF AN AUTOMATED BLOOD SAMPLING SYSTEM
L. ERIKSSON, M. MOSSKIN, CHR. BOHM, M. KESSELBERG, B. HOVANDER, and S. HOLTE Apr. 1987 23 p

An improvement in a positron emission tomography camera system, reducing the dead time, was implemented. An automated blood sampling system was constructed and evaluated. Two different detector units in the blood sampling system are compared. Results from regional cerebral blood flow studies are discussed.

N88-10482# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Brunswick (West Germany). Inst. fuer Flugmechanik.
DETECTION OF HYPERTENSION OF PARACHUTISTS Ph.D. Thesis - Technische Univ., Hanover, West Germany
HANS-DIETRIC MELZIG Feb. 1987 125 p

The theoretical aspects of impedance technique imagery are reviewed and the experimental setup for the in-vitro study of sensitivity distribution is described. The results are condensed in sensitivity records including the plane and volume sensitivity measurements in an eight electrode circular system. The analysis of applications includes the study of the inverse problem, that is the internal or cross section image reconstruction from a set of known injected currents and surface potential measurements. Examples of small matrix inversions are presented.

N88-10483# Texas Univ., Houston. Health Science Center.
PREVENTION OF DISUSE OSTEOPOROSIS: EFFECT OF SODIUM FLUORIDE DURING FIVE WEEKS OF BED REST Final Report
VICTOR S. SCHNEIDER Oct. 1987 64 p

An attempt was made to modify factors which promote disuse osteoporosis and thereby prevent it from occurring. Since fluoride is currently used to enhance bone formation in the treatment of low turnover osteoporosis, it was hypothesized that if the fluoride ion was available over a long period of time that it would slow the demonstrated loss of calcium by inhibiting bone resorption and enhancing bone formation. This study was used to determine whether oral medication with sodium F will modify or prevent 5 weeks of bed rest induced disuse osteoporosis, to determine the longitudinal effects of 5 weeks of bed rest on PTH, CT and calcitriol, to measure muscle volume changes and metabolic activity by magnetic resonance imaging and magnetic resonance spectroscopy during prolonged bed rest, to measure changes in peak muscle strength and fatigue, and to measure bone turnover in bone biopsies. Subjects were studied during 1 week of equilibration, 4 weeks of control ambulation, 5 weeks of bed rest, and 1 week of reambulation. E.R.

N88-11366# Advisory Group for Aerospace Research and Development, Neully-sur-Seine (France).

The first edition of this handbook was published in 1982, and since then the understanding of sleep and wakefulness has advanced considerably. This new handbook emphasizes the management of aircrew and the problems they experience in coping with irregularity of rest and activity.

N88-11367# National Aeronautics and Space Administration, Washington, D.C.
AEROSPACE MEDICINE AND BIOLOGY: A CONTINUING BIBLIOGRAPHY WITH INDEXES Nov. 1987 70 p

This bibliography lists 187 reports, articles, and other documents introduced into the NASA scientific and technical information system in October, 1987.

N88-11368# Institut National des Sciences Appliquees de Lyon, Villeurbanne (France).

The theoretical aspects of impedance technique imagery are reviewed and the experimental setup for the in-vitro study of sensitivity distribution is described. The results are condensed in sensitivity records including the plane and volume sensitivity measurements in an eight electrode circular system. The analysis of applications includes the study of the inverse problem, that is the internal or cross section image reconstruction from a set of known injected currents and surface potential measurements. Examples of small matrix inversions are presented.
53 BEHAVIORAL SCIENCES

Includes psychological factors; individual and group behavior; crew training and evaluation; and psychiatric research.

A88-10153
DEVELOPMENT OF THREE-DIMENSIONAL AUDIO SIGNALS

It is shown that the acoustic cues necessary for auditory localization can be simulated and presented via headphones with sufficient fidelity to achieve localization performance comparable to that with the unaided ear. Potential benefits and issues associated with cockpit applications of three-dimensional audio are discussed and a facility for synthesizing three-dimensional audio cues and presenting the same to human listeners is described. Experiments were conducted which reveal that, as long as the listener's head is free to move, localization performance with simulated cues should not be seriously degraded for nonoptimal audio signals such as aircraft warning tones and speech. K.K.

A88-10161
THE IMPACT OF NEW TECHNOLOGY ON PILOT WORKLOAD

This paper describes a limited scientific study to compare the levels of workload experienced by pilots flying the Boeing 767 and 737 aircraft. The in-flight assessment technique involves recording the pilot's heart rate to augment his subjective impressions of workload using a ten-point rating scale. To date, data from three pilots tend to support the prediction that levels of workload on the 767 are lower than on the 737. Author

A88-10165
EVALUATING THE SUBJECTIVE WORKLOAD OF DIRECTIONAL ORIENTATION TASKS WITH VARYING DISPLAY FORMATS

The impact of various flight-related tasks on the workload imposed by the requirement to compute new headings, course changes, and reciprocal headings is investigated experimentally. It is shown that, in terms of speed and accuracy, pilots are more efficient when alphanumeric display formats are provided. It is suggested that a voice command of 'turn to a specific heading' would provide the optimal method for issuing heading changes when used in conjunction with an alphanumeric display format.

K.K.
candidates, termed the Personal Characteristics Inventory, is described.

I.S.

A88-10958*# Texas Univ., Austin.

THE ROLE OF PSYCHOLOGISTS IN FUTURE SPACEFLIGHT
ROBERT L. HELMREICH (Texas, University, Austin) SPACELFAIR '85, Meeting, Boston, MA, Apr. 14, 1985, Paper. 9 p.

(Contract NAG2-137)

The need for psychologists to have a more active role in planning space missions is discussed. It is suggested that it would be beneficial if psychologists conducted research aimed at optimizing the organization, composition, and performance of crews; participated in the selection and training of crews; and monitored the actual performance and adjustment of crews during missions. The areas which require further research and the types of research strategies to be implemented are described. The desirable traits for future space personnel and the role of psychologists in mission control are examined.

I.F.

A88-10960*# Texas Univ., Austin.

WHAT CHANGES AND WHAT ENDURES - THE CAPABILITIES AND LIMITATIONS OF TRAINING AND SELECTION

The contribution of psychology to aviation in the areas of selection, training, and evaluation, and the implementation of new technologies are discussed. The concept of personality traits versus modification of human behavior through principles of learning are analyzed. Particular consideration is given to achievement motivation (defined in terms of mastery, work, and competitiveness) and the differences between traits and attitudes. It is argued that personality traits are important dimensions of the self and are useful measures of individual differences. The selection of individuals with desired personality characteristics and the training of personnel to improve crew coordination, flight-deck management, and interpersonal efficacy are examined.

I.F.

A88-10961*# Texas Univ., Austin.

TRAINING - BEHAVIORAL AND MOTIVATIONAL SOLUTIONS?
ROBERT L. HELMREICH (Texas, University, Austin) Air Line Pilots Association, Beyond Pilot Error - A Symposium of Scientific Focus, Washington, DC, Dec. 6-8, 1983, Paper. 11 p. refs (Contract NAG2-137)

Psychological factors which govern interpersonal activities in the cockpit are examined. It is suggested that crew members should be selected based on personality characteristics required for the position and that training does not cause long lasting personality changes, it only teaches and improves task performance skills. The effects of mindlessness as defined by Langer (1978) and the attribution theory of Jones and Nisbett (1971) on flight deck communications and cockpit management are described. The needs for a new system of training crew members, with emphasis on strategies that induce cognitive processes and awareness, and for field investigations of pilots are discussed.

I.F.

A88-11325

PSYCHOPHYSIOLOGICAL PRINCIPLES OF SETTING WORK NORMS IN FLIGHT TRAINING [PSIKHOFIZIOLOGICHESKIE PRINTSIPIY NORMIROVANIIA TRUDA V PROTSESE LETNOGO OBUCHENIIA]

The methods used in norm setting for the activities of pilots and pilot trainees are discussed together with the systems of activity grading. It is emphasized that the daily work norm should not only be based on the flight activity, but that the ground activities of a pilot should also be taken into consideration. It is shown that the maximal learning of piloting skills occurs only in cases when the biological condition of the organism is maximal. The appearance of the symptoms of the motor-vegetative system activation under the conditions of the work load increase precedes the onset of a slack in the work capacity; thus, these physiological symptoms can be used for setting individual flight and work limits.

I.S.

A88-12109

INVESTIGATING THE RELIABILITY OF PILOT PERFORMANCE DURING LONG-TERM FLIGHTS IN THE AUTOMATIC CONTROL MODE [ISSLEDOVANIE NADEZHNOSTI DEJATEL'NOSTI LETCHNIKA PRI VYPOLNENII DLYATEL'NYKH POLETOV V AVTOMATICHESKOM REZHIME UPRAVLLENIA]

Changes in the quality of flight control and the indices of alertness of pilots performing long-term flights in the automatic control mode were investigated in 11 healthy trained pilots 'flying' a simulator under the conditions of a monotonous night-time flight. A six-hour-long route consisted of 12 30-min-long stereotype sections. The operator had to control the continuously changing values of 'flight' parameters and to report their changes; in addition, they had to attend to the flight route and to readjust the route every 30 min. The results of individual assessments indicated that in the first 2.5 hours of flight, the feeling of sleepiness and dullness increased steadily. Later, the signs of sleepiness decreased, while the expectation of dullness decreased or increased depending upon the conditions of flight. It is suggested that sensory monotony is the most detrimental and potentially dangerous factor in long-term flights in the automatic control mode.

I.S.

A88-12541

INTERNAL MODELS, TRACKING STRATEGIES, AND DUAL-TASK PERFORMANCE
RAY E. EBERTS (Purdue University, West Lafayette, IN) Human Factors (ISSN 0018-7208), vol. 29, Aug. 1987, p. 407-419. refs (Contract NR PROJECT 154-460; N00014-81-K-0034)

The effects of internal models and tracking strategies on workload were investigated in a dual-task, second-order tracking and auditory detection experiment. Internal models and tracking strategies were manipulated by providing subjects with augmenting cues. A control group was compared with two groups provided with different kinds of display augmentation, parabola or point cues, during single-task tracking training. The display augmentation had the effect of changing tracking strategy as subjects practiced on cued and noncued trials; there was no effect of the on the internal models developed. Both point and parabola augmentation reduced workload when displayed on the cued trials. On the noncued trials, the parabola augmentation training had the effect of reducing the workload, compared with the point augmentation, even if the parabola cues were not displayed. A control group that did not change strategy during training also had low workload requirements in the dual task. The results indicate that a consistent tracking strategy or the development of a visually based internal model is needed to lessen the workload.

Author

A88-12642

MODELS OF PROCEDURAL CONTROL FOR HUMAN PERFORMANCE SIMULATION

This paper describes and evaluates two general techniques to simulate human performance of procedural tasks. A procedural task is characterized as a partial ordering of task elements in which the control of task-element sequencing is represented within the task, rather than as an interaction between the task and the environment in which the task is performed. The primary concern in simulating the performance of procedures is determining the mechanism that controls task-element sequencing. Two modeling frameworks have been used to represent task-element sequencing. The first method represents the constraints on task-element sequencing directly in a network. A second method represents sequencing constraints indirectly as a set of production rules. Both
frameworks offer considerable generality and flexibility in the kinds of structures that can be represented. The relative advantages of the two methods depend upon the questions addressed by the model and the characteristics of the tasks being modeled. Author

A88-12643
EFFECT OF PIXEL HEIGHT, DISPLAY HEIGHT, AND VERTICAL RESOLUTION ON THE DETECTION OF A SIMPLE VERTICAL LINE SIGNAL IN VISUAL NOISE

Spatial resolution is one of the parameters that engineers designing digital displays must consider. Three experiments are described that investigate the effects of vertical spatial resolution and the interrelated parameters, pixel height and display height, on the visibility of straight vertical line signals in visual noise. A signal detection analysis of the results showed that detection efficiency was unaffected by vertical resolution and pixel height, whereas an increase in display/signal height resulted in a decline in efficiency. The decline is attributed to the increasing difficulty the visual system encounters when integrating luminance over an increasing spatial resolution. It is postulated that for practical digital displays of the kind described here, pixels should be as short as possible in order that the available display information be compressed into the smallest possible height. Author

A88-12958*
National Aeronautics and Space Administration.
Lyondo D. Johnson Space Center, Houston, Tex.

EFFECTS OF PROPOSED PREFLIGHT ADAPTATION TRAINING ON EYE MOVEMENTS, SELF-MOTION PERCEPTION, AND MOTION SICKNESS - A PROGRESS REPORT

D. E. PARKER (NASA, Johnson Space Center, Houston, TX), M. F. RESCHKE (Miami University, Oxford, OH), H. E. VON GIERKE (USAF, Armstrong Medical Research Laboratory, Wright-Patterson AFB, OH), and C. S. LESSARD (Texas A & M University, College Station, TX) (NASA, Universities Space Research Association, Baylor University, and International Academy of Astronautics, International Man in Space Symposium, 7th, Houston, TX, Feb. 10-13, 1986) Aviation, Space, and Environmental Medicine (ISSN 0095-6562), vol. 58, Sept. 1987, p. A42-A49. USAF-supported research.

The preflight adaptation trainer (PAT) was designed to produce rearranged relationships between visual and otolith signals analogous to those experienced in space. Investigations have been undertaken with three prototype trainers. The results indicated that exposure to the PAT sensory rearrangement altered self-motion perception, induced motion sickness, and changed the amplitude and phase of the horizontal eye movements evoked by roll stimulation. However, the changes were inconsistent. Author

A88-12961
ADAPTIVE CHANGES IN PERCEPTION OF BODY ORIENTATION AND MENTAL IMAGE ROTATION IN MICROGRAVITY

The perception of the subjective body orientation with respect to a foot reference basis, and the adaptation of mental image rotation have been investigated before, during, and after a 7-d spaceflight. The findings show that the body is tilted forward in darkness and in stabilized vision, which indicates a predominant role of vision in such orientational tasks performed in microgravity. Furthermore, perception of head angular rotation in pitch and roll axes seems to be altered in microgravity, whereas head displacements in yaw are estimated correctly. Subjects' capability to rotate mentally the image of the visual environment increased during the flight. Memorized writing was affected in microgravity, especially concerning the layout of letters corresponding to the vertical direction. Author
100%. The detection of lower spatial frequencies can be moderately improved by blurring of the image, whereas, the detection of higher spatial frequencies can be improved by differentiation of the image.

ESa

N88-10486
Royal Signals and Radar Establishment, Malvern (England).

A STUDY OF THE PERFORMANCE OF AUTOMATIC SPEECH RECOGNISERS WITH SPEECH IMPAIRED CHILDREN
D. C. SMITH and M. J. RUSSELL, Apr. 1987 32 p (RSRE-MEMO-4040; BR102763; ETN-87-90980) Avail: NTIS HC A03/MF A01

The feasibility of using automatic speech recognition devices with speech impaired children was assessed, using five children with various speech and language problems. Structured conversations between a speech therapist and individual children were recorded in an informal play setting at the children’s school. Two children with reasonably normal speech were also recorded. The recordings were preprocessed, edited and annotated. Isolated word recognition experiments were performed using computer simulation. Results suggest that speech recognition techniques are not sufficiently powerful to accommodate the degree of variability which occurs in the speech of children with the types of speech impairment considered.

ESa

N88-10487
Royal Signals and Radar Establishment, Malvern (England).

PSYCHOPHYSICAL CONSIDERATIONS IN MEASURING MRTD WITH STARING ARRAYS
K. ST. J. MURPHY, May 1987 13 p (RSRE-MEMO-4031; BR102762; ETN-87-90981) Avail: NTIS HC A03/MF A01

Large variations in minimum resolvable temperature difference (MRTD) are partly attributed to inconsistent observer response biases. Psychophysical techniques which can minimize the errors introduced by such observer response bias are described. The techniques are applied to measurements of MRTD performance for staring array thermal imagers.

ESa

N88-10879
National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Houston, Tex.

A SYNOPSIS OF THE EVA TRAINING CONDUCTED ON EASE/ACCESS FOR STS-61-B
Avail: NTIS HC A14/MF A01 CSLC 051

Experimental Assembly of Structure in EVA (EASE)/Assembly Concept for Construction of Erectable Space Structures (ACCESS) training programs; photography/television coverage; training schedules; flight data file (FDF), and flight rules production are summarized.

B.G.

N88-11369
Association pour le Developpement de l’Enseignement et de la Recherche en Systematique Appliquee, Verrieres-le-Buisson (France).

A RESEARCH ON PILOT PERFORMANCE IN THE CASE OF AIRCRAFT MALFUNCTION [UNE RECHERCHE SUR LE PILOTAGE EN SITUATION DE PANNE EN VOL]
DIDIER VIARD, Mar. 1987 8 p (Contract DRET-83-34-428-00-470-75-01) (ETN-87-90652) Avail: NTIS HC A02/MF A01

Pilot reactions to malfunctions in 11 simulations carried out with a group of pilot trainees were studied. The studied variables included type of aircraft malfunction, individual experience, psychological factors, flight duration, and pilot workload. The role of workload, a large effect of personality factors, and a strong interaction with the type of malfunction are noted.

ESa

N88-11370
Association pour le Developpement de l’Enseignement et de la Recherche en Systematique Appliquee, Verrieres-le-Buisson (France).

A RESEARCH ON PILOT PERFORMANCE IN A FLIGHT INCIDENT SITUATION Final Report [UNE RECHERCHE SUR LE PILOTAGE EN SITUATION DE PANNE EN VOL]

Pilot behavior during flight emergencies and incidents is studied to provide elements for the design of automated aircraft and pilot training and selection. The analysis includes experienced pilot interviews, flight incidents or accidents report analysis, observation of actual flight pilot performance, and flight simulator experiments in a pilot training institution.

ESa

54 MAN/SYSTEM TECHNOLOGY AND LIFE SUPPORT
Includes human engineering; biotechnology; and space suits and protective clothing.

A88-10152
AEROSPACE BEHAVIORAL ENGINEERING TECHNOLOGY CONFERENCE, 5TH, LONG BEACH, CA, OCT. 13-16, 1986, PROCEEDINGS
Conference sponsored by SAE. Warrendale, PA, Society of Automotive Engineers, Inc. (SAE P-184), 1986, 318 p. For individual items see A88-10153 to A88-10174. (SAE P-184)

The conference presents papers on fitness for duty, rotorcraft as innovative technology for future systems, Space Station and aircraft windows, air transport, intuitive situation displays, workload, fly by wire transport aircraft, human attributes and aircrew effectiveness, simulation technology, and color for electronic displays. Topics include the development of three-dimensional audio signals, Space Station viewing requirements, an integrated display for vertical situation awareness in commercial transport aircraft, the advantages of a primary flight display, and evaluating the subjective workload of directional orientation tasks with varying display formats. Consideration is also given to airframe requirements on a fly-by-wire aircraft, the relationship between basic attributes test scores and learning to fly a VTOL simulator, flight simulator visual systems, and national and international measurement techniques for color determination.

K.K.

A88-10154

VERSATILE SIMULATION TESTBED FOR ROTORCRAFT SPEECH I/O SYSTEM DESIGN

(SAE PAPER 861661)

A versatile simulation testbed for the design of a rotorcraft speech I/O system is described in detail. The testbed will be used to evaluate alternative implementations of synthesized speech displays and speech recognition controls for the next generation of Army helicopters including the LHX. The message delivery logic is discussed as well as the message structure, the speech recognizer, command structure and features, feedback from the recognizer, and random access to controls via speech command.

K.K.
Three different stages of cognitive processing are identified, and to subjects using a slide projector and data were collected to illustrate traditional display formats were produced which illustrate traditional display crewmember requirements in identifying, understanding, and solving abnormal and emergency spacecraft malfunctions via a simple multifunction display interface. Two sets straightforward failure modes and effects. Author's strategies and cognitive representations. Formats were presented to subjects using a slide projector and data were collected to identify any significant differences between the two methods of information display. Results indicated no statistically significant differences in performance which were attributed to the use of straightforward failure modes and effects. Author.

The capability of a multifunction display system to present data regarding malfunctioning manned spacecraft systems is illustrated. Three different stages of cognitive processing are identified, and associated spacecraft formats are developed. System architecture provides for the display of required information tailored to crewmember requirements in identifying, understanding, and solving malfunctions via a simple multifunction display interface. Two sets of formats were produced which illustrate traditional display strategies and cognitive representations. Formats were presented to subjects using a slide projector and data were collected to identify any significant differences between the two methods of information display. Results indicated no statistically significant differences in performance which were attributed to the use of straightforward failure modes and effects. Author.

The need for a sideview-presentation vertical situation display (VSD) for use in commercial transport aircraft is demonstrated. The preliminary conceptual VSD format includes an inside-out presentation with a moving scale and vertical map translating around a fixed airplane symbol. The information is scaled along altitude and distance axes to permit present, predicted, and future altitude requirements to be integrated with other relevant vertical situational information. It is believed that the completed VSD concept will improve the flightcrew’s awareness of the aircraft’s spatial position throughout the flight. K.K.

A study is described which compares two types of input devices used to operate a flight management computer: a programmable legend (multifunction) keyboard and a conventional (dedicated) keyboard. Pilot performance measures, subjective responses, and a timeline analysis were used in evaluating the two keyboard concepts. A discussion of the factors to be considered in the implementation of a multifunction keyboard is included. Author.

The features of a primary flight display (PFD) are discussed as well as its advantages over conventional instrumentation. The present PFD is part of the electronic flight instrument system which is standard on the current series of Airbus models. Consideration is given to failure indications, theairspeed scale, the flight path vector (FPV), and the FPV with head-up display. K.K.

Present-day flight simulator visual systems are evaluated in terms of their capabilities and limitations. Particular attention is given to the image generator and the display combinations employed as well as their application areas. It is believed that video disk technology will eventually supply the lowest cost requirements such as general aviation trainers. In the display area, the author anticipates a gradual evolution towards the greater use of projection-based off-axis wide-angle continuous mirror displays in the transport world and helmet-mounted displays in the military training role. K.K.

The number and types of parameters which require measurement if colors are to be represented accurately on a self-luminous display unit are presented. Efforts made by national and international organizations to determine these parameters are reviewed. The four basic types of measurements used are broad-band, visual, photographic, and spectroradiometric. K.K.
A88-10172

EFFECTIVE USE OF COLOR ON AVIONICS DISPLAYS

(SAE PAPER 861694)

The principles behind effective color displays for avionics applications are reviewed. Color use in text and symbols as well as in nonalphabetic displays is examined in terms of the perceptual, physiological, and cognitive principles applicable to the human interface. It is noted that the benefits of color as an attention getter, information grouper, and value assigner are lost if too many colors or improper color combinations are employed. K.K.

A88-10173

U.S. AIR FORCE COLOR DISPLAY ISSUES

(SAE PAPER 861695)

The ways in which the USAF uses electronic color displays are discussed with emphasis placed on related display design issues. Airborne displays are of particular interest. Among the issues addressed are luminance, ambient illumination, the spectral characteristics of the display, color selection and tolerances, color-code size, formatting, resolution, size, weight, power requirements, and ruggedness. K.K.

A88-10174

COLOR FORMATTING ISSUES IN PICTORIAL DISPLAYS

(SAE PAPER 861696)

The use of color pictorial display formats in aircraft cockpits to integrate and simplify available information is discussed. Existing color coding conventions are reviewed as well as applications that go beyond them. It is noted that the elements of the multiple CRT cockpit's HUD represent a combination of traditional and new coding approaches. The amber coding of threat lock-ons and red indication of missile launches are examples of traditional uses of color coding while the cyan ownship symbol addresses new applications in color coding. K.K.

A88-11393

A TWO-COMPARTMENT TRACKING SYSTEM [DVUKHVKANAL'NAIA SLEJISHCHAJA RAIDOTEKHNICHESKaja SYSTEMA]

A man-machine system is described which involves the use of two human operators to track a moving object. Carrying out the same functions, the operators compensate for each other's errors, leading to an improvement in the total accuracy of the system. In this system, operator delay is practically eliminated and tracking quality is improved. A block diagram of the system is presented. B.J.

A88-12434#

DEVELOPMENT OF METHODS FOR PREVENTION OF ACCELERATION INDUCED BLACKOUT AND UNCONSCIOUSNESS IN WORLD WAR II FIGHTER PILOTS - LIMITATIONS: PRESENT AND FUTURE

EARL H. WOOD (Mayo Medical School, Rochester, MN) (International Union of Physiological Sciences, Commission on Gravitational Physiology, Annual Meeting, 8th, Tokyo, Japan, Nov. 4-8, 1986) Physiologist, Supplement (ISSN 0031-9376), vol. 30, Feb. 1987, p. 5-27 to S-30. refs

The major determinant of human tolerance to high G when in the upright sitting position is arterial blood pressure; thus, the effectiveness of an anti-G suit is directly proportional to its capability of producing arterial hypertension at heart level during positive acceleration. However, the very high levels of protection (of a combination of the G-suit and the M-1 straining muscle maneuver) required to prevent the loss of consciousness at acceleration higher than 7-8 Gz carries the potential danger of injuries to the lungs and the cardiovascular systems. Although it has been shown that in the prone position humans can tolerate very high accelerations without visual symptoms, there occurs at high G levels (endured in the supine position) a severe dorsalward displacement of the heart with the consequent overdistension of the ventral region of the lungs. Thus, protection against the hazards of exposure to very high G still presents a challenge to the aerospace medical research and engineering communities. I.S.

A88-12547#

MODEL BASED HEALTH MONITORING FOR REUSABLE LAUNCH VEHICLES

(AIAA PAPER 87-2797)

A methodology for developing a health monitoring system for reusable launch vehicles is proposed. The methodology is based on using explicit models of the vehicles for each part of the health monitoring system. The basic system model for the monitoring system and schemes for decomposing the model are discussed. Some of the formal models used are: qualitative, analytical, empirical, and life. Signal conditioning, pattern recognition, and qualitative reasoning techniques, which are computational methods for sensor data analysis, are examined. The architecture for a health monitoring system is described. An example, which illustrates the design methodology, of the development of a health monitoring system for a simple lube system is presented. I.F.

A88-12839*

National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

PERSPECTIVE TRAFFIC DISPLAY FORMAT AND AIRLINE PILOT TRAFFIC AVOIDANCE

STEPHEN R. ELLIS, MICHAEL W. MCGREEW (NASA, Ames Research Center, Moffett Field; California, University, Berkeley), and ROBERT J. HITCHCOCK (San Jose State University, CA) Human Factors (ISSN 0018-7208), vol. 29, Aug. 1987, p. 371-382. refs

(Contract NCC2-68)

Part-task experiments have examined perspective projections of cockpit displays of traffic information as a means of presenting aircraft separation information to airline pilots. Ten airline pilots served as subjects in an experiment comparing the perspective projection with plan-view projections of the same air traffic situations. The pilots' task was to monitor the traffic display in order to decide if an avoidance maneuver was needed. Pilots took more time to select avoidance maneuvers with a conventional plan-view display than with an experimental perspective display. In contrast to previous results, if the pilots selected a maneuver with the perspective display, they were more likely to choose one with a vertical component. Tabulation of the outcomes of their
initial avoidance decisions with both perspective and plan-view displays showed that they were more likely to achieve required separation with maneuvers chosen with the aid of perspective displays.

Author

A88-12962* Texas Univ., Dallas. ECHOCARDIOGRAPHIC MEASUREMENTS OF LEFT VENTRICAL MASS BY A NON-GEOMETRIC METHOD BEATRIZ PARRA, JAY BUCKEY, DAVID DEGRAFF, F. ANDREW GAFFNEY, and C. GUNNAR BLOMOVIST (Texas, University, Dallas) (NASA, Universities Space Research Association, Baylor University, and International Academy of Astronautics, International Man in Space Symposium, 7th, Houston, TX, Feb. 10-13, 1986) Aviation, Space, and Environmental Medicine (ISSN 0095-6562), vol. 56, Sept. 1987, p. A64-A68. refs (Contract NAS8-16044) The accuracy of a new nongeometric method for calculating left ventricular myocardial volumes from two-dimensional echocardiographic images was assessed in vitro using 20 formalin-fixed normal human hearts. Serial oblique short-axis images were acquired from one point at 5-deg intervals, for a total of 10-12 cross sections. Echocardiographic myocardial volumes were calculated as the difference between the volumes defined by the epicardial and endocardial surfaces. Actual myocardial volumes were determined by water displacement. Volumes ranged from 80 to 174 ml (mean 130.8 ml). Linear regression analysis demonstrated excellent agreement between the echocardiographic and direct measurements. Author

A88-12963 ULTRASOUND TECHNIQUES IN SPACE MEDICINE O. IU. ATKOV, V. S. BEDNENKO, and G. A. FOMINA (Institut Mediko-Biologicheskikh Problem, Nauchno-Issledovatel'ski Institut Transplantologii i Iskusstvennykh Organov, Moscow, USSR) (NASA, Universities Space Research Association, Baylor University, and International Academy of Astronautics, International Man in Space Symposium, 7th, Houston, TX, Feb. 10-13, 1986) Aviation, Space, and Environmental Medicine (ISSN 0095-6562), vol. 56, Sept. 1987, p. A69-A73. refs Ultrasound examinations have been performed on 15 cosmonauts who have remained in orbit for flights ranging from 2.5 to 8 months in duration. Soviet researchers have combined hemodynamic assessments with parallel attempts to develop improved ultrasound techniques and equipment for use onboard space stations. These techniques and equipment are reviewed, as well as findings relative to exercise effects on hemodynamic changes. In general, longitudinal echocardiographic studies have suggested that (1) few differences exist between resting preflight and on-orbit cardiac contractility measures; (2) declines in orthostatic stability after long-term flights are not due to deterioration of the myocardial functional state; and (3) lower stroke volumes and heart rate increases occurring during exertion may be considered compensatory hemodynamic resettings rather than indications of a disturbed left ventricular contractility. Author

A88-13099* Georgia Inst. of Tech., Atlanta. MULTIMODAL USER INPUT TO SUPERVISORY CONTROL SYSTEMS: VOICE-AUGMENTED KEYBOARD CHRISTINE M. MITCHELL (Georgia Institute of Technology, Atlanta) and MICHELLE G. FORREN (Scientific Atlanta, Inc., GA) IEEE Transactions on Systems, Man, and Cybernetics (ISSN 0018-9472), vol. SMC-17, July-Aug. 1987, p. 594-607. refs (Contract NASS-28575) The use of a voice-augmented keyboard input modality is evaluated in a supervisory control application. An implementation of voice recognition technology in supervisory control is proposed: voice is used to request display pages, while the keyboard is used to input system reconfiguration commands. Twenty participants controlled GT-MSOCC, a high-fidelity simulation of the operator interface to NASA ground control system, via a workstation equipped with either a single keyboard or a voice-augmented keyboard. Experimental results showed that in all cases where significant performance differences occurred, performance with the voice-augmented keyboard modality was inferior to and had greater variance than the keyboard-only modality. These results suggest that current moderately priced voice recognition systems are an inappropriate human-computer interaction technology in supervisory control systems. Author

A88-13106 INTERFACES FOR ADVANCED COMPUTING JAMES D. FOLEY (George Washington University, Washington, DC) Scientific American (ISSN 0036-8739), vol. 257, Oct. 1987, p. 127-130, 132, 134, 135. Supercomputer-created 'artificial realities' that facilitate user-computer communication are discussed. Improved display monitors and head-mounted displays and their accessories are addressed. The DataGlove, which translates hand and finger movements into electrical signals, and may provide major advances in user-computer interaction, is described. Other tactile-feedback technologies are examined, and voice- and gesture-recognition systems are discussed. C.D.

N89-10488# Aviation Systems Concept, Inc., Annandale, Va. REPORT OF SAFETY SURVEY: HUMAN INTEGRATION OF APPROACH CHARTS Final Report WILLIAM J. COX and C. W. 'BILL' CONNOR May 1987 197 p Prepared in cooperation with Midwest Research Systems, Inc., Dayton, Ohio (Contract F33615-85-C-3623) (DOT/FAA/PM-87/15) Avail: NTIS HC A09/MF A01 Results of a safety survey conducted among pilots associated with the USAF and civil flight operations are presented. The objective of the survey was to determine the scope of a previously identified safety issue: The need to establish formal human performance criteria for the development and evaluation of instrument approach procedures and charts. A total of 1,037 (of 6,000) survey forms were completed by pilots and returned for a review of the answers and volunteered comments to 30 survey questions. These questions related to these terminal instrument flight procedures and charts topics: information requirements; terrain and obstruction; runway information requirements; arrival and departure navigation procedures requirements; information location, symbology, and packaging. The study provides 6 recommendations which address several needs. These recommendations are listed and briefly discussed. Author

N89-10489# British Aerospace Public Ltd. Co., Stevenage (England). Space and Communications Div. TELEOPERATION AND CONTROL STUDY Final Report J. S. SHEPPARD, comp. Paris, France ESA Nov. 1986 556 p (Contract ESA-6118/84) (BAE-TP-8268; ESA-AR(P)-2413; ETN-87-90549) Avail: NTIS HC A24/MF A01 Requirements for a servicing manipulator teleoperator system were derived using two mission model scenarios. The first scenario introduces the problem of communication time delays within the overall manipulator teleoperator control system, associated with the human operator being located on the ground while controlling a manipulator on a free-flying servicing vehicle, servicing a payload on a platform or satellite docked to it, in low Earth orbit. The second scenario has the human operator located on the shuttle aft deck controlling a manipulator servicing a payload in the cargo area. This scenario is intended to demonstrate the operational capability of the service manipulator system using the Robotic Servicing Experiment. A ground based supervisor is also assumed for this mission, permitting a teleoperation-control experiment with time delay, to be performed as required. It is concluded that true teleoperation and control of a remote manipulator cannot be readily achieved in the presence of a communications time delay. ESA
MAN/SYSTEM TECHNOLOGY AND LIFE SUPPORT

Clothing and equipment effects on physical performance were assessed in coordination tests, sprinting and running, as well as handgrip throwing and obstacle course. Average loss of performance is 0% to 2% for fatigue, insulative liner and helmet; 4% to 6% for outer garment, combat boots, chemical warfare CW-suit, CW-overboots, and respirator; and 7% and 13.5% for weapon carrying and fighting order (webbing with entrenching tool, canteen, rucksack and respirator in bag) respectively. The figures vary between statistically significant and very significant. Few interactions are significant. Both CW-gear with respirator and fighting order with weapon tend to regress toward interaction. A model for the prediction of the loss of performance when combining items is presented.

ESAF

Catalytic techniques for processing waste products onboard space vessels were evaluated. The goal of the study was the conversion of waste to carbon, wash water, oxygen, and nitrogen. However, the ultimate goal is conversion to plant nutrients and other materials useful in closure of an ecological life support system for extended space missions. The resulting process studied involves hydrolysis at 250 C and 600 psia to break down and compact cellulose material, distillation at 100 C to remove water, and catalytic oxidation at 450 to 600 C and atmospheric pressure. Tests were conducted with a model waste to characterize the hydrolysis and coking processes. An oxidizer reactor was sized based on automotive catalytic conversion experience. Products obtained from the hydrolysis and coking steps included a solid residue, gases, water condensate streams, and a volatile coker oil. Based on the data obtained, sufficient component sizing was performed to make a preliminary comparison of the catalytic technique with oxidation for processing waste for a six-man spacecraft. Wet oxidation seems to be the preferred technique from the standpoint of both component simplicity and power consumption.

Author

A methodological approach to the dynamic allocation of tasks in a man-machine symbiotic system in the context of dexterous manipulation and teleoperation is presented. This paper addresses symbiosis containing two symbiotic partners which work toward controlling a single manipulator arm for the execution of a series of sequential manipulation tasks. The proposed automated task allocator uses knowledge about the constraints/criteria of the problem, the available resources, the tasks to be performed, and the environment to dynamically allocate tasks to the man and the machine. The presentation of the methodology includes discussions concerning the characteristics of the man-machine symbiotic system, the interaction of the knowledge bases, the flow of execution, and the dynamic nature of the task allocation.

DOE

It is suggested that gender and cognitive style factors may be important in determining the most effective interface style for a particular user or user group, especially in the formative stages of human-computer interaction. Given the substantial evidence of differential treatment of the two sexes at school and at work, there is a need to increase the awareness of designers to the possibility of sex related individual differences at the level of the interface. There is also a great deal of work required in the schools, in order to ensure that both sexes receive equal treatment in computer exposure and usage.

ESA

Automatic adaptation of computer systems to the changing needs of users over time and to individual users or classes of users is discussed. The argument for adaptivity in a system is developed and related to theoretical work on adaptive interface design. Experiments to provide a formalism for system adaptivity are described. The experimental vehicle is a small CBT/tutoring system which incorporates embedded models of individual characteristics and student information in the form of stereotypes attributes and user profiles. Results suggest that the experimental paradigm must be refined, and a larger, more variable subject pool used.

ESA

A principle underlying the investigation of a manipulation robot with hydraulic drive remotely controlled in a semiautomatic mode is discussed. Experimental data is presented on the operation of the hydraulic drive of the manipulator obtained by the frozen coefficient method. Parameters are obtained at which the system is stable. Results are presented of an investigation of the man operated hydraulic drive system with tracking (accomplishing the operation of gripping a floating object) at a frequency of 0.1 Hz.

Author

A spaceborne environmental life support system concept where algae (Chlorella sp.) is cultivated in a special culture vessel was developed. The oxygen-rich algae medium passes a gas exchanger where the oxygen is exchanged against carbon dioxide to supply the algae with a carbon source. Maltose should be extracted with

32
a special membrane out of the medium, so that the medium can be recycled without problems. Oxygen and maltose are used to supply a maltose-consuming biological experiment (bacterial culture).
The usefulness of microgαιal structures as an element of closed ecological systems like Aquarack and CELSS - Controlled Ecological Life Support System (CELSS)
BIOELECTRIC POTENTIAL

Assessment of pilot workload - Converging measures from performance based, subjective and psychophysiological techniques

Significance of the spatial synchronization of cerebral electrical processes for psychophysiological investigations

BIOELECTRICITY

Investigation of cortico-ethical activity and of the time of response to sound and light stimuli

Possible role of brain stem respiratory neurons in mediating respiration during space motion sickness

Cytovascular neurons that exhibit different responses to active and passive yaw head rotations

Local human skin potential: Spatial distribution, magnitude and origin

BIOELECTROGRAPHY

Experiments in achievement motivation

BIOPHARMACOLOGY (MATHEMATICAL)

Explorations in achievement motivation

Biodynamic response of subhuman primates to vibration

A unique relationship between Economos' theory on the largest land mammal and our dynamic theory of growth, maturation and age - human gravitational tolerance

Neurophysiological responses in suspended animal models

Local fluid shifts in humas and rats - Comparison of simulation models with actual weightlessness

Controlled water immersion as a model of weightlessness

Internal models, tracking strategies, and dual-task performance

Models of procedural control for human performance simulation

The use of the logistic model in space motion sickness prediction

A likelihood analysis of experiments to test altitude decompensation protocols for Shuttle operations

Vestibular response to pseudorandom angular velocity input - Progress report

BIOMAGNETISM

Magnetic effect on cardiopulmonary function in man

BIOMETRICS

Continuous monitoring of blood volume changes in humans

Body impedance measurement during Spacelab Mission D1

Fluid shifts in weightlessness

Space Shuttle inflight and postflight fluid shifts measured by leg volume changes

Biophysical separation of cells from the rat anterior pituitary gland

Biophysical effect of microwave radiation

A physico-chemical study of some areas of fundamental significance to biophysics

Biosatellite investigations of primates onboard biosatellites Cosmos-1514 and Cosmos-1567

BIOENGINEERING

Mechanics of cell damage in agitated microcarrier tissue culture reactors

Blackout prevention: Development of methods for prevention of acceleration induced blackout and unconsciousness in World War II fighter pilots - Limitations: present and future

BLOOD CIRCULATION

Central circulation during exposure to 7-day microgravity (head-down tilt, immersion, space flight)

BLOOD FLOW

Effect of brain blood flow on hypoxic ventilatory responses in humans

Changes of arterial and venous blood flow during orthostasis and the effect of atropine

BLOOD PRESSURE

Mechanisms of the increase in plasma volume during head-out water immersion (WI) in dogs

BLOOD VOLUME

Continuous monitoring of blood volume changes in humans

Mechanism of the increase in plasma volume during head-out water immersion (WI) in dogs

BLUE GREEN ALGAE

The usefulness of microalgal structures as an element of closed ecological systems like Aquarack and CELSS

ECHOCARDIOGRAPHY

Echocardiographic measurements of left ventricular function

Echocardiographic measurements of left ventricular function during short-term spacenights

Mechanisms of cell damage in agitated microcarrier tissue culture reactors

Dehydration and rehydration of rats

BONE MINERALIZATION

Prevention of disuse osteoporosis: Effect of sodium fluoride during five weeks of bed rest

BONE MINERAL CONTENT

Effects of 7-day space flight on weight-bearing and non-weight-bearing bones in rats

BRAIN CIRCUIT

Effect of brain blood flow on hypoxic ventilatory response in humans

Fast dynamic studies with PC384-78; system improvements and development of an automated blood sampling system - tomography

Possible role of brain stem respiratory neurons in mediating voring during space motion sickness

BRAIN STEM

Ozone exposure alters trabecuohemial mucocillar function in humans

C

CALCIUM

A bacterial calcium-binding protein homologous to calmodulin

Physiological roles of calcium in light-induced gravitropism in Zea primary roots

A new aspect in pathogenesis of experiment-induced hypergravity

Calcium metabolism

Prevention of disuse osteoporosis: Effect of sodium fluoride during five weeks of bed rest

CALCITRONING

A new and simple calibration of the electro-oculographic signals for vestibulo-cerebellar measurements

CARDIAC VENTRICES

Ecocardiographic measurements of left ventricular mass by a non-geometric method

CARDIOLOGY

Spacelab Life Sciences 1 and 2 scientific research objectives

Magnetic effect on cardiopulmonary function in man

Differential influence in effects of long-term hyper-gravity upon the cardiac system of the hamster

Cyclical changes of arterial and venous blood flow during orthostasis and the effect of atropine

Continuous monitoring of blood volume changes in humans

Mechanism of the increase in plasma volume during head-out water immersion (WI) in dogs

FLUID

Continuous monitoring of fluid shifts in humans and rats - Comparison of simulation models with actual weightlessness

Fluid control mechanisms in weightlessness

Fluid shifts in weightlessness

Space Shuttle inflight and postflight fluid shifts measured by leg volume changes

Simulation of spaceflight with whole-body head-down tilt - Influence on intracranial pressure and radiocortical processes

BODY SIZE (BIOLOGY)

Chronic acceleration and organ size in domestic fowl

BODY TEMPERATURE

Cardiovascular responses during 70 deg head-up tilt - The effect of elevated body temperature and high alcohol blood levels

Cards of cardiac systems of deobeseated hamsters in hypergravity conditions

Cardiovascular responses to central hypovolaemia in man - Pharmacology and physiopathology

Catalyst processes for space station waste conversion

CATHODE RAY TUBES

The advantages of a primed flight display

CELLS

Mechanisms of cell damage in agitated microcarrier tissue culture reactors

Hollow fibers - Their applications to the study of mammalian cell function

HEMATOLOGY
HEAT ACUMULATION
HEART
HEART DISPLAYS to active woman p16 A88-12448 in visual for [IZF-l986-27] p23 NEE10478
The effect of elevated body temperature and high alcohol environments magnitude in comparison with horizontal body position models [DE87-0128821 p 24 N88-10480 weightlessness p 11 N88-10473 shortduration weightlessness p10 A88-13001 largest land mammal and mechanism of spatial orientation p 27 A88-12982 Hypoxia-induced alterations of norepinephrine vascular using Comparative aspects

HEMATOLOGY
HEAT ACUMULATION
HEART
HEART DISPLAYS to active woman p16 A88-12448 in visual for [IZF-l986-27] p23 NEE10478
The effect of elevated body temperature and high alcohol environments magnitude in comparison with horizontal body position models [DE887-0128821 p 24 N88-10480 weightlessness p 11 N88-10473 shortduration weightlessness p10 A88-13001 largest land mammal and mechanism of spatial orientation p 27 A88-12982 Hypoxia-induced alterations of norepinephrine vascular using Comparative aspects

HEMATOLOGY
HEAT ACUMULATION
HEART
HEART DISPLAYS to active woman p16 A88-12448 in visual for [IZF-l986-27] p23 NEE10478
The effect of elevated body temperature and high alcohol environments magnitude in comparison with horizontal body position models [DE87-0128821 p 24 N88-10480 weightlessness p 11 N88-10473 shortduration weightlessness p10 A88-13001 largest land mammal and mechanism of spatial orientation p 27 A88-12982 Hypoxia-induced alterations of norepinephrine vascular using Comparative aspects

HEMATOLOGY
HEAT ACUMULATION
HEART
HEART DISPLAYS to active woman p16 A88-12448 in visual for [IZF-l986-27] p23 NEE10478
The effect of elevated body temperature and high alcohol environments magnitude in comparison with horizontal body position models [DE87-0128821 p 24 N88-10480 weightlessness p 11 N88-10473 shortduration weightlessness p10 A88-13001 largest land mammal and mechanism of spatial orientation p 27 A88-12982 Hypoxia-induced alterations of norepinephrine vascular using Comparative aspects

HEMATOLOGY
HEAT ACUMULATION
HEART
HEART DISPLAYS to active woman p16 A88-12448 in visual for [IZF-l986-27] p23 NEE10478
The effect of elevated body temperature and high alcohol environments magnitude in comparison with horizontal body position models [DE87-0128821 p 24 N88-10480 weightlessness p 11 N88-10473 shortduration weightlessness p10 A88-13001 largest land mammal and mechanism of spatial orientation p 27 A88-12982 Hypoxia-induced alterations of norepinephrine vascular using Comparative aspects

HEMATOLOGY
HEAT ACUMULATION
HEART
HEART DISPLAYS to active woman p16 A88-12448 in visual for [IZF-l986-27] p23 NEE10478
The effect of elevated body temperature and high alcohol environments magnitude in comparison with horizontal body position models [DE87-0128821 p 24 N88-10480 weightlessness p 11 N88-10473 shortduration weightlessness p10 A88-13001 largest land mammal and mechanism of spatial orientation p 27 A88-12982 Hypoxia-induced alterations of norepinephrine vascular using Comparative aspects

HEMATOLOGY
HEAT ACUMULATION
HEART
HEART DISPLAYS to active woman p16 A88-12448 in visual for [IZF-l986-27] p23 NEE10478
The effect of elevated body temperature and high alcohol environments magnitude in comparison with horizontal body position models [DE87-0128821 p 24 N88-10480 weightlessness p 11 N88-10473 shortduration weightlessness p10 A88-13001 largest land mammal and mechanism of spatial orientation p 27 A88-12982 Hypoxia-induced alterations of norepinephrine vascular using Comparative aspects

HEMATOLOGY
HEAT ACUMULATION
HEART
HEART DISPLAYS to active woman p16 A88-12448 in visual for [IZF-l986-27] p23 NEE10478
The effect of elevated body temperature and high alcohol environments magnitude in comparison with horizontal body position models [DE87-0128821 p 24 N88-10480 weightlessness p 11 N88-10473 shortduration weightlessness p10 A88-13001 largest land mammal and mechanism of spatial orientation p 27 A88-12982 Hypoxia-induced alterations of norepinephrine vascular using Comparative aspects

HEMATOLOGY
HEAT ACUMULATION
HEART
HEART DISPLAYS to active woman p16 A88-12448 in visual for [IZF-l986-27] p23 NEE10478
The effect of elevated body temperature and high alcohol environments magnitude in comparison with horizontal body position models [DE87-0128821 p 24 N88-10480 weightlessness p 11 N88-10473 shortduration weightlessness p10 A88-13001 largest land mammal and mechanism of spatial orientation p 27 A88-12982 Hypoxia-induced alterations of norepinephrine vascular using Comparative aspects

HEMATOLOGY
HEAT ACUMULATION
HEART
HEART DISPLAYS to active woman p16 A88-12448 in visual for [IZF-l986-27] p23 NEE10478
The effect of elevated body temperature and high alcohol environments magnitude in comparison with horizontal body position models [DE87-0128821 p 24 N88-10480 weightlessness p 11 N88-10473 shortduration weightlessness p10 A88-13001 largest land mammal and mechanism of spatial orientation p 27 A88-12982 Hypoxia-induced alterations of norepinephrine vascular using Comparative aspects

HEMATOLOGY
HEAT ACUMULATION
HEART
HEART DISPLAYS to active woman p16 A88-12448 in visual for [IZF-l986-27] p23 NEE10478
The effect of elevated body temperature and high alcohol environments magnitude in comparison with horizontal body position models [DE87-0128821 p 24 N88-10480 weightlessness p 11 N88-10473 shortduration weightlessness p10 A88-13001 largest land mammal and mechanism of spatial orientation p 27 A88-12982 Hypoxia-induced alterations of norepinephrine vascular using Comparative aspects
IMPEDE MEASUREMENT

IMPEDE MEASUREMENT
Body impedance measurement during SpaceLab Mission D1
p 15 A88-12439

IMPLANTATION
Hollow fibers - Their applications to the study of mammalian cell function
p 3 A88-10623

INTERFERENCE MONITORING
The impact of new technology on pilot workload
[SAGE PAPER 861773] p 25 A88-10161
Space Shuttle inflight and postflight fluid shifts measured by leg volume changes
p 19 A88-12967

INFLATING
Cardiovascular response to alkali-trough dropper inflation during standing arm exercise
p 14 A88-12234

INFORMATION MANAGEMENT
Presentation of information on multifunction displays - Abnormal and emergency spacecraft operations
[SAGE PAPER 861756] p 29 A88-10157

IMPRINTED IMAGERY
Psychophysical considerations in measuring MRD with staring arrays -- minimum resolvable temperature difference (MRD)
[RSRE-MEMO4031] p 28 N88-10470

INHIBITION (PSYCHOLOGY)
Experimental and theoretical bases of the hyperpolarization theory of internal inhibition
p 2 A88-10724

INTERACTIVE CONTROL
Multimodal user input to supervisory control systems - Voice-augmented keyboard
p 31 A88-13009

INTERFERON
Interferon effects on protozoan infections
p 3 A88-10959

INTERNATIONAL COOPERATION
Physiologic adaptation of man in space; Proceedings of the Seventh International Man in Space Symposium, Houston, TX, Feb. 10-12, 1986
p 17 A88-12921

INVENTORIES
The Aquarack as a potential instrument for basic research work in space biology: Inventory and scientific dispositions
p 11 N88-10470

IRON
Correlation between some indices of microelement metabolism, vitamin-C sufficiency, and immune protection of an organism
p 13 A88-12108

L

LAPROSY TEC TO M Y
Rotation speed of laparotomized fish during short-duration weightlessness
p 10 A88-13001

LARGE SPACE STRUCTURES
A synopsis of the EVA training conducted on NASA/LC/ACCESS for STS-61-B
p 28 N88-10879

LEG (ANATOMY)
Space Shuttle inflight and postflight fluid shifts measured by leg volume changes
p 19 A88-12967

LIFESPAN
The effect of weightlessness on the flight behavior of pigeons with canal lesions
p 10 A88-12909

LIFE SCIENCES
Spermatogenesis: Life Sciences 1 and 2 scientific research objectives
p 4 A88-12428

LIFE SUPPORT SYSTEMS
The usefulness of microbial structures as an element of closed ecological systems like Aquarack and CELSS --- Controlled Ecological Life Support System (CELSS)
p 12 N88-10476

LIFE support systems for biological experiments under weightlessness in the German and European space programs
p 12 N88-10477

LONG DURATION SPACE FLIGHT
The role of psychologists in future spacecraft
p 26 A88-10956

LOWER BODY NEGATIVE PRESSURE
Effects of LBNP stocking on cardiovascular responses during rest and exercise in LBNP and upright position in woman
p 16 A88-12450

Effects of lean body mass and aerobic power on LBNP tolerance in woman
p 16 A88-12451

The effects of exercise training on factors affecting orthostatic tolerance
p 17 A88-12473

Central and coronary circulation of the normal man during orthostatic and lower body negative pressure tests
p 18 A88-12390

LUMINESCENCE
A physico-chemical study of some areas of fundamental significance to biophysics
[DE87-013457] p 12 N88-11365

M

MAGNETIC EFFECTS
Magnetic effect on cardiodipulmonary function in man
p 15 A88-12440

MAINTENANCE
Model based health monitoring for reusable launch vehicles
[AIAA PAPER 97-297] p 30 A88-12547

MALFUNCTIONS
Presentation of information on multifunction displays - Abnormal and emergency spacecraft operations
[SAGE PAPER 861756] p 29 A88-10157

A research on pilot performance in the case of aircraft malfunction
[ETN-87-90652] p 28 N88-11369

MAMMALS
Hollow fibers - Their applications to the study of mammalian cell function
p 3 A88-10823

MAN ENVIRONMENT INTERACTIONS
Assessment of the functional reserve of an organism
p 13 A88-12107

MAN MACHINE SYSTEMS
[SAGE PAPER 861773] p 25 A88-10161

The advantages of a primary flight display
[SAGE PAPER 861720] p 29 A88-10158

An integrated display for vertical situation awareness in commercial transport aircraft
[SAGE PAPER 861770] p 29 A88-10157

MOTION SICKNESS
Vestibular response to pseudorandom angular velocity rotation
p 22 A88-12992

Effects of a visual-vestibular stimulus on the vestibulo-ocular reflex
p 22 A88-12999

The influence of gravitational force level on ocular oscillatory and perceptual responses to Coriolis, cross-coupling stimulation
p 22 A88-12993

The use of gravitational force level on ocular oscillatory and perceptual responses to sudden stop stimulation
p 22 A88-12994

MOTION SICKNESS
Prediction of the incidence of motion sickness from the magnitude, frequency, and duration of vertical oscillation
p 13 A88-11722

Characteristics of vestibular reactions to canal and otolithic stimulation at an early stage of exposure to microgravity
p 6 A88-12453

Clinical characterization and etiology of space motion sickness
p 18 A88-12953

The use of the logistic model in space motion sickness prediction
p 18 A88-12953

Gastrointestinal motility in space motion sickness
p 18 A88-12954

Adaptation and habitation of motion-induced vomiting in squirrel monkeys
p 9 A88-12955

A comparison of two methods of training resistance to visually-induced motion sickness
p 18 A88-12957

Reliability of provocative tests of motion sickness susceptibility
p 18 A88-12959

Possible role of brain stem respiratory neurons in mediating vomiting during space motion sickness
p 20 A88-12974

Measures of auditory evoked potentials during motion sickness
p 19 A88-12975

Vasopressin and motion sickness in cats
p 9 A88-12952

The vestibulo-ocular reflex and its possible role in visual motion sickness
p 22 A88-12983

Effects of a visual-vestibular stimulus on the vestibulo-ocular reflex
p 22 A88-12989

Vestibular response to pseudorandom angular velocity input - Progress report
p 22 A88-2990

Role of otolith endorgans in the generation of a vestibulo-visual conflict sickness (pitch) in the squirrel monkey (First report)

Head movements in low and high gravitational force environments elicit motion sickness - Implications for space sickness
p 22 A88-12992

MOTION SICKNESS DRUGS
Mechanisms of antimotion sickness drugs
p 23 A88-13002

MOTION SICKNESS
Effects of motion sickness on the cardiovascular and respiratory systems
p 19 A88-12957

The effect of head-down tilt on the EEG response to mental arithmetic (MA)
p 14 A88-12430

Models of procedural control for human performance evaluation
p 26 A88-12842

METABOLISM
Energy homeostasis and adaptation capabilities of man in extreme environments
p 13 A88-12108

Correlation between some indices of microelement metabolism, vitamin-C sufficiency, and immune protection of an organism
p 13 A88-12108

Adaptive metabolism in hypokinesia
p 16 A88-12403

Long term investigations of the growth of the brain, and reproduction of fish under conditions close to weightlessness
p 11 N88-10473

The influence of weightlessness on the morphology of the Biphorantia glabrate
p 12 N88-10475

MICROGRAVITY APPLICATIONS
An evaluation of the effects of low gravitational force levels on complex psychophysical and perceptual responses to sudden stop stimulation
p 22 A88-12994

SUBJECT INDEX
PICTURE TUBES

PILOT PERFORMANCE
Development of three-dimensional audio signals for cockpit applications
[SPEE PAPER 86150]
p 29 A88-10160

The impact of new technology on pilot workload
[SPEE PAPER 86173]
p 29 A88-10161

The advantages of a primary flight display
[SPEE PAPER 86170]
p 29 A88-10162

Evaluating the subjective workload of directional orientation tasks with varying display formats
[SPEE PAPER 86140]
p 29 A88-10165

Assessment of pilot workload - Converging measures from performance based, subjective and psychophysiological techniques
[SPEE PAPER 86141]
p 29 A88-10166

An investigation of the relationship between basic attributes test scores and learning to fly a VOTL simulator
[SPEE PAPER 86106]
p 29 A88-10166

Flight simulator visual systems - An overview
[SPEE PAPER 86107]
p 29 A88-10166

Color formatting issues in pictorial displays
[SPEE PAPER 86109]
p 29 A88-10174

PILOT SELECTION
An investigation of the relationship between basic attributes test scores and learning to fly a VOTL simulator
[SPEE PAPER 86106]
p 29 A88-10168

PILOT TRAINING
An investigation of the relationship between basic attributes test scores and learning to fly a VOTL simulator
[SPEE PAPER 86106]
p 29 A88-10168

PILOT SELECTION and training
[SPEE PAPER 86106]
p 29 A88-10168

Psychophysiological principles of setting work norms in flight training
[SPEE PAPER 86106]
p 29 A88-10165

A research on pilot performance in a flight incident situation
[ETSTN 869565]
p 29 A88-11370

PITCH (INCLINATION)
Role of otolith endorgans in the genesis of vestibular-visual conflict sickness (pitch) in the squirrel monkey (First Report)
[SPEE PAPER 86106]
p 29 A88-11302

Determination of the individual state of acclimatization
[ETSTN 8696-27]
p 29 N88-10478

PITUITARY GLAND
Separation of cells from the rat anterior pituitary gland
[SPEE PAPER 86106]
p 29 A88-10165

Separation of cells from the rat anterior pituitary gland
[SPEE PAPER 86106]
p 29 A88-10165

PITUITARY HORMONES
Separation of cells from the rat anterior pituitary gland
[SPEE PAPER 86106]
p 29 A88-10165

PLANT ROOTS
Physiological roles of calcium in light-induced graviropism in Zea primary roots
[SPEE PAPER 86106]
p 29 A88-10165

PLASTIC PROPERTIES
Functional plasticity of the nervous system of vertebrates
[SPEE PAPER 86106]
p 29 A88-10165

POLYATOMIC MOLECULES
Physiological principles of setting work norms in flight training
[SPEE PAPER 86106]
p 29 A88-11370

An analysis of asymmetries in cat vertical eye movements generated by sinusoidal pitch stimulation
[SPEE PAPER 86106]
p 29 A88-10987

PORTABLE EQUIPMENT
Cardiovascular responses to military antisclock trousers inflation during standing arm exercise
[SPEE PAPER 86106]
p 29 A88-10165

PRESSURE EFFECTS
Cardiovascular responses to military anti-shock trouser inflation during standing arm exercise
[SPEE PAPER 86106]
p 29 A88-10165

PRONE POSITION
Heart volume during short-term head-down tilt (-4 deg) in comparison with horizontal body position
[SPEE PAPER 86106]
p 29 A88-10165

PROPHYLACTIC CLOTHING
Effects of LEPP stockings on cardiovascular responses during rest and exercise in LSBN and upright position in women
[SPEE PAPER 86106]
p 29 A88-10165

PROTEIN METABOLISM
Effects of hypokinesia and hypoxemia upon protein turnover in hindlimbs muscles of the rat
[SPEE PAPER 86106]
p 29 A88-10165

PSYCHOLOGICAL FACTORS
Explorations in achievement motivation
[SPEE PAPER 86106]
p 29 A88-10165

A comparison of two methods of training resistance to visually-induced motion sickness
[SPEE PAPER 86106]
p 29 A88-10165

PSYCHOPHYSICS
Effect of pixel height, display height, and vertical resolution on the detection of a simple vertical line signal in normal and motion sickness affected subjects
[SPEE PAPER 86106]
p 29 A88-10165

Psychophysical considerations in measuring MRTD with staring arrays — minimal resolvable temperature difference (MRTD)
[SPEE PAPER 86106]
p 29 A88-10165

PULMONARY CIRCULATION
Hypoxia-induced alterations of norepinephrine vascular reactivity in isolated perfused cat lung
[SPEE PAPER 86106]
p 29 A88-10165

Hypoxia-induced alteration of the inhibition of the enzyme activity of converting enzyme in cats
[SPEE PAPER 86106]
p 29 A88-10165

PULMONARY FUNCTIONS
Chlorpromazine alters tracheobronchial mucociliary function in humans
[SPEE PAPER 86106]
p 29 A88-10165

Magnetic effect on cardiac function in man
[SPEE PAPER 86106]
p 29 A88-10165

The effect of body position on ventilation and perfusion in the lung
[SPEE PAPER 86106]
p 29 A88-10165

Probability of oxygen toxicity using an 8 psi space suit
[SPEE PAPER 86106]
p 29 A88-10165

RADIATION BELTS
Radiation effects in space
[SPEE PAPER 86106]
p 29 A88-10165

RADIATION EFFECTS
Effect of microwaves on the impulse activity of cerebellar Purkinje cells in cats
[SPEE PAPER 86106]
p 29 A88-10165

Biophysical effect of microwaves radiation
[SPEE PAPER 86106]
p 29 A88-10165

Radiation effects in space
[SPEE PAPER 86106]
p 29 A88-10165

RADIATION PROTECTION
Radiation effects in space
[SPEE PAPER 86106]
p 29 A88-10165

RADIATION TOLERANCE
The role of individual typological features of higher nervous activity in the formation and the radiation resistance of consolidated motor-defensive conditioned reflexes in rats
[SPEE PAPER 86106]
p 29 A88-10165

RADIOBIOLOGY
Biophysical effect of microwaves radiation
[SPEE PAPER 86106]
p 29 A88-10165

RANDOM PROCESSES
Vestibular response to pseudorandom angular velocity input - Progress report
[SPEE PAPER 86106]
p 29 A88-10165

REAL TIME OPERATION
Rapid toxicity detection in water quality control utilizing automated multiplexes biomoniting for permanent space stations
[SPEE PAPER 86106]
p 29 A88-10165

RECEIVER (PHYSIOLOGY)
Receptor mechanism and neuronal circuit subserving gravitational responses in crayfish
[SPEE PAPER 86106]
p 29 A88-10165

REDUCED GRAVITY
Implications of otocional changes in microgravity
[SPEE PAPER 86106]
p 29 A88-10165

Adaptive changes in perception of body orientation and mental image rotation in microgravity
[SPEE PAPER 86106]
p 29 A88-10165

Aqualung: Aims and Possible Research Projects
[SPEE PAPER 86106]
p 29 A88-10165

Investigations of the relationship between the reproductive biology of Xiphophorus in an Aqualung
[SPEE PAPER 86106]
p 29 A88-10165

Xiphophorus as an experimental system for genetic and biological development studies under microgravity conditions
[SPEE PAPER 86106]
p 29 A88-10165
SACCADIC EYE MOVEMENTS

Eye movements produced by utricular and saccular stimulations

p 9 A88-12988

SAMPLING

Fast dynamic studies with PCB-47; system improvements and development of an automated blood sampling system — terminology

[USP-67-7H2] p 24 N88-10481

SCANNERS

Fast dynamic studies with PCB-47; system improvements and development of an automated blood sampling system — terminology

[USP-67-7H2] p 24 N88-10481

SENSOR/MOTOR PERFORMANCE

Assessment of pilot workload — Converging measures from performance based, subjective and psychophysiological techniques

[SPEAKER 861641] p 25 A88-10166

Transfer of perceptual-motor training and the space adaptation syndrome

p 24 A88-12956

The nature of sensorimotor adaptation to altered G-Levels — Evidence from mass discrimination

p 21 A88-12979

Resolving perceptual conflicts - The cognitive mapping of spatial orientation

p 27 A88-12982

SENSORY DISCRIMINATION

The nature of sensorimotor adaptation to altered G-Levels — Evidence from mass discrimination

p 21 A88-12979

SENSORY PERCEPTION

Transfer of perceptual-motor training and the space adaptation syndrome

p 24 A88-12956

SEX FACTORS

Cardiovascular responses of aged men to orthostasis during heat exposure

p 16 A88-12449

Gender and cognitive style differences at the human-computer interface

[NPL/DIC-70/87] p 32 N88-10493

SHAMES

Isotopic compositions and probable origins of organic molecules in the Eocene Melness shale

p 3 A88-10867

SHELLFISH

Receptor mechanism and neuronal circuit subserving gastrointestinal responses in crayfish

p 9 A88-12470

SHOCK LOADS

Cardiovascular responses to midflight trouser inflation during standing arm exercise

p 14 A88-12324

SIGNAL TO NOISE RATIO

p 17 A88-12951

SKILL AND SYMPTOMS

Clinical characterization and etiology of space motion sickness

p 17 A88-12952

Gastrointestinal motility in space motion sickness

p 18 A88-12954

The effect of extended O2 prebreathing on altitude descompensation sickness and venous gas bubbles

p 20 A88-12971

SKIN (ANATOMY)

Local human skin potential: Spatial distribution, magnitude and origin

[DEDS-012862] p 24 N88-10460

SLEEP

The dynamics of local blood flow in different areas of the hypothalamus during the sleep-wakefulness cycle

p 1 A88-10224

Sleep and wakefulness: Handbook for flight medical officers, second edition

[AGAR-AG-791] p 24 N88-11306

SLEEP DEPRIVATION

Sleep and wakefulness: Handbook for flight medical officers, second edition

[AGAR-AG-791] p 24 N88-11306

SNAILS

The influence of weightlessness on the metabolism of the Biomphalaria glabrata

p 12 N88-10475

SOCIAL FACTORS

The role of psychologist in future spaceflight

p 26 A88-12971

SODIUM FLUORIDES

Prevention of diuse osteoporosis: Effect of sodium fluoride during five weeks of bed rest

SOUND LOCALIZATION

Development of three-dimensional audio signals — for cockpit applications

[SPEAKER 861641] p 25 A88-10153

SPACE ADAPTATION SYNDROME

Study of the initial period of adaptation to microgravity in the rat experiment on-board Cosmos-1667

p 5 A88-12442

Spaceflight: Reduction of spermatogenesis and testosterone in rats tested flown on Space Lab-3

p 3 A88-10493

SpaceLab Life Sciences 1 and 2 scientific research objectives

p 4 A88-10493

The ESA Anthrocop project — Integrated research in human physiology

p 14 A88-12429

Development of methods for prevention of cardiovascular induced blackout and unconsciousness in World War II fighter pilots - Limitations: present and future

p 30 A88-12434

Space Biology: Aims and Possible Research Projects

[DFU/IMT-87-01] p 11 N88-10489

The Aquarack as a potential instrument for basic research work in space biology: Inventory and scientific objectives

p 11 N88-10470

Respiration

Cardiopulmonary response of rats to centrifugal accelerations

p 6 A88-12468

Respiratory Physiology

Uncoupled oxidation in rat heart mitochondria

p 2 A88-10298

Ozone exposure alters tracheobronchial mucociliary function in humans

p 13 A88-12320

Hyposia induced inhibition of converting enzyme activity — Role in vascular regulation

p 4 A88-12322

Effect of brain blood flow on hypoxic ventilatory response in humans

p 13 A88-12323

The effect of body position on ventilation and perfusion in the lung

p 15 A88-12445

Possible role of brain stem respiratory neurons in mediating vomiting during space motion sickness

p 20 A88-12974

REST

Effects of LRPB stocking on cardiovascular responses during rest and exercise in LRPB and upright position in humans

p 16 A88-12450

REUSABLE LAUNCH VEHICLES

Model based health monitoring for reusable launch vehicles

[AIAPA PAPER 87-2787] p 30 A88-12547

RHYTHM (BIOLOGY)

Effects of gravity on rhythmic activities in the phrenic and sympathetic nerve discharges

p 7 A88-12480

ROBOTICS

Human factors in robotic system design discussed

p 22 N88-10898

ROBOTS

Teleoperation and control study — orbital servicing

[BAE-TP-6906] p 31 N88-10489

ROTATING ENVIRONMENTS

Optokinetic and vestibulo-ocular reflex responses to an unpredictable stimulus

p 22 A88-12965

Gain and phase of vertical eye movements generated by sinusoidal pitch rotations with and without head tilt

p 9 A88-12966

The influence of gravitoinertial forces level on ocuomotor and perceptual responses to sudden stop stimulation

p 10 A88-12994

Rotation test in the weightless phase of parabolic flight

p 10 A88-13000
PERSONAL AUTHOR INDEX

AEROSPACE MEDICINE AND BIOLOGY / A Continuing Bibliography (Supplement 307) February 1988

Typical Personal Author Index Listing

PERSONAL AUTHOR

TITLE

REPORT NUMBER PAGE NUMBER NASA ACCESSION NUMBER

SCHNEIDER, VICTOR S.

BABAev, B. M.

Characteristics of vestibular reactions to canal and otolith stimulation at an early stage of exposure to microgravity p 6 A88-12453

BAKH, A. M.

Central and coronary circulation of the normal man during orthostatic and lower body negative pressure tests p 19 A86-12960

BAER, ROMAN

Cardiovascular effects of head-up tilt as affected by a vasopressin analogue p 16 A88-12447

BAISCH, F.

Body impedance measurement during Spacelab Mission D1 p 15 A88-12439

BAKULIN, A. V.

Effects of 7-day space flight on weight-bearing and non-weight-bearing bones in rats (Cosmos 1667) p 5 A88-12438

BALDIN, ULF

Cardiovascular effects of head-up tilt as affected by a vasopressin analogue p 16 A88-12447

BARRETT, R. E.

Flight simulator visual systems - An overview [SWE PAPER 8810706] p 29 A88-10169

BECK, L.

Body impedance measurement during Spacelab Mission D1 p 15 A88-12439

BEDNENKO, V. S.

Ultrasound techniques in space medicine p 31 A88-12963

BELOOZEROVA, E. O.

Characteristics of vestibular reactions to canal and otolith stimulation at an early stage of exposure to microgravity p 6 A88-12453

BENNERT, T.

Cardiovascular responses to central hypervolaemia in man - Physiology and pathophysiology p 17 A88-12472

BENYON, David

System adaptivity and the modelling of stereotypes [NFL-DITCO 11871] p 32 N86-10494

BEHRBAUR, K. H.

Transfer of perceptual-motor training and the space adaptation syndrome p 18 A88-12956

BERTHOLO, ALAIN

Adaptive changes in perception of body orientation and mental image rotation in microgravity p 27 A88-12981

BLACK, F. OWEN

Optokinetic and vestibulo-ocular reflex responses to an unpredictable stimulus p 22 A88-12986

BLACK, B.

Reduction of spermatogenesis and testis failure in rats tested on Space Lab-3 p 3 A88-10493

BLOMQVIST, C. GUNNAR

Echocardiographic measurements of left ventricular mass by a non-geometric method p 31 A88-12962

BUEN, VOLKER

The Aquascan as a potential instrument for basic research work in space biology: Inventory and scientific depositions p 11 N86-10470

BOWLE, R.

Fast dynamic studies with PCI84-7B: System improvements and development of an automated blood sampling system [USB-97-05] p 24 N88-10481

BONDAR', A. T.

Investigation of cortical electrical activity and of the time of response to sound and light stimuli p 12 A88-10222

BORTNOVSKII, V. N.

Effect of acupuncture on the general stability of the organism and on the work capacity of seamen p 13 A88-12110

BORTOLUSSI, MICHAEL R.

Evaluating the subjective workload of directional orientation tasks with varying display formats [SWE PAPER 8611401] p 25 A88-10165

BOUCKEY, GEORGE P., JR.

Comparison of programmable keypad keyboard and dedicated keyboard for control of the flight management computer [SWE PAPER 8611772] p 29 A88-10160

BRANNAH, J.

Transfer of perceptual-motor training and the space adaptation syndrome p 18 A88-12956

BRAUNE, ROLF

Assessment of pilot workload - Converging measures from performance based, subjective and psychophysiological techniques [SWE PAPER 8611441] p 25 A88-10166

Buckey, JAY

Echocardiographic measurements of left ventricular mass by a non-geometric method p 31 A88-12962

CALKINS, D. S.

Reliability of provocative tests of motion sickness susceptibility p 18 A88-12959

CALLOT, JENNY J.

Isotopic compositions and probable origins of organic molecules in the Eocene Messel shale p 3 A88-10867

CHAI, E. U.

Effects of arterial and venous blood flow during orthostasis and the effect of etopine p 5 A88-12444

CHAMOROVSIAK, S. K.

Temperature dependence of the rapid negative phase in the bacteriorhodopsin cycle p 29 A88-10297

CHAPPARD, D.

Effects of 7-day space flight on weight-bearing and non-weight-bearing bones in rats (Cosmos 1667) p 5 A88-12438

CHEREPAKOV, D. A.

Use of the isog tool for the description of the allosteric kinetics of polymeric enzymes p 1 A88-10296

CHERMAVSKII, D. S.

Temperature dependence of the rapid negative phase in the bacteriorhodopsin cycle p 29 A88-10297

CHERMAVSKIIA, O. V.

Direct effect of hyponia on the functions of skeletal muscle vessels in cats p 5 A88-10225

CHERMYRHEVA, T. A.

Human factors in robotic system design discussed p 32 N88-10988

CHERRY, ROBERT S.

Mechanisms of cell damage in agitated microcarrier tissue culture reactors p 2 A88-10819

CHESTKIN, V. V.

Central circulation during exposure to 7-day microgravity (head-down tilt, immersion, space flight) p 14 A88-12436

Central and coronary circulation of the normal man during orthostatic and lower body negative pressure tests p 18 A88-12960

CHU, M.

Hollow fibers - Their applications to the study of mammalian cell function p 3 A88-10623

CLEMENT, GILLES

Adaptive changes in perception of body orientation and mental image rotation in microgravity p 27 A88-12961

CONKIN, JOHNNY

The effect of extended O2 prebreathing on altitude decompression sickness and venous gas bubbles p 20 A88-12971

B-1
HONG, SUK KI
Mechanism of the increase in plasma volume during head-down water immersion (WI) in dogs
p 6 A88-12457
HORRIGAN, DAVID J.
The effect of extended C2 prebreathing on altitude decompression sickness and venous gas bubbles
p 20 A88-12971
HOUCK, ROGER
An integrated display for vertical situational awareness in commercial transport aircraft
[SAE PAPER 861770] p 29 A88-10158
HOYANDER, S.
Fast dynamic studies with PC8847B; system improvements and development of an automated blood sampling system
[USP-87-25] p 24 N88-10481
HUDSON, DONNA L.
The effects of exercise training on factors affecting orthostatic tolerance
p 17 A88-12473
HUKUHARA, TAKEHIKO
Effects of gravity on rhythmic activities in the pharyngeal and sympathetic nerve discharges
p 7 A88-12460
HUTCHINSON, J. E.
The advantages of a primary flight display
[SAE PAPER 861730] p 29 A88-10162
HYMER, W. C.
Separation of cells from the rat anterior pituitary gland
p 3 A88-10862
Hollow fibers - Their applications to the study of mammalian cell function
p 4 A88-12431
Local fluid shifts in humans and rats - Comparison of simulation models with actual weightlessness
p 7 A88-12462
HARKNESS, J.
Hollow fibers - Applications to the study of mammalian cell function
p 3 A88-10863
HURST, SANDRA G.
Gravitational haemodynamics and oedema prevention
p 6 A88-12453
Local fluid shifts in humans and rats - Comparison of simulation models with actual weightlessness
p 7 A88-12462
KAKURIN, L. I.
Central circulation during exposure to 7-day microgravity
Head-down tilt, immersion, space flight
p 18 A88-12436
Central and coronary circulation of the normal man during orthostatic and lower body negative pressure
p 18 A88-12490
KAPLAN, A. S.
Study of the initial period of adaptation to microgravity in the rat experiment on-board Cosmos-1967
p 7 A88-12459
KATKOV, V. E.
Cardiovascular effects (head-down tilt, immersion, space flight)
Local fluid shifts in humans and rats - Comparison of simulation models with actual weightlessness
p 7 A88-12462
KAWASHIMA, T.
Changes of cardiac systems of decerebellated hamsters in hypergravity conditions
p 8 A88-12467
KEIL, L. C.
Vasopressin and motion sickness in cats
p 13 A88-12291
KELLY, BRIAN D.
Transfer of perceptual-motor training and the space adaptation syndrome
p 18 A88-12466
KESSELBERG, M.
Cardiopulmonary responses of rats to centrifugal accelerations
Local fluid shifts in humans and rats - Comparison of simulation models with actual weightlessness
p 7 A88-12462
KIMURA, NOOFUMI
Effects of gravity on rhythmic activities in the pharyngeal and sympathetic nerve discharges
p 7 A88-12460
KIMURA, NOOFUMI
Vestibulo-ocular reflex during magnified vision Adaptation to reduce visual-vestibular conflict
p 21 A88-12984
JIN, HONGKUI
Hypoxia-induced inhibition of converting enzyme activity Role in vascular regulation
p 4 A88-12322
JOHANSEN, KJELL
Gravitational haemodynamics and oedema prevention
p 3 A88-10898
JOHNSON, P. C., JR.
Comparative aspects of hematological responses in animal and human models in simulations of weightlessness and space flight
p 7 A88-12481
JOHNSON, W. H.
Pharmacological interventions for motion sickness - Cardiovascular effects
p 23 A88-13004
JONES, J. B.
Comparative aspects of hematological responses in animal and human models in simulations of weightlessness and space flight
p 7 A88-12481
JOYNER, MICHAEL J.
Local fluid shifts in humans and rats - Comparison of simulation models with actual weightlessness
p 7 A88-12462
KIRCH, K.(1986)K.
KING-, FRED
KRASNEY, JOHN
KRAMER, ARTHUR F.
KONKOVA, A. F.
KOHL RANDALL L
KREUZBERG, KARLHEINZ
KOBAYASHI, KAZUTOYO
KINGDOM, FRED
KULECZ, WALTER 8.
KRVLOV, 0.
KUROVA, N. S.
KUROVA, N. S.
KUYLO, O. A.
LACKNER, JAMES R.
LANGE, R. D.
LANGERNECK, E. G.
LAPEY, PETER F.
LEATHERMAN, NELSON E.
LEBLET, W. J. M.
LEEDER, C. S.
LEESON, CHARLES S.
LESTIENNE, FRANCIS
LEWIS, JAMES L.
LIN, KARL K.
LINNARS, A.
LINDNER, J.
LINDEN, H.
LINDNER, H.
LIGTART, ANTHONY
LIGTART, E. 0.
LEATHERMAN, NELSON E.
LEVELT, W. J. M.
LESSARD, CHARLES S.
LESSARD, CHARLES S.
LEADLAY, PETER F.
KOVACS, A.
KOBAYASHI, KAZUTOYO
KULIKOV, 0.
NYROVA, A. N.
Characteristics of vestibular reactions to canal and otolith stimulation at an early stage of exposure to microgravity
P 6 A88-12453

OBZNOZNY, A. A.
Investigating the reliability of pilot performance during long-term flights in the automatic control mode
P 26 A88-12109

POLENKO, S. A.
Direct effect of hypoxia on the functions of skeletal muscle vessels in cats
P 1 A88-10225

PONOMARENKO, V. A.
Investigating the reliability of pilot performance during long-term flights in the automatic control mode
P 26 A88-12109

POOL, SAM L.
Clinical characterization and etiology of space motion sickness
P 17 A88-12952

Gastrointestinal motility in space motion sickness
P 18 A88-12954

Fluid shifts in weightlessness
P 19 A88-12966

POPOV, I. A.
Hormonal regulation in space flights of varying duration
P 5 A88-12437

Effect of cortical and hormonal status of crewmembers in short-term spaceflights
P 20 A88-12973

PORTER, FRANKLIN L.
Vestibulo-ocular reflex during magnified vision
Adaptation to reduce visual-vestibular conflict
P 21 A88-12984

POST, DAVID L.
U.S. Air Force color display issues
[SAE PAPER 861695]
P 30 A88-10173

PROBST, WOLFGANG
Functional plasticity of the nervous system of vertebrates
P 11 N88-10474

PROKOFYEV, V. N.
Human factors in robotic system design discussed
P 32 N88-10988

RAHMAHH, HINRICH
Functional plasticity of the nervous system of vertebrates
P 11 N88-10474

RAMPI, RANDAL D.
Measures of auditory evoked potentials during optokinetic stimulation
P 22 A88-12975

RASBOMHIN, S. G.
A two-channel tracking system
P 30 A88-11393

RAVEN, PETER B.
The effects of exercise training on factors affecting orthostatic tolerance
P 17 A88-12473

REDETZKI, H. M.
Mechanisms of animation sickness drugs
P 23 A88-13002

REISING, JOHN M.
Color formatting issues in pictorial displays
[SAE PAPER 861696]
P 30 A88-10174

RENNILSON, JUSTIN
National and international measurement techniques for color determination
[SAE PAPER 861693]
P 29 A88-10171

RESCHE, M. P.
Effects of proposed prefight adaptation training on eye movements, self-motion perception, and motion sickness
A progress report
P 27 A88-12958

Reliability of provocative tests of motion sickness susceptibility
P 18 A88-12959

RESCHE, MILLARD F.
The use of the logistic model in space motion sickness prediction
P 21 A88-12990

REYNOLDS, ORR E.
International Union of Physiological Sciences, Commission on Gravitational Physiology, Annual Meeting, 8th, Tokyo, Japan, Nov. 4-8, 1986, Proceedings
P 4 A88-12426

ROBINSON, F. R.
Gain and phase of cat visual eye movements generated by sinusoidal pitch rotations with and without head tilt
P 9 A88-12966

An analysis of asymmetries in cat vertical eye movements generated by sinusoidal pitch
P 9 A88-12967

Cat vestibular neurons that exhibit different responses to active and passive yaw head rotations
P 10 A88-12998

ROSSCOE, A. H.
The impact of new technology on pilot workload
[SAE PAPER 861773]
P 25 A88-10161

ROSS, HELEN E.
The nature of sensonsensor adaptation to altered G-levels - Evidence from mass discrimination
P 21 A88-12979

ROSS, MURIEL D.
Implications of otocional changes in microgravity
P 6 A88-12454

RUBIN, A. B.
Temperature dependence of the rapid negative phase in the bacteriorhodopsin cycle
P 2 A88-10297
WORTH, J. M.
Masking effects of fine and coarse grain pictorial noise
[IZF-98-28] p 27 N88-10485

VANDERPOEGE, JAMES
Clinical characterization and etiology of space motion sickness
[IZF-98-28] p 17 A88-12952

VANMEETEREN, A.
Masking effects of fine and coarse grain pictorial noise
[IZF-98-28] p 27 N88-10485

VANN, RICHARD D.
Effects of microgravity on tissue perfusion and the efficacy of astronaut denitrogenation for EVA
A likelihood analysis of experiments to test altitude decompression protocols for Shuttle operations p 20 A88-12970

VESTERHAUGE, SØREN
A new and simple calibration of the electro-ocular signals for vestibulo-ocular measurements p 23 A88-12995

VIARD, D.
A research on pilot performance in a flight incident situation
[ETN-97-90653] p 28 N88-11370

VIARD, DIDIER
A research on pilot performance in the case of aircraft malfunction

VICO, L.
Effects of 7-day space flight on weight-bearing and non-weight-bearing bones in rats (Cosmos 1687) p 5 A88-12438

VON GIERKE, H. E.
Effects of proposed preflight adaptation training on eye movements, self-motion perception, and motion sickness
A progress report p 27 A88-12958

VON GIERKE, HELMUT
Effects of a visual-vestibular stimulus on the vestibulo-ocular reflex p 22 A88-12989

WALIGORA, JAMES M.
The effect of extended O2 prebreathing on altitude decompression sickness and venous gas bubbles p 20 A88-12971

WALL, C. III
Gain and phase of cat vertical eye movements generated by sinusoidal pitch rotations with and without head tilt sickness
An analysis of asymmetries in cat vertical eye movements generated by sinusoidal pitch p 9 A88-12967

WATANABE, SATORU
Directional difference in effects of long-term hyper-gravity upon the cardiac system of the hamsters p 7 A88-12465

WATT, DOUGLAS G. D.
The vestibulo-ocular reflex and its possible roles in space motion sickness p 21 A88-12983

WEI, JINHE
The effect of head-down tilt on the EEG response to mental arithmetic (MA) p 14 A88-12430

WELCH, R. B.
Transfer of perceptual-motor training and the space adaptation syndrome p 18 A88-12956

WETZKO, JOACHIM
Rotation speed of labyrinthectomized fish during short-duration weightlessness p 10 A88-13001

WHITE, M. D.
Cardiovascular responses during 70 deg head-up tilt - The effect of elevated body temperature and high alcohol blood levels p 15 A88-12449

WIEDEMANN, JOHN
An integrated display for vertical situation awareness in commercial transport aircraft
[S A E P A P E R 861770] p 29 A88-10158

WILLIAMS, C.
Reduction of spermatogonia and testosterone in rat testes flown on Space Lab-3 p 3 A88-10943

WILLIAMS, M. C.
Transfer of perceptual-motor training and the space adaptation syndrome p 18 A88-12956

WILPIESKI, CHESTER R.
Adaptation and habitation of motion-induced vomiting in squirrel monkeys p 9 A88-12955

WIRTH, J.
Interferon effects on protozoan infections p 3 A88-10959

WONG, WING CHAN
Vestibular response to pseudorandom angular velocity input - Progress report p 22 A88-12990

WOOD, C. D.
Mechanisms of antimotion sickness drugs p 23 A88-13002

WOOD, EARL H.
Development of methods for prevention of acceleration induced blackout and unconsciousness in World War I fighter pilots - Limitations: present and future p 30 A88-12434

WOOD, M. J.
Mechanisms of antimotion sickness drugs p 23 A88-13002

WOODARD, DANIEL
Effects of a visual-vestibular stimulus on the vestibulo-ocular reflex p 22 A88-12989

YAGI, NAGASUMI
A unique relationship between Economos' theory on the largest land mammal and our dynamic theory of growth, maturation and ageing p 5 A88-12441

YAMAMOTO, H.
Effect of brain blood flow on hypoxic ventilatory response in humans p 13 A88-12323

YAM, GONGDONG
The effect of head-down tilt on the EEG response to mental arithmetic (MA) p 14 A88-12430

YANG, RENHUI
Hyposis-induced inhibition of converting enzyme activity - Role in vascular regulation p 4 A88-12322

YOKOZAWA, KIKUKO
Ten-degree head-down and -up tilting on the water intake and cardiovascular responses during mild exercise in women p 16 A88-12446
Effects of LBPP stocking on cardiovascular responses during rest and exercise in LBPP and upright position in women p 16 A88-12450
Effects of Lean body mass and aerobic power on LBPP tolerance in women p 16 A88-12451

YOSHINO, MASAMI
Receptor mechanism and neuronal circuit subserving gravitational responses in crayfish p 3 A88-12470

YOUNG, R. C.
Rapid toxicity detection in water quality control utilizing automated multispecies biomonitoring for permanent space stations p 12 N88-10848

YOUSEF, M. K.
Cardiovascular responses of aged men to orthostatism during heat exposure p 16 A88-12449

ZENYUH, JOHN P.
Color formatting issues in pictorial displays
[S A E P A P E R 861696] p 30 A88-10174
Hormonal responses of metoclopramide-treated subjects experiencing nausea or emesis during parabolic flight

Oak Ridge National Lab., Tenn.

A methodology for dynamic task allocation in a man-machine system

Pennsylvania State Univ., University Park

Separation of cells from the rat anterior pituitary gland

Vasopressin and motion sickness in cats

Rice Univ., Houston, Tex.

Mechanisms of cell damage in agitated microcarrier tissue culture reactors

Ruthefford Univ., Bochum (West Germany)

The Aquarack as a potential instrument for basic research work in space biology: Inventory and scientific documentation

San Jose State Univ., Calif.

Perspective traffic display format and airline pilot traffic avoidance

Scientific-Atlanta, Inc., Atlanta, Ga.

Multimodal user input to supervisory control systems - Voice-augmented keyboard

Sterling Software, Morristown, N.J.

C-2
Typical Foreign Technology Index Listing

<table>
<thead>
<tr>
<th>COUNTRY OF INTELLECTUAL ORIGIN</th>
<th>TITLE</th>
<th>PAGE NUMBER</th>
<th>ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUSTRALIA</td>
<td>Eye movements produced by utricular and saccular stimulation</td>
<td>p9</td>
<td>A88-12988</td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphabetically by country of intellectual origin. The title of the document is used to provide a brief description of the subject matter. The page number and the accession number are included in each entry to assist the user in locating the citation in the abstract section.

FOREIGN TECHNOLOGY INDEX

AEROSPACE MEDICINE AND BIOLOGY / A Continuing Bibliography (Supplement 307)

February 1988

Example Entries:

- **AUSTRALIA**
 - Eye movements produced by utricular and saccular stimulation (p9 A88-12988)

- **CANADA**
 - Flight simulator visual systems - An overview (p29 A88-10169)

- **DENMARK**
 - A new and simple calculation of the electro-ocular signals for vestibulo-ocular measurements (p23 A88-12995)

- **FRANCE**
 - Effects of 7-day space flight on weight-bearing and non-weight-bearing bones in rats (Cosmos 1967) (p5 A88-12438)
 - Adaptive changes in perception of body orientation and mental image rotation in microgravity (p27 A88-12961)

- **GERMANY, FEDERAL REPUBLIC OF**
 - Body impedance measurement during Spacelab Mission D1 (p15 A88-12459)
 - Heart volume during short-term head-down tilt (6 deg) in comparison with horizontal body position (p19 A88-12961)

- **CHINA, PEOPLE'S REPUBLIC OF**
 - The effect of head-down tilt on the EEG response to mental arithmetic (MA) (p14 A88-12430)

- **DENMARK**
 - A new and simple calculation of the electro-ocular signals for vestibulo-ocular measurements (p23 A88-12995)

- **FRANCE**
 - Effects of 7-day space flight on weight-bearing and non-weight-bearing bones in rats (Cosmos 1967) (p5 A88-12438)
 - Adaptive changes in perception of body orientation and mental image rotation in microgravity (p27 A88-12961)

- **INTERNATIONAL ORGANIZATION**
 - The advantages of a primary flight display (p29 A88-10162)

- **JAPAN**
 - Effect of brain blood flow on hypoxic ventilatory response in humans (p13 A88-12323)
 - Magnetic effect on cardio-pulmonary response in man (p15 A88-12440)
 - A unique relationship between Economos' theory on the largest land mammal and our dynamic theory of growth, maturation and ageing (p5 A88-12441)
 - The effect of body position on ventilation and perfusion in the lung (p15 A88-12445)
 - Effects of graded head-up tilting on muscle sympathetic activities in man (p15 A88-12446)
 - Ten-degree head-down and up tilting on the water intake and cardiovascular responses during mild exercise in woman (p16 A88-12448)

- **KOREA (SOUTH)**
 - Changes of arterial and venous blood flow during orthostasis and the effect of atropine (p5 A88-12444)

- **NETHERLANDS**
 - The effect of weightlessness on the flight behavior of pigeons with canal lesions (p10 A88-12999)

- **SWEDEN**
 - The ESA Antorack project - Integrated research in human physiology (p14 A88-12429)
 - Physiological limitations of human tolerance to Gz acceleration (p14 A88-12433)
 - Cardiac effects of head-up tilt as affected by a vasopressin analogue (p16 A88-12477)
 - Fast dynamic studies with PCS84-7B; system improvements and development of an automated blood sampling system (p24 N88-10481)

- **U.S.S.R.**
 - Energy homeostasis and adaptation capabilities of man in extreme conditions (p12 A88-10220)

- **FOREIGN TECHNOLOGY INDEX**

D-1
Investigation of cortical electrical activity and of the time of response to sound and light stimuli p 12 A88-10222

Effect of microwaves on the impulse activity of cerebellar Purkinje cells in cats p 1 A88-10223

The dynamics of local blood flow in different areas of the hypothalamus during the sleep-wakefulness cycle p 1 A88-10224

Direct effect of hypoxia on the functions of skeletal muscle vessels in cats p 1 A88-10225

Use of the ising model for the description of the allosteric kinetics of polymeric enzymes p 1 A88-10296

Temperature dependence of the rapid negative phase in the bacteriorhodopsin cycle p 2 A88-10297

Uncoupled oxidation in rat heart mitochondria p 2 A88-10298

The neurophysiological aspect in investigations of the system organization of cortical activity p 2 A88-10722

Electroencephalotoposcopy and the functional status of the cerebral cortex p 2 A88-10723

Experimental and theoretical bases of the hyperpolarization theory of internal inhibition p 2 A88-10724

Significance of the concept of the spatial synchronization of cerebral electrical processes for psychophysiological investigations p 2 A88-10725

Psychophysiological principles of setting work norms in flight training p 26 A88-11325

A two-channel tracking system p 30 A88-11393

Assessment of the functional reserves of an organism p 13 A88-12107

Correlation between some indices of microelement metabolism, vitamin-C sufficiency, and immune protection of an organism p 13 A88-12108

Investigating the reliability of pilot performance during long-term flights in the automatic control mode p 26 A88-12109

Effect of acupuncture on the general stability of the organism and on the work capacity of seamen p 13 A88-12110

Mechanisms of acute and chronic effects of microgravity p 14 A88-12427

Physiological investigations of primates onboard biosatellites Cosmos-1514 and Cosmos-1667 p 5 A88-12435

Central circulation during exposure to 7-day microgravity (head-down tilt, immersion, space flight) p 14 A88-12436

Hormonal regulation in space flights of varying duration p 15 A88-12437

Study of the initial period of adaptation to microgravity in the rat experiment on-board Cosmos-1667 p 5 A88-12442

Characteristics of vestibular reactions to canal and otolith stimulation at an early stage of exposure to microgravity p 6 A88-12453

Controlled water immersion as a model of weightlessness p 17 A88-12464

Biophysical effect of microwave radiation p 28 A88-12647

Central and coronary circulation of the normal man during orthostatic and lower body negative pressure tests p 18 A88-12960

Ultrasound techniques in space medicine p 31 A88-12963

Metabolic and hormonal status of crewmembers in short-term spaceflights p 20 A88-12973

Human factors in robotic system design discussed p 32 N88-10988

UNITED KINGDOM

The impact of new technology on pilot workload [SAE PAPER 861773] p 25 A88-10161

A bacterial calcium-binding protein homologous to calmodulin p 3 A88-10889

Prediction of the incidence of motion sickness from the magnitude, frequency, and duration of vertical oscillation p 13 A88-11722

Cardiovascular responses to central hypovolaemia in man - Physiology and pathophysiology p 17 A88-12472

Effect of pixel height, display height, and vertical resolution on the detection of a simple vertical line signal in visual noise p 27 A88-12943

Effects of hypokinesia and hypodynamia upon protein turnover in hindlimb muscles of the rat p 9 A88-12976

The nature of sensorimotor adaptation to altered G-levels - Evidence from mass discrimination p 21 A88-12979

Psychophysical considerations in measuring MRTD with staring arrays [RSRE-MEMO-4031] p 28 N88-10487

Teleoperation and control study [BAE-TP-8269] p 31 N88-10489

Gender and cognitive style differences at the human-computer interface [NPL-DITC-90/87] p 32 N88-10493

Listings in this index are arranged alpha-numerically by contract number. Under each contract number, the accession numbers denoting documents that have been produced as a result of research done under the contract are arranged in ascending order with the AIA accession numbers appearing first. The accession number denotes the number by which the citation is identified in the abstract section. Preceding the accession number is the page number on which the citation may be found.

<table>
<thead>
<tr>
<th>CONTRACT NUMBER</th>
<th>PAGE NUMBER</th>
<th>NASA ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFOSR-0334</td>
<td>p 27</td>
<td>N88-10485</td>
</tr>
<tr>
<td>A83/KL-105</td>
<td>p 27</td>
<td>N88-10445</td>
</tr>
<tr>
<td>DE-AC03-78SF-00068</td>
<td>p 18</td>
<td>N88-10460</td>
</tr>
<tr>
<td>DE-AC03-78SF-01000</td>
<td>p 18</td>
<td>N88-10460</td>
</tr>
<tr>
<td>DE-FG06-89ER-05305</td>
<td>p 22</td>
<td>N88-10467</td>
</tr>
<tr>
<td>DRET-83-34-010-01</td>
<td>p 24</td>
<td>N88-10467</td>
</tr>
<tr>
<td>ESA-11189/94</td>
<td>p 27</td>
<td>N88-10469</td>
</tr>
<tr>
<td>ESTEC-6052/84-NL-PS(6)</td>
<td>p 28</td>
<td>N88-11370</td>
</tr>
<tr>
<td>F36515-85-C-14511</td>
<td>p 27</td>
<td>N88-10491</td>
</tr>
<tr>
<td>F36515-85-C-3625</td>
<td>p 22</td>
<td>N88-10491</td>
</tr>
<tr>
<td>MDA903-61-C-0517</td>
<td>p 26</td>
<td>N88-10491</td>
</tr>
<tr>
<td>NAG2-137</td>
<td>p 27</td>
<td>N88-10491</td>
</tr>
<tr>
<td>NAG2-155</td>
<td>p 25</td>
<td>N88-10491</td>
</tr>
<tr>
<td>NAG2-194</td>
<td>p 22</td>
<td>N88-10491</td>
</tr>
<tr>
<td>NAG2-297</td>
<td>p 25</td>
<td>N88-10491</td>
</tr>
<tr>
<td>NAG2-298</td>
<td>p 25</td>
<td>N88-10491</td>
</tr>
<tr>
<td>NAG2-325</td>
<td>p 26</td>
<td>N88-10491</td>
</tr>
<tr>
<td>NAG2-386</td>
<td>p 27</td>
<td>N88-10491</td>
</tr>
<tr>
<td>NASA TASK 199-21-12-07</td>
<td>p 3</td>
<td>N88-10491</td>
</tr>
<tr>
<td>NAS-11792</td>
<td>p 27</td>
<td>N88-10491</td>
</tr>
<tr>
<td>NAS-11792-12</td>
<td>p 27</td>
<td>N88-10491</td>
</tr>
<tr>
<td>NAS-11792-28</td>
<td>p 27</td>
<td>N88-10491</td>
</tr>
<tr>
<td>NAS-11792-35</td>
<td>p 27</td>
<td>N88-10491</td>
</tr>
<tr>
<td>NAS-11792-42</td>
<td>p 27</td>
<td>N88-10491</td>
</tr>
<tr>
<td>NAS-11792-53</td>
<td>p 27</td>
<td>N88-10491</td>
</tr>
<tr>
<td>NAS-11792-60</td>
<td>p 27</td>
<td>N88-10491</td>
</tr>
<tr>
<td>NAS-11792-67</td>
<td>p 27</td>
<td>N88-10491</td>
</tr>
<tr>
<td>NAS-11792-74</td>
<td>p 27</td>
<td>N88-10491</td>
</tr>
<tr>
<td>NAS-11792-81</td>
<td>p 27</td>
<td>N88-10491</td>
</tr>
<tr>
<td>NAS-11792-98</td>
<td>p 27</td>
<td>N88-10491</td>
</tr>
<tr>
<td>NAS-11792-105</td>
<td>p 27</td>
<td>N88-10491</td>
</tr>
<tr>
<td>NAS-11792-112</td>
<td>p 27</td>
<td>N88-10491</td>
</tr>
<tr>
<td>NAS-11792-120</td>
<td>p 27</td>
<td>N88-10491</td>
</tr>
<tr>
<td>NAS-CR-589-101</td>
<td>p 27</td>
<td>N88-10491</td>
</tr>
</tbody>
</table>
Typical Report Number Index Listing

<table>
<thead>
<tr>
<th>REPORT NUMBER</th>
<th>NASA ACCESSION NUMBER</th>
<th>ON MICROFICHE</th>
<th>PAGE NUMBER</th>
<th>NASA SPONSORED</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA-CR-172018</td>
<td>p 24</td>
<td>N88-10483</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGARD-AG-270(E)</td>
<td>p 24</td>
<td>N86-11366</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIAA PAPER 87-2797</td>
<td>p 30</td>
<td>A88-12547</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAE-TP-8268</td>
<td>p 31</td>
<td>N88-10489</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR102762</td>
<td>p 28</td>
<td>N88-10487</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR102763</td>
<td>p 28</td>
<td>N88-10486</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B870378</td>
<td>p 27</td>
<td>N88-10484</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONF-670701-3</td>
<td>p 23</td>
<td>N88-10479</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONF-671043-1</td>
<td>p 32</td>
<td>N88-10492</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE87-007373</td>
<td>p 32</td>
<td>N88-10492</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE87-012529</td>
<td>p 23</td>
<td>N88-10479</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE87-012082</td>
<td>p 24</td>
<td>N88-10480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE87-013457</td>
<td>p 12</td>
<td>N88-11365</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFVLR-PS-87-11</td>
<td>p 24</td>
<td>N88-10482</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFVLR-MIT-87-01</td>
<td>p 11</td>
<td>N88-10469</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE/ER-40503/205</td>
<td>p 12</td>
<td>N88-11365</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOT/FAA/PM-87/15</td>
<td>p 31</td>
<td>N88-10488</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESA-CRP-2413</td>
<td>p 31</td>
<td>N88-10489</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESA-CRP-2432</td>
<td>p 32</td>
<td>N88-11371</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETH-87-90445</td>
<td>p 11</td>
<td>N88-10469</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETH-87-90458</td>
<td>p 24</td>
<td>N88-10482</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETH-87-90549</td>
<td>p 31</td>
<td>N88-10489</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETH-87-90652</td>
<td>p 28</td>
<td>N88-11369</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETH-87-90653</td>
<td>p 26</td>
<td>N88-11370</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETH-87-90749</td>
<td>p 24</td>
<td>N88-10481</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETH-87-90854</td>
<td>p 27</td>
<td>N88-10484</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETH-87-90856</td>
<td>p 32</td>
<td>N88-10490</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETH-87-90857</td>
<td>p 32</td>
<td>N88-10490</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETH-87-90858</td>
<td>p 32</td>
<td>N88-10490</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETH-87-90866</td>
<td>p 32</td>
<td>N88-10490</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETH-87-90933</td>
<td>p 32</td>
<td>N88-10490</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETH-87-90960</td>
<td>p 28</td>
<td>N88-10486</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETH-87-90961</td>
<td>p 28</td>
<td>N88-10486</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISAL-1D1-87-01</td>
<td>p 24</td>
<td>N88-11368</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISSN-0171-1342</td>
<td>p 24</td>
<td>N88-10482</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISSN-0176-7739</td>
<td>p 11</td>
<td>N88-10489</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISSN-0178-2558</td>
<td>p 27</td>
<td>N88-10484</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IZF-1986-21</td>
<td>p 27</td>
<td>N88-10485</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IZF-1986-19</td>
<td>p 32</td>
<td>N88-10490</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Listings in this index are arranged alpha-numerically by report number. The page number indicates the page on which the citation is located. The accession number denotes the number by which the citation is identified. An asterisk (*) indicates that the item is a NASA report. A pound sign (#) indicates that the item is available on microfiche.
ACCESSION NUMBER INDEX

ACCESSION NUMBER INDEX

Aerospace Medicine and Biology / A Continuing Bibliography (Supplement 307)

February 1988

Typical Accession Number Index Listing

<table>
<thead>
<tr>
<th>Accession Number</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A88-10152</td>
<td>p 28</td>
</tr>
<tr>
<td>A88-10153</td>
<td>p 25</td>
</tr>
<tr>
<td>A88-10154 *</td>
<td>p 28</td>
</tr>
<tr>
<td>A88-10155 *</td>
<td>p 29</td>
</tr>
<tr>
<td>A88-10157</td>
<td>p 29</td>
</tr>
<tr>
<td>A88-10158</td>
<td>p 29</td>
</tr>
<tr>
<td>A88-10160 *</td>
<td>p 29</td>
</tr>
<tr>
<td>A88-10161</td>
<td>p 25</td>
</tr>
<tr>
<td>A88-10162</td>
<td>p 29</td>
</tr>
<tr>
<td>A88-10165 *</td>
<td>p 25</td>
</tr>
<tr>
<td>A88-10166 *</td>
<td>p 25</td>
</tr>
<tr>
<td>A88-10169 *</td>
<td>p 29</td>
</tr>
<tr>
<td>A88-10171</td>
<td>p 29</td>
</tr>
<tr>
<td>A88-10172</td>
<td>p 30</td>
</tr>
<tr>
<td>A88-10173</td>
<td>p 30</td>
</tr>
<tr>
<td>A88-10174</td>
<td>p 30</td>
</tr>
<tr>
<td>A88-10220</td>
<td>p 12</td>
</tr>
<tr>
<td>A88-10221</td>
<td>p 12</td>
</tr>
<tr>
<td>A88-10223</td>
<td>p 12</td>
</tr>
<tr>
<td>A88-10224</td>
<td>p 11</td>
</tr>
<tr>
<td>A88-10225</td>
<td>p 11</td>
</tr>
<tr>
<td>A88-10296</td>
<td>p 11</td>
</tr>
<tr>
<td>A88-10297</td>
<td>p 2</td>
</tr>
<tr>
<td>A88-10298</td>
<td>p 2</td>
</tr>
<tr>
<td>A88-10722</td>
<td>p 2</td>
</tr>
<tr>
<td>A88-10723</td>
<td>p 2</td>
</tr>
<tr>
<td>A88-10724</td>
<td>p 2</td>
</tr>
<tr>
<td>A88-10725</td>
<td>p 2</td>
</tr>
<tr>
<td>A88-10819 *</td>
<td>p 2</td>
</tr>
<tr>
<td>A88-10822 *</td>
<td>p 3</td>
</tr>
<tr>
<td>A88-10823 *</td>
<td>p 3</td>
</tr>
<tr>
<td>A88-10828 *</td>
<td>p 3</td>
</tr>
<tr>
<td>A88-10887 *</td>
<td>p 3</td>
</tr>
<tr>
<td>A88-10888 *</td>
<td>p 3</td>
</tr>
<tr>
<td>A88-10889</td>
<td>p 3</td>
</tr>
<tr>
<td>A88-10943 *</td>
<td>p 3</td>
</tr>
<tr>
<td>A88-10951 *</td>
<td>p 25</td>
</tr>
<tr>
<td>A88-10952 *</td>
<td>p 25</td>
</tr>
<tr>
<td>A88-10958 *</td>
<td>p 26</td>
</tr>
<tr>
<td>A88-10960 *</td>
<td>p 26</td>
</tr>
<tr>
<td>A88-10961 *</td>
<td>p 26</td>
</tr>
<tr>
<td>A88-10962</td>
<td>p 3</td>
</tr>
<tr>
<td>A88-10972</td>
<td>p 4</td>
</tr>
<tr>
<td>A88-11325</td>
<td>p 26</td>
</tr>
<tr>
<td>A88-11393</td>
<td>p 30</td>
</tr>
<tr>
<td>A88-11722</td>
<td>p 13</td>
</tr>
<tr>
<td>A88-12107</td>
<td>p 13</td>
</tr>
<tr>
<td>A88-12108</td>
<td>p 13</td>
</tr>
<tr>
<td>A88-12109</td>
<td>p 26</td>
</tr>
<tr>
<td>A88-12110</td>
<td>p 13</td>
</tr>
<tr>
<td>A88-12319</td>
<td>p 4</td>
</tr>
<tr>
<td>A88-12320</td>
<td>p 4</td>
</tr>
<tr>
<td>A88-12321 *</td>
<td>p 13</td>
</tr>
<tr>
<td>A88-12322</td>
<td>p 4</td>
</tr>
<tr>
<td>A88-12426</td>
<td>p 13</td>
</tr>
<tr>
<td>A88-12543</td>
<td>p 27</td>
</tr>
<tr>
<td>A88-12547</td>
<td>p 8</td>
</tr>
<tr>
<td>A88-12549</td>
<td>p 18</td>
</tr>
<tr>
<td>A88-12550</td>
<td>p 9</td>
</tr>
<tr>
<td>A88-12556</td>
<td>p 18</td>
</tr>
<tr>
<td>A88-12557</td>
<td>p 18</td>
</tr>
<tr>
<td>A88-12558 *</td>
<td>p 27</td>
</tr>
<tr>
<td>A88-12559</td>
<td>p 18</td>
</tr>
<tr>
<td>A88-12600</td>
<td>p 18</td>
</tr>
<tr>
<td>A88-12601</td>
<td>p 19</td>
</tr>
<tr>
<td>A88-12602 *</td>
<td>p 31</td>
</tr>
<tr>
<td>A88-12603</td>
<td>p 31</td>
</tr>
<tr>
<td>A88-12604 *</td>
<td>p 19</td>
</tr>
<tr>
<td>A88-12605</td>
<td>p 19</td>
</tr>
<tr>
<td>A88-12606</td>
<td>p 19</td>
</tr>
<tr>
<td>A88-12607</td>
<td>p 19</td>
</tr>
<tr>
<td>A88-12608 *</td>
<td>p 27</td>
</tr>
<tr>
<td>A88-12609</td>
<td>p 29</td>
</tr>
<tr>
<td>A88-12610</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12611</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12612</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12613</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12614</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12615</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12616</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12617</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12618</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12619</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12620</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12621</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12622</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12623</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12624</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12625</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12626</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12627</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12628</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12629</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12630</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12631</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12632</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12633</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12634</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12635</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12636</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12637</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12638</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12639</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12640</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12641</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12642</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12643</td>
<td>p 20</td>
</tr>
<tr>
<td>A88-12644</td>
<td>p 20</td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphabetically by accession number. The page number listed to the right indicates the page on which the citation is located. An asterisk (*) indicates that the item is a NASA report. A pound sign (#) indicates that the item is available on microfiche.
AVAILABILITY OF CITED PUBLICATIONS

IAA ENTRIES (A88-10000 Series)

Publications announced in IAA are available from the AIAA Technical Information Service as follows: Paper copies of accessions are available at $10.00 per document (up to 50 pages), additional pages $0.25 each. Microfiche\(^{(1)}\) of documents announced in IAA are available at the rate of $4.00 per microfiche on demand. Standing order microfiche are available at the rate of $1.45 per microfiche for IAA source documents and $1.75 per microfiche for AIAA meeting papers.

Minimum air-mail postage to foreign countries is $2.50. All foreign orders are shipped on payment of pro-forma invoices.

All inquiries and requests should be addressed to: Technical Information Service, American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, NY 10019. Please refer to the accession number when requesting publications.

STAR ENTRIES (N88-10000 Series)

One or more sources from which a document announced in STAR is available to the public is ordinarily given on the last line of the citation. The most commonly indicated sources and their acronyms or abbreviations are listed below. If the publication is available from a source other than those listed, the publisher and his address will be displayed on the availability line or in combination with the corporate source line.

Avail: NTIS. Sold by the National Technical Information Service. Prices for hard copy (HC) and microfiche (MF) are indicated by a price code preceded by the letters HC or MF in the STAR citation. Current values for the price codes are given in the tables on NTIS PRICE SCHEDULES.

Documents on microfiche are designated by a pound sign (#) following the accession number. The pound sign is used without regard to the source or quality of the microfiche.

Initially distributed microfiche under the NTIS SRIM (Selected Research in Microfiche) is available at greatly reduced unit prices. For this service and for information concerning subscription to NASA printed reports, consult the NTIS Subscription Section, Springfield, Va. 22161.

NOTE ON ORDERING DOCUMENTS: When ordering NASA publications (those followed by the * symbol), use the N accession number. NASA patent applications (only the specifications are offered) should be ordered by the US-Patent-Appl-SN number. Non-NASA publications (no asterisk) should be ordered by the AD, PB, or other report number shown on the last line of the citation, not by the N accession number. It is also advisable to cite the title and other bibliographic identification.

Avail: SOD (or GPO). Sold by the Superintendent of Documents, U.S. Government Printing Office, in hard copy. The current price and order number are given following the availability line. (NTIS will fill microfiche requests, as indicated above, for those documents identified by a # symbol.)

(1) A microfiche is a transparent sheet of film, 105 by 148 mm in size containing as many as 80 to 98 pages of information reduced to micro images (not to exceed 26.1 reduction).
Avail: BLL (formerly NLL): British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England. Photocopies available from this organization at the price shown. (If none is given, inquiry should be addressed to the BLL.)

Avail: DOE Depository Libraries. Organizations in U.S. cities and abroad that maintain collections of Department of Energy reports, usually in microfiche form, are listed in Energy Research Abstracts. Services available from the DOE and its depositories are described in a booklet, DOE Technical Information Center - Its Functions and Services (TID-4660), which may be obtained without charge from the DOE Technical Information Center.

Avail: ESDU. Pricing information on specific data, computer programs, and details on ESDU topic categories can be obtained from ESDU International Ltd. Requesters in North America should use the Virginia address while all other requesters should use the London address, both of which are on the page titled ADDRESSES OF ORGANIZATIONS.

Avail: Fachinformationszentrum, Karlsruhe. Sold by the Fachinformationszentrum Energie, Physik, Mathematik GMBH, Eggenstein Leopoldshafen, Federal Republic of Germany, at the price shown in deutschmarks (DM).

Avail: HMSO. Publications of Her Majesty's Stationery Office are sold in the U.S. by Pendragon House, Inc. (PHI), Redwood City, California. The U.S. price (including a service and mailing charge) is given, or a conversion table may be obtained from PHI.

Avail: NASA Public Document Rooms. Documents so indicated may be examined at or purchased from the National Aeronautics and Space Administration, Public Documents Room (Room 126), 600 Independence Ave., S.W., Washington, D.C. 20546, or public document rooms located at each of the NASA research centers, the NASA Space Technology Laboratories, and the NASA Pasadena Office at the Jet Propulsion Laboratory.

Avail: Univ. Microfilms. Documents so indicated are dissertations selected from Dissertation Abstracts and are sold by University Microfilms as xerographic copy (HC) and microfilm. All requests should cite the author and the Order Number as they appear in the citation.

Avail: US Patent and Trademark Office. Sold by Commissioner of Patents and Trademarks, U.S. Patent and Trademark Office, at the standard price of $1.50 each, postage free. (See discussion of NASA patents and patent applications below.)

Avail: (US Sales Only). These foreign documents are available to users within the United States from the National Technical Information Service (NTIS). They are available to users outside the United States through the International Nuclear Information Service (INIS) representative in their country, or by applying directly to the issuing organization.

Avail: USGS. Originals of many reports from the U.S. Geological Survey, which may contain color illustrations, or otherwise may not have the quality of illustrations preserved in the microfiche or facsimile reproduction, may be examined by the public at the libraries of the USGS field offices whose addresses are listed in this Introduction. The libraries may be queried concerning the availability of specific documents and the possible utilization of local copying services, such as color reproduction.

Avail: Issuing Activity, or Corporate Author, or no indication of availability. Inquiries as to the availability of these documents should be addressed to the organization shown in the citation as the corporate author of the document.
PUBLIC COLLECTIONS OF NASA DOCUMENTS

DOMESTIC: NASA and NASA-sponsored documents and a large number of aerospace publications are available to the public for reference purposes at the library maintained by the American Institute of Aeronautics and Astronautics, Technical Information Service, 555 West 57th Street, 12th Floor, New York, New York 10019.

EUROPEAN: An extensive collection of NASA and NASA-sponsored publications is maintained by the British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England for public access. The British Library Lending Division also has available many of the non-NASA publications cited in STAR. European requesters may purchase facsimile copy or microfiche of NASA and NASA-sponsored documents, those identified by both the symbols # and * from ESA – Information Retrieval Service European Space Agency, 8-10 rue Mario-Nikis, 75738 CEDEX 15, France.

FEDERAL DEPOSITORY LIBRARY PROGRAM

In order to provide the general public with greater access to U.S. Government publications, Congress established the Federal Depository Library Program under the Government Printing Office (GPO), with 50 regional depositories responsible for permanent retention of material, inter-library loan, and reference services. At least one copy of nearly every NASA and NASA-sponsored publication, either in printed or microfiche format, is received and retained by the 50 regional depositories. A list of the regional GPO libraries, arranged alphabetically by state, appears on the inside back cover. These libraries are not sales outlets. A local library can contact a Regional Depository to help locate specific reports, or direct contact may be made by an individual.

STANDING ORDER SUBSCRIPTIONS

NASA SP-7011 and its supplements are available from the National Technical Information Service (NTIS) on standing order subscription as PB 88-912300 at the price of $9.00 domestic and $18.00 foreign, and at $16.50 domestic and $33.00 foreign for the annual index. Standing order subscriptions do not terminate at the end of a year, as do regular subscriptions, but continue indefinitely unless specifically terminated by the subscriber. Questions on the availability of the predecessor publications, Aerospace Medicine and Biology (Volumes I-XI), should be directed to NTIS.
ADDRESSES OF ORGANIZATIONS

American Institute of Aeronautics and Astronautics
Technical Information Service
555 West 57th Street, 12th Floor
New York, New York 10019

British Library Lending Division,
Boston Spa, Wetherby, Yorkshire,
England

Commissioner of Patents and Trademarks
U.S. Patent and Trademark Office
Washington, D.C. 20231

Department of Energy
Technical Information Center
P.O. Box 62
Oak Ridge, Tennessee 37830

ESA-Information Retrieval Service
ESRIN
Via Galileo Galilei
00044 Frascati (Rome) Italy

ESDU International, Ltd.
1495 Chain Bridge Road
McLean, Virginia 22101

ESDU International, Ltd.
251-259 Regent Street
London, W1R 7AD, England

Fachinformationszentrum Energie, Physik,
Mathematik GMBH
7514 Eggenstein Leopoldshafen
Federal Republic of Germany

Her Majesty's Stationery Office
P.O. Box 569, S.E. 1
London, England

NASA Scientific and Technical Information Facility
P.O. Box 8757
B.W.I. Airport, Maryland 21240

National Aeronautics and Space Administration
Scientific and Technical Information Division (NTT-1)
Washington, D.C. 20546

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161

Pendragon House, Inc.
899 Broadway Avenue
Redwood City, California 94063

Superintendent of Documents
U.S. Government Printing Office
Washington, D.C. 20402

University Microfilms
A Xerox Company
300 North Zeeb Road
Ann Arbor, Michigan 48106

University Microfilms, Ltd.
Tylers Green
London, England

U.S. Geological Survey Library
National Center - MS 950
12201 Sunrise Valley Drive
Reston, Virginia 22092

U.S. Geological Survey Library
2255 North Gemini Drive
Flagstaff, Arizona 86001

U.S. Geological Survey
345 Middlefield Road
Menlo Park, California 94025

U.S. Geological Survey Library
Box 25046
Denver Federal Center, MS914
Denver, Colorado 80225
NTIS PRICE SCHEDULES
(Effective January 1, 1988)

Schedule A
STANDARD PRICE DOCUMENTS
AND MICROFICHE

<table>
<thead>
<tr>
<th>PRICE CODE</th>
<th>PAGE RANGE</th>
<th>NORTH AMERICAN PRICE</th>
<th>FOREIGN PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>Microfiche</td>
<td>$ 6.95</td>
<td>$13.90</td>
</tr>
<tr>
<td>A02</td>
<td>001-010</td>
<td>9.95</td>
<td>19.90</td>
</tr>
<tr>
<td>A03</td>
<td>011-050</td>
<td>12.95</td>
<td>25.90</td>
</tr>
<tr>
<td>A04-A05</td>
<td>051-100</td>
<td>14.95</td>
<td>29.90</td>
</tr>
<tr>
<td>A06-A09</td>
<td>101-200</td>
<td>19.95</td>
<td>39.90</td>
</tr>
<tr>
<td>A10-A13</td>
<td>201-300</td>
<td>25.95</td>
<td>51.90</td>
</tr>
<tr>
<td>A14-A17</td>
<td>301-400</td>
<td>32.95</td>
<td>65.90</td>
</tr>
<tr>
<td>A18-A21</td>
<td>401-500</td>
<td>38.95</td>
<td>77.90</td>
</tr>
<tr>
<td>A22-A25</td>
<td>501-600</td>
<td>44.95</td>
<td>89.90</td>
</tr>
<tr>
<td>A99</td>
<td>601-up</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>NO1</td>
<td></td>
<td>49.50</td>
<td>89.90</td>
</tr>
<tr>
<td>NO2</td>
<td></td>
<td>48.00</td>
<td>80.00</td>
</tr>
</tbody>
</table>

Schedule E
EXCEPTION PRICE DOCUMENTS
AND MICROFICHE

<table>
<thead>
<tr>
<th>PRICE CODE</th>
<th>NORTH AMERICAN PRICE</th>
<th>FOREIGN PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>E01</td>
<td>$ 8.50</td>
<td>17.00</td>
</tr>
<tr>
<td>E02</td>
<td>11.00</td>
<td>22.00</td>
</tr>
<tr>
<td>E03</td>
<td>12.00</td>
<td>24.00</td>
</tr>
<tr>
<td>E04</td>
<td>14.50</td>
<td>29.00</td>
</tr>
<tr>
<td>E05</td>
<td>16.50</td>
<td>33.00</td>
</tr>
<tr>
<td>E06</td>
<td>19.00</td>
<td>38.00</td>
</tr>
<tr>
<td>E07</td>
<td>21.50</td>
<td>43.00</td>
</tr>
<tr>
<td>E08</td>
<td>24.00</td>
<td>48.00</td>
</tr>
<tr>
<td>E09</td>
<td>26.50</td>
<td>53.00</td>
</tr>
<tr>
<td>E10</td>
<td>29.00</td>
<td>58.00</td>
</tr>
<tr>
<td>E11</td>
<td>31.50</td>
<td>63.00</td>
</tr>
<tr>
<td>E12</td>
<td>34.00</td>
<td>68.00</td>
</tr>
<tr>
<td>E13</td>
<td>36.50</td>
<td>73.00</td>
</tr>
<tr>
<td>E14</td>
<td>39.50</td>
<td>79.00</td>
</tr>
<tr>
<td>E15</td>
<td>43.00</td>
<td>86.00</td>
</tr>
<tr>
<td>E16</td>
<td>47.00</td>
<td>94.00</td>
</tr>
<tr>
<td>E17</td>
<td>51.00</td>
<td>102.00</td>
</tr>
<tr>
<td>E18</td>
<td>55.00</td>
<td>110.00</td>
</tr>
<tr>
<td>E19</td>
<td>61.00</td>
<td>122.00</td>
</tr>
<tr>
<td>E20</td>
<td>71.00</td>
<td>142.00</td>
</tr>
<tr>
<td>E99</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

*Contact NTIS for price quote.

IMPORTANT NOTICE
NTIS Shipping and Handling Charges
U.S., Canada, Mexico — ADD $3.00 per TOTAL ORDER
All Other Countries — ADD $4.00 per TOTAL ORDER

Exceptions — Does NOT apply to:
ORDERS REQUESTING NTIS RUSH HANDLING
ORDERS FOR SUBSCRIPTION OR STANDING ORDER PRODUCTS ONLY

NOTE: Each additional delivery address on an order requires a separate shipping and handling charge.
Abstract

This bibliography lists 203 reports, articles and other documents introduced into the NASA scientific and technical information system in January, 1988.