
N88-16384

Exploring Hypotheses in Attitude Control Fault Diagnosis

Benjamin Bell

GE Astro-Space Division

U7049 P.O. Box 8555 Philadelphia PA 19101

Abstract

Recent activity in spacecraft design has been geared toward providing an assortment

of new capabilities in space, in an attempt to satisfy the demanding mission requirements

posed by such programs as the Strategic Defense Initiative (SDI) and Space Station. These

requirements will include on-board fault detection and fault correction, and current work at

GE Astro-Space is addressing this area through the use of knowledge-based systems. This

paper describes a system which analyzes telemetry and evaluates hypotheses to explain

any anomalies which are observed. Results achieved from a sample set of failure cases are

presented, followed by a brief discussion of the benefits derived from this approach.

1. Introduction

The attitude control subsystem (ACS) orients and stabilizes the satellite after launch

vehicle seperation, maintains pointing during on-orbit and payload operations, and controls

the satellite attitude during orbit-adjust operations. Spacecraft attitude is of critical im-

portance, since a slight error in vehicle alignment not only degrades mission performance,

but also may cause changes in momentum rates that may propagate until the spacecraft is

spinning out of control. Current architectures provide some level of autonomy in the ACS

via closed-loop control, which can generally compensate for_attitude errors attributable

to normal vehicle dynamics. More serious errors are handled from the ground, during a

process which includes a rapid effort to put the satellite into a safe state (thirty minutes

to several hours), followed by an analysis phase which may take several weeks. During this

time, mission performance may be interrupted, a situation which is not compatible with

Government objectives.

To better maintain mission performance and to avoid propagation of attitude errors,

anomalous conditions must be detected and isolated as rapidly as possible. This goal

becomes harder to achieve as satellites become more complex; but if the satellite itself

were capable of performing fault-isolation, then the risk of serious failure would be greatly

reduced, along with the need for highly skilled ground personnel.

The ACS Diagnostic System demonstrates the potential of knowledge-based sys-

tems to offer this capability. As a preliminary step toward achieving satellite autonomy,

this diagnostic program performs ground-based detection and isolation of faults within

a satellite ACS. Detection of an anomaly triggers the generation of hypotheses. By ex-

tracting information from the telemetry useful to its diagnosis, this system independently

"pursues each possible explanation. The likelihood of each explanation depends on features

identified in the telemetry; additionally, explanations are ruled out when contradictory

evidence appears in the telemetry.

123

2. Current Diagnostic Procedures

Present techniques for diagnosing ACS faults rely on attitude error limits for detection.

If the satellite attitude error limits are exceeded, the primary objective is to put the satellite

into a safe state, which may involve unloading the momentum in the wheels, performing

Auto Sun Acquisition, or disabling thrusters. Diagnosis proceeds only after the satellite

is in a safe configuration. The principal technique employed in locating the source of the

anomaly is to switch to a redundant component and then recheck the anomalous telemetry.

In the case of a Reaction Wheel anomaly, the suspect wheel is turned off and the telemetry

is monitored with the satellite operating on three wheels.

Effective application of these procedures requires some degree of expertise. For exam-

pie, the choice of which component to switch with its redundant partner relies in part on an

examination of certain informative telemetry behaviors. The diagnostic system, therefore,

requires expertise, so that it may apply knowledge of the ACS and of telemetry analysis

to explain a currently observed anomalous condition.

3. Expert Knowledge

To trouble-shoot anomalies, ACS analysts generally rely on their knowledge in the areas

of telemetry interpretation, failure mode behavior, and diagnostic strategies. Telemetry

interpretation knowledge is applied when the analyst extracts useful information from the

large volume of telemetry data. Examples of such information are transients and trends.

Failure mode knowledge may be encoded by capturing the expert's mental represen-

tation of a failure. Analysts often characterize an ACS failure in terms of the symptoms

(anomalies) which may appear during that failure, including_qualitative measures of the

support a particular symptom lends to a hypothesized failure. The expert might indicate,

for example, that during a tachometer failure there is a high probability that the wheel

speeds will oscillate.

Knowledge about diagnostic strategies defines the expert's own internal protocol for

diagnosing faults. It was determined through interviews with ACS analysts that the expert

initially reacts to an anomaly by considering all possible explanations, creating a mental

model for each hypothesis. The expert then seeks evidence which can distinguish among the

possible failures, primarily by comparing the actual telemetry to the predicted observations

for that failure. Important also is the expert's ability to rule out a failure on the basis of

evidence to the contrary. The expert may explain, for example, that the possibility of a

drive failure may be ruled out if the motion in the opposite wheel indicates that the wheels

are spinning normally.

4. Encoding Expertise

An appropriate representation must be selected for each of the three types of knowledge

discussed above. Telemetry interpretation knowledge consists of categorical descriptions

of anomalous behaviors, or features. This knowledge is encoded as rules, with each rule

capable of identifying whether a specific feature is present in a telemetry point's recent

124

value history. The one-to-one correspondence between feature types and rules facilitates

knowledge engineering and rapid prototyping.

Failure mode knowledge characterizes ACS failures as the collection of symptoms which

may appear during that failure. A suitable representation for this type of expertise is a

schema, an object which is composed of slots that specify the attributes of the schema. One

schema completely defines a failure in terms of its symptoms, with each symptom described

in its own slot. This slot description identifies the name of the symptom, the maximum

time it would take for the symptom to appear during the failure, and the likelihood of

the symptom appearing during the failure. Likelihoods are expressed qualitatively with

the symbols 'H', 'M', and 'L' (High, Medium, and Low), 'A', and 'N'. An 'A' indicates

that the symptom must always appear, and 'N' that the symptom will never appear.

Figure I shows a sample failure schema. Because each symptom has attributes which

(defschesa

(symptom

(symptom

(symptom

(symptom

(symptom

(symptom

(symptom

(symptom

(symptom

(symptom

(symptom

pss+.fmilurm

((jump-to-zero pss+.current.usm) R (me 08 35)))

((stemdy-decreasa pss-.current.use) R (SO 01 30)))

((Itemdy-decrease yrss*.current) fl ($8 84 31)))

((stemdy-dmcreass yrss-.current) n (me S4 38)))

((grmdual-dmcrmmse ostimmtsd.mom-y) fl (OO OS OO)))
((transient estlamted.att-p) H (oe $00S)))

((transient estimated.eta-r) N (05 $0 35)))

((transient estimated.art-y) H (SO O0 OS)))

((unbmlmncmd py+.uheel.spsed py-.uheel.speed) fl (so 02 3e)))

((oscilimtion prt.uheel.drive) L (88 88 SO)))

((oscillation pr-.uheml.drivm) L (me o8 me)))

Figure 1: A-sample failure definition.

are independent of any one failure, schemas are used for defining symptoms as well. In

this case the symptom is linked with failures by identifying each failure as a possible

cause of the symptom, where appropriate. This schema organization allows rapid access

to the predefined symptom and failure characteristics, and its modularity permits rapid

prototyping as well.

5. Encoding Diagnostic Strategy

The third type of expertise, diagnostic strategy, differs in that it is comprised of procedural

knowledge, whereas the two previous categories of expertise encompass declarative knowl-

edge. This leads to a different implementation: rather than employing rules or schemas,

this knowledge is represented as meta-rules which govern the way in which the declarative

knowledge is applied to the problem-solving task.

The objective of this meta-structure is to implement a reasoning strategy derived from

the techniques employed by human experts. The diagnostic knowledge discussed earlier is

suitably represented using the Set Covering Model [2]. Applying this approach, generating

hypotheses to explain a symptom is simply a matter of locating the symptom's schema

125

and reading the possible causes for that symptom. Each such possible cause then becomes

a hypothesis. Hypothesis evaluation is accomplished by observing how well a hypothesis

covers the symptom-set, i.e. how many of its symptoms have been detected. Symptoms

vary in how strongly their presence supports a hypothesis, so this factor is incorporated

into the evaluation procedure. In addition, some symptoms are required to support a

hypothesis, and so that symptom's absence will allow the system to rule out the hypothesis.

Conversely, some symptoms provide contradictory evidence, so that a hypothesis may

be ruled out on the basis of that symptom's presence. This strategy is an appropriate

representation for the diagnostic expertise discussed above, but requires a mechanism for

handling the multiplicity of hypotheses. Fortunately, such a mechanism is available in this

system.

Hypothetical Reasoning

The use of hypothetical reasoning is of prime importance to the diagnostic capability

of this module. Using this approach, one hypothetical situation ('viewpoint') is created

for each possible failure. The viewpoints are distinct from eachother, so each operates

under its own set of assumptions (including of course the assumption about which failure

occurred). When evidence rules out a hypothesis, the associated viewpoint is eliminated.

Thus the use of hypothetical reasoning allows the system to pursue multiple hypotheses

simultaneously. The reasoning within each viewpoint is geared towards supporting the

hypothesis which generated that viewpoint, by setting goals to look for symptoms of the

corresponding failure, and so is called 'goal-directed reasoning'.

Goal-Directed Reasoning

Hypotheses are generated in a forward-reasoning fashion. This means that the detection

of a symptom triggers the hypothesizing mechanism, because the system has been 'told'

that if a symptom occurs then it should hypothesize all failures which could cause that

symptom. Once the hypotheses have been generated, however, the reasoning occurs in

reverse. In backward reasoning, the system is told, for example, that if Symptom-A occurs

then the likelihood of Failure-1 is increased. This generates a goal of detecting Symptom-

A. Suppose the symptom knows that if the reaction wheels are unbalanced then conclude

that Symptom-A has occurred. Then a subgoal is generated to detect an unbalanced wheel

pair.

Within each viewpoint, then, unique subgoals are generated. This is a very important

feature because of the computing expense involved in detecting symptoms. The savings is

realized by only looking for symptoms which will help to support or rule out hypotheses.

Savings also is achieved in the case when a hypothesis is ruled out, because all goals

generated to support that hypothesis are eliminated.

6. Implementation

Combining this reasoning strategy, the failure and symptom schemas, and the feature-

identification rules results in a system which emulates the diagnostic performance of a

human expert. The process operates first in a fault detection mode, and then if triggerred,

in a fault isolation mode.

126

Fault Detection

The current practice of fault detection by limit-checking has an inherent limitation,

in that an anomaly may go undetected because no limits are exceeded. Moreover, even

when a telemetry value exceeds its limits, it may not do so immediately upon failure, but

instead may remain within limits for several minutes after the failure occurs. Further,

simulations of ACS failures indicate that transients are reliable fault indicators. The fault

detection mechanism used in this system, therefore, achieves the earliest possible fault

detection, by using any ACS transient to trigger activation of the diagnostic procedures.

This detection is the responsibility of the feature-identifying rule for transients, which

monitors the histories of ACS telemetry points. The detection of a transient triggers the

creation of viewpoints, each of which contains the assumption that one particular failure

has occurred.

Fault Isolation

The meta-rules responsible for viewpoint creation not only hypothesize failures, but also

scan each failure's list of symptoms, and set as goals the determination of these symptoms'

presence or absence. These goals are satisfied by the feature-identifying rules, each of

which is specific to a particular symptom type. A goal to find an oscillation in a wheel

drive, for example, would activate a rule which 'knows' how to identify oscillations. In this

way, only those symptoms relevant to the diagnosis are investigated.

The status of a symptom is initially UNKNOWN.Once it becomes a goal, it is assigned an

expiration time, by adding that symptom's maximum appearance time to the current time.

If it is observed prior to its expiration, it is assigned a status of KN0WN-PRESENT, otherwise

its status is KNOWN-ABSENT. This information is processed by probability determination

rules, which maintain a current probability for each hypothesized failure. The contribution

a symptom's presence makes to a failure's probability depends on the likelihood, expressed

qualitatively with the symbols 'H', 'M', and 'L', of that symptom occuring during the

failure. These values are stored as part of the symptom slots in the failure schema, and

are assigned numerical equivalents for computational purposes. If a symptom is known to

be absent, it contributes a corresponding negative likelihood. Unknown symptoms are not

included in the calculation. Probabilities are kept current by rules which react to a change

in a symptom's status, by adjusting the probability of any failure related to that symptom

(i.e. any failure identified as a possible cause in the symptom's schema).

The probability analysis helps the operator to distinguish among failures by providing

a basis for comparing the alternative hypotheses. But more powerful than that is the

system's capability to rule out failures on the basis of evidence in the telemetry. A failure

may be ruled out by the program under two conditions (the operator may also rule out a

failure). The first occurs when a symptom required to support the hypothesis is absent.

This is detected when a symptom identified in a failure schema as an 'A' symptom has a

status of KNOWN-ABSENT. The second condition occurs when a symptom which would not

appear during this failure is observed. This is indicated when a symptom identified in a

failure schema as an 'N' symptom has a status of KNOWN-PRESENT. When a failure is ruled

127

out, all goals set to support that hypothesis are removed, and the reason for ruling out

the failure is recorded in its schema.

7. Test Environment

The diagnostic capability of this system was examined within a test environment which

provided simulated spacecraft telemetry and an interactive operator station. The telemetry

was derived from actual satellite telemetry (for 'normal' data) and from an ACS simulator

(for failure data). Telemetry processing software generates telemetry frames and sends one

frame to the diagnostic system every two seconds, to create a real-time environment. The

operator station keeps the operator fully informed about detected anomalies and about

the status of each failure being investigated. Three displays are available: a table of all

detected anomalies, a symptom display detailing a selected symptom, and a failure display

providing data about a selected failure.

8. Example

When the ACS Diagnostic System first detects a transient in ACS telemetry, the hy-

pothetical reasoning mechanism creates four possible explanations: a tachometer failure,

a sun sensor failure, a wheel drive failure, and an Attitude Control Electronics (ACE) fail-

ure. The goal-directed reasoning then sets as goals the detection of symptoms appearing

in each of these failures. As a result, the feature-identifiers are activated and telemetry

analysis begins. Figure 2 illustrates the result of the operator selecting a ruled-out failure

for display. A few moments later, the operator selects an observed anomaly, which brings

up the symptom display shown in Figure 3. After about f_ty seconds, a single failure

remains, but the system continues its analysis until the operator decides to accept the

failure. Figure 4 shows the main display after two and a half minutes, identifying the

relevant features found in the telemetry since the failure was first detected.

9. Conclusion

This prototype demonstrates the promise of the approach used because effective rea-

soning was achieved using a straightforward representation and relatively simple heuristics.

Further, because of the way the expertise is segmented, the system can not only be made

to perform better in this domain, but can also be applied to different problem areas.

Installing operational versions of an expert system such as this one thus becomes more

cost-effective, as new diagnostic systems can be generated from existing ones by replacing

a specific knowledge base and leaving the reasoning strategies intact.

Certainly, then, AI-based diagnosis will help to increase mission reliability and reduce

the need for highly-skilled personnel. As this technology evolves, advances in the intelli-

gence of these systems will provide even greater benefit. One way to improve knowledge-

based systems is through the use of learning. Expert systems can learn by modifying their

strategies when such strategies fail to provide acceptable solutions. This approach has been

tested in a satellite diagnosis system [1], and future work will provide large reductions in

the time and cost involved in knowledge engineering.

128

I I I

A_1_ude Control _-_ys_ern Diagnostic Display

Satellite Time

I 3:1 9: 5F

PR+.TACH,FAILURE
Jmltlfeelteonl IM R PR_.TRCH.FRILURE, THERE MUST RLt_tY8 I:E fl SIGttRL-PRESEHT

CQSERVE n Ih THE PR'.MHEEL.DRIVE MITHZH 09:e0:65 Of THE FHILURE. 5IMCE THIS

MRS _T THE CRSE, ME I1flY RULE OUT THE POSSIBILITY OF R PR*.TRCH.FflILURE.

Cur_mt Statue: RULED-OUT. Current Likei4hood: 0.0000

|l_t(me far this fst|ure

Tvpe Locetton Strettl|th State

TR/q_SIEffT PY-.MHEEL.DRIVE H ft_.STRTUS

TRI_IE"T I_to.141_EEL._RZ_E H MO.STRTUS

TRftflSZEMT PR-.t_HEEL.SRIVE H MO.STRTUS

TRII_ISIEhT PR* ,klHIEEL.DRZV(H HO.STRTUS

TIL_flSZEMT PY-._EL.SPEED N MO.STRTUS

TRI_SIENT PY*.UHEEL.SPEED M HO.STflTUS

TRP_tSZEMT pRo.WHEEL.SPEE9 M HO.STATUS

TRfl_iS[EMT PR..MHEEL.GPEED H NO.STRTUS

TRPPISIEMT ESTIt_qTEg.HOM-R ff fIO,STRTUS

I_IEflT ESTZMRTES.Mr_-P M MO.STRTUS

FAILURE OISPLAY OPTIONS

RULE-OUT-FAILURE
ACCEPT-FAILURE
RETURN

Po|slble Failures Under Conoldermtlon

fsHurz Iikelil'_

PR*.DRIVE.FRILURE 0.4062

PSS,.FRZLURE 0.5465

RCE.FflILURE 0.9497

F|llures Ruled Out

Pfl'.TRCH.FRILURE

Figure 2: Failure Display Screen example.

A_1;i_Jde Control 8y_t_rn @
Ill

Di_Qnos_ic Display/

II

Satellite Time

1 _3:_O:E)r"

TRANSIENT PR+._N'HEEL.SPEED

msmt_l v_lm _rNmt Stair, s! KMOi_-PRESEMT.

Possible Causes
fM|ure state

RC(.FR£LURE RULED-OUT

PSS,.FRZLURE RCTIUE

PR'.DRIVE.FflXLURE RCTZVE

PR*.TRCH.Ffl_LURE RULED-OUT

-III-

V -|N--

!

e_ -IN-

° 1114--

I SYMPTOM DISPLAY OPTIONS"_" I RETURN
I$: I1:_ I$: I_0 1)',Z0;{10

T_aH

J_umtlf'Jcet4o4_: lh_e ell • dltlcted trilni_en_ becs_se the t)_ value, -227.8e,
dtFferr_ fro_ the _e_m by _4)re tl_ 3.00 standard dev_•t_ons.

Possible Failures Under Consideration

failure likelihood

P_St.FRILLIRE 0.5485
PR+._IVE.FRIL_E 0.4862

Failures Ruled Out

RCE.FRILURE

PR+.TOCH.FRZLURE

Figure 3: Symptom Display Screen example.

129

OPJGINA/j PAGE IS

OF, POOR QUA/,ITY

0R r_, _r_

OF POOR QUALI=_f

A_1_i_ude Cont_rol System [2iagnos_i_ [2igplay

II

Satellite Time

I 3:22: I E

Observed Teleme_y Anomalies Possible F|llures Under Consideration
fa(b,.'_ likelil'_od

_b_tr4_tey|zstion Source Time
PR'.DRIVE.FRILURE 0.8991

OFFSE1 PY*.I44EEL.SPEED 13:22:12
OFFSET PR..MHEEL.6PEED 13:21:48
OFFSET ESTINRTED.RTT-R 13:21:44
UMBRLNtCED PRo.WHEEL.DRIVE 13:21:42
OFFSET PR°.MI4EEL.DRIVE 13:21:42
OFFSET ESTZNRTED.RTT-P 13:21:16
OFFSET PR..k'HEEL.DRIVE 13:21:10
RFtMP-TO-L_'RO PR*.kq4EEL.SPEED 13:2Q:34
REVERSE-DIRECTION PR-.MHEEL.SPEED 13:20:32
TR_SIENT ESTZMRTED.P_.-R 13:20:32
GRRDURL-ZPICRERSE PR-.MHEEL.SPEED 13:20:14 FslltresRuled Out
TRARSIERT PY-.k'HEEL.SPEED 13:20:e0
TI_rtSlENT PR+.MHEEL.DRIVE 13:19:54 PSS-.FAILUR£
TRflMSIEMT PR-._HEEL.DRIVE 13:19:54 ACE.FRILURE
TRflltSIENT PR-.I_EEL.GPEED 13:19:54 PR'.IRCH.FRILURE
TRRMSIENT PY..HHEEL.DRIVE 13:19:54
_RRMSIEMT PY..MHEEL.6PEED 13:19:54
TRAMSIEMT PY-._HEEL.DRIVE 13:13:54
TRR_SIERT ESTII4RTED._TT-R 13:19:5_
TRRNSIE_T ESTI_RTED.RTT-P 13:19:48
TRanSIENT PR*.MHEEL.SPEED 13:19:48

Figure 4: Main Display Screen minutes into diagnostic.

Another area under investigation is the use of model-based reasoning. An expert system

could predict behavior using models of the satellite and its subsystems, and so could

identify faults by differences observed between actual behavior and behavior predicted by

the model. Isolation of faults is also facilitated by the causal links implicit in these models.

Applying models to diagnostic expert systems is currently under study at GE Astro-Space.

Results from this and other research promise to put more intelligence into AI, so that the

increasing complexity of space systems is paralleled by our improved ability to control and

maintain them, and eventually, by their ability to maintain themselves.

References

Pazzani, Michael J. (1986). Refining the Knowledge Base of a Diagnostic Expert System:

An Application of Failure-Driven Learning. In Proceedings of the Fifth National Conference

on Artificial Intelligence, 1029-1035, AAAI, Philadelphia, PA.

Reggia, James A., D. S. Nau, and P. Y. Wang (1984). Diagnostic Expert Systems Based

on a Set Covering Model. In M. J. Coombs (Ed.), Developments in Expert Systems, 35-58.

London: Academic Press.

130

