
N88-16417
ORIGINAIJ PA_GI_ I_

OF POOR QUALrl_
PLANNING ACTIVITIES IN SPACE

Kai-Hsiung Chang

Department of Computer Science and Engineering

Auburn University, Auburn, Alabama 36849-5347

O. ABSTRACT

This paper presents three aspects of planning activities in

space. These include, (i) generating plans efficiently, (2)

coordinating actions among multiple agents, and (3) recovering

from plan execution errors. Each aspect will be discussed

separately.

i. INTRODUCTION

An autonomous space station is required to formulate its own

action plan after receiving a mission command. In order to

accomplish this goal, a system that is able to generate action

plans for various agents, coordinate actions among agents, and

decide on recovery plans for execution errors will be required.

This paper describes some research works of these areas. The

author assumes that the reader already has a basic knowledge on

planning.

2. A TWO-PHASE PLANNING STRATEGY

This approach would generate plans efficiently according to

the goal requirements. In this strategy, a planning process is

divided into two phases, goal analysis and plan generation. The

idea of goal analysis is to reduce the fruitless search space at

the start of the planning process and to provide a correct

outline for the generation of plans. In the block stacking

example of Figure I, most human experts know that in order to

build a structure, the lower part has to be built first and the

lowest block has to be put on the table. With a simple analysis

using these two heuristic rules, an expert can conclude quickly
that (ON B C) should be achieved before (ON A B) and that C

should stay on the table. If a planning system also adopts this

heuristic analysis, the same conclusion can also be reached. We

believe that this analysis is close to a human planning model and

is more efficient for solving a problem.

In the plan generation phase, a goal-oriented hierarchical

operator representation technique is used to avoid the time

consuming operator searching process. Usually, a goal can be

achieved by several different operators; but some of them may not

be applicable at a specific instance, and some of them may have

side effects that would cause problems later. Trail-and-error

search process is used to select operators in most conventional

systems. This time-consuming search process can be avoided.

First, if each operator is named by the goal it would achieve,

there is no need to search for operator candidates. Secondly,

within each operator representation, a sequence of detailed

315

oRECEDING PAGE BLANK NOT FILMF_..D

((ONC B)

(ON B A))

InitialState Goal State

Figure I A simple block stacking problem.

(INROOM $A $B)

NIL (TOGOINTO SB) (TOHOLD SA) (TOGOINTO SB) (PUTDOWN SA)

Figure 2 Operator hierarchy of (TNROOM SA $B)

operators can be selected to satisfy special requirements of

different situations. A sample operator hierarchy is shown in

Figure 2. In this hierarchy, the goal is to move object $A into

room $B. Since the name and the goal of the operator are

identical, this representation is considered goal-oriented. In

this example (INROOM $A $B) must be refined into a sequence of

detailed operators before its execution. The sequence selection

is determined by the requirements of the goal and the world

state. Here, if $A is an ENV (environmental) object, like DOOR,

which can not be moved, then nothing has to be done. If $A is a

ROBOT, which can move, then the ROBOT just has (TO-GO-INTO $B).

Finally, if $A is something else, then the ROBOT has (TO-HOLD

$A), then (TO-GO-INTO $B), and then (PUT-DOWN $A). An abstract

operator, like (INROOM SA $B), can be refined into more detailed

operators by simple condition matching. Detailed examples and

applications of this approach can be found in [1,2].

3. A MULTIAGENT PLANNING SYSTEM

In a multiagent environment, the resource sharing and action

coordination must be managed carefully. This is critical to the

success of an integrated system which involves multiple

agents[3]. In our approach, three features have been proposed.

316

They are meta-level planning, agent-oriented dynamic

assignment, and breakable and unbreakable action sequences.

task

- Meta-level Plannin_: The purpose is to transform an

original goal (problem) statement into a plan outline that is

easier to pursue. The transformation includes grouping and

ordering original goal components, adding new goal elements, and

posting constraints. A typical example is shown in Figure 3. In

the first step, the system groups subgoals according to resource.

In the second step, it uses domain knowledge to determine the

subgoal pursuing sequence in each group.

ROBOT1

N
ROBOT2

dn GOAL STATEMENT:

((ON B C) (ON A B)

(ON D E) (ON C TABLE)

(ON m F) (ON F TABLE))

Figure 3 A typical multiagent planning problem.

STEP1: Parallel Groups of Subgoals

(= ((ON B C) (ON A B) (ON C TABLE))

((ON D E) (ON E F) (ON F TABLE)))

STEP2: Ordered Subgoals and Groups

(= ((ON C TABLE) (ON B C) (ON A B))

((ON F TABLE) (ON E F) (ON D E)))

The equal sign ("=") of STEP1 shows that there are two

parallel groups of subgoals, which can be pursued by different

agents. The result of STEP2 shows the sequence of pursuing

subgoals within a group. For example, the sequence of stacking

the first block pile is (ON C TABLE), (ON B C), (ON A B).

- Agent-oriented dynamic task assignment: This is to find

out what an agent can do at difTerent times. The planner always

tries to assign one or a team of free agents to be in charge of

one group of related subgoals. The assignment is determined by

the features and the status of agents, the requirements of the

task, and the constraints posted during the meta-level planning.

Actions of each agent are then generated accordingly. Normally,

an agent works for its own subgoal groups. However, exceptional

condition is allowed for an agent to do unanticipated tasks.

317

- Breakable and unbreakable action sequences: The idea is to

distinguish the unbreakable actions that must be executed by the

same agent from those breakable actions that can be executed by

different agents. This provides (a) cooperative tasks between

agents can be identified without difficulty, (b) agent utility

can be improved, and most importantly, (c) cumbersome reasoning

for concurrent actions is eliminated. Detailed report will be

published in the near future.

4. EXECUTION ERROR RECOVERY

Normally, a plan must be carried out in a world whose

behavior cannot be predicted exactly, so one must be prepared for

failures during execution[5]. A system that is capable of

handling such failures is presented. One point this system has

made is that it modifies only those parts of a plan that is

absolutely necessary. The planning process involves the

hierarchical expansion of abstract goals (or actions) into

detailed actions. This in essence, generates a tree structure

(called expansion tree or plan tree) with the leaves as the

primitive actions that constitute the final plan. In order to aid

in the error recovery process, a second tree called the decision

tree is used. This is similar to the one proposed in [4]. The

nodes in the decision tree are in one-to-one correspondence with

the decisions made during the construction of that plan. Each

node in this tree has a two way pointer from it to the nodes in

the plan tree, which was created as a direct consequence of its

decisions. The error recovery process consists of error

identification, classification, and recovery.

4.1 ERROR IDENTIFICATION

Two methods have been used to identify errors in the

execution monitoring. They are condition-oriented and

oriented approaches.

plan

object

CONDITION-ORIENTED APPROACH

Since the problem is to identify errors, one must look for

violations of conditions that need to be true at different parts

of a plan. Several conditions are considered, i. Preconditions.

They are predicates that must be true before an action can be

executed. 2. Expansion conditions. These are the status of world

on which the expansion of a node depends. 3. Decision Conditions.

These are the decisions made during the planning process and are

based on a predefined heuristic function.

With these condition classifications, the identification of

errors can be accomplished by comparing the current world state

to the conditions recorded in the decision tree.

OBJECT-ORIENTED APPROACH

All the objects involved in the domain can be classified as

318

ORIG/NAL PAGE IS

D_ _ooR QUALITy

critical or non-critical. Normally, a non-critical object is

either an environmental object on which none or limited actions

can be performed, or an agent that can perform actions; a

critical object is one on which actions can be performed. If an

error involves a non-critical object, only local readjustment

needs to be made. If the error involves a critical objects, but

the predicate involved does not fall into the critical category

(door locked is a critical predicate), then local readjustment is

needed but changes need to be propagated. This is similar to the

violation of precondition case. However, if the predicate

involved is critical, as the locked door, then a major replanning

is needed.

4.2 ERROR CLASSIFICATION AND RECOVERY

Before an error can be cleared from the "world", the system

has to recognize the type of the error so that an appropriate

modification can be taken. Four error categories are used in our

system.

1. Non-critical error: The modification consists of going one

level higher in the plan hierarchy and adding a subplan when

an assumed condition has failed, or removing a subplan when

the goal was already achieved. This will not affect the rest

of the plan in any way. Most expansion condition violations

fall under this category.

2. Major error, but not critical: It is handled just like

category i. But the rest of the plan might be affected. So

any changes should be propagated along. Precondition and

some expansion condition violations belong to this category.

3. Critical error: This requires the abandoning and the

replanning of certain subplans. Any changes should be

propagated. Decision condition violations fall under this

category.

4. Unrecoverable error: No modification takes place and the

execution is aborted. A typical example in the blocks world

is the malfunction of the robot arm, which will prevent any

further actions. Human operators must be informed to resolve

the error.

5. REFERENCES

[I]

[2]

[3]

[4]

[5]

Chang, K.H. and Wee, W.G.,"Planning with analysis", Proc.

2nd IEEE Conf. on Artificial Intelligence Applications,

1985, pp, 275-280

Chang, K.H. and Wee, W.G., "A Knowledge-based Planning

System for Mechanical Assembly Using Robots", IEEE Expert,

1988. (To appear)

Georgeff, M.P. "The Representation of Events in Multiagent

Domain" Proceedings AAAI-86 1986 pp 70-76, , , • •

Hayes, P. J. "A representation for robot plans". Proc.

IJCAI, 1975, Tbilisi, USSR, pp. 181-188

Wilkins, D. E. "Recovering from execution errors in SIPE".

Computational Intelligence I, 1985, pp. 33-45

319

oF

