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ABSTRACT

Neural net models work by simulating a collection of

biological neurons and the interconnections between them. The

learning abilities of their algorithms derive from ingenious ways

to self-modify the connection weights. The specification of

neural net models is done in terms of the characteristics of an

individual node, the interconnection between the nodes, and the

initial weights of interconnections and how they change. These

models are based on the present understanding of how the

biological neurons function. In this paper, we present

implementation of the Hopfield net which is used in image

processing type of applications where only partial information

about the image may be available. Image-classification type

algorithm of Hopfield and other learning algorithms, such as

Boltzmann machine and back-propagation training algorithm have

many vital applications in space.

I. INTRODUCTION

Neural net models are based on the present understanding of

biological nervous systems since they offer many invaluable

insights. Designing artificial neural nets to solve problems and

studying real biological nets is changing the way we think about

problems and lead to new insights and algorithmic improvements.

A neural network node as a model of a biological neuron is

usually implemented as a non-linear processing element whose

output is a non-linear function of input. Typically there are

continuous input to and output from a node. An individual node

is slow compared to modern digital circuitry, however, massive

parallelism increases overall speed. An individual node weights

ith input with a factor w and determines a weighted sum, S.
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To each node is associated a quantity, theta, called

internal offset, which determines a threshold above which the

neuron represented by the node will fire. The quantity, alpha =

S - theta, is passed through a non-linear function, f(alpha) to

get the output. The three main types of non-linear functions are

designated: (i) hard limiter (step function), (2) threshold logic

element, and (3) sigmoidal non-linearity. Other more complex
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non--linearities (based on time

operations other than summation)

increased computation time.

dependencies, time integration,

are possible but they cause

2. SPECIFICATION OF A NEURAL NET MODEL

Following three quantities are generally required to specify

a neural net model [3]:

A. Net topology: This includes interconnections among nodes and

number of layers of nodes (one or two or more).

B. Node characteristics: This includes offsets of individual

nodes and the type of non-linearity.

C. Learning rules: These are concerned with connection weights

and include initial set of weights and how weights should be

adapted during use to improve performance.

As previously mentioned, neural networks achieve high

computation rates due to massive parallelism. Each computational

unit is simple. Because of a large number of processing units we

have a high degree of fault tolerance (or robustness). Damage to

a few nodes will not significantly impair overall performance of

the system. Another important feature is the adaptation of

weights ("learning") based on new inputs. This enhances the

robustness because even if there are m_nor variations in the

characteristics of processing elements, the overall performance

is maintained.

3. CLASSIFICATION PROBLEM

The classification problem can be stated as follows:

determine which of M classes is most representative of an unknown

static input pattern containing N input elements. Such problems

are of common occurrence in many situations. Examples include:

(a) speech recognizer, where input patterns are spectra of sounds

and output classes are corresponding vowels or syllables; (b)

image classifier, where input patterns are gray scale level of

each pixel for a picture, and output classes are symbols

identifying corresponding objects; and (c) spatial locator: where

input patterns are omnl-directed range measurements and output

classes are identifications of sub--regions.

A neural net classifier is characterized by parallel

computations and parallel input/output. N input elements are fed

in parallel over N analog lines. Inputs may be bits or

continuous over a range. The network first computes matching

scores and then selects the maximum score and enhances it so that

only one most likely class will be selected. Neural net

classifier can be made adaptive to new classes or exemplars by

usinE a learning algorithm that will modify the weights of
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connections as new classes are presented to the net. An

implementation of a particular type of classifier is discussed in

the next section.

4. THE HOPFIELD NET

The Hopfield network is desiEned for binary inputs.

Examples of such situations include (a) pictures or imaEes in

terms of on-off pixels, and (b) ASCII representation of text with

each character represented by 8-bits. Hopfield network

applications are in associative memory and in solvinE

optimization problems. In associative memory applications this

network can locate the correct information from a supplied piece

of partial information. When applyinE the Hopfield network the

followinE limitations should be carefully considered.

(i) Spurious converEence: H should be small compared to N. If M

is larEer than about 15_ of N, converEence may incorrectly

occur to a pattern not matchinE any of the exemplars.

(2) Instability: A Hopfield net is said to be stable if upon

usinE an exemplar as an input, the same exemplar is output.

If too many bits are common between two patterns, the net

becomes unstable.

We implemented the Hopfield network in Lisp on Texas

Instruments Explorer which is a Lisp architecture computer. A

run was made usinE two exemplar patterns with 171 pixels

represented as *'s and -'s which are converted into +i and -i by

the proEram, respectively. When the network is presented with a

test input pattern with some of the pixels chanEed, it responds

with the number of the exemplar which comes closest.

Another set of interestinE runs was made with M = 2

exemplars and N = i0 pixels. We see that when only one pixel is

different from the exemplars in the input pattern, the network

does come up with the correct answers for the matchinE exemplar

pattern. The alEorithm converEes to the correct exemplar

pattern. The network was then presented with two input patterns

which differed from both the exemplars in exactly the same number

of pixels, namely, 5 pixels, half of all the pixels in each

exemplar. The network does not converEe to any of the exemplars,

as would be expected.

We have also demonstrated what may be termed the "soldier's

helmet" phenomenon. The network is presented with two different

input patterns with only the first two pixels matchinE with

either one of the exemplars. The network identifies the correct

match and, in addition, the converEence is to the appropriate

exemplar. This run dramatically illustrates the ability of the

Hopfield network to reconstruct the whole picture from a partial

one.
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5. PLACE-FIELD AND GOAL LOCATION MODELS FOR A ROBOT

5.1. PLACE-FIELD MODEL

This model is based on the behavior of place-field cells of

the hippocampus (one of two ridEes alone lateral ventricle of the

brain) of a rat. Place-field cells fire at their maximum rate

only when the animal is at a particular location relative to a

set of landmarks. Such locations are called place fields.

Zipser [5] developed a computational model to relate the

confiEuration of landmarks to the location, size, and shape of

place fields. The inputs to the model consist of confiEuration

of landmarks in the environment toEether with the location of the

observer. The output from the model represents the activity of a

place-field neural unit in the observer's brain. A set of simple

objects is used as place cues and the size of retinal imaEes is

indication of location. The model uses this information to

provide quantitative predictions of how the shape and location of

place fields chanEe when the size, tilt, or location of these

objects is chanEed.

The place--field neural model is desiEned for pattern

recoEnition. It fires at maximum rate when the observer is at a

desired location. A stored representation of a scene is compared

to a representation of the current scene. Closer the viewer is

to the stored scene, the better is the match. In determininE the

closeness, it is sufficient to use only a few discrete objects

rather than the entire scene. A point P in two dimensional space

can be uniquely located by its distance from three landmarks a,

b, and c. It can be shown that in three dimensional space a

point can be uniquely located by its distance from four

landmarks.

When the robot is at a location P, the representations of

the landmarks a, b, and c including the distance to P are

recorded in some way in the memory. Upon return to P, the

robot's sensory system can now Eenerate a set of current

distances. If these representations, other than their distance

components, are not affected too much by the viewinE postion,

then the current representation of each object will differ from

its stored representation only to the deEree that the object's

current distance from the observer differs from its distance to

P. A neuron whose output is a summated measure of the similarity

between these current and stored representations for each

landmark will have the properties of a place-field unit.

5.2. CURRENT APPROACH

In contrast to the place location approach described above,

we will not make the assumption of a "landmark recognizer" or any

other sophisticated pattern recoEnition devices. Rather, our

method will be dependent only upon the range sensor information.
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The robot is assumed to operate in a two-dimensional reEion and

to have ranEe sensor detectors fixed in many directions from its

center. The robot will travel translationally only --- so that it

is always oriented towards a specific direction and there is no

rotation. Many of these assumptions can be relaxed, as more

sophistication is added to the model. The object of the robot is

to explore the two-dimensional reEion to which it is confined.

After sufficient exploration, it is able to naviEate between any

two points. As mentioned before the robot will rely only on

ranEe sensor data and will be unable to distinEuish the anEle at

which it is approachinE an obstacle. Movement of obstacles will

be allowed and the robot will expected to naviEate in a

reasonable manner. So as not to become myopically confused by

the obstacles and boundaries of the reEion, the robot will have a

buffer distance always separatinE it from any other objects or

boundary. The robot sensors are assumed to be of unlimited

distance.

NaviEation mode of the robot will start by movinE from a

"corner" in the direction of one of its sensors. The robot will

assiEned a predefined rectanEular subreEion, R, which is

subdivided by the robot for exploration. The key factor in

determininE the "acceptability" of a subreEion is whether the

sensor vector varies continuously. An unsatisfactory subreEion

will be further subdivided into smaller reEions so that the

sensor vector is continuous. The robot Eathers sensor data and

data on chanEe in position from each successive rectanEular

subreEion.

In the naviEational mode, the robot will have to

periodically back up in order to insure that its connection

weiEhts are sufficiently tuned to discriminate one subreEion from

another. This is a hiEhly unsupervised type of learninE

scenario, so that only certain types of neural net models would

be acceptable. The work on learninE neural nets [2], namely,

Boltzmann machine [l,2],2the competitive neural net, and siEma--pi
neural nets [4] is beinE continued.
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