
N88-16432

A Data Structure and Algorithm

for Fault Diagnosis

Edward L. Bosworth, Jr.

Computer Science Department

The University of Alabama in Huntsville
Huntsville, AL 35899

Abstract

This paper will present results of preliminary research on

the design of a Knowledge Based Fault Diagnosis System for use

with on-orbit spacecraft such as the Hubble Space Telescope.

This paper discusses a candidate data structure and

associated search algorithm from which the Knowledge Based System

can evolve. This algorithmic approach will then be examined in

view of its inability to diagnose certain common faults. From

that critique, a design for the corresponding Knowledge Based

System will be developed.

Introduction

The research reported in this paper is focused on the

development of an efficient fault diagnosis software system to be

used in the operation of on-orbit spacecraft such as the HST

(Hubble Space Telescope). There are several factors which

indicate the need for an efficient fault diagnosis system. Among

these reasons are I) the desire to detect any fault before it

causes damage to the spacecraft (an unlikely but possible event),

2) the desire to have confidence in the accuracy of the
scientific data, and 3) the desire to schedule maintenance

missions on some sort of cost effective time-line.

The scenario envisioned in this report is an automated fault

diagnosis system monitoring the downlinked telemetry reporting on

the health status of the spacecraft. This system would act as an

intelligent assistant to the operations staff. It would detect

abnormalities in the telemetry and deduce the hardware fault

causing this indication. It should also be able to project

trends in the data and give reasonable predictions of the

remaining useful on-orbit time of any replaceable component.

The Data Structure and Associated Algorithm

The efficiency of a computational solution to any interesting

problem depends, in general, on the choice of two items: a data

structure appropriate to represent the structure of the problem

and an algorithm which can operate efficiently on the selected
data structure. This observation holds true even in those cases

in which the algorithm is complemented by heuristic procedures.

403 :.-:,._,;i,,a _'_-tGE _



The importance of the data structure arises from the

following observation which is generally true: it is usually the

case that the more appropriate the data structure the less

complex the algorithm and associated heuristics. One criterion

used for selecting a data structure is its resemblance to the

human representation of the problem being investigated.

One of the primary human tools in fault diagnosis is a design

schematic which shows the relations between the functional

components of the system. There are two data structures which

are analogous to a design schematic: a Directed Acyclic Graph

(DAG) and a Tree. Both of these are hierarchical structures

which can represent naturally the functional hierarchy found in

design schematics. In the data structures this hierarchy is

represented by "parent-child links" where a parent node can have

several child nodes and represent the fact that a functional

component in the design schematic can have a number of functional

subcomponents.

Both a DAG and a Tree have at least one designated node which has

no parent node. This node is called a "root node" A tree, by

definition, has exactly one root node. A DAG may have many such

nodes. The concept of a unique root node in the data structur@

has a strong analogue in the functional design schematic: th4

entire system. For this reason, the choice of data structures is

limited to a Tree or a "Tree-like DAG", the latter being a

Directed Acyclic Graph restricted to having one root node.

The main difference between a Tree and a Tree-like DAG is

that the nodes of the former are constrained to have exactly one

parent node whereas the nodes of the latter may have more than

one parent node. This difference will impact the efficiency of

representation of the design schematic. If a component is the

design schematic can be a part of only one superior component,

then the Tree data structure is the preferable representation.

If a component may be a part of more than one superior component,

then a Tree representation will have to duplicate nodes for that

component, attaching a duplicate as a child node to each node

which represents one of the superior components. Since the DAG

does not require this artificial duplication, it is the data
structure selected for this research.

In addition to the Tree-like Directed Acyclic Graph, an

auxiliary data structure is used in order to improve the

efficiency of the node creation algorithm. This auxiliary data

structure is to be used to detect duplicate names and avoid the

creation of duplicate nodes in the DAG. In order to use this

auxiliary data structure, one must remember that a node in any

graph has both an ID and a label. The ID is the variable by

which the program accesses the structure representing the node.

In LISP this would be called the structures "print name". The

label is a name associated with the node. In this data

structure, the name of the node is the name in the design

schematic of the the component represented by the node. The

requirement is to avoid generation of duplicate nodes for the

same component in the schematic; i.e., nodes with the same label.

404



The auxiliary data structure chosen for this is a Hash Table

which will store pairs of the form (key, value). The key for an

entry will be the node label and the value will be the node ID;

thus we have (Node-Label, Node-ID). Any attempt to create a node

to represent a named component in the design schematic must first

check the Hash Table. If the component be already represented,

its Node-ID will be returned. Otherwise a new node may be

generated and named as usual.

There is one restriction which must be observed when using an

auxiliary data structure. Both the Directed Acyclic Graph and

the Hash Table must be defined and accessed as a single abstract

data structure. More specifically, there must be a single set of
constructor and accessor functions which treat the two data

structures and an interdependent pair and enforce the logical

relations between the two. Otherwise, the data in the two will
become inconsistent and thus useless.

The Directed Acyclic Graph was implemented in VAXLISP by use

of the COMMON LISP structure. The following describes a node:

(Defstruct (Component

(:conc-name Node-)

:predicate)

"A node for representing a component in the design schematic_

(Name Nil) ;The name in the design schematic

(Subcomponents Nil) ;Note the default values.
(Contained-In Nil)

(Search-Seq 0))

The Hash Table was

variable.
implemented as a COMMON LISP global

(Defstruct *Component-List* (Make-Hash-Table :Size 197))

As mentioned above, the Directed Acyclic Graph and Hash Table

must be accessed as a single abstract data type. A typical
function is the one which creates a new node. It first checks

the Hash Table to avoid making a duplicate. If it continues, it
first updates the Hash Table and then creates the node.

(Defun Create-Component (Schematic-Name)

"Creates a node to represent the component with

the specified name in the schematic"

(Unless (Gethash Schematic-Name *Component-List*)

(Let ((Node-ID (Gensym "NODE-")))

(Setf (Gethash Schematic-Name *Component-List*)

Node-ID)

(Set Node-ID

(Make-Component :Name Schematic-Name)) )))

Having established the data structure for representing the

components, it is now time to discuss the design of an algorithm

to do the searching required by fault diagnosis. This design
actually has two such algorithms, SEARCH and SWEEP, built around

the concept of a search sequence number.

4O5



Search sequence numbers are a generalization of the concept

of node markings found in many graph and tree search algorithms.

Node marks are generally thought of as Boolean variables having
the values TRUE or FALSE. An alternate representation of the

node mark would be a search sequence having only the permissible

values on 0 or i.

In the search sequence approach, there is a global variable

which counts sequentially the searches undertaken during the

current session. This variable is passed as an argument to the

search procedure. As the procedure visits each node, it

processes the node only if the nodes search sequence number is

less than the current search sequence. If processed, the node is

marked with the current search sequence, is expanded, and its

subnodes evaluated for possible search.

The SWEEP procedure is called periodically to reset the

search sequence of each node to 0 and to reset the global search

sequence variable to i. The nodes are visited by a simple Depth
First Search. One should note that this exhaustive search is

called much less frequently than the directed search mentioned

above. This results in a reduced overhead due to calling SWEEP.

The algorithm SEARCH is a Best First Search with iterativ_

deepening. It is called with two parameters - a node ID and a

search sequence number. At each level, the node is examined to

see if it is marked with the current search sequence number. If

it be so marked, the next node in the search priority list is

examined. Should the node not be so marked, it is given the

current search sequence number and examined. Part of the

examination is obtaining the subcomponent list and merging that

with the rest of the search priority list to form a new search

priority list. Nodes which appear more than once will be given a

higher search priority on the assumption that if two failed

components share a subcomponent then that subcomponent is

suspect.

406



Conclusions and Directions for Future Work

While it seems obvious that an automated fault diagnosis

system would be of considerable benefit in the operation of

on-orbit spacecraft of the complexity of the Hubble Space

Telescope, it is also apparent that an algorithmically based

system will not be sufficiently sophisticated.

One flaw in an algorithmically based system is its inability

to reason about faults that do not correspond to failed

components in the design schematic. A simple example of such a

fault is a bridging fault or short circuit, both of which

represent components which are not present in the design
schematic.

One of the major modifications which will be necessary is the

design of a heuristic which can make reasonable modifications to

the data structure representing the design schematic in those
cases in which the observed fault is not consistent with the

normal schematic. This heuristic will include representations of

the physical components in order to postulate plausible bridging

faults and short circuits. Such systems are discussed

extensively in the research literature [1,2,3,4,5].

References

l , Davis, R.; Diagnostic Reasoning Based on Structure

and Behavior; Artificial Intelligence 24 (1984) 347 -
410

. de Kleer, J. and Williams, B.C.; Diagnosing Multiple

Faults; Artificial Intelligence 32 (1987) 97-130

. Genesereth, M.R.; The Use of Design Descriptions in

Automated Diagnosis; Artificial Intelligence 24

(1984) 411-436

, Keravnou, E.T. and Johnson

Systems, McGraw Hill, 1986.

L. ; Competent Expert

, Reiter, R.; A Theory of Diagnosis from First

Principles; Artificial Intelligence 32 (1987) 57-95.

407




