
Media Independent Interface
Interface Control Document

MS 2-2-5250
SPERRY SPACE SYSTEMS

P.O. BOX 52199

PHOENIX, ARIZONA
85072-2199

(E_err¥ Cor_.) 6L F CSCL 09B

G3/61

N88-16447

Uncla_

0120343

j,W

Page ii
21 July 1987

CONTENTS

1

1.1

1.2

1.3

1.4

2

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.11 .1

MEDIA INDEPENDENT INTERFACE CONTROL DOCUMENT 1

PURPOSE 1

SCOPE 2

ABBREVIATIONS 3

DOCUMENTS 3

GENERAL 4

ARCHITECTURE 5

INTRODUCTION 5

HOW THE ARCHITECTURE WORKS 7

MII HIGHLIGHTS 10

SYSTEM REQUIREMENTS 12

INTERFACE CONTROL SCOPE 14

MECHANICAL AND ELECTRICAL 15

SOFTWARE 16

SYNTAX 21

ENCODING 21

CHANNEL RULES 22

PRIMITIVES 23

MAC/LLC PRIMITIVES 23

3.11.1.1 COMMANDS 23

3.11,1.2 SYNTAX 24

3,11.2 STATION MANAGER 27

3.11.2.1 COMMANDS 27

3.11.2.1.1 IEEE 802,3 SM MANAGEMENT 31

3,11.2.1.1 1 SYNTAX 39

3,11,2,1.1 2 FORMAL SYNTAX SPECIFICATION 4B

3.11.2.1,2 IEEE 802.4 SM MANAGEMENT 44

3.11.2,1.2 1 SYNTAX 51

3.11,2.1.2.2 FORMAL SYNTAX SPECIFICATION 52

3.12 MII OPERATIONS 57

MIY ICD Program

MEDIA INDEPENDENT INTERFACE CONTROL DOCUMENT
Page 2

21 July 1987

1.2 SCOPE

This document specifies a Media Independent Interface. This

interface uses standards current in the industry. The
industry standards were generated at different times and

have differing applications. This has lead to a convoluted

and poorly defined set of interface primitives. They lack a
cohesive binding to each other. In addition the standards

do not describe the physical aspects of these standards

which would allow different implementations of them to

operate in concert. The MII ICD binds these standards by

integrating mechanical, electrical, and functional interface
standards within this document.

The MII is described in hierarchical fashion. At the base

are IEEE/ISO documents (standards) which describe the

functionality of the software modules or layers and their

interconnection. These documents describe primitives which

are to transcend the MII. They do not describe the method

by which layers communicate or the exact language in which

they speak. In addition different specs sometimes disagree
in the structure of the same primitives. These standards

specify the logical interface.

MEDIA INDEPENDENT INTERFACE CONTROL DOCUMENT

+

i

I

Hardware

Specification
Section

V Standard

+ +

i VMEbus r

I Specification I
+

+

V Standard
4 +

I IEEE l-+

I 802.1-5 l I-+

I 802.7 I I I-+
-+ I I i

+ , I I
+ -+ I

+

i
i

Software

Specification
Section

I

I

Primitive

Specification
Section

I

+

V St andard

ISO ASN. 1 1

I I-+

i Encoding l

Mil ICD Program
MEDIA INDEPENDENTINTERFACE CONTROLDOCUMENT

Page 3
21 July 1987

These logical-specifications are further defined in this ICD

with the use of a canonical language. This canonical

language along with the physical and electrical

specifications called out in this document provide the final

binding required to make a working interface.

The structure of this standard is pictured above.

1.3 ABBREVIATIONS

ASN.I - Abstract Syntax Notation One

CPU - Central Processing Unit
DIS - Draft International Standard

ICD - Interface Control Document

ICI - Interface Control Information

IEEE - Institute of Electrical Electronics Engineers
ISO - Internation Standards Organization
LAN - Local Area Network

LLC - Logical Link Control
MAC - Media Access Control

MII - Media Independent Interface

OSI - Open Systems Interconnection
PDU - Protocol Data Unit

SDU - Service Data Unit

SM - Station Management

1.4 DOCUMENTS

ANSI X3T9/84-100 Fiber Distributed Data Interface (FDDI)

IEEE 802.1 (still draft) Network management

IEEE 802.2 or ISO 8802/2 Logical Link Control (LLC)
IEEE 802.3 or ISO 8802/3 Carrier Sense Media Access
(CSMA/CD)

IEEE 802.4 or ISO 8802/4 Token Bus

IEEE 802.5 or ISO 8802/5 Token Ring

IEEE 802.7 or ISO 8802/7 Slotted Ring
IEEE P1014/D1.0 VMEbus/ Signetics VMXbus

ISO DIS 8824 Specification of Abstract Syntax Notation

ISO DIS 8825 Basic Encoding for Abstract Syntax Notation
ISO 7498 ISO OSI Basic Reference Model

ISO 7498 DAD1 connectionless Data Transmission

ISO DP 7498/4 Management Framework
Sperry Report 2055-04 thru 2055-8

MII ICD Program Page 4
GENERAL 21 July 1987

2 GENERAL

The intent of the MII is to provide a universal interface to

one or more MACs for the Logical Link Controller and Station

Manager. This interface includes both a standardized

electrical and mechanical interface and a standardized

functional specification which define the services expected
from the MAC.

LP-

MII ICD Program
ARCHITECTURE

Page 5
21 July 1987

3 ARCHITECTURE

3.1 INTRODUCTION

Communication between computers has always been difficult

when a common design was not used for all the computers. It

has become necessary to provide a means whereby dissimilar
computers communicate. To supply that need IEEE created a

number of standards which could be built by different
designers and yet could pass information between them. The

information passed between them was also slightly dissimilar

in content and structure and again there was a need for

another standard. The International Standards Organization
(ISO) built a 7 layer model by which the control of

information passing could be standardized. The model
adopted the IEEE

first two layers of

lowest layer is

computers.

APPLICATION
+

PRESENTATION

SESSION

+

+

+

TRANSPORT

---+

NETWORK

DATA LINK

PHYSICAL
+

standards. These IEEE standards are the

a 7 layer implementation where the

the physical connection between the

I APPLICATION

PRESENTATION
+-

SESSION
+

TRANSPORT

NETWORK

DATA LINK
+

PHYSICAL
+

I

LAYERS

7

6

+

5

4

--+

3

+

2

+

1

Figure 1.0 The ISO OSI model

MII ICD Program
ARCHITECTURE

Page 6

21 July 1987

The IEEE standards used in this document are

lower two layers of the ISO OSI model above.

are sub-divided by the IEEE standards.

used in the

These layers

+ * 4

i LOGICAL LINK i I LOGICAL LINK

+=== _ <- the MII -> +-

i MEDIA ACCESS I split i MEDIA ACCESS
+ _ +

i PHYSICAL l ; PHYSICAL

+ _ +

I i

-__+

LAYERS

+

II

+ >2

ii

-+ /

I 1

-+

Figure 2.0 The IEEE Model

The IEEE committee realized the need to be able to use a

common Logical Link Control for several versions of the

Media Access and Physical layers. The IEEE standards

provide compatibility only on a logical level. They do not
describe the implementation. There are inconsistencies

between MACs. Some MACs provide more services than others.

This makes standardized interchanges difficult even on a

purely logical level. Finally the initialization and

maintenance of the MACs are considerably different which
complicates the matter further.

The purpose of the MII is to allow standard interchanges

between the MACs and the LLC. The interchanges requires a

Station Manager which can effectively operate the entire

selection of MACs. Fortunately they're all similar in their

management and all of them tend to operate without a lot of
external intervention.

MII ICD Program
ARCHITECTURE

Page 7
21 July 1987

3.2 HOW THE ARCHITECTURE WORKS

Two kinds of information must be passed in order to move

data between the LLC and MAC; the data to be shipped and
shipping instructions.

The instruction part of this information is called Interface

Control Information (ICI) and is layer to layer
instructions. It includes instructions as to where this

data can be found, its sender and receiver,, and its
quantity. The MII instructions are limited to a standard

set of primitives (MA_DATA.Request, MA DATA.Confirm,

MA_DATA.Indicate). These primitives and their effect are

defined in the IEEE standard. The specification is a

logical one and does not attempt to provide guidance as to
its implementation. In this ICD, the primitives have been

re-written in a standard syntax and encoding for

implementation clairification. Where primitive parameter

differences between MAC standards occur, the syntax provides

the layers an ability to default missing parameters and

ignore extra ones. If a LLC has the capability to use all
the services of a MAC, then the interface will allow it to

do so. If not, then it must depend on the non-optional
primitive parameters and rely on the MAC to default any
additional ones.

The Data information to be shipped is called the Protocol

Data Unit (PDU) and contains the original message and peer

to peer layer messages. Both the data and the peer layer

information has no direct effect on the operation of the
MII. It simply must be passed intact across it.

To provide a physical means to implement the above activity,

an architecture has been selected which can be supported
with an existing standardized bus. The architecture is as
follows;

MII ICD Program
ARCHITECTURE Page 8

21 July 1987

i MEDIA

i ACCESS

I CONTROL
^

+

I]

I I

+ - - -V V-

I

r

I

i J STATION I i LOGICAL i

i 1 MANAGER I i LINK i

t i _ i CONTROL i
^ ^ ^ ^

+ + + +.......... +

l F I I

I i I I

.V V -v V---+

I

COMMON MEMORY I

i

+

Figure 3.0 The Logical Model

This model does not restrict the MAC, SM and LLC except that
they must be able to access common memory in order to

communicate. Data flow is always directed through this
common memory element. If an implementation of the MAC has

its communication channel located on-board as locally and
globally decoded dual ported memory then it will have a
speed advantage. It will be able to read and write to this

part of the common memory with a local access and detect

global reads and writes via local interrupts. This

eliminates one of two parties from having to arbritrate for
the bus.

Each sending entity knows the address of the receiving

entity channel. Any time a entity wishes to pass
information to another entity, it simply writes the address

of the information into the receiver's channel (address).

If the receiving channel's memory location is decoded on

board, the receiving entity's physical device and the
pointer will be read with a local access.

Local decoding of the receive channel is not required. The

channels physical implementation is two valid memory

locations in common memory, which could be in regular memory
(i.e. as dual port memory or mapped to read/write

registers). Any standard CPU card with the ability to read

and write global memory, will be able to implement a
receiving channel.

JB-

MII ICD Program
ARCHITECTURE

Page 9

21 July 1987

+

t MEDIA

l ACCESS

l CONTROL
^ ^

+- + + +

t STATION t i LOGICAL

I l MANAGER f t LINK

i I i i CONTROL
--^- i -+ +--^- j---^---+ +__^_ ^

J i

i f

+--I I--+ l

i

+ l i.... +

I l---+

+ li

_V V

COMMON MEMORY ELEMENT

V

COMMON MEMORY MAP

--i i-- = Channel

\.... / = Data

Pool

/

_m-

Figure 4.0 The Data Flow Model

The MII data flow diagram shows that the MII is actually a

bus with channels of communication. The channels are two

sequential address locations mapped in the common (sometimes

called global) memory map. These address locations provide
the same hardware services that are found in standard VME

memory (i.e. long addressing, DTACK, Buserror, etc). The

first location is tested to see if the channel is busy. If

not then the address of data to be passed is written to the

second memory location. The entity receiving the date uses

the address as a pointer to the information stored in global

memory and subsequently resets the channel busy location.

The busy location is known as the channel semaphore.

The address passed via the channels is the Interface Control

Information (ICI). The ICI contains information as to the

location of Protocol Data Units (PDU). The ICI primitives

are described in the IEEE specifications and their syntax

and encoding structure is described in this document.

This MII architecture is implemented on a standard bus which

uses a multi-master architecture. It has various options,

all of which are allowable in the MII. The system designer

need only be concerned with the performance resulting from

his choices of entity designs and bus options. Choices such

as the size of the common memory available to the MAC for

PDUs are not restricted by the MII. The designer is free to

choose between MACs with any amount of on board buffering.

MII ICD Program
ARCHITECTURE Page 10

21 July 1987

There may be MAC designs which have no on-board buffers and

require the card to be set to preempt bus users when packets
arrive.

The only restrictions imposed by this MII ICD are the use of

VMEbus, enough common memory between users to implement the
channels and store ICIs and PDUs, and the use of the

standard primitive syntax as defined in this document.

3.3 MII HIGHLIGHTS

The MII solutions given in this ICD are the result of a

unique blend of advanced technology integrated with the ever

expanding world of standards. This integration is made

possible by the careful selection of the hardware platform
and specialized development of software interface

technology. The MII ICD is the product of a continuous

effort in the advancement of state of the art

communications. The feasibility of the MII ICD was

demonstrated by two fiber optics developments which have a

media bandwidth that exceeds most of current industry
implementations by a factor of ten.

Even more important is the MII ICDs unique ability to grow

with technology. Its method of information exchange was
explicitly developed and exercised to establish a decisive

interface. This interface was adapted to two disimilar

Media Access Controllers running at i00 M-bit/s in order to

illustrate its capacity to meet and exceed the needs of

custom and standard users alike. As the communication

industry realizes ever increasing sophistication in

communication functionality, the MII ICD will continue to

demonstrate its flexibility.

D-

MII ICD Program
ARCHITECTURE

Page 11
21 July 1987

The MII;

o

o

o

o

o

o

o

o

o

uses IEEE, ISO and VMEbus Standards,

is useable for both ground and flight systems,

provides complete interchangeability between MACs,

supports bridges, routers, and gateways,

allows changes in the LLC, SM, or MAC,

is expandable yet retains backwards compatibility,

does not interfere with upper layer software,

is standard mechanically, electrically, and

functionally,

and defines mechanical, electrical and functional

aspects.

dD-

MII ICD Program
ARCHITECTURE

Page 12

21 July 1987

3.4 SYSTEM REQUIREMENTS

A system supporting a MII must contain at least one VMEbus,

enough globally addressable memory and bus bandwidth to

allow operation of the LLC, SM, and MAC entities. At

minimum, the bus must have enough slots and capacity to

provide Master capacity for the VME card(s) containing the
MAC, SM and LLC entities.

MII ICD Program
ARCHITECTURE

Page 13
21 July 1987

I I

I I
I TRANSPORT [

I NETWORK I<-->

I layers I

I I
I I

I I

[LOGICAL LINK I

I CONTROLLER I

I _ I<-->1
I STATION I

I MANAGER I

t t

VMEbus

t

/ \
I ,
I I
I I
I<-->1

I
I
,t

I

I
I

<-->1

I
I
I

I

I
I

I<-->1
I I
I I
I i
I
I
/

PARALLEL

HOST

INTERFACE

I

I
I
I <-->HOST

I
I
I

COf_MON

MEMORY

t

I VMX

V

MEDIA

ACCESS

CONTROLLER I

I
I

MED IA

?

I

I

I

I<--

Figure 5.e Example Configuration

Selection of VMEbus options such as round robin arbitration

or priority arbitration is not limited by the MII and is up

to the system designer. These options are all allowable
providing all devices are consistent with the VMEbus

specification.

MII ICD Program
ARCHITECTURE

Page 14

21 July 1987

3.5 INTERFACE CONTROL SCOPE

The MII ICD was design to allow multiple cards for each

entity (MAC, LLC, SM) and multiple entities (LLC and SM) per

card. For example if a MAC design requires a large memory,

a second card can be used to support it. The addressing of

that card would have to be compatible with the whole system.

If mapping or speed is a problem, then the VMX bus might be

used. There are no restrictions along these lines.

The number of entities across the MII is not restricted.

The ability of the entities to respond or even recognize

different combinations of entities is left open for the

implementor. For instance the MII was designed to allow

multiple MAC entities per LLC. The interface will support

two or more LLCs with matching MACs. Multiple LLCs or SMs

per MAC is supported. The System designer is responsible,

for insuring that the devices are compatible and that

combinations and quantity are appropriate for the design.

The MII does not limit the design of any of the entities

except to insure that they can communicate in a known

manner. The MII contains an inherent flow control which

will eliminate overrun of MII interfaces. The sustained

data rate across the MII is limited only by the bandwidth of

the VMEbus and the size of memory allowed on the VMEbus.

Speed of the entities and their ability to effectively use

the bus is considered a system design issue beyond the scope

of the MII requirements.

MII ICD Program
ARCHITECTURE

Page 15
21 July 1987

3.6 MECHANICAL AND ELECTRICAL

The MII relies on the VMEbus and VMX specification to

provide the electrical and mechanical platform on which MII

resides. VMX interface is allowed to enhance system
performance. It is considered an extension of the VMEbus

and the MII devices must conform to the same MII

requirements whether a VME or VMX operation is being
performed.

The following is not specified or limited by the MII;

O

O

O

O

O

O

Bus addressing and priority,
physical slot location,

the number of physical cards,

the division of functionality between cards,

the amount of memory,

the use of DMA processors and support devices.

MII ICD Program
ARCHITECTURE Page 16

21 July 1987

3.7 SOFTWARE

The software aspect of the MII is a virtual interface. The
MII users are configured to recognize other MII entities by
addresses only. Entities using the MII are made aware of
the other devices addresses either by mechanical means (dip
switches, proms, etc) or by software interaction.

The Station Managers role is to provide information to the
LLC and MAC which will allow operation in the system
environment. In a typical software environment memory
allocation is controlled by the operation system. The
memory used by MII users is allocated by the Station Manager
and given to the users via the MII ICD method. This avoids
standardizing an operating system just to assure correct
memory usage. In addition to common memory allocation to
MII users, the Station Manager provides addresses to the.
user entities which indicate channel locations. Each MII
user entity has the capacity to receive initialization
information upon startup according to the MII prescribed
method.

The MII transfers information by passing pointers to data
structures located in common memory. The MAC has two
receive channels to receive the pointer addresses from the
Station Manager and LLC. The LLC and SM have a single
receive channel each to receive pointer addresses from the
MAC. Receiving channels beyond these required ones are not
defined by the MII ICD and are beyond its scope.

Transmitting occurs only after a non-interrupting test and
set is made of the channel semaphore location and ownership
to use the channel is established. The entire transmission
involves a write of a single long word address into the
memory location following the semaphore (semaphore_address +
1 (long address)). These locations are shown in figure 7.0.
See the VMEbus Specifications for address length
definitions. The logical flow of access to a receive
channel is diagramed as follows;

MII ICD Program
ARCHITECTURE Page 17

21 July 1987

I<

I

V

Test @ Set receiver

i Semaphore

I

I

V
^

/ \

/Was\

/ bit \

/already\
\ set /
\ e /

\ /

\ /

V

+

I

I

yes, channel in use

>+

I No, Channel was not in use
V

+---- +

J Write pointer address I

I into location following i

t the semaphore address J
+-- __ _+

I

I

V access completed,

Semaphore is reset by receiving entity
when it is ready for more.

Figure 6.0

D

SETTING THE SEMAPHORE BIT

The VMEbus provides a read-modify-write capacity which

should be used to implement the channel semaphore. The MII

ICD requires the use of the semaphore in order to allow
multiple users to access the same channel and avoid

collisions. To give an example, if there are two parts of

the LLC which have the ability to use a single MAC channel,
then the owner of the channel must be established before it

can be used. Otherwise both might attempt to use the

channel at the same time. Any time one or more asynchronous
devices wish to share a channel this decision must occur.

MII ICD Program

ARCHITECTURE
Page 18

21 July 1987

The winner of the right to own the channel is given to the

one who first test and sets a bit within the confines of a

single bus access. This bit is a semaphore bit and is

called the channel busy bit. Each user tests the busy bit.

If the test indicates that the channel is not busy then it

sets the channel busy and uses it. The read-modify-write

bus cycle is used because a problem may arise if two devices

or entities test the busy bit at the same time before either

has had the chance of setting it. Both would think that it

was the owner of the channel. If the bit is tested and then

set in a single non-interrupting bus access then no other

device can test at the same time. Since it was tested and

set in the same operation then a false indication says that

it was previously not set and your the one who set it,

therefore your the unique owner. The loser will test the

bit as true, meaning the bit was previously set and it

simply set it again. The Test-and-Set (68000) instruction,

has been used as an example because it typically causes the

read-modify-write cycle on the VMEbus. It is not the only

method which will insure proper semaphore testing.

RESETTING THE SEMAPHORE BIT

The MII channels are virtual interfaces and its actual

implementations are transparent to the users. The detection

and reset of the Semaphore bit is not specified by the MII

and is left to the designer of the receiving entity. The

MII allows the channel locations to be anywhere in the

common memory map and therefore allows the designer to

provide on board decoding of the semaphore location and its

associated pointer. Such an implementation would appear to

the MII bus as simple memory locations, but actually could

be local memory and access might result in a local

interrupt. The receiving channel could be located on a

standard memory card and the semaphore bit polled by the
receiving entity. To avoid the receiver and transmitter

interleaving access to the channel, the address following

the semaphore location could contain a pointer to itself.

When the pointer is overwritten then the location can be
considered valid.

The receiving entity is expected to reset the busy bit after

it no longer needs the address passed to it.

The address passed to the receiver is a pointer to a record.

This record will contain another address to another record

like itself. When each record points to another record, it

is referred to as a linked list. The last link in the list

points to itself. Each record contains information written

in a format as described in the Encoding section of this

MII ICD Program
ARCHITECTURE

Page 19
21 July 1987

document.

The channels are shown below:

MII ICD Program
ARCHITECTURE

r-,_'_TA_ PAGE LB.

OF POOR QUA_
Page 20

21 July 1987

SM Memory Map

I I

MAC_ROY I semaphore bitl

I I
MAC_REC { MAC_REC ptr I

t I

LLC Memory Map

I I

MAC RDY J semaphore bitJ

I I
MAC_REC [MAC_REC ptr I

I I

MII

SM_RDY bit

SM_REC ptr

LLC_RDY bit

LLC_REC ptr

MAC Memory Map

semaphore bit

link ptr

semaphore bit

link ptr

Figure 7.0 MII Memory Maps

MAC Memory Map Descriptions

SM_RDY bit " - SM test this bit before writing into SM_REC

SM_REC ptr - SM writes pointer to link list of SM commands.

LLC_RDY bit

LLC_REC ptr

- LLC test this bit before writing into LLC_REC

_ LLC writes pointer to link list of LLC ICI

primitives.

LLC Memory Map Descriptions

MAC_RDY bit

MAC_REC ptr

- MAC test this bit before writing into MAC_REC

in the LLC memory map.

- MAC writes pointer to link list of MAC

ICI primitives.

SM Memory Map Descriptions

MAC_RDY bit

MAC_REC ptr

- MAC test this bit before writing into MAC_REC

in the Station Manager memory map.

- MAC writes pointer to link list of MAC

ICI primitives.

MII ICD Program
ARCHITECTURE

Page 21
21 July 1987

3.8 SYNTAX-

The common set of primitives to be used by MII are described

with a syntax which is itself a standard. This standard is
ISO 8824 ASN.1. The primitives and encodings are shown in

the Primitive Syntax and Encoding section of this document.

The primitives between the MAC and the LLC are rigidly
defined and are common between the different MAC standards.

The primitive descriptions were structured in such a way as
to take advantage of useful options in the MACs (i.e.

priorities, linking, etc) and to allow for future growth

3.9 ENCODING

The encoding used in the MII ICD can be found in ISO 8825°

ASN.I encoding. It is the ISO OSI standard encoding for the

ASN.I syntax. This encoding for ASN.I has been adopted for
the MII because it is an established and well known

standard. As encoded, the MII primitives have been

optimized for size and complexity. The encoding includes

length bits which are only useful to the MII when there is
confusion as to the quantity of information embedded in a

single primitive.

MII ICD Program

ARCHITECTURE

Page 22

21 July 1987

3.10 CHANNEL RULES

A channel consist of two locations mapped to memory which is

common to all entities on the MII. Both locations will be

supported globally as read/write memory locations. The

first location is the semaphore location and the second

location is the Link location. Both address locations will

respond to Lon_ addressing as specified in the VMEbus

specification. The Rules for channel operation are simple;

I) To use a channel; A non-interrupting test and set of the

semaphore bit must be performed before each access to the

location which follows it. This bit must test as not set

before the set bus cycle occurs in order to claim access to

it. In no other case can a write be made to the location

following the semaphore.
w

2) The semaphore bit to be tested is the high order bit of a

the lowest order byte as defined in the VMEbus

specification. The bus access must be a read-modify-write

bus cycle and is left to the implementer as to how the cycle

is invoked (such as a Test & Set with a 68k series CPU).

3) A bus write of the location following the semaphore

location will be supported as a normal VMEbus memory access

(DTACK or BUSerror). Indiscriminate reads may not provide

accurate answers. Once written to, ownership of the channel

is no lon_er valid and the location may be overwritten by

the receiving entity. Transmittin_ entities should consider

it a write only location.

4) After a successful claim to the channel as outlined in

item I, a SINGLE write is allowed to the link location. The

information written is to be an address where a MII record

can be found. After writing it, item 1 must be repeated

before the channel can be accessed again.

MII ICD Program
ARCHITECTURE

Page 23

21 July 1987

3.11 PRIMITIVES

3.11.1 MAC/LLC PRIMITIVES -

3.11.1.1 COMMANDS -

The LLC Interface supports MA_DATA request and confirms and

MA_DATA indication and MA_DATA.indi acks. Details of these

commands are described in the IEEE 802.3 and IEEE 802.2

documents. A brief explanation follows;

MA DATA.REQUEST

{ DESTINATION_ADDRESS, M_SDU, DESIRED_QUALITY }
w

This command comes from the LLC to the MAC and represents a

request to ship the data pointed to by the M_SDU to the
station at address DESTINATION_ADDRESS using a level of

quality of DESIRED_QUALITY. The MAC is expected to respond

with the followin_ command;

MA_DATA.CONFIRMATION

{ QUALITY, STATUS }

This command from the MAC to the LLC will indicate to the

LLC that the data previously requested to be shipped has

been sent.

MA DATA.INDICATION

{ DESTINATION_ADDRESS, SOURCE_ADDRESS,

M_SDU, QUALITY }

This command from the MAC to the LLC will indicate to the

LLC that data located at pointer M_SDU from the station

SOURCE_ADDRESS was sent to DESTINATIONADDRESS (needed to

identify when a _roup address is used) with a QUALITY of

service. The MAC expects the LLC to overwrite the

MA_DATA.INDICATION with the MA_DATA.INDI_ACK thus allowin_

it to release the message buffer.

MA_DATA.INDI_ACK

{ STATUS)

This command from the LLC to the MAC will indicate to the

MAC that the LLC has no more use for the indicate message

buffer.

MII ICD Program
ARCHITECTURE

Page 24

21 July 1987

3.11.1.2 SYNTAX -

The LLC communicates to the MAC across the MII. The syntax

is written according to Abstract Syntax Notation One or

ASN.I (ISO DIS 882@). The information described is encoded

to the basic coding rules as found in ASN.I (ISO DIS 8825).

MII ICD Program

ARCHITECTURE

O_]GINAL ?_IGZ IZ

OE 9_<)OR QUAL_
Page 25

21 July 1987

Message_record _:= [PRIVATE e] CHOICE

ma_data_request [0] Me_request_type I

ma_data_confirm [1] Ma_confirm_type I

me_data_indicate [2] Me_indicate-type J

ma_indi_ack [3] Ma_indi_ack_type I

Me request_type ::= SET

destination_address [0] Net_address_type

M_SDU [1] M_SDU_type

requested_Ser_class [2] Req_ser_type

frame_control [3] Frame_con_type

stream [4] Stream_type

link_list

token_class

(optional)

(optional)

[5] Link_list_type (optional)

[6] Token_class_type (optional)

Me_indicate-type ::= SET

destination_address [0] Net_address_type

source_address [1] Net_address_type

M_SDU [2] M_SDU_type

reception_status [3] Rec_status (optional)

requested_Ser_class [4] Req_ser_type (optional)

frame_control [5] Frame_con_type (optional) ,

link_list [6] Link_list_type (optional)

-- The optional parameters hove a default value.

Me_confirm_type ::= SET

transmit_status

provided_ser_class

number_of_sdu_links

link_list

[0] Tron_status

[1] Provided_ser_type (optional),

[2] Number_of_sdu (optional),

[3] Link_llst_type (optional)

Ma_indi_ack_type ::= SET

indi_status [g] Integer, -- 1 = good 0=- not accepted

link_list [2] Link_list_type (optional)

Net_address_type ::= CHOICE

net_add_16 Value_integer_l, -- 16 bit address option

net_add_48 Value_integer_48 p 48 bit address option

M_SDU_type ::= SET

SDU_PTR [0] Address,

SDU_SIZE [1] INTEGER,

buff_num [2] INTEGER

MII ICD Program

ARCHITECTURE

Page 26

21 July 1987

Req_ser_type ::= SET

priority [0]

response [1]

quality_of_ser [2]

INTEGER (optional)

INTEGER (optional) -- ack = 1

INTEGER (optional)

Provided_ser_type ::= SET

priority [g] INTEGER (opt anal

response [1] INTEGER, (opt Gnat

quality_of_ser [2] INTEGER (opt anal

-- ack = 1

!

Indi_ack_type ::= SET

indi_ack_status Ack_status

Frame_con_type ::= SET)t --TBD 2 octets, see FDDI 5.4.1

Link_list_type ::= SET)Address}

Stream_type ::= SET)INTEGER} -- 1= multiple M_SDUs xmitted

See FDDI

Token_class_type ::= SET)INTEGERI --TBD

Rec_status ::= CHOICE

status [0] INTEGER -- 1 = good, all else bad.

Tran_status ::= CHOICE

status [0] INTEGER -- 1 = good, all else bad.

Number_of_sdu ::= CHOICE tlNTEGER} -- Number of M_SDUs

transmitted

PQge 27
MII ICD Progrom

ARCHITECTURE 21 July 1987

3.11.2 STATION MANAGER -

3.11.2.1 COMMANDS -

The Station manager sends invoke commands to the MAC and the

MAC responds with a reply response. The pairs which follow
are first station manager command followed by the MAC

response.

SM MAC_LM SET VALUE.INVOKE

SM_MAC_LM SET VALUE.REPLY

SM MAC LM_GET VALUE.INVOKE

SM_MAC_LM_GET_VALUE.REPLY

SM MAC_LM_COMPARE_AND_SET_VALUE.INVOKE

SM_MACLMCOMPARE_AND_SET_VALUE.REPLY

SM MAC ACTION VALUE.INVOKE

SM_MAC ACTION VALUE.REPLY

The Station manager can set an event mask which

MAC to report events without a direct request.

initiate a NOTIFY and expects a REPLY from

response.

SM MAC EVENT VALUE.NOTIFY

SM_MACEVENT_VALUE.REPLY

allows the

The MAC can
the SM in

MII ICD Program
ARCHITECTURE

Page 28

21 July 1987

COMMAND DESCRIPTIONS

SM_MAC LM_SET VALUE.INVOKE

{ PARAMETER_TYPE, ACCESS_CONTROL_INFO }

The objective of the SM MAC_LM_SET_VALUE.INVOKE command by

the SM is to set a value in the MAC as defined by the

parameter_type structure. This structure specifies both the

variable to be set and the value to which it is set.

SM_MAC_LMSET_VALUE.REPLY

{ STATUS)

The objective of the reply by the MAC to the SM is to

indicate the success or failure of a previous,

SM MAC_LM_SET_VALUE.INVOKE. The SM expects the MAC to

overwrite the SM MAC LM_SET_VALUE.INVOKE with the

SM_MAC_LM_SET_VALUE.REPLY thus allowing the SM to release

the message buffer.

SM_MAC_LM_GET_VALUE.INVOKE

I PARAMETER_TYPE, ACCESS_CONTROL INFO }

The objective of the SM_MAC_LM_GET_VALUE.INVOKE command by

the SM is to get a value in the MAC as defined by the

parameter_type structure. This structure specifies the

variable to be read.

SM_MAC_LM_GET_VALUE.REPLY

{ PARAMETER_TYPE, STATUS }

The objective of the reply by the MAC to the SM is to

indicate the success or failure of a previous

SM_MAC_LM_GET_VALUE.INVOKE. The SM expects the MAC to

overwrite the SM_MAC_LM_GET_VALUE.INVOKE with the

SM_MAC_LM_GET_VALUE.REPLY thus allowing the SM to release

the message buffer.

SM_MAC_LMCOMPARE_AND_SETVALUE.INVOKE

I PARAMETER TYPE,

OPERATION_COMMAND,

ACCESS CONTROL_INFO }

W

f

MII ICD Program
ARCHITECTURE

Page 29
21 July 1987

The Compare-and Set value command forces the MAC to do a

comparison (of either a given constant or of a MAC variable)

against a MAC variable. If the comparison is true then the
MAC variable is over written. The PARAMETER_TYPE indicates

the parameter to be over written and the value to use. The
OPERATION_COMMAND structure specifies the comparison to do,

and the constant or MAC variable to use in the comparison.

SM_MAC_LM_COMPARE_AND_SET_VALUE.REPLY

{ STATUS, RETURN_VAL }

The objective of the reply by the MAC to the SM is to
indicate the success or failure of a previous

SM_MAC_LM_COMPARE_AND_SET_VALUE.INVOKE. The SM expects the
MAC to overwrite the SM_MACLM_COMPARE_AND_SET_VALUE-INVOKE

with the SM_MACLM_COMPARE_AND_SET_VALUE-REPLY thus allowing

the SM to release the message buffer.

SM_MAC_ACTION_VALUE.INVOKE
{ PARAMETER_ID, ACCESS_CONTROL_INFO }

The objective of the SM_MAC_ACTION_VALUE.INVOKE command by
the SM is to force a MAC operation in the MAC as defined by

the parameter_ID structure. This structure specifies the

action to be performed.

SM_MAC_ACTION_VALUE.REPLY
{ STATUS, ACTION_REPORT }';

The objective of the reply by the MAC to
indicate the success or failure of

SM_MAC_ACTION_VALUE.INVOKE • The SM expects
overwrite the SM_MAC_ACTION_VALUE.INVOKE

SM MAC_ACTION_VALUE.REPLY thus allowing the SM

the message buffer.

the SM is to

a previous
the MAC to

with the

to release

MAC_SM_EVENT_VALUE.NOTIFY

{ EVENT_ID }

The objective of the MAC_SM_EVENT_VALUE.NOTIFY command by
the MAC is to report a event which has occurred in the MAC

as defined by the EVENT_ID structure. This structure

specifies the Event and an integer. These events can be

masked by setting the EVENT MASK variable.

MII ICD Program
ARCHITECTURE

Page 30
21 July 1987

MAC_SM_EVENT_VALUE.REPLY
{ STATUS }

The objective of the following reply by the SM to the MAC is
to indicate the success or failure of a previous
MAC SM EVENT_VALUE.NOTIFY. The MAC expects the SM to
overwrite the MAC_SM_EVENT_VALUE.NOTIFY with the
MAC_SM_EVENT_VALUE.REPLYthus allowing the MAC to release
the message buffer.

MII ICD Program
ARCHITECTURE Page 31

21 July 1987

3 .11 •2 .I .I I EEE 882 .3 SM MANAGEMENT -

See the IEEE 882 specifications for actual meanings. Some

parameters hove additional explanations. Specific

implementations may have differences and the Station Manager

must be able to resolve them. This set is taken tram the

IEEE 8e2 document and some implementations may not provide

all the variables, however in such a case implementations

will respond with a proper status (non-compl once or error,

etc).

Additions may be made so -as to support future changes

providing that only new additions are made Togs found in

this standard may not be modified. New ones may be created

and added as optional parameters.

071Z(-_Z_rAZS-Pf_CE TS

OF _OOF. QUZd,ZTZ

MII ICD Program

ARCHITECTURE

Page 32

21 July 1987

READ_WRITE_VALUE_TYPES ::= CHOICE

[0] Mac_type

[1] Memory

[2] Slot_time

[3] Inter_frame_gap

[4] Attempt_limit

[5] Back_off_limit

[6] Jam_size

[7] Max_frame_size

[8] Min_frame_size

[9] Address_size

[le] Event_enable_mask

[11] Ma_group_address

[12] Ts

I

Memory ::= SEQUENCE

) ici_mem_link [0] Mem_block, -- list of free ICl blocks

pdu_mem_link [I] Mem_block -- list of free PDU blocks

Mem_block ::= SEQUENCE

block_size INTEGER, -- size of each block

block_ptr Address -- pointer to f rst word in block

Ts := Value_address_l

This variable represents the address of this station.

Slot_time ::= Value_integer_1

This variable represents the slot time of this station. This

is the maximum time this station must wait on another

station to respond to o transmission.

Event_enable_mask ::= Event_enable_bits

Event_enable_bits ::= BIT STRING

Iow_ici_mem (0)

Iow_pdu_mem (1)

duplicate_address (2)

faulty_transmitter (3)

xmit_queue_threshold exceeded (4)

receive_queue_threshold_exceeded (5)

watch_dog_timeout (6)

maxretry_encountered (7)

MII ICD Program Page 33

ARCHITECTURE 21 July 1987

bad_message_sent

t
-- Where 1

(8),
s enabled

The MAC will report events when d scovered and the

appropriate bit is set in the MASK above. The event is

reported only once whenever the actual occurrence is

detected.

=,
MII ICDProgram
ARCHITECTURE

Page34
21July 1987

Attempt_limit ::_ Value_integer_l

Ma_group_address::= SEQUENCE
address_no INTEGER,
group_add Value_address_l

TheMACcan respondto a list of groupaddresses.This is
the methodfor the Station Managerto tell the MACwh ch

addresses are acceptable. The collection of valid group

addresses can be thought of as an array where ADDRESS_NO is

the index into the array and the GROUP_ADD is the actual

address. This command will set this address as part of the

group addresses (unless there all used up). Different

implementations may limit the size of the array.

Mac_type ::= e3h

This variable is a read only variable and indicates which

version of MAC s responding.

Inter_frame_gap ::= Value_integer_l

Back_off_limit := Value_integer_l

Jam_size ::= Vo ue_integer_l

Max_frame_size ::= Value_integer_l

Min_frame_size ::= Value_integer_l

Address_size ::= Value_integer_l

Status_type ::= CHOICE

undefined_error [0]

success [1]
refuse_to_comply [2]

not_supported [3]

error_in_perfor [4]

not_available [5]

bad_parameter_id [6]

bad_parameter_operation [7]

bad_parameter_value [8]

bad_expected_value [9]

Va ue_integer_l

Va ue_integer 1

Va ue integer_l

Va ue integer_l

Vo ue_integer_l

Vo ue_integer_l

Va ue_integer_l

Vo ue_integer_l

Va ue integer_l

Vo ue_integer_l

MII ICD Program Page 35

ARCHITECTURE 21 July 1987

These are responses to a command indicating the status of

the command. Following are expected uses of these responses;

undefined_error - Request was not understood or no

appropriate error message available.

success - A successful operation has been completed.

refuse_to_comply - The operation was impossible or illegal.

not_supported - The operation is not supported or

recognized.

error_in_perfor - A error was encountered

during operation.

not_available - Information is not yet

available.

bad_parameter_id - Parameter ID was not

recognized.

bad_parameter_operation - Operation requested

was not recognized

bad_parameter_value - The Parameter

value was bad.

bad_expected_value - The expected value was

illegal.

Event_types ::= IMPLICIT SEQUENCE

event_class Event_class_types

Event_class_types ::= CHOICE

local [0] Event_identifier_types

remote [1] Event_identifier_types

Events in this implementation ore always LOCAL (as opposed

to events that occurred in a remote node),

Event_identifier types ::= CHOICE

low ici_mem

low_pdu_mem

duplicate_address

faulty_transmitter

xmit_queue_threshold_exceeded

receive_queue_threshold_exceeded

watch_dog_timeout

max_retry_encountered

bad_message_sent

[e] Value_address_l

[1] Volue_address_l

[2] VALUE_INTEGER_I

[3] VALUE_INTEGER_I

[4] VALUE_INTEGER 1

[5] VALUE_INTEGER_I

[6] VALUE_INTEGER_I

[7] VALUE_INTEGER_I

[8] Value_address_l

MII ICD Program

ARCHITECTURE

OF FOOR QUAM_'P[

Page 36

21 July 1987

These events are-reported upon the discovery of the

following conditions;

tow_ici_mem - Flagged when the MAC detects it has or

is running out of ICI memory blocks.

Iow_pdu_mem - Flagged when the MAC detects it has or

is running out of PCI memory blocks.

duplicate_address -

faulty_transmitter -

xmit_queue_threshold_exceeded -

receive_queue_threshold_exceeded - Flagged when the MAC

cannot get buffer

space for incoming

data.

watch_dog_timeout - Flagged if the hardware watch dog

timer expires.

max_retry_encountered - Flagged when a the max retry is

encountered.

bad_message_sent -Flogged when the MAC discovers a message

which does not agrees with its indicated

structure size (i.e. bad length field).

Action_value_types ::= CHOICE

{ reset [g] Value_integer_l

OPERATION_C_ND_TYPES ::= CHO]CE

test<< [e] READ_WRITE_VALUE_TYPES

test_>> [1] Read_write_value_types

test_= [2] Read_write_value_types

test_<> [3] Read_write value_types

test_<= [4] Read_write_value_types

test_>= [5] Read_write_valuetypes

<<_given_constant [6] Given

>>_given_constant [7] Given

=_given_constant [8] Given

<>given_constant [9] Given

<=_given_constant [le] Given

>=_given_constant [11] Given

The above operations expects a variable (we'll call vorl) to

be internal. The complete structure includes either a

variable or constant which we'll call var2. The constant is

used to overwrite Varl in case the operation test true so in

the case of two internal vors being tested o constant is

MII ICD Program Page 37

ARCHITECTURE 21 July 1987

also passed in. Zhe above operation commands imply the

following:

MII ICD Program

ARCHITECTURE

Page 38

21 July 1987

test_<< - f vaF1 << vat2 then varl=constant

test_>> - f varl >> vat2 then varl=constant

test_= - f varl = vat2 then varl=constant

test_<> - f varl <> var2 then varl=constant

test_<= - if vat1 <= vat2 then varl=constant

test_>= - if vat1 >= ver2 then varl=constant

<<_given_constant -

>>_given_constant -

=_given_constant -

<>_given_constant -

<=_given_constant -

>=_given_constant -

f varl << constant then varl=constant

f varl >> constant then varl=constant

f varl _ constant then varl=constant

f vat1 <> constant then varl=constant

f varl <= constant then varl=constant

f varl <= constant then varl=constont

Varl is a MAC parameter to be tested (internal). Its value

is always returned along with a status. Var2 is a MAC

parameter (internal) or o constant (external) used in the

comparison of Varl (internal). Varl always refers to o

variable located in the MAC. Var2 is either located in the

MAC (a compare of two internal variables) or as a constant

(external) passed in. In all cases a true test forces Varl

to be a external constant.

Constant ::= Volue_integer_l

Value integer_l ::= IMPLICIT Long_word

Value_address_l ::= IMPLICIT Long_word (32 BITS)

Value_address_16 ::= IMPLICIT ARRAY OF 16 Long_words

(32 BITS EACH)

MII ICD Program Page 39

ARCHITECTURE 21 July 1987

3.11.2.1.1.1 SYNTAX -

STATION MANAGER INTERFACE SYNTAX

The station manager oommunioates to the MAC aoross the MII.

The syntax of suoh oommunioation is desoribed below

aooording to Abstraot Syntax Notation One or ASN.1 (ISO DIS
8824). The information described is enooded to the basio

ooding rules as found in ASN.1 (ISO DIS 8825). Some sample
reoords follow the syntax notations.

MII ICD Program
ARCHITECTURE 21

Page 40
July 1987

3.11.2.1.1.2 _ORMAL SYNTAX SPECIFICATION -

Message_record ::= [PRIVATE 0] CHOICE

[e] Sm_mac_lm_set_value.invoke

[1] Sm_moc_lm_set_vatue.reply

[2] Sm_mac_lm_get_value.invoke

[3] Sm_mac_lm_get_value.reply

[4] Sm_mac_lm_compare_and_set_value. invoke

[5] Sm_mac_lm_compare_and_set_value.reply

[6] Sm_moc_action_value.invoke

[7] Sm_mac_action_value.reply

[8] Sm_mac_event_value.notify

[9] Sm_mac_event_value.reply

Sm_mac_lm_set_value.invoke ::= iMPLiCIT SEQUENCE

parameter_type Read_write_value_types ,

access_control_info NULL

Sm_mac_lm_set_volue.reply ::= IMPLICIT SEQUENCE

Return_val Read_write_value types,

status Status_type}

Sm_mac_Im_get_value. invoke ::= IMPLICIT SEQUENCE

Parameter_type Read_write_value_types ,

access_control_info NULL }

Sm_mac_Im_get_value.reply ::= IMPLICIT SEQUENCE

Parameter_type Read_write value_types ,

status Status_type

Sm_mac_lm_compare_and_set_value. invoke ::= IMPLICIT SEQUENCE

parameter_type Dummy_rw_types,

operation command Operation_command_types,

access_control_info NULL

Sm_mac_lm_compare_and_set_value.reply ::= IMPLICIT SEQUENCE

return val Read_write_value_types,

status Status_type

Sm_moc_action_value. invoke ::= IMPLICIT SEQUENCE

porometer_id Action_value_types ,

occess_control_info NULL_

Sm_mac_oction_value.reply ::= IMPLICIT SEQUENCE

status Status_type,

action_report NULL

MII ICD Program

ARCH I TECTURE

,% J:;"C;';2_. :..- Z

Page 41

21 July 1987

Mac_sm_event_value.notify ::: IMPLICIT SEQUENCE

Event_id Event_types }

Mac_sm_event_value.reply ::= IMPLICIT SEQUENCE

Status Status_type

Read_write_value_types ::= CHOICE

| [0] Mac_type

[1] Memory

[2] Slot_time

[3] Inter_frame gap

[4] Attempt_limit

[5] Back_off_limit

[6] Jam_size

[7] Max_frame_size

[8] Min_frame_size

[9] Address_size

[10] Event_enable_mask

[11] Ma_group_address

[12] Ts

Oummy_rw_types ::=

mac_type

slot_time

inter_frame_gap

attempt_limit

back_off_limit

jam_size

max_frame_size

min_frame_size

address_size

event_enable_mask

me_group_address

ts

I

CHOICE

[e]
[2]
[3]
[4]
[5]
Is]
[7]
[8]

Va ue_integer_l

Va ue_integer_l

Va ue_integer_l

Vo ue_integer_l

Va ue_integer_l

Va ue_integer_l

Va ue_integer_l

Value_integer_l

[9] Value integer t

[10] Volue_integer_l

[11] Value_integer_l

[12] Volue_oddress_l

Memory ::= SEQUENCE

{ ici_mem_link [0] Mem_block, _ list of free ICl blocks

pdu_mem_link [1] Mem_block • _ list of free PDU blocks

!

Mem_block ::= SEQUENCE

| block_size INTEGER. _ size of each block

block_ptr Address -- pointer to first word

!
in block

MII ICDProgram
ARCHITECTURE

_,_I_j._ - ,_.._

Page 42

21 Ju y 1987

Ts ::= Value_address_l

Ns ::= Volue_address_l

Slot_time ::= Value_integer_l

Event_enable_mask ::= EVENT_ENABLE_BITS

Ma_group_address ::= SEQUENCE

Address_no INTEGER,

Group_add Value_address_l

I

Mac_type ::= 03h

Status_type ::= CHOICE

undefined_error [0]

success [I]
refuse_to_comply [2]

not_supported [3]

error_in_prefor [4]

not available [5]

bad_parameter_id [6]

bad_parameter_operation [7]

bad_parameter_value [8]

bad_expected_value [9]

Value_ nteger_l

Value_ nteger_l

Va ue_ nteger_l

Vo ue_ nteger_l

Va ue_integer_l

Va ue_integer_l

Vo ue_integer_l

Va ue_integer_l

Va ue_integer_l

Vo ue_integer_l

Event_types ::= IMPLICIT SEQUENCE

event_class Event_class_types

Event_class_types ::= CHOICE

local [e] Event_identifier_types

remote [1] Event_identifier types

Event_identifier_types ::= CHOICE

Iow_ici_mem [e]

Iow_pdu_mem [1]

duplicateaddress [2]

faulty_transmitter [3]

xmit_queue_threshold_exceeded [4]

receive_queue_threshold_exceeded [5]

watch_dog_timeout [6]

max_retry_encountered [7]

bad_message_sent [8]

Value_integer_l

Value_integer_l

Value integer_l

Value_integer_l

Value_integer_l

Value_integer_l

Volue_integer_l

Value_integer_l

Value_oddress_l

Event_enable_bits ::= BIT STRING

Iow_ici_mem (e),

Iow_pdu_mem (1),

duplicate_address (2),

faulty_transmitter (3),

MII ICD Program

ARCHITECTURE

...._ QUALITY_OOR

21

Page 43

July 1987

xmit_queue_threshold_exceeded (4),

receive_queue_threshold_exceeded (5).

watch_dog_timeout (6),

max_retry_encountered (7),

bad_message_sent (8) s enabled

Action value_types ::= CHOICE

reset [0] Value_integer_l

Operation_command_types :

ttest_<<

test_>>

test__

test_<>

test_<=

test_>=

<<_g yen_constant

>>_g yen_constant

=_g yen constant

<>_g=ven_constant

<=_given_constant

>=_given_constant

:= CHOICE

[0] Dummy_rw_types

[1] Dummy_rw_types

[2] Dummy_rw_types

[3] Dummy_rw_types

[4] Dummy_rw_types

[5] Dummy_rw_types

[6] Given

[7] Given

[8] Given

[9] Given

[le] Given

[11] Given

Given ::= CHOICE

[0] Value_integer_l

[1] Volue_oddress_l

Constant ::= Value_integer_l

Vatue_integer_l ::= IMPLICIT INTEGER

Value_address_l ::= IMPLICIT Long word (32 BITS)

Value_oddress_16 ::= IMPLICIT ARRAY OF 16 Long_words

(32 BITS EACH)

MII ICD Program
ARCHITECTURE

Page 64
21 July 1987

3.11.2.1.2 -IEEE 802.4 SM MANAGEMENT -

See the IEEE 802 specifications for actual meanings. Some

parameters have additional explanations. Specific

implementations may have differences and the Station Manager
must be able to resolve them. This set is the is taken from

the IEEE 802 document and some implementations may not

provide a variable, however in such a case all

implementations will respond with a status (non-compliance
or error, etc).

Additions may be made so as to support future changes

providing that only new additions are made. Tags found in

this standard may not be modified. New ones may be created

and added as optional parameters.

MII ICD Program

ARCHITECTURE

Page 45

21 July 1987

Read_write_value_types ::=

[0] Mac_type

[1] Memory

[2]

[3]

[4]

[5]

[6]

[7]

CHOICE

[8]
[9]
[10]
[11]
[12]
[13]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]

Slot_time

Hi_pri_token_hold_time

Max_ac_4_rotation_time

Mox_ac_2_rotation_time

Mox_oc_O_rotation_time

Mac_ring_maintenance_rotation_time

Ring_maintenance_timer_initial_value

Max_inter_solicit_count

Min_post_silence_preemble_length

Event_enable_mask

Max_retry_limit

Ma_group_oddress

Channel_assignments

Transmitted_power_level_adjustment

Transmitted_output_inhibits

Received_signal_sources

Signaling_mode

Received_signal_level_reporting

Lan topology_type

Ts

Ns

Memory ::= SEQUENCE

ici_mem_link [0] Mem_block, -- list of free ICI blocks

pdu_mem_link [1] Mem block -- list of free PDU blocks

Mem_btock ::= SEQUENCE

block_size INTEGER, -- size of each block

block_ptr Address _ pointer to first word in block

Ts ::= Volue_oddress_l

This variable represents the address of this station.

Ns ::= Value_address_l

This variable represents the address of the next station.

Slot_time ::= Volue_integer_l

Hi_pri_token_hold_time ::= Value integer_l

Mox_oc_4_rotation_time ::= Volue_integer_l

M]I ICDProgram Page46
ARCHITECTURE 21July 1987

Mox_ac_2_rotation_time ::= Value integer_1

Max_ac_g_rotation_time ::= Value_integer_l

Mac_ring_maintenance_rotation-time ::= Value_integer_l

Ring_maintenance_timer_initial-value ::= Value_integer_l

Max inter_solicit_count ::= Value_integer_l

Min_post_silence_preamble_length ::= Value_integer_l

In_ring ::= Volue_integer_l

Max_retry_limit ::= Value_integer_l

This is the maximum number of times that a packet will be

retronsmitted when the acknowledgement indicates a bad

transmission. If this is o connection-less system this

variable should not be used.

Ma_group_address ::= SEQUENCE

address_no INTEGER.

group_add Value oddress_l

The MAC can respond to a list of group addresses. This is

the method for the Station Manager to tell the MAC which

addresses are acceptable. The collection of valid group

addresses can be thought of as an array where ADDRESS_NO is

the index into the array and the GROUP_ADD is the actual

address. This command will set this address as part of the

group addresses (unless there all used up). Different

implementations may limit the size of the array.

Channel_assignments ::= Value integer_l

Transmitted_power_level_adjustment ::= Value_integer_l

Transmitted_output_inhib ts ::= Volue_integer_l

Received_signal_sources := Value_integer_l

Signaling_mode ::= Value_integer_l

Received_signal_level_reporting ::= Value_integer_l

Lan_topology_type ::= Volue_integer_l

Mac_type ::= g4h

< MII ICD Program Page 47

ARCHITECTURE 21 July 1987

This variable is a read only variable and indicates which

version of MAC is responding.

STATUS_TYPE ::= CHOICE

undefined_error

success

refuse_to_comply

not_supported

error_in_perfor

not_available

bod_parameter_id

bad_parameter_operation

bad_parameter_value

bad_expected_value

[0] Value_integer_l

[1] Value_integer_l

[2] Value_integer_l

[3] Value_integer_l

[4] Value_integer_l

[5] Value_integer_l

[6] Value_integer_l

[7] Value_integer_l

[8] Value_integer_l

[9] Value_integer_l

These are responses to a command indicat ng the status of

the command. Following are expected uses of these responses;

undefined_error - Request was not understood or no

appropriate error message available.

success - A successful operation has been completed.

refuse_to_comply - The operation was impossible or illegal.

not_supported - The operation is not supported or

recognized.

error_in_perfor - A error was encountered

during operation.

not available - Information is not yet

available.

bad_parometer_id - Parameter ID was not

recognized.

bad_parameter_operation - Operation requested

was not recognized

bad_parameter_value - The Parameter

value was bad.

bad_expected_value - The expected value was

illegal.

event_enable_mask ::= EVENT_ENABLE_BITS

Event_enable_bits ::= BIT STRING

Iow_ici_mem

Iow_pdu_mem

duplicate_address

faulty_transmitter

xmit_queue_threshold_exceeded

receive_queue_threshold_exceeded

watch_dog_timeout

token_lost

dual_token

max_retryencountered

bad_message_sent

(e)
(1)
(2)
(3)
(4)
(5)
(e)
(8)
(9)
(le),
(11),

..... i::_i;,,.G.., _J_GE [8

MII ICD Program Page 48

ARCHITECTURE 21 July 1987

ns_chonged (12),

ns_null (13), _ -- 1 is enabled

The MAC will report events when discovered and the

appropriate bit is set in the MASK above. Bit 0 is the

NS_Stotion, bit 1 is the NS_NULL etc. These bits are

inspected each time the event has occurred and the MAC

is active. The event is reported only once whenever the

actual occurrence is detected.

Event_types ::= IMPLICIT SEQUENCE

event_class Event_class_types

Event_class_types ::= CHOICE

local [0] Event_identifier_types

remote [1] Event_identifier_types

Events in the MII implementation are always LOCAL (as

opposed

to events that occurred in o remote node).

Event_identifier_types ::= CHOICE

Low_ici_mem

Low_pdu_mem

Duplicate_address

Faulty_transmitter

Xmit_queue_threshold_exceeded

[0] Value_integer_l

[1] Value_integer_l

[2] Volue_integer_l

[3] Volue_integer_l

[4] Volue_integer_l

Receive_queue_threshold_exceeded [5] Volue_integer_l

Wotch_dog_timeout

Token_lost

Duel_token

Max_retry_encountered

Bad_message_sent

Ns_null

Ns_changed

[6] Value_integer_l

[8] Value_integer_l

[g] Value integer 1

[le] Value_integer_l

[11] Value oddress_l

[12] Value_integer_l

[13] Value integer_l

These events are reported upon the discovery of the

following conditions;

Iow_ici_mem - Flogged when the MAC detects it has or

is running out of ICI memory blocks.

Iow_pdu_mem - Flogged when the MAC detects it has or

is running out of PCI memory blocks.

ns_changed - Flagged when the event routine discovers a

change in the NS

address,

ns_null - Flogged when the NS is set to NULL

MII ICD Program

ARCHITECTURE

Page 49

21 July 1987

duplicate_address - reports duplicate addresses other

addresses.

faulty_transmitter - Reports faulty transmitter.

xmit_queue_threshold_exceeded - Flagged when the MAC

cannot get buffer space

for outgoing data.

receive_queue_threshold_exceeded - Flagged when the MAC

cannot get buffer

space for incoming

data.

watch_dog_timeout - Flagged if the hardware watch dog

timer expires.

token_test - Flogged when the token is detected as

lost.

dual_token - Flagged when a extra token is discovered.

max_retry_encountered - Flogged when a the max retry is

encountered.

bad_message_sent -Flagged when the MAC discovers a message

which does not agrees with its indicated

structure size (i.e. bad length field).

Action_value_types ::= CHOICE

reset [el Value_integer_l

The ACTION_VALUE_TYPES allow the following;

Reset Value_integer 1 = anything:

A reset will flush all queues, set all operating parameters

to their initial values, lose the token (if its holding it),

and await work from either the media or the LLC.

OPERATION_COMMAND_TYPES ::= CHOICE

test<< [0] Read_write_value_types

test_>> [1] Read_write_value_types

test__ [2] Read_write_value_types

test_<> [3] Read_write_value_types

test_<= [4] Read_wrlte_vatue_types

test_>= [5] Read_write_value_types

<<_given_constant [6] Given

>>_given_constant [7] Given

_---_given_constant [8] Given

°_

MII ICD Program

ARCHITECTURE

="-"_..... _-#kGE]_

"_'_' FO,OR QU.A:LI_'YY
Page 50

21Ju y 1987

<>_given_constant [9] Given

<=_given_constant [10] Given

>=_given_constant [11] Given

The above operations expects a variable (we'll call varl) to

be internal. The complete structure includes either a

variable or constant which we'll call vor2. The constant is

used to overwrite Varl in case the operation test true so in

the case of two internal vats being tested a constant is

also passed in. The above operation commands imply the

following:

test_<< -

test_>> -

test_= -

test_<> -

test_<= -

test_>= -

<<_given_constant -

>>_given_constant -

=_given_constant -

<>_given_constant -

<=_given_constant -

>=_given_constant -

f varl << var2 then varl=constant

f vat1 >> var2 then vorl=constant

f varl = vat2 then vorl=constont

f varl <> var2 then varl=constant

f vat1 <= vor2 then varl=constant

f vat1 >= vat2 then varl=constant

f vat1 << constant then varl=constant

f varl >> constant then varl=constant

f varl = constant then varl=constant

f varl <> constant then varl=constont

f varl <= constant then varl=constant

f vorl <= constant then varl=constant

Varl is a MAC parameter to be tested (internal). Its value

is always returned along with a status. Vor2 is a MAC

parameter (internal) or a constant (external) used in the

comparison of Varl (internal). Vat1 always refers to a

variable located in the MAC. Vor2 is either located in the

MAC (a compare of two internal variables) or as a constant

(external) passed in. In all cases a true test forces Varl

to be a external constant.

Constant ::= Value_integer_l

Value integer_l ::= IMPLICIT Long_word

Volue_oddress_l ::= IMPLICIT Long_word (32 BITS)

Value_address_16 ::=]MPLICIT ARRAY OF 16 Long_words

(32 BITS EACH)

MII ICD Program Page 51

ARCHITECTURE 21 July 1987

3.11.2.1.2.1 SYNTAX -

STATION MANAGER INTERFACE SYNTAX

The station manager communicates to the MAC across the MII.

The syntax of such communication is described below

according to Abstract Syntax Notation One or ASN.I (ISO DIS

8824). The information described is encoded to the basic

coding rules as found in ASN. I (ISO DIS 8825). Some sample
records follow the syntax notations.

Mil ICD Program
ARCHITECTURE Page 52

21 July 1987

3.11.2.1.2.2 -FORMAL SYNTAX SPECIFICATION -

Message_record ::= [PRIVATE g] CHOICE

) [e] Sm_mac_lm_set_value.invoke

[1] Sm_mac_lm_set_value.reply

[2] Sm_mac_lm get_value.invoke

[3] Sm_mac_lm_get_vatue.reply

[4] Sm_mac_lm_compare_and_set_value. invoke

[5] Sm_moc_lm_compare_ond_set_value.reply

[6] Sm_mac_action_value.invoke

[7] Sm_mac_action_value.reply

[8] Sm_mac_event_value.notify

[9] Sm_mac_event_value.reply

Sm_mac_lm_set_value. invoke ::= IMPLICIT SEQUENCE

parameter_type Read_write value_types ,

access_control info NULL

Sm_mac_lm_set_value.reply ::= IMPLICIT SEQUENCE

return_val Read_write_value_types,

status Status_type_

Sm_mac_lm_get value.invoke ::= IMPLICIT SEQUENCE

parameter_type Read_write_value types ,

access_control_info NULL }

Sm_mac_lm_get_value.reply ::= IMPLICIT SEQUENCE

parameter type Read_write_value_types ,

status Status_type

Sm_mac_lm_compare_and_set_value. invoke ::= IMPLICIT SEQUENCE

parameter_type Dummy_rw_types,

operation_command Operation_command types,

access_control_info NULL |

Sm_mac_lm_compare_and_set_value.reply ::= IMPLICIT SEQUENCE

return_val Read_write_value_types,

status Status type |

Sm_mac_action_value.invoke ::= IMPLICIT SEQUENCE

parameter id Action value types ,

occess_control_info NULL|

Sm_mac_action_value.reply ::= IMPLICIT SEQUENCE

status Status_type,

action_report NULL

Mac_sm_event_value.notify ::= IMPLICIT SEQUENCE

,fire. _

MII ICD Program

ARCH ITECTURE

O_GFq/kI_ PAGE IS

D_ _00R QUALITY:,

Page 53

21 July 1987

{ event_id Event_types

Mac_sm_event_value.reply ::= IMPLICIT SEQUENCE

{ status Status_type }

Read_write_value_types ::= CHOICE

[g] Mac_type

[1] Memory

[2] Slot_time

[3] Hi_pri_token_hold_time

[4] Max_ac 4_rotation_time

[5] Max_ac_2_rotation_time

[6] Mox_ac_g_rototion_time

[7] Mac_ring_maintenance_rotation time

[8] Ring maintenance_timer_initial_value

[g] Max_inter_solicit count

[lg] Min_post_silence_preamble_length

[11] Event_enable_mask

[12] Max_retry_limit

[13] Ma_group_address

[15] Channel_assignments

[16] Transmitted_power_level_adjustment

[17] Transmitted_output_inhibits

[18] Received_signal_sources

[19] Signaling_mode

[20] Received_signal_level_reporting

[21] Lon topology_type

[22] Ts

[231 Ns

Memory ::= SEQUENCE

{ ici_mem_link [g] Mem_block, -- list of free ICI blocks

pdu_mem_link [1] Mem_block -- list of free PDU blocks |

Mem_block ::= SEQUENCE

| block_size INTEGER, _ size of each block

block_ptr Address -- pointer to first word in block

Dummy_rw_types ::= CHOICE {

mac_type [O]

ns [1]

slot_time [2]

hi_pri_token_hold_time [3]

mox_ac_4_rotation_time [4]

max_oc 2_rotation_time [5]

mox_ac_g_rototion_time [6]

mac_ring_maintenance_rotation_time [7]

ring_maintenance_timer_initial_value [8]

max_inter_solicit_count

min_post_silence_preomble length

Value_ nteger_l

Value_ nteger_l

Value nteger_l

Value_ nteger_l

Value_integer_l

Value_integer_l

Value_integer_l

Value_integer_l

Value_integer_l

[9] Value_integer_l

[Ig] Value_integer_l

jl_'

MI] ICD Program

ARCHITECTURE

ORIGINAL PAGE Ig

'OF.POOR QUALITY

Page 54

21 July 1987

event_enable_mask [11]

max_retry_limit [12]

ma_group_address [13]

channel_assignments [15]

transmitted_power_level_adjustment [16]

transmitted_output_inhibits [17]

receivedsignal_sources [18]

signaling_mode [19]

received_signal_level_reporting [2e]

Ion_topology_type [21]

ts [22] Val

Ts ::= Value_oddress_l

Ns ::= Value_address_l

Slot_time ::= Value_integer_l

Hi_pri_token_hold_time ::=

Max_ac_4_rotation_time ::=

Max_oc_2_rotation_time ::=

Max_ac_O_rotation_time ::=

Value integer_l

Value_integer_l

Value_integer_l

Value_integer_l

Value_integer_l

Value_integer_l

Value_integer_l

Value_integer 1

Volue_integer_l

Value_integer_l

Value_integer 1

Value_integer_l

Volue_integer_l

Value_integer_l

ue_integer_l

Mac_ring_maintenance_rotation_time ::= Volue_integer_l

Ring_maintenance timer_initial_value ::= Value_integer_l

Max_inter_solicit_count ::= Value_integer_l

Min_post_silence preamble_length ::= Volue_integer_l

In_ring ::= Volue_integer_l

Event_enable_mask ::= EVENT_ENABLE_BITS

Max_retry_limit ::= Volue_integer_l

Wo_group_address ::= SEQUENCE

address_no INTEGER,

group_odd Value_oddress_l

Channel_assignments ::= Value_integer_l

Transmitted_power_level_adjustment ::= Value_integer_ 1

Transmitted_output inhibits ::= Value integer 1

MII ICDProgram
ARCHITECTURE

ORIGINAL P_GE Ig

OF, POOR QUALITY.

21

Page 55

Ju y 1987

Received_signal sources ::= Value integer_l

Signaling_mode ::= Volue_integer_l

Received_signal level_reporting ::= Value_integer_l

Lan_topology_type ::= Value_integer_l

Freeze_mac ::= Value_integer_l

Mac_type ::= O4h

Status type ::= CHOICE

undefined_error [el

success [1]
refuse_to_comply [2]

not_supported [3]

error_in_prefor [4]

not_available [5]

bad_parameter_id [6]

bad_parameter_opereration [7]

bad_parameter value [8]

bad_expected value [9]

Value_integer_l

Value_integer_l

Va ue_integer_l

Va ue_integer_l

Va ue_integer_l

Vo ue_integer_l

Va ue_integer_l

Va ue_integer_l

Va ue_integer_l

Value_integer_l

Event_types ::= IMPLICIT SEQUENCE

event_class Event_class_types

EVENT_CLASS_TYPES ::= CHOICE

local [g] Event_identifier_types

remote [1] Event_identifier_types

Event_identifier_types ::= CHOICE

Iow_ici_mem

Iow_pdu_mem

duplicate_address

faulty_transmitter

xmit_queue_threshold exceeded

receive_queuethreshold_exceeded

watch_dog_timeout

token_lost

dual_token

max_retryencountered

bad_message_sent

ns_null

ns_chonged

[g] Value_integer_l

[1] Volue_integer_l

[2] Value_integer_l

[3] Volue_integer_l

[4] Volue_integer_l

[5] Value_integer 1

[6] Volue_integer_l

[8] Value_integer_l

[9] Volue_integer_l

[lg] Volue_integer_l

[11] Volue_address_l

[12] Volue_integer_l

[13] Value_integer_l

Event_enable_bits ::= BIT STRING

t Iow_ici mem (e).

Jl_

.,,P

MII ICD Program

ARCHITECTURE

0.;: (:,_i,,Lt_L PKGE Ig

OF POOR QUALITY

Page 56

21 July 1987

Iow_pdu_mem (1)

duplicate_address (2)

faulty_transmitter (3)

xmit_queue_threshold_exceeded (4)

receive_queue_threshold_exceeded (5)

watch_dog_timeout (6)

token_lost (8)

dual_token (9)

max_retry_encountered (le),

bad_message_sent (11)

ns_changed (12),

ns_null (13)}

Action_value_types ::= CHOICE

reset [0] Value_integer_l

Operation_command_types ::= CHOICE

{test_<< [0] Dummy_rw_types

test_>> [1] Dummy_rw_types

test_= [2] Dummy_rw_types

test_<> [3] Dummy_rw_types

test_<= [4] Dummy_rw_types

test_>= [5] Dummy_rw_types

<<_given_constant [6] Given

>>_given_constant [7] Given

-_--_given_constant [8] Given

<>_given_constant [9] Given

<=_given constant [1@] Given

>=_given_constant [11] Given

is enabled

Given ::= CHOICE

[@] Volue_integer_l I

[1] Volue_oddress_l

Constant ::= Volue_integer_l

Value_integer_l ::= IMPLICIT INTEGER

Volue_oddres$_l ::=

Volue_oddress_16 ::=

IMPLICIT Long_word (32 BITS)

IMPLICIT ARRAY OF 16 Longwords

(32 BITS EACH)

MII ICD Program
ARCHITECTURE

Page 57
21 July 1987

3.12 MII OPERATIONS

Although the actual process of initialization is not defined
by the MII, it is outlined below.

i) The SM passes to the MAC (after checking the SM_RDY

semaphore) a message which contains a pointer to a linked
list of memory blocks suitable for the ICI information.

2) The SM passes to the MAC (after checking the SM_RDY

semaphore) a message which contains a pointer to a linked
list of memory blocks suitable for the PDU information.

3) The SM passes to the MAC (after checking the SM_RDY

semaphore) a pointer to a linked list of memory blocks
containing ASN.I records which; a) tells the MAC the address

of the SM receive channel (SM_REC) and semaphore (SM RDY);

b) request the MACs Status and type; c) and if appropriate
puts it on line; all in a single linked list of commands.

This also could be done with a series of single messages to
the MAC.

LLC Initialization

The LLC initialization is beyond the MII scope except to say

that the LLC must be made aware of the LLC_RDY semaphore and
LLC LINK locations.

OPERATIONS -Indicate

The SM operations with the MAC are no different than

described under initialization. Each SM command has a

unique link. Each SM command has a reply which overwrites

the original command (the command record size is always
larger than the reply). The reply indicates to the sender

that it is now allowed to use that ICI memory block again.
This way ICI can be passed back and forth without the need

to request more blocks from the system. ICI information may

include pointers to the PDUs and therefore a ICI reply also

returns the PDU memory block to its original source.

When a PDU arrives from the media the MAC arbitrates for the

bus and begins data movement to common memory using one of

the free blocks of memory. The MAC design may or may not

MII ICD Program
ARCHITECTURE Page 58

21 July 1987

completely buffer the data going into the common memory. If
the MAC is the highest level priority on the VMEbus then a

block mode operation will support the bandwidth necessary
for no MAC buffering. These are design issues for the

system designer. There are power, weight and speed
advantages to no buffer MACs, however consuming the system

bus for the length of one or more data packets may be
unacceptable. The MII does not restrict the system in these
areas.

Once the data is located in common memory the pointer to

this PDU memory record and its size are included in a ASN. 1

message known as MA_DATA.indicate. The MAC performs a TEST

and SET operation on the LLCs MAC RDY semaphore. If the

Test indicates the bit was set, then the LLCs MAC channel

was already busy and the set operation did nothing. In this
case the MAC must wait. The MAC will continue to TEST and

SET until the test indicates the busy bit was reset. The

bit has already been set so the MAC is now allowed to use

the channel. [The pointer to the ICI which is an encoded

MA_DATA.indieate is written into the location following the

semaphore. This indicates the presents of incoming data to
the LLC (See IEEE 802.2).]

Once the MAC gains control over this channel it writes the

pointer to the ICI (ASN.1 MA_DATA.indicate) record into the

LLCs MAC_LINK location. When this location is written to,

the LLC is interrupted. The LLC uses the address to find

the ICI record and it points to the address of the PDU data

located in common memory. The LLC will then queue the

pointer, link the ICI record to an existing linked list (of
previous ICI records) and frees the channel as soon as

possible. LLC now holds the pointer to the ICI and PDU
memory blocks.

The ICI memory (with the ASN.1 record in it) is then

overwritten with a indicate acknowledge record (also ASN.1)

and passed back to the MAC. The ICI also contains a pointer
to the associated PDU. This allows the MAC to replenish its

stock of free PDU blocks. The LLC and above layers must be

finished with the PDU memory block before it sends the
Indicate acknowledge primitive.

OPERATIONS -Request

A MA_DATA.request primitive is generated by the LLC to tell

the MAC there is data to be shipped. This ASN.1 record is

put into a ICI memory block, the LLC RDY semaphore captured,
and the pointer to the ICI block written to the LLC LINK in

the MAC. The MAC ships (or copies) the data, overwrites the

.p

MII ICD Program
ARCHITECTURE

Page 59
21 July 1987

ICI block with a MA_DATA.confirm and passes it back to the
LLC via the MAC_RDY semaphore and MAC_LINK locations in the

LLC. The LLC can now replenish its stock of free ICI and
PDU memory blocks.

J

