NVASH e —/T7263L

Media Independent Interface
Interface Control Document

MS 2-2-5250
SPERRY SPACE SYSTEMS
P.O. BOX 52199
PHOENIX, ARIZONA
85072-2199

(NASA-CE-172032) MEL12 INCEFENLENT NE8~-1€447

IMTERFACE. INTEEFICE CONTECI TICCUEENT 0

(Sperry COLL. 6(1 C5CL (9B

(SF y E-) F nclas
G361 0120343

- U N =

eI NI B¢ I VRN ST

uuuuuuuuuuuuuuuuuuuuuuuum—a—»—-—‘—a

e T JE N 7o)
- = e m a e s

.12

NN NRNMNRNNDNRNND - a2

— = A s 4 3

MEDIA INDEPENDENT INTERFACE CONTROL DOCUMENT

CONTENTS

PURPOSE

SCOPE .
ABBREVIATIONS
DOCUMENTS

GENERAL
ARCHITECTURE

INTRODUCTION e

HOW THE ARCHITECTURE WORKS

MIT HIGHLIGHTS

SYSTEM REQUIREMENTS

INTERFACE CONTROL SCOPE

MECHANICAL AND ELECTRICAL

SOF TWARE

SYNTAX

ENCODING

CHANNEL RULES

PRIMITIVES

MAC/LLC PRIMITIVES

COMMANDS

SYNTAX .

STATION MANAGER

COMMANDS e
TEEE 802.3 SM MANAGEMENT
.1 SYNTAX

-2 FORMAL SYNTAX SPECIFICATION

TEEE 802.4 SM MANAGEMENT

SV SYNTAX o L o L L L
.2 FORMAL SYNTAX SPECIFICATION
MIT OPERATIONS

Page ii
21 July 1987

(S LIS R ¢ R

N O d b UWRNRNNRNMNNRNNNDNNS - o o o
NN = AW 2NN BREHWHGRN =2 20NN

-
MII ICD Program Page 2
MEDIA INDEPENDENT INTERFACE CONTROL DOCUMENT 21 July 1987

1.2 SCOPE

This document specifies a Media Independent Interface. This
interface uses standards current in +the industry. The
industry standards were generated at different times and
have differing applications. This has lead to a convoluted
and poorly defined set of interface primitives. They lack a
cohesive binding to each other. 1In addition the standards
do not describe the physical aspects of these standards
which would allow different implementations of them to
operate in concert. The MII ICD binds these standards by
integrating mechanical, electrical, and functional interface
standards within this document.

The MII is described in hierarchical fashion. At the base
are IEEE/ISO documents (standards) which describe the
functionality of the software modules or layers and their
interconnection. These documents describe primitives which
are to transcend the MII. They 4o not describe the method
by which layers communicate or the exact language in which
they speak. In addition different specs sometimes disagree
in the structure of the same primitives. These standards
specify the logical interface.

MEDIA INDEPENDENT INTERFACE CONTROL DOCUMENT

e e e e +
| |
| |
Hardware Software
Specification Specificatiocon
Section Section
| 1
I 1
| Primitive
| Specification
| Section
1 |
VvV Standard R to—— +
o + VvV Standard v Standard
I VMEbus l dom + tom e +
I Specification | i IEEE I —+ I ISO ASN.1 |
Fomm e — + | 802.1-5 | |-+ | [—+
I 802.7 L T + |
e Sttt + 0 | Encoding |
o ———— + - +
tm———————— + |

-
MII 1CD Program Page 3
MEDIA INDEPENDENT INTERFACE CONTROL DOCUMENT 21 July 1987

These logical .specifications are further defined in this ICD
with the wuse of a canonical language. This canonical
language along with the physical and electrical
Specifications called out in this document provide the final
binding required to make a working interface.

The structure of this standard is pictured above.

1.3 ABBREVIATIONS

ASN.1 - Abstract Syntax Notation One

CPU - Central Processing Unit

DIS Draft International Standard

ICD - Interface Control Document

ICT Interface Control Information

IEEE - Institute of Electrical Electronics Engineers
ISO Internation Standards Organization

LAN - Local Area Network

LLC - Logical Link Control

MAC - Media Access Control

MII - Media Independent Interface
OSI - Open Systems Interconnection

PDU - Protocol Data Unit
SDU - Service Data Unit
SM - Station Management

1.4 DOCUMENTS

ANSI X3T9/84-100 Fiber Distributed Data Interface (FDDI)
IEEE 802.1 (still draft) Network management

IEEE 802.2 or ISO 8802/2 Logical Link Control (LLC)

TEEE 802.3 or ISO 8802/3 Carrier Sense Media Access
(CSMA/CD)

TEEE 802.4 or ISO 8802/4 Token Bus

TEEE 802.5 or ISO 8802/5 Token Ring

TEEE 802.7 or ISO 8802/7 Slotted Ring

IEEE P1014/D1.0 VMEbus/ Signetics VMXbus

ISO DIS 8824 Specification of Abstract Syntax Notation
ISO DIS 8825 Basic Encoding for Abstract Syntax Notation
ISO 7498 ISO OSI Basic Reference Model

ISO 7498 DAD1 connectionless Data Transmission

ISO DP 7498/4 Management Framework

Sperry Report 2055-04 thru 2055-8

K 4

MII ICD Program Page 4
GENERAL 21 July 1987

2 GENERAL

The intent of the MII is to provide a universal interface to
one or more MACs for the Logical Link Controller and Station
Manager. This interface includes both a standardized
electrical and mechanical interface and a standardized

functional specification which define the services expected
from the MAC.

-

MII ICD Program Page 5
ARCHITECTURE 21 July 1987

3 ARCHITECTURE
5.1 INTRODUCTION

Communication between computers has always been difficult
when a common design was not used for all the computers. It
has become necessary to provide a means whereby dissimilar
computers communicate. To supply that need IEEE created a
number of standards which could be built by different
designers and yet could pass information between them. The
information passed between them was also slightly dissimilar
in content and structure and again there was a need for
another standard. The International Standards Organization
(ISO) built a 7 layer model by which the control of
information passing could be standardized. The model
adopted the IEEE standards. These IEEE standards are the
first two layers of a 7 layer implementation where the
lowest layer is the physical connection between the
computers.

LAYERS
T T + R e +
| APPLICATION I | APPLICATION ¢
Fom e + T +
| PRESENTATION | ! PRESENTATION | 6
R R T + Fom e +
I SESSION ! ! SESSION I8
R T fp + e +
I TRANSPORT | I TRANSPORT I 4
Fm + R et ——— +
| NETWORK I I NETWORK I3
o + Tt +
! DATA LINK I t DATA LINK 2
e + : e +
[PHYSICAL I | PHYSICAL 1
R T T . + Fo +

Figure 1.0 The ISO OSI model

-

MII ICD Program Page 6
ARCHITECTURE 21 July 1987

The IEEE standards used in this document are wused in the
lower two layers of the ISO OSI model above. These layers
are sub-divided by the IEEE standards.

LAYERS

e + Fmm e +

| LOGICAL LINK | t LOGICAL LINK | |
t==s==s=========+ - the MII -» +====s=cc=c=====4 > 2
I MEDIA ACCESS ! split I MEDIA ACCESS | i
e + Fom e~ + /

I PHYSICAL [[PHYSICAL ! 1
o e + o +

! I
—— e e +_._._

Figure 2.0 The IEEE Model

The IEEE committee realized the need to be able to use a
common Logical Link Control for several versions of the

Media Access and Physical layers. The IEEE standards
provide compatibility only on a logical level. They do not
describe the implementation. There are inconsistencies

between MACs. Some MACs provide more services than others.
This makes standardized interchanges difficult even on a
purely logical 1level. Finally +the initialization and
maintenance of the MACs are considerably different which
complicates the matter further.

The purpose of the MII is to allow standard interchanges
between the MACs and the LLC. The interchanges requires a
Station Manager which can effectively operate the entire
selection of MACs. Fortunately they're all similar in their
management and all of them tend to operate without a lot of
external intervention.

L 4

MII ICD Program Page 7
ARCHITECTURE 21 July 1987

3.2 HOW THE ARCHITECTURE WORKS

Two kinds of information must be passed in order to move
data Dbetween the LLC and MAC; the data to be shipped and
shipping instructions.

The instruction part of this information is called Interface
Control Information (ICI) and is layer to layer
instructions. It includes instructions as to where this
data can be found, its sender and receiver,. and its
quantity. The MII instructions are limited to a standard

set of primitives (MA_DATA .Request, MA_DATA.Confirm,
MA_DATA.Indicate). These primitives and their effect are
defined in the IEEE standard. The specification is a
logical one and does not attempt to provide guidance as to
its implementation. In this ICD, the primitives have been
re-written in a standard syntax and encoding for
implementation clairification. Where primitive parameter

differences between MAC standards occur, the syntax provides
the layers an ability to default missing parameters and
ignore extra ones. If a LLC has the capability to use all
the services of a MAC, then the interface will allow it to
do so. 1If not, then it must depend on the non-optional
primitive parameters and rely on the MAC to default any
additional ones.

The Data information to be shipped is called the Protocol
Data Unit (PDU) and contains the original message and peer
to peer layer messages. Both the data and the peer layer
information has no direct effect on the operation of the
MII. It simply must be passed intact across it.

To provide a physical means to implement the above activity,
an architecture has been selected which can be supported
with an existing standardized bus. The architecture is as
follows;

4
>

MII ICD Program Page 8

ARCHITECTURE 21 July 1987
o + e + bmm +
I MEDIA I STATION 1 LOGICAL |
I ACCESS I 1 MANAGER o LINK [
I CONTROL o t 1 CONTROL |
R I e T e
I I f f [[
| ! | | | [
T A VooV — Vo= V———+

Figure 3.0 The Logical Model

This model does not restrict the MAC, SM and LLC except that
they must be able to access common memory in order to
communicate. Data flow is always directed through this
common memory element. If an implementation of the MAC has
its communication channel located on-board as locally and
globally decoded dual ported memory then it will have a
speed advantage. It will be able to read and write to this
part of the common memory with a local access and detect
global reads and writes via local interrupts. This
eliminates one of two parties from having to arbritrate for
the bus.

Each sending entity knows the address of the receiving
entity channel. Any time a entity wishes to pass
information to another entity, it simply writes the address
of the information into the receiver’'s channel (address).
If the receiving channel's memory location is decoded on
board, +the receiving entity’'s physical device and the
pointer will be read with a local access.

Local decoding of the receive channel is not required. The
channels physical implementation is two valid memory
locations in common memory, which could be in regular memory
(i.e. as dual port memory or mapped to read/write
registers). Any standard CPU card with the ability to read
and write global memory, will be able to implement a
receiving channel.

L 4

MII ICD Program Page 9

ARCHITECTURE 21 dJuly 1987
e + e ——— + Fmm—————— +
I MEDIA b STATION o LOGICAL |
[ACCESS I I MANAGER Fol LINK !
f CONTROL b I CONTROL |
B il [t o AUy RSSO IS S IR

o1 | | [[

Lo o=t ==+ | | I |

b [| ! (o [

[T [[[Lo l

Il e =t [

P | f f --11-- = Channel

| e e) +

(i t ____/ = Data

| [| Pool
\N_V A% v /

Figure 4.0 The Data Flow Model

The MII data flow diagram shows that the MII is actually a
bus with channels of communication. The channels are two
sequential address locations mapped in the common (sometimes
called global) memory map. These address locations provide
the same hardware services that are found in standard VME
memory (i.e. long addressing, DTACK, Buserror, etc). The
first location is tested to see if the channel is busy. I1f
not then the address of data to be passed is written to the
second memory location. The entity receiving the date uses
the address as a pointer to the information stored in global
memory and subsequently resets the channel busy location.
The busy location is known as the channel semaphore.

The address passed via the channels is the Interface Control
Information (ICI). The ICI contains information as to the
location of Protocol Data Units (PDU). The ICI primitives
are described in the IEEE specifications and their syntax
and encoding structure is described in this document.

This MITI architecture is implemented on a standard bus which
uses a multi-master architecture. It has various optiomns,
all of which are allowable in the MII. The system designer
need only be concerned with the performance resulting from
his choices of entity designs and bus options. Choices such
as the size of the common memory available to the MAC for
PDUs are not restricted by the MII. The designer is free to
choose Dbetween MACs with any amount of on board buffering.

L 4

MII ICD Program Page 10
ARCHITECTURE 21 July 1987

There may be MAC designs which have no on-board buffers and
require the card to be set to preempt bus users when packets
arrive.

The only restrictions imposed by this MII ICD are the use of
VMEbus, enough common memory between users to implement the
channels and store ICIs and PDUs, and the use of the
standard primitive syntax as defined in this document.

3.3 MII HIGHLIGHTS

The MII solutions given in this ICD are the result of a
unique blend of advanced technology integrated with the ever

expanding world of standards. This 1integration is made
possible by the careful selection of the hardware platform
and specialized development of software interface
technology. The MII ICD 4is the product of a continuous
effort in the advancement of State of the art
communications. The feasibility of +the MII ICD was

demonstrated by two fiber optics developments which have a
media bandwidth that exceeds most of current industry
implementations by a factor of ten.

Even more important is the MII ICDs unique ability to grow

with technology. Its method of information exchange was
explicitly developed and exercised to establish a decisive
interface. This interface was adapted to two disimilar

Media Access Controllers running at 100 M-bit/s in order to
illustrate its capacity to meet and exceed the needs of
custom and standard users alike. As the communication
industry realizes ever increasing sophistication in
communication functionality, the MII ICD will continue to
demonstrate its flexibility.

h 4

MII ICD Program Page 11

ARCHITECTURE 21 July 1987
The MII;

0 uses IEEE, ISO and VMEbus Standards,

0 i1s useable for both ground and flight systenms,

0 provides complete interchangeability between MACs,

0 supports bridges, routers, and gateways,

o allows changes in the LLC, SM, or MAC,

0 is expandable yet retains backwards compatibility,

o) does not interfere with upper layer software,

o] is standard mechanically, electrically, and

functionally,
and defines mechanical, electrical and functional
aspects.

o

-

MII ICD Program Page 12
ARCHITECTURE 21 July 1987

3.4 SYSTEM REQUIREMENTS

A system supporting a MII must contain at least one VMEbus,
enough globally addressable memory and bus bandwidth to
allow operation of the LLC, SM, and MAC entities. At
minimum, the bus must have enough slots and capacity to
provide Master capacity for the VME card(s) containing the
MAC, SM and LLC entities.

b 4
o

MII ICD Program Page 13

ARCHITECTURE 21 July 1987
t
/ N\
] | + +
b | J
[| | PARALLEL |
| | <——>1 HOST } <——>HOST
| | | INTERFACE |
+ + o !
I | b + +
| TRANSPORT] | |
| NETWORK {< >|]
I toyers | o
| | | | + —+
+ + [I |
| | | COMMON |
1 j <——>| MEMORY |
P] [
+ —+ [| f
| LOGICAL LINK | |] + —
| CONTROLLER | I | *
| & | &—>| | | VMX MEDIA
| STATION | | | v t
i MANAGER ! | | + } |
+ —+ I | | |
[| | MEDIA] f
| J<——>] ACCESS f<]
I | | CONTROLLER | |
I | J I
VMEbus | | + —t |
oo v
I
N/

Figure 5.8 Exomple Configuration

Selection of VMEbus options such as round robin arbitration
or priority arbitration is not limited by the MII and is up
to the system designer. These options are all allowable
providing all devices are consistent with the VMEbus
specification.

-

'MII ICD Program Page 14
ARCHITECTURE 21 July 1987

3.5 INTERFACE CONTROL SCOPE

The MII ICD was design to allow multiple cards for each
entity (MAC, LLC, SM) and multiple entities (LLC and SM) per
card. For example if a MAC design requires a large memory,
a second card can be used to support it. The addressing of
that card would have to be compatible with the whole system.
If mapping or speed is a problem, then the VMX bus might be
used. There are no restrictions along these lines.

The number of entities across the MII is not restricted.

The ability of the entities to respond or even recognize

different combinations of entities is 1left open for the

implementor. For instance the MII was designed to allow

multiple MAC entities per LLC. The interface will support

two or more LLCs with matching MACs. Multiple LLCs or SMs

per MAC is supported. The System designer is responsible,
for insuring that the devices are compatible and that

combinations and quantity are appropriate for the design.

The MII does not 1limit the design of any of the entities
except to insure that they can communicate in a known
manner. The MII contains an inherent flow control which
will eliminate overrun of MII interfaces. The sustained
data rate across the MII is limited only by the bandwidth of
the VMEbus and the size of memory allowed on the VMEbus.

Speed of the entities and their ability to effectively use
the bus is considered a system design issue beyond the scope
of the MII requirements.

h 4

'MII ICD Progranm Page 15
ARCHITECTURE 21 July 1987

3.6 MECHANICAL AND ELECTRICAL

The MII relies on the VMEbus and VMX specification to
provide the electrical and mechanical platform on which MIT
resides. VMX interface 1is allowed to enhance system
performance. It is considered an extension of the VMEbus
and the MII devices must conform to the same MII
requirements whether a VME or VMX operation is being
performed.

The following is not specified or limited by the MII;

Bus addressing and priority,

physical slot location,

the number of physical cards,

the division of functionality between cards,
the amount of memory,

the use of DMA processors and support devices.

O O0OO0O0OO0O0

F

MII ICD Program Page 16
ARCHITECTURE 21 July 1987

3.7 SOFTWARE

The software aspect of the MII is a virtual interface. The
MIT wusers are configured to recognize other MII entities by
addresses only. Entities using the MII are made aware of
the other devices addresses either by mechanical means (dip
switches, proms. etc) or by software interaction.

The Station Managers role is to provide information to the
LLC and MAC which will allow operation in the system
environment. In a typical software environment memory
allocation 1s controlled by the operation system. The
memory used by MII users is allocated by the Station Manager
and given to the users via the MII ICD method. This avoids
standardizing an operating system Just to assure correct
memory usage. In addition to common memory allocation to
MII users. the Station Manager provides addresses to0 thes
user entities which indicate channel locations. Each MII
user entity has the capacity to receive initialization
information wupon startup according to the MII prescribed
method.

The MII transfers information by passing pointers to data
structures 1located in common memory. The MAC has two
receive channels to receive the pointer addresses from the
Station Manager and LLC. The LLC and SM have a single
receive channel each to receive pointer addresses from the
MAC. Receiving channels beyond these required ones are not
defined by the MII ICD and are beyond its scope.

Transmitting occurs only after a non-interrupting test and
set 1is made of the channel semaphore location and ownership
to use the channel is established. The entire transmission
involves a write of a single long word address into the
memory location following the semaphore (semaphore_address +
1 (long address)). These locations are shown in figure 7.0.
See the VMEbus Specifications for address length
definitions. The 1logical flow of access to a receive
channel is diagramed as follows;

-

MII ICD Program Page 17
ARCHITECTURE 21 July 1987

I Test & Set receiver |
I Semaphore |

/N
/Was\
/ bit \ yes, channel in use
/already\-—————--——m ,
\ set /

! No, Channel was not in use

I Write pointer address [
! into location following |
| the semaphore address !

|

|

V access completed,
Semaphore is reset by receiving entity
when it is ready for more.

Figure 6.0

SETTING THE SEMAPHORE BIT

The VMEbus provides a read-modify-write capacity which
should be used to implement the channel semaphore. The MII
ICD requires the use of the semaphore in order to allow
multiple users to access the same channel and avoid
collisions. To give an example, if there are two parts of
the LLC which have the ability to use a single MAC channel,
then the owner of the channel must be established before it
can be used. Otherwise both might attempt to use the
channel at the same time. Any time one or more asynchronous
devices wish +to share a channel this decision must occur.

L 4

H

MII ICD Program Page 18
ARCHITECTURE 21 dJuly 1987

The winner of the right to own the channel is given to the

one who first test and sets a bit within the confines of a

single bus access. This bit is a semaphore bit and is

called the channel busy bit. Each user tests the busy bit.

If the test indicates that the channel is not busy then it

sets the channel busy and uses it. The read-modify-write

bus cycle is used because a problem may arise if two devices

Or entities test the busy bit at the same time before either

has had the chance of setting it. Both would think that it

was the owner of the channel. If the bit is tested and then
set in a single non-interrupting bus access then no other

device can test at the same time. Since it was tested and
set in the same operation then a false indication says that

it was previously not set and vyour the one who set it,

therefore your the unique owner. The loser will test the
bit as +true, meaning the bit was previously set and it

simply set it again. The Test-and-Set (68000) instructions
has been used as an example because it typically causes the
read-modify-write cycle on the VMEbus. It is not the only
method which will insure proper semaphore testing.

RESETTING THE SEMAPHORE BIT

The MII channels are virtual interfaces and its actual
implementations are transparent to the users. The detection
and reset of the Semaphore bit is not specified by the MII
and 1is left +to the designer of the receiving entity. The
MII allows the channel 1locations to be anywhere in the
common memory map and therefore allows the designer to
provide on board decoding of the semaphore location and its
associated pointer. Such an implementation would appear to
the MII bus as simple memory locations, but actually could
be local memory and access might result in a 1local
interrupt. The receiving channel could be located on a
standard memory card and the semaphore bit polled by the
receiving entity. To avoid the receiver and transmitter
interleaving access to the channel, the address following
the semaphore location could contain a pointer to itself.
When the pointer is overwritten then the location can be
considered valid.

The receiving entity is expected to reset the busy bit after
it no longer needs the address passed to it.

The address passed to the receiver is a pointer to a record.
This record will contain another address to another record
like itself. When each record points to another record, it
is referred to as a linked list. The last link in the list
points to itself. Each record contains information written
in a format as described in the Encoding section of this

K

MII ICD Program Page 19
ARCHITECTURE 21 July 1987

document.

The channels are shown below:

 ;
'MII ICD Program (miGINAL PAGE IS Page 20
ARCHITECTURE OF POOR QUALITNY 21 July 1987

SM Memory Map MAC Memory Map

MAC_RDY | semaphore bit]
| ————
MAC_REC | MAC_REC ptr |

4
+

SM_RDY bit | semaphore bit]|
| —————
SM_REC ptr | link ptr |
|ml
LLC_RDY bit | semaphore bit|
j—m—
LLC_REC ptr | link ptr |

+
T

LLC Memory Map

3
—

MAC_RDY | semaphore bit|
j——
MAC_REC | MAC_REC ptr |

n
-t

e e ot . —— — — — — — —— — — —— —— =

Figure 7.0 MII Memory Maps

MAC Memory Map Descriptions

SM_RDY bit - SM test this bit before writing into SM_REC

SM_REC ptr - SM writes pointer to link list of SM commands.

LLC_RDY bit - LLC test this bit before writing into LLC_REC

LLC_REC ptr _ LLC writes pointer to limnk list of LLC ICI
primitives.

LLC Memory Map Descriptions

MAC_RDY bit -~ MAC test this bit before writing into MAC_REC
in the LLC memory map.

MAC_REC ptr - MAC writes pointer to link list of MAC
ICI primitives.

SM Memory Map Descriptions

MAC_RDY bit - MAC test this bit before writing into MAC_REC
in the Station Manager memory map.
MAC_REC ptr - MAC writes pointer to link list of MAC

ICI primitives.

>

MITI ICD Program Page 21
ARCHITECTURE 21 July 1987

3.8 SYNTAX-

The common set of primitives to be used by MII are described
with a syntax which 1is jtself a standard. This standard is
ISO 8824 ASN.1. The primitives and encodings are shown in
the Primitive Syntax and Encoding section of this document.
The primitives between the MAC and the LLC are rigidly
defined and are common between the different MAC standards.
The primitive descriptions were structured in such a way as
to take advantage of useful options in the MACs (i.e.
priorities, linking, etc) and to allow for future growth

3.9 ENCODING

The encoding used in the MII ICD can be found in ISO 8825,
ASN.1 encoding. It is the ISO 0SI standard encoding for the
ASN.1 syntax. This encoding for ASN.1 has been adopted for
the MII Dbecause 1t 1s an established and well Kknown
standard. As encoded, the MII primitives have been
optimized for size and complexity. The encoding includes
length bits which are only useful to the MII when there 1is
confusion as to the quantity of information embedded in a
single primitive.

-
" MII ICD Program Page 22
ARCHITECTURE 21 July 1987

3.10 CHANNEL RULES

A channel consist of two locations mapped to memory which is
common to all entities on the MII. Both locations will be
supported globally as read/write memory locations. The
first 1location is the semaphore location and the second
location is the Link location. Both address locations will
respond to Long addressing as specified in the VMEbus
specification. The Rules for channel operation are simple;

1) To use a channel; A non-interrupting test and set of the
semaphore bit must be performed before each access to the
location which follows it. This bit must test as not set
before the set bus cycle occurs in order to claim access to
it. 1In no other case can a write be made to the location
following the semaphore.

2) The semaphore bit to be tested is the high order bit of a
the lowest order byte as defined in the VMEbus
specification. The bus access must be a read-modify-write
pbus cycle and is left to the implementer as to how the cycle
is invoked (such as a Test & Set with a 68k series CPU).

3) A bus write of the location following the semaphore
location will be supported as a normal VMEbus memoIry access
(DTACK or BUSerror). Indiscriminate reads may not provide
accurate answers. Once written to, ownership of the channel
is no longer valid and the location may Dbe overwritten by
the receiving entity. Transmitting entities should consider
it a write only location.

4) After a successful claim to the channel as outlined in
item 1, a SINGLE write is allowed to the link location. The
information written is to be an address where a MII record
can be found. After writing it, item 1 must be repeated
before the channel can be accessed again.

L 4

<

MII ICD Program Page 23
ARCHITECTURE 21 July 1987

3.11 PRIMITIVES

3.11.1 MAC/LLC PRIMITIVES -

3.11.1.1 COMMANDS -

The LLC Interface supports MA_DATA request and confirms and
MA DATA indication and MA_DATA.indi_acks. Details of these
commands are described in the IEEE 802.3 and IEEE 802.2
documents. A brief explanation follows;

MA_DATA.REQUEST
{ DESTINATION_ADDRESS, M_SDU, DESIRED_QUALITY }

»
This command comes from the LLC to the MAC and represents a
request to ship the data pointed to by the M_SDU to the
station at address DESTINATION_ADDRESS wusing a level of
quality of DESIRED_QUALITY. The MAC is expected to respond
with the following command;

MA_DATA.CONFIRMATION
{ QUALITY, STATUS }

This command from the MAC to the 1LC will indicate to the
LLC that the data previously requested to be shipped has
been sent.

MA_DATA.INDICATION
{ DESTINATION_ADDRESS, SOURCE_ADDRESS,
M_SDU, QUALITY

This command from the MAC to the LLC will indicate to the
LLC that data located at pointer M_SDU from the station
SOURCE_ADDRESS was sent to DESTINATION_ADDRESS (needed to
identify when a group address is used) with a QUALITY of
service. The MAC expects the LLC to overwrite the
MA DATA.INDICATION with the MA DATA.INDI_ACK thus allowing
it to release the message buffer.

MA_DATA.INDI_ACK
{ STATUS }

This command from the LLC to the MAC will indicate to the
MAC that the LLC has no more use for the indicate message
buffer.

'MII ICD Program Page 24
ARCHITECTURE 21 July 1987

3.11.1.2 SYNTAX -

The LLC communicates to the MAC across the MII. The syntax
is written according to Abstract Syntax Notation One OT
ASN.1 (ISO DIS 8824). The information described 1s encoded
to the basic coding rules as found in ASN.1 (ISO DIS 8825).

-
" MI1 ICD Program
ARCHITECTURE

Message_record

¢

ma_data_request

ma_data_confirm

ma_data_indicat
ma_indi_ack

Ma_request_type

¢
M_SDU

requested_Ser_class (2]

frame_control
stream
fink_tist
token_class

Ma_indicate—type

¢

source_address
M_SDU

reception_status
requested_Ser_class [4]

frame_control
link_tist

}

— The optional

Ma_confirm_type

¢

provided_ser_closs
number_of_sdu_

link_tist

Ma_indi_ack_type
§ indi_status
fink_list

}

Net_address_type

¢

destination_address (o}

destination_address [e]

transmit_status

net_add_16 Value_integer_1,
net_add_48 Value_

CEIGINAL PAGE 18

OF, FOOR QUALITY
Page 25
21 July 1987

c:= [PRIVATE 0] CHOICE

[@] Mo_request_type |
[1] Ma_confirm_type |
e [2] Ma_indicate—type |
[3] Mo_indi_ack_type H
;= SET
Net_address_type
[1] M_SDU_type ,
Req_ser_type .
{3] Frame_con_type (optional) ,
[4] Streom_type (optional) ,
[5] Link_list_type (optionai) .
[6] Token_class_type (optional)
;= SET

Net_address_type

{1] Net_address_type ,
[2] M_SDU_type ,
{3] Rec_stotus (optional) ,

Req_ser_type (optional)
[5] Frame_con_type (optionatl)
[6] Link_list_type (optional)

parameters have a default value.

= SET
[e] Tron_status ,
[t1] Provided_ser_type (optional),
iinks [2] Number_of_sdu (optional),
[3] Link_list_type (optional)
;= SET
(@] Integer, — 1 = good &= not accepted

[2] Link_list_type (optional)

::= CHOICE
— 16 bit address option
integer_48 — 48 bit address option

}

M_SDU_type ::= SET

§ SDU_PTR (2] Address,
SDU_SIZE [1] INTEGER,
buf f_num (21 INTEGER

-

MI1 1CD Program

ARCHITECTURE
} .

Req_ser_type ::= SET

§ priority [p] INTEGER,
response [1] INTEGER,
quality_of_ser [2] INTEGER
§

Provided_ser_type :@:= SET

§ priority [o] INTEGER,
response [1] INTEGER,
quality_of_ser [2] INTEGER

Indi_ack_type ::= SET

{ indi_ack_status Ack_status }

Fraome_con_type ::

Poge 26
21 July 1987

(optional)
(optional) — ack =1
(optional)
(optional)
(optionai) — ack =1

(optional) i}

SET §} —7TBD 2 octets, see FODI 5.4.1

Link_1ist_type ::= SET jAddressi
Stream_type ::= SET {INTEGER} — 1= multiple M_SDUs xmitted
See FDDI
Token_class_type ::= SET § INTEGER} —TBD
Rec_status ::= CHOICE
§ status [@] INTEGER — 1 = good, all else bad.
}
Tran_status ::= CHOICE

§ status [@] INTEGER — 1 = good, all else bad.

}

Number_of_sdu ::= CHOICE {INTEGER} — Number of M_SDUs

troansmitted

>

M11 ICD Program Page 27
ARCHITECTURE 21 July 1987

3.11.2 STATION MANAGER -

3.11.2.1 COMMANDS -

The Station manager sends invoke commands to the MAC and the
MAC responds with a reply response. The pairs which follow
are first station manager command followed by the MAC
response.

SM_MAC_LM_SET_VALUE.INVOKE
SM_MAC_LM_SET_VALUE.REPLY

SM_MAC_LM_GET_VALUE.INVOKE
SM_MAC_LM_GET_VALUE.REPLY

SM_MAC_LM_COMPARE_AND_SET_VALUE.INVOKE
SM_MAC_LM_COMPARE_AND_SET_VALUE.REPLY

SM_MAC_ACTION_VALUE.INVOKE
SM_MAC_ACTION_VALUE.REPLY

The Station manager can set an event mask which allows the
MAC to report events without a direct request. The MAC can
initiate a NOTIFY and expects a REPLY from the SM 1in
response.

SM_MAC_EVENT_VALUE.NOTIFY
SM_MAC_EVENT_VALUE.REPLY

»>

'MII ICD Program Page 28
ARCHITECTURE 21 July 1987

COMMAND DESCRIPTIONS

SM_MAC_LM_SET_VALUE. INVOKE
{ PARAMETER_TYPE, ACCESS_CONTROL_INFO !

The objective of the SM_MAC_LM_SET_VALUE.INVOKE command by
the SM is to set a value 1in the MAC as defined by the
parameter type structure. This structure specifies both the
variable to be set and the value to which it is set.

SM_MAC_LM_SET_VALUE.REPLY

{ STATUS }
The objective of the reply by the MAC to the SM 1is to
indicate the success or failure of a previous,
SM_MAC_LM_SET_ VALUE.INVOKE. The SM expects the MAC to
overwrite the SM_MAC_LM_SET_VALUE.INVOKE with the

SM_MAC_LM_SET_VALUE.REPLY thus allowing the SM to release
the message buffer.

SM_MAC_LM_GET_VALUE.INVOKE
{ PARAMETER_TYPE, ACCESS_CONTROL_INFO }

The objective of the SM_MAC_LM_GET_VALUE.INVOKE command by
the SM is to get a value in the MAC as defined by the
parameter_type structure. This structure specifies the
variable to be read.

SM_MAC_LM_GET_VALUE.REPLY
{ PARAMETER_TYPE, STATUS }

The objective of the reply by the MAC to the SM is to
indicate the success or failure of a previous
SM_MAC_LM_GET_VALUE.INVOKE. The SM expects the MAC to
overwrite the SM_MAC_LM_GET_VALUE. INVOKE with the
SM_MAC_LM_GET_VALUE.REPLY thus allowing the SM to release
the message buffer.

SM_MAC_LM_COMPARE_AND_SET_VALUE. INVOKE
{ PARAMETER_TYPE,
OPERATION_COMMAND,
ACCESS_CONTROL_INFO }

-

MII ICD Program Page 29
ARCHITECTURE 21 July 1987

The Compare and Set value command forces the MAC to do a
comparison (of either a given constant or of a MAC variable)
against a MAC variable. If the comparison is true then the
MAC variable is over written. The PARAMETER_TYPE indicates
the parameter to be over written and the value to use. The
OPERATION COMMAND structure specifies the comparison to do,
and the constant or MAC variable to use in the comparison.

SM_MAC_LM_COMPARE_AND_SET_VALUE.REPLY
{ STATUS, RETURN_VAL !

The objective of the reply by the MAC to the SM 1is to
indicate the success or failure of a previous
SM_MAC_LM_COMPARE_AND_SET_VALUE.INVOKE. The SM expects the
MAC to overwrite the SM_MAC_LM_COMPARE_AND_SET_VALUE.INVOKE
with the SM_MAC_LM_COMPARE_AND_SET_VALUE.REPLY thus allowing
the SM to release the message buffer.

SM_MAC_ACTION_VALUE.INVOKE
| PARAMETER_ID, ACCESS_CONTROL_INFO }

The objective of the SM_MAC_ACTION_VALUE.INVOKE command by
the SM is to force a MAC operation in the MAC as defined by
the parameter_ID structure. This structure specifies the
action to be performed.

SM_MAC_ACTION_VALUE.REPLY
{ STATUS, ACTION_REPORT };

The objective of the reply by the MAC to the SM is to

indicate the success or failure of a previous
SM_MAC_ACTION_VALUE.INVOKE . The SM expects the MAC tO
overwrite the SM_MAC_ACTION_VALUE. INVOKE with the

SM_MAC_ACTION_VALUE.REPLY thus allowing the SM to release
the message buffer.

MAC_SM_EVENT_VALUE.NOTIFY
{ EVENT_ID !}

The objective of the MAC_SM_EVENT_VALUE.NOTIFY command by
the MAC is to report a event which has occurred in the MAC
as defined by the EVENT_ID structure. This structure
specifies the Event and an integer. These events can be
masked by setting the EVENT_MASK variable.

-

MII ICD Program Page 30
ARCHITECTURE 21 July 1987

MAC_SM_EVENT_VALUE.REPLY
{ STATUS }

The objective of the following reply by the SM to the MAC 1is
to indicate the success or failure of a previous
MAC_SM_EVENT_VALUE.NOTIFY. The MAC expects the SM to
overwrite the MAC_SM_EVENT_VALUE.NOTIFY with the
MAC_SM_EVENT_VALUE.REPLY thus allowing the MAC to release
the message buffer.

w»

:MII ICD Program
ARCHITECTURE

3.11.2.1.1 1EEE 802.3 SM MANAGEMENT —

See the IEEE 802 specifications for actual meanings. Some
parameters have additional explanations. Specific
implementations may have differences and the Stotion Manager
must be able to resolve them. This set is taken from the
IEEE 802 document and some implementations may not provide

all the wvariables, however in such a case impiementations
will respond with o proper status (non—compliance or error,
etc).

Additions may be made so -as to support future changes
providing that only new additions are made. Tags found in
this standard may not be modified. New ones maoy be created
and odded as optional parameters.

ORIGINAL
OF FOOR

Page 31
21 July 1987

-

"MIT ICD Program Page 32
ARCHITECTURE 21 July 1987
READ_WRITE_VALUE_TYPES ::= CHOICE
i [e] Mac_type !

[1] Memory |
[2] Slot_time i
[3] Inter_frame_qop |
(4] Attempt_limit |
[5] Back_off_limit |
[6] Jam_size |
{71 Max_frame_size |
[8] Min_frame_size |
[9] Address_size |
[10] Event_enable_mask |
[11] Ma_group_address |
[12] Ts
}
Memory ::= SEQUENCE
§ ici_mem_link [@] Mem_block, — list of free ICI blocks
pdu_mem_Ilink [1] Mem_biock — tist of free PDU biocks
}
Mem_block ::= SEQUENCE
§ block_size INTEGER, — size of each block
block_ptr Address — pointer to first word in block
}
Ts ::= Value_address_1

This variable represents the address of this stotion.

Slot_time ::= Value_integer_1

This variable represents the siot time of this station. This
is the maximum time this station must wait on another
station to respond to a transmission.

Event_enable_mask ::= Event_enabie_bits

Event_enable_bits = BIT STRING

{ low_ici_mem (e),
i ow_pdu_mem).
duplicate_address (2),
faulty_transmitter ' (3),
xmit_queue_threshold_exceeded (4),
receive_queue_threshold_exceeded (5),
watch_dog_timeout (6),

mox_retry_encountered (7).

-

MI1 ICD Program Paoge 33
ARCHITECTURE 21 Juty 1987
bad_message_sent (8),

—— Where 1 is enabied

The MAC will report events when discovered and the
appropriate bit is set in the MASK above. The event is
reported only once whenever the actual occurrence is
detected.

MIT ICD Program Page 34
ARCHITECTURE 21 July 1987

Attempt_timit Value_integer_1

Ma_group_address ::= SEQUENCE
{ address_no INTEGER,
group_add Value_address_1

The MAC can respond to a list of group addresses. This is
the method for the Station Manager to tell the MAC which
addresses are acceptable. The collection of valid group
addresses can be thought of as an array where ADDRESS_NO is
the index into the array and the GROUP_ADD is the actual
address. This command will set this address as part of the
group addresses (uniess there all used up). Different
implementations may |imit the size of the array.

Mac_type ::= @3h

This variable is a read only variable and indicates which
version of MAC is responding.

Inter_frame_gap ::= Value_integer_1
Back_off_{imit ::= Value_integer_1
Jom_size ::= Value_integer_1
Max_frame_size ::= Value_integer_1

Min_frame_size

Value_integer_1

Address_size ::= Value_integer_1

Status_type ::= CHOICE

§ undefined_error [e] Volue_integer_1 |
success [1)] Volue_integer_1 |
refuse_to_comply [2) Value_integer_1 |
not_supported [3] Value_integer_1 |
error_in_perfor [4] Value_integer_1 |
not_availabie [5] Value_integer_1 |
bad_parameter_id [6] Value_integer_1 |
bad_parometer_operation [{7] Volue_integer_1 |
bod_parameter_value (8] Value_integer_t |

bad_expected_value [9] Value_integer_1 }

MII ICD Program Page 35
ARCHITECTURE 21 July 1987

These are responses to a command indicating the status of
the command. Following are expected uses of these responses;

undefined_error — Request was not understood or no
appropriate error message availablie.
success — A successful operation has been completed.
refuse_to_comply — The operation was impossible or illegal.
not_supported — The operation is not supported or
recognized.
error_in_perfor — A error was encountered
during operation.
not_available - Information is not yet
available.
bad_paorameter_id — Parameter ID was not
recognized.
bad_parameter_operation — Operation requested
was not recognized
bad_parameter_value — The Parameter
value was bad.

bad_expected_value — The expected value was
illegal.
Event_types ::= IMPLICIT SEQUENCE
§ event_class Event_class_types H
Event_class_types ::= CHOICE
{ local [0] Event_identifier_types |
remote [1] Event_identifier_types }

Events in this implementation are always LOCAL (os opposed
to events that occurred in a remote node).

Event_identifier_types ::= CHOICE

{ low_ici_mem [e] Vaiue_address_1
ow_pdu_mem [1] Value_address_1
duplicate_address [2] VALUE_INTEGER_1
faulty_transmitter [3] VALUE_INTEGER_1

xmit_queue_threshold_exceeded [4] VALUE_INTEGER_1
receive_queue_threshold_exceeded [5] VALUE_INTEGER_1
watch_dog_timeout [6] VALUE_INTEGER_1
max_retry_encountered [7) VALUE_INTEGER_?
bad_message_sent [8] Value_address_1

- — e . — —— — —

ORIGINAL PAGE IS

- OF FOOR QUALITY
) MII ICD Program Page 36
ARCHITECTURE 21 July 1987

These events are-reported upon the discovery of the
following conditions;

low_ici_mem ~ Flagged when the MAC detects it has or
is running out of ICI memory blocks.

low_pdu_mem —~ Flagged when the MAC detects it has or
is running out of PCI memory blocks.

duplicate_address —

fauity_transmitter —

xmit_queue_threshold_exceeded —

receive_queue_threshold_exceeded - Flaogged when the MAC
cannot get buffer
space for incoming
data.

watch_dog_timeout - Flagged if the hardware watch dog
timer expires.

max_retry_encountered - Flagged when a the max retry is
encountered.

bad_message_sent —-Fiagged when the MAC discovers a message
which does not agrees with its indicated
structure size (i.e. bad length fieid).

Action_value_types ::= CHOICE

§ reset [e] Value_integer_1 $

OPERATION_COMMAND_TYPES ::= CHOICE
ftest_<< [@] READ_WRITE_VALUE_TYPES
test_>> [1] Read_write_value_types
test_== [2] Read_write_value_types
test_<> [3] Read_write_value_types
test_<= [4] Reod_write_value_types
test_>= [5] Read_write_value_types

<<_given_constant [6] Given
>>_given_constant {[7] Given
==_given_constant [8] Given
<>_given_constant [9] Given
<=_given_constant [1@] Given

>=_given_constant [11] Given }
The above operations expects a variable (we'li call var1) to
be internal. The complete structure includes either a
variable or constant which we’il call var2. The constant is

used to overwrite Var1l in case the operation test true so in
the case of two internal vars being tested a constant is

=
MIT ICD Program

Page 37
ARCHITECTURE

21 July 1987

also passed in. The above operation commands imply the
following:

T
\}[14\\.‘. lfj\ﬁ_l’i Tyf@:{’.

P (Y

QR :
QF POOR QUALITY

L 4

MIT ICD Program Page 38
ARCHITECTURE 21 July 1987
test_<< -~ if varl << var2 then vari=constant

test_>> -~ if vart >> var2 then vari=constant

test_= - if varl = var2 then vari=constant

test_<> =~ if varl <> var2 then vari=constant

test_<= - if varl <= var2 then vari=constant

test_>= - if var1l >= var2 then vari=constant
<<_given_constant -~ if vart << constant then vari=constant
>>_given_constant — if varl >> constant then vari=constant
==_given_constant - if varl = constant then vari=constant
<>_given_constant ~ if var! <> constant then vari=constant
<=_given_constant — if vart <= constant then vari=constant
>=_given_constant — if varl <= constant then vari=constont

Varl is a MAC parameter to be tested (internagi). Its value
is always returned along with a status. Var2 is a MAC
parameter (internal) or a constant (external!) used in the
comparison of Var1 (internal). Var1 always refers to a
variable located in the MAC. Var2 is either located in the
MAC (a compare of two internal variables) or as a constant
(external) passed in. In all cases a true test forces Vari
to be o external constant.

Constant ::= Value_integer_1

Value_integer_1 IMPLICIT Long_word

Value_address_1 ::= [IMPLICIT Long_word (32 BITS)

Value_address_16 IMPLICIT ARRAY OF 16 Long_words

(32 BITS EACH)

a i) [
() f,&"@‘k g JA.L fl :;.' X

Nud

MI1 ICD Program Page 39
ARCHITECTURE 21 July 1987

3.11.2.1.1.1 SYNTAX -
STATION MANAGER INTERFACE SYNTAX

The station manager communicates to the MAC across the MII.
The syntax of such communication is described below
according to Abstract Syntax Notation One or ASN.1 (ISO DIS
8824). The information described is encoded to the basic
coding rules as found in ASN.1 (ISO DIS 8825). Some sample
records follow the syntax notations.

~IAG PAGE IS

R ——
- AL NS SR VA U W A

MII ICD Program Page 40

ARCHITECTURE 21 JurESge

3.11.2.1.1.2 TFORMAL SYNTAX SPECIFICATION -

Message_record ::= [PRIVATE 0] CHOICE
$ [0] Sm_mac_Im_set_value.invoke
[1] Sm_moc_lm_set_value.reply
[2] Sm_mac_Iim_get_value.invoke
[3] Sm_mac_im_get_value.reply
[4] Sm_mac_{im_compare_and_set_value.invoke
[5] Sm_moc_Im_compare_cnd_set_voIue.reply
[6] Sm_mac_action_value.invoke
[7] Sm_mac_action_value.reply

{8] Sm_mac_event_value.notify

[8] Sm_mac_event_value.reply }
Sm_mac_Im_set_value.invoke ::= IMPLICIT SEQUENCE
{ parameter_type Read_write_value_types ,
access_control_info NULL }
Sm_mac_Im_set_value.reply ::= IMPLICIT SEQUENCE
{ Return_val Read_write_value_types,
status Stotus_type}
Sm_mac_Im_get_value.invoke ::= IMPLICIT SEQUENCE
{ Parameter_type Read_write_value_types ,
access_control_info NULL }
Sm_mac_Im_get_value.reply ::= IMPLICIT SEQUENCE
{ Parameter_type Read_write_value_types ,
status Status_type }
Sm_mac_Iim_compare_and_set_vaiue. invoke ::= IMPLICIT SEQUENCE
{ paraometer_type Dummy_rw_types,
operation_command Operation_command_types,
access_control_info NULL t
Sm_mac_Im_compare_and_set_value.reply ::= IMPLICIT SEQUENCE
§ return_val Read_write_value_types,
status Status_type }
Sm_mac_action_value.invoke ::= IMPLICIT SEQUENCE
{ parameter_id Action_value_types ,
access_control_info NULL}
Sm_moc_oction_value.reply i= [MPLICIT SEQUENCE
{ status Stotus_type,

action_report NULL ¢

N4

MI1 ICD Program Page 41
ARCHITECTURE 21 July 1987
Moc_sm_event_volue.notify := IMPLICIT SEQUENCE
§ Event_id Event_types }
Mac_sm_event_value.reply ::= IMPLICIT SEQUENCE
{ Status ' Stotus_type }
Read_write_value_types ::= CHOICE
i [e] Mac_type |

[1] Memory]

(2] Stot_time |

[3] Inter_frame_gap |

[4] Attempt_iimit i

[5] Back_off_limit |

[6] Jam_size |

[7] Max_frame_size i

[8] Min_frame_size |

[9] Address_size J

[10] Event_enable_mask |

[11] Ma_group_address |

[12] Ts
}
Dummy_rw_types ::= CHOICE §
mac_type [@] value_integer_1 |
siot_time [2] Value_integer_1 |
inter_frome_gap {3] value_integer_1 |
attempt_timit [4] Volue_integer_1 |
back_off_limit [5] Value_integer_1 |
jam_size [6] Value_integer_1 |
max_fraome_size (7] value_integer_1 |
min_frame_size [8] value_integer_1 |
oddress_size (9] Volue_integer_1 |
event_enable_mask [1@] Volue_integer_1 |
ma_group_address [11] Value_integer_1 |
ts [12]) Value_oddress_t
}
Memory ::= SEQUENCE
§ ici_mem_link [@] Mem_block, — list of free ICI biocks

pdu_mem_link [1] Mem_block - — list of free PDU blocks

H
Mem_block ::= SEQUENCE
§ block_size INTEGER, — size of each block

block_ptr Address —— pointer to first word in block

}

-

MI1 ICD Program CF oo Page 42
ARCHITECTURE 21 July 1987
Ts = Value_address_1
Ns = Value_address_1
Slot_time ::= Value_integer_1
Event_enable_mask ::= EVENT_ENABLE_BITS
Ma_group_address ::= SEQUENCE
{ Address_no INTEGER,
Group_add Vaiue_address_1
}
Mac_type ::= 03h
Status_type ::= CHOICE
$ undefined_error [e] Value_integer_1 |
success [1] Value_integer_1 |
refuse_to_compiy [2] Value_integer_1 |
not_supported [{3] Value_integer_1 |
error_in_prefor [4] Value_integer_1 |
not_available [5] Value_integer_1 |
bod_parameter_id [6] Vaiue_integer_1 |
bad_porameter_operation [7] Value_integer_1 |
bad_parameter_vaiue [8] Value_integer_1 |
bad_expected_value {9] Value_integer_1 1}
Event_types ::= IMPLICIT SEQUENCE
{ event_class Event_class_types $
Event_class_types ::= CHOICE
{ tocal [e] Event_identifier_types |
remote [1] Event_identifier_types ¢
Event_identifier_types ::= CHOICE
§ tow_ici_mem [e] Vaiue_integer_1 |
low_pdu_mem {1] vValue_integer_1 |
duplicate_address [2] Value_integer_1 |
faulty_transmitter [3) Value_integer_1 |
xmit_queue_threshold_exceeded [4] vValue_integer_1 |
receive_queue_threshold_exceeded [5] Volue_integer_1 |
watch_dog_timeout [6] Value_integer_1 |
max_retry_encountered [7] Value_integer_1 |
bad_message_sent [8] Volue_aoddress_? }
Event_enable_bits ::= BIT STRING
{ low_ici_mem (),
low_pdu_mem (1),
duplicote_address (2),

faulty_transmitter (3),

Or QUALITY
K 4
" MIT I1CD Program Page 43
ARCHITECTURE 21 Juiy 1987
xmit_queue_threshold_exceeded (4),
receive_queue_thresholid_exceeded (5),
watch_dog_timeout (8),
max_retry_encountered (7).
bad_message_sent (8) — 1 is enabled
Action_value_types ::= CHOICE
{ reset {e] Value_integer_1 H
Operation_command_types ::= CHOICE
ftest_<< [0] ODummy_rw_types]
test_>> [1] Dummy_rw_types]
test_= (2] ODummy_rw_types]
test_<> [3] Dummy_rw_types]
test_<= [4] Dummy_rw_types |
test_>= [5] Dummy_rw_types |
<<_given_constant [B6] Given i
>>_given_constant [7] Given |
==_given_constant [8] Given |
<>_given_constant [9] Given |
<=_given_constant [10] Given |
>=_given_constant [11] Given }
Given ::= CHOICE
§ [@0] Value_integer_1 |
[1] value_address_1 H
Constont ::= Value_integer_1

Value_integer_1 IMPLICIT INTEGER

Value_address_1

IMPLICIT Long_word (32 BITS)

Value_oddress_16 ::= IMPLICIT ARRAY OF 16 Long_words
(32 BITS EACH)

-

MITI ICD Program Page 44
ARCHITECTURE 21 dJuly 1987

3.11.2.1.2 -IEEE 802.4 SM MANAGEMENT -

See the IEEE 802 specifications for actual meanings. Some
parameters have additional explanations. Specific
implementations may have differences and the Station Manager
must be able to resolve them. This set is the is taken from
the IEEE 802 document and some implementations may not
provide a variable, however in such a case all
implementations will respond with a status (non-compliance
or error, etc).

Additions may be made so0 as to support future changes
providing that only new additions are made. Tags found in
this standard may not be modified. New ones may be created
and added as optional parameters.

Je
" M11 ICD Program Page 45
ARCHITECTURE 21 July 1987

Read_write_value_types = CHOICE §
[e] Mac_type |
[11 Memory |
[2] Slot_time]
[31 Hi_pri_token_hold_time |
(4] Max_ac_4_rotation_time |
(5] Max_ac_2_rotation_time |
[6] Max_ac_0_rotation_time |
[7] Moc_ring_mointenonce_rotction_time |
[8l Ring_mointenonce_timer_initiol_valuel
[9] Max_inter_solicit_count |
[1e] Min_post_siIence_preomble_length |
[11] Event_enable_mask |
[12] Max_retry_limit |
[13] Ma_group_ocddress |
[15] Channel_assignments |
[16] Transmitted_power_levei_adjustment |
[17] Transmitted_output_inhibits |
[18} Received_signal_sources |
[19] Signal ing_mode |
[20] Received_signal_level_reporting i
[21] Lan_topoiogy_type]
[22] Ts |
[23] Ns

}

Memory ::= SEQUENCE

§ ici_mem_Ilink [@] Mem_block, — list of free ICI blocks

pdu_mem_1ink [1] Mem_block — list of free PDU blocks

}

Mem_block ::= SEQUENCE

{ block_size INTEGER, — size of each block

block_ptr Address — pointer to first word in block
}
Ts ::= Value_address_}1

This variable represents the address of this station.

Ns ::= Value_address_1

This variable represents the address of the next station.

Siot_time ::= Volue_integer_1

Hi_pri_token_hold_time Value_integer_1

Mox_oc_4_rotction_time .= Value_integer_1

K4

MII ICD Program Page 46
ARCHITECTURE 21 July 1987

Mox_oc_2_rotation_time Value_integer_1

Mox_oc_e_rotction_time Value_integer_1

Moc_ring_mointenonce_rototion_time .= Value_integer_1
Ring_mointenonce_timer_initiol_volue .= Value_integer_1
Mcx_inter_solicit_count .= Value_integer_1
Min_post_silence_preomble_length ..= Value_integer_1
In_ring ::= Volue_integer_}

Max_retry_limit ::= Value_integer_1

This is the maximum number of times that o packet will be

retronsmitted when the acknowledgement indicates a bad
transmission. If this is @ connection—less system this
variable should not be used.

Ma_group_address @ = SEQUENCE
{ oddress_no INTEGER,
group_add Value_oddress_1

The MAC con respond to @ list of group addresses. This is
the method for the Station Manoger to teil the MAC which
addresses are acceptable. The collection of valid group
addresses can be thought of as an array where ADDRESS_NO is
the index into the array and the GROUP_ADD is the actual
address. This command will set this address as part of the
group addresses {unless there all used up). Different
implementations may jimit the size of the array.

Chaonnel_assignments @ := Value_integer_1

Tronsmitted_power_level_odjustment ..= Value_integer_1
Transmitted_output_inhibits .= Value_integer_1
Received_signal_sources @ < Value_integer_1
Signaling_mode :@:= Volue_integer_1
Received_signcl_level_reporting .= Value_integer_1
Lan_topoiogy_type ::= Value_integer_1

Mac_type ::= ©4h

"3
MI1 1CD Program
ARCHITECTURE

This variable is a read only variable and

version of MAC is responding.

STATUS_TYPE ::= CHOICE
H undefined_error
success

refuse_to_comply
not_supported
error_in_perfor
not_available
bad_parameter_id
bod_porcmeter_operotion
bod_porometer_va\ue
bad_expected_value

(e}
(1]
(2]
(3]
(4]
(5}
(e}
(7}
(8]
[s]

Page 47

21 July 1987

Value_integer_1
Value_integer_1
Value_integer_1

Volue_integer_Iy

Value_integer_1
Value_integer_1
Value_integer_1
Value_integer_1
Value_integer_1
Value_integer_1

indicates which

|
I
I
I
I
|
I
I
I

}

These are responses to a command indicating the status of

the command. Foliowing are expected uses of these responses;

undefined_error - Request was not understood or no

appropriate error message available.

success — A successful operation has been completed.

refuse_to_comply — The operation was impossible or itlegal.

not_supported — The operation is not supported or

recognized.

error_in_perfor — A error was encountered

during operation.

not_available — Information is not yet

available.

bod_parameter_id — Parameter 1D was not

recognized.

bod_parameter_operation — Operation requested

was not recognized

bad_paraometer_value — The Paraometer

value was bad.

bod_expected_value — The expected value was
illegal.
event_enabie_mask ::= EVENT_ENABLE_BITS

Event_enable_bits ::= BIT STRING

§ low_ici_mem
{ ow_pdu_mem
duplicate_address
faulty_transmitter
xmit_queue_threshold_exceeded

receive_queue_threshold_exceeded

watch_dog_t imeout
token_lost

dual_token
mox_retry_encountered
bad_message_sent

(@),
(1.
(2).
(3).
(4).
(5).
(6),
(8).
(9).
(1e),
(1),

~owinids PAGE IS

2F FOOR QUALITY.

K 4
MII ICD Program Page 48
ARCHITECTURE 21 Jutly 1987

ns_changed - (12),
ns_nul | (13), § — 1 is enablied
The MAC will report events when discovered and the

appropriate bit is set in the MASK above. Bit @ is the
NS_Station, bit 1 is the NS_NULL etc. These bits are
inspected each time the event has occurred and the MAC
is active. The event is reported only once whenever the
actual occurrence is detected.

Event_types ::= IMPLICIT SEQUENCE

{ event_ciass Event_closs_types t

Event_class_types ::= CHOICE

§ local [e] Event_identifier_types |
remote [1] Event_identifier_types ¢

Events in the MII impiementation are always LOCAL (as
opposed
to events that occurred in a remote node).

Event_identifier_types ::= CHOICE

§ Low_ici_mem [0] vValue_integer_1 |
Low_pdu_mem [1] Volue_integer_1
Duplicote_address {2} Value_integer_1 |
Faulty_transmitter [3] Value_integer_1 |
Xmit_queue_threshold_exceeded [4) Value_integer_1 |
Receive_queue_threshold_exceeded [5] Value_integer_1 |
Watch_dog_timeout [6] Value_integer_1 |
Token_lost [8) value_integer_1 |
Dua!_token (9] Value_integer_1 |
Max_retry_encountered [1@] vValue_integer_t1 |
Bad_message_sent [11] value_cddress_1 |
Ns_nul | [12] value_integer_1 |
Ns_changed [13]) vaiue_integer_1 |}

These events are reported upon the discovery of the
following conditions;

low_ici_mem — Flagged when the MAC detects it has or
is running out of ICI memory blocks.

low_pdu_mem — Fliogged when the MAC detects it has or
is running out of PCI memory blocks.

ns_changed — Flagged when the event routine discovers a
change in the NS

address.

ns_null — Flaogged when the NS is set to NULL

-
" MII ICD Program Page 49
ARCHITECTURE 21 July 1987

duplicate_address — reports duplicate addresses other
oddresses.
faulty_transmitter — Reports faulty transmitter.

xmit_queue_threshold_exceeded — Flagged when the MAC
cannot get buffer space
for outgoing data.

receive_queue_threshold_exceeded — Fiagged when the MAC
cannot get buffer
space for incoming
data.

watch_dog_timeout — Flagged if the hardware watch dog
timer expires.

token_iost — Flagged when the token is detected as
lost.

dual_token — Flagged when a extro token is discovered.

max_retry_encountered — Flagged when a the max retry is
encountered.

bad_message_sent —Flagged when the MAC discovers o messoge
which does not agrees with its indicoted
structure size (i.e. baod length field).

Action_value_types ::= CHOICE
{ reset [6] Value_integer_1 }

The ACTION_VALUE_TYPES allow the following;
Reset Value_integer_1 = anything:
A reset will flush all queues, set all operating paraometers

to their initial values, lose the token (if its holding it),
and await work from either the media or the LLC.

<<_given_constant [6] Given
>>_given_constant [7] Given
==_given_constant [8] Given

OPERATION_COMMAND_TYPES ::= CHOICE)

jtest_<< [@] Read_write_value_types]

test_>> [1] Read_write_value_types |

test_= [2] Read_write_value_types

test_<> [3] Read_write_volue_types |

test_<= [4] Read_write_value_types

test_>= [5] Read_write_value_types |
l
|
I

-

MI1 ICD Program e o ' Page 50
ARCHITECTURE 21 July 1987

<>_given_constant [9] Given
<=_given_constant [10] Given |
>=_given_constant [11] Given }

The above operations expects a variable (we'll call varl) to
be internal. The complete structure includes either a
variable or constant which we’il call var2. The constont is
used to overwrite Vart in case the operation test true so in
the case of two interna! vors being tested a constant is
also passed in. The above operation commands imply the
following:

test_<< - if varl << var2 then vari=constant
test_>> — if varl >> var2 then vari=constant
test_== - if varl = var2 then vari=constont
test_<> — if varl <> var2 then vari=constant
test_<= - if varl <= var2 then vari=constant
test_>= — if varl >= var2 then varl=constant
<<_given_constant — if varl << constant then vari=constant
>>_given_constant — if varl >> constant then vari=constant
=_given_constant - if varl = constant then vari=constant
<>_given_constant — if varl <> constent then vari=constant
=_given_constant — if varl <= constant then vari=constant
>=_given_constant - if varl <= constant then vart=constant

Varl is a MAC parameter to be tested (internal). Its value
is always returned clong with a status. Var2 is a MAC
parameter (internal) or a constant (external) used in the
comparison of Varil (internal). Var1l always refers to a
variable located in the MAC. Vor2 is either located in the
MAC (a compare of two internal variobles) or as a constont
(external) passed in. In all cases a true test forces Var?
to be a external constant.

Constant ::= Value_integer_1

Volue_integer_1 IMPLICIT Long_word

Value_oddress_1 IMPLICIT Long_word (32 BITS)

Volue_oddress_16 ::= IMPLICIT ARRAY OF 16 Long_words
(32 BITS EACH)

.4
" MII ICD Program Page 51
ARCHITECTURE 21 July 1987

3.11.2.1.2.1 SYNTAX -
STATION MANAGER INTERFACE SYNTAX

The station manager communicates to the MAC across the MII.
The syntax of such communication is described below
according to Abstract Syntax Notation One or ASN.1 (ISO DIS
8824). The information described is encoded to the basic
coding rules as found in ASN.1 (ISO DIS 8825). Some sample
records follow the syntax notations.

o oo PAGE 1y
MII ICD Program FYUR QUALITY Page 52
ARCHITECTURE 21 July 1987

3.11.2.1.2.2 -FORMAL SYNTAX SPECIFICATION -

Message_record ::= [PRIVATE @] CHOICE
{ [0] Sm_mac_im_set_value.invoke
[1] Sm_mac_Iim_set_value.reply
(2] Sm_mac_Im_get_value.invoke
[3] Sm_mac_Im_get_vaiue.reply
(4] Sm_mac_Im_compare_and_set_value.invoke
[5] Sm_mac_Im_compare_and_set_value.reply
[6] Sm_mac_action_value.invoke
[7] Sm_mac_action_value.reply
[8] Sm_mac_event_value.notify

[9] Sm_mac_event_value.reply 3
Sm_mac_Im_set_value. invoke ::= IMPLICIT SEQUENCE
$ parameter_type Reod_write_value_types ,
access_control_info NULL }
Sm_maoc_Im_set_value.reply ::= IMPLICIT SEQUENCE
§ return_val Read _write_value_types,
status Status_typet
Sm_mac_Im_get_value.invoke ::= IMPLICIT SEQUENCE
$ paraometer_type Read_write_value_types ,
access_control_info NULL {

Sm_moc_lm_get_vclue.reply i= IMPLICIT SEQUENCE
{ parameter_type Read_write_value_types ,
stotus Status_type

Sm_mac_Im_compare_ond_set_value.invoke ::= IMPLICIT SEQUENCE

§ parameter_type Dummy_rw_types,
operation_command Operation_command_types,
access_control_info NULL }

Sm_mac_Im_compare_cnd_set_voIue.reply ci= IMPLICIT SEQUENCE

{ return_val Read_write_value_types,
status Status_type }

Sm_mac_action_value.invoke ::= IMPLICIT SEQUENCE

{ parameter_id Action_value_types ,
access_control_info NULL}

Sm_mac_action_value.reply ::= IMPLICIT SEQUENCE

{ status Stotus_type,
action_report NULL $

Mac_sm_event_value.notify ::= IMPLICIT SEQUENCE

54

ORIGINAL PAGE IS
OE POOR QUALITY,

MII ICD Program

ARCHITECTURE

{ event_id

Mac_sm_event_value.repiy ::=

- Event_types }

Page 53
21 July 1987

IMPLICIT SEQUENCE

{ status Stotus_type }
Read_write_value_types ::= CHOICE $
[e] Mac_type
[1] Memory
[2] Slot_time |
[3] Hi_pri_token_hoid_time |
[4] Max_ac_4_rotation_time |
[5] Max_ac_2_rotation_time [
(8] Max_ac_@_rotation_time |
[7] Mac_ring_maintenance_rotation_time |
[8] Ring_maintenance_timer_initial_value]
[9] Max_inter_solicit_count |
[10] Min_post_silence_preaombie_length i
[11] Event_enable_mask |
{12] Max_retry_limit [
[13] Ma_group_cddress
[15] Channel_assignments
[16] Transmitted_power_level_adjustment
[17] Transmitted_output_inhibits |
[18] Received_signal_sources
[19] Signaling_mode
[28] Received_signal_level_reporting
[21] Lan_topology_type
[22] Ts |
[23) Ns $
Memory ::= SEQUENCE
§f ici_mem_link [@] Mem_block, — 1list of free ICI biocks

pdu_mem_link [1] Mem_biock

— list of free PDU blocks }

Mem_block ::= SEQUENCE
§ block_size INTEGER, ~— size of each block

block_ptr Address — pointer to first word in block }
Dummy_rw_types ::= CHOICE $
mac_type [@] Value_integer_t
ns [1] vaive_integer_1
slot_time [2] Vaiue_integer_1

hi_pri_token_hold_time
max_oac_4_rotation_time
max_ac_2_rotation_time
mox_ac_0@_rotation_time

mac_ring_maintenance_rotation_time

ring_maintenance_timer_initial_value

max_inter_solicit_count

min_post_silence_preamble_length

|

|

|
[3] Vaiuve_integer_1 |
[4] Value_integer_1 |
[5] Vaiue_integer_1 |
[6] Value_integer_1 |
[7] value_integer_1 |
[8] value_integer_1 |
[9] Value_integer_1 |
[10] value_integer_1 |

ORIGINAL PAGE IS
OF POOR QUALITY

L 4

MI1 ICD Program Page 54
ARCHITECTURE 21 July 1987
event_enable_mask [11] Value_integer_1 |
max_retry_limit [12] Value_integer_1 |
ma_group_address [13] value_integer_1 |
channel_assignments {15]) Value_integer_1]
transmitted_power_level_adjustment [16] Value_integer_1 |
transmitted_output_inhibits [17] Value_integer_1 |
received_signal_sources [18] Value_integer_1 |
signaling_mode [19] Value_integer_1 |
received_signal_level_reporting [20] Value_integer_1 |
lan_topology_type [21] Value_integer_1 |
ts {22] Value_integer_1 }
Ts = Value_address_1

Ns = Value_address_1

Slot_time ::= Value_integer_1

Hi_pri_token_hold_time ::= Value_integer_1

Max_ac_4_rotation_time Value_integer_1

Max_ac_2_rotation_time ::= Value_integer_t
Max_ac_@_rotation_time ::= Value_integer_1
Mac_ring_maintenance_rotation_time ::= Value_integer_1
Ring_mointenonce_timer_initial_vulue 1= Value_integer_1
Max_inter_solicit_count ::= Value_integer_1
Min_post_silence_preombIe_length 1:= Value_integer_1

In_ring ::= Value_integer_1

Event_enable_mask ::= EVENT_ENABLE_BITS
Max_retry_limit ::= Value_integer_1
Ma_group_address ::= SEQUENCE
§ address_no INTEGER,

group_add Value_address_1
}
Channel_assignments ::= Value_integer_1

Tronsmitted_power_level_odjustment 1= Value_integer_1

Tronsmitted_output_inhibits ::= Value_integer_1

ORIGINAL PAGE IS
OF POOR QUALITY

MIT ICD Program Page 55
ARCHITECTURE 21 July 1987
Received_signal_sources = Vo!ue_integer_1
Signaling_mode ::= Value_integer_1
Received_signol_level_reporting 1i= Value_integer_1
Lan_topology_type 1= Value_integer_1
Freeze_mac ::= Value_integer_1
Mac_type ::= @4h
Status_type ::= CHOICE
§ undefined_error [6] Value_integer_1 |
success (1] Vvalue_integer_1 |
refuse_to_comply [2] Value_integer_1 |
not_supported [3] Value_integer_1 |
error_in_prefor [4] Value_integer_1 |
not_available [5] Vvalue_integer_1 |
bad_parameter_id [6] Value_integer_1 |
bad_parameter_opereration [7] Value_integer_1 |
bad_parameter_value (8] Value_integer_1 |
bad_expected_value [8] value_integer_1 1}
Event_types ::= IMPLICIT SEQUENCE
{ event_class Event_class_types $
EVENT_CLASS_TYPES ::= CHOICE
{ local [e] Event_identifier_types |
remote [1] Event_identifier_types }
Event_identifier_types ::= CHOICE
§ low_ici_mem [e] vVvalue_integer_1 |
| ow_pdu_mem [1] Value_integer_1 |
duplicate_address [2] vVaiue_integer_1 |
faulty_transmitter [3] Value_integer_1 |
xmit_queue_threshold_exceeded [4] Value_integer_1 |
receive_queue_threshold_exceeded [5] Value_integer_1 |
watch_dog_t imeout [6] Value_integer_1 |
token_lost [8] Value_integer_t
duali_token [9] Value_integer_1 |
max_retry_encountered [18] Value_integer_1 |
bad_message_sent [11] Value_address_1 |
ns_nul | [12] vaiue_integer_1 |
ns_changed [13] Value_integer_1
}
Event_enable_bits ::= BIT STRING

§ low_ici_mem (2),

0507 IAL PAGE 18

OF POOR QUALITY

-
MI1 ICD Program Page 56
ARCHITECTURE 21 July 1987

low_pdu_mem _ (1),
duplicate_address (2),
faulty_transmitter (3),
xmit_queue_threshold_exceeded (4),
receive_queue_threshold_exceeded (5),
watch_dog_timeout (6),
token_lost (8),
duai_token (9),
max_retry_encountered (19),
bad_message_sent (11)
ns_changed (12),
ns_nul | (13)} — 1 is enabled
Action_value_types ::= CHOICE
{ reset [6] Vvalue_integer_1 {
Operation_command_types ::= CHOICE
jtest_<< [@] ODummy_rw_types
test_>> [1] Oummy_rw_types |
test_=—= [2] Dummy_rw_types |
test_<> [3] ODummy_rw_types
test_<= [4] Dummy_rw_types
test_>= {51 Dummy_rw_types |
<<_given_constant [6] Given !
>>_given_constant [7] Given]
==_given_constant [8] Given |
<>_given_constant [9] Given]
<=_given_constant [10] Given
>=_given_constant [11] Given ¢
Given ::= CHOICE
§ [0] Value_integer_1 |
[1] Value_oddress_1 H
Constant ::= Value_integer_1

Value_integer_1 ::= IMPLICIT INTEGER
Value_address_1 ::= IMPLICIT Long_word (32 BITS)

Value_address_16 ::= IMPLICIT ARRAY OF 16 Long_words
(32 BITS EACH)

R4
" MII ICD Program Page 57
ARCHITECTURE 21 July 1987

3.12 MII OPERATIONS

Although the actual process of initialization is not defined
by the MII, it is outlined below.

1) The SM passes to the MAC (after checking the SM_RDY
semaphore) a message which contains a pointer to a linked
list of memory blocks suitable for the ICI information.

2) The SM passes to the MAC (after checking the SM_RDY
semaphore) a message which contains a pointer to a linked
list of memory blocks suitable for the PDU information.

3) The SM passes to the MAC (after checking the SM_RDY
semaphore) a pointer to a linked 1list of memory blocks
containing ASN.1 records which; a) tells the MAC the address
of the SM receive channel (SM_REC) and semaphore (SM_RDY):
b) request the MACs Status and type:; ¢) and if appropriate
puts it on 1line; all in a single linked list of commands.
This also could be done with a series of single messages to
the MAC.

LLC Initialization

The LLC initialization is beyond the MII scope except to say
that the LLC must be made aware of the LLC_RDY semaphore and
LLC_LINK locations.

OPERATIONS -Indicate

The SM operations with the MAC are no different than
described wunder initialization. Each SM command has a
unique link. Each SM command has a reply which overwrites
the original command (the command record size is always
larger than the reply). The reply indicates to the sender
that it is now allowed to use that ICI memory block again.
This way ICI can be passed back and forth without the need
to request more blocks from the system. ICI information may
include pointers to the PDUs and therefore a ICI reply also
returns the PDU memory block to its original source.

When a PDU arrives from the media the MAC arbitrates for the
bus and begins data movement to common memory using one of
the free blocks of memory. The MAC design may or may not

MII ICD Program Page 58
ARCHITECTURE 21 July 1987

completely buffer the data going into the common memory. If
the MAC is the highest level priority on the VMEbus then a
block mode operation will Support the bandwidth necessary
for no MAC buffering. These are design issues for the
system designer. There are power, weight and speed
advantages to no buffer MACs, however consuming the system
bus for the 1length of one or more data packets may be
unacceptable. The MII does not restrict the system in these
areas.

Once the data is located in common memory the pointer to
this PDU memory record and its size are included in a ASN.1
nessage known as MA_DATA.indicate. The MAC performs a TEST
and SET operation on the LLCs MAC_RDY semaphore. If the
Test indicates the bit was set, then the LLCs MAC channel
was already busy and the set operation did nothing. 1In this
case the MAC must wait. The MAC will continue to TEST and
SET until the test indicates the busy bit was reset. The
bit has already been set so the MAC is now allowed to use
the channel. [The pointer to the ICI which is an encoded
MA_DATA.indicate is written into the location following the
semaphore. This indicates the presents of incoming data to
the LLC (See IEEE 802.2).] o

Once the MAC gains control over this channel it writes +the
pointer to the ICI (ASN.1 MA_DATA.indicate) record into the
LLCs MAC_LINK location. When this location is written to,
the LLC is interrupted. The LLC uses the address to find
the ICI record and it points to the address of the PDU data
located in common memory. The LLC will then queue the
pointer, link the ICI record to an existing linked list (of
previous ICI records) and frees the channel as soon as
possible. LLC now holds the pointer to the ICI and PDU
memory blocks.

The ICI memory (with the ASN.1 record in it) is then
overwritten with a indicate acknowledge record (also ASN.1)
and passed back to the MAC. The ICT also contains a pointer
to the associated PDU. This allows the MAC to replenish its
stock of free PDU blocks. The LLC and above layers must be
finished with the PDU memory block before it sends the
Indicate acknowledge primitive.

OPERATIONS -Request

A MA _DATA.request primitive is generated by the LLC to tell
the MAC there is data to be shipped. This ASN.1 record is
put into a ICI memory block, the LLC_RDY semaphore captured,
and the pointer to the ICI block written to the LLC_LINK in
the MAC. The MAC ships (or copies) the data, overwrites the

-

MII ICD Program Page 59
ARCHITECTURE 21 July 1987

ICI block with a MA_DATA.confirm and passes 1t back to the
LLC via the MAC_RDY semaphore and MAC_LINK locations in the

LLC. The LLC can now replenish its stock of free ICI and
PDU memory blocks.

