FY 1987 SCIENTIFIC AND TECHNICAL REPORTS, ARTICLES, PAPERS, AND PRESENTATIONS

Compiled by Joyce E. Turner
Management Operations Office

October 1987

NASA
National Aeronautics and Space Administration
George C. Marshall Space Flight Center
This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY 87. It also includes papers of MSFC contractors.

After being announced in STAR, all of the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.
In accordance with the NASA Space Act of 1958, the MSFC has provided for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.

Since July 1, 1960, when the George C. Marshall Space Flight Center was organized, the reporting of scientific and engineering information has been considered a prime responsibility of the Center. Our credo has been that "research and development work is valuable, but only if its results can be communicated and made understandable to others."

The N number shown for the reports listed is assigned by the NASA Scientific and Technical Information Facility, Baltimore, Maryland, indicating that the material is unclassified and unlimited and is available for public use. These publications can be purchased from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161. The N number should be cited when ordering.
TABLE OF CONTENTS

Page

NASA TECHNICAL MEMORANDA ... 1
NASA TECHNICAL PAPERS ... 13
MSFC CONFERENCE PUBLICATIONS .. 18
NASA CONTRACTOR REPORTS .. 19
MSFC PAPERS CLEARED FOR PRESENTATION 40
NASA TECHNICAL MEMORANDUM

TM-86558 November 1986
Ground Facility for Large Space Structures Dynamics and Control Verification. Henry Waites. Systems Dynamics Laboratory.
N87-18600

NASA Marshall Space Flight Center has developed a facility in which closed loop control of Large Space Structures (LSS) can be demonstrated and verified. The main objective of the facility is to verify LSS control system techniques so that on-orbit performance can be ensured. The facility consists of an LSS test article or payload which is connected to a 3-axis angular pointing mount assembly that provides control torque commands. The angular pointing mount assembly is attached to a base excitation system which will simulate disturbances most likely to occur for Orbiter and DOD payloads. The control computer contains the calibration software, the reference systems, the alignment procedures, the telemetry software, and the control algorithms. The total system is suspended in such a fashion that the LSS test article has the characteristics common to all LSS.

TM-86560 November 1986
5000 GPM Firefighting Module Evaluation Test. Ralph Burns. Structures and Propulsion Laboratory. N87-16919

The 5000 gpm Firefighting Module development was sponsored and shared by the Navy Facilities Engineering Command. It is a lightweight, compact, self-contained, helicopter-transportable unit for fighting harbor and other specialty fires as well as for use in emergency and shipboard water pumping applications. This unit is a more advanced model of the original 1500 GPM module developed for the U.S. Coast Guard.

This report describes the module and an evaluation test program conducted at the North Island Naval Air Station, San Diego, CA, by NASA and the U.S. Navy.

TM-86562 August 1986

Communications are a critical link in space flight operations. Specific communications phraseology and techniques have been developed to allow rapid and clear transfer of information. Communications will be clear and brief through the use of procedural words and phrases. Communications protocols standardize the required information transferred. The voicing of letters and numbers is discussed. The protocols used in air-to-ground communications are given. A glossary of communications terminology is presented in the appendix.

TM-86563 October 1986

The inevitable presence on the Space Station of Microorganisms associated with crew members and their environment will have the potential for both benefits and a range of problems including illness and corrosion of materials. This report reviews the literature presenting information about microorganisms pertinent to Environmental Control and Life Support (ECLS) on the Space Station. The perspective of the report is ecological, viewing the Space Station as an ecosystem in which biological relationships are affected by factors such as zero gravity and by closure of a small volume of space.

Potential sites and activities of microorganisms on the Space Station and their environmental limits, microbial standards for the Space Station, monitoring and control methods, effects of space factors on microorganisms, and extraterrestrial contamination are discussed.

TM-86564 September 1986

When a two-component system is cooled below the minimum temperature for its stability, it separates into two or more immiscible phases. The initial nucleation produces grains (if solid) or droplets (if liquid) of
one of the phases dispersed in the other. The dynamics by which these nuclei proceed toward equilibrium is called Ostwald ripening. We shall assume that the nuclei are spheres, thereby treating the case of droplets rigorously and the case of grains approximately.

The dynamics of growth of the droplets depends upon the following factors: (1) The solubility of the droplet depends upon its radius and the interfacial energy between it and the surrounding (continuous) phase. The equation governing this phenomenon is associated with the names of Gibbs and Kelvin, and we derive it for the case of two components. There is a critical radius determined by the supersaturation in the continuous phase. Droplets with radii smaller than critical dissolve, while droplets with radii larger grow. (2) The droplets concentrate one component and reject the other. The rate at which this occurs is assumed to be determined by the interdiffusion of the two components in the continuous phase. Associated with this diffusion is advection, which is accounted for in our theory to lowest order in the center of volume velocity of the two components. Moreover, when the droplets occupy a finite fraction of the total volume of the system, there occur effects of inter-droplet competition on the concentration field in the continuous phase. This increases the overall rate of growth of the droplet phase. Using diagrammatic techniques and rigorous statistical mechanics, we show that this effect depends upon the square root of the volume fraction associated with the grains, and that it accelerates both the rate of growth and the rate of dissolution of droplets. (3) The Ostwald ripening is constrained by conservation of mass; e.g., the amount of material in the droplet phase plus the remaining supersaturation in the continuous phase must equal the supersaturation available at the start. (4) There is a distribution of droplet sizes associated with a mean droplet radius, which grows continuously with time. This distribution function satisfies a continuity equation, which we solve asymptotically by a similarity transformation method.

The final results of our theoretical analysis consist of the following quantities determined as functions of time: (1) the supersaturation remaining in the continuous phase, (2) the total number of droplets in the continuous phase, (3) the distribution of droplet sizes, (4) the critical droplet radius, (5) the mean droplet radius, and (6) the maximum droplet radius. Each of these is also determined as a function of the volume fraction occupied by the droplets. We apply these results to the system, succinonitrile/water, which separates into two immiscible liquid phases below its consolute temperature at 58°C. This system is particularly attractive because it is transparent to visible light, so the rate of formation of the droplet phase can be followed photographically. In general, the droplet phase has a different density than the continuous phase. Separation of the two by sedimentation competes with the process of Ostwald ripening. In the acceleration-free environment of an Earth orbiting laboratory, the Ostwald ripening in the system succinonitrile/water should be observable without interference by sedimentation or any other effects associated with gravitation. We provide a complete set of specifications for the design of such an experiment.
This report describes the low-temperature transistor modules designed for use with the MSFC mid-infrared array. The modules were developed in the Space Science Laboratory at Marshall Space Flight Center with Center Director’s Discretionary Funds. The transistors (JFETs), which operate at a temperature of 77 K, are epoxied to a copper surface attached to a Teflon substrate. The module substrate insulates the JFETs from the 1.5K detector work surfaces and provides a convenient mounting structure for additional components such as solder pins. These modules have maintained their structural integrity during repeated temperature cycling, and they have proven to be convenient during maintenance and servicing of the infrared array.

TM-86568 October 1986
Stress Corrosion Testing of 2024 Aluminum Alloy Using the Slow Strain-Rate Method.
Leslie A. Curtis. Materials and Processes Laboratory.
X87-10010

Slow strain-rate tests were conducted on 2024 aluminum alloy at various aging conditions to determine stress corrosion susceptibility. The strain rate that produces the best results for this alloy is in the range of 1.5×10^{-6} to 2.0×10^{-6} in./in./s. This test program revealed that the elongation at fracture and the fracture energy were the best test parameters for evaluating stress corrosion susceptibility of this alloy in 3.5% NaCl solution. The slow strain-rate testing gave similar results to alternate immersion testing, but both methods had some scatter in the data. The slow strain-rate test method, which can give quicker results than the alternate immersion method, can be used as a screening test for assessing stress corrosion susceptibility of aluminum alloys in salt solutions.

TM-86569 October 1986
N87-16900

Al-In-Sn alloys have been directionally solidified in the NASA KC-135 aircraft which flies a series of parabolas to generate high (high-g) and low gravity (low-g) forces parallel to the longitudinal growth axis. Thus, for a given sample, successive sections can be identified which were solidified in high-g and low-g. Measurements of the electronic properties of the samples reveal that: (1) the resistivity of the low-g sections is larger (about a factor of 10) than that of the high-g sections; (2) the low-g sections behave conductively like a semi-metal, while the high-g sections are essentially metallic; and (3) both high-g and low-g sections are superconducting but the superconducting transition temperature of the low-g sections is 1 K higher than that of the high-g sections.

TM-86570 October 1986
N87-15916

A test method particularly suited for x-ray telescopes was evaluated experimentally. The method makes use of a focused ring formed by an annular aperture when using a point source at a finite distance. This would supplement measurements of the best focus image which is blurred when the test source is at a finite distance. The telescope used was the Technology Mirror Assembly of the AXAF program. Observed ring image defects could be related to the azimuthal location of their sources in the telescope even though in this case the predicted sharp ring was obscured by scattering, finite source size, and residual figure errors.

TM-86571 September 1986
X87-10064

The Solid Rocket Motor (SRM) Integrity Program was begun in the fall of 1984 by the National Aeronautics and Space Administration (NASA) in response to concerns expressed in Congress, NASA, Department of Defense (DOD), and industry about the frequency of the SRM failures and anomalies experi-
enanced during 1983 and early 1984. An industry wide assessment in the spring of 1984 indicated a number of technological shortfalls in the ability to design, manufacture, and verify the integrity of SRM nozzles. This program was specifically undertaken to improve the engineering technology base for SRM nozzles. The program involves nine major tasks in the areas of constituent materials and process characterization, design analysis, material properties data bases, process variables, process science, product evaluation (including NDE), thermal and structural code development, instrumentation, and verification/validation testing. Many of the weaknesses in the engineering technology base addressed in the program were recognized at the outset, but the work to date has shown that they are more serious than originally thought. Materials properties data bases used for design are inconsistent and incomplete. Process variability and control are not well understood. Thermostructural computer codes are used mainly to assess nozzles which have been designed by experience, engineering judgment, and empirical formula, rather than using them as a primary design tool. Further, the codes have not been verified with SRM firings, and no test derived failure criteria is available. Test data on nozzle thermostructural behavior is limited and has wide discrepancies due to improper strain gauge and thermocouple selection, calibration, attachment, and adhesive selection and application. The program is scheduled to continue through fiscal year 1988. This paper presents the background, structure and status/results of the work through June 1986.

TM-86572 October 1986

The Solid Rocket Motor (SRM) Integrity Program was begun in the fall of 1984 by the National Aeronautics and Space Administration (NASA) in response to concerns expressed in Congress, NASA, Department of Defense (DOD), and industry about the frequency of the SRM failures and anomalies experienced during 1983 and early 1984. An industry wide assessment in the spring of 1984 indicated a number of technological shortfalls in the ability to design, manufacture, and verify the integrity of SRM nozzles. This program was specifically undertaken to improve the engineering technology base for SRM nozzles. The program involves nine major tasks in the areas of constituent materials and process characterization, design analysis, material properties data bases, process variables, process science, product evaluation (including NDE), thermal and structural code development, instrumentation, and verification/validation testing. Many of the weaknesses in the engineering technology base addressed in the program were recognized at the outset, but the work to date has shown that they are more serious than originally thought. Materials properties data bases used for design are inconsistent and incomplete. Process variability and control are not well understood. Thermostructural computer codes are used mainly to assess nozzles which have been designed by experience, engineering judgment, and empirical formula, rather than using them as a primary design tool. Further, the codes have not been verified with SRM firings, and no test derived failure criteria is available. Test data on nozzle thermostructural behavior is limited and has wide discrepancies due to improper strain gauge and thermocouple selection, calibration, attachment, and adhesive selection and application. The program is scheduled to continue through fiscal year 1988. This paper presents the background, structure and status/results of the work through March 1986.

TM-86573 November 1986
The Effects of Gravity Level During Directional Solidification on the Microstructure of Hypermonotectic Al-In-Sn Alloys. P. A. Curreri and W. F. Kaukler. Space Science Laboratory.

Five hypermonotectic Al-In-Sn compositions were directionally solidified in a Bridgman-type furnace at normal gravity and during aircraft low-gravity maneuvers. The tendency of the Al-30In alloy to form an indium-rich band at the start of unidirectional growth (SUG) made it difficult to study the integration of L2 into the solidification interface. Hypermonotectic compositions closer to monotectic "slightly hypermonotectic" caused only a partial band of L2 to form at SUG and allowed the study of such variables as gravity, composition, and monotectic dome height on integration of excess L2 into the solid plus L2.
interface. It was found that formation of aligned composite structures for the Al-In-Sn system is not only a function of G and R but also of the degree to which the composition varies from on monotectic. Most of the aligned fibrous structures formed from hypermonotectic Al-In-Sn had spacings that were of the order of irregular fibrous structures reported for on monotectic Al-In-Sn. The spacings for the large fibers and aligned globules found for ground and low-gravity processed Al-18In-22Sn, respectively, were significantly larger than the others measured and were of the order expected for cell spacings under the growth conditions utilized. It was found that the integration into the solidification front of excess L2 in low gravity was a function of the Sn composition of the alloy.

TM-86574 December 1986
Small Computer Interface to a Stepper Motor.
Fred A. Berry, Jr. Space Science Laboratory.

A Commodore VIC-20 computer has been interfaced with a stepper motor to provide an inexpensive stepper motor controller. Only eight transistors and two integrated circuits compose the interface. The software controls the parallel interface of the computer and provides the four phase drive signals for the motor. Optical sensors control the zeroing of the 12-inch turntable positioned by the controller. The computer calculates the position information and movement of the table and may be programmed in BASIC to execute automatic sequences.

TM-86575 October 1986

This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY 86. It also includes papers of MSFC contractors.

After being announced in STAR, all the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.

TM-86576 December 1986
Space Shuttle Main Engine Vibration Data Base.
Pat Lewallen. Systems Dynamics Laboratory.

This memorandum describes the Space Shuttle Main Engine Vibration Data Base. It includes a detailed description of the data base components, the data acquisition process, the more sophisticated software routines, and the future data acquisition methods. Several figures and plots are provided to illustrate the various output formats accessible to the user. This document reveals the numerous vibration data recall and analysis capabilities available through automated data base techniques.

TM-86577 December 1986

This report presents a summary of selected atmospheric conditions observed near Space Shuttle STS-51L launch time on January 28, 1986, at Kennedy Space Center Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of pre-launch Jimsphere measured vertical wind profiles is given in this report. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-51L vehicle ascent has been constructed. The STS-51L ascent atmospheric data tape has been constructed by Marshall Space Flight Center’s Atmospheric Sciences Division to provide an internally consistent data set for use in post flight performance assessments.

TM-86578 December 1986
The Non-Metallic Materials Sample Array (MSA) was flown as verification flight instrumentation (VFI) on both Spacelab 1 (SL-1) and Spacelab 2 (SL-2). The basis for materials selection was either previous flight history or probable flight suitability based upon analysis.

The observed changes in the optical properties of the exposed materials are, in general, quite minimal; however, this data represents the short exposure of two Space Shuttle missions, and no attempt should be made to extrapolate the long-term exposure.

The MSA was in orbit for 10 days at approximately 240 km on SL-1 and for 7 days at approximately 315 km on SL-2. The array was exposed to the solar flux for only a portion of the time in orbit.

A computer implementation to Prony’s curve fitting by exponential functions is presented. The method, although more than one hundred years old, has not been utilized to its fullest capabilities due to the restriction that the time range must be given in equal increments in order to obtain the best curve fit for a given set of data.

The procedure used in this paper utilizes the 3-dimensional capabilities of the Interactive Graphics Design System (I.G.D.S.) in order to obtain the equal time increments. The resultant information is then input into a computer program that solves directly for the exponential constants that yield the best curve fit. Once the exponential constants are known, a simple least squares solution can be applied to obtain the final form of the equation.

This report documents O-ring response and sealing in pressurized shell structures. The study found that the key elements in the failure of the seal to be joint opening and rotation, assembly out of roundness, and O-ring seal response.

The interface circuitry described in this report links the computer with the superconducting bolometer array. This helps demonstrate the feasibility of the array. Using the circuitry and the array, imaging will be made possible. Initial imaging will be done on laboratory objects, and the pixel characteristics will be investigated experimentally.

This report investigates the free response of viton O-rings. Two different response mechanisms of viton O-rings are identified and a theoretical representation of the two mechanisms is compared with experimental results for various temperatures.

The rudiments of a rocket thruster, which receives its enthalpy from an energy source which is remotely beamed from a laser, is described. An experimental study, now partially complete, is discussed which will eventually provide a detailed understanding of the physics for assessing the feasibility of using hydrogen plasmas for accepting and converting this energy to enthalpy. A plasma ignition scheme which uses a pulsed CO2 laser has been developed and the properties of the ignition spark documented, including breakdown intensities in hydrogen. A complete diagnostic system capable of determining plasma temperature and the plasma absorptivity for subsequent steady-state
absorption of a high power CO\textsubscript{2} laser beam are developed and demonstrative use is discussed for the preliminary case study, a two atmosphere laser supported argon plasma.

TM-86584 January 1987

Statistical Analysis of 59 Inspected SSME HPFTP Turbine Blades (Uncracked and Cracked). John T. Wheeler. Structures and Dynamics Laboratory. N87-16877

This technical memorandum presents the numerical results of statistical analysis of the test data of Space Shuttle Main Engine high pressure fuel turbopump second-stage turbine blades, including some with cracks. Several statistical methods use the test data to determine the application of differences in frequency variations between the uncracked and cracked blades.

TM-86585 December 1986

Low-G Measurements by NASA. Roger P. Chassay and Arthur J. Schwaniger, Jr. Structures and Dynamics Laboratory. N87-17017

NASA has utilized low-g accelerometers on a variety of flights for over 12 years. These flights have included aircraft parabolas, suborbital trajectories, and orbital missions. This large quantity of data has undergone only limited in-depth analyses. Examples of data in many forms and results of analyses such as power spectral densities and shock spectra are given for a wide variety of missions. Accelerometers used to acquire the data are also identified.

TM-86586 January 1987

Evaluation of the Sealing Capabilities of Several O-ring Materials in Subscale, Cold-gas Pressurization Tests. James E. Turner. Materials and Processes Laboratory. X87-10203

The object of this test effort was to evaluate the sealing capabilities of several different O-ring materials in a subscale, cold-gas fixture. The focus of interest was on the ability of the tested O-rings to effectively seal a gap that was opening while pressure was being applied to the seal. The effect of temperature, particularly sub-ambient conditions, on the ability of the O-rings to effectively seal was a major consideration. All O-rings tested at ambient conditions (70 to 80°F) were able to effectively seal the prescribed gap openings. Decreasing the test temperature correspondingly decreased the sealing ability of some of the tested material.

TM-86587 March 1987

Ignition Overpressure Study from Solid Rocket Motor Firings. Douglas D. Counter. Structures and Dynamic Laboratory. N87-18607

The objective of this study was to investigate, through experimental means, the basic mechanisms influencing ignition overpressure and to determine ways to suppress ignition overpressure. Ignition overpressure was studied using solid rocket motors with geometry scaled at 1 percent of the Shuttle’s Solid Rocket Boosters. Both water injection and aerosol foam were examined as a means of reducing ignition overpressure. The results of the water injection tests indicate that a relatively small amount of water is sufficient to provide significant suppression. Of the flow rates tested, the lower water injection flow rates provided the best reduction of the ignition overpressure wave. Also, the test results show there is an optimum water flow rate range that provides the best suppression, and as this range is exceeded the effectiveness of water to reduce ignition overpressure is decreased. Aerosol foam provided very little reduction of ignition overpressure, but only small volumes of foam were used and further testing is necessary to determine its total effectiveness as a means of suppression.

TM-86588 March 1987

Equations of Motion of a Space Station with Emphasis on The Effects of the Gravity Gradient. L. P. Tuell. Structures and Dynamics Laboratory. N87-21993

The derivation of the equations of motion is based upon the principle of virtual work. As developed, these equations apply only to a space vehicle whose physical model consists of a rigid central carrier supporting several flexible appendages (not interconnected), smaller rigid bodies, and point masses. Clearly evident in the equations is the respect paid to the influence of the Earth’s gravity field, considerably more than has been the custom in simulating vehicle motion. The effect of unpredictable crew motion is ignored.
The sixth biennial Yosemite topical conference and the first as a Chapman Conference was held on February 3 to 6, 1986. Due to the recent changes in our perception of the dynamics of the ionospheric/magnetospheric system, it was deemed timely to bring researchers together to discuss and contrast the relative importance of solar versus terrestrial sources of magnetospheric plasma. Although the solar wind was once thought to dominate the supply of plasma in the Earth's magnetosphere, it is now thought that the Earth's ionosphere is a significant contributor. Polar wind and other large volume outflows of plasma have been seen at relatively high altitudes over the polar cap and are now being correlated with outflows found in the magnetotail. The auroral ion fountain and cleft ion fountain are examples of ionospheric sources of plasma in the magnetosphere, observed by the Dynamics Explorer 1 (DE 1) spacecraft.

The conference was organized into six sessions: four consisting of prepared oral presentations, one poster session, and one session for open forum discussion. The first three oral sessions dealt separately with the three major topics of the conference, i.e., the sources, mechanisms, and consequences of ionospheric plasma in the magnetosphere. A special session of invited oral presentations was held to discuss extraterrestrial ionospheric/magnetospheric plasma processes. The poster session was extended over two evenings during which presenters discussed their papers on a one-on-one basis. The last session of the conference was reserved for open discussions of those topics or ideas that were the most interesting or controversial.

This report describes an off-the-shelf Orbital Tube Welder that can be easily used to melt and resolidify most any electrically conductive material. This can be done on a KC-135 Aircraft within the microgravity period of one parabola. Melt sizes 3 mm diameter by 10 mm length and larger are feasible with most if not all materials. A highly reproducible, controlled, programmable heat and cool cycle can be provided. Sample measurements would have to be developed and could be as sophisticated or as simple as desired. These could include: optical and thermocouple temperature measurements, Peltier pulser for marking the solidification fronts, dimensional changes and whatever. Sample heat flows could be fixed over a very wide range being limited mostly by the cooling period, the desired sample size, and the 20 sec microgravity period of the KC-135 Aircraft parabola.

This report presents the mathematical technique for calculating the amount of time that an astronomical object, e.g., a star, can be observed from a satellite in a near Earth orbit. This includes the places and times in the orbit where the object is acquired and where it is lost. Constraints placed on the observation of the object, such as the line-of-sight from observer to target must not come within less than some specified angle to the limb of the Earth, are included in the calculations.

The equations developed within the report are then used for a detailed analysis of the observation possibilities for objects at any place on the celestial sphere for a typical Spacelab ASTRO mission. The results, presented in graphic form, are suitable for use in premission planning and also for use in real-time replanning.
The design goals for the Automatic Detection of Electric Power Troubles (ADEPT) were to enhance Fault Diagnosis Techniques in a very efficient way. ADEPT system was designed in two modes of operation: (1) real Time Fault Isolation and (2) a local simulator which simulates the models theoretically.

A sequence of modifications were made on the TRW Linear Momentum Exchange Devices (LMEDs) which were supplied for a joint MSFC/Air Force Wright Aeronautical Laboratory (AFWAL) control venture called Vibrational Control of Space Structures (VCOSS)-II. The modifications were necessary to alleviate and assuage the LMED nonlinearities. Extensive discussion of the LMED modifications are presented along with the test plan, test results and conclusions. In addition, a chronology of events, relative to the LMED changes, is contained in the paper.

This report presents a preliminary mechanical property and stress corrosion evaluation of double melted [vacuum induction melted (VIM), and vacuum arc remelted (VAR)], solution treated, work strengthened and direct aged Inconel 718 bar [5.50 in. (13.97 cm) diameter] processed by Wyman Gordon.

Two sets of tensile specimens, one direct single aged and the other direct double aged, were tested at ambient temperature in both the longitudinal and transverse directions. Longitudinal tensile and yield strengths in excess of 200 ksi (1378.96 MPa) and 168 ksi (1158.22 MPa) respectively, were realized at ambient temperature, for the direct double aged specimens.

No failures occurred in the single or double aged longitudinal and transverse tensile specimens stressed to 75 and 100 percent of their respective yield strengths and exposed to a salt fog environment for 180 days. Tensile tests performed after the stress corrosion test indicated no mechanical property degradation.
which was an outgrowth of the Air Force Wright Aeronautical Laboratory (AFWAL) program, in a distributed control experiment. The control experiment was conducted in MSFC’s Ground Facility for Large Space Structures Control Verification (GF/LSSCV). The GF/LSSCV’s test article was well suited for this experiment in that the LMED could be judiciously placed on the ASTROMAST. The LMED placements were such that vibrational mode information could be extracted from the accelerometers on the LMED. The LMED accelerometer information was processed by the control algorithms so that the LMED masses could be accelerated to produce forces which would dampen the vibrational modes of interest. Experimental results are presented showing the LMED’s capabilities.

TM-100309 June 1987
Component Response to Random Vibratory Motion of the Carrier Vehicle. L. P. Tuell. Structures and Dynamics Laboratory. N87-26396

Two physical models of component plus supporting substructure are considered. Each model consists of a rigid body attached to a moving base by means of linear springs and viscous dampers. The second model differs from the first in that its dampers are elastically supported. The first model receives the more extensive treatment. Base motion, assumed a random translational motion parallel to a fixed axis, is prescribed only to the extent that the power spectral density (PSD) of its acceleration is given; and, as given, its plot on log-log graph paper is a series of straight line segments, each segment having an extremity in common with the adjacent segment. Closed expressions are given for the mean squares of base acceleration, base velocity, and base displacement. The component is restricted to planar motion and allowed two degrees of freedom, one translational and one rotational. Integral expressions are given for the mean squares of component response variables, the transfer functions essential to mean square computation being available via the equations of motion. Closed expressions are given for mean squares of certain of the response variables for the case wherein the base acceleration PSD is constant. A very brief paragraph is given to stability of motion.

TM-100310 August 1987
A computer System to Analyze Showers in Nuclear Emulsions – Center Director’s Discree-
in performing a risk analysis are related. Tools available at NASA-MSFC are identified, along with commercially available software. Both an extensive bibliography (150 entries) and a program risk analysis check-list are provided.

TM-100312

September 1987

Roy A. Taylor, Ed White, and William J. Reed. Materials and Processes Laboratory.

This report presents the significant improvements in the manufacture of Gravity Probe B gyroscope rotors that have been developed since the publication of the last report on this project. The improvements discussed include the polishing machine structure, rough laps, finishing/polishing laps, lapping procedure, measurement techniques, and a summary of the manufacturing status. These six areas represent significant improvements in manufacturing of the gyroscope rotors which will meet flight requirements.

TM-

September 1987

Analysis of the Bivariate Parameter Wind Differences Between Jimsphere and Windsonde.

Michael Susko. Structures and Dynamics Laboratory.

The purpose of this report is to present an analysis of the bivariate parameter differences between the FPS-16 Radar/Jimsphere and the Meteorological Sounding System (MSS) Windsonde. The Jimsphere is used as the standard to measure the ascent wind loads during the Space Shuttle launches at Kennedy Space Center, Florida, and the Windsonde is the backup system. In addition, in the report a discussion of the terrestrial environment (below 20 km) and a description of the Jimsphere and Windsonde wind sensors are given. Computation of the wind statistics from 64 paired Jimsphere and Windsonde balloon releases in support of 14 Space Shuttle launches shows good agreement between the two wind sensors.

The computed difference values in m/s of the mean zonal wind (\bar{u}) and mean meridional wind (\bar{v}) of the Jimsphere and Windsonde at 500 m intervals from the surface to 16 km shows good agreement between the wind components. The (\bar{u}) and (\bar{v}) mean differences for the 64 paired observations were 0.16 and 0.22 m/s respectively, while the standard deviations of the mean differences of \bar{u} and \bar{v} were 1.38 and 1.73 m/s, respectively.

From the analysis of the buildup and back-off data for various scales of distance and the comparison of the cumulative percent frequency (CPF) versus wind speed change, it is shown that the wind speed change for various scales of distances (m) 100, 200, 400, 600, 800, 1000, 2000, 3000, and 5000 for the Jimsphere and Windsonde compare favorably. For example, the average altitude, where the greatest buildup occurred for all the scales of distances was at 10,427 m for the Jimsphere, 10,529 m for the Windsonde, and 10,474 m for the Jimsphere/Windsonde pairs, a range of only 102 m. The S.D. of these parameters was 2999, 3029, and 3007 m, less than a 50 m difference.

The variance difference of energy for the Power Spectral Density parameters for the u and v components of the Jimsphere and Windsonde was less than ± 0.02 m2/sec2. This showed very good agreement between the Jimsphere Wind sensor and its backup, the Windsonde in the all-important variance parameter, the energy difference between the Jimsphere and Windsonde at various wavenumbers or wavelengths.

TM-4006

August 1987

Space/COHMEX Data Inventory Document. S. F. Williams, H. M. Goodman, K. R. Knupp, and J. E. Arnold. Structures and Dynamics Laboratory.

During the period June through July 1987, NASA conducted the Satellite Precipitation and Cloud Experiment (SPACE) in the central Tennessee, northern Alabama, and northeastern Mississippi area. In addition to SPACE, the Microburst and Severe Thunderstorm (MIST) Program, sponsored by the National Science Foundation, and the FAA-Lincoln Laboratory Operational Weather Study (FLOWS), sponsored by the Federal Aviation Administration, operated concurrently under the acronym COHMEX (COoperative Huntsville Meteorological EXperiment). The COHMEX field program incorporated measurements from remote sensors flown on high altitude aircraft (ER-2 and U-2), Doppler and conventional radars,
rawinsondes, satellites, cloud physics research aircraft, and various surface observational systems.

This document contains a brief description of the field program and a daily data collection summary. Chapter 2 summarizes the program instrumentation and facilities, and includes sample selected data products. Chapter 3 provides a meteorological summary, operations overview, and an inventory of the data collected for each day of the field program. The purpose of this document is to provide the researcher and scientist with a tool to select data sets for case studies and instrument evaluation.

An initial investigation exploring the effects of gravity on the crystallization of macromolecular systems has been completed. Monodisperse poly(ethylene), molecular weight 48,000 was melted and recrystallized under three gravitational conditions: 0, 1, and 2 g. No correlations to gravitational environment were noted for the 20°C/min melt, as monitored with a photodensitometer system. However, post-crystallization testing of the recrystallized samples revealed thicker samples with more regions of large, well defined spherulites for the zero gravity crystallization environment.

The results of the post-crystallization analysis have been reviewed and the results related to nucleation concerns. Finally, birefringence data, consistent with, but not explained by, the nucleation scenarios is detailed, and further investigations are proposed.

A general purpose, three-dimensional computational fluid dynamics code named PHOENICS, developed by CHAM Inc., is used to model the flow in the aft-platform seal cavity in the high pressure fuel pump of the space shuttle main engine. The model is used to predict the temperatures, velocities, and pressures in the cavity for six different sets of boundary conditions. The results are presented as input for further analysis of two known problems in the region, specifically: erratic pressures and temperatures in the adjacent coolant liner cavity and cracks in the blade shanks near the outer diameter of the aft-platform seal.

This report presents the objectives, design testing, and data analyses of the Solar Array Flight Experiment/Dynamic Augmentation Experiment (SAFE/DAE) that was tested aboard Shuttle in September 1984. The SAFE was a lightweight, flat-fold solar array that employed a thin polyimide film (Kapton) as a substrate for the solar cells. Extension/retraction, dynamics, electrical and thermal tests, were performed. Of particular interest is the dynamic behavior of such a large lightweight structure in space. Three techniques for measuring and analyzing this behavior were employed. The methodology for performing these tests, gathering data, and data analyses are presented.

The report shows that the SAFE solar array technology is ready for application and that new methods are available to assess the dynamics of large structures in space.

A detailed dynamic analysis is performed of a vibrating beam with bending stiffness periodic in the spatial coordinate. Using a perturbation expansion technique the effects of system parameters on beam response are explored. It is found that periodic stiffness acts to modulate the modal displacements from the characteristic shape of a simple sine wave. The results are verified by a finite element solution and through experimental testing.

Design, construction, and operation of a low-Earth orbit Space Station poses unique challenges for development and implementation of new technology. The technology arises from the special requirement that the station be built and constructed to function in a weightless environment, where static loads are minimal and secondary to system dynamics and control problems. One specific challenge confronting
NASA is the development of a dynamics test program for (1) defining Space Station design requirements, and (2) identifying and characterizing phenomena affecting the station's design and development. A general definition of the Space Station dynamic test program, as proposed by MSFC, forms the subject of this report.

The test proposal, as outlined herein, is a comprehensive structural dynamics program to be launched in support of the Space Station. The test program will help to define the key issues and/or problems inherent to large space structure analysis, design, and testing. Development of a parametric data base and verification of the math models and analytical analysis tools necessary for engineering support of the station's design, construction, and operation provide the impetus for the dynamics test program. The philosophy being to integrate dynamics into the design phase through extensive ground testing and analytical ground simulations of generic systems, prototype elements, and subassemblies. On-orbit testing of the station will also be used to define its capability.

TP-2714 April 1987
N87-20947

A survey of the statistical properties of 850 Hα solar flares during 1975 is presented. Comparison of the results found here with those reported elsewhere for different epochs is accomplished. Distributions of rise time, decay time, and duration are given, as are the mean, mode, median, and 90th percentile values. Proportions by selected groupings are also determined. For flares in general, mean values for rise time, decay time, and duration are 5.2 ± 0.4 min, 12.9 ± 0.8 min, and 18.1 ± 1.1 min, respectively. Subflares, accounting for nearly 90 percent of the flares, had mean values lower than those found for flares of Hα importance ≥1, and the differences are statistically significant. Likewise, flares of “bright” and “normal” relative brightness have mean values of decay time and duration that are significantly longer than those computed for “faint” flares, and mass-motion related flares are significantly longer than non-mass-motion related flares. Seventy-three percent of the mass-motion related flares are categorized as being a two-ribbon flare and/or being accompanied by a high-speed dark filament. Slow rise time flares (rise time >5 min) have a mean value for duration that is significantly longer than that computed for fast rise time flares, and long-lived duration flares (duration >18 min) have a mean value for rise time that is significantly longer than that computed for short-lived duration flares, suggesting a positive linear relationship between rise time and duration for flares. Indeed, such is the case. Monthly occurrence rates for flares in general and by group are found to be linearly related in a positive sense to monthly sunspot number; as sunspot number increased (decreased), number of flares increased (decreased). Statistical testing reveals the association between sunspot number and numbers of flares to be significant at the 95 percent level of confidence, and the t statistic for slope is significant at >99 percent level of confidence.

Dependent upon the specific fit, between 58 percent and 94 percent of the variation can be accounted for with the linear fits. A statistically significant northern hemisphere flare excess (P<1 percent) was found, as was a western hemispheric excess (P ≈ 3 percent). Subflares were more prolific within 45 deg of central meridian (P<1 percent), while flares of Hα importance ≥1 were more prolific near the limbs (>45 deg from central meridian; P ≈ 2 percent). Two-ribbon flares were more frequent within 45 deg of central meridian (P<1 percent). Slow rise time flares occurred more frequently within 45 deg of central meridian (P<1 percent). Slow rise time flares occurred more frequently in the western hemisphere (P ≈ 2 percent), as did short-lived duration flares (P ≈ 9 percent), but fast rise time flares were not preferentially distributed (in terms of east-west or limb-disk). Long-lived duration flares occurred more often within 45 deg of central meridian (P ≈ 7 percent). Mean durations for subflares and flares of Hα importance ≥1, found within 45 deg of central meridian, are 14 percent and 70 percent, respectively, longer than those found for flares closer to the limb. As compared to flares occurring near cycle maximum, the flares of 1975 (near solar minimum) have mean values of rise time, decay time, and duration that are significantly shorter. A flare near solar maximum, on average, is about 1.6 times longer than one occurring near solar minimum.

TP-2715 April 1987
N87-21076
In an effort to investigate metal surface corrosion and the breakdown of metal protective coatings, the AC Impedance Method was applied to zinc chromate primer coated 2219-T87 aluminum. The EG&G-PARC Model 368 AC Impedance Measurement System, along with DC measurements with the same system using the Polarization Resistance Method, was used to monitor changing properties of coated aluminum disks immersed in 3.5 percent NaCl solutions buffered at pH 5.5 and pH 8.2 over periods of 40 days each.

The corrosion system can be represented by an electronic analog called an equivalent circuit that consists of resistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for resistances and capacitances, that can be assigned in the equivalent circuit following a least squares analysis of the data, describe changes that occur on the corroding metal surface and in the protective coatings.

A suitable equivalent circuit has been determined that predicts the correct Bode phase and magnitude for the experimental sample. DC corrosion current density data are related to equivalent circuit element parameters.

TP-2724 April 1987
Liquid Drop Stability for Protein Crystal Growth in Microgravity. Robert B. Owen, Beth H. Broom, Robert S. Snyder, and Ron Daniel.
Space Science Laboratory. N87-20727

It is possible to grow protein crystals for biomedical research in microgravity by deploying a protein-rich solution from a syringe, forming a drop in which crystallization can occur with the proper degree of supersaturation. Drop stability is critical to the success of this research, due to the large drop sizes which can be achieved in space. In order to determine the type of syringe tips most suitable to support these large drops, tests were performed during brief periods of weightlessness onboard the NASA KC-135 low-gravity simulation aircraft. The drops were analyzed using three simple computer models in which the samples were approximated by modified pendulum and spring systems. It was concluded that the higher frequency systems were the most stable, indicating that of the syringes utilized, a disk-shaped configuration provided the most stable environment for low-gravity protein crystal growth.

TP-2732 June 1987
Structures and Dynamics Laboratory. N87-22870

This paper derives three discrete state variable representations for a continuous-time plant driven by a zero-order-hold with a combination of instantaneous measurements and measurements prefiltered by moving-average (MA) digital filters. These representations allow the control system engineer to accurately model plants of this type in a form which permits him to use standard techniques to design digital feedback controllers for them. An example is presented which illustrates how to obtain the coefficient matrices in each representation. Guidelines are presented for choosing the best representation to use for any given plant of this type.

TP-2744 July 1987
Materials and Processes Laboratory. N87-25463

A method has been developed for the determination of trapped hydrogen in metal alloys. It involves the determination of mobile hydrogen using the electrochemical method and the determination of total hydrogen with the fusion method, the difference in hydrogen concentrations being due to trapped hydrogen.

It has been found that hydrogen enters body-centered cubic structures primarily through the grain bodies rather than through the grain boundaries. Hydrogen also diffuses much more rapidly in body-centered cubic structures on charging than in face-centered cubic structures, the hydrogen distribution being more uniform in nature. The energy necessary to cause hydrogen embrittlement is postulated to arise from the changes in crystal lattice energies brought about through interaction of hydrogen with atoms in...
the metal lattice. The total energy change is more negative for body-centered cubic structures, believed to be the cause of a greater tendency toward hydrogen embrittlement. Finally, the agreement of hydrogen concentrations obtained at 25°C by the electrochemical method with those obtained by the fusion method are taken as a strong indication of the power and validity of the electrochemical method.

TP-2745 July 1987

This paper presents a new approach to state estimation in deterministic digital control systems. The scheme is based on sampling the output of the plant at a high rate and prefiltering the discrete measurements in a multi-input/multi-output moving average (MA) process. The coefficient matrices in the MA prefilter are selected so the estimated state equals the true state. An example is presented which illustrates the procedure to follow to completely design the estimator.

TP-2757 August 1987
Exact State Reconstruction in Deterministic Digital Control Systems. Michael E. Polites. Structures and Dynamics Laboratory.

This report presents a new state reconstructor for deterministic digital control systems which is ideal in the following sense: if the plant parameters are known exactly, the output of the new state reconstructor will exactly equal the true state of the plant, not just approximate it. Furthermore, this ideal state reconstructor adds no additional states or eigenvalues to the system. Nor does it affect the plant equation for the system in any way; it affects only the measurement equation. While there are countless ways of choosing the ideal state reconstructor parameters, two distinct methods are described here. An example is presented which illustrates the procedures to completely design the ideal state reconstructor using both methods.

TP-2759 August 1987

The paper presents an exact mathematical model of the Space Shuttle Main Engine computer voting logic in the presence of High Pressure Fuel Turbine (HPFT) overtemperature events and fuel turbine temperature sensor failures. The model provides estimates of the probability of erroneous engine shutdown and the probability of not detecting a HPFT overtemperature event.

Because it is believed that the likelihood of sensor failures and overtemperature events in the HPFT greatly overshadows those in the High Pressure Oxygen Turbine (HPOT), this modeling effort has been focused on the HPFT. However, because the redline protection logic is the same for both turbines, estimation of the model parameters using relevant HPOT data would provide estimates of the risk of erroneous engine shutdown and an undetected overtemperature event occurring in the HPOT.

Because of the complexity of the model, it was necessary to program the solution which thus makes it feasible to accommodate a changing data base. This is considered to be of great interest because of the subjective nature in determining the relevancy of certain failures and the fact that the data base is constantly changing as a result of the frequent engine tests.

In 1978, McDonnell Douglas Astronautics Company (MDAC) began discussions with NASA on the opportunities to develop a space continuous flow electrophoresis system (CFES) that would incorporate specific modifications to their laboratory instruments to take advantage of weightlessness. A Joint Endeavor Agreement (JEA) that allocated certain flights on the Space Shuttle to MDAC in return for opportunities for NASA and interested scientists to do research in the MDAC laboratory and on their space instruments was made.

Under terms of the JEA, NASA was provided an opportunity to process two samples on STS-6. All experiment objectives and operational parameters,
such as applied field, sample residence time in the field, and buffer composition had to accommodate the MDAC capabilities and NASA flight constraints. The NASA objectives were formulated so as to include investigation of the sample concentration effects reported by MDAC on STS-4. The specific objectives were (1) to use a model sample material at a high concentration to evaluate the continuous flow electrophoresis process in the MDAC CFES instrument and compare its separation resolution and sample throughput with related devices on Earth and (2) to expand our basic knowledge of the limitations imposed by fluid flows and particle concentration effects on the electrophoresis process by careful design and evaluation of the space experiment. Because the MDAC instrumentation did not include sample mixing facilities, cell separation procedures were precluded and after a variety of soluble materials were considered, hemoglobin and polysaccharide were selected as primary samples. The results from space show a large band spread of the high concentration of the single species of hemoglobin that was principally due to the mismatch of electrical conductivity between the sample and buffer.

The seventh mission of the Space Shuttle carried two additional NASA experiments in the CFES instrument. The major objective was to evaluate the influence of the electrical properties of the sample constituents on the resolution of the continuous flow electrophoresis device. As expected, the polystyrene latex microspheres dispersed in a solution with three times the electrical conductivity of the curtain buffer separated with a significantly larger band spread than in the second experiment under matched conductivity conditions. The structure of the bands is also different between the samples and laboratory experiments have been conducted to further evaluate the phenomena affecting the electrophoresis. The analysis of both flight results is nearing completion and a qualitative explanation based upon the non-gravity dependent electrical conductivity mismatch is being developed.

A moving wall concept is being proposed for space which will eliminate and/or control all of the above-mentioned disturbances. The moving wall will entrain the fluid to move as a rigid body and hence produce a constant residence time for all samples distributed across the chamber thickness. By aligning the moving wall at an angle to the chamber axis, a component of the moving wall motion can be made to oppose and hence cancel the electroosmotic flow. In the absence of electrokinetic effects, i.e., electroosmosis, the electrohydrodynamical effect manifests itself as a ribbon, being either vertical (perpendicular to the electric field) or horizontal (aligned with the electric field) depending on the ratio of conductivity of the sample to that of the buffer. Therefore, by using low conductivity sample solutions to provide a vertical ribbon, the moving wall concept should produce distortion-free separations.

The moving wall electrophoresis chamber can only be operated in space because there is no viscous

A basic premise of continuous flow electrophor-
flow in the chamber to stabilize against thermal convection. Laboratory prototype instruments have been built which confirm the sensitivity of their operation. These prototypes have also identified engineering problems such as liquid seals. However, the moving wall-electrophoresis system is a concept designed for space which should permit preparative electrophoresis to attain its potential.
NASA CONFERENCE PUBLICATIONS

CP-2429 February 1987

CP-2460 February 1987
Workshop on Upper and Middle Atmospheric Density Modeling Requirements for Spacecraft Design and Operations. M. H. Davis, R. E. Smith, and D. L. Johnson. Systems Dynamics Laboratory. N87-20665

CP-2467, Part 1 April 1987

CP-2467, Part 2 April 1987

CP-2469 May 1987
NASA CONTRACTOR REPORTS
(abstracts for these reports may be obtained from STAR)

CR-178926 May 1986
Discrete Element Weld Model, Phase 2, Progress Report for April 1986. NAS8-36716. CHAM of North America, Inc.
X86-90308

CR-178927 May 19, 1986
X86-90307

CR-178928 December 31, 1985
Development of Acceptance Criteria for Batches of Silane Primer for External Tank Thermal Protection System Bonding Applications. NAS8-35818. Springborn Lab, Inc.

CR-178929 May 20, 1986
X86-90306

CR-178930 May 1986
X86-10479

CR-178931 June 1986
N87-10407

CR-178932 September 10, 1986
N86-32773

CR-178933 December 1982
N86-72410

CR-178934 August 21, 1986
N87-12608

CR-178935 September 1986
Selected Tether Applications in Space Volume 1, Executive Summary Phase 3 Final Report. NAS8-36616. Martin Marietta.
N87-18593

CR-178936 September 1986
N87-18593

CR-178937 August 1986

CR-178938 March 1986
N87-12681

CR-178939 August 1986
N87-18604

CR-178940 August 1986
N87-18603

CR-178941 September 11, 1986
N87-17849

CR-178942 September 11, 1986

CR-178943 June 1986
X87-10104

CR-178944 July 1986
Hydrocarbon Engine Study Monthly Progress
CR-178945 September 27, 1986

CR-178946 October 1986
Geophysical Fluid Flow Cell (GFFC) Upgrade Study. NAS8-36841. Aerojet Electrosystems Co. X87-90996

CR-178947 October 2, 1986
NOSL Experiment Support Final Report. NAS8-33817. New Mexico Institute of Mining and Technology. N87-13140

CR-178948 September 1981

CR-178949 January 1986

CR-178950 October 1986

CR-178951 September 8, 1986
Space Station Structures Development. NAS8-36421. Rockwell International. N86-90987

CR-178952 September 1986

CR-178953 October 1986
Analytical Investigation of the Dynamics of Tethered Constellations in Earth Orbit (Phase II). NAS8-36606. Smithsonian Institute. N87-11815

CR-178954 June 30, 1986

CR-178955 June 12, 1986

CR-178956 June 12, 1986

CR-178957 June 12, 1986

CR-178958 June 12, 1986

CR-178959 June 12, 1986

CR-178960 June 12, 1986

CR-178961 June 12, 1986

CR-178962 September 1986

CR-178963 May 1973
Skylab Risk Hazard Assessment and Error Analysis (U). NAS8-28731. Lockheed Missiles and Space Co., Inc. X87-72310
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-178964 October 1986

CR-178965 September 1986

CR-178966 November 1986
Research Reports – 1986 NASA/ASEE Summer Faculty Fellowship Program. NASA Grant NGT-01-002-099. N87-16742

CR-178967 November 1986

CR-178968 August 1986

CR-178969 November 20, 1985

CR-178970 November 22, 1985

CR-178971 January 6, 1986

CR-178972 March 1984

CR-178973 September 19, 1986
SRB/SLEEC (Solid Rocket Booster/Shingle Lap Extendible Exit Cone) Feasibility Study. NAS8-36571. Aerojet Strategic Propulsion Co. X87-10101

CR-178974 September 19, 1986
SRB/SLEEC (Solid Rocket Booster/Shingle Lap Extendible Exit Cone) Feasibility Study Appendix A, Design Study for a SLEEC Actuation System. NAS8-36571. Aerojet Strategic Propulsion Co. X87-10102

CR-178975 August 1986

CR-178976 October 31, 1986

CR-178977 October 31, 1986

CR-178978 October 31, 1986

CR-178979 October 31, 1986

CR-178980 October 31, 1986

CR-178981 October 31, 1986
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-178982 July 1986

CR-178983 June 1986

CR-178984 July 1986

CR-178985 August 1986

CR-178986 August 15, 1986

CR-178987 November 1986
ET TPS Development Criteria and Flight Instrumentation Program. NAS8-32969. Remtech Inc. N87-17817

CR-178988 November 1986

CR-178989 November 1986

CR-178990 September 1986

CR-178991 July 10, 1986
Bearing Tester Data Compilation Analysis, and Reporting and Bearing Math Modeling, Quarterly Progress Report for April - June 1986. NAS8-36183. SRS Technologies. X87-10077

CR-178992 December 12, 1986
Space Transportation Booster Engine (STBE) Configuration Study. NAS8-36855. Aerojet TechSystems Co. X87-10060

CR-178993 December 15, 1986

CR-178994 January 1987

CR-178995 December 12, 1986
Space Transportation Main Engine (STME) Configuration Study. NAS8-36867. Aerojet TechSystems Co. X87-10195

CR-178996 January 1987

CR-178997 September 1986

CR-178998 June 30, 1986
Crystal Growth and Furnace Analysis. NAS8-35331. Continuum, Inc. N87-17516
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-178999 February 1987
Ellipsometric Measurement of Liquid Film Thickness. NAG8-021. Alabama A&M University.

CR-179000 February 1987
Thermal Characterization of Crystals. NAG8-025. Fisk University

CR-179001 December 1986
T-28 Data Acquisition During COHMEX 1986. NAS8-36489. South Dakota School of Mines and Technology. N87-17426

CR-179002 December 1984

CR-179003 November 1986

CR-179004 November 1986

CR-179005 November 1986

CR-179006 June 23, 1986

CR-179007 October 20, 1986
Determination of the Toxicity of Combustion Products from FSC 83A55 in Rats. NAS8-35340. Southern Research Institute. X87-10258

CR-179008 October 20, 1986
Subacute Oral Toxicity of Virgin and Charred Residues of FSC 83A55 in Rats. NAS8-35340. Southern Research Institute. X87-10149

CR-179009 January 1987

CR-179010 March 1987

CR-179011 January 1977

CR-179012 August 11, 1986
Cornea Optical Topographical Scan System (COTSS) – Final Report. NAS8-34659. Electro-Optics Consultants, Inc.

CR-179013 May 1985

CR-179014 May 1985

CR-179015 September 1986

Cr-179016 October 1986
Satellite Attitude Motion Models for Capture and Retrieval Investigations. NAS8-36470. Auburn University. N87-18599

CR-179017 February 10, 1987
CR-179018 April 14, 1986

CR-179019 September 15, 1986

CR-179020 June 23, 1986
Evaluation of Transfer Films of Salox M on 440C for HPOTP Bearing Cage Applications, Task 119. NAS8-36192, Battelle.

CR-179021 January 18, 1987

CR-179022 January 18, 1987

CR-179023 January 19, 1987

CR-179024 January 16, 1987

CR-179025 October 1985

CR-179026 May 1987
An Experimental and Theoretical Comparison of Rotordynamic Coefficients for Sawtooth-Pattern Damper Seals. NAS8-35824. Texas A&M University.

CR-179027 January 1987

CR-179028 January 1987

CR-179029 April 1987

CR-179030 January 1985

CR-179031 November 1986

CR-179032 September 1986

CR-179033 October 1986

CR-179034 September 1986

CR-189035 December 1986
Hybrid Methods for Rotordynamic Analysis. NAS8-36182. Texas A&M University.

CR-179036 March 1, 1987

CR-179037 April 1987
Space Radiation Studies – Annual report Nov.
NASA CONTRACTOR REPORTS
(abstracts for these reports may be obtained from STAR)

CR-179038 April 1987

CR-179039 April 1987
Aeroassisted Orbital Transfer Vehicle System Technology Analysis, Volume I, Part B - Study Results. NAS8-35095. Boeing Aerospace Company. X87-10271

CR-179040 April 1987

CR-179041 April 1987

CR-179042 April 1987

CR-179043 April 1987

CR-179044 April 1987

CR-179045 February 1987

CR-179046 January 30, 1987

CR-179047 March 24, 1987

CR-179048 December 19, 1986

CR-179049 December 19, 1986

CR-179050 December 31, 1986

CR-179051 December 31, 1986

CR-179052 December 31, 1986

CR-179053 December 31, 1986

CR-179054 December 19, 1986
Block II SRM Conceptual Design Studies Final
CR-179055
December 1986
Orbital Transfer Vehicle Concept Definition and Systems Analysis Study Final Report Volume IA Executive Summary Phase 2. General Dynamics. N87-21018

CR-179056
December 1986

CR-179057
December 1986
Orbital Transfer Vehicle Concept Definition and Systems Analysis Study Final Report, Volume III OTV Concept Definition and Evaluation Book 2 OTV Concept Definition. General Dynamics. X87-10287

CR-179058
December 1986

CR-179059
December 1986

CR-179060
December 1986
Orbital Transfer Vehicle Concept Definition and Systems Analysis Study Final Report, Volume III System and Program Trades. General Dynamics. X87-10290

CR-179061
December 1986
Orbital Transfer Vehicle Concept Definition and Systems Analysis Study Final Report, Volume IV Space Station Accommodations. General Dynamics. X87-10285

CR-179062
December 1986

CR-179063
December 1986

CR-179064
December 1986

CR-179065
December 1986

CR-179066
December 1986
Orbital Transfer Vehicle Concept Definition and Systems Analysis Study Final Report, Volume VIII Environmental Analysis. General Dynamics. X87-10294

CR-179067
December 1986
Orbital Transfer Vehicle Concept Definition and Systems Analysis Study Final Report, Volume IX Detail Summary Phase 2. General Dynamics. X87-10291

CR-179068
May 1985

CR-179069
March 1985
Filament Wound Data Base Development, Appendix A, Revision 1. NAS8-35054. Lockheed Missiles & Space Company, Inc. N87-21015

CR-179070
March 1985
Filament Wound Data Base Development,
CR-179079 April 20, 1987
N87-22765

CR-179080 May 1987
Evaluation of Rotating Cylinder and Piston-Cylinder Reactors for Ground-Based Emulsion Polymerization. NAS8-36286. Lehigh University.

CR-179081 May 1987
Evaluation of Rotating Cylinder and Piston-Cylinder Reactors for Ground-Based Emulsion Polymerization. NAS8-36286. Lehigh University.

CR-179082 April 1987
N87-22764

CR-179083 May 1987

CR-179084 October 31, 1985
Experimental Study of Unsteady Hydrodynamic Force Matrices on Whirling Centrifugal Pump Impellers. NAS8-33108. California Institute of Technology.
N87-22239

CR-179085 January 31, 1987
N87-22758

CR-179086 February 1987
N87-22952

CR-179087 February 9, 1987
<table>
<thead>
<tr>
<th>Contract Number</th>
<th>Date</th>
<th>Description</th>
<th>Authorization Code</th>
<th>Reference Code</th>
</tr>
</thead>
</table>
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-179106 September 1973
Space Tug Systems Study (Cryogenic)
N87-70395

CR-179107 September 1973
Space Tug Systems Study (Cryogenic)

CR-179108 September 1973
Space Tug Systems Study (Cryogenic)

CR-179109 September 1973
Space Tug Systems Study (Cryogenic)
N87-70392

CR-179110 September 1973
Space Tug Systems Study (Cryogenic)
N87-70394

CR-179111 September 1973
Space Tug Systems Study (Cryogenic)
N87-70401

CR-179112 September 1973
Space Tug Systems Study (Cryogenic)
N87-70400

CR-179113 September 1973
Space Tug Systems Study (Cryogenic)
N87-70406

CR-179114 September 1973
Space Tug Systems Study (Cryogenic)
N87-70405

CR-179115 September 1973
Space Tug Systems Study (Cryogenic)
N87-70417

CR-179116 September 1973
Space Tug Systems Study (Cryogenic)
N87-70403

CR-179117 January 1974
Space Tug Systems Study (Cryogenic) Volume II, Compendium. NAS8-29676. General Dynamics, Convair Aerospace Division.
N87-70404

CR-179118 November 1, 1986
N87-22861

CR-179119 June 1987
A Study of Fatigue Damage on Selected Superalloys by Position Annihilation Spectrometry. NAS8-35325. University of Missouri-Rolla.
X87-10330

CR-179120 June 16, 1987

CR-179121 March 25, 1987
CR-179122 September 9, 1986

CR-179123 May 28, 1987

CR-179124 May 1987

CR-179125 May 1987

CR-179126 April 1987
SSME Seal Test Program: Test Results for Smooth, Hole-Pattern, and Helically-Grooved Stators. NAS8-35824. Texas A&M University.

CR-179127 April 1987
N87-24556

CR-179128 July 1985
N87-24535

CR-179129 October 17, 1984

CR-179130 October 1, 1986
N87-24484

CR-179131 May 8, 1987

CR-179132 May 1987

CR-179133 December 1985

CR-179134 May 1987
Ion Implantation and Plating to Improve Hardness, Wear and Rolling Contact Fatigue Behavior of Bearing Steels, Final Report. NAS8-35048. Georgia Institute of Technology.

CR-179135 July 1987

CR-179136 July 1987

CR-179137 June 10, 1987

CR-179138 February 1987
Design and Demonstrate the Performance of Cryogenic Components Representative of Space Vehicles, Start Basket Liquid Acquisition Device Performance Analysis. NAS8-31778. General Dynamics Space Systems Division.

CR-179139 August 1985
System Technology Analysis of Aeroassisted Orbital Transfer Vehicles Moderate Lift/Drag (0.75-1.5), Phase I Final Report, Volume 1A – Part 1, Executive Summary, NAS8-35096. General Electric.
CR-179140 August 1985
System Technology Analysis of Aeroassisted Orbital Transfer Vehicles: Moderate Lift/Drag (0.75-1.5), Phase II Final Report, Volume IA – Part II, Executive Summary. NAS8-35096. General Electric.

CR-179141 August 1985
System Technology Analysis of Aeroassisted Orbital Transfer Vehicles: Moderate Lift/Drag (0.75-1.5), Phase I Final Report, Volume IB – Part I, Study Results. NAS8-35096. General Electric.

CR-179142 August 1985
System Technology Analysis of Aeroassisted Orbital Transfer Vehicles: Moderate Lift/Drag (0.75-1.5), Phase II Final Report, Volume IB – Part II, Study Results. NAS8-35096. General Electric.

CR-179143 August 1985

CR-179144 August 1985

CR-179145 July 1986

CR-179146 June 15, 1987

CR-179147 April 1986

CR-179148 June 1987
Data Analysis and Interpretation of UVSP and Other Experiments on Board Solar Maximum Mission. NAS8-33526. The University of Alabama in Huntsville.

CR-179149 July 1987

CR-179150 June 1987

CR-4045 February 1987

CR-4053 March 1987

CR-4054 March 1987

CR-4057 March 1987

CR-4064 April 1987

CR-4065 April 1987

ADAMS, ALAN M. KA41

PLATT, GORDON

CLAUNCH, WILLIAM

HUMPHRIES, WILLIAM R.

ADENIJI-FASHOLA, A. A. ED42(NRC)

CHEN, C. P.

ADENIJI-FASHOLA, A. A. ED42(NRC)

CHEN, C. P.

AHMADJIAN, M. ED43

VAUGHAN, O. H.

VONNEGUT, B.
Video Images of Lightning from the Space Shuttle. For presentation at the Annual Fall Meeting of the American Geophysical Union and American Meteorological Society, San Francisco, CA, December 8-11, 1986.

ALEXANDER, J. IWAN D. ES75

LUNDQUIST, CHARLES A.

AN, C.-H. (NRC/MSFC) ES52

BAO, J. J. (UAH)

AN, C.-H. (NRC) ES52

SUESS, S. T.

MOORE, R. L.
2-D Magnetohydrostatic Configurations Leading to Flares or Quiescent Filament Eruptions. For publication in The Astrophysical Journal, Chicago, IL.

AN, C.-H. (NAS) ES52

BAO, J. J. (UAH)

ANDERSON, B. JEFFREY ED44

FICHTL, GEORGE H.

GREEN, CLAUDE E.

ANDREWS, J. B. EB74

SANDLIN, A. C.

CURRERI, P. A.

ANDREWS, R. N. ES75

SOFMAN, F. R.

LEHOCZKY, S. L.

AUSTIN, ROBERT E. PF20

AUSTIN, ROBERT E. PF20
Launch Vehicle Heritage: Foundry for the 21st Century Space Transportation Systems. For
presentation at the 38th IAF Congress October 7-18, 1987, Brighton, UK.

BAGDIGIAN, ROBERT M. EL84

BAI, S. D. ED42
WU, S. T.
CAMPBELL, C. W.
SCHAFER, C. F.

BAILEY, CURTIS R. EP62

BAMBERGER, S. ES76
VAN ALSTINE, J.
HARRIS, M.
BAIRD, J.
SNYDER, R.
BOYCE, J.
BROOKS, D.
Demixing of Aqueous Polymer Two-Phase Systems in Low Gravity. For publication in Separation Science and Technology, Salt Lake City, UT.

BAO, J. J. ES52
WU, S. T.
AN, C.-H.

BARAKAT, A. R. ES53
MOORE, T. E., et al.
Ion Escape Fluxes from the Terrestrial High Latitude Ionosphere. For publication in the Journal of Geophysical Research, Washington, D.C.

BENTON, E. V. ES62
PARNELL, T. A.

BHAT, BILJYAR N. EH23
MOXSON, VLADIMIR S. TRW
FRIEDMAN, GERALD I.

BILBRO, JAMES W. EB23

BLAKESLEE, R. J. ED43

BOWDLE, DAVID A. ED43
JONES, WILLIAM D.
CLARKE, ANTONY D.
JOHNSON, STANLEY A.
FITZJARRALD, DANIEL E.

BOWDLE, DAVID A. ED43
FITZJARRALD, DANIEL E.

BOWDLE, DAVID A. ED43
A Global-Scale Model of Aerosol Backscatter at CO₂ Wavelengths. For presentation at the
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

BRADAS, J. C. ES65
FENNELLY, A. J.
SMALLEY, L. L.

BRADY, HUGH J. PD21
SHELTON, BILLY W.

BROOKS, D. ES76
BOYCE, J.
BAMBERGER, S.
HARRIS, J.
VAN ALSTINE, J. M.
Separation of Biological Materials in Microgravity. For publication in Space: Biomedicine and Biotechnology (Proceedings), Ottawa, Canada.

BROWN, RICHARD L. FA61
Briefing on Solid Rocket Motor Integrity Program Background and Status. For presentation at the Rocket Nozzle Technology Subcommittee, Patrick Air Force Base, FL, October 21-23, 1986.

BUSSARD, R. W. ES65
WEISSKOPF, M. C.
ELSNER, R. F.
SHIBAZAKI, N.
The Effect of a Hot, Spherical Scattering Cloud on QPO Behavior. For publication in the Astrophysical Journal, Chicago, IL.

BUSSARD, R. W. ES65
MESZAROS, P.

CAMPINS, H. ES63
TELESCO, C. M.
DECHER, R.
RAMSEY, B. D.

CARRUTH, M. R., JR. EH12
Consideration of Requirements for Space Station with Attached Tethers. For presentation at the Second International Conference on Tethers in Space, Venice, Italy, October 6-8, 1987.

CHANDLER, M. O., et al. ES53

CHANDLER, M. O. ES53
Model Calculations of Minor Ion Populations in the Plasmasphere. For publication in JGR, Washington, D.C.

CHAPPELL, C. R. ES51

CHEN, YEN-SEN ED42

CHEN, YEN-SEN ED42
KIM, SANG-WOOK
Computation of Pathological Turbulent Flows Using an Extended K-E Turbulence Closure Model. For publication in AIAA.

CHRISTIAN, H. J. ED43
GOODMAN, S. J. Univ. Space Research Asso.
Optical Observations of Lightning from a High Altitude Airplane. For publication in the Journal
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

of Atmospheric and Oceanic Technology, Boston, MA.

CIKANEK, HARRY A., III ED14

CIKANEK, HARRY A., III ED14

CLUBB, JERRY J. EB33

COBB, S. D. ES75
ANDREWS, R. N.
SZOFRAN, F. R.
LEHO CZKY, S. L.
Characterization of Directionally Solidified Hg_{10},Zn_{9},Se Alloys. For presentation at ACCG-7/II-VI-87, Monterey, CA, July 12-17, 1987.

COMFORT, R. H. ES51
NEWBERRY, I. T.
CHAPPELL, C. R.
Variations of Thermal Ion Composition in the Plasmasphere with Geomagnetic Activity. For presentation at the IAGA Meeting, Vancouver, Canada, August 9-22, 1987.

COMFORT, R. H. ES51
NEWBERRY, I. T.
CHAPPELL, C. R.
Preliminary Statistical Survey of Plasmaspheric Ion Properties from Observations by DE 1/RIMS. For publication in the Proceedings of the First Huntsville Workshop on Mag/Ion Plasma Models, Guntersville, AL.

COMFORT, R. H. ES53
STONE, N. H.
SAMIR, U., et al.

COMFORT, R. H. ES53
CHAPPELL, C. R.
NEWBERRY, I. T.

COSTES, N. C. ED42
FRENCH, K. W.
JANOO, V. C.
PARKER, J. K.
STURE, S.

COSTES, N. C. ED42
STURE, S.
JANOO, V. C.

CURRERI, P. A. ES74
ONODA, G. Y., JR.
FINLAYSON, B.
The Electrokinetic Behavior of Calcium Oxalate Monohydrate in Macromolecular Solutions. For publication in American Chemistry Society Symposium Series Volume on Proteins at Interfaces, Washington, D.C.

DAILEY, CARROLL C. PF19
DAKHOU, Y. M.
FARMER, R.
LEHOCZKY, S. I.
SZOFRAN, F. R.

DeSANCTISS, CARMINE E.
PRIEST, C. C.
WOOD, W. V.

DECKER, RAND
(NRC) ED42

DELCOURT, D. C.
CHAPPELL, C. R.

DELCOURT, D. C.
GILES, B. L.
Low-Energy Bouncing Ions in the Magnetosphere – A Three-Dimensional Numerical Study of Dynamics Explorer I Data. For publication in JGR, Washington, D.C.

DELCOURT, D. C.
GILES, B. L.
CHAPPELL, C. R.
MOORE, T. F.

DENT, WILLIAM R. F.
Infrared Radiative Transfer in Dense Discs Around Young Stars. For publication in Astrophysical Journal, Chicago, IL.

DHINDAW, B. K.
SINGH, A. K.
STEFANESCU, D. M.
CURRELL, P. A.
The Role of Gravity on the Solidification Behavior of Cu-Pb and BiGa Monotectic Alloys. For presentation at the TMS Fall Meeting, Cincinnati, OH, October 10-16, 1987.

DHINDAW, B. K.
STEFANESCU, D. M.
CURRELL, P. A.
BANDYOPADHYAY, D. K.

DILL, CHARLIE
ED35
COX, GEORGE B., JR.

DING, Y. J.
HAGYARD, M. J.
DeLOACH, A. C., et al.

DOWDY, JAMES F.
ES52

DRAGO, F. CHIUDERA
ALISSANDRAKIS, C.
HAGYARD, M. J.
ES52

DUNCAN, REYNOLDS
KA51
Out of This World Logistics. For presentation at

EBISUZAKI, TOSHIKAZU ES65
SHIBAZAKI, NORIAKI

EBISUZAKI, TOSHIKAZU ES65
NAKAMURA, NORIO
Type I X-Ray Bursts. For publication in the Astrophysical Journal, Chicago, IL.

EBISUZAKI, TOSHIKAZU ES65
SHIBAZAKI, NORIAKI
BUSSARD, ROGER

ECKER, A. ES75
ALEXANDER, J. I. D.
FRAZIER, D. O.
Fluid Flow in the Melt of Solidifying Monotectic Alloys. For publication in Metallurgical Transactions, Pittsburgh, PA.

ECKER, A. ES76

ECKER, A. ES75
ALEXANDER, J. I. D.
FRAZIER, D. O.

ELSNER, R. F. ES65
SHIBAZAKI, N.
WEISSKOPF, M. C.
Moment Constraints on Physical Models for Quasi-Periodic Oscillations from Galactic X-Ray Sources. For publication in Astrophysical Journal, Chicago, IL.

ELSNER, R. F. ES65
SHIBAZAKI, N.
WEISSKOPF, M. C.
Coherence Effects on Quasi-Periodic Oscillations from Galactic X-Ray Sources. For publication in The Astrophysical Journal, Chicago, IL.

ELSNER, R. F. ES65
SHIBAZAKI, N.
WEISSKOPF, M. C.

ETHRIDGE, EDWIN C. ES74
CURRERI, PETER A.
Containerless Drop Tube Solidification of Al3Ni. For publication in Metallurgical Transactions, Pittsburgh, PA.

FAYMON, K. S. EB12
SUNDBERG, G. R.
WEEKS, D. J.

FENNELLY, A. J.
BRADAS, JAMES C.
SMALLEY, LARRY L. ES65
Inflation in Einstein-Cartan Theory with Energy-Momentum tensor with Spin. For publication in Physical Review Letters, Ridge, NY.
FENNELLY, A. J.
BRADAS, JAMES C.
SMALLEY, LARRY L.
ES65

FENNELLY, A. J.
KRISCH, JEAN P.
RAY, JOHN R.
SMALLEY, LARRY L.
ES65

FICHTL, GEORGE
ED41

FICHTL, G. H.
REYNOLDS, N. D.
JOHNSTON, A. E.
ADELFANG, S. I.
BATT S, W.
LOTT, L.
MEYER, P. J.
SWINT, M. S.
VAUGHAN, O. H.
ED41

FISHMAN, G. J.
INAN, U.
ES62
Stanford U.

FISHMAN, G. J.
PACIESAS, W. S.
MEEGAN, C. A.
ES62
Time-Resolved Spectral Analysis of the Gamma-

FITZJARRALD, DANIEL E.
ED43

FITZJARRALD, DANIEL E.
ED43

FONTENLA, JUAN M.
(NRC) ES52

FONTENLA, JUAN M., et al. (NRC) ES52

FONTENLA, JUAN M., et al. (NRC) ES52

FONTENLA, JUAN M.
ES52

FONTENLA, JUAN M.
(NRC) ES52

FORD, D.
EB12
FOUNTAIN, JAMES A. PS05

FOWLIS, W. W. ES76
KORNFELD, D. M.
ROBERTS, G. O.

FOWLIS, W. ES76
ROBERTS, G.
DRAKE, M.
RADCLIFFE, M.

FRAZIER, DONALDO. ES75

FREEMAN, MICHAEL S. EL66

GALLAGHER, DENNIS ES01
THOMAS, VALERIE, L.

GALLAGHER, D. L. ES01
ASHOUR-ABDALLA, M.

GALLAGHER, D. L. ES53
CRAVEN, P. D.
GURNEIT, D. A.

GARY, GILMER A. ES52
NEERGAARD, JOHN R.

GARY, GILMER A. ES52
SMITH, R.
CARTER, D.
A Simple Apparatus for Controlling Nucleation and Size in Protein Crystal Growth. For publication in the Journal of Analytical Biochemistry, San Francisco, CA.

GERNERT, K. ES76
SMITH, R.
CARTER, D.

GIUDICI, ROBERT J. PD14

GOODMAN, H. M.
KARITANI, S.
PARKER, K. G.
STOOKSBURY, L. M.
WILSON, G. S.
NASA's Use of McIDAS Technology: Developing an Information Systems Tool for Earth Science and Applications. For presentation at the Fourth International Conference on Interactive Information and Processing Sys. for Meteorology, Oceanography, and Hydrology.

GREENE, MICHAEL UAH
CARTER, THERON
RUPP, CHARLES G. PS04

GREGORY, J. C. ES63
EDGELL, M. J.
PETERS, P. N.

HACHISU, IZUMI ES65
MIYAJI, SHIGEKI
SAIO, HIDEYUKI
The Origin of Ultra-Compact Binaries. For publication in the Astrophysics Journal, Chicago, IL.

HAGYARD, M. J. ES52

HAGYARD, M. J. ES52

HAMAKER, JOSEPH W. PP03

HAMMEI, H. B. ES63
TELESCO, C. M.
CAMPINS, H.
DECHER, R.
STORRS, A. D.
CRUIKSHANK, D. P.

HARRIS, J. M. ES76
BROOKS, D. E.
SNYDER, R. S.
VAN ALSTINE, J. M.
Hydrophilic Polymer Coatings for Control of Electroosmosis and Wetting. For publication in Dynamic Aspects of Polymer Surfaces, Proceedings 5th Rocky Mountain Chemical Society Meeting, Plenum Press, NY.

HARRIS, RONALD J. PD01

HARRISON, JAMES K. PS04
LORIA, ALBERTO E.

HATHAWAY, D. H. ES52

HATHAWAY, DAVID H. ES52

HEAMAN, JOHN P. ED35
Performance Characteristics of the MSFC Engine Air Test Facility. For presentation at the 65th Meeting of the Supersonic Tunnel Association, Albuquerque, New Mexico, October 6-7, 1986.
HERRIN, M. T.

HERRMAN, FREDERICK T.

HILL, H.
JOHNSTON, D.
FRAUENBERGER, H.
GRUMMAN

HINMAN, ELAINE M.

HODGES, BOBBY
HOUSTON, CHARLES
BAILEY, ROBERT
ROBINS, PHIL

HOFMEISTER, W. H.
ROBINSON, M. B.
BAYUZICK, R. J.

HOPKINS, M.
HAHN, E.

HORANYI, M.
CRAVENS, T. E.
WAITE, J. H., JR.
The Precipitation of Energetic Heavy Ions into the Upper Atmosphere of Jupiter. For publication in the Journal of Geophysical Research, Washington, D.C.

HORWITZ, J. L.
HOLGY, W. R.
BRACE, L. H.
CHAPPELL, C. R.
CHANDLER, M. O.
COMFORT, R. H.
F-Region Electron temperature Signatures of the Plasmapause Based on Dynamics Explorer 1 and 2 Measurements. For publication in J. Geophys. Res., Washington, D.C.

HORWITZ, J. L.
MOORE, T. E., et al.
Polar O+ Beams. For presentation at the IAGA Division II Symposium, Vancouver, Canada, August 9-22, 1987.

HORWITZ, J. L.
Core Plasma in the Magnetosphere. For publication in Reviews of Geophysics (AGU), Washington, D.C.

HUBER, WILLIAM G.

HUNG, R. J.
TSAO, Y. D.
HONG, B. B.
LESLIE, FRED W.

HUNG, R. J.
LESLIE, FRED W.
HWANG, K. S.
STONE, N. H., et al.
The Emissions of Broadband Electrostatic Noise in the Near Vicinity of the Shuttle Orbiter. For publication in PSS, Belfast, N. Ireland.

JONES, LEE W.
Space Station Propulsion Technology. For presentation at the 24th Space Congress of the Canaveral Council of Technical Societies, Cocoa Beach, FL.

JONES, V. L.
MITCHELL, J. R.
PLANT, C. P.

JONES, WILLIAM D.

JACOBSON, STEVEN C.

JONES, CLYDE S., III
GANGL, KENNETH J.
ROCKETDYE

JONES, CLYDE S., III
STILES, ROGER D.
Intergraph

KACAR, A.
DHINDAW, B. K.
STEVENESCU, D. M.
CURRERI, P. A.

JACKSON, S. W.
MOORE, R. L.
ZIRIN, H.

KANNAPAL, H. D.
PRZEKWAS, A. J.
SINGHAL, A. K.
COSTES, N. C.
Liquid Oxygen Sloshing in Space Shuttle

KARR, L. J. SS76
HARRIS, J. M.
SHAFFER, S. G.
VAN ALSTINE, J.
SNYDER, R. S.

KARR, L. J. SS76
VAN ALSTINE, J. M.
HARRIS, J. M.
SNYDER, R. S.
Phase Partitioning of Cells on Earth and in Microgravity. For presentation at the American Chemical Society, ACS Symposium on Space Bioprocessing, Houston, TX, November 18-19, 1986.

KAUKLER, W. F. SS74
CURRERI, P. A.

KIM, SANG-WOOK Univ. Space Research Assoc.

KIM, SANG-WOOK
CHEN, YEN-SEN

KOSTER, JEAN N. SS74
OWEN, ROBERT B.
Applications of Interferometry to Heat and Mass Transfer on Earth and in Space. For publication in Handbook of Flow Visualization, Part IV, Hemisphere, NY.

KOZYRA, J. U. SS53
WAITE, J. H., JR.
COMFORT, R. H., et al.
Observations by the Dynamics Explorer Satellites of New Signatures in Particle Field Measurements Associated with SAR ARC Field Lines at Magnetospheric Heights. For publication in the 26th COSPAR Proceedings, Oxford, England.

KRISCH, J. P. SS65
SMALLEY, L. L.
Cartan and Relativistic Spin Fluids in a Rotating Cylinder. For publication in Physical Review D, Ridge, NY.

KRISCH, JEAN P. SS65
RAY, J. R.
SMALLEY, LARRY L.

KROES, ROGER L. SS76
REISS, DONALD A.
HESTER, HOWARD B.

KROES, ROGER L. SS76

LAUE, JAY H. FA31

LAUE, J. H. FA31
LEE, THOMAS J.
Space Transportation Systems For the Future.
For presentation at the International Pacific Air and Space Technology Conference, Melbourne, Australia, November 13-17, 1987.

LEHOCZKY, S. L.
SZOFRAN, F. R.

LEHOCZKY, S. L.
SZOFRAN, F. R.
SU, C. H.
COBB, S. D.
ANDREWS, R. N.

LEHOCZKY, S. L.
SZOFRAN, F. R.

LEWALLEN, PATRICK E.

LEWALLEN, PATRICK E.

LOLLAR, LOUIS F.

LOLLAR, LOUIS F.
WEEKS, DAVID J.

LOLLAR, LOUIS F.
NELMS, R. M.
AVANT, R. L.
GRIGSBY, L. L.

McCOOL, ALEXANDER A.
RAY, WILLIAM L.
Inspection and Reuse Qualification, Space Shuttle Solid Rocket Motors. For presentation at the International Association of Science and Technology for Development (IASTED)/Technical Committee on Reliability and Quality Control, Paris, France, June 24-27, 1987.

MACHADO, MARCOS E., et al.
The Observed Characteristics of Flare Energy Release. For publication in the Astrophysical Journal, Chicago, IL.

MACHADO, MARCOS E.
Characteristics, Location and Origin of Flare Activity in a Complex Active Region. For publication in Advances in Space Research, England.

MACHADO, MARCOS E.
MACHADO, M. E.
SVESTKA, Z., et al.
A Dynamic Flare With Anomalously Dense Post-Flare Loops. For publication in Advances in Space Research, England.

MALHERBE, J. M.
TANDBERG-HANSSEN, E. I.
Closed Magnetic Structures in the Chromosphere and in the Transition Region. For publication in Solar Physics, Dodrecht, The Netherlands.

MEEGAN, C. A.
FISHMAN, G. J.
PACIESAS, W. S.

MIYAJI, SHIGEKI
MOORE, MICHAEL B.
HACHISU, I.
SAIO, H.

MIYAJI, SHIGEKI
MOORE, CARLETON J.
TOWNSEND, JOHN S.
IVEY, EDWARD W.

MIYAJI, SHIGEKI
NOMOTO, KEN'ICHI
A Model for the X-ray Binary 4U1820-30. For publication in Astrophysical Journal (Letters), Chicago, IL.

MOITRA, A.
DHINDAW, B. K.
STEFANESCU, D. M.
CURREN, P. A.

MOORE, MICHAEL B.
A Multipurpose Satellite Ejection System. For presentation at the 21st Aerospace Mechanism Symposium, NASA, Johnson Space Center, Houston, TX, April 29-May 1, 1987.
MOORE, RONALD L.

MOORE, RONALD L.

MOORE, T. E.
MHD Wave Breaking in the Outer Plasmasphere. For publication in Geophysical Research Letters, Washington, D.C.

MOORE, T. E., et al.

MOORE, T. E.

MOORE, T. E., et al.

MORRONI, CHERYL A.

MORISON, V. S.
TRW

MORACZ, D. J.

BHAT, B. N.

COSTES, N. C.
ED42

MUSIELAK, Z. E.
(NRC/NAS) ES52

MUSIELAK, ZDZISLAW E.
(NRC/NAS) ES52

MUSIELAK, Z. E.
(NRC/NAS) ES52

MUSIELAK, Z. E.

NAUMANN, ROBERT J. ES71 Materials Science in Space. For presentation at the In Space '87 Symposium, Tokyo, Japan, October 13-14, 1987.

MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

OWEN, ROBERT B. ES76

OWEN, ROBERT B. ES76
Sheets, Payson D.

PACIESAS, W. S. ES62

PANITCHOB, SUPAT ES52
WU, S. T. (UAH)
Suess, S. T.

PARNELL, T. A. ES62
DERRICKSON, J. H.
EBY, P. B.
FOUNTAIN, W. F.
ROBERTS, F. E., et al.

PERSOON, J. H., JR., et al. ES53
Electron Density Depletions in the Nightside Auroral Zone. For publication in JGR.

PETEISON, W. K. ES53
WAITE, J. H.

POLITES, MICHAEL E. ED12

POLITES, MICHAEL E. ED12

POLITES, MICHAEL E. ED12
BEALE, GUY O.

PORTER, JASON G. ES52
MOORE, R. L.

PURINTON, STEVEN C. EB41
WANG, CAROLINE K.
Preliminary Investigations Into Solutal Flow About Growing Tetragonal Lysozyme Crystals.
For publication in The Journal of Crystal Growth, North Holland, Amsterdam.

PUSEY, M. L.
WITHEROW, W. K.
NAUMANN, R. J.

RADCLIFFE, M.
DRAKE, M.
FOVLIS, W.
ALEXANDER, I.
ROBERTS, G.
BERGMAN, E.

RAMSEY, B. D.
ELSNER, R. F.
WEISSKOPF, M. C.

RAMSEY, B.
WEISSKOPF, M. C.

RAY, C. D.
OGLE, K. Y.
TIPPS, R. W.
CARRASQUILLO, R.
WIELAND, P.

REILY, J. C.
MARSHALL SPACE FLIGHT CENTER X-RAY CALIBRATION TEST FACILITY. For presentation at the ITEA Challenges of Testing Space Systems Meeting, Huntsville, AL, September 30-October 2, 1986.

REUTER, JAMES L.
BANGHAM, M. E.

RUETER, JAMES L.
DAVIS, ROY G.

RHODES, P. H.
SNYDER, R. S.
ROBERTS, G. O.

ROBERTS, GARY D.
SUTTER, JAMES K.
FOVLIS, WILLIAM W.
Ground Based Simulation of Fluid Flows in DMOS-2 Space Experiments. For presentation at the 27th Annual Regional Symposium of the Twin Cities Section of AICHE-Minneapolis, MN.

ROBERTS, W. T.
Heavy Ion Density Enhancements in the Outer Plasmasphere. For publication in the Journal of Geophysical Research, Washington, D.C.

ROBERTSON, FRANKLIN R.
ROBERTSON, FRANKLIN R.
Response of the Large-Scale Wind Field to Diabatic Heating. For presentation at the 17th Conference on Hurricanes and Tropical Meteorology, Miami, FL, April 7-10, 1987.
ROBINSON, M. B. ES74
BAYUZICK, R. J.
Undercoo ining Studies of Niobium-Platinum and
Niobium-Silicon Binary Alloys. For presentation
at the 2nd International Symposium on Experi-
mental Methods for Micro-G Materials Science

ROSNER, R. (Harvard-Smithsonian) ES52
MUSIELAK, Z. E. (NRC/NAS)
MHD Energy Fluxes for Late Type Stars. For
presentation at the Fifth Cambridge Workshop on
Cool Stars, Stellar Systems, and the Sun,

RUPP, CHARLES C. PS04
Summary of Tether Applications Simulation
Workshop. For presentation at the Second
International Conference on Tethers in Space,
Venice, Italy, October 5-8, 1987.

SAMIR, U. ES53
COMFORT, R. H.
STONE, N. H.
WRIGHT, K. H., JR.
Intercomparison Among Plasma Wake Models
for Plasmaspheric and Ionospheric Conditions.
For publication in Planetary and Space Science,

SANDLIN, A. C. ES74
ANDREWS, J. B.
CURRERI, P. A.
Influence of Gravity Level and Interfacial
Energies on Directionally Solidified Hyper-
monotectic Alloys. For presentation at the 117th
TMS AME Annual Meeting, Phoenix, AZ,

SCHULZT, DAVID N. PD11
A Manned Mars Artificial Gravity Vehicle. For
presentation at the Case for Mars III Conference,

SCHUNK, R. G. EL84
HUMPHRIES, W. R.
Environmental Control and Life Support System
Testing at Marshall Space Flight Center. For
presentation at the Intersociety Conference on
Environmental Systems, Seattle, WA, July
1987.

SCHUSTER, J. PD22
ALTON, T.
HUETER, U.
BROWN, N.
Evaluation of Cryogenic System Test Options
for the OTV On-Orbit Propellant Dep. For presenta-
tion at the AIAA 22nd Thermophysics Confer-
ence, Honolulu, HI, June 8-10, 1987.

SHELTON, BILLY W. PD24
Advanced Heavy Lift Launch Vehicles. For
presentation at the 33rd Annual Meeting of the
American Astronautical Society, Boulder, CO,
October 26-29, 1986.

SHIBAZAKI, N. ES65
ELSNER, R. F.
BUSSARD, R. W.
WEISSKOPF, M. C.
Random Process Models for QPOs in Luminous
X-ray Stars. For publication in COSPAR/IAU

SCHRAMM, FRED SA24
The Expansion of Automatic Identification in
Shuttle Projects. For presentation at the 19th
Annual Supply and Equipment Management
Conference. Williamsburg, PA, November 4-6,
1986.

SHIBAZAKI, N. ES65
LAMB, F. K.
Power Spectra of Quasi-Periodic Oscillations in
Luminous X-Ray Stars. For publication in The
Astrophysical Journal, University of Chicago
Press, Chicago, IL.

SHIBAZAKI, N. ES01
FISHER, R. F.
WEISSKOPF, M. C.

SINGH, NAGENDRA ES53
HWANG, K. S.
Perpendicular Ion Heating Effects on the Refilling of the Outer Plasmasphere. For publication in JGR, Washington, D.C.

SINGH, N. ES53
SAMIR, U.
WRIGHT, K. H., JR.
STONE, N. H.
A Possible Explanation of the Electron Temperature Enhancement in the Wake of a Satellite. For publication in JGR, Washington, D.C.

SIX, FRANK, et al. USRA ES01

SLOYER, J. L. ES76
KURDYLA, J.
SNYDER, R. S.

SMALLEY, LARRY L. ES65
Ideal Black Hole Gas. For publication in Nature, Washington, D.C.

SMITH, J. B. ES52

SMITHERS, MARTIN E. EB23

SNODDY, WILLIAM C. PA01

SPENCER, ROY W. ED43

STEFANESCU, D. M. ES74
CURRERI, P. A.
Directional Solidification of Eutectic Alloys and Particulate Metal Matrix Composites During Parabolic Flights. For publication in Journal of Crystal Growth, North Holland, Amsterdam.

STEFANESCU, DORU M. ES74
CURRERI, PETER A.

STEINCAMP, JAMES W. PD34

STEPHENS, J. BRISCOE ED44
Potential Applications of the Carbon Dioxide Observational Platform. For presentation at the
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

STONE, N. H. ES53

STONE, N. H. ES53

SU, CHING-HUA LEHOCZKY, S. L.
SZOFRAN, F. R.
Growth of HgZnTe Alloy Crystals by Directional Solidification. For publication in the Journal of Crystal Growth, North Holland, Amsterdam.

SU, CHING-HUA LEHOCZKY, S. L.
PERRY, G. L. E.
SZOFRAN, F. R.
Compositional Redistribution During Casting of Hg{subscript}0.5Cd{subscript}0.5Te Alloys. For publication in the Journal of Electronic Materials, Warrendale, PA.

SU, CHING-HUA LEHOCZKY, S. L.
SZOFRAN, F. R.
Growth of HgZnTe Alloy Crystals by Directional Solidification. For presentation at ACCG-7/11-VI-87, Monterey, CA, August 12-17, 1987.

SUESS, S. T. ES52

SUESS, S. T. ES52

SUESS, S. T. ES52
AN, C. H.
BAO, J. J.
WU, S. T.

SUESS, STEVENT. ES52
HATHAWAY, DAVID H.

SUESS, S. T. ES52
Asymmetry of the Heliosphere. For publication in Geophysical Research Letters, Washington, D.C.

SUESS, S. T. ES52

SVESTKA, Z. F. ES52
FONTENLA, J. M.

SWALLEY, FRANK D. PD21
Heavy Lift Vehicles for Transportation to a Low Earth Orbit Space Station for Assembly of a Humans to Mars Mission. For presentation at the

SWINNEY, K. R. (UAH) ES53
HORWITZ, J. L.
DELCOURT, D.
Centrifugal Acceleration of Ions in the Polar Magnetosphere. For publication in the Journal Geophysical Research, Washington, D.C.

SZOFRAN, F. R. ES75
PERRY, L. E. GRETCHEN
LEHOCZKY, S. L.

TAM, L. T. CHAM
PRZEKWAS, A. J.
MUKERJEE, T.
COSTES, N. C.

TAYLOR, KENNETH R. PS05

TELESOCO, C. M. ES63
WOLSTENCROFT, R. D.
DONE, C.
The Enhancement of Infrared Emission in Interacting Galaxies. For publication in Astrophysical Journal, Tucson, AZ.

TELESOCO, C. M. ES63
DECHER, R.

THOM, ROBERT EH14
Enhanced Fatigue Life of 440C Bearing Steel by

High Current Ion Implantation. For presentation at the TMS Meeting, Denver, CO, February 26, 1987.

THOMAS, LAWRENCE D. EL83

TORR, D. G. ES55
TORR, M. R.
Interpretation of the N3LBH Glow Observed on the S3-4 Spacecraft. For publication in Geophysical Research Letters, Washington, D.C.

TORR, D. G. ES55
RICHARDS, P. G.
TORR, M. R.

TORR, MARSHA R. ES55
TORR, DOUGLAS G.

TORR, MARSHA R. ES55
TORR, DOUGLAS G.
An Imaging Spectrometer for High Resolution Measurements of Stratospheric Trace Constituents in the Ultraviolet. For publication in Applied Optics.
TORR, M. R. ES55
TORR, D. G.
SWIFT, W.
LIU, G.

TORR, M. R. ES55
TORR, D. G.
SWIFT, W.
BHATT, P.
LIU, G.

TORR, MARSHA R. ES55
OWENS, J. K.
TORR, D. G.
REPLY. For publication in Journal of Geophysical Research, Washington, D.C.

TORR, M. R. ES55
OWENS, J. K.
EUN, J. W.
TORR, D. G.

TURNER, JAMES R. PA01
GALLOWAY, WILLIAM E. FA71

URBAN, E. W. ES63
CLIFTON, K. S.
The SpaceLab 2 Mission – An Overview. For publication in Science, Washington, D.C.

URBAN, E. W. ES63

VAN ALSTINE, JAMES M. (USRA) ES76

VAUGHAN, J. M. ED43
BROWN, D. W.
ROthermel, J.
BOWDLE, D. A.

VINZ, FRANK EB44
MSFC Simulation of Operations in Space. For presentation at AEROTECH '87 (SAE Conference), Long Beach, CA, October 5-8, 1987.

WAITE, J. H., JR. ES53

WAITE, J. H., et al. ES53

WAITE, J. H., et al. ES53
The Jovian Aurora: Electron or Ion Precipitation? For publication in JGR, Washington, D.C.

WAITE, J. H. ES53
<table>
<thead>
<tr>
<th>Name</th>
<th>Paper Title</th>
<th>Conference/Meeting Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRAVENS, T. E.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOORE, T. E.</td>
<td>of Ionospheric Oxygen. For presentation at the 1986 Fall AGU</td>
<td></td>
</tr>
<tr>
<td>PETERSON, W. K.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHELEY, E. G.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>with the DE-1 Particle Data. For presentation at the 1986 Fall AGU Meeting,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>San Francisco, CA, December 8-12, 1986.</td>
<td></td>
</tr>
<tr>
<td>WEEKES, HENRY B.</td>
<td>Ground Facility for Large Space Structures Dynamics and Control Verification.</td>
<td>For presentation at the 1986 ITEA Symposium, Huntsville, AL, September 30-October 2, 1986.</td>
</tr>
<tr>
<td></td>
<td>Management and Distribution. For publication in IECEC '87 Proceedings,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>August 1987.</td>
<td></td>
</tr>
<tr>
<td>WALLS, JUSTIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GREENE, MICHAEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUPP, CHARLES C.</td>
<td>Deployment and Attitude Control of the Getaway Tether Experiment (GATE).</td>
<td>For presentation at the 1987 Southeastern Symposium on System Theory (SSST-87), Clemson University, Clemson, SC, March 15-17, 1987.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>USAF Symposium.</td>
<td></td>
</tr>
<tr>
<td>WATTS, J. W.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HECKMAN, H. H.</td>
<td>Protons in Low Earth Orbit. For presentation at the Conference on</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Energy Radiation Background in Space, NASA/GSFC, Sanibel Island,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Magnetic Field Measurements from Space. For presentation at Solar Physics</td>
<td></td>
</tr>
<tr>
<td>WILSON, G. S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cosmic Rays, and the Solar Activity Cycle. For publication in Solar Physics,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Netherlands.</td>
<td></td>
</tr>
<tr>
<td>WILSON, ROBERT M.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RABIN, DOUGLAS</td>
<td>10.7-cm Solar Radio Flux and the Magnetic</td>
<td></td>
</tr>
<tr>
<td>MOORE, RONALD L.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Complexity of Active Regions. For publication in Solar Physics, The Netherlands.

WILSON, ROBERT M ES52

WILSON, ROBERT M. ES52
On the Distribution of Sunspot Cycle Periods. For publication in the Journal Geophysical Research, Washington, D.C.

WILSON, ROBERT M. ES52
Sunspot Futures – Letters to the Editor. For publication in Sky & Telescope, Cambridge, MA.

WILSON, ROBERT M. ES52
Air Chemists Braced for Battle Over Ozone Hole. For publication in New Scientist, Commonwealth House, Great Britain.

WILSON, ROBERT M. ES52

WILSON, ROBERT M. ES52

WU, M. K. ES74
ASHBURN, J. R.
TORNG, C. J.
CURREN, P. A.
CHU, C. W.

WU, S. T. ES52
WU, C. C. (UAH)
GARY, ALLEN
SMITH, J. F.

WU, S. T. ES52
SUSS, S. T., et al.

WYMAN, CHARLES L. EJ51

YOSHIMURA, HIROKAZU (NAS/NRC) ES52
The Detection of Global Convection on the Sun by an Analysis of Line Shift Data of the John M. Wilcox Solar Observatory at Stanford University. For publications in the Proceedings of the Workshop on the Internal Angular Velocity: Theory and Observations, Sunspot, NM.

YOSHIMURA, HIROKAZU ES52

YOSHIMURA, HIROKAZU ES52
HATHAWAY, DAVID H.

YOUNG, ARCHIEC. PD32
The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

C. D. BEAN
Director, Administrative Operations Office