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Abstract. We discuss a nonlinear plasma theory for self-modulation of puisar
radio pulses. A nonlinear Schrodinger equation is derived for strong electro-
magnetic waves propagating in an electron-positron plasma. The nonlinearities
arising from wave intensity induced particle mass variation may excite the
modulational instability of circularly and lineérly polarized pulsar radiation.
The 7xresulting wave envelopes can také the form of periodic wave trains or
soiitons. These nonlinear stationary waveforms may account for the formatioﬁ

of pulsar microstructures.
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1. Introduction

Pulsar radio emissions exhi hort intensity variations within
individual pulses on time scales ranging approximately from 1 us to 1 ms
(Cordes, 1979). Since these microstructures (or micropulses) are the most
fundamental features of pulsar pulses, they undoubtedly provide important

clues concerning the physics of pulsar radio emission and propagation.

Models for pulsar microstructure formation can be divided into two general

. classes: beaming models and temporal models. 1In beaming models, the rapid

intensity fluctuation is considered to be a geometrical phenomenon caused by the

angular sweeping of a nonuniform pulsar pencil beam across the observer's 1l ne
of sight. For example, Benford (1977) views pulsar microstructures as the
sweep of the observer's line of sight across a series of radiating plésma
filaments directed along the pﬁlsar magnetic field lines.A Ferguson (1981)
proposes that quasi-periodic microstructure emission is due to bunches of par-
ticles located in many periodically spaced emission regions, berhaps occupying
excited locations in a standing plasma wave of very long wavelength. In temporal
models, the intensity fluctuation.is treated as the result of an actual modi-
lation of the pulsar radiation beam. For example, Cheng (1981) suggests that
small oscillations in pulsar polar cap temperature can lead to strong modulation
of the outflowing ions and electron-positron fluxes. Harding and Tademaru (1981)
treat the temporal modulation of pulsar pulse§ as they propagate through magneto-
spheric regions of relativistic velocity sheaf. |

In this paper we discuss a nonlinear plasma theory wh;ch may account for
temporal modulation of coherent pulsar radio pulses.' We demonstrate that the

aonlinearities arising from relativistic particle mass variation may excite the
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self-modulational instability of stroﬂg electromagnetic waves in an electron-
positron plasma. The case of a circularly polariied wave is first studied in
detail, then the treatment is extended to a linearly polarized wave. .In éeneral
pulsar radio emissions contain both linear and Eircular polarization components
(Cordes, 1979). The'linedr polarization originates from intiinsic emission
processes such as the two-stream instability (Ruderman and Sutherland, 1975;
Asseo et al., 1983), whereas the circular polarization may be converted from -
the linear polarization via the Faraday rotation effect (Cocke and Pacholczyﬁ,
1980) or the nonuﬁiform magnetic field effect (Hodge, 1982) as the wave propa-

gates through the pulsar magnetosphere.

Strong clectromagnetic waves capable of driving plasma particles to rela-

tivistic energies have received much attention in connection with the low-frequency'

pulsar magnetic dipole radiation (e.g., Max, 1973; Kennel et al., 1979; Chian,
1982). Recently Bodo et al. (1931) used the dispersion relation of a strong
lineafly polarized wave to study the propagation of coherent pulsar radio
emi:siéns in the polar cap region. The high radio brightness temperatufe
(1645 +5 1031 g, Cordes, 1579) inferred from pulsar observations implies thatA
high-frequency pulsar radio waves can certainly drive the magpetosﬁheric charged
pairticles to relativistic velocities. The intensity of pﬁlsar radio emission

in the source region can be measured by a dimensionless, Lorentz-invariant,

parameter

_ eE L S6f% D - '
v = mewc = 5,585 (n ) 5F R ‘ (1)
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where S = flux density in Jy, f = pulsar emission frequency in MHz, Af =
emission bandwidth in MHz, D = pulsar distance in Kpc, & = size of emission
region in 108 cm, and n = index of retfraction. Nuggricai exampies of_the'wavc
strength parameter. are given im
(Cordes and Hankins, 1979) and PSR 1133 + 16 (Bartel and Hankins, 1982),

whose microstructure properties have been well analyzed. In Table 1 the index
of refraction is taken to be unity, the observed peak flux densities are used,

and the size of emission region & is determined by the product ct, where ¢ = speed

of light and T = pulsewidth. We expect that, with the exception of the pulsar

.distance, there may be several order of magnitude variations in most of the para-

" meters in Table 1. Hence it is reasonable to expect that the intensity of pulsar

radio emission in the source region lies in the range 10-'2 <v < 103. For such
wave intensities, plasma particles may acquire weakly relativistic to modera’.ely
rélativistic veloci:ies. This is in contrast to the case of low-frequéncy pulsar
magnetic dipole radiatiop, for thch the particles can reach ultrarelativistic

velocities with v : 10!! (Gunn and Ostriker, 1971).

The modulational instability of electromagnetic waves has been extensively
studied in connection with laser-plasma interaction for an electron plasma (e.g.,
Max et al., 1974;'Shuk1a et al., 1977) and an electron-ion plasma (e.g., Berezhiani
et al., 1980). While these studies are surely of interest to laser fusion appli-
cations, they might not be appropriate for pulsar applications. According to
current polar-cap pﬁlsar models (Ruderman and Sutherland, 1975; Arons and
Scharlemann, 1979) the pulsar magnetosphere is composed of secondary electrons
and positrons resulting from pair production induced by high energy curvature
radiation photons emitted by primary positron or electron beams coming from

the pulsar surface. In such a magnetosphere, positrons and electrons contribute
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equally toward the wave characteristics (Clemmow, 1974; Kennel and Pellat, 1976;
Chian, 1980), hence the inclusion of positron dynamics is essential for pulsar
radio emissi;n theories. Moreover, the ion acoustic mode is absent in an electron-
positron plasma (Tsytovich and Wharton, 1978), therefore the modulational coupling
between the high-frequency electromagnetic wave and the low-frequency ion acoustic
wave, heretofore consideréd for an electron-ion plasma, may not be applicable to
the pulsar environment. |

Astrophysical applicatidns of the modulational instability of electromagnetic
waves in a hot plasma have been studied for the situation where the relativisﬁic
effect is caused by high plasma temperatﬁres (Pataraya and Melikidze, 1980;
Lakhina and Buti, 1981). In the present paper we adopt the model of a cold?
unmagnetized plasma in order to single out the effect of relativistic particle
mass variatiqn originating ffom the interaction of electrons and positrons
with high intensity waves. Although the magnetic field is certainly not neg-
ligible in the pulsar magnetospﬂere; wWe postpone the-analysis of its effects to

another paper in order to investigate the simplest case in detail.
2. Theory
Consider the propagation of - circularly polarized electromagnetic wave in
the rest frame of an electron-positron plasma with its vector potentizl given by -
A(z,t) = a(z,t)(X cos wt + $'sin wt)- - . _ (2)

In the linear regime the wave is governed by the dispersion relation

+o 2 , (3)

i e -
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where w_ = vZ w__ is the electron-positron plasma frequency, w_ = w__ =
p pe : pe PP
X
(47N_e2/m )72,
v <

The nonlinear wave propagation is described by the following wave equation

%A
—= - ¢c2v2A = 4nce(N.y_ - Nv ) , (4)
o2 - p'p  eve

where only purely transverse fields are treated, since we may neglect the longi-

tudinal electric field in an'electron—positrqn plasma (Kennel and ‘Pellat, 1976).

The relativistic equations of motion for electrons and positrons are

a ’ ya © B
a;‘(g +'—j;‘—0 . ‘5)

Kel

? : _
Gr* Y, V)(Yuyal =

' _1
(e,p) and v, = (1 - vaz/cz)‘f. From (2) and (5) we have

wvhere a =
e A e A
= . = - fﬁ)
~ 1 3 - Y 1 s N
¢ mgc{l + AA2)72 P m c(l + AA2)72
. N .
where A = ézlmezc“. Making use of the quasi-neutrality condition, Ne = NP = No’

appropriate for a2 circularly polarized wave the nonlinear wave equation becones

32A ) %A , - & . )
5wz - ¢ gt ———x =0 @

Introducing a complex modulational representation

wt

é(z,t)==%{g(z,t)e"i + c.c.] , | (8)
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(7) can be rewritten in terms of the slowly time-varying modulation
-1

a (with g da/3t << w)

w 2 a

p - ~ '
a - T < 0 > (9)
2@+ ala]n?

c2

3%a
R

(=D
| @
et IR

"N E

where a term proportional té azc_z/at2 is dropped. It can be shown that (9)
admits localized stationary solutions for arbitrary wave amplitudes, however,
for the sake of illustration we shall henceforth tréat the small amplitude
1imit of (9).

In the limit Xlglz << 1, (9) yields a nonlinear Schrodinger equation

“

3a 3% '
ige* Pyt Ualfe=0 (10)
with
c2 ezm 2 -
b= ’ Q= meezch : (i1

PV

An additional term, Rz (where R = (w? - mpz)/Zw); was removed from (10) by the

the modulational instability. Alternatively, (10) can be derived by
a method introduced by Karpman and Krushkal (1969), by which the coefficients
of the nonlinear Schradinger.equation (10) are determined from a weakly

nonlinear dispersion relation

w = w(k, |a|2) , _ 12)
with
1 32y _ oW
P=35z > Q=-3 alz - : : . (13)
-8~
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The exact nonlinear dispersion relation for a circularly polarized electro-

magnetic wave in an clectrom-positren plasma s {e.g., Chian, 1SR3)
w 2 ® 2 w2 .
e :
w2 = c2k2 + P s PP = c2k2+ —B— , (4
1+ v A+ V) (1 +v?)

where v2 = ezEzlmezwzc2 = AA2. Note from (14) that the positron contribution

to the wave dispersion is equal to the electron contribution. In the weakly

nonlinear limit v2 << 1, (14) reduces to , ‘ )

' ‘ : w_2A 1 . .
w(k,lal?) = (€2k? +w ? - L— la|®)® . (15)

Applying (15) to (13) we obtain precisely the same coefficients as those in

- (11). It is important to observe that the n~aigman-Krushkal method is only

valid for the weakly nonlinear regime; it should not be applied directly to

a strongly nonlinear dispersion relation such as (14) (see e.g., Durrani et al.,

1980). The appropriate modulational wave equation for large wave amplitudes

is (9).

Having derived the noniinear Schrodinger equation, (10), we can now determine‘
whether or not the plane carrier wave tZ) is unstéble to a low-frequency modu-
lation. It has been established (e.g., Hasegawa,, 1975) that the modulational
instability can be excited in a medium provided the group dispersion P and
the nonlinear frequency shift Q are of the same sign, namely PQ > 0. From (1
we see that this condition is indeed satisfied. |

Consider next the dynamics of the modulatéd wave moving with a group speed
V = 3w/3k, described by (16). 1In this case we may assume a finite value a,

or the modulation as z-Vt+ * =, thus in (10) |a|? is replaced by |a|? - lqolz

e e . w0 . . - e e e N TR et cev 4 iwwemmepe mem v:}-
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¢+ P oz +Qlal® - la 1%)a = 0 . (16)

13t )

The stability of the modulation can be studied by separating g into two real

variables, p and o, representing the real and the imaginary parts of a
a = o0 0N . , Coan

Substitution of this expression into (16) gives for the real and imaginary

parts, respectively,

' P 3% P 32 _ 302 30 _ .
QW - 0) * g g7 G PG w0 a8
% 9 da, _ IR ‘
3¢t 2P 5, (p5) = 0 . (19)
Linearizing (18) and (19) - ' L

LKz - ort) (20)

13

<+
po Py

=0 ei (kLZ - .U.)Lt)

1 . > (2.1)

we obtain the following dispérsion relation for the low-frequency modulation

2 _ p2p 4 _ oy k2 ' o
w P2k 4 - 2PQ°p K, ) | , (22)

L

-10-
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It follows from (22) that the threshold for the modulational instability is

e, > PkLZ/ZQ, namely

v, > ckL/wp s

~
N
%)
Nt

for the circular polarization case and the.corresponding maximum growth rate

is v = Qo , namely

2w 2y 2 ' o : !
Yy = vy v, /4w . o : - (24)
The .instability is purely growing, and therefore non-convective in the rest frame.
As the modulation grows, the instability can evolve to a nonlinear station-
ary state that results from the balance between nonlinearity and dispersion.
The possible staticnary solutions are the periodic wave trains (Nishikawa a.d
Liu, 1976) ..
i ' .
= 2r1.Q )% - :

p = p, en?[l551% (z - Vt)] , (25)

or the solitary waves

- 2r1.Q o _ ‘ _ ' .
p = p_ sech [IZPI P, (2 vt)] . (26)

The solution, (26), is called an envelope soliton since it is the envelope of

the wave packef that has the form of a solitary wave. These envelope solitons

cznn be shown to be stable against longifudinal perturbations and mutual collisions.
We now apply the Karpman-Krushkal method to discuss the self-modulational

instability of nonlinear linearly polarized electromagnetic waves in an electron-

positron plasma. Although the dispersion relation in the strongly nonlinear

-11-
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limit has been derived by Kennel ‘and Pellat (1976) and Bodo et al (198})

. it cannot be used here, since the Karpman-Krushkal method is restricted to

the weakly nonlinear regime. The nonlinear dispersion relation for a linearly
polarized wave in an electron plasma, in the limit v2 << 1, is given by

(Chian and Clemmow, 1975)

n2=1-(1- g.vz) _pe_ S 27)
. w ' .

Now, (9) suggests that the dispersion relation for an electron-positron plasma

can be obtained from the dispersion relation for an electron plasma by replacing

wpe for ¥2 mpe (i.e., the electrocn-positron plasma frequency wp). Hence the
appropriate dispersion relation can be obtained from (27) by replacing mpe for
w_, namel
P Y
o 3w 2 . :

wlk,lal®) = (K + 0pf - —f— lel®* e
A comparison of (28) with (15) shuws that, apart from a slight difference in
the aumerical coefficient, the dispersion relations for linearly and circularly

polarized waves are essentially the same. Applying (28) to (13) then gives

a nonlinear Schrodinger equation (10) for a linearly polarized wave with

c2 3 e2p.2 ' ' .
Pp=S_ -, Q= —P2— . ) (29)
2w : :
16wmezc2 : : ‘

Evidently, PQ > 0, thus the self-modulational instability of linearly polarized
waves in an electron-positron plasma can be excited. The equations describing
the evolution of the modulational instability for this case are similar to the

circular polarization case with P and Q given by (29).

-12-
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3. Discussion
In the previous section we demonstrated that the self-modulational
instability of circularly and linearly polarized e1ect£omagnetic waves can be
excited in an electron-positron plasma. The theory presented in this paper is
compatible with Fhe statistical model for thé pulsar signal proposed by Rickett
(1975). In Rickett's model the pulsér signal is depicted as an amplitude-

modulation a(t) of a noise-like random process n(t): .
p(t) = a(t) n(t) s < (30)

A where p(t) is the electric field of the received pulsar signal, n(t) describes
the coherent fast. time-varying emission by particle bunches, and a(t) describes
micropulses that vary much more slowly than n(t). This amplitude-modulated
noise modéi has been found to be consistent with the observed pulsar spectra.
According to our theory,; as evidenced by (8), the bigh—frequency coherent
pulsar emission with a fast-time scale 2n/w_can be modulated by a slowly time-
varying énvelope g(z,tj due -5 -onliinearities arising from relativistic particle
mass variation. Hence, the resulting»modulétion envelopes may account for the
formation of pulsar microstiuctures.

We have seen that the end producis of the reiativistic self-modulationél
instability may be nonlipear stationary waves of either periodic wave—train.
type or envelope soliton tybe.' Tﬁis is consistent with the observed features
of pulsar micréstructures. Hankins and Boriakoff (1978) showed that the observed
pulsar microstructures can be put into two categories, intermittent type oT
quasi:periodic type, according to their intensity structures. Most micro-

pulses are of the intermittent type, which have bursts of strong emission

.1,?'»._—. e asm e e L e € ETMl smpmmen o o S s ases - s
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interpersed with sections of longitude where the signal returns abruptly to

the system noise level. Occasionally, quasi-periodic string of micropulses

are detected. The intermittent micropulses can be explained by our theory as
a collection of envelope solitons with randomly fluctuating amplitudes, whereas
the quasi-periodic micropulses can be explained as periodic wave-trains or a

sequence of envelope solitons with little variation in their peak .amplitudes.

We now make use of the nonlinear envelope solutions

2119 | B}
A cn [IZPI A (2 vt) ]

A(z,t) = (31)

1
I/z

A 21|12 a -

, sech [IZP o,z vt)]

to estimate the features of microstructures produced by the relativistic self-
modulational instability.' First we calculate the Lorentz-invariant number N
denoting the number of wave crests in a given modulation. From the observed
temporal pulsewidths of pulsar micropulses (~ 1 us to 1 ms) acd the frequency

range of pulsar radio emission (~ 100 MHz to 1 GHz) we see th:.t N varies roughly

from 102 to 10%. (31) shows that the envelope spatial pulsewidth for the circular

polarization case is

2P 1 . 2c. ' . o
G—I—Q"l AoV S (32)
o p o :
Thus, in the rest frame,
_2c_k _ 1 ke | ' C
T v 21wV G > : (33)
P P
‘ -14~
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where k is the wavenumber of high-frequency pulsar radio waves. (33) shows
in order for N o0 be within fhe observaed vange it is rveguircd that

Kc/mp >> 1. The weakly nonlinear dispersion relations (15) and

(28) indicate that this is possible only if w >> mp. For example, if v = 10’2
and wp/m = 10, N = 103. Thérefore, our theory suggests that self-modulational
formation of microstructures takes place in regions of pulsar magnetosphere

where the pulsar radio wave frequency is considerably greater than the local

plasma fréquency. Next we use our theory to calculate the temporal pulsewidth

of micropulses. Since (32) is given in the rest frame of secondary particles

jt is necessary to transform (32) to the observer's frame. Because of time
dilation and Dcppl:r shift (Ruderman ;nd Sutherland, 1975) in the observer's
frame, mpe - ZYS wye’ where Y is the relativic<tic factor associated with the
stream velocity «f secondary electrons and positrons. Hence, in the observer's

frame, the temporal pulsewidth is

v -

T':._.—l'__—-— 5 ) . (34)

2y w_ v
s pe o

where the relation 8§ = ct is used, since for Yq >> 1, the soliton ioves with
relativistic speeds in the observer's frame. If y_ = 102, Ve = 106s-1 (in the
rest frame) and v = 10-2, then T = 1 us which is within the observed range.

The above calculation suggests again that relativistic self-modulational insta-
bility is excited in the region of magnetosphere with relatively low plasma

densities. Now (34) shows that micropulses of higher intensity have narrower

pulsewidths. Such behavior was shown by Bartel et al. (1980) to hold true

-15-
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for pulsar subpulses and was suggested by Ferguson (1981) to be true also for
micropulses. 1t would bé interésting for pulsar observers to- check thils property
across the entire range of microstructure time scales. '

In conclusion, we point out that the physical mechanism for formation of
pulsar microstructures diséussed in this paper is e:mected to take place in
most pulsar magnetospheres ;ince the wave intenéity induced relativistic effect
responsible for driving the self-modulational instability is general. However,
a gquantitative test of a modulational instability theory requires tﬁe extension
of the simple model adopted in this paper to include other effects, such as
large wave amplitude, ambient magnetic field{ plasma temperature and plasma
inhomogeneity. In the meantime, cur simplified analysis indicates that the modu-

lational instability is a promising direction for. further investigation.
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Numerical examples

TABLE 1

of the wave

strength parameter

Pulsar S(Iy) f(MHz) Af (MHZ) D (Kpc) 5(10% cm) v
PSR0950 + 08 850 430 200 0.1 6 x 1073 89
PSR1133 + 16 300 1720 10 0.2 7.5 x 10" 47
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