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Abstract. We discuss a nonlinear plasma theory for self-modulation of pulsar 

radio pulses. A nonlinear Schridinger equation is derived for strong electro-

magnetic waves propagating in an electron-positron plasma. The nonlinearities 

arising from wave intensity induced particle mass variation may excite the 

modulati'nal instability of circularly and linearl: polarized pulsar radiation. 

• The resulting wave envelopes can take the form of periodic wave trains or 

solitons. These nonlinear stationary waveforms may account for the formation 

of pulsar microstructures.
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1. Introduction 

Pulsar radio emissions exh1bt ultrashort intensity variations within 

individual pulses on time scales ranging approximately from 1 ps to 1 ins 

(Cordes, 1979). Since these microstructures (or micropuises) are the most 

fundamental features of pulsar pulses, they undoubtedly provide important 

clues concerning the physics of pulsar radio emission and propagation. 

Models for pulsar microstructure formation can be divided into two general 

classes: beaming models and temporal models. In beaming models, the rapid 

intensity fluctuation is considered to be a geometrical phenomenon caused by the 

angular sweeping of anonuniform pulsar pencil beam across the observer's i.ne 

of sight. For example, Benford (1977) views pulsar microstructures as the 

sweep of the observer's line of sight across a series of radiating plasma 

filaments directed along the pulsar magnetic field lines. Ferguson (1981) 

proposes that quasi-periodic microstructure emission is due to bunches of par-

ticles located in many periodically spaced emission regions, perhaps occupying 

excited locations in a standing plasma wave of very l'ong wavelength. In temporal 

models, the intensity fluctuation.is treated as the result of an actual moi-

lation of the pulsar radiation beam. For example, Cheng (1981) suggests that 

small oscillations in pulsar polar cap temperature can lead to strong modulation 

of the outfiowing ions and electron-positron fluxes. Harding and Tademaru (1981) 

treat the temporal modulation of pulsar pulses as they propagate through magneto-

spheric regions of relativistic velocity shear. 

In this paper we discuss a nonlinear plasma theory which may account for 

;emporal modulation of coherent pulsar radio pulses. We demonstrate that the 

nonlinearities arising from relativistic particle mass variation may excite the 
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seif-modulational instability of strong electromagnetic waves in an electron-

positron plasma. The case of a circularly polarized wave is first studied in 

detail, then the treatment is extended to a linearly polarized wave. In general 

pulsar radio emissions contain both linear and circular polarization components 

(Cordes, 1979). Tneliear polarization originates from intlinsic emission 

processes such as the two-stream instability (Ruderman and Sutherland, 1975; 

Asseo et al., 1983), whereas the circular polarization may be converted from 

the linear polarization via the Faraday rotation effect (Cocke and Pacholczyk, 

1 980) or the nonuniform magnetic field effect (Hodge, 1982) as the wave propa-

gates through the pulsar magnetosphere. 

Strong electromagnetic waves capable of driving plasma particles to rela-

tivistic energies have received much attention in connection with the low-frequency 

pulsar magnetic dipole radiation (e.g., Max, 1973; Kennel et al., 1979; Chian, 

1982). Recently Bodo et al. (1981) used the dispersion relation of a strong 

linearly polarized wave to study the propagation of coherent pulsar radio 

einJsions in the polar cap region. The high radio brightness temperature 

(1O" t '103 1 K, Cordes, 1979) inferred from pulsar observations implies that 

high-frequency pulsar radio waves can certainly drive the manetospheric charged 

pat'icles to relativistic velocities. The intensity of pulsar radio emission 

in the source region can be measured by a dimensionless, Lorentz-invariant, 

parameter



where S flux density in Jy, f = pulsar emission frequency in MHz, tf = 

emission bandwidth in MHz, D = pulsar distance in Kpc, 6 = size of emission 

region in 10 0 cm, and n = index of retraction. Numerical examples of the wave 

•	 strength para.meter.are given in Table I for two pulsars, PSR 0950 + 08 

•	 (Cordes and Hankins, 1979) and PSR 1133 + 16 (Bartel and Hankins, 1982), 

whose microstructure properties have been well analyzed. In Table 1 the index 

of refraction is taken to be unity, the observed peak flux densities are used, 

and the size of emission region 6 is determined by the product CT, where c = speed 

of light and t = pulsewidth. We expect that with the exception of the pulsar 

distance, there may be several order of magnitude variations in most of the para-

meters in Table 1. Hence it is reasonable to expect that the intensity of pulsar 

radio emission in the source region lies in the range 10- 2 < 

wave intensities, plasma particles may acquire weakly relatt 

relativistic veloc:ies. This is in contrast to the case of 

magnetic dipole radiation, for which the particles can reach 

velocities with v 	 10	 (Gunn and Ostriker, 1971).

V < 10 3 . For sch 

fistic to modera.ely 

low-frequency plsar 

ultrarelativistic 

The modulational instability of electromagnetic waves has been extensively 

studied in connection with laser-plasma interaction for an electron plasma (e.g., 

Max et al., 1974; Shukla et al., 1977) and an electron-ion plasma (e.g., Berezhiani 

et al., 1980). While these studies are surely of interest to laser fusion appli-

cations, they might not be appropriate for pulsar applications. According to 

current polar-cap pulsar models (Ruderman and Sutherland, 1975; Arons and 

Scharlemann, 1979) the pulsar magnetosphere is composed of secondary electrons 

and positrons resulting from pair production induced by high energy curvature 

radiation photons emitted by primary positron or electron beams coming from 

the pulsar surface. In such a magnetosphere, positrons and electrons contribute 

-5-



equally toward the wave characteristics (Clemmow, 1974; Kennel and Pellat, 1976; 

Chian, 1980), hence the inclusion of positron dynamics is essential for pulsar 

radio emission theories. Moreover, the ion acoustic mode is absent in an electron-

positron plasma (Tsytovich and Wharton, 1978), therefore the Inodulational coupling 

between the high-frequency electromagnetic wave and the low-frequency ion acoustic 

wave, heretofore considered for an electron-ion plasma, may not be applicable to 

the pulsar environment. 

Astrophysical applications of the modulational instability of electromagnetic 

waves in a hot plasma have been studied for the situation where the relativistic 

effect is caused by high plasma temperatures (Pataraya and Melikidze, 1980; 

Lakhina and Buti, 1981). In the present paper we adopt the model of a cold, 

unmagnetized plasma in order to single out the effect of relativistic particle 

mass variation originating from the interaction of electrons and positrons 

with high intensity waves. Although the magnetic field is certainly not neg-

ligible in the pulsar magnetosphere, we postpone the-analysis of its effects to 

another paper in order to investigate the simplest case in detail. 

-	
2. Theory	 - 

Consider the propagation of circularly polarized electiomagnetic wave in 

the rest frame of an electron-positron plasma with its vector potential given by 

A(z,t) = a(z,t)( cos wt + .sin wt) 	 .	 (2) 

In the linear regime the wave is governed by the dispersion relation 

,	 W2W	 2 
P	 p	 pe	 pp	 '	 (3)



where w = is the electron-positron plasma frequency,	 = w =V2 w 
p	 Pc	 pe	 pp 

(41TNe2/m)1. 

The nonlinear wave propagation is described by the following wave equation 

a2A
- C 2V 2A = 4irce(N v - N v )	 ,	 (4) 

at2	 -	 pp 

where only purely transverse fields are treated, since we may neglect the longi-

tudinal electric field in an electron-positron plasma (Kennel and Pellat, 1976). 

The relativistic equations of motion for electrons and positrons are 

a	 - 
(.- + y • V)	 = — (E +
	 c 

where a = (e,p) and y = (1 - v 2/c2 ) . From (2) and (5) we have
a. 

e 	 e  

Y
=	 v =—	 6) 

-e	 - 
mc(1+XA2 ) -2 	 mc(l+XA2)2 

e 

where A = è 2/m 2c4 . Making use of the quasi-neutrality condition, N 	 N p 
E N0, 

appropriate for a circularly polarized wave the nonlinear wave equation becomes 

a2A 

- c2 ---+ ta)

	

	 ½ = 0	 -	 (7) 
+ AA2)  

Introducing a complex modulational representation 

A(z,t) =[a(z,t)eWt + c.c.]
	

(8) 
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(7) can be rewritten in terms of the slowly time-varying modulation 	 -. 

a (with a - Da/3t << w) 

Da	 2 32a 
W	

W 
2	 a 

]	 2	 -	 (1 + AaI2)½ = 0
	 ,	 (9) 

where a term proportional to a 2a/t 2 is dropped. It can be shown that (9) 

admits localized stationary solutions for arbitrary wave amplitudes, however, 

for the sake of illustration we shall henceforth treat the small amplitude 

limit of (9). 

In the limit A1a12 << 1, (9) yields a nonlinear Schrodinger equation 

a2a

	

'	 (10) 

with
2	 e2w2 

- 2w	 '	 - 4wm 
e 
2c' 

An additional term, Ra (where R	 (w2 - w 2 )/2w); was removed from (10) by the 


iransforination a - a exp(iRt). Equation (10) is the desired wave equation for 

the modulational instability. 	 Alternatively, (10) can be derived by 

a method introduced by Karpman and Krushk! (1969), by which the coefficients 

of the nonlinear Schrodinger , equation (10) are determined from a weakly 

nonlinear dispersion relation 	 - 

w = w(k, IJ 2 )	
,	 (12) 

l 2w	 ___ 
P = ----,	 Q = - aa2	 .	

(13) 

with

- R_.



The exact nonlinear dispersion relation for a circularly polarized electro- 

iii agrietic wave in an c1cctrori-pcitron -Incma i (e.g.., Ch ii; 1O) 	 - 

2	 2 

= c2k2 +
	 pe 

1 . +	 pp , = c2k2 + 
(1 + V 2 ) ½	 (1 + v2 )	 (1 + 

where v2 = e2 E 2/m 2w 2 c2 = XA2 . Note from (14) that the positron contribution 

to the wave dispersion is equal to the electron contribution. In the weakly 

nonlinear limit v2 << 1, (14) reduces to 

W 2 
w(k,1a1 2 ) = (c2k2 + W 2 - p2 ½


	

P	 2 I&) 

Applying (15) to (13) we obtain precisely the same coefficients as those in 

(11). It is important to observe that the aiian-Krushkal method is only 

valid for the weakly nonlinear regime; it shouhi not be applied directly to 

a strongly nonlinear dispersion relation such as (14) (see e.g., Durrani et al., 

1980). The appropriate modulational wave equation for large wave amplitudes 

is (9). 

Having derived the nonlinear Schrdinger e'luation, (10), we can now determine 

whether or not the plane carrier wave (2) is unstable to a low-frequency modu-

lation. It has been established (e.g., Hasegawa,. 1975) that the modulational 

instability can be excited in a medium provided the group dispersion P and 

the nonlinear frequency shift Q are of the same sign, namely PQ > 0. From (11) 

we see that this condition is indeed satisfied. 

Consider next the dynamics of the modulated wave moving with a group speed 

V = w/k, described by (10). In this case we may assume a finite value 

'or the modulation as z-Vt-'- ± , thus in (10) 1 a 1 2 is replaced by II 2 - 

-9-
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Da	 D2a 

++ Q(If 2 	 - = 0 (16) 

The stability of the modulation can be studied by separating a into two real 

variables, p and a, representing the real and the imaginary parts of a 

= /p(z,t) e io(z,t) (17) 

Substitution of this expression into (16) gives for the real and imaginary 

parts, respectively,

p2	 p	 2 
Q(p - p) +	 -	 - .-- (2) a2 

-	 P (----)
a 

-	 - = 0 at
(18)

ap	 (Pau 
+ 2P	 _.	 = 0	 . (19) 

Linearizing (18) and (19) 

= p	 + p1e!	 WLt) , (20) 

= a pl (kL Z -	 Lt ) ' (21) 

we obtain the following dispersion relation for the low-frequency modulation 

W 	
= P2k	 - 2PQ PkL2 . (22)

-10-• 
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It follows from (22) that the threshold for the modulational instability is 

P > PkL2 / 2Q, namely 

> ck/w
	

(23) 

for the circular polarization case and the corresponding maximum growth rate 

is y = Qp , namely 

=	 v/4w	 (24) 

The instability is purely growing, and therefore non-convective in the rest frame. 

As the modulation grows, the instability can evolve to a nonlinear station-

ary-state that results from the balance between nonlinearity and dispersion. 

The possible stationary solutions are the periodic wave trains (Nishikawa a'd 

Liu, 1976)

P = p 0 cn2 [.Ij ½p 0 (z - Vt)]	 ,	 (25) 

or the solitary waves 

P = p sech 2[IIip o (z - Vt)]	 .	 26) 
.0	 2P

The solution, (26), iscalled an envelope soliton since it is the envelope of 

the wave packet that has the form of a solitary wave. These envelope solitons 

in be shown to be stable against longitudinal perturbations and mutual collisions. 

We now apply the Karpman-Krushkal method to discuss the seif-modulational 

.nstability of nonlinear linearly polarized electromagnetic waves in an electron-

positron plasma. Although the dispersion relation in the strongly nonlinear 

-11-
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limit has been derived by Kennel and Pellat (1976) and Bodo et al (1981) 

• it cannot be used here, since the Karprnan-Krushkal method is restricted to 

the weakly nonlinear regime. The nonlinear dispersion relation for a linearly 

polarized wave in an electron plasma, in the limit V2 << 1, Js given by 

(Chian and Clemmow, 1975) 

= 1 - (1 - ! 
8	 W2 

 v 2 ) 

Now, (9) suggests that the dispersion relation for an electron-positron plasma 

can be obtained from the dispersion relation for an electron plasma by replacing 

Wpe for VT w 
pe 

(i.e., the electron-positron plasma frequency wy). Hence the 

appropriate dispersion relation can be obtained from (27) by replacing W' pe for 

namely	 -

3 2 

w(k,IJ 2 ) = (c2k2 •	 2 -	 P	 II2)½ 
p	 8 

A comparison of (28) with (15) shws that, apart from a slight difference in 

the in.unerical coefficient, the d..spersion relations for linearly and circularly 

polarized waves are essentially 'ie same. Applying (28) to (13) then gives	 - 

a nonlinear Schrödinger equation (10) for a linearly polarized wave with 

2	 3 e2w-2 
Q	

p
..	 •	 .	 ( 29) 

l6wm 2c2

e 

Evidently, PQ > 0, thus the self-modulational instability of linearly polarized 

waves in an electron-positron plasma can be excited. The equations describing 

the evolution of the modulational instability for this case are similar to the 

circular polarization case with P and Q given by (29). 

-12-
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3. Discussion 

In the previous section we demonstrated that the seif-modulatiOflal 

instability of circularly and linearly polarized electromagnetic waves can be 

excited in an electron-positron plasma. The theory presented in this paper is 

compatible with the statistical model for the pulsar signal proposed by Rickett 

(1975). In Rickett'S model the pulsar signal is depicted as an amplitude-

modulation a(t) of a noise-like random process n(t): 

p(t) = a(t) n(t)
	 (30) 

where p(t) is the electric field of the received pulsar signal, n(t) describes 

the coherent fast time-varying emission by particle bunches, and a(t) describes 

micropulses that vary much more slowly than n(t). This amplitude-modulated 

noise model has been found to be consistent with the observed pulsar spectra. 

According to our theory, as evidenced by (8), the high-frequency coherent 

pulsar emission with a fast-time scale 2n/w can be modulated by a slowly time-

varying envelope a(z,t) due	 -ionlinearities arising from relativistic particle 

mass variation. Hence, the resulting modulation envelopes mayaccount for the 

formation of pulsar microstructures. 

We have seen that the end products of the relativistic self-modulational 

instability may be nonlinear stationary waves of either periodic wave-train 

type or envelope soliton type. This is consistent with the observed features 

of pulsar microstructures. Hankins and Boriakoff (1978) showed that the observed 

pulsar microstructures can be put into two categories, intermittent type or 

quasi-periodic type, according to their intensity structures. Most micro-

pulses are of the intermittent type, which have bursts of strong emission 
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(32) 

I (33) (33)

1 

.LL.	 -- -	 ----

interpersed with sections of longitude where the signal returns abruptly to 

the system noise level. Occasionally, quasi-periodic string of micropulses 

are detected. The intermittent micropulses can be explained by our theory as 

a collection of envelope solitons with randomly fluctuating amplitudes, whereas 

the quasi-periodic micropulses can be explained as periodic wave-trains or a 

sequence of envelope solitons with little variation in their peak amplitudes. 

We now make use of the nonlinear envelope solutions 

cn2[Ij½ A(z - Vt)]
2P	 0 

A(z,t) =

	
sech2[I1 A(z - Vt	

(31) CA)] ) 
to estimate the features of microstructures produced by the relativistic self-

modulationa! instability; First we calculate the Lorentz-invariant number N 

denoting the number of wave crests in a given modulation. From the observed 

temporal pulsewidths of pulsar in.cropulses (- 1 us to 1 ms) ai:d the frequency, 

range of pu1ar radio emission (- 100 MHz to 1 GHz) we see tht N varies roughly 

from 102 to 10 6 . (31) shows that. the envelope spatial pulseidth for the circular 

polarization case is 

6- 
1 2P1½ 1 - 2c. 

- - Twv 
0	 p0 

Thus, in the rest frame, 

N- 2c k - 1 kc 
WV

0 p



where k is the wavenumber of high-frequency pulsar radio waves. (33) shows 

that in order for N	 b within the oberve'1 rae it is rc quircd that 

kc/u >> 1. The weakly 

(28) indicate that this 

and w 
p 
1w = 10, N 10. 

formation of microstruc

nonlinear dispersion relations (1) and 

is possible only if w >>	 For example, if v = 10- 2 

Therefore, our theory suggests that self-modulational 

tures takes place in regions of pulsar magnetosphere 

where the pulsar radio wave frequency is considerably greater than the local 

plasma frequency. Next we use our theory to calculate the temporal pulsewidth 

of micropulses. Since (32) is given in the rest frame of secondary particles 

it is necessary to transform (32) to the observer's frame. Because of time 

dilation and Doppi .r shift (Ruderman and Sutherland, 1975) in the observer's 

frame, w pe -
	

S ?e 
2y to , where y is the relativistic factor associated with the 

stream velocity .f secondary electrons and positrons. Hence, in the observer's 

frame, the temporal pulsewidth is 

1
,. 

1110) \) 
s pe 0 

where the relation 6 = CT is used, since for -y >> 1, the soliton moves with 

relativistic speeds in the observer's frame. If y = 102, tope = 106 s 1 (in the 

rest frame) and v = 10_ 2 , then T	 1 .is which is within the observed range. 

The above calculation suggests again that relativistic self -modulation al insta-

bility is excited in the region of magnetosphere with relatively low plasma 

densities. Now (34) shows that micropulses of higher intensity have narrower 

pulsewidths. Such behavior was shown by Bartel et al. (1980) to hold true 

-15-
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for pulsar subpulses and was suggested by Ferguson (1981) to be true also for 

micropulses. It would be interesting for pulsar observers to check this property 

across the entire range of microstructure time scales. 

In conclusion, we point out that the physical mechanism for formation of 

pulsar microstructures discussed in this paper is e:ected to take place in 

most pulsar magnetospheres since the wave intensity induced relativistic effect 

responsible for driving the seif-modulational instability is general. However, 

a quantitative test of a modulational instability theory requires the extension 

of Lha simple model adopted in this paper to include other effects, such as 

large wave amplitude, ambient magnetic field, plasma temperature and plasma 

i-.cgeneity. In the meantime, cur simplified analysis Indicates that the modu-

lational instability is a promising direction for further investigation. 

- 
JL  U-
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TABLE .1


Numerical examples of the wave strength parameter 

Pulsar S(Jy) f(1z) Af(MHz) D(Kpc) 6(108 cm) v	 - 

PSR0950 + 08 850 430 200 0.1 6 x 10 89 

PSR1133 + 16 300 1720 10 0.2 7.5 x 10 47

ii
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