
N88- 17259

IMPLEMENTING CLIPS ON A PARALLEL COMPUTER

Gary Riley
NASNJohnson Space Center
Artificial Intelligence Section

Mail Code FM7
Houston, Texas 77058

ABSTRACT

The 'C' language integrated production system
(CLIPS) is a forward chaining rule-based language
developed by the Artificial Intelligence Section (AIS) of
the Mission Planning and Analysis Division (MPAD) at
the Johnson Space Center (JSC) to provide training
and delivery for expert systems. Conceptually,
rule-based languages have great potential for
benefiting from the inherent parallelism of the
algorithms that they employ. During each cycle of
execution, a knowledge base of information is
compared against a set of rules to determine if any
rules are applicable. Parallelism can be employed to
speed up this comparison during each cycle of
execution. Parallelism also can be employed for use
with multiple cooperating expert systems. To
investigate the potential benefits of using a parallel
computer to speed up the comparison of facts to rules
in expert systems, a parallel version of CLIPS was
developed for the FLEX/32, a large-grain parallel
computer. The FLEX implementation takes a
macroscopic (or high-level) approach in achieving
parallelism by splitting whole sets of rules among
several processors rather than by splitting the
components of an individual rule among processors.
The parallel CLIPS prototype demonstrates the
potential advantages of integrating expert system tools
with parallel computers.

INTRODUCTION

Expert system building tools have shown a great deal
of utility in solving knowledge intensive tasks that
would often daunt conventional approaches using
procedural languages. These tools provide languages
that allow solutions to be expressed in paradigms that
"closely" resemble the human solution process.
Knowledge engineers can express heuristics using
rule paradigms as opposed to coding nested if/then
statements in a procedural language. The inference
engine of the expert system is used to determinine
which information has satisfied the conditions of the

appropriate rules. The control routines for matching
information (facts) against rules are provided by the
tool, not the programmer. In addition, many expert
system building tools are provided on computers
hosting extremely powerful development
environments that promote the interactive and
incremental development of programs.

The use of high-order languages, however, does not
come without cost. Typically, expert systems written in
high-order languages run one to two orders of
magnitude slower than expert systems directly coded
in procedural languages. Speed is very often traded
for increased productivity during development and
easier maintenance. Sometimes, this tradeoff is
acceptable, but many applications requiring real-time
speed that could benefit from expert system
technologies might not be able to accept this tradeoff.

The AIS of JSC's MPAD has been active in both the
design of expert system building tools and the use of
parallel computers. Several expert systems have been
developed which require real-time or near real-time
speed, including NAVEX[i] and MCCSSES[2].
Parallel processing is one of the ways in which expert
system speed performance can be increased[3]. This
background presented the opportunity and motivation
to investigate the use of parallel processing in expert
system building tools.

CLIPS

CLIPS is a forward chaining, rule-based language
developed by the AIS at JSC to solve both training
and delivery problems not fully addressed by most
commercially available expert system shells[4]. A
forward chaining, rule-based language such as CLIPS
has three primary components: a set of rules, a
knowledge base consisting of facts, and an inference
engine. Facts represent chunks of information such as
the altitude of the Space Shuttle or the temperature
reading of a particular sensor. Rules basically are
if/then statements of heuristic knowledge. The if

383

portion of a rule is a series of patterns which must
have appropriate matches with facts in the knowledge
base for the rule to be activated. The then portion of a
rule is a series of actions to be taken when the rule is
executed. Two possible actions (among many) could
be to add new facts to the knowledge base or to
remove existing facts from the knowledge base. The
inference engine is the mechanism that determines
which rules apply and also compares the facts in the
knowledge base to the rules and determines which
rules are applicable given the current state of the
knowledge base. It then selects one of the applicable
rules and applies the actions found in the then portion
of the rule. For a more complete description of CLIPS,
see references [5] and [6].

FLEW32 PARALLEL COMPUTER

The FLEX/32[7] is a large-grain parallel computer
capable of housing up to 20 computer modules and
10 shared memory modules in 1 cabinet. Cabinets
also can be connected together. Computer modules
available are based on the Motorola 68020 and the
National 32032 and may be used in any combination.
The FLEX/32 is a multiple instruction stream/multiple
data stream (MIMD) computer. Each processor can
run independent of the others and can access either
shared or local memory. The FLEX/32 (used by the
AIS at JSC) has six National 32032 processor
modules and two shared memory modules. The
processor supporting UNlX has 4 megabytes of local
memory, while the other five processors have 1
megabyte of local memory. Each common memory
module has 256 kilobytes of memory.

The operating system used on the FLEX/32 is the
UNlX System V Operating System. This provides all of
the language support normally associated with this
operating system. In addition, Flexible Computer offers
two languages for parallel programming: Concurrent
C [a] and Concurrent FORTRAN. These two languages
have been extended to allow parallel processing
constructs.

APPROACH TO PARALLELISM

Two levels of incorporating parallelism into CLIPS
were considered: macroscopic and microscopic
parallelism. A macroscopic approach would attempt to
preserve the low-level implementation of the CLIPS
inference engine and to incorporate parallelism on a
"high" conceptual level. A microscopic approach, by
contrast, would attempt to incorporate parallelism in
the low-level implementation of the CLIPS inference
engine.

A macroscopic approach would provide the quickest
means of incorporating parallelism into CLIPS.
Source code changes using this approach could be
kept to a minimum by utilizing most of the code used

for the sequential version of CLIPS. This was
desirable because a sequential version of CLIPS was
being maintained on a VAX 111780 for use on that and
other sequential computers. This sequential version
experiences frequent change for both maintenance
and improvement. A macroscopic approach would
allow easier integration of changes made in the
sequential version with the parallel version. Use of a
macroscopic approach also would allow the final
product to be a fully developed expert system tool and
not a research prototype. A "start from scratch"
approach inevitably would not contain of all of the
features the sequential version of CLIPS provides.
Finally, the source code for CLIPS already was well
understood and available.

A microscopic approach would allow the investigation
of the best possible techniques for incorporating
parallelism. Converting a program developed on a
sequential computer to take advantage of the
architecture of a parallel computer would not be able
to take advantage of other algorithms that may better
exploit the architecture of the parallel computer.
Recoding the inference engine to take advantage of
parallelism at a very low level would allow the very
best techniques to be applied.

PARALLEL CLIPS OVERVIEW

A macroscopic approach incorporated parallelism into
CLIPS. This approach limited the number of changes
to the CLIPS source code and allowed the ongoing
changes to the sequential version of CLIPS to be
integrated more easily with the parallel version of
CLIPS.

The steps taken for the assertion of a new fact are
shown for the sequential version of CLIPS in figure 1.
First, the fact is filtered through the pattern matcher.
The pattern matcher determines which patterns in the
if portion of the rules have been matched by the fact
that is being asserted. Rules with matched patterns
then are given the information that a fact has matched
one of their patterns. If this additional fact causes all of
the conditions of the rule to be satisfied, the rule is
placed on the agenda (in this case, local to a single
processor). After all new assertions have taken place,
a rule will be selected from the local agenda and its
actions will be applied.

An assertion in the parallel version adds an additional
level above local fact assertions. The FLEX/32
implementation of CLIPS splits the set of rules among
several processors to achieve parallelism. Figure 2
shows the steps taken to assert a fact in the parallel
version. A master processor provides the user
interface capabilities and acts as a driver for the other
processors. The master processor picks a single rule
to be applied from the global agenda (the set of all
applicable rules). The master processor then informs

384

the processors containing groups of rules of the
actions of the rule that are to be applied. A given
action ~f the rule then is performed by all of the rule
group processors in parallel before the next action of a
rule is undertaken.

In the case of a fact assertion, the processor
containing the rule is informed that it may begin
executing its actions. The fact to be asserted is posted
to global memory, and the other processors are
notified that a fact has been posted to global memory.
Each individual processor then asserts the fact exactly
as if it were running on a sequential computer using
the steps shown in Figure 1. After the assertion takes
place on the processor, the local agenda selects one
applicable rule (if it has any available) to be posted to
the global agenda.

Figure 1 : Local Fact Assertion

PROCESSOR

PROCESSOR

GLOBAL

Figure 2: Global Fact Assertion

Retractions are handled similarly to assertions, with
the fact to be retracted being posted to global memory
and other processors being informed of the task by the
rule group processor that contains the rules and is
executing the actions. The rule group processor
containing the rule waits for all of the other processors

385

to finish before beginning the next action. Other
actions that take place in the then portion of a rule
(variable bindings, function calls, etc.) are handled
only by the processor with the executing rule. Once
the rule has finished executing, control is returned to
the master processor where another rule is selected
from the global agenda to be executed, repeating the
basic cycle until no rules remain on the global
agenda.

IMPLEMENTATION

The main problem in the implementation of parallel
CLIPS was the communication between the master
and slave processors. Initial attempts used processes
to create and control the slave processors and their
tasks. For example, if the main processor wanted the
slave processors to assert a fact, it would create a
process running on each of the slave processors to
handle this task. The main processor then would wait
for slave processors to finish. This method turned out
to be relatively easy to code using the high-level,
parallel constructs of Concurrent C; however, it also
was quite inefficient. Sample problems actually ran
slower as the number of additional processors was
increased. Process creation is expensive, especially
when the task to be performed is of a small time
duration. Further, multitasking on a single processor
also does not seem to work as well as one might
expect. Running a slave process on the same
processor as the master process caused inefficiency
in multitasking. The FLEX/32 arbitration for
multitasking does not appear to be very efficient. This
conclusion was bolstered further by the results of other
parallel programs.

The second implementation attempt corrected two of
the errors experienced in the first attempt. Process
creation and multitasking were avoided during run
time of the expert system. The processor with the
master process was not given a slave process. All
other processors had a slave process. This slave
process ran constantly, waiting for a "message" which
informed it that it had a task to perform. When it
received the "message" and processed it, the slave
process then would send a "message" back to the
master process, informing it that the task had been
completed.

An attempt was made to use the message passing
facility of exceptions provided by Concurrent C;
however, it proved too difficult to configure the
channels in the appropriate manner for message
passing. The final implementation used a set of flags
in shared memory. Each processor had an active flag
and, in addition, all processors shared a task flag. A
processor requiring other processors to perform an
action would set the task flag to the appropriate task to
be performed. It then would set the active flag of the
other processors to active to signal them to begin

execution of the task. The controlling processor then
would monitor the active flag. When the active flag
was set to inactive, the controlling processor knew that
the subordinate processor has completed its task.
Information passing was controlled by copying
information to global memory and by having each
processor copy the information down to its local
memory.

The problems encountered during implementation
showed that many ways exist to implement a problem
given a concurrent language on a parallel computer.
Unfortunately, the best way to implement a problem
often has to be determined empirically.

RESULTS

Two problems were used to demonstrate potential
speed benefits of the parallel algorithm used in
parallel CLIPS. The first of these problems was a
"goal" problem. This problem was a 30-rule version of
the monkeys and bananas problem described in
reference 191 modified to handle more goals and
situations. Eighty-six rules fire to solve the problem for
the initial conditions used. The other problem used
was a "data" problem. This problem has 13 rules: 1
startup up rule and 12 data-intensive rules. The
data-intensive rules were combinatorial in nature in
that each rule potentially could add tens to thousands
of rule activations to the agenda with the addition of
each new fact (depending upon the number of facts
already in the knowledge base). To prevent all of
these rule activations from actually occurring, a pattern
was added to the end of each of the if portions of the
rules which had no corresponding matches among
facts in the knowledge base. Although this pattern
prevented the rules from being activated, it still
allowed the computational work in computing the
partial matches to be finished. The startup rule
asserted nine facts and was the only rule that fired.

~

The problems were run on CLIPS V3.11 on a VAX
11/780 using VMS, CLIPS V3.11 on the FLEX using
UNIX, and parallel CLIPS (based on V3.11) using one
to four processors under the multitasking
multiprocessing operating system (MMOS). The
results are shown in table I.

Table I: Timing Test Results

Version Data Goal
Problem Problem

CLIPS VAX 15.2 3.3
CLIPS FLEX 21.9 6.4
Parallel CLIPS (1 P) 18.1 5.7
Parallel CLIPS (2P) 9.3 5.3
Parallel CLIPS (3P) 7.3 4.4

I Parallel CLIPS (4P) 5.5 4.2

The "goal" problem demonstrated only modest
speedup as more processors were added. This
demonstrates that speedup will occur only for
problems in which the problem is divided evenly
among the processors. That is, for each fact assertion
and retraction, each set of rules on a processor has
approximately the same amount of work to perform.
This could best be achieved with a set of rules that
numbers in the hundreds rather than in the tens.

The "data" problem specifically was tailored to
demonstrate a "best case" situation for parallel CLIPS.
Only one rule is fired and this rule asserts several
facts. For each of the facts asserted, a great deal of
work has to be done and this work is very evenly
divided among the processors. Two processors ran
the problem 1.9 times faster, and four processors ran
the problem 3.3 times faster than a single processor.
These numbers represent 95 percent and 80 percent,
respectively, of maximum possible speedup.

Although rule sets run slightly faster for most examples
and much faster for some examples, it is important to
remember that the inference engine is not actually
working faster. Parallel CLIPS speeds up the system
by making the set of rules appear smaller by
distributing them among several processors.

AREAS FOR IMPROVEMENT

CLIPS uses the Rete pattern matching algorithm
which provides an efficient method for finding all of the
facts that match the patterns in the if portions of the
rules[lO],[l l]. It is important to remember that
optimizations used in the Rete algorithm may be
affected by splitting up rules among processors.
Common elements of both patterns and rules can be
shared, making the system more efficient. To split the
rules among several processors will remove some of
the efficiency that is gained by sharing. The version of
CLIPS used for parallel CLIPS (version 3.1 1) uses the
Rete algorithm. However, it does not take advantage
of common sets of patterns shared between rules (join
sharing). Starting with version 4.0, versions of CLIPS
incorporate this optimization. The "data" problem used
cannot take advantage of join sharing; however, most
problems can take advantage of join sharing to a
greater or lesser extent. For example, the "goal"
problem has 7 of its 30 rules which can benefit from
join sharing. Join sharing especially benefits large
expert systems with many sets of similar rules. A
version of parallel CLIPS based on version 4.0 ,would
allow investigation of the tradeoffs encountered
between sharing commonality among rules on a
single processor and splitting rules among several
processors.

The next logical step in testing the benefits of parallel
CLIPS is to develop a suitable problem for testing
large expert systems. This problem should consist of

386

at least 100 rules and should not be dependent on
extensive input/output (I/O) or external functions. The
initial state or condition should be hardwired so the
problem can just execute without human intervention.

The parallel implementation could make use of an
action queue to store a list of assertions and
retractions to be performed by the rule groups. Each
processor could retrieve the next action to be
performed from this queue when it has completed its
current action. This would ease some of the strict
synchronization of rule execution and also would
allow processors to proceed at their own pace rather
than at the pace of the slowest processor out of all the
groups.

Programming constructs should be provided which
allow rules to be specifically assigned to certain
processors by the programmer. In the current
implementation, CLIPS distributes rules among
processors with a round robin distribution scheme.
The ability to assign rules specifically to processors
would be useful when attempting to fine tune a
parallel expert system for speed.

CONCLUSIONS

The early results from parallel CLIPS are very
encouraging. Parallel CLIPS could be used not only
as a program for investigating parallel inference
engines, but as a program for the actual delivery of an
expert system. Parallel CLIPS is still a prototype, and
more development work is required to remove the
remaining rough edges. In addition, more suitable
problems need to be found to investigate the speed
improvements possible with parallel CLIPS.

ACKNOWLEDGEMENTS

The author would like to thank Joe Giarratano and
Chris Culbert for their comments and suggestions on
this paper.

ACRONYMS

AIS Artificial Intelligence Section

CLIPS C language integrated production system

VO i nput/output

JSC Johnson Space Center

MlMD multiple instruction stream/multiple data

MMOS multitasking multiprocessing operating

MPAD

stream

system
Mission Planning and Analysis Division

REFERENCES

Maletz, M. and C. Culbert, "Monitoring Real-Time
Navigation Processes Using the Automated
Reasoning Tool (ART)." In Proceedings of the
First Annual Aerospace Applications of Artificial
Intelligence Conference, AAAIC-85, Dayton, OH,
September 1985.

Clemons, P., C. Culbert, and L. Wang,
"Development of an Expert System to Assist
Monitoring Mission Control Center Software
Status." In Proceedings of the First Annual
Conference on Robotics and Expert Systems,
ROBEXS'85, Houston, TX, June 1985.

Boarnet, M., "Requirements for the Next
Generation of Expert System Builders." NASA
Technical Memo FM7(86-27), NASA/Johnson
Space Center, Houston, TX, February 1986.

Giarratano, J., C. Culbert, G. Riley, and R.
Savely, "A Solution to the Expert System
Delivery Problem." Submitted for publication.

Culbert, C., "CLIPS Reference Manual." NASA
Technical Memo FM7(87-131), NASA/Johnson
Space Center, Houston, Texas, July 1986.

Giarratano, J., "CLIPS User's Guide." NASA
Internal Note 86-f M-25 (JSC-22308), Mission
Planning and Analysis Division, NASA/Johnson
Space Center, Houston, TX, October 1986.

Flexible Computer Corporation, "FtEX/32
MultiComputer System Overview." Flexible
Computer Corporation, Dallas, TX, June 1985.

Flexible Computer Corporation, "Concurrent C
Reference Manual." Flexible Computer
Corporation, Dallas, TX, March 1986.

Brownston, L., R. Farrell, E. Kant, and N. Martin,
P r o a r a m m l n a e r t Svstems in OPS5: An
Introduction to Ru l e - k e d P roqamm inq.
Addison-Wesley Publishing Company, Inc.,
Reading MA, 1985.

Forgy, C. L., "On the Efficient Implementation of
Production Systems." Ph.D. Dissertation,
Carnegie-Mellon University, Pittsburgh, PA,
1979. (Available from University Microfilms
International, Ann Arbor, MI)

Forgy, C. L., "Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem."
Artificial Intelligence 19, 1982, pp. 17-37.

387

