
NASA
Technical

Paper
2764

1988

National Aeronautics
and Space Administration

Scientific and Technical
Information Division

SURE Reliability Analysis

Program and Mathematics

Ricky W. Butler
and Allan L. White

Langley Research Center
Hampton, Virginia





Contents

Introduction ................................. 1

SURE Approach to Reliability Analysis ..................... 2

Reliability Modeling of Computer System Architecture ............. 2

SURE Program ..... " .......................... 3

The Fundamental SURE Mathematics ...................... 5

Bounds Based on Means and Variances .................... 5

Path-Step Classification .......................... 6
Summary of Information Needed by SURE Program .............. 9
White's Multiple Recovery Theorem ..................... 10

Bounds Based on Means and Percentiles .................... 12

Path-Step Classification .......................... 12
Lee's Multiple Recovery Theorem ...................... 14

Choosing Between White's and Lee's Method .................. 15

Transient and Intermittent Models ....................... 15

Transient Fault Models ........................... 15

Intermittent Fault Models .......................... 16

Open Issues ................................ 17

Tightness of the SURE Bounds ......................... 17

SURE User Interface ............................. 18

Basic Program Concept ........................... 18

The SURE Input Language ......................... 19
Model-Definition Syntax .......................... 19
SURE Commands ............................. 24

SURE Graphics ............................... 29
Plotting Results of SURE Runs ....................... 29
Graphical Display of Models ........................ 30

Example SURE Sessions ............................ 32

Outline of a Typical Session ......................... 32

Examples ................................. 33
Example 1 ................................ 33
Example 2 ................................ 34
Example 3 ................................ 34
Example 4 ................................ 36
Example 5 ................................ 38
Example 6 ................................ 40
Example 7 ................................ 41
Example 8 ................................ 41
Example 9 ................................ 42
Example 10 ............................... 42
Example 11 ............................... 44
Example 12 ............................... 44

Derivation of Bounding Theorem ........................ 45

Mathematical Preliminaries ......................... 45

Proof of Theorem .............................. 48

Derivation of Bounds for a Simple Case ................... 50
Proof of General Theorem ......................... 52

iii _RE.CF..DING PAGE BLANK NOT FILIV,c..-D



Algebraic Bounds for Q(T) .......................... 55

Concluding Remarks ............................. 57

Appendix A--Basis for SURE's Lower Bound Parameters ............. 59

Appendix B- Derivation of SURE Parameters for Models With Fast Exponentials
Competing With a General Transition ..................... 62

Appendix C--Mathematical Basis of the QTCALC--1 Algorithm .......... 66

Appendix D--Error Messages ......................... 67

References .................................. 71

iv



Introduction

A reliability analysis of a reconfigurable fault-tolerant computer system requires the de-

termination of the deathstate probabilities of a stochastic reliability model. For more than a

decade, automated tools (e.g., ARIES, SURF, and CARE III) have been developed to analyze

such models. (See ref. 1.) Recently, a mathematical theorem was proven by White that en-

ables the efficient computation of the deathstate probabilities of a large family of semi-Markov

models that are useful for the reliability analysis of fault-tolerant architectures. (See ref. 2.) A
major advantage of this new approach is that an arbitrary recovery transition can be handled.

Consequently, a specific parametric form of the distribution, such as exponential or uniform,

does not have to be assumed. This theorem served as the basis of the original version of the

Semi-Markov Unreliability Range Evaluator (SURE). (See ref. 3.) After the development of the

original SURE program, the mathematical technique was generalized by Lee (ref. 4) and White
(refi 5). The new mathematical results were used to produce version 2 of SURE which was

documented in NASA TM-87593 (ref. 6). After the publication of TM-87593, the capabilities

of the program have been further expanded. The following improvements have been made:

1. A simple method for specifying fast exponential transitions has been
added

2. A new command to compute the "probabilistic OR" of the
results from several "runs" has been added

3. The pruning algorithm has been made more efficient

4. The lower bound has been improved

5. A warning message for loop truncation has been added

6. The accuracy of the Q(T) calculation is now reported for 0TCALC=I

The SURE program capabilities, including these new features, are fully documented in this
paper.

Both White's and Lee's methods provide a means for bounding the probability of entering a
deathstate of a semi-Markov model using simple parameters of the model such as the means and

variances of the transitions. Consequently, the SURE program computes an upper and lower

bound on system reliability. Although an exact answer is not produced by the SURE program,

the calculated bounds are close together for reliability models of ultrareliable systems usually

within 5 percent of each other as is shown. The advantage of the SURE technique is that

the bounds are algebraic in form and, consequently, are computationally efficient. Very large

and complex models can be analyzed by the program. Furthermore, the technique applies to

the general class of semi-Markov models and thus does not impose restrictions on the type of
architecture that can be analyzed. Of course, the practical utility of the tool is related to the
closeness of the generated bounds.

Since the SURE program can handle any form of recovery process (i.e., any mathematical

distribution of recovery time), the fault-handling process of a fault-tolerant computer system

can be captured in a single transition. It is unnecessary to assume some underlying parametric

form or a special model of fault-handling behavior. The results of recovery-process experimen-
tation can be used directly in the SURE program, which only requires the mean and standard

deviation of the observed recovery times. If the user desires to model the recovery process with
a number of transitions (e.g., a detailed fault-handling model), the SURE program can still be
used, but the user must supply values for all the transitions included in the model.

In this paper, the method of Markov/semi-Markov modeling is first reviewed. Second, the

essential aspects of the new bounding theorems are presented. Third, the technique used by

SURE to handle transient and intermittent fault models is given. Fourth, the tightness of the

SURE bounds is discussed. Fifth, a detailed description of the user input language is given
along with several illustrative interactive sessions. Finally, the mathematical derivation of the
bounding theorem is presented in detail.



SURE Approach to Reliability Analysis

The SURE approach to the reliability analysis of a fault-tolerant computer system is an
extension of the standard Markov modeling approach. Markov models have been used for many

years to describe fault-tolerant systems. (See ref. 7, pp. 246 302.) However, many reliability

analysts are unfamiliar with this technique, since fault-tree analysis has been sufficient for non-

reeonfigurable systems. In recent years, reconfigurable architectures which cannot be analyzed
with fault trees have been designed and implemented. The more powerful Markov approach

is used which captures the dynamic aspects of the system in a natural manner. The following
section has been included to introduce the Markov modeling method along with the semi-

Markov extensions.

Reliability Modeling of Computer System Architecture

Highly reliable systems must use parallel redundancy to achieve their fault tolerance
since current manufacturing techniques cannot produce circuitry with adequate reliability.

Furthermore, reconfignration has been utilized in an attempt to increase the reliability of the

system without the overhead of even more redundancy. Such systems exhibit behavior that
involves both slow and fast processes, and when modeled stochastically, some state transitions

are many orders of magnitude faster than others. The slower transitions correspond to fault

arrivals in the system. The faster transition rates correspond to the system recovery from

faults. If the states of the system are delineated properly, then the slow transitions can be

obtained from field data and/or by using the MIL-STD-217D Handbook calculation. These
transitions have been shown to be exponentially distributed for most electronic devices, which

is assumed in the SURE program. (See ref. 7, pp. 31 42.) The system recovery processes can be

measured experimentally by using fault injection. In a pure Markov model, the recovery process
would typically be represented as a single exponential transition. However, experiments made

by the Charles Stark Draper Laboratory, Inc., on the Fault-Tolerant Multiprocessor (FTMP)

computer architecture have demonstrated (ref. 8) that these transitions are not exponential. In
order to model the nonexponential behavior of these processes accurately, semi-Markov models

are necessary. Once a system has been mathematically modeled and the state transitions
determined, a computational tool such as SURE may be used to compute the probability of

entering the deathstates (i.e., the states that represent system failure) within a specified mission

time, for example, 10 hours.

Mathematical models of fault-tolerant systems must describe the processes that lead to

system failure and the system fault-recovery capabilities. The first level of model granularity
to consider is the unit of reconfignration/redundancy in the system. In some systems this is as

large as a complete processor with memory. In other systems_ a smaller unit such as a CPU or

memory module is appropriate. The states of the mathematical model are vectors of attributes
such as the number of faulty units and the number of removed units. Certain states in the

system represent system failure and others represent fault-free behavior or correct operation in

ttle presence of faults.

A semi-Markov model of a triad of processors with one spare is given in figure 1. The

outputs of the processors in the triad are voted in order to mask faults. (In this model it is
assumed that the spare does not fail while inactive.) The horizontal transitions represent fault

arrivals; these occur with exponential rate A. The coefficients of A represent the number of

processors in the configuration that can fail. The vertical transitions represent recovery from
a fault. The first recovery is accomplished by replacing the faulty processor with a spare. The

second recovery is accomplished by degrading to a simplex processor. A recovery transition

typically is not exponentially distributed and, consequently, must be described by a general

distribution function F(t) where
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F 1(t)

Figure 1. Semi-Markov model of triad with one spare.

F(t) : Probability that the recovery occurs within t hours after the fault arrives

Throughout the paper, greek letters are used to represent the rates of exponential transitions,

and roman letters are used to represent the distributions of the fast recovery transitions. In

the model of figure 1, the two recovery processes are different; therefore, two different recovery

distributions are necessary--F1 (t) and F2(t). Since the system uses three-way voting for fault

masking, there is a "race" between the occurrence of a second fault and the removal of the

first. If the second fault wins the race, then system failure occurs (state 3).

The development of a reliability model of a large, complex system uses the same concepts

that are used in the development of the model of the triad plus a spare. The two types of

transitions--failure and recovery--are still used, but there often are many different types of

failure and different recoveries for each type. Thus, there may be several failure transitions

from a state, each representing a failure of a different part of the system. Likewise, some states

are reached after a sequence of different failures, and thus, there are multiple recoveries from

the state. In this situation, the response of the system to two simultaneous failures must be
measured and included in the model.

Formerly, the numerical solution of a semi-Markov model was intractable; therefore, pure

Markov models were typically used to model reconfigurable systems. Since the SURE program

solves semi-Markov models, more realistic system models can now be used to calculate system

reliability. Furthermore, since the mathematical bounds depend only upon the conditional

means and standard deviations of the recovery transitions, distribution fitting is unnecessary.

Given an empirical distribution of system recovery, the easily calculated sample means and

standard deviations can be used directly.

SURE Program

The calculation of the probability of entering a deathstate of a Markov model requires the

solution of a set of coupled differential equations. The solution of the more general semi-Markov

model requires the numerical integration of a set of convolution integrals. Because of the large
disparity between the rates of fault arrivals and system recoveries, models of fault-tolerant

architectures inevitably lead to numerically stiff differential-integral equations. This problem

along with the large computational cost of solving large state space problems has led to the

use of exotic computational methods in recent reliability analysis tools such as CARE III and

HARP. (See refs. 9 and 10.) In such programs, the problem is decomposed into a fanlt-handling
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model and a fault-occurrence model. Coverage parameters derived from the solution of the

fault-handling model are inserted by various aggregation techniques into the fanlt-occurrence

model in order to compute the system reliability. These aggregation techniques are based

on the assumption that critical-pair failures are the dominant failure mode in the system.

Unfortunately, such strategies reduce the class of architectures that can be modeled. Because

SURE does not rely on the solution of differential equations, stiffness is not a problem--in

fact, the "stiffer" the model, the more accurate the approximation technique. Furthermore,

since the SURE program computes probabilities using algebraic formulas, large state spaces can

be accommodated. Therefore, decomposition or aggregation techniques are unnecessary and

have not been utilized. A simple model pruning technique, however, has been included in the

SURE program for extremely large models that otherwise might require large computational

resources.

The SURE program is based on a new method for computing the reliability of a fault-tolerant

system. Two features of a fault-tolerant system have traditionally made this task difficult.

First, the use of sophisticated digital processors has led to complex reconfiguration strategies

which result in large, complex models. Unfortunately, one cannot arbitrarily ignore details when

attempting to estimate the reliability of an ultra-reliable system. Second, the rate of recovery is

many orders of magnitude faster than the fault-arrival process. This causes rapid growth in the

error terms in numerical integration algorithms. The new mathematical theorem which SURE

is based on provides a solution to both of these problems for systems with slow fault arrival

processes and fast system recovery (i.e., a good fault-tolerant system). The theorem establishes

that just the means and variances of the recovery times are sufficient information about the

reconfiguration process in order to obtain tight bounds on the probability of system failure. The

bounds consist of an algebraic factor using the means and variances of the system recoveries

and a factor that is the solution of a nonstiff differential equation whose coefficients are the

slow fault-occurrence rates. Thus, the theorem reduces the traditionally difficult problem to

easily computed mathematics which provides the basis of the SURE program.

The input language to the SURE program is very simple. The input model is defined by

listing all the transitions of the model. For example, the model of figure 1 is defined as follows:

LAMBDA = 1E-4;

MU1 = 2.7E-4;

SIGMA1 = 1.4E-4;

MU2 = 9.2E-4;

SIGMA2 = 3.8E-4

1,2 = 3*LA_DA;

2,3 = 2*LAMBDA;

2.4 = <bft/l, SIGMA1> ;

4.5 = 3*LAbIBDA;

5,6 = 2*LAMBDA;

5,7 = <MU2, SIGMA2> ;

7,8 = LAMBDA;

(* Failure rate of a processor *)

(* Mean time to replace faulty processor w/ a spare *)

(* Standard deviation of time to replace w/ a spare *)

(* Mean time to degrade to a simplex *)

(* Standard deviation of time to degrade to simplex *)

The first five statements equate values to identifiers (i.e., symbolic names). The first identifier

LAMBDA represents the processor failure rate. The next two identifiers MU1 and SI(3MA1

are the mean and the standard deviation of the time to replace a faulty processor with a

spare. The last two identifiers MU2 and SIGMA2 are the mean and standard deviation of the

time to degrade to a simplex. Conveniently, the means and the standard deviations are the

only information SURE needs about the nonexponential recovery processes. The final seven

statements define the transitions of the model. If the transition is a slow fault arrival process



then only the exponential rate must be provided. The last statement defines a transition from

state 7 to state 8 with rate LAMBDA. If the transition is a fast recovery process then the mean

and the standard deviation of the recovery time must be given. For example, the statement

2,4 = <MU1,SIGMAI> above defines a transition from state 2 to state 4 with mean recovery
time MU1 and standard deviation SIGMA1.

The SURE program is currently running under VMS 4.4 on VAX-11/750 and VAX-11/780

computers at the NASA Langley Research Center. The program has been designed with
minimal usage of VMS specific constructs. Consequently, the program should be easy to transfer

to other systems. The SURE program consists of three modules--the front end module, the

computation module, and the graphics output module. The front end and computation modules

are implemented in Pascal and should easily transfer to other machines. The graphics output

module is written in FORTRAN but uses the graphics library TEMPLATE; this module can
be used only by installations having this library. The SURE program can be installed and used

without the graphics output module. Alternatively, this module can be rewritten using another
graphics library. The SURE program is available from NASA's software dissemination center:

Computer Software Management and Information Center (COSMIC)

The University of Georgia

382 East Broad Street

Athens, GA 30602

The Fundamental SURE Mathematics

In this section, the mathematical theorems upon which the SURE program is based are

presented in summary form. Two closely related theorems are implemented in the SURE

program. One theorem enables the user to describe the system recovery processes in terms

of means and variances. The other theorem enables the user to describe the system recovery
processes in terms of means and percentiles. The SURE user is free to use either method he

wishes. In the next two subsections, the two bounding theorems are discussed. A complete
derivation of the theorem using means and variances is given in the section entitled "Derivation

of Bounding Theorem." The second theorem can be proven with basically the same techniques
used in the proof of the first theorem. For details the reader is referred to reference 4.

Bounds Based on Means and Variances

The theorem provides a means of bounding the probability of traversing a specific path in

the model within the specified time. Since traversing different paths are disjoint events, the
bounds for all the paths can be added together to get the bounds for the entire model. A

simple semi-Markov model of the six-processor Software Implemented Fault-Tolerance (SIFT)

computer system (ref. 11) is used to introduce the theorem. This model is illustrated in figure 2.

The horizontal transitions in the model represent fault arrivals which are assumed to

be exponentially distributed and relatively slow. The vertical transitions represent system

recoveries by reconfiguration, that is, removal of the faulty processor from the working set
of processors. These transitions are assumed to be fast but can have arbitrary distribution.
White's theorem requires only that the means and variances of the fast transitions and their

transition probabilities be specified. The deathstates of the model are 4, 8, 11, 14, and 16.
Deathstate 4 represents the case in which three processors out of six have failed before the

system reconfigures. State 16 represents the case in which the system has been completely

depleted of processors. The unreliability of the system is precisely the sum of the probabilities
of entering each deathstate. The theorem is used to analyze every path from the start state to

the deathstates. In the SIFT model the following paths must be considered:
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Figure 2. Semi-Markov model of SIFT.

Pathl: 1_2_3--,4

Path 2: 1--,2---,3---,6---*

Path 3: 1---2--_5---,6

Path4: 1---,2_3---,6

Path5: 1_2_5---,6---*

Path 6: 1 ---* 2 ---* 3 --- 6

Path 7: 1 ---* 2 ---* 5 --_ 6 ---*

Path 8: 1 ---* 2 ---* 3 ---* 6 ---*

Path9: 1_2---,5_6

Path 10:1 _ 2 ---* 3 ---* 6 ---*

Path 11:1 ---* 2 ---* 5 ---* 6 --*

Path 12:1 ---* 2 ---* 3 ---* 6 ---*

Path 13:1 --* 2 ---* 5 ---* 6 ---

Path 14:1 --_ 2 ---* 3 ---* 6 --*

Path 15:1 ---* 2--* 5 _ 6_

7--*8

7_8

7---,10---,11

7---,10---,11

9---,10---,11

9---,10---11

7 ---* 10 --* 12 ---* 13 --* 14

7 ---* 10 ---* 12 _ 13 _ 14

9--- 10 ---* 12--* 13---* 14

9 ---* 10 --- 12 ---* 13 _ 14

7 ---* 10 ---* 12 ---* 13 ---* 15 ---* 16

7 --* 10 ---* 12 ---* 13 --* 15 ---* 16

9--* 10--* 12--* 13--* 15--- 16

9 ---* 10 ---* 12 ---* 13 _ 15 ---* 16

The number of paths can be enormous in a large model. The SURE computer program

automatically finds all the paths in the model.

Path-Step Classification

Once a particular path has been isolated for analysis, the theorem is easily applied. In

the analysis, each state along the path must first be classified into one of three classes which

are distinguished by the type of transitions leaving the state. A state and all the transitions

leaving it are referred to as a "path step." The transition on the path currently being analyzed
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is referred to as the "on-path transition." In the following sketches (sketches A-C), the on-path

transition will always be the horizontal transition. (This is different from the previous sections

where the horizontal transitions were fault arrivals and vertical transitions were recoveries.)

The remaining transitions will be referred to as the "off-path transitions." The classification

is made on the basis of whether the on-path and off-path transitions are slow (and hence also

exponential) or fast. If there are no off-path transitions, the path step is classified as if it

contained a slow off-path transition. Thus, the following classes of path steps are of interest.

Cla88 1: Mow on path, slow off path.

C

"/i

)_i

)

Sketch A

The rate of the on-path exponential transition is hi. (See sketch A.) There may be an arbitrary

number of slow off-path transitions. The sum of their exponential transition rates is _i. If any

of the off-path transitions are not slow, then the path step is in class 3. The path steps 1 --* 2

and 5 _ 6 in the SIFT model (fig. 2) are examples.

Cla88 2: fast on path, arbitrary off path.

El,1

Sketch B

The on-path transition must be fast in order for the path step to be in class 2. There may be an

arbitrary number of slow or fast off-path transitions. As before, the slow off-path, exponential

transitions can be represented as a single transition with a rate Ei equal to the sum of all the slow

off-path transition rates. (See sketch B.) The path steps 2 --* 5 and 3 -* 6 in the SIFT model

(fig. 2) are examples. The distribution of the fast on-path transition is Fi3. The distribution

of time for the kth fast transition from state i is referred to as "Fi,k" (i.e., the probability that
the next transition out of state i is into state k and that the transition occurs within time t

is Fi,k). Three measurable parameters must be specified for each fast transition. These are

the transition probability p(F_,k), the conditional mean #(F/*,k), and the conditional variance

a2(Fi:k), given that this transition occurs. Mathematically, these parameters are defined as
follows:
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I-I [1- Fij(t)] dFi,k(t )

1 £ °°- F*

2 * 1 [oc
(ri,k)- F*P(i,k) Jo

t rI [1 - Fij(t)] dFi,k(t )
j#k

t2 H [1 - Fi,j(t)] dFi,k(t ) - #2(Fi,k)

j_k

Experimentally, these parameters correspond to the fraction of times that a fast transition

is successful and the mean and variance of the conditional distribution given that the transition

occurs) The asterisk is used to indicate that the parameters are defined in terms of the

conditional distributions. It should be noted that these expressions are defined independently

of the exponential transitions ej. Consequently, the sum of the .fast transition probabilities

p(F_,k) must be 1. In particular, if there is only one fast transition, its probability is 1 and

the conditional mean is equivalent to the unconditional mean. (The SURE user does not have

to deal explicitly with the unconditional distributions Fi, k. However, in order to develop the

mathematical theory, they must be used.)

Class 3: slow on path, .fast off path.

Sketch C

This class includes path steps with both slow and fast off-path transitions. The on-path

transition must be slow. At least one off-path transition must be fast or the path step is

in class 1. (See sketch C.) The path steps 2 ---* 3 and 7 ---* 8 in the SIFT model (fig. 2) are in

this class. The slow on-path transition rate is aj. The sum of the slow off-path transition rates

is _j. As in class 2, the transition probability p(G;,k) , the conditional mean #(G_,k), and the

conditional variance a2(G_,k) must be given for each fast off-path transition with distribution

G j,k fl

Although the parameters described suffice to specify a class 3 path step to SURE, the

mathematical theory is more easily expressed in terms of the holding time in the state. The

holding time in a state is the time the system remains in the state before it transitions to some

other state. The bounding theorem is expressed using a slightly different form of holding time

1 In any experiment where competing processes in a system are studied, the observed empirical distributions
are conditional. The time it takes a system to transition to the next state is only observed when that transition
Occurs.

2 There really is no difference between transitions labeled with F and those labeled with G. The two different
letters are used to help keep track of the context, i.e., whether the transition is a class 2 (labeled F) or class 3
(labeled G) in the current path. In either case, the SURE user supplies the conditional mean, the conditional
standard deviation, and the transition probability.
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whichwill bereferredto as"recoveryholdingtime" to preventconfusion.Therecoveryholding
timeis theholdingtime in thestatewith theslowexponentialdistributionsremoved.Since
theslowexponentialtransitionsoccurat a ratemanyordersof magnitudelessthan the fast
transitions,therecoveryholdingtime isapproximatelyequalto theholdingtime. Letting Hj

represent the distribution of the recovery holding time in state j gives

rtj

Hi(t) = 1 - rI [1 - Gj,k(t)]
k=l

then the following parameters are used in the theorem:

O0 n3'

"(He) = fo I-[ [1- e_.k(t)] at
k=l

co n3

a2(Hj) = 2 fO t l-I [1- Gj,k(t)] dt - t_2(Hj)
k=l

These parameters are the mean and the variance of the holding time in state j without

consideration of the slow exponential transitions (i.e., with the slow exponential transitions

removed). These parameters do not have to be _upplied to the SURE program. The SURE

program derives these parameters from the other available inputs---p(G_,k), #(Gj,k), and

a 2 (G_,k)--as follows:

nj

#(Hi) = _ p(C;,k) p(G;,k)
k=l

* 2 *
o2(Hj) = _ 0(Gj,k) [_ (a3.,e)+._(G_,k)] - #2(Hj)

k=l

* * 2 *
where P(Gi,k), p(Gj, k) , and a (Gj,k) are defined as

* f0cop(ai,k) =
j#k

, 1 __(c_,k) - p(a_,k)

1 oo

o2(c_,k)- p(C.k ) £

N [1 - Ci,j(t)] dGi,k(t )

t I-I [1- c_,i(t)] ac_,k(t)
j#k

t2 H [1-Gi,j(t)] dGi,k(t ) -#2(Ci,k)

j#l¢

These parameters are defined in exactly the same way as the class 2 path-step parameters.

Although the fast distributions are specified without consideration of the competing slow

exponential transitions, the theorem gives bounds that are correct in the presence of such

exponential transitions. The parameters were defined in this manner to simplify the process

of specifying a model. Throughout the paper, the holding time in a state in which the slow

transitions have been removed is referred to as "recovery holding time."

Summary of Information Needed by SURE Program

Although the path-step classification discussion in the previous section included a significant

amount of detail in order to make the mathematical theory tractable, the amount of information

9



needed by the program is quite small. The following parameters must be given for each type
of path step:

Class 1 parameters:

Ai = rate of on-path exponential transition from state i

"/i ---- sum of off-path exponential transition rates from state i

Class 2 parameters:

_i ----

p(F&) =

,(r&) =

 (Fi*k) =

sum of all slow off-path transition rates from state i

probability that kth transition from state i is successful

conditional mean transition time of kth transition from state i

given that this transition occurs

conditional standard deviation of kth transition from state i

given that this transition occurs

Class 3 parameters:

_j=

P(G,k) =

_(e3.,k) =

a(Gj, k) =

slow on-path transition rate from state j

sum of all slow off-path transition rates from state j

probability that kth transition from state j is successful

conditional mean transition time of kth transition from state j

given that this transition occurs

conditional standard deviation of kth transition from state j
given that this transition occurs

White's Multiple Recovery Theorem

With the previous classification, the bounding theorem can now be given. For convenience,

when referring to a specifc path in the model, the distribution of an on-path fast transition is

indicated by a single subscript which specifies the source state. For example, if the transition

with distribution Fj, k is the on-path transition, then it can be referred to as Fj:

Fj, k = kth fast transition from state j

Fj = on-path fast transition from state j

Theorem [White]: The probability D(T) of entering a particular deathstate within the

mission time T, following a path with k class 1 path steps, m class 2 path steps, and n class 3
path steps, is bounded as follows:

LB_<D(T)<UB
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where

m n

UB= Q(T) 1-[ p(F_) 1-I aj#(Hj)
i=l j=l

LB = Q(T - A) fii=1 P(F_) [ 1- eitt(F_) - tt2(F_) T a2(F_) ]ri2

×

j=l _ 2
_ .2(Hi) o2(Hj) }

for all values of r i > 0, sj > 0; and

/k = r 1+ r2 + . . . + rm + 81+ 82 + . . . + Sn

and

Q(T) -- probability of traversing the path consisting of the k class 1 path steps within time T

The theorem is true for any r i > 0 and sj > 0 provided that A < T. Different choices of
these parameters will lead to different bounds. The SURE program uses the following values

of r i and sj:

ri= {2T[l_2(F*)wa2(F*)]} 1/3

The default values have been found to give very close bounds in practice, usually very near the

optimal choice. A mathematical procedure for selecting the globally optimal values of ri and
sj (i.e., leading to the closest bounds) has not been developed. However, the values used by
the SURE program are shown to be near optimal in appendix A.

Two simple algebraic approximations for Q(T) were given by White (ref. 2)--one that
overestimates and one that underestimates, respectively:

Q(T) < Qu(T) = '_1A2_3' "" AT_k_ k
k!

Q(T)>QI(T)=Qu(T) 1 k+l _ (Ai+"/i)
i=1
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Both Qu(T) and Q1 (T) are close to Q(T) as long as T _ (Ai + "_i) is small; that is, as long as

the mission time is short compared with the average lifetime of the components. The SURE

program uses the following slightly improved upper bound on Q(T):

1

Q(T) < Q_(T) =- _. 1-[ AiT
iES

where

S= {i l AiT < 1}

This bound is obtained by removing all the fast exponential transitions from the Q(T) model.

Since the path is shorter, the probability of reaching the deathstate is larger than the original

Q(T) model. These algebraic bounds on Q(T) are used when the QTCALC option is set equal

to 0. When the QTCALC = 1 option is used, a differential equation solver is used to calculate

Q(T) and Q(T - A). If 0TChLC = 2, then the SURE program automatically selects the most

appropriate method. This option is discussed in a subsequent section entitled "SURE User

Interface."

Bounds Based on Means and Percentiles

Path-Step Classification

The path-step classification defined in the previous section is also useful for describing

Lee's technique (ref. 4). The primary difference (from a user's perspective) between Lee's and

White's techniques is the method of describing the fast transitions. Lee's technique utilizes the

transition probabilities, the conditional mean holding time, as well as a user-chosen percentile

of the recovery holding time distribution. The required information for each class is listed as
follows:

Class 1: slow on path, slow off path.

( )
Ai

Sketch A (repeated)

Ai = on-path exponential transition rate

3'i = sum of off-path exponential transition rates

12



Class 2: fast on path, arbitrary off path.

F/,1

Fi,2

Ei

Sketch B (repeated)

fc_

p(F_:k) = ]Oj_k[ 1- Fi,j(t)] dFi,k(t)

---- probability that kth fast transition from state i is successful (mathematically

and experimentally the same as in White's theory)

Ei -- sum of off-path exponential transition rates

Class 3: slow on path, fast off path.

Sketch C (repeated)

aj ----slow on-path transition rate

p(G_,k) = probability that kth fast transition from state 3' is successful (this must
be specified for all competing off-path fast transitions)

13



_j

=

percentile point of distribution chosen by user; this can also be viewed

as censoring point of experiment (i.e., longest time experimenter waits
for a transition to occur)

probability that recovery holding time (i.e., with slow transitions

removed) in state 3' is less than _j

conditional mean of recovery holding time in source state j,

given that fastest transition occurs before _j

where

nj
Hi(t) = 1 - 1-[ [1 - Gj,k(t)]

k=l

@ = sum of slow off-path transition rates

With the use of the above notation, Lee's theorem is easily stated in the following discussion.

Lee's Multiple Recovery Theorem

The probability D(T) of entering a particular deathstate within the mission time T, following

a path with k class 1 path steps, m class 2 path steps, and n class 3 path steps, is bounded as
follows:

LB _< D(T) <_ UB

where

UB=Q(T) I I p(F_) aj Hj(_j) #(_j) + [1- Hj(_j)] _j + l
i=1 j=l c9 + _J

m

LB = Q(T- A) 1-I
i=1

[exp(-¢i(i) ] [p(F/*) + Hi((i ) - 1]

X

?'t

H aj exp[-(aj + Bj)_j] {Hj(_j)#(_j) + _j[1 - Hj(_j)]}
j=l

m n

i=l j=l

and

Q(T) = probability of traversing path consisting of only class 1 path steps within time T

14



ChoosingBetween White's Method and Lee's Method

The user of the SURE program is free to use either White's method or Lee's method.

In many ways the choice is merely a matter of taste. White's method appears to be
more convenient for design studies in which properties of the fast distributions are assumed.

Engineering judgment appears to be more skillful at predicting means and variances. Lee's

method is especially adapted for the analysis of models for which experimental data are
available. This method explicitly takes into consideration the problem of censored data.

However, it is clear that either Lee's or White's method could be used for both design studies
and experimental analyses.

Transient and Intermittent Models

The mathematical techniques developed by White and Lee do not explicitly accommodate

semi-Markov models that are not pure-death processes. The problem with nonpure death
process models is that the circuits in the graph structure of the model lead to an infinite

sequence of paths of increasing length. Models which include transient or intermittent faults

are typically not pure-death processes. The issues involved in using the SURE program to
analyze such models are discussed in this section.

Transient Fault Models

Consider the following semi-Markov model (see sketch D) of a system susceptible to transient
faults:

m

Sketch D

The parameter A is the arrival rate of transient faults in the system. The duration of a

transient fault is described by the distribution function F(t), which competes with a system
reconfiguration process with distribution G(t). The loop in this model leads to an infinite
sequence of paths:

1 ---_2'---_ 3

1 ---_2 ---_1 -'--_2 ---_3

1"-'2--'1-'-'2--'1-'-'2"-.3

1 ---*2 ---*1 ---_2 -"* 1 --_ 2 ---_1 ---*2 -_ 3

However, the longer the path the less significant is its contribution to the probability of entering

deathstate 3. If we let p(k)(T) be the probability of being in state 3 at time T after traversing

the loop k times, then using White's theorem gives

p(k)(T) = oqt(H) pk(F*) ()_T) k+l
(k + 1)!
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where #(H) is the mean of the recovery holding time in state 2. Then, the probability of being

in state 3 at time T (by any path) is

(p)P3(T) = E P(k)(T)= Iz(H)[exp(ApT)- 1]
k=0

where p = p(F*). This infinite series converges to an exponential function. The convergence

of this series is very fast for ApT < 1. Since A is the rate of a slow transition, this relationship

holds. Accurate values can be obtained using only two or three terms of the series. In general,

the error in truncating the series after n terms (using Taylor's theorem) is less than

exp(ApT)(ApT) n+l

(n q- 1)!

The SURE program automatically unfolds a loop into a sequence of paths. The truncation point

is user-specifiable via the TRUNC command. If

TRUNC = 4

then the sequence of paths isterminated afterunfolding the loop four times. This isequivalent

to truncating the seriesafter the fourth term. The SURE program produces the following

warning message when the value of TRUNC islikelyto be too small:

.. TRUNC TOO SMALL

It isrecommended that the user try severalvalues ofTRUNC untilconvergence iscertain.

In order to use SURE, the following parameters must be supplied to the program--

#(F*), a(F*), p(F*), #(G*), a(G*), and p(G*). These parameters must either be calculated

from some known distribution or be measured experimentally.

Intermittent Fault Models

Intermittent faults can be modeled in a similar manner. The major difference is that an

intermittent fault does not totally disappear. (See sketch E.) Therefore, a benign state (state 5)

with holding time Q(t) is introduced in the model to represent the fault while it is not active.

Sketch E

Computationally, however, the problem is different. Since the loop in sketch E contains only

fast transitions, the rate of convergence can be very slow. With White's upper bound, the

probability of entering state 3 within time T is

P3(T) _ aA#(H2)T[1 + p(F*) + p2(F*) + p3(F*) +-.-]

For simplicity, suppose that F and G are exponentially distributed, then,

_(C*)

p(F*) = Iz(F.) + #(G*)
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The percentage error in truncating the series after n terms is easily shown to be [p(F*)] n+l x

100%. If p(F*) is near 1 (i.e., when #(G*) is large relative to tt(F*)), then n must be large to

get the percentage error acceptably low. For example, if #(F*) = 10 and #(G*) = 1000, then

n (and thus TRUNC) must be equal to 300 in order to have a percentage error of 5 percent.

An alternative approach is recommended when convergence is slow. The model in sketch E

can be collapsed into the following model (sketch F):

Sketch F

In this model, states 2 and 5 in sketch E have been aggregated into one state. The new recovery
transition G contains the total effect of the intermittent fault. Experimentally, G represents the

time to recover in the presence of the intermittent fault. If experimental data are not available,

but a parametric form is postulated for the unconditional distributions F, G, and Q then the

mean and variance of G can be calculated. For example, if F, G, and Q are exponential, then

#(G) = [/_(Q) + #(F)] #(G)
#(F)

#(Q)#(G)] 2 2#2(Q)#(G)°2(5)= ,(G)+ J + ,(F)

where #(F), p(G), and #(Q) are the unconditional means of the transitions.

Open Issues

In this section, a general proof that convergence will always be obtained for arbitrary models

with arbitrary loops has not been given. However, a general proof has not been attempted

because of the large number of cases involved. Nevertheless, the SURE program provides a

solution technique for models with loops if convergence occurs. The lack of convergence can

be observed by increasing the TRUNC constant. A model for which the upper bound does not

converge has not yet been found.

Tightness of the SURE Bounds

In this section, an informal argument is given to show why the SURE bounds are typically

very close. The SURE program in no way depends on the arguments of this section. The

purpose of this discussion is to present a formula for the relative difference between the bounds

where the closeness of the bounds can be seen intuitively. Of course, the SURE user need only

look at the output of his run to see if the bounds are close for his problem.

The relative difference between the upper bound (UB) and the lower bound (LB) is

UB-LBuB - Q( T) - Q( T - A ) fi_2__)Zi fi Yj
i:1 j=l
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where

g i = 1 - Q/_(Fl* ) - _2(f/*) -t- a2(f/*)
2

r i

r: : 1- + +  2(HJ)]
2,(H:)

+
sj ,(Hi)

Since the fault arrivals Ei, aj, and /?j are small (e.g., 10-4/hr) and the means and the

standard deviations #(Hi) and a(Hj) are small (e.g., 10-4 hr),

Zi_l

Yj,_l

Thus,

UB - LB Q(T) - Q(T - A)

UB Q(T)

Using the algebraic upper bound on Q(T) and Q(T - A) gives

_1- 1-
UB

kA

T

For recovery times on the order of 10 -4 hour, the parameters r i and sj are on the order of

10-2 hour. Using fairly large values of A and k (the number of class 1 path steps in the path),

namely, A = 10 -1 and k = 5,

UB - LB kA 0.5
- - 5%

UB T 10

For smaller values of k and A, the relative error is smaller. From the above expressions for the

relative error, it is obvious that as the failure rates or the recovery times increase, the bounds

separate.

SURE User Interface

Basic Program Concept

The user of the SURE program must describe his semi-Markov model to the SURE program

with a simple language for enumerating all the transitions of the model. The SURE user must
first assign numbers to every state in the system. The semi-Markov model is then described

by enumerating all the transitions. As described in the previous sections, each transition is

classified as being either slow or fast. Consequently, there are two different statements used to

enter transitions--one for slow transitions and the other for fast. If a transition is slow, then

the following type of statement is used:

1,2 = 0.0001;

This defines a slow exponential transition from state 1 to state 2 with rate 0.0001. The program
does not require any particular units, for example, hour -1 or sec -1. However, the user must

use consistent units. If the transition is fast, then either of two methods can be used to describe
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the transition. These methods correspond to White's and Lee's methods discussed previously.

The following specifies a fast transition using White's method:

2,4 = < 1E-4, 1E-6, 1.0 >;

The numbers in the brackets (< >) correspond to the conditional mean, conditional standard

deviation, and transition probability of the fast transition, respectively. Using Lee's method

the same transition would be specified as

@2 = < 1E-4, 1E-3, 0.99 >;

2,4 = < 1.0 >;

The numbers in the brackets on the first line describe the holding time in state 2. The first

number is the conditional mean. The next two numbers define a quantile of the recovery holding

time distribution; that is, the probability that the recovery holding time is less than 1E-3 is

0.99. The number in the brackets on the second line is the probability that the transition

from state 2 to state 4 succeeds over other competing fast transitions. Since there are no other

competing transitions, this probability is 1.

Although the transition description statements described above are the key constructs of

the SURE language, the flexibility of the SURE program has been increased by adding several

features commonly seen in programming languages such as FORTRAN or Pascal. In the next

section, the SURE input language is described in detail.

The SURE Input Language

The SURE input language includes two types of statements--model-definition statements

and commands. These are described in detail in the next sections.

Model-Definition Syntax

Models are defined in SURE by enumerating all the transitions of the model.

Lexical details. The state numbers must be positive integers between 0 and the MAXSTATE

implementation limit, usually 25 000. (This limit can be changed by redefining a constant in

the SURE program and recompiling the SURE source.) The transition rates, conditional means

and standard deviations, etc., are floating point numbers. The Pascal REAL syntax is used for

these numbers. Thus, all the following would be accepted by the SURE program:

0.001

12.34

1.2E-4

1E-5

The semicolon is used for statement termination. Therefore, more than one statement may be

entered on a line. Comments may be included any place that blanks are allowed. The notation

"(*" indicates the beginning of a comment and "*)" indicates the termination of a comment.

The following is an example of the use of a comment:

LAMBDA = 5.7E-4; (* FAILURE RATE 0F A PROCESSOR *)

Ifstatements are entered from a terminal (insteadofby the READ command described below),

then the carriagereturn isinterpretedas a semicolon. Thus, interactivestatements do not have

to be terminated by an explicitsemicolon unless more than one statement isentered on the

line.

The SURE program prompts the user for input by a line number followed by a question

mark. For example,

17
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Thenumberis a countof thesyntacticallycorrectlinesenteredinto the systemthusfar plus
thecurrentone.

Constant definitions. The user may equate numbers to identifiers. Thereafter, these

constant identifiers may be used instead of the numbers. For example,

LANBDA = O. 0052 ;

RECOVER = 0.005 ;

Constants may also be defined in terms of previously defined constants:

GAMMA = 10*LAMBDA ;

In general,the syntax is

"name" = "expression";

where "name" isa stringof up to eight letters,digits,and underscores (_)beginning with a

letter,and "expression" isan arbitrarymathematical expression as described in a subsequent

sectionentitled "Expressions."

Variable definition. In order to facilitate parametric analyses, a single variable may be

defined. A range is given for this variable. The SURE system computes the system reliability

as a function of this variable. If the system is installed with the graphics module (to be described

later), then a plot of this function can be obtained using the PLOT command. The following

statement defines LAMBDA as a variable with range 0.001 to 0.009:

LAMBDA = 0.001 TO 0.009;

Only one such variable may be defined. A special constant, POINTS, defines the number

of points over this range to be computed. The method used to vary the variable over this

range can be either geometric or arithmetic and is best explained by example. Thus, suppose

POINTS = 4, then

Geometric:

XV = I TO* I000;

where the values of XV used would be i, 10, I00, and I000.

Arithmetic:

XV = I TO+ I000;

where the values of XV used would be l, 333, 667, and 1000.

The * following the TO implies a geometric range. A TO+ or 8imply TO implies an arithmetic

range.

One additional option is available--the BY option. By following the above syntax with BY

"increment", the value of POINTS is automatically set such that the value is varied by adding

or multiplying the specified amount. For example,

V = 1E-6 TO* 1E-2 BY 10;

sets POINTS equal to 5 and the values of V used would be 1E-6, 1E-5, 1E-4, 1E-3, and 1E-2.

The statement

Q = 3 TO+ 5 BY I;

sets POINTS equal to 3, and the values of Q used would be 3, 4, and 5.
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In general,the syntax is

"var" = "expression" TO {"c"} "expression" { BY "increment" }

where "var" isa stringof up to eightlettersand digitsbeginning with a letter,"expression"

isan arbitrarymathematical expression as described inthe next section,and the optional "c" is

a + or *. The BY clause isoptional;ifitisused, then "increment" isany arbitraryexpression.

Expressions. When specifying transition or holding time parameters in a statement,

arbitrary functions of the constants and the variable may be used. The following operators

may be used:

+ addition

- subtraction

* multiplication

/ division

** exponentiation

The _llowing standard functionsmaybe used:

EXP (X)

LN (X)

SIN(X)

c0s(x)

ARCSIN(X)

ARCCOS (X)

ARCTAN (X)

SQRT (X)

exponential function

natural logarithm

sine function

cosine function

arc sine function

arc cosine function

arc tangent function

square root

Both ( ) and [] may be used for grouping in the expressions.

expressions:

The following are permissible

2E-4

1.2*EXP(-3*ALPHA);

7*ALPHA + 12*LAMBDA;

ALPHA*(I+LAMBDA) + ALPHA**2;

2*LAMBDA + (I/ALPHA)*[LAMBDA + (I/ALPHA)];

Slow transition description. A slow transition is completely specified by citing the source

state, the destination state, and the transition rate. The syntax is as follows:

"source", "deBt" = "rate" ;

where "source" is the source state, "deBt" is the destination state, and "rate" is any valid

expression defining the exponential rate of the transition. The following are valid SURE
statements:

PERM = IE-4;

TRANSIENT = IO*PERM;

1,2 = 5*PERM;

1,9 = 5*(TRANSIENT + PEP,M);

2,3 = IE-6;
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In thenotationof theprevioussectionwehave

i,j = Ai;

Fast transition description. To enter a fast transition, the SURE user may use either of two

methods White's method or Lee's method--described in this section.

White'8 method: The following syntax is used for White's method.

"source" . "dest" = < "mu", "sig" {, "frac" } >;

where

"mu" ---- expression defining conditional mean transition time, #(F*)

"sig" = expression defining conditional standard deviation of transition time, a(F*)

"frac" = expression defining transition probability, p(F*)

and "source" and "dest" define the source and destination states, respectively. The third

parameter "frac" is optional. If omitted, the transition probability is assumed to be 1.0, that

is, only one fast transition. In the notation of the previous section, we have

i,j = < #(F/*), a(F?), p(F?)>;

All the following are valid while in White's mode):

2,5 = <IE-5, IE-6, 0 9>;

THETA = IE-4;

5,7 = <THETA, THETA*THETA, 0.5>;

7,9 = <O.O001,THETA/25>;

Lee_ method: To describe a fasttransition using Lee'smethod, the _llowingsyntaxis used:

"source" "dest" = < "frac" >;

@ "source '_ = < "hmu", "quant", "prob" >;

where

"source" =

"deer" =

"frac" =

"hmu" ----

"quant" =

"prob" =

source state
destination state

expression defining transition probability, p(F*)
expression defining conditional mean recovery holding time

p(_), given that holding time is less than "quant"
expression defining percentile or censoring point

expression defining probability H(_) that holding time in state is less than

"quant"

In the notation of the previous section we have

j,k = < p(Fj) >;
_j = < #(_j), _j, Hj(_j) >:

All the following are valid SURE statements (while in the Lee mode):

5,6 = <0.5>;

FRACT = 0.0 TO 0.5;

5,7 = <FRACT>;

5,8 = <0.5 - FRACT>;

@5 = < 0.00034, 0.003, (1.0-1E-4) >;
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Although there may be many fast tranMtions from a state, the @ "source" statement should be

issued only once for the state.

The SURE user must decide which method he will use before entering his model. Either the

Lee method or White method may be used to describe the model, but both cannot be used at

the same time. By default, the program assumes that the White method will be used. If Lee's

method is desired, the LEE command must be issued prior to entering any fast transition.

FAST ezponential transition description. Often when performing design studies, experimen-

tal data are unavailable for the fast processes of a system. In this case, one must assume some

properties of the underlying processes. For simplicity, these fast transitions are often assumed

to be exponentially distributed. However, it is still necessary to supply the conditional mean

and standard deviation to the SURE program since they are fast transitions. If there is only

one fast transition from a state, then these parameters are easy to determine. Suppose we have

a fast exponential recovery from state 1 to state 2 with unconditional rate a:

F(t) = 1-e -at

The SURE input, is simply

1,2 = < l/a, i/a, 1 >;

In this case, the conditional mean and standard deviation are equivalent to the unconditional

mean and standard deviation. The above transition can be specified by using the following

syntax:

1,2 = FASTa;

When multiple recoveries are present from a single state, then care must be exercised to properly

specify the conditional means and standard deviations required by the SURE program. Suppose

we have the model in figure 3, where the unconditional distributions are

Fl(t) = 1 - e -at

F2(t) = 1 - e -_t

r3(t) -- 1 -

(

F3(t)

(

El(t)

,'2.
Figure 3. Model of three competing fast transitions.
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TheSUREinputdescribingthemodelsectionin figure3 is

o,1 = < l/(a+Z+_), l/(a+Z+_), a/(a+_+_) >;

0,2 = < l/(a+_+-_), l/Ca+_+_),_/(a+_+'0 >;

0,3 = < l/(o<+B+_), :t/Co_+,8+h,), _/(o_+,8+,7) >;

Note that the conditional means and standard deviations are not equal to the unconditional

means and standard deviations (e.g., the conditional mean transition time from state 0 to 1 is

not equal to l/a). The following can be used to define the model of figure 3:

O,i = FASTo;

0,2 = FAST/_;

0,3 = FAST "7;

The SURE program automatically calculates the conditional parameters from the unconditional

rates _, _, and % The FAST exponential capability can only be used in conjunction with

the WHITE method of specifying recovery transitions. The user may mix FAST exponential

transitions with other general transitions. However, care must be exercised in specifying the

conditional parameters of the nonexponential fast recoveries in order to avoid inconsistencies.

Appendix A discusses this problem and gives the details on the formulas used by the SURE

program to compute the conditional parameters for fast exponentials. Potential users of the

FAST exponential capability should read appendix B.

SURE Commands

Two types of commands have been included in the user interface. The first type of command

is initiated by one of the following reserved words:

EXIT READ INPUT LEE RUN SHOW

CALC ORPROB DISP SAVE GET PLOT

IF

The second type of command is invoked by setting one of the following special constants:

AUTOFAST ECHO LIST POINTS PRUNE QTCALC START

TIME TRUNC WARNDIG

equal to one of its predefined values.

EXIT command. The EXIT command causes termination of the SURE program.

READ command. A sequence of SURE statements may be read from a disk file. The

following interactive command reads SURE statements from a disk file named SIFT.MOD:

READ SIFT.MOD;

If no file name extent is given, the default extent . M0D is assumed. A user can build a model

description file by using a text editor and use this command to read it into the SURE program.

INPUT command. This command increases the flexibility of the READ command. Within

the model description file created with a text editor, INPUT commands can be inserted that

will prompt for values of specified constants while the model file is being processed by the

READ command. For example, the command
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INPUTLVAL;

will prompttheuserfor a numberasfollows:
LVAL?

anda newconstantLVAL is createdthat is equalto the valueinput by the user. Several
constantscanbe interactivelydefinedusingonestatementasin thefollowingexample:

INPUTX, Y, Z;

LEE command. The LEE command prepares the program to receive fast transition

commands according to Lee's syntax. By default, the program expects fast transitions to

be described in White's format. The syntax of the LEE command is

LEE;

The LEE command must be issued prior to entering any fast transitions. The FAST exponential

syntax cannot be used in LEE mode.

RUN command. After a semi-Markov model has been fully described to the SURE program,

the RUN command is used to initiate the computation:

RUN;

The output is displayed on the terminal according to the LIST option specified. If the user

wants the output written to a disk file instead, the following syntax is used:

RUN "outname" ;

where the output file "outname" may be any permissible VAX VMS file name. Two positional

parameters are available on the RUN command. These parameters enable the user to change

the value of the special constants POINTS and LIST in the RUN command. For example,

RUN (30,2) OUTFILE.DAT

is equivalent to the following sequence of commands:

POINTS = 30;

LIST = 2;

RUN OUTFILE.DAT

Each parameter is optional so the following are acceptable:

RUN (10) ;

RUN(,3) ;

RUN (20,2) ;

(* Change POINTS to 10 then run *)

(* Change LIST to 3 and run *)

(* Change POINTS to 20 and LIST to 2 then run *)

After a run is completed, the SURE program clears all the transition, constant, and variable

definitions, returning the program state to its original state. However, throughout the session,

the output of each RUN is stored internally. The results of prior RUN commands are available in

special variables which can be referenced in future model descriptions or in a CALC command.

The syntax is as follows:

#L1

#u2
#1

lowerbound for RUN #1 (no variable)

upperbound for RUN #2 (no variable)

upperbound for RUN #1 (no variable)

#LI[3] lowerbound for third value of variable on run #I

#U2[I] upperbound for first value of variable on run #2
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SHOW command. The value of a constant or variable may be displayed by the following

command:

SHOW" ALPHA;

Information about a transitionmay also be displayed by the SHOW command. For example,

information concerning the transitionfrom state 654 to state 193 isdisplayed by the following

SHOW 654-193 ;

If the model is described with Lee's method, the information about a state holding time may

be displayed. For example, state 12 holding time characteristics are listed in response to

SHOW 12 ;

More than one constant, variable, holding time, or transition may be shown at one time:

SHOW ALPHA, 12-13, BETA, 123;

IF command. The IF statement provides a "conditional assembly" capability to the SURE

program. The statement following the THEN reserved word is only processed if the preceding

Boolean expression is true. The syntax of this statement is:

IF "expression" "bool-op" "expression" THEN "statement";

where

"bool-op" is one of the following operators: = < <= > >=

The following sessionillustratesthiscommand:

$ SURE

I? X = I; Y = 2;

2? IF X = I THEN Y = 3;

Y CHANGED TO 3.00000E÷O0

3? SHOW Y;

Y = 3.00000E+O0

4? IF Y > X THEN 1,2 = iE-4;

57 SHOW 1-2;

TRANSITION I--+ 2: EXPONENTIAL RATE = I.O0000E-4;

6? IF X < 0 THEN 2,3 = IE-3;

77 SHOW 2-3

TRANSITION 2--* 3 NOT FOUND

8? EXIT

CALC command. For convenience, a calculator function has been included. This command

allows the user to obtain the value of an arbitrary expression. For example, if the following

commands are entered:

X = 1.6E-l;

CALC (X-.12)*EXP(-0.001) + X**3;

the system responds with

= 4. 405601999335E-02

If a variable has been defined prior to issuing the CALC function, the expression is computed

as a function of the variable over the specified range. The PLOT command can be used after

the CALC command to obtain a plot of the function. This feature is illustrated in example 10
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of the section entitled "Examples." The output can be sent to a disk file instead of the terminal
by using the following syntax:

CALC "expression" TO "filename";

where "filename" isthe name ofthe destinationfile.

ORPROB command. A common complaint about the Markov approach to modeling is the

rapid growth in state space size as the complexity of a system is increased. For large, complex
interdependent systems, this is often unavoidable. But, systems which consist of several isolated

subsystems can be analyzed easily by using the additive law of probability.
Suppose the probabilities that subsystem 1 and subsystem 2 fail within the mission time

are P1 and P2, respectively. If these subsystems fail independently, the probability of system
failure Psys can be calculated as follows:

= Pl + P2 - (P1)(P2)

If there are failure dependencies between the subsystems, then a single model must be used.

The ORPROB command lists all the previous run output results and then computes the

probabilistic OR of the previous runs. See example 8 in the section entitled "Examples." The
PLOT command may be used to plot the results of the ORPROB command. If the variable

feature of SURE is used and LIST = 1, then the ORPROB command does not list out the

answers from the previous runs. Only the probabilistic OR for each value of the variable is

given. If LIST = 2 is set prior to issuing ORPROB, then a detailed list of all the outputs from
the previous runs, along with the probabilistic OR of the runs for each value of the variable, is
given.

AUTOFAST constant. If the special constant AUTOFAST is set equal to l, then the

reserved word FAST does not have to be used before a rate expression to indicate that the

transition is fast. The program automatically decides if the rate is fast with respect to the

mission time. If the product of the transition rate and the mission time (TIME) is greater than
100, then the transition is treated as FAST and the conditional means and standard deviations

are automatically calculated just as if FAST had been explicitly specified. Otherwise, the

transition is treated as a slow transition. The default value of AUTOFAST is 0 which implies
no automatic conversion to FAST.

ECHO constant. The ECHO constant can be used to turn off the echo when reading a disk

file. The default value of ECHO is l, which causes the model description to be listed as it is

read. (See example 3 in the section entitled "Example SURE Sessions.")

LIST constant. The amount of information output by the program is controlled by this
command. Four list modes are available as follows:

LIST = 0; No output is sent to the terminal, but the results can still be displayed using
the PLOT command

LIST = 1 ; Only the upper and lower bounds on the probability of total system failure
are listed; this is the default

LIST = 2; The probability bounds for each deathstate in the model are reported along
with the totals

LIST = 3; Every path in the model is listed and its probability of traversal; the probability

bounds for each deathstate in the model are reported along with the totals

If a variable is defined and LIST=I is specified, then the summary statistics are only given for

the value of the variable for which the bounds had the worst accuracy. (See example 12 in
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the section entitled "Examples.") If LIST >= 2 then the summary statistics are given for each

value of the variable.

POINTS constant. The POINTS constant specifies the number of points to be calculated

over the range of the variable. The default value is 25. If no variable is defined, then this

specification is ignored.

QTCALC constant. The value of the QTCALC constant determines the numerical method

used to compute Q(T) the probability of traversing the class 1 transitions within time T.

If QTCALC = 0, the program uses White's algebraic formulas for Q(T). If QTCALC = 1,

the program uses an exponential matrix solver to calculate Q(T) rather than the algebraic

approximations. This method is slower but is much more accurate when the mission time is

long. The mathematical basis of the matrix exponential algorithm is described in appendix C.

The default value of QTCALC is 2, which specifies that the program should automatically

select the appropriate Q(T) algorithm on a path-by-path basis. The following rule is used by

the program when QTCALC equals 2:

k
IF (T-A) _ (Ai+'Ti)/ (k + I) < .I THEN

i=l

the algebraic formula (QTCALC=0) is used

ELSE

the matrix exponential solver (QTCALC=I) is used

The SURE program indicates when the exponential matrix solver is used by writing <ExpMat>

in the comments field of the output. (See example 4.) The program also writes the following

statement in the summary statistics:

Q(T) ACCURACY >= x DIGITS

If the accuracy of the numerical method is less than seven digits or LIST is greater than 2, the

following is written into the comments field:

<Expblat - x, y>

where x is the number of digits accuracy in the lower bound and y is the number of digits

accuracy in the upper bound.

PRUNE and WARNDIG constant. The time required to analyze a large model can often be

greatly reduced by model pruning. It is essential that this be done carefully in order to maintain

accuracy. The SURE user specifies the level of pruning desired using the PRUNE constant.

A path is traversed by the SURE program until the probability of reaching the current point

on the path falls below the pruning level. For example, if PRUNE = 1E-14 and the upper

bound falls below 1E-14 at any point on the path, the analysis of the path is terminated and

its contribution to the deathstate probabilities is not included in the final results. The sum of

all the occupancy probabilities of the pruned states is given in the following format:

SUM OF PRUNED STATES PROBABILITY < x

Clearly,the probability of reaching a deathstate by continuing along this path must be less

than thissum. The error resultingfrom this pruning method isthereforelessthan this sum.

The SURE program willwarn the user ifthe pruning process resultedin an upper bound with

lessthan WARNDIG digitsof accuracy_ In other words, the warning message

PRUNING TOO SEVERE

is given if
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SUMOFPRUNEDSTATESPROBABILITY> (Pf / I0 WARNDIG)

where Pf is the upper bound on system failure. This warning message is very conservative.
Typically, the accuracy is far greater than is guaranteed by this test. The default value of

PRUNE is 0.0. The default value of WARNDIG is 2.

For very large models, it is recommended that the user start with a very large value of

PRUNE (e.g., 1E-10) and decrease the value (e.g., to 1E-15) until the message PRUNING

TOO SEVERE disappears.

START constant. The START constant is used to specify the start state of the model. If

the START constant is not used, the program will use the source state (i.e., the state with no

transitions into it) of the model (if one exists). If there is no source state in the model, the

program will use the first state entered as the start state. If no start state is specified and there

are two or more source states, an error message is issued. The program arbitrarily chooses one

of the source states as the start state and proceeds.

TIME constant. The TIME constant specifies the mission time. For example, if the user

sets TIME = 1.3, the program computes the probability of entering the deathstates of the

model within time 1.3. The default value of TIME is 10. All parameter values must be in the
same units as the TIME constant.

TRUNC and WARNDIG constant. The TRUNC constant sets the number of times the

program will unfold a loop in the graph structure of the model. The default value is 3. The

SURE program issues the following warning:

TRUNC TOO SMALL

when it detects that the truncation error could lead to less than WARNDIG accuracy. The

default value of WARNDIG is 2. Also, whenever the accuracy is less than seven digits accuracy,

the following statement is written in the summary statistics:

ACCURACY MAY BE LESS THAN 6 DIGITS DUE TO LOOP TRUNCATION

The issues involved in the analysis of a model with loops are discussed in the section entitled

"Transient and Intermittent Models."

SURE Graphics

Although the SURE program is easily used without graphics output, many users desire

the increased user friendliness of the tool when assisted by graphics. The Langley AIRLAB

contains four color graphics monitors (and TEMPLATE support software) enabling the full

utilization of the graphics capability of SURE. However, the version of SURE available from

COSMIC does not contain the graphics software. The SURE program can plot the probability

of system failure as a function of any model parameter as well as display the semi-Markov

models in a graphical form. The output from several SURE runs can be displayed together in

the form of contour plots. Thus, the effect on system reliability of two model parameters can

be illustrated on one plot. The generation of a graphical picture of the semi-Markov model can

be directed by user input or left completely to the SURE program.

Plotting Results of SURE Runs

After a RUN, CALC, or ORPROB command, the PLOT command can be used to plot the

output on the graphics display. The syntax is

PLOT <op>, <op> .... <op>

where <op> are plot options. Any TEMPLATE "USET" or "UPSET" parameter can be used,

but the following are the most useful:
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XLOG

YLOG

XYLOG

NOLO

XLEN=5.0

YLEN=8.0

XMIN=2.0 set

YMIN=2.0 set

plot X-axis using logarithmic scale

plot Y-axis using logarithmic scale

plot both X- and Y-axes using logarithmic scales

plot X- and Y-axes with normal scaling

set X-axis length to 5.0 in.

set Y-axis length to 8.0 in.

x-origin 2 in. from left side of screen

y-origin 2 in. above bottom of screen

The PLOTINIT and PLOT+ commands are used to display multiple runs on one plot. A single

run of SURE generates unreliability as a function of a single variable. To see the effect of a

second variable (i.e., display contours of a three-dimensional surface) the PLOT+ command is

used. The PLOTINIT command should be called before performing the first SURE run. This

conlmand defines the 2d variable (i.e., the contour variable):

PLOTINIT BETA;

This defines BETA as the 2d independent variable. Next, the user must set BETA to its first

value. After the run is complete, the output is plotted by using the PLOT+ command. The

parameters of this command are identical to the PLOT command. The only difference is that

the results are saved, so they can be displayed in conjunction with subsequent results. Next,

BETA must be set to a second value, another SURE run made, and PLOT+ must be called

again. This time both outputs are displayed together. Up to l0 such runs can be displayed

together.

Graphical Display of Models

In order to obtain a graphical display of the semi-Markov model being processed, the user

must issue the DISP command

DISP;

prior to entering any transition commands. This command causes the system to prompt for

the state locations while the model is being defined. The user indicates by joystick input where

each state of the model should be located. The system automatically pans as the model exceeds

the current scop_ of the screen. Once the user indicates where each state should be placed,

the program automatically draws all the transitions and labels them. The DISP command is

more fully explained in the following section. The user may store the state location information

on disk by using the SAVE command. For example, the current state location information is

written to file SIFT.MEG by the following command:

SAVE SIFT

State location information may be retrieved from a disk file by using the GET command. If

state location has been stored on disk file FTMP.MEG in a prior SURE session, then the

following command will retrieve this information:

GET FTMP

An abbreviation can be used if the location information is on a file with the same VMS file

name (except the extent) as the command file that describes the model. For example, the

commands GET TRIPLEX.MEG; READ TRIPLEX. bIOD may be abbreviated as

READ TRIPLEX* ;

The extent names must be .MOD for the filecontaining the model commands and .MEG for

the filecontaining the state locations on the graphics display in order for this abbreviation

technique to work.
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The SCAN and ZOOM commands may be used to peruse the model. The joystick button

is used to end the ZOOM and SCAN commands. Each of the special graphics commands is

described in the subsequent sections.

DISP command. The DISP command initializes the model display capability of the SURE

program. After this command is issued, the SURE program displays every transition it

processes on the graphics device. The states of the model are represented by circles containing

the number of the state. The transitions are represented by lines connecting the states. (See

example 2 of the section entitled "Examples.") The determination of the best place to locate a

state in the model (i.e., where to put the node of the graph) is a difficult problem (even for a

human). A simplistic heurism is included in the SURE program to aid the user in positioning

a state with the "wand joystick." This heurism can be utilized in two different ways--fully

automatic or manual. In the fully automatic mode, the program places the state without

prompting the user for joystick input. However, for complex models the picture is often quite

ugly, with transition lines crossing in many places. In the manual mode the program selects

a position and sets the cross hairs at that location. If the user likes the location, he need

only press the wand button. Otherwise, the position can be changed with the joystick prior

to hitting the button. If fully automatic state location is desired, the user issues the following

command:

DISP*

If the manual mode is desired the command

DISP

is used.

The length of the transition selected by the heurism can be specified with parameters on

the DISP command. By default the length in both the x- and y-directions is set at 2 in. If the

default value is not desired, the lengths can be changed as shown

DISP 2.5, 5.6

This sets the x-length to 2.5 in. and the y-length to 5.6 in.

Finally the DISP command can be used to generate a hard copy of the screen on the plotter

via the following syntax:

DISP COPY

GET and SAVE commands. Once the locations of the states have been established by using

either the manual joystick input method or the automatic heuristic method, this information

can be saved on a file with the SAVE command. The syntax is simply

SAVE "filename"

where "filename" is in VMS file syntax. In future sessions this information can be retrieved
with the GET command:

GET "filename"

If no VMS filename extent is given, the program assumes it to be .MEG by default. The format

of the file is simple and can be edited using a text editor if desired. The format is three columns

of numbers, with each row defining a particular state location. The first column contains the

state numbers, the second column contains the x-coordinates, and the third column contains

the y-coordinates, for example:
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30 1.250000 i18.7500'

31 4.250000 118.7500

32 7.250000 118.7500

20 4.250000 115.7500

21 7.250000 115.7500

If a row is deleted by the editor and if this file is used in a later session (i.e., using the GET

command), only the deleted state location will have to be entered via the joystick.

CLEAR command. The CLEAR command erases all transitions and state locations from

internal memory. However, the CLEAR* erases only the state locations specified as parameters

plus all the transitions. For example,

CLEAR* 3,7

erases all the transitions but retains all state locations except 3 and 7. The user can then

reissue the READ* (or DISP; READ) command and the program will only prompt for states

3 and 7. All the other states are located in the same place they were in the previous display.

ZOOM and SCAN commands. The SCAN command causes the graphics view to pan across

the model. The direction of the pan is in the direction the joystick is turned. When the final

position is selected, the wand button can be pressed to terminate the pan.

The ZOOM command causes the graphics display to "zoom in" or "zoom away" from the

model. If the wand is pushed forward, the zoom is inward; if the wand is pulled backward the

zoom is away from the model. This process is also terminated by pressing the wand button.

At this time the program asks if a hard copy on the plotter is desired:

HARD COPY? (YES=I, NO=O)

After this the user is asked to select a new center point around which the program will reexpand

the model to its normal size. This is accomplished by using the joystick and wand button as

in the scan mode.

SCREEN constant. The size of the display screen can be specified with the SCREEN

constant. The default size is 10 by 10 in. The display area is always square; however, the size

of the square can be changed. For example, if a 6-in. screen is desired the following command

should be issued prior to the DISP command:

SCREEN = 6 ;

GREEK constant. The GREEK constant specifies whether constants with greek names such

as LAMBDA, GAMMA, PHI, or RHO should be displayed as greek characters on the display

monitor (e.g., as A, "_,.etc.). IF GREEK = 1 then this translation process is performed. If
GREEK = 0 then this translation is not done. The default setting is GREEK = 1. Sometimes it

is desired to display the model without the transitions labeled at all. This can be accomplished

by setting GREEK = -1.

Example SURE Sessions

Outline of a Typical Session

The SURE program was designed for interactive use. The following method of use is

recommended (see example 2):

1. Create a file of SURE commands using a text editor describing the semi-Markov model to

be analyzed.
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2. Start the SURE program and use the READ command to retrieve the model information

from this file.

3. Then, various commands may be used to change the values of the special constants_ such

as LIST, POINTS, QTCALC, and TRUNC, as desired. Altering the value of a constant

identifier does not affect any transitions entered previously even though they were defined

with a different value for the constant. The range of the variable may be changed after

transitions are entered.

4. Enter the RUN command to initiate the computation.

Examples

The following examples illustrate interactive SURE sessions. For clarity, all user inputs are

given in lowercase letters.

Example 1

This session illustrates direct interactive input and the type of error messages given by

SURE:

$ sure

SURE V5.2 NASA Langley Research Center

i? lambda = le-5;

2? 1,2 = 6*lambda;

3? 2,3 = 5*lamba;

^ IDENTIFIER NOT DEFINED

3? 2,3 = 5*lambda;

4? show 2-3;

TRANSITION 2 -> 3: RATE = 5.00000E-5

5? 2,4 = <le-4,1e-5>;

6? 4,5 = 2*lambda;

7? list = 2;

8? time = i;
9? run

DEATHSTATE _ UPPERB(M3NI) COMMENTS RUN #i

3 2.93992E-13 3.00000E-13

5 5.95908E-I0 6.00000E-10

TOTAL 5.96202E-I0 6.00300E-I0

*** WARNING: SYNTAX ERRORS PRESENT BEFORE RUN

2 PATH(S) PROCESSED
0.i00 SECS. CPU TIME UTILIZED

i07 exit

The warning message indicates that a syntax error was encountered by the program. If a user

receives this message, he should check his input file to make sure that the model description is

correct. In this example, since the syntax error was corrected in the next line, the model was

correct. A complete list of program-generated error messages is given in appendix D.

Since LIST = 2, upper and lower bounds are given for each deathstate as well as the total.

The mission time is set to 1 in statement 8. If this statement was omitted, the program would

use 10 by default.
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Example 2

The following session indicates the normal method of using SURE. Prior to this session, a

text editor has been used to build file TRIADP1.MOD. This file contains a description of a

triad system with one spare. The system uses threefold redundancy to mask single processor

faults. If a spare is available the system replaces a faulty processor with the spare. If no spare is

available the system degrades to a simplex. For simplicity the means and standard deviations of

both types of recovery are assumed to be the same--RECOVER and STDEV, respectively. The

program displays the contents of the files as it is read (with the READ command). Input lines,

which are read, are labeled with a line number followed by a colon. The file TRIADP1.MEG

was created by the SAVE command in a previous session.

$ sure

SURE V5.2 NASA Langley Research Center

i? read triadpl*;

2: LAMBDA- IE-6 TO* IE-2;
3: RECOVER = 2.7E-4;

4: STDEV = 1.3E-3;
5:1,2 = 3*LAMBDA;
6:2,3 = 2*LAMBDA;

7: 2,4 = <RECOVER,STDEV>;
8:4,5 = 3*LAMBDA;
9:5,6 = 2*LAMBDA;

i0:5,7 = <RECOVER,STDEV>;
ii: 7,8 = LAMBDA;
12: POINTS = I0;
13: TIME = 6;

14? run

LAMBDA UPPERBOUND COMMENTS RUN #i

1.00000E-06

2.78256E-06
7.74264E-06
2.15444E-05
5.99484E-05
1.66810E-04

4.64159E-04
1.29155E-03
3.59382E-03
1.00000E-02

9.40296E-15
7.71327E-14
6.90469E-13

7.35487E-12
1.00201E-10
1.70631E-09
3.31737E-08

6.81859E-07
1.41321E-05
2.83744E-04

1.00441E-14
8.22407E-14
7.33127E-13
7.75250E-12

1.04754E-I0
1.77475E-09

3.45029E-08
7.14440E-07
1.51683E-05

2.92932E-04

3 PATH(S) PROCESSED
Q(T) ACCURACY >= 14 DIGITS
0.400 SECS. CPU TIME UTILIZED

157 plot ylog
167 exit

<ExpMat>

Figure 4 illustrates the model displayed on the output graphics device (defined in file

TRIADP1.MEG). The plot in figure 5 was generated from this run by the "plot ylog" com-

mand. The <ExpMat> comment indicates that the exponential matrix algorithm was used to

calculate Q(T) for LAMBDA = 1E-2. The accuracy of this calculation was 14 digits.
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Example 3

The following interactive session illustrates the use of the ECHO constant. This constant is

used when the model description file is large and one desires that the model input not be listed

on the terminal as it is read by the SURE program.

$ sure

SURE V5.2 NASA Langley Research Center

i? echo = 0;

2? read ftmp2.mod;

26? run

LAMBDA UPPERBOUND COMMENTS RUN #i

1.00000E-04

2.00000E-04

3.00000E-04

4.00000E-04

5.00000E-04

6.00000E-04

7.00000E-04

8.00000E-04

9.00000E-04

1.00000E-03

4.88265E-I0

1.95291E-09

4.39357E-09

7.80964E-09

1.22003E-08

1.75647E-08

2.39013E-08

3.12090E-08

3.94859E-08

4.87302E-08

5.02254E-I0

2.01807E-09

4.56112E-09

8.14516E-09

1.27841E-08

1.84919E-08

2.52827E-08

3.31707E-08

4.21702E-08

5.22958E-08

7 PATH(S) PROCESSED

0.550 SECS. CPU TIME UTILIZED

27? exit

Example 4

This interactive session illustrates how SURE can be used to obtain system unreliability as

a function of mission time.

$ sure

SURE V5.2 NASA Langley Research Center

i? read ftmp9

2: LAMBDA = 5E-4;

3: STDEV = 3.6E-4;

4: RECOVER - 2.7E-4;

5: TIME = 0.i TO* i000 BY i0;

6:1,2 = 9*LAMBDA;

7:2,3 - 2*LAMBDA;

8: 2,4 = <RECOVER,STDEV>;

9:4,5 = 9*LAMBDA;

i0:5,6 - 2*LAMBDA;

ii: 5,7 = <RECOVER,STDEV>;

12:7,8 = 6*LAMBDA;

13:8,9 = 2*LAMBDA;

14:8,10 = <RECOVER,STDEV>;

15:10,11 = 6*LAMBDA;

16:11,12 = 2*LAMBDA;

(* PERMANENT FAULT RATE * )

(* STAN. DEV. OF RECOVERY DISTRIBUTION * )

(* MEAN OF RECOVERY DISTRIBUTION *)
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17: 11,13 = <RECOVER,STDEV>;

18:13,14 -- 6*LAMBDA;

19:14,15 -- 2*LAMBDA;

20: 14,16 -- <RECOVER,STDEV>;

21:16,17 = 3*LAMBDA;

22 :' 17,18 - 2*LAMBDA;

23: 17,19 = <RECOVER,STDEV>;

24:19,20 = I*LAMBDA;

25: START = i;

26? qtcalc = 0;
27? run

TIME LOWERBOUND

1.00000E-01

1.00000E+00

1.00000E+01

1.00000E+02

1.00000E+03

1.01365E-I0

1.14931E-09

1.19341E-08

1.20763E-07

O.O0000E+O0

7 PATH(S) PROCESSED

0.390 SECS. CPU TIME UTILIZED

28? exit

(* use algebraic Q(T) calculation *)

UPPERBOUND COMMENTS RUN #i

1.21527E-I0

1.21774E-09

1.24261E-08

1.59925E-07

8.03688E-02
.. Q(T) INACCURATE

.. Q(T) INACCURATE

The Q(T) INACCURATE message indicates that the QTCALC = 0 option is inaccurate for the

last two values of TIME in this problem. The computation should be rerun with QTCALC=I

or QTCALC=2 (the default value). The next session shows the result of rerunning this problem

with QTCALC = 2.

$ sure

SURE V5.2 NASA Langley Research Center

i? echo = 0; read ftmp9;

26? qtcalc = 2;
27? run

TIME L(Ic;ERBOUND UPPERBOUND COMMENTS RUN #I

1.00000E-01 1.01365E-I0 1.21500E-I0

1.00000E+00 1.14931E-09 1.21500E-09

1.00000E+01 1.19341E-08 1.21487E-08

1.00000E+02 1.25980E-07 1.26748E-07 <ExpMat>

1.00000E+03 7.68092E-03 7.69898E-03 <ExpMat>

7 PATH(S) PROCESSED

Q(T) ACCURACY >= ii DIGITS
1.820 SECS. CPU TIME UTILIZED

28? exit
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Example 5

This example illustrates the use of SURE to solve a model of a triplex system with transient

and permanent faults. The permanent faults arrive at rate LAMBDA and the transient faults

arrive at rate GAMMA. In the presence of a single fault the system degrades to a simplex at rate

DELTA. The operating system sometimes improperly degrades in the presence of a transient

fault. This occurs at rate PHI. This model contains a loop, and therefore, it is necessary to

use the TRUNC feature of SURE. In this example, the TRUNC feature is used:

$ sure

SURE V5.2 NASA Langley Research Center

i? read 3trans*

2:

3:

4:

5:

6:

7:

8:

9:

i0:

ii:

12:

13:

14:

15:

16:

LAMBDA= IE-4;

INPUT DELTA;

DELTA? 1800

GAMMA m 10*LAMBDA;

RHO - 1 TO* IE7 BY i0;

PHI - DELTA;

T - RHO + DELTA;

(* FAULT ARRIVAL RATE * )

(* RECOVERY RATE *)

(* TRANSIENT FAULT RATE *)

(* RATE OF DISAPPEARANCE OF TRANSIE2qT FAULTS *)

(* RATE TRANSIENTS RECONFIGUREDOUT *)

1,2 = 3*LAMBDA;

2,3 = 2*LAMBDA+ 2*GAMMA;

2,4 = <I/DELTA, I/DELTA,I.0>;

4,5 = LAMBDA + GAMMA;

1,6 = 3*GAMMA;

6,1 = <I/T,I/T,RHO/T>;

6,4 = <I/T,I/T,PHI/T>;

6,7 = 2*LAMBDA+ 2*GAMMA;

177 trunc=3; warndig = 6;

187 run

*** START STATE ASSUMED TO BE 1

DELTA = 1.800E+03

RHO LC;NERBOUND

1.00000E+00 1.77763E-04

1.00000E+01 1.76971E-04

1.00000E+02 1.69461E-04

1.00000E+03 1.20686E-04

1.00000E+04 4.12797E-05

1.00000E+05 1.92296E-05

1.00000E+06 1.66248E-05

1.00000E+07 1.63596E-05

UPPERBOUND COMMENTS RUN #I

1.81450E-04

1.80639E-04

1.72945E-04

1.23038E-04 .. TRUNC TOO SMALL

4.20342E-05 .. TRUNC TOO SMALL

1.96140E-05 .. TRUNC TOO SMALL

1.69692E-05 .. TRUNC TOO SMALL

1.66999E-05 .. TRUNC TOO SMALL

12 PATH(S) PROCESSED

1 IX)OP(S) TRUNCATED AT DEPTH 3
ACCURACY MAY BE LESS THAN 5 DIGITS DUE TO LOOP TRUNCATION

3.170 SECS. CPU TIME UTILIZED

187 plot xylog

19? disp copy

Figure 6 illustrates the model displayed on the output graphics device. (Note that the Greek

words in the model description are displayed as Greek characters in the graphics output.) The

plot in figure 7 was generated from this run.
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To makesure that the truncationerror is insignificant,the model is reprocessedwith
TRUNC= 4:

20? echo = 0;

21? read 3trans;
DELTA? 1800

37? trunc=4

38? run

*** START STATE ASSUMED TO BE 1

DELTA = 1.800E+03

RHO _ UPPERBOUND COMMENTS RUN #i

1.00000E+00

1.00000E+01

1.00000E+02

1.00000E+03

1.00000E+04

1.00000E+05

1.00000E+06

1.00000E+07

1.77763E-04

1.76971E-04

1.69461E-04

1.20686E-04

4.12797E-05

1.92296E-05

1.66249E-05

1.63596E-05

1.81450E-04

1.80639E-04

1.72945E-04

1.23038E-04

4.20342E-05

1.96140E-05

1.69692E-05

1.66999E-05

16 PATH(S) PROCESSED

1 LOOP(S) TRUNCATED AT DEPTH 4

3.220 SECS. CPU TIME UTILIZED

197 exit

It can be seen that truncation error is insignificant.

A

?

__/> 2"), + 2"3, >_

)_ 2"A + 2"T

Figure 6. Semi-Markov model from example 5.
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Figure 7. SURE output from example 5.

Example 6

This example illustrates the use of SURE in Lee's mode. The same model as used in

example 5 is used here. However, the information given for the fast recovery transitions is

different. In the presence of a permanent fault, the system degrades to a simplex. The mean

degradation time is 1/DELTA. The probability that the degradation process takes more than

QUANT2 hours is QPROB2. In the presence of a transient fault, the system degrades to a

simplex with probability PHI/(PHI+RHO) and returns to the fault-free state with probability

RHO/(RHO+PHI). The probability that this requires more than QUANT6 hours is QPROB6.

$ sure

SURE V5.2 NASA Langley Research Center

i? read leem

2: LEE;
3: LAMBDA = IE-4;

4: DELTA - 1800.0;

5: GAMMA - 10*LAMBDA;

6: RHO - 1 TO* IE7 BY 10;

7: PHI - DELTA;

8: T - RHO + PHI;

9:QUANT2 = IE-2;

i0:QPROB2 - 1.0 - EXP(-DELTA*QUANT2);

ii: TIME = 10;

12:1,2 - 3*LAMBDA;

13:2,3 = 2*LAMBDA + 2*GAMMA;

14:@2 = <l/DELTA, QUANT2, QPROB2>;

(* FAULT ARRIVAL RATE * )

(* MEAN RECOVERY TIME *0)

(* TRANSIENT FAULT RATE * )

(* RECOVERY RATE FROM TRANSII_]T FAULT * )

(* RATE TRANSIENTS RECONFIGURED OUT *)
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15:2,4 = <i.0>;

16:4,5 = LAMBDA + GAMMA;

17:1,6 = 3*GAMMA;

18:QUANT6 = IE-2;

19:QPROB6 = 1.0 - EXP(-T*QUANT6);

20:@6 = <I/T,QUANT6,QPROB6>;

21:6,1 = <RHO/T>;

22:6,4 = <PHI/T>;

23:6,7 = 2*LAMBDA + 2*GAMMA;

24? run

*** START STATE ASSUMEDTOBE 1

.... LEE STATISTICAL ANALYSIS MODE .....

RHO LOWERBOUND UPPERBOUND

1.00000E+00

1.00000E+01

1.00000E+02

1.00000E+03

1.00000E+04

1.00000E+05

1.00000E+06

1.00000E+07

1.78430E-04

1.77632E-04

1.70066E-04

1.20986E-04

4.13316E-05

1.92859E-05

1.66853E-05

1.64206E-05

1.81450E-04

1.80639E-04

1.72945E-04

1.23038E-04

4.20343E-05

1.96141E-05

1.69692E-05

1.67000E-05

12 PATH(S) PROCESSED

i LOOP(S) TRUNCATED AT DEPTH 3

3.750 SECS. CPU TIME UTILIZED

COMMENTS RUN #i

Example 7

This example illustrates the use of Lee's method to model a system with two possible

recoveries from a fault. In this model, the system recovers from a fault by bringing in a

(nonfailed) spare 90 percent of the time and degrades to a simplex 10 percent of the time.

$ sure

SURE V5.2 NASA Langley Research Center

i? lee;

2? lambda = le-4;

3? prl = 0.90;
4? mu - 2e-4;

5? 1,2 - 3*lambda;

6? 2,3 - 2*lambda;

7? 2,4 = <prl>;

8? 4,5 = 3*lambda;

9? 5,6 = 2*lambda;

i07 2,7 = <l-prl>;

ii? 7,8 = lambda;

127 @2 = <mu,2*mu,l.0>;

137 list=2;
147 run

(* Failure rate of a processor *)

(* Probability recovery is by sparing *)

(* Mean recovery time *)

(* No observed recoveries greater than 2*MU*)

..... LEE STATISTICAL ANALYSIS MODE .....
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DEATHSTATE LOWERBOUND UPPERBOUND

3 1.19815E-I0 1.20000E-I0

6 2.72421E-09 2.73000E-09

8 1.34809E-07 1.35000E-07

TOTAL 1.37653E-07 1.37850E-07

3 PATH(S) PROCESSED

COMMENTS RUN #i

0.120 SECS. CPU TIME UTILIZED

Examp_ 8

The following session illustrates the use of the ORPROB commazld:

$sure

SURE V5.2 NASA Langley Research Center

i? 1,2 = IE-4;

2? run

LOWERBOUND

9.99500E-04

1 PATH(S) PROCESSED
0.070 SECS. CPU TIME UTILIZED

3? 2,4 = IE-5;

4? run

UPPERBOUND COMME2qTS RUN #i

1.00000E-03

UPPERBOUND COMMENTS RUN #2

1.00000E-04

UPPERBOUND COMMENTS RUN # 3

2.50000E-03

UPPERBOUND

1.00000E-03

1.00000E-04

2.50000E-03

3.59715E-03

9.99500E-05

1 PATH(S) PROCESSED

0.050 SECS. CPU TIME UTILIZED

5? 1,2 = 2.5E-4;

6? run

2.49687E-03

1 PATH(S) PROCESSED

0.040 SECS. CPU TIME UTILIZED

7? orprob

RUN # U3WERBOUND

1 9.99500E-04

2 9.99500E-05

3 2.49687E-03

OR PROB = 3.59352E-03

8? exit

Example 9

In this example a model of a triad with spares is investigated. When an active processor fails,

a spare processor is brought into the configuration to replace the faulty one. If a spare fails, the
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fault remainsundetectableuntil it isbroughtinto theactiveconfiguration.Forsimplicitythe
timerequiredto replacea faultyprocessorwith a spareandthedegradationtimeareassumed
to beexponentiallydistributed.Therefore,theFASTexponentialspecificationmethodcanbe
used:

$ sure

SURE V5.2 NASA Langley Research Center

i? read undet

2: LAMBDA-- IE-4;

3: DELTA = IE4;

4: DEGRATE -- IE4;

5: PSI -- IE-6 TO* LAMBDA BY i0;

6:1,2 -- 3*LAMBDA;

7:2,3 -- 2*LAMBDA;

8:1,7 = PSI;

9: 2,4 -- FAST DELTA;
i0:2,8 = PSI;

ii: 4,5 a 3*LAMBDA;

12:5,6 -- 2*LAMBDA;

13:5,10 = FAST DEGRATE;

14:7,8 = 3*LAMBDA;

15:8,9 -- 2*LAMBDA;

16:8,5 -- FAST DELTA;

17:10,11 = LAMBDA;

(* Failure rate of a processor *)

(* 'Rate of sparing *)

(* Rate of degrading to a simplex *)

(* Failure rate of Spares *)

187 run

PSI LOWERBOUND UPPERBOUND COMMENTS RUN #i

1.00000E-06

1.00000E-05

1.00000E-04

1.55410E-09

1.59876E-09

2.04524E-09

1.56509E-09

1.61010E-09

2.06016E-09

9 PATH(S) PROCESSED

0.180 SECS. CPU TIME UTILIZED

Example 10

This example shows how the CALC function can be used in conjunction with the PLOT

commands to obtain plots of mathematical functions. The plots produced from this session are

shown in figures 8 through 11.

$ sure

SURE V5.2 NASA Langley Research Center

i? X = IE-2 TO 2;

2? POINTS = 500; LIST = 0;

3? CALC SIN(l/X);

4? PLOT

5? DISP COPY

HARD COPY IN PROGRESS

6? CALC SIN(I/X)*X
7? PLOT

8? DISP COPY

HARD COPY IN PROGRESS
9? CLEAR

(* Figure 8 *)

(* Figure 9 *)
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i07 X - .i TOi0;
127 DINTS = 500; LIST = 0;

137 PI = 3.14159265;

147 CALC SIN(2*PI*X);
157 PLOT

167 DISP COPY

HARD COPY IN PROGRESS

177 CALC EXP(-X)*SIN(2*PI*X)
187 PLOT

197 DISP COPY
HARD COPY IN PROGRESS

20? EXIT

(* Figure i0 *)

(* Figure ii *)
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Figure 8, Plot of SIN(l/X).
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Figure 9. Plot of SIN(1/X)*x.
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Figure 10. Plot of SIN(2*PI*X).
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Figure 11. Plot of EXP(-X)*SIN(2*PI*X).
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Example 11

This example illustrates the use of the IF command to analyze the probability of system

failure of a N-multiply redundant (NMR) system as a function of N:

$ sure

SURE V5.2 NASA Langley Research Center

i? read nmr

2: LAMBDA = IE-4;

3: N = 3 TO 15 BY 2;

4: 1,2 = N*LAMBDA;

5: IF N > 2 THEN 2,3 = (N-I)*LAMBDA;

6: IF N > 4 THEN 3,4 = (N-2)*LAMBDA;

7: IF N > 6 THEN 4,5 - (N-3)*LAMBDA;

8: IF N > 8 THEN 5,6 - (N-4)*LAMBDA;

9: IF N > i0 THEN 6,7 = (N-5)*LAMBDA;

10: IF N > 12 THEN 7,8 = (N-6)*LAMBDA;

ii: IF N > 14 THEN 8,9 = (N-7)*LAMBDA;

12? run

N LOWERBOUND UPPERBOUND COMMENTS RUN #i

3.00000E+00 2.99500E-06 3.00000E-06

5.00000E+00 9.97000E-09 1.00000E-08

7.00000E+00 3.48460E-II 3.50000E-II

9.00000E+00 1.25265E-13 1.26000E-13

1.10000E+01 4.58634E-16 4.62000E-16

1.30000E+01 1.70098E-18 1.71600E-18

1.50000E+01 6.36922E-21 6.43500E-21

1 PATH(S) PROCESSED

1.990 SECS. CPU TIME UTILIZED

Example 12

In this example the use of the PRUNE constant is demonstrated.

$ sure

SURE V5.2 NASA Langley Research Center

I? read px

2:1,2 = IE-7;

3:1,3 = IE-2;

4:3,4 = <IE-2,1E-2>;

5:3,9 = IE-6; 4,5 = IE-3;
6: PRUNEPOW- 7 TO 12 BY i;

7: PRUNE - 10**(-PRUNEPOW);

8: WARNDIG = 4;

5,6 - IE-3;

9? run;

6,7 - IE-5;
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PRUNEPOW _ UPPERBOUND COMMENTS RUN #i

8.00000E+00 9.50000E-07
9.00000E+00 9.50000E-07

1.00000E+01 9.50868E-07
1.10000E+01 9.50906E-07
1.20000E+01 9.50906E-07

3 PATH(S) PROCESSED

2 PATH(S) PRUNED AT LEVEL

1.00000E-06 .. PRUNING TOO SEVERE
1.00000E-06 .. PRUNING TOO SEVERE
1.00100E-06
1.00104E-06
1.00104E-06

1.00000E-08
SUM OF PRUNED STATES PROBABILITY < 1.04167E-09

1.170 SECS. CPU TIME UTILIZED

The summary statistics rear to the worst case that is, where the pruning is the most

severe (PRUNE = 1E-8).

Derivation of Bounding Theorem

Mathematical Preliminaries

The proof of the upper and lower bound theorem requires four items that are elementary but

that are not always covered in introductions to probability. They are the Markov inequality, the

moments (e.g., mean and variance) as integrals of 1 minus the distribution function, the density

functions for independent competing events, and the convolution formula for independent

sequential events. These four topics are developed below assuming a background that includes

an understanding of probability as the integral of a density functionand the concept that

the joint density function for independent events is the product of the individual density

functions. All the distributions are holding-time distributions, which means all the densities

are concentrated on the positive real axis. That is, if f(t) is a density function, then f(t) = 0

for t <0.

The notation used throughout is #(H) and a2(H) for the mean and variance of the

distribution H and h as the density for H.

Markov's inequality is

jfc °° #2(H) + a2(H)1 - H(c) = h(t) dt < c2

for c > 0. The derivation is

_c _c °° t20o h(t) dt < -fih(t) dt

1 j_o°° t2 h(t) dt

#2(H) + a2(H)

c 2

The first two moments as integrals of 1 minus the distribution function are

/0 /0co [I - H(t)] dt = #(H) = t h(t) dt

/o foo2 t[1- H(t)] dt = _2(H) + a2(H) = oot2 h(t) dt

The equalities hold in the sense that if the improper integral on one side exists then the

improper integral on the other side exists and the two are equal. For the derivation, perform

an integration by parts to get
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obtk-l[1 -- H(t)] dr- tk[1 --H(t)] b 1 bk 0 + -_/o tk h(t) dt

First suppose f_ t k h(t) dt is finite and choose ¢ > 0. Since the improper integral converges,

there exists an M such that if x > M then

> tk h(t) dt

> x k h(t) dt

> xk[1 - u(x)]

Therefore tk[1 - H(t)] goes to zero as t goes to infinity. Hence if the kth moment exists then

the integral of 1 minus the distribution function exists and the two are equal.

Next, suppose that f_ tk-l[1 - H(t)] dt is finite. The integration by parts formula says
that

£btk h(t)dt<[btk-'I1- mt)l at
1

-- J0

for all b. Therefore, the kth moment is finite. As before, if the kth moment is finite, then

tk[1 - H(t)] goes to zero as t goes to infinity. Hence, if the integral of 1 minus the distribution

function exists, then the moment exists and the two are equal.

The derivation of the densities for independent competing events is illustrated in figure 12.

(T, T)

_-- X

Figure 12. Graph for independent competing events.

Let event A have density f(x) and event B have density g(y). The probability that A occurs

before B and before time T is given by the shaded area in figure 12, where x <: T and x < y.

The integral of the shaded area is

/0 /2 /0f(x) 9(Y) dy dx = f(x) [1 - G(x)] dx

which means that the density of event A occurring before event B and before time T is

f(z) [1 - G(x)]. This density is likely to be defective; that is, its integral is less than one.
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Let p(A) be the probability that event A occurs before event B. Then

p(A) = I(x) [1- a(x)l dx

The conditional probability that event A occurs before time T given that event A occurs before
event B is

ffp(A) f(z) [1- G(x)] dx

The conditional kth moment of A, given that event A occurs before event B, is

1 x k f(x) [1- G(x)] dx
p(A)

If event A is competing against events B1, B2, ...,Bn with densities gl,g2,...,gn then the

density for event A occurring first is f(x) [1 - G1(x)]...[1 - Gn(x)].

The derivation of the density for independent sequential events is illustrated in figure 13.

t2

T

tl
T

Figure 13. Graph for sequential independent events.

As before let events A and B have densities f and g. The probability that the occurrence

times for both events A and B sum to less than T is given by the shaded area, where tl +t2 _< T.

The integral of the shaded area is

f(tl) g(t2) dt2 dtl = g(t2) f(tl) dtl dr2
J0 J0 J0

If there are n independent sequential events with densities fl, f2, ..., fn, then the probability

that the sum of all their occurrence times is less than or equal to T is

_oT[T-tll T-tl-'''-tn-1•.. fn(tn) ... f2(t2) fi(tl) dtn ... dr2 it1
JO JO

This presentation has been made in terms of the Riemann integral where all the distributions

have density functions. These results remain true for the more general Riemann-Stieltjes

integral which can handle a wider variety of distributions such as instantaneous jumps. The
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bounds are derived for the more general case. Given a distribution H, the notation for the

event occurring between time tl and time t2 as a Riemann-Stieltjes integral is

If H is differentiable with H'(x) = h(x) then

ft t2 dH(x) = ft t2 h(x) dx
1 1

Proof of Theorem

This section derives the upper and lower bounds presented in the previous section. The

objective of the bounds is to reduce the computational burden in reliability analysis by means of

a qualitative result. Initially two features of the reconfiguration process pose difficult descriptive

and numerical problems. The first is that a sophisticated digital architecture has a complicated

fault detection and system reconfiguration procedure. When trying to establish high reliability,

none of the details can be arbitrarily ignored. The second is that system recovery is much faster

than fault occurrence. An explicit set of equations describing both is numerically stiff.

The theorem proved in this section provides a solution to both these problems for systems

with low fault occurrence rates and quick recovery--a class of systems that designers are

currently trying to produce. The theorem establishes that just the means and variances of

the recovery times are sufficient information about the reconfiguration process to obtain tight

bounds on the probability of system failure. Furthermore, the formulas for the bounds consist of

a factor involving the means and variances times a quantity that is the solution of a differential

equation where the coefficients are the low failure rates. Since the failure rates do not differ

much in magnitude, the differential equation is numerically stable. Hence a difficult descriptive

and numerical problem is reduced to one with familiar statistics (means and variances) and a

tractable differential equation.

The differential equation is tractable enough that for a large number of cases its solution

has easy algebraic upper and lower bounds. These are derived below. The original probabil-

ity bounds together with the quick bounds for the differential equation are referred to as the

"algebraic bounds" for system failure. The SURE program automatically selects the appropri-

ate method and informs the user when the differential equation package option is used.

A general path in a semi-Markov reliability model is shown in figure 14. The following

notation applies to this path:

Ak state in general path where only exiting transitions are low rate failure

transitions

Ak

qk

Bi

successful (on-path) failure transition out of Ak

sum of unsuccessful (off-path) failure transitions out of A k

state in general path where successful (on-path) transition is fast recovery

transition that competes against other fast recovery transitions and against
low rate failure transitions

F/,1

F/,m

successful recovery transition out of state B i

for m > 1, unsuccessful recovery transition out of B i

conditional distribution of the successful transition, Fi,1, when it competes

against unsuccessful recovery transitions, Fi,rn where m > 1
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Figure 14. General path in a semi-Markov model.

ei sum of rates of low-rate failure transitions out of state B i

Cj state in general path where successful transition is low rate failure transition
that competes against fast recovery transitions and other low rate failure
transitions

o_j rate of successful low rate failure transition out of Cj

Gj, n distribution of unsuccessful fast recovery transition out of state Cj

Hj distribution of holding time in state Cj considering only fast recovery exiting

transitions, Gj, n

_j sum of rates of unsuccessful low rate failure transitions out of state Cj

D absorbing state for entire general path

Q absorbing state for subpath consisting of states with only low rate exiting
transitions

q density function for distribution Q

The global time independence of a semi-Markov model permits the rearrangement of states

on the path for notational and computational convenience. Using the terminology of the

previous sections, the first line consists of k class 1 states, the second of m class 2 states,
and the third of n class 3 states. Figure 15 displays the k class 1 states of figure 14. "-
The notation is

D(T) = probability of traversing path in figure 14 by time T

Q(T) = probability of traversing path in figure 15 by time T
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Figure 15. Constant rate part of path.

p(F_) = probability that transition Fi, i is successful when competing against

other recovery transitions

= f0°°[1 - Fi,2(t)]...[1 - Fi,bi(t)] dFi,l(t)

#(F/*) = first conditional moment of Fi, 1

= _ f0c_ t[1 - Fi,2(t)]...[1 - Fi,bi(t)] dFi,l(t )

#2 (F/*) + a 2 (F/*) = second conditional moment of Fi, 1

_ 1 t 2
- _ fo_ [1 - Fi,2(t)]...[1 - Fi,b_(t)] dF_,l(t )

#(Hi) = first moment of holding time in state Cj considering only recovery
transitions

= foc_ [1 - Gj, l(t)]...[1 - Gj,c_(t)] dt

I_2(Hj) + a2(/-/j) = second moment of holding time in state Cj considering only recovery
transitions

= 2 fo_ t[1 - Gj,l(t)]...[1 - G3.,c_ (t)] dt

The integrands for the probabilities and moments of iv/* are the densities for an event
competing against other independent events. The justification of the integrand for the moments

of the Hj's is as follows. First, the holding time is the same as the leaving time. Let W be

the distribution for the leaving time, and let G1, G2, ..., Gj be the distributions for the exiting
transitions. Then

1 - W(t) = [1 - Gl(t)]...[1 - aj(t)]

since the product on the right is the probability that no exiting event has occurred which is

equal to the probability that the state has not been left. The moments of the holding time are

given as integrals of 1 minus the distribution function W.

The expressions for the probabilities and moments do not include the competing failure

rate transitions. The formulas for the bounds take this exclusion into account and give correct

bounds in the presence of device failure rates. This approach is taken because the measurement

of the recovery processes of a system is usually made on prototype systems whose failure rate

is not representative of a production system. By decoupling the specification of the recovery

process parameters from the failure parameters, these processes can be measured and studied

independently. The statistician, however, sees the recovery transition as always competing

against device failure and wants expressions that reflect what is actually observed. These

expressions and the resulting (slightly different) bounds are covered in another publication.

(See ref. 12.) The numerical differences between the different versions are negligible.

Derivation of Bounds for a Simple Case

The derivation of the theorem is first given for a simple case. In the next subsection, the

general proof is presented. Consider the reliability model in figure 16. The probability of
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arriving in the first coverage failure state, the state on the far right in the first row, by time T

is

(

w(t)

)
Figure 16. Failure state D in reliability model.

D(T) = f T 3Ae-3Ax _0 T-x
JO

2Ae-2AY[1 - W(y)] dy dx

where

f0 y
w(v) = w(t) tit

Certainly,

T /0D(T) <_ 3Ae -3_xz 2Ae-2XY[1 - W(y)] dy dx

Since w(t) is a fast transition, W(t) goes to 1 extremely fast which means [1 - W(t)] goes

to 0 extremely fast. Hence, there is very little difference between the two iterated integrals.

Writing the latter iterated integral as a product, pulling the 2A outside the second integral,

and replacing e -2Xv by an upper bound of 1 give

where # is the mean of the transition w(t).

To illustrate the origin of the lower bound, suppose the operating time T is 1 hour and w(t)

has a mean of 1 sec. Let A be a time of 1 min. Then

f0 T- A f0 AD(T) >_ 3)_e -3Az 2Ae-2'Xy[1 -W(y)] dy dx

It can be seen that this lower bound is close to the upper bound. First, integrating from 0 to

T - A is little different from integrating from 0 to T if T is 1 hour and A is 1 min. Second,

integrating from 0 to A is little different from integrating from 0 to infinity if w(t) has a mean

of 1 sec, providing w(t) has a small variance. (In fact, the expression that replaces the second

integral involves the variance.)
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In termsof pictures,theexactformulafor D(T) is the convolution integral over the triangle

shown in figure 17. The upper bound is the integral over the superscribed infinite rectangle

shown in figure 18. The lower bound is the integral over the inscribed rectangle shown in

figure 19.

y

T

T

Figure 17. Convolution triangle.

Y Y

T

T

Figure 18. Upper bound rectangle.

X

T

2_

T-A T

Figure 19. Lower bound rectangle.

X

There are two comments about the quantity A. First, the choice is flexible, and only a little

work has been done on optimizing the chosen value. (See appendix A.) Second, the value of

A increases for a path as the number of states with fast transitions increases, and a larger A

increases the distance between the upper and lower bounds. In general, however, paths with

many states are less likely to be traversed than paths with fewer states. As a result, the large

value of A for long paths contributes little to the overall error when estimating reliability.

Proof of General Theorem

The proof of the general theorem is simply a multidimensional version of the previous

argument.
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Theorem (White). Let

rl, r2, ..., rm, Sl, 82, ..., 8n __ 0

A=rl+ r2+...+rm+sl+s2W...+s n

A_T

Then, with the assumptions and notation as previously described,

where

LB_<D(T)<UB

m n

UB = Q(T) II p(F/*) l-I aj#(Hj)
i=l j=l

LB = Q(T - A) 1-I p(Fg) 1 - ei#(F() - #2(F/*) + a2(F()2
i=1 ri

× fiotj{tt(Hj)_ (°_J+_J)[#2(Hj)+a2(Hj)]_ tt2(Hj)+a2(Hj)}
j=l 2 8j

Four lemmas. The following lemmas are used in the proof of the bounding theorem:

/?(i) exp(-eixi)[1 - Fi,2(xi)]...[1 - Fi,bi(Xi) ] dFi,l(Xi) <_ p(F_)

(ii) aj exp(-ajyj - _jyj)[1 - GjA (yj)]...[1 - Gjx _ (yj)] dyj < aj#(Hj)

(iii) fo ri exp(-eixi)[1 - Fi2(Xi)]...[1 - (_i)] dFi,1 (zd

p(F:) [1 - ei#(r;) -

#2 (Fi*) (_2(F;) 1+

ffJ_dexp(-"ivYJ- _JVd)[1- Cj,I(Uj)]...[1- Cd,_j(yd)]dyj(iv)

- [ 2 sj ]

Proof of lemmas. Assertions (i) and (ii) follow from the inequality e -a < 1 for a >__

Assertions (iii) and (iv) use the equation

the inequalities

and Markov's inequality.

/: /?/c

1-a<e-a<.l (a>O)
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To prove lemma (iii) note that the integral is bigger than or equal to

0c_(1 _ sixi)[1 - Fi,2(xi)]...[1 - Fi,b,(Xi) ] dFi,l(Xi)

- [1 - Fi,2(xi)]...[1 - Fi,b,(xi) ] dFi,l(xi)
i

---- [1 - Fi,2(x_)]...[1 - Fi,b,(x_)] dFi,l(xi)

, 1 xi[1 - Fi,2(xi)]...[1 - F_,b,(xi)] dF,,i(xi)
-_ p(ri )_

, 1 c¢
- p(F i )p_ fr i [1 - Fi,2(xi)]...[1 - Fi,b_(Xi) ] dFiA(xi)

which is bigger than or equal to

p(F?)- _ p(F?) ,(F?) - p(F?)È_(F?)+ °2(F;)
r?

I

when the last integral is replaced by Markov's inequality. The p(F_) factors appear because

the last two integrals must be divided by p(F_) in order to get the conditional density.

To prove lemma (iv), note that the integral is bigger than or equal to

_j f0°¢[1 - (_j +/_j)yj][1 - Oy, l(Yj)]...[1 - Gj,cj(yj)] dyj

- c,y [1 - Gj, I(yj)]...[1 - Gy,cj(yj)] dyj
3

The first integral is a multiple of the first moment minus a multiple of the second moment. The

integrand in the last integral is equal to 1 minus the probability of being in state Cj at time

yj and by Markov's inequality is less than or equal to [#2(Hj) + a2(Hj)]/y]. The indefinite

integral of 1/y 2 is -1/yj, and its evaluation from sy to infinity is 1/sy. Hence the integral in
lemma (iv) is bigger than or equal to

_- ,(H_.)-
2 sj

Proof of bounding theorem. Let q(t) be the density function for traversing the path in

figure 15 by time t. The probability of reaching state D in figure 14 before time T is given by
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the convolution integral for sequential independent events

_0 _0T - t
D(T) = T q(t) exp(-Eizi)[1 -- Fi,2(xi)]...[l - Fi,bl (xi)]

0T-t-xl-'''-xm-1 exp(-_mXm)[l - Fm,2(Xm)]...[l - Frn,b m (Xm)]

T-t-xl-...-xm al exp[--(al + Zl)R1][ 1 _ el,2(Vl)]'"[ 1 _ GI,Cl (Yl)]

T-t-zl-...-yn-1 an exp[--(an + N)ynl[1 - an,l(vn)]...[1 - an,cn(v.)]

dyn...dyl dFm,1 (Xm)...dF1A (x 1) dt

Working with just the limits of integration

where A =rl+r2+...+rm+sl+s2-_...+Sn.

The theorem is proved by applying the inequalities in the proposition to the integrals in the

above inequality for D(T).

Algebraic Bounds for Q(T)

Convenient bounds for Q(T), the probability of traversing the path in figure 15 by time T,

are

Al'"AkTk [k!1 - (AI + "71+ "" + Ak + "_k)T] < Q(T) <k+ I - -
A1...AkT k

k_

These bounds are tight if (A 1 + "_1 -k ... + Ak q- 3'k)T is small.
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The derivation of the upper bound is easy. The probability Q(T) is given by the convolution

integral

fOT _0 T-tl-'''-tk-1Q(T) = A1 exp[-(A1 + "_l)tl]-..

_oT_o T-tl-'''-tk-1_< A1...A k ... dtk...dtl

T k

= )_ 1 ...Ak -_-._

Ak exp[-(Ak + "lk)tk] dtk...dtl

The lower bound requires the preliminary result that

J[o Tn + 2T t(T - t) n dt = (n + 2)(n + 1)

which can be obtained from the integration by parts formula

/o -t(T-t)n+t _ /0 T (T-t)n+ldtWt(T--t)n dt= n_--f + n+l

= 0 +
Tn+2

(n+2)(n+l)

The derivation of the lower bound proceeds by induction. The first step is trivial. The

inductive step is

_0T f T--t, f T-t, ..... t__ ,AI exp[-(A1 + _/t)tl] A2 exp[-(A2 + _/2)t2] ... Ak exp[-(Ak + "Tk)tk] dtk',.dtl

do Jo

A2...Ak(T - tl) k-1 (A2 + "72 + ... + Ak + "Tk)( T - tl) dt 1
> xl expi-X, + _1)tl1 _:_5_ 1 - k

_fo T
= A1 exp[-(A1 + "_l)tl]'k2'"Ak(T - tl)k--1

(k- _)!
dtl

_o T
_ Alexp[_(Al+,_l)tl] A2"''Ak(A2+_2+'''+Ak+'Tk)(T-tl)k dt 1

k_

_0 T
> :_l[1-(,kl+'_l)tl] A2"''Ak(T-tl)k-1 dr1
- (k - 1)[

_0 T A2-..Ak(A2 + "_2 + ..-+ Ak + "_k)( T - tl) k-- A1 k[
d$1

T k Tk+ 1

= A 1...Ak-_. w -- A1...Ak(A 1 -I- q'l) (k + 1)k(k - 1)!

Tk+ l

-- '_l...)'k(A2 + "_2 + ... + "_k + "_k) 7k( + 1)!

Tk [ ()_1 + "71 + "" + _kk + _k)T]-= AI...Ak--_-._ 1 - k + 1

which is the lower bound.
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Concluding Remarks

The SURE program is a flexible, user-friendly reliability analysis tool. The program provides

a rapid computational capability for semi-Markov models useful in describing the fault-handling

behavior of fault-tolerant computer systems. The only modeling restriction imposed by the

program is that the nonexponential recovery transitions must be fast in comparison to the

mission time--a desirable attribute of all fault-tolerant systems. The SURE reliability analysis

method utilizes a fast bounding theorem based on means and variances and a fast bounding

theorem based on means and percentiles. These bounding theorems enable the calculation of

upper and lower bounds on system reliability. The upper and lower bounds are typically within

about 5 percent of each other. Since the computation method is extremely fast, large state

spaces are not a problem.

NASA Langley Research Center
Hampton, Virginia 23665-5225
November 24, 1987
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Appendix A

Basis for SURE's Lower Bound Parameters

The lower bound in White's theorem contains several free parameters the sj and r i

parameters. The theorem is true for all values of sj > 0 and r i > 0. Although a technique to

choose the globally optimal value of these parameters has not been developed, the values used

by SURE,

r i --- {2T[#2(F/*) + a2(F/*)]} 1/3

[_2(Hj) + a2(Hj)]

can be shown to be nearly optimal. In this section, this is demonstrated.

We will consider paths with only one class 2 or one class 3 path step and derive the optimal

value for such paths.

Class 2 Path Step

Suppose we have a path with only one class 2 path step and no class 3 path steps. The

lower bound would be

LB = Q(T - ri) p(F_) [1 - eip(F*) -

For simplicity, the following abbreviations are used:

Thus, we have

p = o(F_')

. = .(F/*)

m2 = _2(F/*)+ o2(F_*)

r=r i

_=_i

* + _2(F_*)].2(Fi )r2
t
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LB=Q(T-r) p 1- _# -_-

If there are k class 1 path steps, then the above expression can he written by using White's

algebraic Q(T - A) formula as

LB = (T- r)kA p [1- _# - -_-2 ]

for some constant A. Taking the derivative of LB with respect to r gives

m2 [2m2]
LB'(r)=-k(T-r)k-lA p[1-_t_ -_-] +(T-r)kA p[ r 3 J

Setting LB'(r) equal to zero gives

m2 _ [ 2m2 _
-k |1 - e#- --4-1 + (T- r) = 0

/

\r 3 ]X



Since _# is virtually 0,

kr 3 + (2 - k)m2r - 2Tin2 = 0

This cubic equation has one real root and two complex roots. The real root is given by

where
(2 - k)m2

a--
k

b = -2Tm2
k

a 3
Since a3 is small with respect to b2 (i.e., _- _ _) the above root is approximately

For computational efficiency the SURE program always uses k = 1. Note that for systems

using three-way voting, the paths contributing the most to the probability of system failure

contain only one class 1 path step. In such models, k = 1 is the best choice. Furthermore,

since r is insensitive to small changes in k, the use of k = 1 leads to a lower bound very close

to the optimal one. Using k = 1,

r = (2Tin2) 1/3

Class 3 Path Step

Suppose we have a path with only one class 3 path step and no class 2 path steps. The

lower bound would be

LB = Q(T- sj)°_ {p(HJ) - [p2(Hj) +a2(Hj)] (aJ + _J + -_j) }2

For simplicity, the following abbreviations are used:

Thus we have

. = .(Hi)

8=8j

o_ = o_j

If there are k class 1 path steps then the above expression can be written by using White's

algebraic formula for Q(T - A) as

LB=(T-s)kAa tt 2
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for someconstantA. Taking the derivative of LB with respect to r gives

LB'(s) = -k(T - 8)k-lA o_ li 2

Setting LB'(s) equal to 0 gives

Since (a + _)m2 is approximately 0,

#ks 2 - (k - 1)rn2s -Tm 2 = 0

=0

For computational efficiency the SURE program always uses k = 1. Note that for systems

using three-way voting, the paths contributing the most to the probability of system failure

contain only one class 1 path step. As before, k -- 1 is the best choice for such systems:

#82 - Tm2 = 0

Thus
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Appendix B

Derivation of SURE Parameters for Models With Fast Exponentials

Competing With a General Transition

This appendix gives the mathematical basis for the SURE program's calculation of the

parameters needed by White's theorem for models with fast exponentials competing with a

general transition. The semi-Markov model of figure 20 is analyzed.

FAST a _--

F(t)

Figure 20. Model with fast exponential transitions.

The o_ and _ transitions are exponential but fast. Therefore, it is necessary to compute the

transition probabilities and the mean and variance of the holding time in state 0 along with each

transition's conditional mean and variance. The following mathematics derives the formulas

used by the SURE program to determine these parameters when the user specifies his model

as follows:

0,1 : FAST (_;

0,2 : FAST _;

0,3 = </_(F*), a(F*), p(F*) >

The asterisk is used to indicate that the parameters are defined in terms of the conditional

distributions as discussed previously. The holding time in state 0, #(Ho), is

j_0 °°
#(Ho) = exp[-(a + _)t][1- F(t)] dt

/0 /0CCexp[-(a + _)t] dt exp[-(a + _)t] F(t) dt

exp[-(a + f_)t] F(t) dt

Integration by parts

u = F(t) dv = exp[-(a + fl)t] dt
1

du = f(t) dt v - exp[-(a + _)t]
a+13

(Equation continued on next page)
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_ 1 F(t) exp[-(a + 8)t] - exp[-(a + _)t] f(t)dt
a+_ a+_ a+Z

1 1 f0 °°----a + 8 a + _ exp[-(a + 8)t] f(t)dt

1

--a + ,311-p(F*)]

(Note: Clearly, p(F*) must be less than 1 in order to have a positive mean holding time.)

The second moment of the holding time is

texp[-(a + /_)t] [1-F(t)] dt

texp[-(a + ¢_)t] dt-2 texp[-(c_ + 8)t] F(t)dt

2 fo _(a+_)2 2 texp[-(a + 13)t]F(t) dt

Integration by parts

u = F(t) dv = texp[-(a + B)t] dt

-texp[-(a + _)t] 1
du = f(t)dt v = exp[-(a + _)t]

2 f0_¢ t f0 _(a+8) 2 2 a+sexp[--(a + 8)t] f(t) dt-2 --

× exp[-(a + fl)t] f(t) dt

2 2 2

(a + 8) 2 a + _p(F*)' #(F*) (a+8)2P(F*)

2

(a + 8) 2 {1 - p(F*)[1 + (a + 8) #(F*)]}

(_ + 8) 2

(Note: The user must exercise care when mixing FAST exponentials with other general

recoveries to prevent an inconsistent specification. It is necessary that p(F*)[1 + (a +/3) #(F*)]

be less than or equal to 1 in order for the second moment to be nonnegative.) The probability

that the (_ transition is successful is

oo
p(a*) = o_exp[-(o_ + fl)t] [1- F(t)] dt

= _ g(Ho)

The conditional mean time from state 0 to 1 given that this transition is successful is

,/o,(_*)- p(.,) taexp[-(a + 8)t][1-F(t)] dt

°(/o }2p(_*) 2 texp[-(_ + _)t][1- F(t)] dt

2p(a*) [#2(H°) + a2(H°)]
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Theconditionalsecondmomentof thetransitiontimefromstate0to 1giventhatthis transition
issuccessfulis

2, (.*) + .2(.*) _ 1 /o°°p((_.) t2c_exp[-(a + _)t][1 -- F(t)] dt

,{/o /o }p(a*) t2aexp[-(a + fl)t] dt- t2aexp[-(a + _)t] f(t) dt

_t2aexp[-(a + fl)t]F(t) dt}1 { _ 2

2, 2 ]

Integration by parts

u = f(t) dv = c_t2 exp[-(c_ + fl)t] d_

I du= f(t) dt v=-aexp[-(a + _)t][--_+

1 2a _o °0 [ t2 2tp(_.)(c_+_,) 3 [0]- _exp[-(_ + b')t] _--T--_+ (oc+_)-----_-_-

2]+ (a + 13)---'----_ f(t) dt

, r 2a c_
fo c_ t 2 exp[-(a + /3)t] f(t) dt

2_ fo °_(a+/3) 2 texp[-(a + /3)t] f(t) dt

/o 12a exp{-(a + /3)t] f(t) dt
(_ + _)3

¢
1 / 2a a

p(_.) _ (_ + _)3 _ 7-_ p(F*) [iJ(F*) + o_(F')]

2_ }(a + _)3 p(F*)

2 a {1 - p(r*)[(a + fl) #(F*) + 1]}
+ _ p(a)(a + _)=

p(a*)(a + fl) p(F*) [/z2(F *) + a2(F*)]

2
p(_*)(_ +Z) p(F*) [,2(F*} +.2(F')]

1 o }= _ p(_.) p(F*) [/_2(F*) + a_(F*)]

2o_

(a +/3)2 p(F*) #(F*)

(Note: The user must exercise care when mixing FAST exponentials with other general

recoveries to prevent an inconsistent specification. It is necessary that

Ol

2#(c_*) p(a') P(F*)[ #2(F*)+a2(F')] >_0
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in order for the second moment to be nonnegative.) The generalization to more than one general

fast transition (say F1, F2, ..., Fn) and more than two fast exponentials (say A1, A2, ..., Am) can

be obtained by applying the following substitutions in the above formulas:

?2

p(F*) _ _p(Fi _)
i=1

n

E p(F*) ,(F_)
i=1

u(F*) --_ n
E o(F?)

i=1

.(F;)[.:(r;)+
_2(e. ) + ,2(g. ) ---. i=1 n

E p(F?)
i=1

m

(_ + _) --_ _ _
i--1
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Appendix C

Mathematical Basis of the QTCALC--I Algorithm

The probability Q(T) can be solved with the use of an exponential matrix algorithm. (See

ref. 13.) If A represents the transition matrix of the Markov process associated with just the
n class 1 transitions and N/D represents the rational fraction which occupies the 9th diagonal

position in the PAde table for exp(Z), then

N = N(Z)= _ci zi

where

D = D(Z)= E ci(-z)i

(18 - i)! 9!

ci = 18! i! (9-i)!

The algorithm used to compute E = exp(A, T) when QTCALC=I is specified is:

i. Compute C = A * T

2. Find s = Max {Binary exponents of components of C}

3. Ifs>lthenB_C*2 -selseB_C

4. Compute N(B) and D(B)

5. Compute E = D-1N

6. If s > 1 then perform E _-- E * E s times
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Appendix D

Error Messages

The following error messages are generated by the SURE system. These are listed in

alphabetical order:

ARGUMENT TO EXP FUNCTION MUST BE < 8.80289E+01--The argument to the EXP

flmction is too large.

ARGUMENT TO LN OR SQRT MUST BE > 0 -The LN and SQRT functions require posi-

tive arguments.

ARGUMENT TO STANDARD FUNCTION MISSING No argument was supplied for a
standard function.

COMMA EXPECTED -Syntax error; a comma is needed.

CONSTANT EXPECTED - Syntax error; a constant is expected.

DELTA > TIME The value of A used in the lower bound (i.e, Q(T-A) is larger than the

mission time. This can lead to a very poor lower bound. This is usually caused by using the

fast transition specification method to describe a slow transition (i.e., a very slow recovery

transition).

DIVISION BY ZERO NOT ALLOWED A division by 0 was encountered when evaluating

the expression.

ERROR OPENING FILE - <vms status>- The SURE system was unable to open the indi-
cated file.

FILE NAME EXPECTED--Syntax error; the file name is missing.

FILE NAME TOO LONG--File names must be 80 or less characters.

"id" CHANGED TO x The value of the identifier "id" is being changed to x.

"id" CHANGED TO x TO y ---The range of the variable "id" is being changed.

"id" NOT FOUND The system is unable to SHOW the identifier since it has not yet been
defined.

IDENTIFIER EXPECTED--Syntax error; identifier expected here.

IDENTIFIER NOT DEFINED The identifier entered has not yet been defined.

ILLEGAL CHARACTER The character used is not recognized by SURE.

ILLEGAL INPUT VALUE A nonnumeric character was entered in response to the INPUT

command prompt.

ILLEGAL STATEMENT- The command word is unknown by the system.

INPUT ALREADY DEFINED AS THE VARIABLE--An attempt was made to input a value

for an identifier that was already defined as the variable.

INPUT LINE TOO LONG - The command line exceeds the 100-character limit.

INTEGER EXPECTED---Syntax error; an integer is expected.

LEE ,_ REQUIRES THREE PARAMETERS--The @ statement requires three parameters in
the LEE mode.
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MORE THAN ONE SOURCE STATE IN MODEL--The model entered by the user has more

than one source state (i.e., a state with no transitions into it). If a start state has been specified

by a START command, it is used. Otherwise, the program arbitrarily chooses a start state.

MUST BE IN "READ" MODE--The INPUT command can be used only in a file processed
by a READ command.

NO RUNS MADE YET--The ORPROB command was called before any runs were made.

NUMBER TOO LONG---Only 15 digits/characters allowed per number.

ONLY 1 VARIABLE ALLOWED--Only one variable can be defined per model.

ONLY 100 VARIABLE RESULTS STORED--The ORPROB command can only process the

first 100 values of the variable per run.

PRUNING TOO SEVERE--The specified level of pruning is too large to guarantee that the

bounds have WARNDIG digits of accuracy.

Q(T) INACCURATE--The entered mission time is too large for the default value of QTCALC.
Therefore, the upper and lower bounds are very far apart. Set QTCALC equal to 1.

Q(T) --- x DIGITS--The matrix exponential algorithm cannot guarantee more than x digits

accuracy in the Q(T) calculation.

RATE TOO FAST--The upper and lower bounds are valid, but, an exponential transition in

the model is too fast to permit close upper and lower bounds.

REAL EXPECTED--A floating point number is expected here.

RECOVERY TOO SLOW--The upper and lower bounds are valid, but a nonexponential

transition in the model is too slow to permit close upper and lower bounds.

SEMICOLON EXPECTED--Syntax error; a semicolon is needed.

START STATE ASSUMED TO BE x--There was no source state in the model and no start

state was specified via a START command so the program arbitrarily selected x as the start
state.

ST. DEV TOO BIG-- The standard deviation of a fast distribution is too large to permit close

upper and lower bounds; however, the bounds are valid.

SUB-EXPRESSION TOO LARGE, i.e., > 1.70000E+38--An overflow condition was encoun-

tered when evaluating the expression.

THIS CONSTRUCT NOT PERMITTED IN LEE MODE--This construct is not allowed

while in the LEE mode.

THIS CONSTRUCT NOT PERMITTED IN WHITE MODE --This construct is not allowed

while in the WHITE mode.

TRANSITION NOT FOUND--The system is unable to SHOW the transition because it has

not yet been defined.

TRUNC TOO SMALL--The value of TRUNC is probably not large enough to guarantee that

the upper bound is valid for this model. The user should rerun the model with a higher value
of TRUNC.

VMS FILE NOT FOUND--The file indicated on the READ command is not present on the

disk. (Note: make sure your default directory is correct.)

0 STATES IN MODEL--The RUN command found no states in the model.
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*** ERROR: HOLDING TIME AT x NOT DEFINED--The holding time information (re-

quired in LEE mode) for state x has not yet been provided.

*** ERROR: INCONSISTENT SPECIFICATION OF FAST TRANSITIONS AT STATE

n_--When mixing FAST exponentials with a general fast transition (i.e., using conditional

parameters) from a state it is possible to do so in an inconsistent manner. The following

conditions must be satisfied in order to have a consistent specification (see appendix A):

1 - p(F*)[1 + + 13)#(F*)] > 0

) +o2(r*) ] >_0

This error message indicates that one of these conditions has been violated at state n.

*** ERROR: INSTANTANEOUS TRANSITION AT STATE n--One of the transitions from

state n has been defined with a mean
of zero.

*** ERROR: SUM OF EXITING PROBABILITIES IS NOT 1 AT STATE n--The sum of

the transition probabilities of the fast transitions from state n does not add up to 1.

*** ERROR: THE FAST EXPONENTIALS HAVE ZERO PROBABILITY OF OCCUR-

RENCE AT STATE n--State n containing mixed fast transition specifications (i.e., some

described by FAST exponentials and some by conditional parameters) has been overspecified

such that the FAST exponential recoveries have zero probability of occurrence. This occurs

when the sum of the transition probabilities of the transitions described by conditional

parameters is 1.

*** ILLEGAL STATE NUMBER--The state number is negative or greater than the maximum

state limit (Default = 10000, set at SURE compilation time).

*** STATE x HOLDING TIME ALREADY ENTERED--The LEE-mode, holding-time infor-

mation for state x has already been entered.

*** THE *CALC* EXPRESSION MUST BE ON 1 LINE--The mathematical expression pro-

cessed by the CALC function must fit on one line. Constant subexpressions can be defined prior

to the CALC function and used to simplify the CALC expression.

*** TRANSITION X--* Y ALREADY ENTERED--The user is attempting to reenter the

same transition again.

*** VARIABLES INCONSISTENT BETWEEN RUNS--The ORPROB command cannot

process the preceding runs since they did not use the same variable or the same values of
the variable.

*** WARNING: REMAINDER OF INPUT LINE IGNORED--Any commands that followed

the READ command on the same line were ignored.

*** WARNING: RUN-TIME PROCESSING ERRORS--Computation overflow occurred dur-

ing execution.

*** WARNING: SYNTAX ERRORS PRESENT BEFORE RUN-- Syntax errors were present

during the model description process.

*** WARNING: VARIABLE CHANGED!--If previous transitions have been defined using a

variable and the variable name is changed, inconsistencies can result in the values of the
transitions.

= EXPECTED--Syntax error; the = operator is needed.
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> EXPECTED--Syntax error; the closing bracket > is missing.

) EXPECTED- A right parenthesis is missing in the expression.

] EXPECTED--A right bracket is missing in the expression.
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