A PRESENTATION TO
THE FIRST COMBINED MANUFACTURERS' AND
TECHNOLOGY AIRBORNE WIND SHEAR REVIEW
MEETING

INFRARED
LOW-LEVEL WIND SHEAR
WORK

PAT ADAMSON
OCTOBER 22, 1987

TURBULENCE PREDICTION SYSTEMS
4876 STERLING DRIVE
BOULDER, CO 80301
(303) 443-8157
This presentation contains results of field experiments for detection of Clear Air Turbulence and Low Level Wind Shear utilizing an infrared airborne system. The hits, misses and nuisance alarms score and presented for the encounters. The infrared spatial resolution technique is explained and graphs are presented.

The popular index of aircraft hazard \(F = \frac{Wx}{R} - \frac{Vn}{AS} \) is developed for a remote temperature sensor.
THE PROBLEM

- WIND SHEAR
 - 1 accident per 5,000,000 T + L @A
 - 1 strong shear per 65,000 T + L @B

- SOURCES OF WIND SHEAR
 - downbursts
 - microbursts

- DURATION @C
 - severe winds - 2 to 4 minutes
 - life span - 5 to 15 minutes

- SIZE COLUMN @D
 - 4km or 2.5 miles

- EFFECTIVE DIAMETER OF OUTFLOW @C,D
 - > 2 x column diameter

- DIFFERENTIAL VELOCITY ACROSS BURST @C
 - > 56 knots average

- MICROBURSTS OFTEN HAS LATERAL MOTION

REFERENCE:

A R. Bowles NASA Langley; FAA/NASA Airborne Predictive Meeting; Feb 1987

B Vary-Durham NASA Langley; AIAA 22nd Aerospace Sciences Meeting; Jan 1984

C McCarthy-Serafin NCAR; Weatherwise; June 1984

D Fujita University of Chicago; THE DOWNBURST Microburst and Microburst: 1985

TURBULENCE PREDICTION SYSTEMS
SECTION 5.3

THE ELEMENTS THAT CAN IMPROVE THE FLIGHT CREW'S ABILITY TO RELIABLY DETECT AND AVOID HAZARDOUS WIND SHEAR INCLUDE:

THE DEVELOPMENT OF FORWARD-LOOKING WIND SHEAR SENSORS FOR AIRCRAFT.

THE IMPROVED UTILIZATION AND INTEGRATION OF PRESENT-POSITION SENSORS.

REFERENCE: "INTEGRATED FAA WIND SHEAR PROGRAM PLAN"; U.S. DEPARTMENT OF TRANSPORTATION; FEDERAL AVIATION ADMINISTRATION; APRIL 1987; DOT/FAA/DL-87/1; DOT/FAA/VS-87/1; DOT/FAA/AT-87/1.

TURBULENCE PREDICTION SYSTEMS
REMOTE SENSING TECHNIQUES FOR WIND VELOCITY ARE NO PANACEA

ALL REMOTE SENSORS INFER

TABLE 4 LISTS SOME ADVANTAGES AND DISADVANTAGES OF THE REMOTE-SENSING TECHNIQUES FOR WIND. IN GENERAL, LONG-RANGE MEASUREMENTS REQUIRE RADAR, AND SHORT-RANGE APPLICATIONS USE LIDAR OR SODAR DEPENDING ON WHETHER SPATIAL RESOLUTION OR LOW COST IS A PRIMARY CRITERION FOR SELECTION. FOR SOME REQUIREMENTS, SUCH AS A LOW-COST SENSOR FOR AIRCRAFT USE, THERE MAY NOT BE AT PRESENT A SUITABLE REMOTE-SENSING TECHNIQUE. (Emphasis added)

<table>
<thead>
<tr>
<th>Techniques for Velocity Measurement</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodar</td>
<td>Bistatic signal strength depends on turbulent microstructure</td>
<td>Flow tracers not uniformly distributed; i.e., sometimes only senses in special layers</td>
</tr>
<tr>
<td></td>
<td>Comparatively inexpensive</td>
<td>Sensitive to noise from precipitation, high wind, and vehicles</td>
</tr>
<tr>
<td>Radar</td>
<td>Long range with appropriate tracers</td>
<td>Systems comparatively large and expensive</td>
</tr>
<tr>
<td></td>
<td>3-D vector fields available with multiple sensors</td>
<td>Antenna side lobes limit usefulness close to the ground</td>
</tr>
<tr>
<td>Lidar</td>
<td>Very narrow beam widths</td>
<td>Clear-air targets nonconservative (e.g., temperature fluctuations) and require high transmitter power</td>
</tr>
<tr>
<td></td>
<td>Uses conservative tracers</td>
<td>Possible danger to eyes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Beam attenuated by cloud and fog</td>
</tr>
</tbody>
</table>

TURBULENCE PREDICTION SYSTEMS
AIRBORNE SENSORS ARE NEEDED

- ISLAND CONCEPT
 - AIRCRAFT CAN TAKE CARE OF ITSELF

MANY AIRPORTS WILL NEVER HAVE ENOUGH SOPHISTICATED EQUIPMENT
 - CASPER, WYOMING
 - GREENSBOROUGH, NORTH CAROLINA
 - FARMINGTON, NEW MEXICO

INFORMATION HAS MINIMAL LINKAGE TO AIR CREW

TURBULENCE PREDICTION SYSTEMS
HISTORICAL CAT RESEARCH RESULTS

NASA LEAR - MOLETRON - 1979
NASA C-141A - BARNES - 1979
NASA CV 990 - ADAMSON - 1979

TEST PROTOCOL:

A HIT IF THE ALARM SOUNDS AND A SHEAR OF GREATER THAN 0.2 G ACCELERATION WAS ENCOUNTERED, OTHERWISE A MISS

RESEARCH RESULTS: \(\approx 700 \) HOURS

* WITH MOLETRON/BARNES RADIOMETER
 247 ENCOUNTERS 84.62% HITS
 MISSED ENCOUNTERS 15.38%
 NUISANCE ALARMS 14.00%

* WITH ADAMSON RESEARCH INSTRUMENT
 119 ENCOUNTERS 98.32% HITS
 MISSED ENCOUNTERS 1.68%
 NUISANCE ALARMS 8.51%

ADVANCE WARNING RESULTS: 700 HOURS

AVERAGE WARNING 4 MINUTES

REFERENCE: "FINAL STATISTICAL REPORT ON AVIATION SAFETY TECHNOLOGY (IN-FLIGHT DETECTION AND PREDICTION OF CLEAR AIR TURBULENCE)"; BY LOIS STEARNS AND VALERIE NOGAY, NOAA; FOR NASA AMES RESEARCH CENTER; DECEMBER 1, 1979.

TURBULENCE PREDICTION SYSTEMS
\[F = \frac{w_{x}}{g} - \frac{v_{w}}{A_{S}} \]

Horizontal component - Vertical component

Reference:

R. Bowles, NASA Langley; FAA/NASA Airborne Predictive Meeting; 2/24-25/87

Definitions:

- \(w_{x} \) = kts/sec - horizontal wind rate
- \(g \) = kts/sec - gravity
- \(v_{w} \) = kts - vertical wind velocity
- \(A_{S} \) = kts - air speed

Sign Convention:
- \(w_{x} \) = + kts/sec when tailwind
- \(v_{w} \) = - kts when downdraft

TURBULENCE PREDICTION SYSTEMS
NO WIND SHEAR EVENTS REPORTED
BY PILOTS

INDUSTRY REVIEW OF FORWARD LOOKING SENSOR TECHNOLOGY FOR DETECTION OF WIND SHEAR
NASA Langley Research Center 24-25 Feb. 1987, Roland L. Bowles
HISTORICAL LLWS RESEARCH RESULTS

NASA LEAR - 1978 CALIFORNIA
NASA B57B - JAWS - 1982 DENVER, CO

TEST PROTOCOL:
A HIT IF THE ALARM SOUNDS AND A VERTICAL SHEAR GREATER THAN 0.1 SEC"1 (-10 KNOTS /100 FEET) WAS ENCOUNTERED, OTHERWISE A MISS
REFERENCE: SNYDER

RESEARCH RESULTS: 300 HOURS
42 ENCOUNTERS 100.0% HITS
MISSED ENCOUNTERS 0
NUISANCE ALARMS 0

ADVANCE WARNING RESULTS:

MINIMUM WARNING 14 SECONDS
AVERAGE WARNING 46 SECONDS
MAXIMUM WARNING 68 SECONDS

"ANALOG STUDY OF THE LONGITUDINAL RESPONSE OF A SWEPT-WIND TRANSPORT AIRPLANE TO WIND SHEAR AND SUSTAINED GUSTS DURING LANDING APPROACH"; BY C.T. SNYDER, NASA AMES RESEARCH CENTER; NASA TN D4477; 1968.

TURBULENCE PREDICTION SYSTEMS
TEST PROTOCOL:

A HIT IF THE ALARM SOUNDS AND A VERTICAL SHEAR OF GREATER THAN .15 SEC\(^{-1}\) (15 KNOTS /100 FEET) WAS ENCOUNTERED, OTHERWISE A MISS

A SUCCESSFUL PREDICTION REQUIRED AN ADVANCE WARNING OF GREATER THAN 40 SECONDS

RESEARCH RESULTS: 19 TRACTS FLOWN

8 ENCOUNTERS 75.0% HITS
MISSED ENCOUNTERS 25.0%(2<40S)
NUISANCE ALARMS 4

ADVANCE WARNING RESULTS:

MINIMUM WARNING 5 SECONDS
AVERAGE WARNING 32 SECONDS

REFERENCE: "AIRBORNE INFRARED WIND SHEAR DETECTOR PERFORMANCE IN RAIN OBSCURATION"; BY P.M. KUHN AND P.C. SINCLAIR, ARIS, INC.; PAPER PRESENTED AT AIAA MEETING JANUARY 18, 1987; RENO, NEVADA.

TURBULENCE PREDICTION SYSTEMS
INFRARED SENSING TECHNIQUE

ORIGINAL PAGE IS OF POOR QUALITY

TARGET

INTERSTICES

RECEIVER
TPS's Infrared LLWS Advance Warning Diagram
UNIFORM DISTRIBUTED GASES

INFRARED IS ABSORBED BY THE UNIFORM DISTRIBUTED GASES AS A FUNCTION OF WAVE LENGTH

NOTE: TRANSMITTANCE/KILOMETER

FOR EXAMPLE:

@ 13.5 MICRONS
TRANSMITTANCE = .60/KM

@ 5 KM
TRANSMITTANCE = (.60)^5 = 7.8x

REFERENCE: HANDBOOK OF OPTICS; WALTER G. DRISCOLL, EDITOR; McGRAW-HILL BOOK COMPANY; 1978; FIGURE 17, PAGE 14-43.
Radiative transfer theory via the transfer equation (RTE) demonstrates that a "horizontally looking" infrared (IR) radiometer can easily detect temperature changes as small as 0.3°C at a distance of 10 km. The IR pass band for such observations is the carbon dioxide (CO₂) band. In this instance we refer to transfer calculations in the 695 to 725 cm⁻¹ pass band.

The RTE expresses the radiant emission received through a horizontal path in the atmosphere at an IR detector through a filter, φ(ν), as

\[N = - \int \int B(ν, T) \phi(ν) \frac{dT(ν(CO₂))}{dz} dz dv, \]

where \(N \) and \(B \) are radiance (W cm⁻² sr⁻¹); \(ν \) is wave number (cm⁻¹); \(T \) is temperature (K); \(ω \) is the optical mass of CO₂ (g cm⁻²); \(z \) is distance (cm).

The filter function, \(φ(ν) \), in equation (2) determines the IR pass band to which the CO₂ band low altitude wind shear radiometer responds. Since the CO₂ portion of the spectrum is broad, ranging from nominally 630 to 710 cm⁻¹, it is necessary to choose a passband of a width of 20 to 30 cm⁻¹, within the broad band which will provide a suitable range capability. The absorption (and emission) across the CO₂ band varies considerably thus allowing a greater or lesser horizontal atmospheric penetration. For example the CO₂ Q-branch centered near 667 cm⁻¹ would permit a range of only a few meters.

Weighting functions are defined by

\[\frac{d\Delta ν}{dz} = \frac{K_{AV}}{RT} \exp \left(-\int \frac{K_{AV}}{R} \frac{p q}{\Delta ν} dz \right) \]

where \(T \) is the atmospheric transmission (dimensionless); \(\Delta ν \) is the wave number interval (cm⁻¹); \(K_{AV} \) is the CO₂ absorption coefficient (cm⁻¹ g⁻¹); \(p \) is pressure (g cm⁻²); \(q \) is mass mixing ratio of CO₂ (dimensionless); \(R \) is the universal gas constant (g cm⁻²).

The weighting function describes the range characteristics of the filter, and thus the range of the radiometer. Figure 3 illustrates weighting or ranging functions for various center frequency passbands either 20 cm⁻¹ wide for CO₂. The position of the peak of the weighting function defines the "look" distances or range of the instrument. As an example we employed the weighting function of Fig. 3 at a center frequency for the CO₂ filter of 685 cm⁻¹ (20 cm⁻¹ wide). We assumed a horizontal temperature constant at 228K in one instance and 288K from 1.0 to 1.4 km distance in the other calculation. The CO₂ mixing ratio (mass) was assumed 5.28 x 10⁻⁶ w cm⁻² sr⁻¹. This corresponds to a temperature difference of 2K.

Figure 3. Carbon dioxide horizontal weighting functions centered at the indicated frequencies.

REFERENCES

IRCALPW6 10/9/87

1 MICRON BW = 13-13.5 MICRONS

DISTANCE IN KM

SIGNSAL TO NOISE RATIO

13

10 9 8 7 6 5 4 3 2 1 0

+ 13.1

+ 13.2

+ 13.4

+ 13.5
VALIDATION OF INFRARED WEIGHTING FUNCTION

In 1979, researcher Dr. Peter Kuhn and NASA test pilot Mr. Glen Stinnet flew the NASA Lear Jet #705 over the Santa Barbara Channel alternating between land (40° C) and the channel (15° C) to validate the weighting function.

This validation involved using a Barnes PRT5 radiometer and interchanging 6 CO2 filters until the weighting function was validated.

Reference: Personal correspondence Dr. Peter Kuhn; August 1987
THE END PRODUCT OF AIRBORNE IR SENSOR IS:

\[
\frac{\Delta \phi_e \text{ (change in radiant flux)}}{\Delta t \text{ (time)}}
\]

FROM WHICH WE GET:

\[
\frac{\Delta T \text{ (temperature)}}{\Delta t \text{ (time)}} \quad \text{OR} \quad \frac{\Delta T}{t - t_0}
\]

FROM THIS WE WILL CALCULATE A HAZARD INDEX WHICH APPLIES TO THE AIRCRAFT'S FLIGHT PATH.
WIND SHEAR "HIT"

\[F = \frac{\dot{W}_x}{g} - \frac{W_h}{V} \]

0 HAZARD INDEX

0 ALERT AND WARNING THRESHOLD DETERMINED BY MAX. PERMISSIBLE F IN RELATION TO AIRCRAFT PERFORMANCE CAPABILITY

0 F IS A SENSED QUANTITY

0 HAZARD INDEX APPLICABLE TO BOTH INSITU-SENSED INFORMATION AND REMOTE-SENSED WIND SHEAR

INDUSTRY REVIEW OF FORWARD LOOKING SENSOR TECHNOLOGY FOR DETECTION OF WIND SHEAR
NASA Langley Research Center 24-25 Feb. 1987, Rowland L. Bowles
WE NEED TO ASSESS THE THREAT TO THE AIRCRAFT IN BOTH THE HORIZONTAL AND VERTICAL WIND COMPONENTS.

-HORIZONTAL CASE

THERE IS A GOOD EMPIRICAL RELATIONSHIP BETWEEN TEMPERATURE DROP AND HORIZONTAL WIND VELOCITY.

TURBULENCE PREDICTION SYSTEMS
REFERENCE: F. PROCTOR/R. BOWLES, NASA LANGLEY RESEARCH CENTER
FROM THE NASA TASS MODEL THE RELATIONSHIP IS:

\[\Delta U m/s = 2.5 \times e^{\frac{-\Delta T}{c}} \]

SO TO GET HORIZONTAL PORTION OF F FACTOR WE GET:

\[F_R = -\Delta T \times 2.5 \]

T IN DEG C G IN m/s

WHICH THEN IS THE TEMPERATURE EQUIVALENT OF:

\[F_R = \frac{w \times x}{g} \]

NEGATIVE BUOYANCY HAS LONG BEEN RECOGNIZED AS THE MAJOR FORCING FACTOR IN DOWNBURSTS.

THE BUOYANT FORCE IS:

\[F_B = g \frac{\Delta T^*}{T_m} \]

WHERE

\[\Delta T = T - T_m \]

\[T = \text{TEMPERATURE OF AIR PARCEL} \]

\[T_m = \text{AMBIENT TEMPERATURE} \]
FOSTER'S WORK ALLOWS US TO CALCULATE THE VERTICAL VELOCITY FROM THE TEMPERATURE DROP

\[w_w \int_{w_0}^{0} dw = \frac{g \Delta T^o}{T_m} \int_0^Z (1 - z/Z) \, dz \]

WHICH REDUCES TO

\[w_w = -\frac{g \Delta T^o}{T_m} \]

AND

\[w_w = \sqrt{-\frac{g \Delta T^o}{T_m}} \]

SEE PLOT OF FOSTER VS 191 TEMPERATURE DROP RELATED TO VERTICAL WINDS

REFERENCE: "THUNDERSTORM GUSTS COMPARED WITH COMPUTED DOWNDRAFT SPEEDS"; BY DONALD FOSTER; MONTHLY WEATHER REVIEW, MARCH 1958, PP. 91-94.

REFERENCE: "A SHORT COURSE IN CLOUD PHYSICS"; BY R.R. ROGERS; 2ND EDITION; INTERNATIONAL SERIES IN NATURAL PHILOSOPHY VOLUME 96; 1979.

TURBULENCE PREDICTION SYSTEMS
WINDS VERSUS TEMPERATURE DROP

VERTICAL DOWNDRAFT

MAXIMUM TEMPERATURE DROP (DEGREES C)

DELTA 191

KNOTS

MAXIMUM

312
Figure 8

- Precip
- Wet MB
- Precip

Water Contamination of Optical System

ΔT (°C)

VH

W (fpm)

DISTANCE (km)

ORIGINAL PAGE IS OF POOR QUALITY

313

SINCLAIR, 4th
9/87
WE CAN THEN ASSUME SOME Z (ALTITUDE)

AND

\[
Fv = \sqrt{\frac{-g \cdot Z \cdot \Delta T}{Tm}} \cdot \text{Airspeed}
\]

WHICH IS THE TEMPERATURE EQUIVALENT OF

\[
Fv = \frac{Vw}{As}
\]

SO COMBINED HAZARD FACTOR AS A FUNCTION OF TEMPERATURE IS:

\[
F = \frac{2.5 \cdot -\Delta T}{g} + \sqrt{\frac{-g \cdot Z \cdot \Delta T}{Tm}} \cdot \text{Airspeed}
\]

TURBULENCE PREDICTION SYSTEMS
CONCLUSIONS:

NOW WE HAVE COVERED BOTH ASPECTS OF CONCERN TO THE AIRCRAFT FROM THE HORIZONTAL WIND RATE OF CHANGE AS A FUNCTION OF EMPIRICAL AND MODELLED WORK RELATED TO TEMPERATURE DROP.

VERTICAL WIND VELOCITY FROM A WELL ACCEPTED FORCING FACTOR RELATED TO TEMPERATURE DROP

THIS CALCULATED HAZARD INDEX HAS RELEVANCE TO THE IN SITU SYSTEMS PRESENTLY IN USE

TURBULENCE PREDICTION SYSTEMS
BLOCK DIAGRAM of
TURBULENCE PREDICTION SYSTEMS
ADVANCE WARNING SYSTEM
WHERE TO NOW:

THEORETICAL WORK IN PROGRESS

- NUISANCE ALARMS
- COLD FRONTS
- GUST FRONTS
- SPECIAL CASES
 SNOW DRIVEN WITH STABLE LAYER

DEFINITION OF STANDARD TEMPERATURE NOISE FIELD

PROBABILITY OF NUISANCE ALARMS FOR INFRARED SYSTEM

PROBABILITY OF NUISANCE ALARMS FOR AN INTEGRATED SYSTEM

TURBULENCE PREDICTION SYSTEMS
OPERATIONAL ENVIRONMENT

WE HAVE OBTAINED WIDE-SCALE USER INTEREST TO ASSIST US IN EVALUATING OUR SYSTEM

WE ARE PROCEEDING WITH A PRIVATELY FUNDED IN-SERVICE EVALUATION OF OUR SYSTEM (12 MONTH PROGRAM)

QUESTIONS WE WANT TO ANSWER

WILL OUR OPERATIONAL SYSTEM PROVE AS RELIABLE AND ACCURATE AS THE RESEARCH INSTRUMENTS DID?

IF NO:

REEVALUATE INFRARED AS A VIABLE CANDIDATE

IF YES:

THE NATION WILL HAVE INCREASED AIR SAFETY NOW

TURBULENCE PREDICTION SYSTEMS
TPS IN-SERVICE EVALUATION

GOALS:

- PROVE TPS' S ADVANCE WARNING SYSTEM PERFORMS WELL IN AN OPERATIONAL SETTING

- HELP ESTABLISH INDUSTRY EVALUATION CRITERIA

- ASSIST IN OBTAINING FAA CERTIFICATION

TURBULENCE PREDICTION SYSTEMS
TPS'S FUTURE

GOAL: FAA CERTIFIED SYSTEM (1988)

METHOD: IN-SERVICE EVALUATION

- INDUSTRY PARTNERS
 * PIEDMONT AIRLINES - 4 SYSTEMS 1988
 * HONEYWELL/SPERRY CORPORATION

- TIMETABLE FOR ALL IN-SERVICE EVALUATIONS
 * 1988
 * EXPECTED AIR TIME
 12 SYSTEMS - 24,000 FLIGHT HRS

- POST ANALYSIS OF IN-SERVICE DATA
 * TPS (HONE ALGORITHMS AS WE LEARN)
 * INDUSTRY PARTNERS
 * FAA
QUESTIONS AND ANSWERS

JIM EVANS (MIT Lincoln Labs) - Your program sounds like a good way to start trying to address some of the false alarms. On the other hand, one hopes they don't penetrate microburst very often. How are you working at trying to establish what the detection probability is for this combined system?

PAT ADAMSON (TPS) - One of the things we are going to do--and that was part of my last slide--Since the hazard index is applicable to both systems assuming that everybody did their math correctly, we will time tag the data. Part of our data gathering technique will be to look for shears or hazard index such that they may not be terribly hazardous to the aircraft. And it will look for a similar event to occur at some time after that in the reactive system. That is what we are hoping to do. If we get shears over the year that is bad or good, I don't know which.

JIM EVANS (MIT Lincoln Labs) - Again, I understand how you can do that comparison, what I meant was how will you? This plane could fly all summer and never see a microburst. How will you establish whether it detects microbursts or not, in this situation? Wouldn't you really have to have the same system and get a plane out and try to fly it around and try to fly it through microburst?

PAT ADAMSON (TPS) - Well, I don't think so. I mean, I think that has already been proven. I think for example, the report I just showed from Quinn and Sinclair was a completely equipped plane that the B57B was a completely equipped plane--I think they worked properly, it showed they worked in the optimum research section. I don't think we are every going to get proof that they work in the operational setting--nobody is going to take that chance.