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In this article a method to define the labels of the state diagram of a linear finite-state

code [1] is presented and investigated. This method is particularly suitable for simple
hardware implementation since it simplifies the encoder structure. The method can also

be applied to the labeling of a state diagram that is not completely connected to obtain

a linear finite state code with larger free distance.

I. Introduction

It was shown in [1] that a finite-state code (FS code)on a

completely connected state diagram with 2m states requires at

least 2m÷l labels. Also, a simple method to define such labels

has been suggested in [1]. However, the codes constructed

using the method in [1] are not linear. In this article, another
method using shift registers to define the labels of the state

diagram of the FS codes is presented. This method is particu-

larly suitable for simple hardware implementations since it

simplifies the encoder structure. The method can also be

applied to the labeling of a state diagram that is not com-

pletely connected to obtain an FS code with larger free

distance. Lastly, a mapping scheme to assign the cosets to the

labels generated by the shift registers is described. It can be

shown that by using the above method, a linear FS code can
be constructed.

In order to facilitate the discussion on FS codes with non-

completely connected state diagrams as well as those with

completely connected state diagrams, the following definition

of FS codes is adopted:

Definition 1: An (n, k, m) finite state code (FS code) on

a c-connected state diagram is a code with the following

properties:

(1) The code has rate k/n.

(2) Its operation can be represented by a state diagram
with 2 rn states.

(3) There are 2c (c _< m) branches going into each state

and 2 c branches going out of each state.

(4) Each branch of the state diagram is associated with a

code (code word length = n and code size = 2k-c), and

any two different codes associated with different

branches are disjoint.

II. Preliminaries

Some important results in the theory of convohitional
codes will now be reviewed. These results will be referred to in

the proofs in later sections.
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A typicalencoderof an(nl, c, m)convolutional code con-
sists of a linear sequential circuit (with c shift registers) that

accepts c input bits and outputs n I bits. It is well known that
the operation of the encoder can be represented by (1) a state

diagram with 2 m states, 2c branches going into each state, and

2 c branches going out of each state; or (2) a c × n 1 transfer
function matrix (denoted by G [D]) such that the entries of

the matrix are polynomials in D, representing the generator
sequences of the code.

In order to avoid catastrophic error propagation, the trans-

fer function matrix must satisfy Massey and Sain's condition

[2] (a necessary and sufficient condition) on non-catastrophic
codes:

GCD IAi(O ), i = 1,2 .... , (_1)1 = D/

for some l/> 0, where Ai(D), i = 1,2 ..... (rid) are the deter-
minants of the (nd) distinct c × c submatrices of the transfer
function matrix G(D).

III. Generation of Labels by Shift Register

FS code encoders have structural properties very similar

to those of convolutional encoders, and their operation can
be described by a state diagram. In the case of a convohitional

code, each branch of the state diagram is labeled by an n l-bit
output sequence, whereas in the case of a finite-state code

according to Definition 1, each branch is labeled by a code
that is not necessarily linear. Because of the similarities be-

tween convohitional codes and finite state codes, it should be

expected that much of the theory on structural properties of
convolutional codes will be applicable to finite state codes.

In order to guarantee a noncatastrophic finite state code

with good distance properties, the labeling of the branches of

the state diagram must satisfy the following conditions [1] :
(1) different labels out of each state; (2) different labels into

each state; and (3) no disjoint paths with identical labels that

remain unmerged indefinitely.

A method to assign the labels of the state diagram of a

finite state code by using the linear sequential circuit (with

shift registers) of a noncatastrophic (nl, c, m) convolutional
code is now described. Let the c shift registers have lengths

l I, l2 ..... lc where l 1 + l 2 ... + lc = m. The pth row of the

corresponding c × n1 transfer function matrix thus consists

of polynomials in D of degree no greater than lu for 1 _<p _< c.
The state diagram of the convohitional code consists of 2 m

states (each state is defined by the shift register content);

also, there are 2 c branches going into each state and 2 c
branches going out of each state. Each branch in the state

diagram is assigned an n1-bit sequence bo, b I ..... bnl-1,
which consists of the n I output bits of the shift registers. Let
us assign to the branches of the state diagram, which are asso-

ciated with the n I -bit sequence bo. b I ..... bn I the label i

such that i = bo + 2b I +... + 2n-I bn -1" Each of these labels
represents one of the disjoint codes. ]'here are 2 nt of them.

This modified state diagram of the convolutional code is used

as the state diagram of an (n, k, m) finite state code on a
c-connected state diagram.

The construction of a shift register circuit that generates
the state diagram of a finite state code that satisfies conditions

l, 2, and 3 is given as follows. It is not hard to see that condi-

tion 1 is satisfied if, for a fixed shift register content, different

inputs to the shift registers produce different outputs. This can

be achieved if there exists at least one c × c submatrix _i(D)

of the transfer function matrix G(D), i= 1,2 ..... (nc_), such
that the term "1" appears exactly once in each row and in

each column of _i(D). Similarly, condition 2 is satisfied if,
for a fixed input, different shift register contents produce
different outputs. This can be achieved if there exists at least

one c × c submatrix f2/(D), j = 1, 2 ..... (nc), such that the
term Dry representing the last shift register stage of the pth

shift register appears exactly once in row p for 1 _<p _<c, and
each of these D l, , D z2 .... , D tc terms appears in different

columns of f2/(D).

It was shown in [3] that if the (nl, c, m) convolutional
code that generates the state diagram of the finite state code is

noncatastrophic, then the labeling also satisfies condition 3.

Thus, the c X n I transfer function matrix G(D)of the convo-

lutional code must satisfy Massey and Sain's condition [2]. It

will be shown in later sections that the minimum value n_
could have is c + 1. Two algorithms to construct a c × c + 1

transfer function matrix G(D) of the convolutional code are
given as follows:

Algorithm 1: Completely connected state diagram, dy =
2 branches.

(1) Construct a c × c matrix G'(D) such that

a_. •,I(D) = 1. i= 1 ..... c. j = i

= D, i = 1 ..... c, /' = (i+l)modc

= 0 otherwise

(2) Append the column [1 ..... 0] T to G'(D) to obtain a

c X c + 1 matrix G(D).
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An example of a 3 × 4 transfer function matrix G(D) con-

structed using the above algorithm is given in Table 1. It is

obvious that G(D) satisfies conditions 1 and 2. Also, it is not

hard to see that one of the determinants, £xj(D), j = 1 .....
(c÷ 1h equals 1 and the rest are nonzero. Thus

C ]_

C+I)]GCD j(D), j = 1 ..... = 1
C

Massey and Sain's condition is satisfied and the state diagram

generated by this transfer function matrix satisfies conditions
1,2, and 3.

Algorithm 2: Non-completely connected state diagram, dy =
3 branches.

(1) Construct a c × c matrix G'(D) such that

Gi/(D = + j = i)' 1 D, i=1 ..... c,

= D 2, i = 1 ..... c, j = (i+l)modc

= 0 otherwise

(2) Append the column [1 ..... 0] T to G'(D) to obtain a

c × c + 1 matrix G(D).

An example of a 3 × 4 transfer function matrix G(D)

constructed using the above algorithm is given in Table 2. Again

it is obvious that G(D) satisfies conditions 1 and 2. Also, it

can be shown that one of the determinants, AI(D), equals
D2(c-1) and the rest are nonzero. Thus

GCD A i (D), j = 1 ..... =
C

. where l is some integer. Massey and Sain's condition is satisfied

and the state diagram generated by G(D) satisfies conditions

1,2, and 3.

IV. Properties

On the basis of the labeling procedure by shift register

above, which is based on a linear sequential circuit, the finite

state code possesses a mathematical structure that facilitates

encoding/decoding and simplifies hardware implementation.

Also, this labeling procedure is applicable to the construction
of finite state codes with incompletely connected state dia-

grams to obtain larger free distance.

Definition 2: Let N be the number of states of a finite state

code. A labeling matrix L of the state diagram is defined to be

an N × N matrix, where L(i, j) denotes the label from state i

to state j.

Let u = (u 1, u2,..., u c) represent the c input bits to the

convolutional encoder. Let D = (D 1, D 2 ..... De) represent
the last c shift register stages of the convolutional encoder.

That is, Dp represents the term Dip in row p for 1 _<p _< c.
In the following theorems, some properties of FS codes which

use the new labeling procedure are revealed.

Theorem 1: For a state diagram with 2m states generated by

G(D) which satisfies conditions 1, 2, and 3, if the graph has
2c branches going into each state and 2c branches going out of

each state, c _< m, at least 2c+1 labels are required.

Proof: Suppose that 2c labels suffice. The transfer function

matrix G(D) of the convolution code that generates the state

diagram of the FS code is then a c × c matrix. By condition 1,
since different labels are coming out of each state, the c out-

put bits can be written as

uA+d

where A is a c X c nonsingular matrix and _d is a constant
binary c-tuple which depends upon the shift register contents

of the encoder. Thus, IAI = a, where a is a nonzero integer.

Thus, the term a is contained in the expression of IMI. Simi-

larly, by condition 2, since different labels are going into each

state, the c output bits can be written as

DB+e

where B is a c × c nonsingular matrix and e is a constant

binary c-tuple, depending upon the input bits and the shift

register contents other than D],..., D c. Again, [B[ = 13for
some nonzero integer 13.Therefore the term 13D m = 13Dll+'"+lc

is contained in the expression of IMI. Thus, IMI = 13Dm + ...

+ a and IMI is not of the formD t for some l_> 0. This violates

Massey and Sain's condition and the convolutional code is

catastrophic. This in turn implies that the state diagram

generated by this convolutional encoder is catastrophic and
thus at least c + 1 output bits for the convolutional encoder

are needed. This implies that at least 2c+1 labels are needed in

the state diagram. •

In fact, Algorithm 1 and Algorithm 2 in Section II show

that c + 1 output bits are sufficient to guarantee that condi-

tions 1,2, and 3 are satisfied.

Theorem 2: Let L be the labeling matrix of a state diagram

generated by G(D) which satisfies conditions 1, 2, and 3.

Row i and row j (column i and column j), i 4: j, of L have
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either the same set of labels or a completely different set of

labels.

Proof: The state of the convolutional encoder that generates

the required state diagram of the finite state code is defined as

the shift register contents of the encoder. For an (nl, c. m)

convolutional code, let the binary m-tuple [D l ..... Dm]

denote the state that corresponds to the shift register stages

D1,... , D m of the encoder. Note that the encoder is con-

structed in such a way that for a fixed state [D 1 .... , Dm],

different inputs to the shift registers produce different outputs

(condition 1). If [D 1 ..... Dm] = [0 .... , 0], the set of all

possible binary n 1-tuples (labels) that represent the output

bits of the encoder forms a c-dimension subspace K of an

n l-dimension vector space over GF(2) (because the encoder

is a linear sequential circuit). This set K is isomorphic to the

row of the labeling matrix L that corresponds to the state

[0 ..... 0]. Now, if [D 1 ..... Dm] 4:[0 ..... 0], then

it is not hard to see that the set of all possible output bi-

nary n 1-tuples (output bits of the encoder) is of the form

K + £, where e is a binary n 1-tuple (constant) determined by

[D 1 ..... D m ]. If _e_ K, then K and K +_e are disjoint (since

K is a c-dimensional subspace in an n j-dimensional vector

space). If e E K, then K = K + £. A similar argument holds

for the case ofK+e 1 andK+e 2,wheree 1 and_e 2arebinary

nl-tuples determined by different [D l ..... Dm]'S. That is,

if el q_ K + £2, then K +_e 1 and K +_% are disjoint. If_e 1 E

K + £2 then K + e 1 = K + g2' This proves that any two rows of

a labeling matrix L have either the same set of labels or a com-

pletely different set of labels. The proof for the case of the

columns is similar to the one above. •

V. Assignment of Cosets to Labels

A code C over GF(q) is said to be linear if and only if the

following condition is satisfied:

V_a, _bEC and VT, 6EGF(q), 7g+6bEC

In an FS code. even though we have a linear convolutional

structure (labels are generated by outputs of shift registers),

the overall code may not be linear if the cosets are not prop-

erly assigned to the outputs of shift registers. There may exist

two code word sequences such that their sum is not a legal

code word sequence. In order to generate a linear FS code the

following well-known theorem in linear algebra can be used:

Theorem 3 (without proof): If C is a vector space and S is a

proper subspace of C, then there exists a subspace W of C
such that

S+W=C

sn w = {0}

dimS+dimW = dimC

The following discussion describes a way to generate a

linear FS code. The labeling of an FS code can be divided into

two parts: (1) generation of labels to the branches in the

state diagram; and (2) assignment of cosets to the labels.

Part 1 was taken care of by using a convolutional encoder to

generate labels to the state diagram of the FS code. For

part 2, the method proceeds as follows. Let C be the parent

(n, k) code. Let S be an (n, k I ) subcode of C. By Theorem 3.

there exists a subcode W of C (W is an [n, k - k I ] code) such
that

S+W=C

Sn W = {Q}

dimS+dim IV = dimC

The 2 k-k, cosets are constructed by adding each word in

W to S. That is,

_w+S V_wEW

Note that the set of all binary k - kl-tuples is isomorphic

to W. Let {_wo, _w1..... --Wg-k1-1)be a basis of IV. Let bo,

bl .... , bk-k,-I be the k- k I output bits of the convolutional
encoder. Let the coset assigned to the branches labeled by the

binary (k - kl)-tuples bo, b 1..... bk-k,-I be denoted by

L (b o, b I ..... bk_kt_l ). Let us assign

L(bo, b I ..... bg_k_ 1) = S+ {bo_Wo+b l_w1 +...

+ bk_kl_ 1 W-k-kx-1 )

This assignment of cosets to the branches in the state diagram

guarantees the linearity of the FS code.
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