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ABSTRACT

Thermal waves generated by either turbine rotor
blades cutting through nonuniform combustor tempera-

; ture fields or unsteady burning could lead to thermal
fatigue cracking in the blades. To determine the mag-
nitude of the thermal oscillation In blades with com-
plex shapes and material compositions, a finite
element Galerkin formulation has been developed to
study combustor generated thermai wave propagation In

a model two-dimensional duct with a uniform plug flow
profile. The reflection and transmission of the ther-

mal xaves at the entrance and exit boundaries are
determined by coupling the finite element solutions at
the entrance and exit to the elgenfunctions of an
infinitely long adiabatic duct. Example solutions are
presented for a variety of cases. 	 In general, thermal
wave propagation from an air passage into a metallic
blade wall is small and not a problem. However, if a
thermal barrier coating is applied to a metallic sur-
face under conditions of high heat transfer, a good
Impedance match is obtained and a significant portion
of the thermal wave can pass into the blade material,

NOMENCLATURE.

A	 property tensor, see Eq. (5)

A +n	 amplitude of + going n entrance, mode

A-n	 amplitude of - going n entrance mode

an	 damping coefficient, Eq, (A7)

B + n	 amplitude of + going exit mode

b	 uniform entrance and exit duct height.

c	 specific heat of solid and gaseous medium at
constant pressure

do	 propagation constant, Eq (A8)

f	 frequency

h	 heat transfer coefficient

Imag imaginary part

i

k	 thermai conductivity of the medium

Nm	 number of modes In expansion, Eq. (6) and (A6)

n	 mode number

n	 unit outward normal

n +	modified node number, Eq, (A9)

Re	 real part

t	 time

U	 plug flow velocity

X	 separation variable, Eq, 03)

x	 axial distance coordinate

Y	 separation variable, Eq. (A3)

y	 transverse distance coordinate

a	 thermal diffusivity, Eq. (A2)

D	 propagation constant, Eq. (62)

r	 thermal transfer coefficient, Eq. (11)

s	 element thickness at the wail

n	 thermal impedance, Eq. (B9)

e	 spatial (transformed) temperature

ea	 entrance dimensionless temperature

eb	 exit dimensionless temperature, Eq. (7)
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et 	 total dimensionless temperature, Eq. (2)

1^	 separation constant, Eq. W)

P	 density of propagation medium

W	 angular velocity

Su e^ rsrr1 t:

approximate finite element prediction

Subscripts:

I	 region 1

2	 region 2

a	 entrance duct

b	 exit duct

nodal point

o	 incident wave

r	 reflected wave

t	 transmitted wave

x	 x direction component

y	 y direction component

INTRODUCTION

In new aircraft combustor designs, higher outlet
temperatures are being considered which could give
rise to large amplitude thermal stresses in aircraft
turbine blades and lead, perhaps, to thermal structure
failure. Also, current earth to orbit rocket engines
utilize hydrogen/oxygen gas generators that drive tur-
bines used to power the oxygen and fuel pumps, These
systems are similar to the hat section in aircraft
turbine engines and therefore may experience similar
dynamic thermal stresses.

In the present paper, the sources of unsteady
thermal waves . in the exhaust gases of a gas turbine
engine will be discussed as well as how thermal waves
propagate and couple to solid boundaries. Next, a
finite element analysts is developed which is capable
of evaluating thermal wave absorption In a duct with

uniform (plug) flow and a wall composed of thermally
absorbing materials,

THERMAL WAVE SOURCES

At least two mechanisms can produce thermal wave
propagation in gas turbine passages, First, because
of nonuniform burning in the combustor, spatial cir-

cumferential variations in the hot gas temperature

field exist (Norgren and Riddlebaugh, 1985), as shown
in Fig, 1. When the rotating turbine blades cut

through the nonuniform circumferential temperature

field, temporal harmonic thermal oscillations will be
produced, For a typical turbofan engine, disturbance
frequencies of 600 Hz or higher can be expected,

Secondly, large temporal variations in the tem-
perature field can exist at a fixed spatial location

resulting from unsteady burning of the air-fuel mix-
ture (Sofrin and Riloff, 1976), as shown in Fig, 2.

This temperal oscillation will effect both the turbine
stator and rotor blades.

The present paper is concerned with how these
thermal waves propagate and Interact with the blade
material,

GEOMETRIC MODEL

The curved turbine blades are mode l ed by the s'r-
pie rectangular geometry shown in Fig, 3(a). 4ekt,
the idealized flow duct shown in Fig. 3(b) is used to
simulate the flow in a turbine passage. The interior
passage of the duct is assumed to be air moving with
a uniform (plug) velocity profile. A metaliic or
ceramic blade represents the upper duct wall in the
central region and the lower wall Is assumed to be a
line of symmetry, Outside this range the entire duct
is assumed to be 'Insulated. The stagnation region
near the blade leading edge and the curvature of the

passage have not been considered,

METHOD OF ANALYSIS

The thermal sources discussed in the previous
section are assumed to generate a harmonic temperature
field which will propagate down the duct at approxi-
mately the flow velocity (see Appendix A, Eq. (A13)),
As the input driving boundary condition to this prob-
lem, a positive going thermal wave of known magnitude
is assumed at the entrance 0 s 0) of the duct. The

thermal wave may be plane or may have significant
transverse temperature variations, The present paper

will focus on the interaction (absorption) of these
"propagating" thermal duct waves with the wail blade
material. High wall absorption could lead to large

thermal stresses which could shorten the blade life
by increasing thermal fatigue,

In the uniform infinitely long entrance and exit
regions with perfectly Insulated walls, the exact
solution of the governing differential equation can
easily be solved (see Appendix A), In contrast, exact

analytical solutions are generally not possible in the
central region adjacent to the turbine blade', conse-
quently, the finite element analysis is used to deter-
mine the temperature fields both in the air passage
and in the blade.

Thermal wave reflection (usually very small) at

the inlet and transmission (usually largr) at the duct

exit are determined by matching the finite element
solutions In the interior of the central region to the
known analytical eigenfunction expansions in the uni-
form inlet and outlet ducts.

GOVERNING EQUATION

The propagation of thermal disturbances will be

governed by the convective energy equation which for
uniform (plug) flow, neglecting viscous dissipation,
can be written as (Bird et al., 1960, Table 10,2-3)
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Eq. (1) reduces to

	

az (kkx Ae / + ay (ky ^y) - UPC a8 - I,,.- 0	 (3)

For use in the finite element analysis to follow, it
is convenient to express Eq, (3) in vector form

	

9 • A 9 ve	 UPC ae impc6 . 0	 (4)

where the property tensor A is represented by

kx 0

	

A	 0	
k 	

(5)

The vector product of the tensor A and a vector fol-
low the common definition (Bird et al., 1960, p. 730,

Eqs. (A.4) to (19)),

UNIFORM DUCT ANALYTICAL SOLUTION

The proper termination boundary condition of the

finite element region requires that thermal waves are
not artificially reflected by the difference equations

employed at the boundary nodal points (Baumeister,
1996). The analytical solution of Eq, (3) for thermal
wave propagation in a uniform insulated duct infinite
in length will be employed to give the termination
boundary condition for the finite element region, The

analytical solution is derived in Appendix A, Eq. (A6)
and will not be repeated here.

Without flow, thermal waves are highly damped in
air (see discussion in Appendix A, Eq, (AID)), How-
ever, when flow Is present, the thermal waves can pro-
pagate nearly undamped in the duct like their counter-
parts in acoustics and electromagnetics. Figure 4
shows how only a very small Mach number is required to

yield a unity attenuation coefficient, Thus, the pos-
itive going wave at the entrance can be approximated

as

Nm

	

e (x,y) S;Nm A+ Cos 1
(n - 1),ry) e i(W/U)x	 (6)

a	
n-1	

n	 !	 b

In this case, the propagation speed is equal to the

velocity of the media, According to the usual jargon
of acoustics and electromagnetics, the Fourier series
terms represented by the cosine term in Eq. (6) are

called modes. For example, for n equal to 1, the
transverse shape (y-dimension) is plane and this is
commonly called mode 1 or simply plane wave propaga-

tion, Mode 2 and higher are represented by the more

complicated shapes defined by the Cosine term and are
called higher order mode propagation. In general,
discontinuities of any kind, such as the metal blade

in Fig. 3, will generate higher order modes because
the uniform pattern is disturbed by the discontinuity.

BOUNDARY CONDITIONS

Input Conditions

The analysis assumes a given number Nm of posi-
tive going A+N waves. These waves (modes) effec-
tively set the level of the scalar temperature field

in the finite element region. in most of the example
solutions to be presented, a plane wave input Is

assumed; that is, A+l is taken as unity and the rest
of the higher modal amplitudes are assumed zero.

Temperature Continuîity,Y
The temperature field is continuous across an

interface except where heat sources are present,
Thus,

ea - e	 (x-0	 0(yc b)	 (7)

where ea is the modal representation of the tempera-
ture field in the analyticai inlet region given by
Eq. (A6) of Appendix A and 6 represents the finite

element approximation for temperature at the Inter-

face. The hat over 6 implies an approximate finite
element numerical solution to the true solution, Sim-
ilar equations are used at the exit, For more
details, see Baumeister 1586, Eqs. (43) to (52).

H eitt Continuit

Heat lux continuity at the Interface requires
that

80
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(inlet)	 (8)

86b

k  Ve • "n - +kb 
i	

('exit)	 (9)

The sign change in Eqs. (8) and (9) comes directly
from the change of the unit outward normal.

Insulated Wall
At the Insulated wall, the gradient of tempera-

ture will be zero normal to the boundary, Thus the
last required boundary condition is

V$ • n	 0
	

(10)

FINITE ELEMENT THEORY

The finite element formulation of the energy

equation was generated by using the weighted residual
approach with the Galerkin approximation to obtain an
Integral form of the variable property wave equation

over the whole global domain.. The continuous domain
is first divided into a number of discrete areas as

shown In Fig. 3(b), This pattern as well as a symmet-
rical diamond pattern (Baumeister 1986, Fig, 9) were

employed.
In the classical weighted residual manner, the

temperature field is curve fitted in terms of all the
unknown modal values 6(xi,yi), The finite element

aspects of converting Eq, (4) and the boundary condi-

tions into an appropriate set of global difference
equations can be found in text books (Sergerlind,

1976) as well as Ref. 4 and for conciseness will not
be presented herein.

A variety of boundary conditions will be used in
the finite element solution of Eq. (4). Each of these

conditions will now be briefly discussed.
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SIMPLIFIED ANALYSIS

In Appendix 8, a simple theoretical model has

been developed to predict the thermal transfer coeffi-
cient of a thermal disturbance in air (medium number
1) Into a semi-infinite solid medium (medium number
2). The theory is shown by the solid line to Fig.
S.	 The simplified analysis will be useful in inter-
preting the more exact numerical results. The wall
to gas temperature transfer function shown on the or-
dinate is a measure of the ma gnitude of temperature
,penetration Into the solid, The key property group
,gamma developed In Appendix 8 Indicates that the ther-
mal transfer into the blade is proportional to

h (2at 1/2
r - R 

^_)	
( I I

As seen In Eq. (11), the higher the heat transfer
coefficient, the better the energy transfer or impe-

dance match between the media. The transfer function

ranges from zero (no penetration) to unity (full pene-
tration) at the surfaco of the solid. The disturbance
temperature will fall quickly in the solid material

(see Eq. 010)), thus giving rise to large thermal
stresses.

Heat transfer coefficient on turbine blades are
on the order of 1200 W/m 2 K (Simoneau, 1985, Fig. 10)

to 5700 W/m2 K in high pressure applications (Gladden
and Proctor, 1985, Fig. 8). With a stainless steel
blade experiencing a driving frequency of 500 Hz, the
simple theory predicted a very low temperature trans-
fer function as shown by the calculated values near

gamma of 0.01 in Fig. 5. Consequently, thermal wave
propagation In conventional gas turbine engines gener-
ally have very low thermal transfer coefficients and

does not represent a problem,
Higher heat transfer coefficients, however, will

lead to a better impedance match. In the SSME (Space
Shuttle Main Engine) turbopump turbine, maximum heat

transfer coefficients of 280 000 W/m2 K have been pre-

dicted (Abdul-Aziz, 1987), Figure 5 displays trans-
mission functions on the order of 20 percent in the
stainless steel wall at a driving frequency of

1000 Hz.
Recent research (Metal Working News, 1987) at the

NASA Lewis ResearchCenter as we'll as ihdustry has
been concerned with ceramic coating of turbine blades
to allow operations at higher gas temperature and
achieve greater power plant efficiencies, In the
schematic shown in Fig, 6, thermal barrier coatings
(T8C) reduce the metallic blade temperature by adding
a thin insulator to the outer surface. The low ther-

mal conductivity of the ceramic effectively insulates
the steady heat from penetrating the blade. However,.
as seen in Eq. (11), smaller values of the thermal
conductivity k drives the value of gamma to larger

values, A ceramic blade in the SSME environment had
a transfer function of nearly 70 percent, as shown in

Fig. 5,

RESULTS OF NUMERICAL ANALYSIS

The finite element theory will now be applied to

some simple examples for code validation and to some

typical hat gas turbine environments. The true value
of the finite element theory would be in evaluating

configurations with multiple ceramic and metallic

layers or other geometrical complications.

Example 1 - Very Low Velocity Insulated Duct

Consider the problem of an Infinitely long duct
with Insulated walls and with a single higher order
mode (n n 3) propagating to the right from minus
Infinity, The amplitude of the wave is assumed unity
at an axial position of x equals zero with a fre-
quency of x Hz, The ratio of Ub/ax has a value of
50. For this case, the right going wave is moderately

damped as shown in Figs. 7 and 8.
As seen in Fig. 7, the exact analytical results

for the real and Imaginary temperatures and the finite
element analysis are In very good agreement, The real
and imaginary solutions will generally display the
spatial oscillating nature of the transformed time
independent 00,y)  solution. Figure 9 displays simi-
lar good agreement between the exact analytical and
the finite element theories for the magnitude of the
temperature oscillation. As .seen in Fig. 8, the mag-
nitude of the thermal wave decays because the thermal
damping coefficient as predicted by the theory is

large indicating that the waves energy Is diffused
into the fluid, The magnitude of OT is defined as

()T J - Iee iwt l	 Real (0) 2 + Imag (9) 2	(1.2)

As seen in Figs, 7 and 8, the variable time does
not appear, At a particular location, the disturbance

temperature 9	 rises and falls according to the har-

monic forcing Input conditions, defined by Eq. (2).

Physically, the magnitude in Eq, (12) represents the
peak value of the disturbance temperature at a given

location at a particular time,
In addition to these checks, the velocity, mode

number, and fluid properties (ky) were altered to

check the physical significants of ail the terms In
Eq. 06) for further code validation, In all cases,

the finite element and exact analysis were in

agreement.

Example 2 - Insulated Turbine Duct

To model a typical turbojet turbine hot engine
section, this example of the finite element technique

considers the propagation of the a positive going
plane thermal disturbance of 500 Hz in air moving at
a Mach number of 0.5 in an insulated duct without an
absorbing duct wall, In this and all the examples to
follow, the fluid in the main channel is assumed to

be air at 2060 °F, Symmetrical diamond triangles were
used to discretize the duct, The amplitude of the

wave is assumed unity at the axial position of x
equal to zero. The plane nature of the Impinging wave
is indicated by the vertical line shown in the upper

portion of Figs, 9 and 10, in contrast to the higher
order mode shown in the upper portion of Fig. 7,
Again, in this case the known analytical solution
Eq. (A6) was in agreement with the numerical calcula-

tions. As seen in Fig, 10, at this high Mach number
the magnitude of the thermal wave remains at constant

amplitude because none of its energy is lost to the
insulated. wall and because the thermal damping coeffi-

cient displayed in Fig, 4 is near unity.
The finite element solutions in Figs, 9 and 10 in

the region for x /b a 0 to 1 were determined from the
nodal values of the grid points. However, there are
no grid points in the region for x/b greater than 1,

as shown by the upper schematic of Fig, 9, 'The finite

element values designated by the symbols for x

greater than 1 in the lower plot of Fig, 9 or Fig. 10
are reconstructed values from Eq, (A6) using the



transmitted mode amplitudespredicted by the finite
element program. These are designated finite element

solutions because the finite element analysis hasde-
termined the generally unknown modal reflection A"
and transferredB+n coefficients, In this case,
replaces A to Eq, (A5) to represent the solution in
the exit region. In the exit region, 9 + 1 equals I
and higher order P	 are nearly zero since only a
plane wave exists, Tghe B-n are zero since waves

traveling I the negative direction at the exit have
been assume( zero,

As seen In Fig, 9, for a frequency of 500 Hz, the

wavelength associated with the phase nature of the
thermal disturbance Is on the order of the length of
the finite clement region which was chosen to model a

typical turbine passage. Generally 12 elements per
osculation mould be need for accurate calculations,

For greater accuracy more elements were employed in
this analysis than required,

Example 3 - STAINLESS STEEL DUCT WALL

Figure 11 shows a configuration with a stainless
steel absorber region along the upper wall, Only a
very thin wall was required since thermal disturbances
can only penetrate a short distance into metallic sur-
faces. Since there is no flow in the metallic blade,
the wave length of the spatial oscillation will be
proportional to a/w, as seen by the second term in
Eq. 010),	 For stainless steel, the size of the e1 ,r-
ments in the vertical direction was required to be a

factor of 10 smaller than in the air duct, because of
the very small wavelength In the metallic blade, The
axial wave propagation In the blade itself is deter-

mined only in an approximate manner since the same
grid spacing used in the main air duct was used in

the metal blade.
Figure 11 displays .contour plots of the magnitude

of the temperature field in the stainless steel wail,
The maximum temperature In the blade occurs at the tip
of the blade at x/b equals 0,1 and y/b equals 1,0,

As shown In Fig, 11, the maximum disturbance nondimen-
sional wall temperature (max value of 1) is 0,00934
which is very small, and quantitatively agrees with

the analytical predictions of Fig, 5. Consequently,
thermal stress resulting from combustor generated

thermal waves will not be a problem in a plug flow
configuration.

Example 4 - Turbulent Flow Approximation

As discussed in the Simplified Ana'l.ysis section,
the high convective heat transfer coefficient associ-
ated with turbulent flow will produce a better energy
transfer between the hot convective gases and the

absorbing .duct walls, An oxact prediction of thermal
disturbance propagation in turbulent flow would
require coupling the continuity, momentum, and energy
equations,	 For simplicity, the present analysis will
now be empirically modified to roughly account for

turbulentflow,
Using the even grid system of Fig. 3, the trans-

verse thermal conductivity ky in the two elements
adjacent to the wail are now defined as

ky - hb	 (13)

where h is the desired heat transfer coefficient and
the gap 5 represents the height of the elements.
The heat transfer in the SSME (Space Shuttle Main
Engine) will be used,. in this case maximum heat

transfer coefficients of 280 000 WIm 2 K Is used with
an assumed driving thermal wave frequency of 1000 Hz
.produced by temporal fuel burning oscillations simi-

lar to those shown in Fig. 2.
In addition, to simulate the convective mixing

of the thermal energy by the turbulent flow in the
central portion of the turbine duct, the ratio of con-
ductivity in the y direction to the x direction was

taken as 10 000. This assumption will alter the phase
relationship in the higher order modes according to
Eq. 09) of Appendix A and introduces some reflections
from the turbulent element,

Numerical results indicate the maximum transfer
function of 0.2 or 20 percent of the maximum thermal
wave temperature will enter the ceramic u:der the
assumed conditions. This is less than the 70 percent
predicted by the simple theory of Appendix B, which
assumed a uniform bulk fluid temperature, as defined
in Eq, 012), However, as shown in Fig. 12, the

finite element analysispredicts a decrease of the
disturbance temperature field near the upper ceramic

wail of the air duct, as shown by the disturbance tem-
perature contour plots, The contour plot Indicates a.
bulk temperature of approximately 30 percent of the
entrance plane wave, If the uniform mean field tem-
perature of the simple model were reduced by 30 percent,

the simple analytical model results and the finite
element results would be In close agreement. Consid-
ering the assumptions required to modify the plug flow

theory to model turbulent flow, this agreement is
reasonable,

CONCLUDING REMARKS

A finite element model was developed to solve for

the disturbance temperature field in a duct with plug
flow, The derivations from the governing equations

assumed that the material properties could vary with
position resulting in a nonhomogeneous variable prop-
erty two-dimensional thermal wave equation, This
eliminates the necessity of finding interface condi-
tions between the different materials.

Validation examples showed excellent agreement

between finite element and exact analytical solutions,
Numerical examples indicated that thermal waves in

conventional turbofan engines will not be a problem.
However, thermal waves could possibly lead to signifi-
cant thermal fatigue in high heat transfer regions
such as, in the SSME turbopump turbine, especially if
thermal barrier coatings are used,

APPENDIX A - DISTURBANCE PROPAGATION

In the presence of uniform flow in a channel
with Insulted walls, the propagation of thermal dis-

turbances is governed by the convected energy
Eq. (3) in the body of this report, If the fluid
properties are assumed constant, Eq. (3) can be

rewritten as

i3 z6	 U 39 + °
X
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where the thermal diffusivity a is defined as

a = Pc
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Using separation of variables
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Most Important, the damping term has cancelled and

and	 X	 becomes the separation constant. For insulated thermal waves can propagate undamped in the duct like
{	 upper and lower walls (88,6/ay - 0),	 the elgenfunction their analogous Counter parts 	 In acouktics and ele:-

i	 solution for	 Y becomes tromagneti c s•	 As seen	 in Eq,	 (All),	 the velocity of

{

the thermal disturbance is equal	 to the velocity of

`	
Y	 cos-

(n .	 I)n
--- -^- ,	 nR1,2,,3.... (AS)

the medium for all modes= 	 This contrasts with acous-
tics,	 for example, for which each higher order erode

x has	 Its own propagation speed,

'.	 The solution for X	 follows the standard form The value of the attenuation constant in Eq, 06)

(assume	 e)cp(mx)) to yield for a plane thermal wave at a frequency of 500 Hz In
air	 Is shown in Fig.4,	 As seen	 in Fig,	 4,	 for Mach

Nm numbers greater than 0,02 the attenuation factor

A+
j
((nCos!	

-b1),r 
\e (U/2ax - an )x 

a

-Idn x approaches one (no attenuation).

nYl
APPENDIX B - IMPEDANCE MATCHING

Nm
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The transmission of a thermal wave In a gaseous
medium into a	 be	 in thissolid surface will	 addressed+	 An cos

e

nrt \	 / section,

{A6) No FlowF

'- When a thermal wave is incident on a material

where that has properties different from that of the mediume
In which the wave originated, part of the wave's
energy Is reflected and part is	 transmitted.	 This

t	 '	 2,r U	
2 situation	 is similar to Acoustics and Electromagnet-

a n	 2 [tn—	 + ^2ax^ ics,	 Consider the case of normal	 incidence of a plane
wave in medium 1 contacting the medium 2 both of which

..^ ----^—y

1/2

are	 infinite	 In extent at coordinate	 x	 equal	 to

'	 t	 +,r
2	

U2	 2	 ^,	 2
zero,	 In region 1,	 the	 incident and reflected wave

n
^^ b

+ ^2ax^	 + 4^2ax (A7) can be expressed as
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where the complex propagation constant Is equal to

r
III	 a	 al	 +	 1d l 	 (132)

,^.
n (n - 1	 ^

cc
(A9)

from Eqs,	 (A7) and (A8) with	 U	 set to zero.	 In
region 2, only a positive going wave exists, 	 such	 that

r

Here, in Eq, (A6), the A+n is the amplitude of the

Positive going waves while A-n is the amplitude of
negative going waves,

No Flow

For no convective flow (U - 0) and plane wave
propagation to the right 0.1), Eq, (A6) reduces to

e a et a
-13

2 x	 (63)

Assuming the magnitude of the incident wave is given,
the object of this section is to find the magnitude of

the reflected Or and transmitted et waves as a
function of the thermal properties of the media,

Continuity of the temperature at the interface

between the two medium requires that

(A10)
In addition, the heat balance at the interface

requires that

This is the classic solution as commonly given in text

books ((Arpaci, 1986), p, 329). In contrast to elec-

tromagnetic waves, thermal waves in a stationary
medium are highly damped, For example, a thermal wave

at a frequegy of 500 Hz propagating in air at 2460 R

((x • 2.76 cm /sec) has a damping factor of 23,821cm.

Clearly., thermal waves at frequencies of 500 Hz or

higher can -not propagate in stationary air.
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or

ki ( - 13 1 60 + (3 1 er ) . k2 ( -B26t )	 (66)

Solving Eq, (84) and B(6) simultaneously for Or

and et yields
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Thus, for large energy transfer the heat transfer
coefficient should be large. Also, decrease in fre-
quency, thermal conductivity, density or specific
heat will improve the energy transfer.
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