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ABSTRACT h heat transfer coefficient

Therma! waves generated by either turbine rotor Imag imaginary part
blades cutting through nonuniform combustor tempera-

ture flelds or unsteady burning could lead to thermal i V=T

fatigue cracking In the blades. To determine the mag- .

n:tude of the thermal oscillation in blades with com- k thermal conductivity of the medium

plex shapes and material compositions, a finite

element Galerkin formulation has been developed to Nm number of modes In expansion, Eq. (6) and (A6)

study combustor generated thermal wave propagation {n

a mode! two-dimensional duct with a uniform plug flow n mode number

profile. The reflection and transmission of the ther- -

mal wayes at the e?grance an? exit ?oundar1es are n unit outward normal

determined by coupling the finite element solutions at

the entranceyand exit to the eigenfunctions of an nt  modified node numoer, £q. (A9)

infinitely long adiabatic duct. Example solutions are

presented for a varfety of cases. In general, therma) Re  real part

wave propagation from an alr passage into a metallic

blade wall is small and not a problem. However, if a t time

thermal barrier coating is applied to a metallic sur-

face under conditions of high heat transfer, a good u plug flow velocity

Impedance match is obtalned and a significant portion

of the thermal wave can pass Into the blade material, X separation varfable, £q. (A3) )
X axial distance coordinate

NOMENCLATURE

Y separation varfable, Efg. (A3)

A roperty tensor, see Eq. (5)
Property te 9. y transverse distance coordinate !

A*t, amplitude of 1 n ;
n o amp of + golng n entrance mode «  thermal diffusivity, Eq. (A2) !

A" amplitude of -~ i f
n mpiit ° going n entrance mode B propagation constant, Eq. (B82)

dampi ffi . , (A7)
n mping coefficient, Eq. (A7 r thermal transfer coefficient, £g. (11)

B+ amplitude of in t mod
n P + golng exit mode § element thickness at the wal)

b uniform entrance and exit duct h
ance and exit duct height n  thermal impedance, Eq. (B9)

¢ specific heat of solid and gaseous medium at

cgnstant pressure g v me e spatial (transformed) temperature
dp propagation constant, Eq (A8) =P entrance dimensionless temperature o
f frequency Op exit dimensionless temperature, Eq. (7)
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B¢ total dimensionless temperature, Eq. (2)
A separation constant, Eq. (Ad)
P density of propagation medium

w angular velocity

Superseript:

~ approximate finite element prediction
Subscripts:

} reglon 1

2 reglon 2

a entrance duct

b exit duct

| nodal point

0 Incident wave

r reflected wave

t transmitted wave

X x direction component
y y direction component
INTRODUCTION

In new aircraft combustor designs, higher outlet
temperatures are being considered which could give
rise to large amplitude thermal stresses in aircraft
turbine blades and lead, perhaps, to thermal structure
fallure, Also, current earth to orbit rocket engines
utilize hydrogen/oxygen gas generators that drive tur-
bines used to power the oxygen and fuel pumps. These
systems are similar to the hot section in aircraft
turbine engines and therefore may experience similar
dynamic thermal stresses.

In the present paper, the sources of unsteady
thermal waves in the exhaust gases of & gas turbine
engine will be discussed as wall as how thermal waves
propagate and couple to solid boundarles. Next, a
finite element analysis is developed which s capable
of evaluating thermal wave absorption in a duct with
uniform {plug) flow and a wall composed of thermally
absorbing materials,

THERMAL WAVE SOURCES

At least two mechanisms can produce thermal wave
propagation in gas turbine passages, First, because
of nonuniform burning in the combustor, spatial cir-
cumferential variations {n the hot gas temperature
field exist (Norgren and Riddlebaugh, 1985), as shown
in Fig. 1, When the rotating turbine blades cut
through the nonuniform circumferential temperature
field, temporal harmonic thermal oscillations will be
produced, For a typlcal turbofan engine, disturbance
frequencies of 600 Hz or higher can be expected,

Secondly, large temporal variations in the tem-
perature field can exist at a fixed spatial location
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resulting from unsteady burning of the air-fuel mix~
ture (Sofrin and Riloff, 1976), as shown in Fig, 2,
This temperal oscillation will effect both the turbine
stator and rotor blades.

The present paper s concerned with how these
thgrm?l‘waves propagate and Interact with the blade
material,

GEOMETRIC MODEL

The curved turbine blades are mode'led by the s'r-
ple rectangular geometry shown in Fig, 3(a). Neut,
the fdealized flow duct shown in Flig, 3(b) is used to
simulate the flow in a turbine passage. The interior
passage of the duct is assumed to be air moving with
a uniform (plug) velocity profile., A metallic or
ceramic biade represents the upper duct wall in the
central reglon and the lower wall Is assumed to be a
line of symmetry, Outside this range the entire duct
f5 assumed to be insulated. The stagnation region
near the blade Jeading edge and the curvature of the
passage have not been considered,

METHOD OF ANALYSIS

The thermal sources discussed in the previous
section are assumed to generate a harmonic temperature
field which wil) propagate down the duct at approxi-
mately the flow velocity (see Appendix A, Eg. (A13)),
As the input driving boundary condition to this prob-
Jem, a positive going thermal wave of known magnitude
is assumed at the entrance {(x = 0) of the duct. The
thermal wave may be plane or may have significant
transverse temperature variations, The present paper
will focus on the interaction (absorption) of these
"oropagating” thermal duct waves with the wall blade
material. High wall absorption could lead to large
thermal stresses which could shorten the blade life
by increasing thermal fatigue,

In the uniform infinftely long entrance and exit
regions with perfectly insulated walls, the exact
solution of the governing differential eguation can
easlly be solved (see Appendix A)., In contrast, exact
analytical solutions are generally not possible In the
central region adjacent to the turbine blade, conse-
quently, the finite element analysis is used to deter-
mine the temperature fields both In the air passage
and in the blade.

Thermal wave reflection (usually very small) at
the inlet and transmission (usually largr) at the duct
exit are determined by matching the finite element
solutions In the interior of the central region to the
known analytical eigenfunction expansions in the uni-
form inlet and outlet ducts.

GOVERNING EQUATION
The propagation of thermal disturbances will be
governed by the convective energy equation which for

uniform {plug) flow, neglecting viscous dissipation,
can be written as (Bird et al., 1960, Table 10.,2-3)

0, 90 ] ( 30 ) ( ae.)
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For harmonic disturbances of the form
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Eq. (1) reduces to

o (, ), ( 2o 20
% (xx a,)+ % (ky ay)~ Upe 3~ focwb w0 (3)

For vse in the finite element analysis to follow, 1t
is convenient to express Eq. (3) in vector form

7 zﬁ . vet - Upc 2 tupco = 0 (4)
where the property teasor A 15 represented by
ky 0 .
. G ky {5)

The vector product of the tensor A and a vector fol-
low the common definition (Bird et al., 1960, p. 730,
Eqs. (A.4) to (19)),

UNIFORM QUCT ANALYTICAL SOLUTION

The proper termination boundary condition of the
finite element reglon requires that thermal waves are
not artificially reflected by the difference equations
employed at the boundary nodal points (Baumelster,
1986), The analytical solution of Eq. (3) for thermal
wave propagation in a uniform insulated duct infinite
in length will be employed to give the termination
boundary condition for the finite element region., The
analyttcal sotution is derived in Appendix A, Eq. (AB)
and will not be repeated here,

Without flow, thermal waves are highly damped in
alr {see discussion in Appendix A, Eq, (A10)). How=-
ever, when flow {s present, the thermal waves can pro-
pagate nearly undamped §n the duct Vike their counter-
parts in acoustics and electromagnetics. Figure 4
shows how only a very small Mach number is required to
yleld a unity attenuation coefficient, Thus, the pos-
itive going wave at the entrance can be approximated
as

N
m
8,(x\y) # E;‘ A; cos(iﬂ_:sllzx)ei(w/U)x 6)

In this case, the propagation speed is equal to the
velocity of the media, According to the usual jargon
of acoustics and electromagnetics, the Fourier series
terms represented by the cosine term in Eq. (6) are
called modes. For example, for n equal to 1, the
transverse shape (y-dimension) is plane and this is
commonly called mode | or simply plane wave propaga-
tion. Mode 2 and higher are represented by the more
complicated shapes defined by the cosine term and are
called higher order mode propagation. In general,
discontinuities of any kind, such as the metal blade
in Fig, 3, wil) generate higher order modes because
the uniform pattern is disturbed by the discantinuity.

BOUNDARY CONDITIONS
A vartety of boundary conditions will be used in

the finite element solution of £q. (4). Each of thesa
conditions will now be briefly discussed.

Input Conditions
The analysis assumes a given number Ny of posi-

tive going A*y waves, These waves (modes) effec-
tively set the level of the scalar temperature field
in the finlte element region, In most of the example
solutions to be presented, a plane wave fnput Is
assumed: that Is, A*{ 15 taken as untty and the rest
of the higher modal amplitudes are assumed zero,

Temperature Continuit

The temperature fleld is continuous across an
{nterface except where heat sources are present,
Thus,

Ba =9 (x=0 0¢yceh) (N
where 63 s the modal representation of the tempera-
ture field in the analytical inlet reglon given by
Eq. (A6) of Appendix A and 6 represents the finite
element approximation for temperature at the inter-
face. The hat over © implies an approximate finite
element numerical solution to the true solution, Sim-
{1ar equations are used at the exit, For more
detalls, see Baumeister 1986, Eqs. (43) to (52,

Heppt Continuit
A £ Reat flux continuity at the Interface requires
that

- a@a
kx V6 o = —ka ' (inlet) (8)
. 89b
kx 96 o i » +kb e {exit) (9

The sign change in €gs. (8) and (9) comes directly
from the change of the unit outward normal.

Insulated Wall
At the Insulated wall, the gradient of tempera-

ture will be zero normal to the boundary, Thus the
last required boundary condition is
Wen=0 €10}

FINITE ELEMENT THEORY

The finite element formulation of the energy
equation was generated by using the welghted residual
approach with the Galerkin approximation to obtain an
integral form of the variable property wave equation
over the whole global domain. The continuous domain
is first divided into a number of discrete areas as
shown in Fig. 3(b). This pattern as well as a symmet-
rical diamond pattern (Baumeister 1986, Fig. 9) were
employed,

In the classical welighted residual manner, the
temperature field s curve fitted in terms of all the
unknown modal values ©(xy,yj}., The finite element
aspects of converting €q, (4) and the boundary condi-
tions into an appropriate set of global difference
equations can be found in text books (Sergerlind,
1976) as well as Ref. 4 and for conciseness will not
be presented herein.

ORIGINAL PAGE IS
OF POOR QUALITY,
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SIMPLIFIED ANALYELS

In Appendix B, a simple theoretical mode! has
been developed to predict the thermal transfer coeffi~
clent of a thermal disturbance fn air (medfum number
1) Into a semi-infinite solid medium (medium number
2), The theory is shown by the solid }ine in Fig.

5. The simplified analysis will be useful in inter~
preting the more exact numerical results. The wall

to gas temperature transfer function shown on the or-
dinate 15 a measure of the magnitude of temperature
penetration into the solid, The key property group
gamma developed in Appendix B indicates that the ther-
mal transfer into the blade {5 proportional to

h {2a) 1/2
I'-E(w) (O

As seen In Eq. (11}, the higher the heat transfer
goefficient, the better the energy transfer or impe-
gance match between the media, The transfer function
ranges from zero (no penetration) to usnity (full pene~
tration) at the surface of the solid. The disturbance
temperature will fal) quickly in the solid material
(see Eq. (A10)), thus giving rise to large thermal
stresses, ,

Heat transfer coefficient on turbine blades are
on the order of 1200 W/mé K (Simoneau, 1985, Fig. 10)
to 5700 W/mé K in high pressure applications (Gladden
and Proctor, 1985, Fig. 8). With a stainless steel
blade experiencing a driving frequency of 500 Hz, the
simple theory predicted a very low temperature trans-
fer function as shown by the calculated valuves near
gamma of 0,01 in Fig, 5. Consequently, thermal wave
propagation in conventional gas turbline engines gener-
ally have very low thermal transfer coefficients and
does not represent a problem,

Higher heat transfer coefficients, however, will
lead to a better impedance match. In the SSME (Space
Shuttle Main Engine) turbopump turbine, maximum heat
transfer coefficients of 280 000 W/mé K have been pre-
gicted (Abdul-Aziz, 1987), Figqure 5 displays trans-
mission functions on the order of 20 percent in the
stainless steel wall at a driving frequency of
1000 Hz.

Recent research (Metal Working News, 1987) at the
NASA Lewls Research Center as well as 1ndustry has
been concerned with ceramic coating of turbine blades
to allow operations at higher gas temperature and
achieve greater power plant efficliencies. In the
schematic shown in Fig, 6, thermal barrier coatings
{TBC) reduce the metallic blade temperature by adding
a thin insulator to the outer surface. The low ther-
mal conductivity of the ceramic effectively Insulates
the steady heat from penetrating the blade. However,
as seen in Eq. (11), smaller values of the thermal
conductivity k drives the value of gamma to larger
values, A ceramic blade in the SSME environment had
a’transfer function of nearly 70 percent, as shown in
Fig, 5.

RESULTS OF NUMERICAL ANALYSIS

The finite element theory will now be applied to
some simple examples for code validation and to some
typtcal hot gas turbine environments, The true value
of the finite element theory would be in evaluating
configurations with multiple ceramic and metallic
layers or other geometrical complications.

Example 1 ~ Very Low Veloclity Insulated Duct

Consider the probiem of an infinftely long duct
with insulated walls and with a singie higher order
mode (n = 3) propagating to the right from minus
infinity. The amplitude of the wave is assumed unity
at an axial position of x equals zero with a fre~
guency of v Hz, The ratlo of Ub/ay has a value of
50, For this case, the right goiny wave {5 moderately
damped as shown in Figs, 7 and 8.

As seen in Fig, 7, the exact analytical results
for the real and imaginary temperatures and the finjte
element analysis are In very good agreement, The real
and imaginary solutions wil] generally display the
spatial oscillating nature of the transformed time
independent 6{x,y) solution. Figure 8 displays simi~
lar good agreement between the exact analytical and
the finite elemént theories for the magnltude of the
temperature oscillation. As seen in Fig., 8, the mag-
nitude of the therma) wave decays because the thermal
damping coefficlent as predicted by the theory is
large indicating that the waves energy s diffused
into the fluld, The magnitude of &1 15 defined as

lor

As seen in Figs, 7 and 8, the variable time does
not appear. At a particular Jocatfon, the disturbance
temperature BI rises and falls according to the har~-
mohie forcing input conditions, defined by Eq, (2).
Phystcally, the magnitude in €q, (12) represents the
peak value of the disturbance temperature at a given
location at a particular time,

In addition to these checks, the veloclity, mode
number, and fluid properties (Ky) were altered to
check the phystcal significants of all the terms fn
Eq. (A6) for further code validation, In all cases,
the finlte element and exact analysis were In
agreement,

ge't| - YReal @2 + Imag @7 (12)

=

Example 2 - Insulated Turbine Duct

To model a typical turbojet turbine hot engine
section, this example of the finite element technique
considers the propagation of the a positive going
plane thermal gisturbance of 500 Hz in air moving at
a Mach number of 0.5 in an insulated duct without an
absorbing duct wall. In this and all the examples to
follow, the fluid in the main channel is assumed to
be air at 2060 °F, Symmetrical diamond triangles were
used to discretize the duct, The amplitude of the
wave s assumed unity at the axia) position of «x
equal to zero. The plane nature of the Impinging wave
Is indicdted by the vertical line shown in the upper
portion of Figs, 9 and 10, in contrast to the higher
order mode shown in the upper portion of Fig. 7.
Again, in this ¢ase the known analytical solution
Eq. (A6) was in agreement with the numerical calcula-
tions. As seen in Fig, 10, at this high Mach number
the magnitude of the thermal wave remains at constant
amp) itude because none of its energy is Jost to the
insulated wall and because the thermal damping coeffi-
clent displayed tn Fig. 4 is near unity.

The finite element solutions in Figs, 9 and 10 in
the region for x/b = 0 to | were determined from the
nodal values of the grid points. However, there are
no grid points in the region for «x/b greater than ],
as shown by the upper schematic of Flg, 9, The finite
element values designated by the symbols for «x
greater than 1 in the lower plot of Fig, 9 or Fig., 10
are reconstructed values from Eg, (A6) using the

G aumets 8 %,
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transmitted mode amplitudes predicted by the finite
element program, These are designated finite element
solutions because the finite element analysis hasde~
termined the generally unknown modal reflection A~
and transferred B+, coefficlents. In this case, E
replaces A in Eg, (AB6) to represent the solution in
the exit reglon. In the exit region, 8*‘ equals 1
and higher order 8%, are nearly zero since only a
plane wave exists, ?he B~y are zero since waves
traveling 1. the negative direction at the exit have
been assume¢ zero,

As seen in Fig, 9, for a frequency of 500 Hz, the
wavelength associated with the phase nature of the
thermal distirbance is on the¢ order of the length of
the finfte element region which was chosen to model a
typical turbine passage. Generally 12 elements per
oscillation would be need for accurate calculations,
For greater accuracy more elements were employed in
this analysis than required.

Example 3 ~ STAINLESS STEEL DUCT WALL

Figure 11 shows a configuration with a stainless
steel absorber reglon along the upper wall, Only a
very thin wall was required since thermal disturbances
can only penetrate a short distance Into metallic sur-
faces. Since there is no flow in the metalliic blade,
the wave length of the spatial oscillation will be
proportional to a/w, as seen by the second term in
£q. (A10), For stainless steel, the size of the eln-
ments in the vertical direction was required to be a
factor of 10 smaller than in the alr duct, because of
the very small wavelength in the metallic blade, The
axial wave propagation in the blade 1tself is deter
mined only In an approximate manner since the same
grid spacing used in the main alr duct was used in
the metal blade.

Figure 1) displays contour plots of the magnitude
of the temperature fleld in the stainless stee) wall,
The maximum temperature in the blade occurs at the tip
of the blade at x/b equals 0,) and y/b equals 1,0,
As shown {n Fig, 11, the maximum djsturbance nondimen-
sional wall temperature (max value of 1) {s 0,00934
which s very small, and quantitatively agrees with
the analytical predictions of Fig. 5. Consequently,
thermal stress resulting from combustor generated
therma) waves will not be a problem in a plug flow
configuration.

Example 4 - Turbulent Flow Approximation

As discussed §n the Simplified Analysis section,
the high convective heat transfer coefficient associ~
ated with turbulent flow will produce a better energy
transfer between the hot convective gases and the
absorbing duct walls, An sxact prediction of thermal
disturbance propagation in turbulent flow would
require coupling the continuity, momentum, and energy
equations, For simplicity, the present analysis will
now be empiricaily modified to roughly account for
turbulent flow,

Using the even grid system of Fig. 3, the trans-
verse therma! conductivity ky In the two elements
adjacent to the wall are now defined as

ky = hé (13)

where h 1s the desired heat transfer coefficient and
the gap & represents the height of the elements.

The heat transfer in the SSME (Space Shuttle Main
Engine) will be used. 1In this case maximum heat

i s B . M

transfer coefficients of 280 000 W/m K 15 used with
an assumed driving thermal wave frequency of 1000 Hz
produced by temporal fuel burning osciliations simi«
lar to those shown in Fig, 2.

In addition, to simulate the convective mixing
of the thermal energy by the turbulent flow in the
central portion of the turbine duct, the ratio of ¢ton-
ductivity in the y direction to the x direction was
taken as 10 000, This assumption will alter fhe phase
relationship in the higher order modes according to
£q. CAS) of Appendix A and Introduces some reflections
from the turbulent element,

Numerical results indicate the maximum transfer
function of 0.2 or 20 percent of the maxtium therma!
wave temperature will enter the ceramic u:der the
assumed conditions. This Is less than the 70 percent
predicted by the simple theory of Appendix 8, which
assumed & uniform bulk fluid temperature, as defined
In Eq. (B12). However, as shown in Fig. 12, the
finite element analysis predicts a decrease of the
disturbance temperature field near the upper ceramic
wall of the air duct, as shown by the disturbance tem-
perature contour plots, The contour plot Indicates a
bulk temperature of approximately 30 percent of the
entrance plane wave, If the uniform mean field tem-
perature of the simple model were reduced by 30 percent,
the simple analytical model results and the finite
element results would be in closé agreement., Consld-
ering the assumptions required to modify the plug flow
theory to mode! turbulent flow, this agreement 1s
reasonable,

CONCLUDING REMARKS

A finite element model was developed to solve for
the disturbance temperature field in a guct with plug
flow. The derivations from the governing equations
assumed that the material properties could vary with
position resulting in a nonhomogeneous variable prop-
erty two-dimensional thermal wave equation, This
eliminates the necessity of finding Interface condi-
tions between the different materials,

Validation examples showed excellent agreement
between finite element and exact analytical solutions,
Numerica) examples indicated that thermal waves in
conventional turbofan engines will not be a problem,
However, thermal waves could possibly lead to signifi-
cant thermal fatigue in high heat transfer regions
such as in the SSME turbopump turbine, especially {f
thermal barrier coatings are used,

APPENDIX A ~ DISTURBANCE PROPAGATION

In the presence of uniform flow in a channel
with insulted walls, the propagation of thermal dis-
turbances is governed by the convected energy
Eq. ¢3) in the body of this report, If the fluid
properties are assumed constant, Eq. (3) can be
rewritten as

2 o, 2
L%-g-%+;¥a—-—§—-:—‘@~e.o (Al
e X 8y X

where the thermal diffusivity o 15 defined as

o = ==

pC
Using separation of variables
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6 = X(x) Y(y) (A3)
ylelds
2 o, a2
D% U 1aX Je ) %aty 2
X o ”;;Rﬁ'zf'yafaya” o

and ) becomes the separation constant., For insulated
upper and lower walls (36/3y = 0), the eigenfunction
sotution for Y becomes

Y cos <£5 = Lin )

The solution For X follows the standard form
(assume expimx)) to yleld

n'].a;,}.vsn (AS)

U2y = 3K 1y

N
m
B(x,y) u 2 M cos(ﬁﬂuzgllll) e

n=}

N
m
(U/aa, + 3 )x +1d %
. 2’ A; cos(‘" -bl)«y)e % P

Nl
(A6)
where
2 2
1 {{n*n U
W= |2 [("5”) ¥ (Zax) ]
' s 172
1 [ fo*x 2 'y 21 2 . 2
R EJK” ) R ("“x)] + 4(2"‘;;) (A7)
] w,
dp = ey (AB)

n* = (n - 1@ (A9)
%y

Here, In Eq. (AG), the A*p 1s the amplitude of the
positive going waves while A~ 1Is the amplitude of
negative going waves,

No Flow
For no convective flow (U = 0) and plane wave
propagatfon to the right (n=1), Eq. (Af) reduces to

8 = A; exp [,. (%) ]/2 x] exp [" (ﬁ_) 1/2 x]
X X
(A10)

This 15 the classic solution as commonly given in text
books ((Arpaci, 1986), p, 329). In contrast to elec-
tromagnetic waves, thermal waves in a stationary
mediym are highly damped, For example, a thermal wave
at a frequency of 500 Hz propagating in air at 2460 R
(a » 2.76 cie/sec) has a damping factor of 23.82/cm.
Clearly, thermal waves at freguencies of 500 Hz or
higher can not propagate in stationary air,

., 3

Large Mean Fiow
or Yarge values of the mean velocity U,

Eq. (A6) can be approximated by

0 x A; cos((n POI)W!)Q*I(W’U)K (ALD)

Most Important, the damping term has cancelled and
thermal waves can propagate undamped In the duct like
thelr analogous counter parts in acouttics and elec-
tromagnetics. As seen in £gq, (A1), the velocity of
the thermal distyrbance §s equal to the velocity of
the medium for all modes. This contrasts with acous-
tics, for example, for which each higher order mode
has its own propagation speed,

The value of the attenuation constant in Eq. (A6)
for a plane thermal wave at a frequency of 500 Hz in
alr Is shown in Flg, 4, As seen in Flg, 4, for Mach
numbers greater than 0,02 the attenuation factor
approaches ona (no attenuation),

APPENDIX B ~ IMPEDANCE MATCHING

The transmission of a thermal wave In a gaseous
medl?m into a solid surface will be addressed in this
section,

No Flow s

When a thermal wave is Incident on a material
that has properties different from that of the medium
in which the wave originated, part of the wave's
energy is reflected and part Is transmitted. This
sttuation is similar to Acoustics and Electromagnet-
tes, Consider the case of normal Incidence of a plane
wave in medium 1 contacting the medium 2 both of which
are Infinite in extent at coordinate x equal to
zero, In reglon ], the iInclident and reflected wave
can be expressed as

0 w0 ePX g, otPX (81)
where the complex propagation gonstant f5 equal to
By = a) + 1d) (B2)

from Egs. (A7) and ¢A8) with U set to zero. In
region 2, only a positive going wave exists, such that

0 = 6; e Py¥ (83

Assuming the magnitude of the Incident wave is given,
the object of this section §s to find the magnitude of
the reflected 6, and transmitted 64 waves as a
function of the thermal properties of the media,

Continutty of the temperature at the interface
between the two medlum requires that

8 + Oy = Ot (84)

In addition, the heat balance at the interface
requires that

-« 8 Lk & _
1 ax x=0 2 9 %0 (B5)
or

Solving Eq, (B4) and B(6) simultaneously for 6,
and & ylelds .
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where the thermal impedance n s defined as

Oel) [w
ny = KBy = k, :Jgr*.‘/;; (B89)

The value of 8 in the absence of flow is found from
Eqs. (B2), (AR) and (A7),
for no-reflections, m equals Ny»

kipy€1 = k2pyc2 (B10)
which Is independent of the driving frequency.
For an alr to metallic surface (stalnless steel)

8
5 * 0.001 (B11)
0

Clearly, thermal waves at any frequency in stationary
alr can not effectively penetrate a metaliic surface,
Convective Flow

In contrast to the no flow example, consider
medium 1 to be at a uniform mean temperature 9%

such that

8 = 6y elut (B12)

and in medium 2

-, X
0.0, 2 glut (813)

where B, ts defined by Eq, (B2},

Neglecting reflection, a simple instantaneous
heat balance at the interface x equal to zero
requires that

20
h (8, - &) = -ky 3% .

0 = 4 kznzet (B14)

Solving for oy ylelds

<]
%y 1 }
eo = “z - k2 - 73 (B15)
lekg i T2 e EE:)
] ] 2
Solving for the real part of this ratio yields
e
Rea ! (55 e‘“*) . s — (816)
° I 42T + 2
where
hy (Zaé)l/Z
I = E; —;— (B17)

For small values of T, Eq. (B16) can be approximated
as

Thus, for large energy transfer the heat transfer i
coefficient should be lar?em Also, decrease in fre-
quency, thermal conductiv

heat will improve the energy transfer.

OETNG YT mmTE Lo e TE T -
o " oot e i ,AE s o

(818)

fw
Real (?T ; ﬁ)s ] g, » h |
’ "szzczﬂ g

.‘iim_fllihlﬁ

ty, density or specific .

B T e
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FIGURE 2. - COMBUSTOR GAS TEMPERATURE FLUCTUATIONS.
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ATTENUATION TERM EQ.(A18).

(U/2ux - 2,0

FREQUENCY,

1.0

oL | l J
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DUCT MACH NUMBER

FIGURE 4. - EFFECTIVE ATTENUATION TERM FOR A PLANE WAVE
IN AIR AT 3500 R FOR A DUCT 2.54 cM HIGH AT x = 2.54 cm,
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TRANSFER FUNCTION.
WALL/GAS TEMPERATURE RATIO

MATERTAL (H2)

O AVERAGE TURBINE $$ 500
O STAGNATION POINT $S 500
A HIGH PRESSURE $s 500
A HIGH PRESSURE CERAMIC 500
0O ssm $$ 1000
. s CERAMIC 1000
1.0 — ;
8 f— "~ SSME CERAMIC
“£Q. (B16)
6

SME STAINLESS
S TEEL

, | 1
,001 01 R 1.0 10 100
GAMMA I' = h/k Y2a/u

FIGURE 5. - MAGNITUDE OF THE THERMAL TRANSFER FUNCTION
FOR VARIOUS HEAT TRANSFER COEFFICIENTS, STAINLESS STEEL
AND CERAMIC BLADES.

THERMAL BARRIER COATED AIRFOII

< -~ GAS
A ~ COOLING AIR ,~CERMAIC
. HOT GAS — SUPERALLOY COAT
—— === BOND COAT ~BOND COAT
\ ~AIRFOIL
. .
- CERAMIC SURFACE pepadig
TEMPERATURE

FIGURE 6. - HOW THERMAL BARRIER COATINGS FUNCTION
(REF. METALWORKING NEWS, 1987).
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REAL - IMAGINARY TEMPERATURE

EXACT ANALYSIS
REAL (0)

------ IMAGINARY (0)
NUMERICAL SOLUTION

0 REAL (0)
O IMAG INARY (0)

*x/b

o>
®® o 000 )

| | | l L |

1.0 0.5 0 5 1.0 1.5 2.0

x/b AXIAL COORDINATE

FIGURE 7. - COMPARISON OF REAL AND IMAGINARY TEMPERATURE
VARIATION ALONG THE LOWER WALL (y/b = 0) IN A UNIFORM
DUCT WITH INSULATED WALLS AS OBTAINED BY USING AN
EXACT SOLUTION AND A FINITE ELEMENT SOLUTION FOR A
MODE 3 INCIDENT AT x/b = 0. WITH FREQUENCY OF 7 Hz
AND Ub/a EQUAL TO 50,
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ABSOLUTE TEMPERATURE
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FIGURE 8. - COU”ARISON OF MAGNITUDE OF TEMPERATURE
VARIATION AL OYG THE LOWER WALL (y/b = 0) IN A UNI
FORM DUCT WiTH INSULATED WALLS AS OBTAINED BY USING
AN EXACT SOLUTION AND A FINITE ELEMENT SOLUTION FOR

1.5

A MODE 3 INCIDENT AT x/b = 0. WITH FREQUENCY OF
T Hz AND;Ub/a = TO 50.
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FIGURE 10. - COMPARISON OF MAGNITUDE OF TEMPERATURE
VARIATION ALONG LOWER WALL WITH AIR FLOWING AT MACH
0.5 IN A UNIFORM DUCT WITH INSULATED WALLS AS OBTAINED
BY USING AN EXACT SOLUTION AND A FINITE ELEMENT SOL-
UTION FOR A PLANE WAVE (MODE 1) INCIDENT AT x = 0
WITH f = 500.0 Hz. AND N,
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FIGURE 11, MAGNITUDE OF THE TEMPERATURE FIELD CONTOURS I[N THE
BLADE WALL MATERIAL ABOVE THE AIR DUCT WITH UNIFORM PLUG FLOW
IN DUCT.
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FIGURE 12. MAGNITUDE OF THE TEMPERATURE FIELD
CONTOURS IN THE AIR DUCT WITH EMPIRICAL MODIFI
CATION IN THE FLOW FIELD TO ACCOUNT FOR TURBU
LENT HEAT TRANSFER.
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