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Electro-Mechanical Vibratory System

Mario Paz

The problem of predicting the phase angle of two
self-synchronized rotors starting from rest, is
presented in this paper. It is shown that with
insufficient power the rotors may nct reach the
final coperating speed of the motors and stay
locked at one of the lower natural frequencies
of the vibrating system, thus producing large
amplitude and failure of the equipment.

INTRODUCTION

Mechanical vibrators are widely used for producing the
moticn required in some manufacturing processes such as
packing cement mixtures, screening, vibration trans-
portation, vibration pile drivers, etc. The principal
ccmponent of the mechanical vibratory is an unbalanced mass
rotated by an electric motor. In some of these
applications, rectilinear vibratory motion is required.
This motion may be attained using two synchronized motors
having eccentric masses rotating in opposite directions.
Synchronization of the rotating masses means coordinating
the rotation tc maintain a definite phase angle between the
rotation of the two motors. Such synchronization may be
accomplished by using kinematic coupling such as toothed or
chain drivers between the twc rotors. However, some years
ago, it became apparent the synchronization could be main-
tained without resorting to any kind of kinematic coupling.
It was observed that the angular velocities and phases of
the motors automatically kept a definite phase rotation
without the use of coupling. Huygens [1] first cbserved a
case of self-synchronization in the seventeenth century. He
noticed that two pendulum clocks, regardless of their
initial phase angle, came into synchronization if they were
mcunted on a common resilient support such as a flexible
beam. He realized that this phenomenon of self-
synchronization could be explained by the small im-
perceptible motion in the beam transmitted by the pendulums.

At the present time, self-synchronization ie finding

wider applications in the design of vibrating machines [2].
The use of self-synchronization makes forced synchronization
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unnecessary. The condition of self-synchronization, as well
as the phase angle maintained by the rotors, has been
investigated initially by Blekman [3] for one directional
motion, by Paz [4,5] for two directional motions and sub-
sequently by others [6,7,8]. Paz investigated analytically
and experimentally the problem of predicting the stable
phase angle and the direction of the resultant force of any
two rotors with parallel axis of rotation. He showed that
the phase angle between two rotors, as well as the ccndition
necescary for a stable soluticn could be predicted with the
application of Hamilton's Principle.

These developments gave solutions prescribing the
conditions for self-synchronizaticn, but did not focus in
the initial transient portion of the motion until it reaches
the final steady-state condition. 1n this transient state,
the system may have to transverse some of its natural
frequencies at which resonance may occur, locking the motion
at a speed lower than the operating speed of the motors,
thus, resulting in large amplitudes of motion and failure of
the equipment. 7The electro-mechanical analysis of vibrating
equipment during the initial transient motion, is presented
in this paper.

CHARACTERISTICS OF INDUCTICN MOTOR

The torque capacity of an induction motor is primarily
@ function of its rotating speed. Fig.l shows a typical
torque~speed curve for this type of motor. The figure also
shows an assumed torque-speed curve required to maintain
rotation as demanded by the locad. In this case, the system
will operate in the transient state until it reaches the
steady-state condition at which the torque demanded by the
load equals the torque of the motor, pcint P in Fig.l.
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Fig. 1 Speed-Torque Curve For Typical Induction Motor
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At any speed @ (rad/sec), the torque differential A T between
that produced by the moctor and the required by the load is
available to accelerate the motor. Consequently, applying
Newton's second law for a rotating mass, this differential
torque is
pr =2 (1)
d+

in which J is the mass moment of inertia of the rotating
parts of the moctor and © the angular velocity of the rotor.

MECHANICAIL VIBRATING SYSTEM

The equations of motions of a mechanical vibrating
system my be obtained by direct application of Newton's
Law of motion or alternatively by using an energy method
such as the application of Lagrange's equation. In any
case, the equations of motion for a linear system may, in
general, be expressed in matrix notation as

IM] LY} + [C]{Y¥} + [K](Y} = (F(t)3} (2)

where [M], [C] and [K] are respectively the mass, damping
and stiffnese matrices; and (Y3}, (¥} (Y} the displacement,
velocity and acceleration vectors of the generalized
coordinates.

In the solution of Eg.(2), it is convenient to use
modal superposition method to transform these equations to a
system of uncoupled equation of the form

. s 2 .

where Z; = modal displacement

7. = modal velocity

a7 .

27 = modal acceleration

1

wi = natural frequency

§; = modal damping ratio
and P. (t) = modal force

which is given by
N
Pi(t) = ] Fi(t) ¢y, (4)
j=1

where ¢ is the j-component of i-th eigenvector.

ji
The solution of the uncoupled equation, Eq.(3) during

the transient motion may be obtained by numerical in-
tegration in terms of the modal coordinates Z; .
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The motion in function of the generalized coordinates is
then given by the transformation

(Y3 = (102} (5)

where [&] is the modal matrix of the system.
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Fig.2 Mathematical model for the exam
ple of a wvibratin
system excited by two self- synchronizing rotors. g

TORQUE DEMANDED BY THE LOAD

The torque demanded by the load may be determined from
the power consumed by the exciting forces of the rotors.
The forces F.(t) and F,(t), developed by the two rotors
exciting the System are §iven by

Fi (t) =m'e 9 (6)

NNEN

Fﬁ(t) =m'e é

where m' and e are the eccentric mass and its corresponding
eccentricity; eland ezthe angular velocities of the rotors.

The power demanded by the load may be calculated as the
product of the rotor fcrces times the corresponding linear
velocities of the points of application of these forces. It
is convenient to express this power separately for the two
force components in the plane of the rotating forces as

Fii(t) = Fl(t) sin @ 1(t)

(7)
Flz(t) = Fl(t) cos()l(t)
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and

Fop(t) = F,(t) sino ,(t) (8)

where F.. is the j-component of the i-th motor;e]_and ezthe
angular Aisplacements of the rotors.

The power demanded by the load is given by

&

Pyp () = Fpq (k)X (€)

. (9)
Plz(t) = F12(t).X12(t)
and
P,y (t) = F . (t).X . (t)
21 21 '21 (10)
where . Power of 7 force component of the i-th motor

= Llﬁhar velocity of the force compconent j of the i-th
médor.

Finally, the torque T. demanded by the load is obtained by
simply dividing the power components in Egs.(9) and (10) by
the corresponding angular velocity of the rotors. Con-
sequently, the total torque demanded by the loads is given

by 5
T, =k§£élpkl(t) + P, (t)] (11)

ANGULAR VFIOCITY OF THE ROTCKS

The angular velocity for the rotors is determined by
numerical integraticr of Eqg.(l) which expressed in finite
differences form may be written as

A D(t) = AI%EJ At (12)

where A 6(t) is the incremental angular velocity of the
rotors attained in time step At and A T(t) is the torgue
available at accelerate the rotors, As illustrated in
Fig.1l, this tcrque is given by the difference between the
torque of the motor T,(t) and the torque T_@#)demanded by the
load; thus for each motor, the differential torque is given

by

AT(t) = TM(t) - TL(t) (13)
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The angular velocity for each rotor ,ie then calculated,
starting with initial velocity zero (8(0)=0), through the
recurrence formula

O (t+At) =8 (t) +40 (t) (14)

The angular displacement of the rotors, 61, and e, is
calculated as

0, (t+ t) = el(t)+é1(t) x A (t)
, (15)
92(t+ t) = Gz(t)+62(t) x A (t)

starting with the initial displacements of the rotors
61(t=0) and @2(t=0).

The phase angle e{t) between the rotors is then given
by the difference between the angular displacements of the
rotors., Hence:

A(t) = @ () - O,(t)
NUMERICAL EXAMPLE

Figure 2 shows the mathematical model of a vibrating
conveyor, excited by two motors with eccentric macses
rotating in opposite directions. The differential equations
of motion for the six degrees cf freedom in this model were
obtained using Lagrange's equation. The numerical values
for the components of this system are indicated in Table 1.
Discrete values of the torque-speed function for the motors,
provided by the manufacture, are given in Table 2.

A time step At =0.01 sec. was selected and damping in the
system was assumed equal to 5% of the critical damping in
each mode.
TABLE 1 NUMERICAL VALUES VIBRATING SYSTEM OF FIG.Z
BASE:

Mass: M;= 31.863(lb-sec”/in)

Mass moment of inertia: 2
Il= 42,772(1b-sec”~-in)

EXCITER:
Mass: M2= 15.236(1b—sec2/in)

Mass mcment of inertia:2
I,= 4,578(1b-sec”~-in)
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Springs costant:

K, (axial)= 3k (k = 9,400(1b/in)
K2(axia1)= 9k

K7 (transverse)= 30k
Kz(transverse)= 90k

Distance:

a= 9,0 in

b1 = 29,0 in
b2 = 13.25 in
C, = 27.0 in

d2 = 8.0 in

Eccentric rotor:
m'e = 0.1425(1b.sec?)

TABLE 2 SPEED~-TORQUE VALUES

Speed ? 0 47.12 162.3 184.3 188.5

(rad/sec) |
Torque 428.4 321.3 616.75 142.8 0
(1b-in)
2 ned
&° pHage 9‘ Jsec
4 Ancl€ ]
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TIME (sec)
Fig.3 Motor speed and phase angle of the rotors - Motors

having full torque.

The analysis of the system modeled as shown in Fig. 2
provided the following three non-zero values for the natural
frequencies:
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=114.7 rad/sec, =195.7 rad/sec and wy =783.6 rad/sec.

w1 )
The solution output includes the motion ot the system and of
the rotors, as a function of time, during the initial 15
seconds of the transient state. The solution also includes,
the torques of the motors and the torques demanded by the
load as well as the phase angle between the rotors in the
transient state.

For the motors having the speed-torque characteristic
depicted in Fig.l (Numerical values in Table 2), Fig.3
shows the plots of the phase angle between rotors and the
angular speed of the motors during the initial 40 seconds
motion, while Fig.4 shcws these plots assuming that the
motors can provide only one~half of the torque indicated in
Table 2. The initial phase angle was 60 degrees due to the
physical arrangement of the rotors under the effect of
gravity.

X 4 PHASE ANGLE Py
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F@g:4 Motor speed and phase angle of the rotors - Motors
limited to 50% of the full torque.

DISCUSSION

It may be observed in Fig.3 that for the motors having
the speed-torque characteristics of Fig.l, the motors
rapidly, in about five_ ceconds reach their operating speed
irr the neighborhood of 8 =185 rad/sec and that rotors attain
self-synchronization with a phase angle «=0 degrees. On the
other hand, Fig.4 shows that the motors do not have
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sufficient power to reach the operating speed and become
locked in the neighborhood of rescnant speed w_= 114.7
(rad/sec) attaining out of phase self-synchronization of
the rotors (X=1&G?). In the first case, the self-
synchronized machine will perform as intended in the design,
while in the second case the system will vibrate erratically
at the resonant condition with large amplitudes resulting in
failure of the equipment.
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