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IDEAL SHRINKING AND EXPANSION OF DISCRETE SEQUENCES 

Andrew B. Watson 

Abstroct-We describe ideal methods for shrinking or expanding a discrete sequence, 

image, or image sequence. The methods are ideal in the sense that they preserve the 

frequency spectrum of the input up to  the Nyquist limit of the input or output, which- 

ever is smaller. Fast implementations that make use of the discrete Fourier transform 

or the discrete Hartley transform are described. The techniques lead to  a new multi- 

resolution image pyramid. 

1 



This note describes a technique for shrinking and expansion of discrete sequencest 

which, though it follows rather directly from the nature of the discrete Fourier 

transform (DFT), appears not to  be widely known. The two problems it solves are 

(1) how to shrink a sequence of length N to length M < N in such a way M to 

exactly preserve all the frequency content that can be preserved, and 

(2) how to expand a sequence of length N to  length M > N in such a way as to 

exactly preserve the frequency content of the original and not to  introduce frequen- 

cies not present in the original. 

Sequence shrinking and expansion operations are wideIy used in digital signal pro- 

cessing and image processing, :,ir example whenever the size or aspect ratio of an image 

must be changed. One recent development in the area of image analysis is the image 

pyrumid, in which a single image is transformed into a number of copies that vary in 

resolution, each with a size proportional to resolution. [l] Although this transform 

expands somewhat the space required to  store the image, the explicit representation of 

resolution information makes certain analyses of the image much easier. Image pyram- 

ids are generally constructed using shrinking and expansion operations, and we will 

show that the operations developed here lead to  a new pyramid structure with some spe- 

cial virtues. 

A large part of this paper consists of a detailed derivation of the ideal shrinking 

and expansion algorithms. So that the reader does not become lost in the details we 

. . . . . . . . . . . . . . . . . . . . . . . . . .  
t We use the te rm sequence to refer to an  ordered set of possibly complex numbers. As will be 

shown, the concepts generalize to two dimensions (images) and three dimensions (image sequences). 
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give here a brief synopsis. The basic idea is that a discrete sequence of length N con- 

tains frequencies up to N 12. These frequencies are represented in the discrete Fourier 

transform (DFT) of the sequence, which is also of length N e Within the DFT sequence 

there is a sub-sequence of length M’ which represents the frequencies up to M / 2 .  If 

this subsequence is plucked from the DFT and inverse transformed, it will result in a 

new sequence of length M . This sequence will be an ideal low-pass filtered, subsampled 

version of the original. It will share all frequencies with the original up to  M / 2 .  We 

call it an “ideally shrunk” version of the original sequence. Similarly, an “ideally 

expanded” sequence is obtained by embedding the DFT of the original in a larger 

sequence of zeros, and inverse transforming. The only complexity (which is glossed over 

in the preceding synopsis) arises in the treatment of the Nyquist frequencies (&IN /2 in 

the DFT of a sequence of length N ) ,  and we also provide an alternate, slightly-less- 

than-ideal algorithm which avoids these difficulties. 

Since all shrinking and expansion operations involve filtering and sampling, we 

begin with a brief review of this subject in the domain of functions of a continuous vari- 

able. 

I. Critical Sampling of Continuous Waveforms 

In this discussion we follow Bracewell’s use of the functions II(z ), a unit pulse 

defined by 

n(2 )=1 -112 < 2 < 112 

= 112 

= o  else where. 

2 = -112 or 112 
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and m(z ), an infinite train of unit impulses at unit intervals. 

It is well known that a waveform band-limited below w /2 (the Nyquist frequency) 

can be exactly recovered from samples taken at intervals of 1 / w .  [2, 3, 4) If it is neces- 

sary to sample an arbitrary waveform at frequency t u ,  the portion of the spectrum 

between the Nyquist limits of -w /2 and w /2 can be preserved by removing the portion 

of the spectrum outside the Nyquist limits before sampling. This may be done by pre- 

filtering the waveform with an Ideal Low-Pass (ILP) filter whose Fourier transform is 

L (u ) = n(u / w  ) (2) 
that is, a pulse of unit height and width w . The filtering is done by multiplying the 

Fourier transform of the waveform by L (u ) and inverse transforming the result. This 

is equivalent to convolving the waveform with 1 (z ), the inverse transform of L ( u  ), 

which is a sinc function. Following pre-filtering, sampling is accomplished by multiply- 

ing the waveform by m ( z w  ), a train of impulses spaced at intervals of 1/w . In the fre- 

quency domain, this replicates the prefiltered spectrum at intervals of the sampling fre- 

quency w . These replicas will overlap at fw /2. The even component at this fre- 

quency will be doubled in amplitude, while the odd component will cancel itself. So if 

the original spectrum is non-zero at w /2, then samples at a frequency of w preserve 

only the even portion of this component. This is known as critical sampling. [SI 

t .  Ideal Reconstruction of Continuous Waveforma 

As noted, sampling replicates the band-limited spectrum at intervals of the sam- 

pling frequency w . To recover the band-limited spectrum it is necessary to multiply by 

a reconstruction filter R (u ), 
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R ( u ) = l  -w /2 5 u 5 w /2 (3) 

= o  ehewhete. 
Note that this differs from L ( u  ) only at f w  / 2 .  

a. Discrete Fourier Transform 

We assume the reader is familiar with the basic concepts of discrete complex 

sequences and of the discrete Fourier transform (DFT). We review several key points. 

Let f be a complex sequence of length N .  We define the Discrete Fourier 

Transform (DFT) of f as 

k = O ,  * 0 , N - 1  
m =O 

The Inverse Discrete Fourier Transform (IDFT) is defined as 

k =O 

The relation between a sequence and its transform may be expressed by the notation 

(4) 

( 5 )  

f m  + F k  (6) 

which may be spoken as " f has DFT Fk ". It should be noted that various 

definitions of the DFT exist in the literature, differing primarily in whether the factor 

N-' is placed in the forward or the inverse transform. We follow that given in Rabiner, 

in Oppenheim and Schafer, and in Nussbaumer. [6, 7, 81 

4. Discrete Frequency Spectra 

A sequence f of length N has a DFT Fk of length N ,  which defines its discrete 

frequency spectrum. By convention, the indices k = 0, * * - ,N -1 of the transform 
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map to  frequencies tu = -N /2, ,N /2-1 according to the rule 

I tu = ( ( A  -N /2) modulus N )-N /2 (7) 
as shown in Fig. 1 Where the DFT is concerned, a sequence and its transform are 

regarded as periodic: for a sequence f ,,, of length N , f ,,, -kN = f ,,, for integer A . 
Note that for a sequence of length N ,  the “highest” frequency present is -N /2, (the 

Nyquist frequency). Since the spectrum is periodic with period N ,  the component a t  

N /2 is the same as the component at -N /2. Hence a sequence of length N contains 

only an even component at the Nyquist frequency. 

6. Ideal Re-Sampling 

~ 

To retain a close analogy to the continuous case, we have interpreted sampling of a 

discrete sequence to mean multiplying by a sampling sequence (zeroing certain ele- 

ments), but not changing its length. We will use the term re-sample to describe an 

operation on a discrete sequence which does change its length. 

When a discrete sequence is re-sampled some of its properties will change and some 

will remain the same. Choice of a re-sampling scheme must be guided by which proper- 
I 

I ties the user wishes to preserve. In the scheme discussed here, we preserve, where 

index 
0 1 2 3 4 5 6 7  

0 1 2 3 -4 -3 -2 - 1  

fRWMY 

Figure 1. Arrangement of frequencies in the complex DFT. 
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possible, the portions of the frequency spectrum shared by old and new sequences. We 

call this ideal re-sampling (IR), so-called by analogy to an ideal low-pass filter. 

The following discussion is illustrated in Fig. 2. We begin with a discrete sequence 

f ,  of length N with DFT F k  (Figs 2a and b). We wish to  resample f, to a 

sequence of length M < N .  It should be clear that if N /M is not an integer, then 

the new sample points will "fall in between" the samples in the original sequence. Thus 

it becomes necessary to  convert the discrete sequence to a function of a continuous vari- 

able before sampling, and then back to  a discrete sequence after sampling. 

To do this, we construct a function 

-N /2 

that is a set of N impulses spaced at  intervals of 1 / N ,  multiplied by the values of the 

discrete sequence (Fig. 2c). 

We can do likewise with the DFT Fk (Fig. Zd), except that the impulses are spaced 

at unit intervals, and the result is expressed as a function of a frequency variable u , 

Next we convolve f ' N with m(z ), 

f N ( Z ) =  f ' N ( 4  * m ( 4  * (10)  
This has the effect of replicating the set of impulses at unit intervals. Since the set 

extends over a distance of ( N  - l ) / N  , this results in a periodic function (Fig. 2e). 

Likewise, F ' N can be convolved with m(u / N )  (a pulse train with intervals of 

N) to  replicate the set of impulses at intervals of N , 

7 



a b 

c n n n n  DFT 0 rllr11711 
0 N- 1 

C A x =  1/N 

t t f t  t t t4  
d A 

e f 

1 A x =  I /M k 

m n 

mnn DFT Q 1111111 
0 tl- 1 

Figure 2. Ideal shrinking of a discrete sequence of length N to a sequence of 
length M < N .  
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F N ( u ) = F '  N ( u )  * m(u/N) . 
as shown in Fig. 2f. 

Now we will show, as indicated in Fig. 2, that FN ( u  ) is the Fourier transform of 

f N  (z ). Making use of the convolution theorem and the Fourier transform of an 

impulse, and the fact that lTl is its own Fourier transform, 

Note that, whatever the function within the brackets, it will be multiplied by m(u ) 
and so only its values at integer values of u will matter. But when the integer variable 

k is substituted for u into the bracketed expression, it becomes an exact expression for 

the DFT of f ,,, , that is, F, , 

F T { f N ( z ) ) =  [ F k  ] k =u m ( u )  - 
But, due to the cyclic nature of F, , this is an expression for FN ( u  ), thus 

FT{ f N ( Z ) ) = F N ( u )  (14) 
The above steps provide a general scheme for moving between a sequence and its DFT, 

and a function and its FT. 

The function 1 N (z ) corresponds uniquely to a continuous, band-limited function 

f (z ) which may be thought of as the function from which / N ( z )  was sampled. As 

noted above, f (z ) can be exactly reconstructed by multiplying the FT of f N (z ), 

that is, FN ( u  ), by the function R ( u  /N ). As shown in Fig. 2i, this has the effect of 

stripping away the replicas of the original set of impulses, and returning to  the function 

of Fig. 2d, plus an extra impulse at N /2. The corresponding operation in the space 

domain is convolution with the function sinc(Nz ), which converts the set of impulses 
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into the continuous periodic function shown in Fig. 2h. 

In the next step, we wish to sample the continuous function at a rate of 1 / M  so 

that each period will be described by exactly M samples. As noted above, we can do 

this without aliasing if the function is first ILP filtered. This can be done by multiply- 

ing the transform F (u ) by the function I I (u / N  ), 

G (u ) = I I (u / M )  F (u ) (15) 
As shown in Fig. 2j, this reduces the number of impulses to M+1, and in addition 

halves the values of the two outermost impulses at M / 2  and -M/2. In the space 

domain, the resulting function g (z  ) is somewhat smoother than f (z ). It could have 

been obtained from f (z ) by convolution with the function M sinc(Mz ). 

I Now we can sample g (z ) at intervals of 1/M by multiplying by ~ ( M z  ) (Fig 2k), 

(16) gM (z ) = 9 (3 ) W M z  1 
But this is equivalent, in the frequency domain, to convolution with the function 

Il l(  u /M ) (Fig. 21), 

G M ( u ) = G ( u )  * m ( u / M )  (17) 
As illustrated, this convolution replicates the transform G (u ) at intervals of M . This 

causes the left and rightmost impulses in the original transform to  overlap their opposite 

numbers in the replicas. Thus GM (u ) is periodic with period M , and the value at 

-M /2 is equal to the value at M /2, which in turn is equal to  the average of the values 

at these two frequencies in the original DFT Fh . 

The final step is to reverse the process whereby we converted a discrete sequence 

and its DFT into a function and its FT, The discrete sequence gm is taken as the 

I amplitudes of the impulses making up one period of the function gM (z ), and likewise 

~ 

10 



Gk is drawn from one period of CM (u ). Thus we arrive at the sequence gm and its 

DFT Gk , both of length M. Note that the components of the sequence Gk are identi- 

cal to the corresponding components in Fk , save for that at the new Nyquist frequency 

M / 2 ,  where only the even component of the original sequence is preserved. Thus the 

sequence gm is an ideal resampling of f . 

It should be clear from the proceeding that the ideal resampling operation is much 

simpler in the frequency domain than in the space domain. We make this explicit below 

in the form of ideal shrinking and expansion algorithms. 

0. Ideal Shrinking 

Let M be an integer less than N and let Q be the rational number M / N .  We 

of length define ISHRINKQ (Ideal Shrink) as the operation that shrinks a sequence f 

N to a sequence gm of length M =QN , by the rule 

Om = ISHRINKQ { f m  1 = IDFT (TRIM9 { DFT { f m  } } } (18) 
The TRIMQ operator acts on Fk =DFT { f } to produce Gk =DFT {gm } according 

to  the rule 

GM /2 = ( FM /2 -t -M /2 

Frequencies below the new Nyquist are drawn directly from corresponding frequencies in 

the old sequence. The single value at the new Nyquist is taken as the average of the 

two corresponding frequencies in the old spectrum. One way of envisioning the action 

of the TRIM* operator is illustrated in Fig. 3. The two ends of the transform, up to 

each new Nyquist, are pulled off. The Nyquists are halved, and the two pieces are put 
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original sequence 

I S H R I ~  

ITRl 

I 
DFT + -+ 

4 4 

+ 
L I D -  

I 
IDFT 

0 4 N-1 

shrunken sequence 

Figure 3. The ISHRINKQ and TRIMQ operators. Shaded elements are multi- 
plied by 1/2. 
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together so that the Nyquists add. 

7. Ideal Expansion 

The logic of ideal expansion is nearly identical to that of ideal shrinking. As shown 

in Fig. 4, it differs only at two steps. First, when the continuous waveform f (z ) is 

ILP filtered by multiplying its transform F (u ) by n(u /M ), this has no effect, because 

the spectrum has no components at or beyond the new Nyquist limits (u 2 M /2). 

Thus the waveforms and spectra in F igs  2g-j are identical. Second, when the function 

g (z ) is sampled, its spectrum is replicated at intervals of M , leaving a gap between the 

end of the original spectrum and the start of the first replica. Note that the values of 

the original spectrum are preserved in the resampled spectrum, thus the operations pic- 

tured in Fig. 3 are an ideal resampling of the sequence f ,,, . These observations can be 

condensed into an ideal expansion algorithm. 

Let f ,,, be a sequence of length N ,  with DFT F k  . We define IEXPANDQ as the 

operator that expands f ,,, to  a sequence gm of length M according to  the rule 

B P A N D Q  { f m 1 -+ PADQ { Fk 1 (20) 
As in the case of ideal shrinking, the expansion is achieved by way of an operation on 

the transform, which we give the name FAD* , and which is defined by 

G, = F k  k = -N /2, * * * ,N /2 (21) 

= 0 ebewhete.  

Frequencies below the old Nyquist are mapped directly into corresponding frequencies in 

the new sequence, and the remainder of the spectrum is filled with zeros. 



a 

t t t t  

c u n n n  
0 N- 1 

t t 4 ?  

A x =  I/N 
C 

t t r t t t t ,  

A x =  1/M 

m 
clnmml 
0 n- 1 

b 
DFT 0 uuuln 

DFT 0 

h A 

1 4 

n 
!ImnaJn 

Figure 4. Ideal expansion of a discrete sequence of length N to a sequence of 
lengthM > N .  
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It can be shown that if the sequences shown in Fig. 2 are now regarded as purely 

real DHT’s (rather than complex DFT’s), then all of the steps of the derivation of the 

ideal shrink operation are equally valid. Thus somewhat simpler versions of the 

TRIMQ and PAD* can be constructed in which real DHT’s are padded or trimmed, 

and inverse DHT’d, to obtain ideally shrunk or expanded sequences. 

11. The Ideal Pyramid 

In the area of image processing and analysis there has been some interest in 

“pyramid” schemes. [12, 13, 14, 15, 11 Such schemes typically subject an image to 

repeated low-pass filtering and sub-sampling, each cycle creating one layer of the 

pyramid. This low-pass pyramid can then be used to  create a band-pass pyramid, by 

differencing adjacent low-pass layers. [13, 141 The shrink and expand operators i n t r e  

duced here lead directly to a pyramid structure. Although pyramid algorithms are typi- 

cally used on twedimensional images, for simplicity we begin with a one dimensional 

example. Let z o  be an input sequence of length NS’ , where N , S , and I are integers. 

The original image is considered the base of the pyramid. Let Q =1/S. Each of the 

other I layers of the low-pass pyramid is given by 

Z; = ISHRINKg { ~ i - 1  } i = 1, * * , I  (29) 
In words, each successive layer is obtained by shrinking the previous layer by a factor 

Q =1/S. Thus layer i is of length N S I - ’ .  In particular, the first layer is of size 

NS‘ , and the last layer is of size N .  

Each layer of the band-pass pyramid is created by subtracting from each lowpass 

layer an expanded version of the next layer, 
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(30) y; - - Z; - LEXPANDg { z;+* } i = 0 , .  . * ,I-1 
The last band-pass layer yf is taken as equal to  the last lowpass layer zI. When 

Q = 1/2, each band-pass layer has a one octave bandwidth. Examples of low-pass and 

band-pass ideal pyramids are shown in Fig. 7. Also shown are versions of the low- and 

band-pass pyramids expanded up to full size by means of the IEXPANDg operator. 

Note that the expanded band-pass waveforms add up to form the original sequence. 

Creation of the pyramid requires only one forward DFT. From that point on only ele- 

ment selection and comparatively small IDFT's are required. 

LOW-PASS EXPANDED LOW-PASS 

BAND-PASS EXPANDED BAND-PASS 

Figure 7. Ideal 1D pyramids. The original is a random sequence of length 128. 
Q = 112. 
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12. Ideal Expansion and Shrinking in Two Dimensions 

The two-dimensional version of the shrink algorithm is routine. Since the two- 

dimensional DFT is a one-dimensional DFT of each row (or column) followed by a one- 

dimensional DFT of each column (or row), the Trim algorithm can be applied in 

sequence to each row, then each column (or vice versa) as diagrammed in Fig. 8. A 

more direct approach is diagrammed in Fig. 9. The horizontal and vertical Trim opera- 

tions have been combined. It remains only to shift and add the selected regions of the 

transform. The lower panel of Fig. 9 shows the Trim operation following a remapping 

of the transform indices to place the origin near the center. This makes it clearer that 

the Trim operator is selecting the low-pass core of the transform. Figure 10 is a flow 

diagram of the steps involved in the creation of an ideal band-pass pyramid, and of the 

reconstruction of the original image from the pyramid. Figures 11-13 show the use of 

the 2D ISHRINKg and IEXPANDQ operations to create an image pyramid. 

18. Ideal Expansion and Shrinking in Three Dimensions 

Generalization of the ISHRINKO and IEXPANDQ operators to three or more 

dimensions is straightforward, since they can always be expressed as a sequence of one- 

dimensional Trim operations. When the third dimension is time, the input is an image 

sequence, and the ISHRINKQ and IEXPANDo operators enlarge or reduce the dura- 

tion of the sequence. 

mi. Slow Motion 

As an example of the application of the IEXPANDg operation in the time domain, 

consider the problem of creating a slow-motion sequence. Suppose an image sequence is 
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Image 

-DFT- 

Transform 

4 +-- 

Horizontally 
Trimmed Transform 

I m 

Trimmed Shrunken 
Transform Image 

Figure 8. The Shrink algorithm in two dimensions. The onedimensional Trim 
algorithm is applied first to the rows, then to the columns. 
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ORIGINAL PAGE IS 
OE POOR QUALIr_U; 

3 -4 -3 -2 - I  

-4 -3 -2 - 1  0 1 2 3 

Figure 9. The two-dimensional Trim operation. The upper panel shows the 
conventional ordering of elements in the DFT. The lower panel shows the result 
of shifting the transform by 4 in both dimensions so as t o  place the origin near 
the center. The algorithm would be completed by extracting the leftmost 
column of the non-zero area and adding it to the leftmost column, then extract- 
ing the uppermost row and adding it t o  the lower-most row. 
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Input Ef 

Ideal Pyramid l 

i 
Figure 10. Flow diagram for the creation and reconstruction of an ideal band- 
pass pyramid. The letter meanings are: F, forward DFT; I, inverse DFT; T, 
Trim operation to enlarge or shrink a transform. The stippled images are DFTs. 
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Figure 11. An Ideal Low-Pass Image Pyramid created by ideal shrinking and 
expansion. The value of Q is 1/2. 

IDEAL BAllD-?ASS C TUY I ID 

Figure 12. An Ideal Band-Pass Pyramid. The value of Q is 1/2, so each 
band-pass image has a one octave bandwidth. 
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Figure 13. Expanded Ideal Low-Pass and Band-Pass pyramids. Each picture in 
the second row is the difference between the picture directly above and the pic- 
ture above and to  the right. The sum of the pictures in the bottom row equals 
the image in the upper left. 

recorded at 60 Hz for 1 second. Normal playback would be at a rate of 60 Hz. If 

played back at 6 Hz (one frame every 167 msec) the sequence would last 10 seconds and 

motion of the imagery wou!d be slowed by a factor of 10. But there would be large 

jumps between frames (which we call "jerkies", by analogy to the "jaggies" in spatial 

images). One solution is to record the original at 600 Hz, and play back at 60 Hz, but 

this is usually quite impractical and invariably expensive. A better solution is to use the 

IEXPANDO routine in the time domain, with &=lo. The resulting imagery would be 

slowed, but would have no jerkies. 

1a.x In-Betweening 

Animation is typically done by creating a sequence of "key frames", and the creat- 

ing the intervening sequences by "in-betweening". Automatic methods of in-betweening 
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are being sought. The IEXPANDQ routine may provide such a method. A set of key 

frames are regarded as a sequence which is expanded to the desired length. Each key 

frame will fade as the next key frame grows in contrast. While objects will not in gen- 

eral be drawn correctly in their intermediate positions, they may nonetheless appear 

subjectively to occupy these intermediate positions. 

18.8. 3D Image Compression 

Burt and Adelson have shown the usefulness of pyramid schemes as a tool for 

image compression. It seems likely that the ideal pyramid would provide similar 

benefits. Inclusion of the time dimension in the pyramid makes it possible to remove 

additional redundancies in the time domain, as well as to take advantage of the spa t ie  

temporal tuning of the human visual system, to reduce still further the bit rate for 

dynamic imagery. I 

14. A ehpler, sub-ideal algorithm 

The only complexity in the ISHRINKO algorithm arises in the treatment of the 

Nyquist frequencies, which must be averaged to yield their even component. While this 

step is simple in one dimension, it becomes somewhat complicated in two and three 

dimensions. Care must be taken that the resulting Nyquist frequencies are indeed the 

result of the sequence of separate one-dimensional ISHRINKe operations. An alterna- 

tive is to discard the Nyquist frequencies, in which case the Trim algorithm consists of 

selecting only those frequencies 6elow the new Nyquist, and inserting a zero at the 

Nyquist. Often the even Nyquist component in an image can be removed without sub- 

stantially degrading its visual appearance. Furthermore, when constructing a pyramid, 

I 

I 

I 
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those components omitted from one layer are captured by another, so this simplified 

algorithm just pushes the even Nyquist component in each layer down to  the next layer. 

16. Comparison with other pyramid schemes 

It is interesting to compare the three shrinking methods that have been mentioned. 

Each has its vices and virtues, a brief tally of which is given in Table 1. 

An important practical difference is that the ISHRINKg method allows the output 

to  be any integer size, while the other two methods require the output size to be smaller 

than the input by some integer factor. This is because the latter two methods resample 

the image on the same lattice of sample points as are used in the original (skipping 

every 1/Q-1 samples), while the ISHRINKQ method in effect creates new sample points. 

Table 1. Vices and virtues of three imageshrinking methods. 

Feature Quality Method 

Block Laplacian Ideal 

radial symmetry good 

separab 1 e good 

small kernel good 

aliasing bad 

attenuation bad 

overlap in frequency bad 

non-integer size rat io  good 

total score 
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All three shrinking schemes consist of some filtering followed by resampling, but 

differ in the filters used. In the method of Tanimoto and Pavlidis [12] the sequence is 

convolved with a rectangular pulse, or equivalently, its transform is multiplied by a sinc 

function. In the Ideal Pyramid, the sequence is convolved with a sinc function, or 

equivalently, its transform is multiplied by a rectangular pulse. The filters used in the 

two schemes are thus DFT’s of one another, and are at  opposite poles of a spectrum of 

algorithms. The Gaussian filter used by the DOLP and Laplacian pyramids [15, 131 

may be regarded as intermediate between these two. 

The Gaussian is the only 2D function that is both radially symmetric and separ- 

able. The pulse and Gaussian filters have the virtue that they have small kernels in the 

space domain, which means that it is practical to compute them by direct convolution 

using integer arithmetic. They both suf€er in failing to precisely bandlimit the signal 

before resampling, and thus both exhibit aliasing. Ebth also attenuate siguah at fre- 

quencies below the Nyquist, which is generally manifest as more blurring than is strictly 

necessary in the shrunken sequence. A possibly attractive property found only in the 

sinc filter is that the resulting band-pass sequences have spectra that do not overlap 

(more precisely, overlap only in the even component at the Nyquist frequency). They 

thus provide a cleaner partition of the image into resolution-specific sub-images, should 

that be found useful. This list is not exhaustive, and the values associated with each of 

these properties will depend strongly upon the application. In the table, the total value 

assigned to each method is clearly not a statement regarding the ultimate value of each 

technique, and is given only to save the reader the effort of this calculation. 
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