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ABSTRACI' 

Krozel, James A., M,S.A.A., Purdue University. May 1988. Search Problems in 
Mission Planning and Navigation of Autonomous Aircraft. Advisory Committee 
Chairman: Prof. Dominick Andrisani ll. 

An architecture for the control of an autonomous aircraft is presented. The 
architecture is a hierarchical system representing an anthropomorphic breakdown of 
the control problem into planner, navigator, and pilot systems. The planner system 
determines high level global plans from overall mission objectives. This abstract 
mission planning is investigated by focusing on the Traveling Salesman Problem with 
variations on local and global constraints. Tree search techniques are applied includ
ing the breadth first, depth first, and best first algorithms. The minimum column and 
row entries for the Traveling Salesman Problem cost matrix provides a powerful 
heuristic to guide these search techniques. Mission planning subgoals are directed 
from the planner to the navigator for planning routes in mountainous terrain with 
threats. Terrain/threat information is abstracted into a graph of possible paths for 
which graph searches are perfonned. It is shown that paths can be well represented by 
a search graph based on the Voronoi diagram of points representing the vertices of 
mountain boundaries. A comparison of Dijkstra's dynamic programming algorithm 
and the A· graph search algorithm from artificial intelligence/operations research is 
performed for several navigation path planning examples. These examples illustrate 
paths that minimize a combination of distance and exposure to threats. Finally, the 
pilot system synthesizes the flight trajectory by creating the control commands to fly 
the aircraft. 
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CHAPTER 1 

INTRODUCTION 

An autonomous aircraft, a pilotless aircraft with no remote operator, is a fas
cinating concept. The desire for autonomous aircraft stems from the possibilities for 
their use in military and civilian applications. Applications exploit the salient feature 
that there is no pilot to endanger in the mission of an autonomous aircraft. Without 
the need of an accompanying pilot, design constraints are dramatically changed: pilot 
housing and interfacing are unnecessary as is the consideration of the g-factor limita
tion, which would produce pilot blackout. A vehicle can be designed to achieve 
higher speeds, higher maneuverability, and reduced target signature. These benefits 
suggest several military applications such as deception, reconnaissance, electronic 
intelligence, or any mission where the risk of losing a pilot is too great. Examples of 
such missions include deceptive attacks prior to piloted aircraft attacks, visual citings 
of tank and troop movements, electronic intelligence gathering over or near 
battlefields, surface-to-air missile battery suppression, and missions in chemical war
fare environments. Civilian applications include surveillance, searching over large 
areas, and investigating hazardous environments. Examples of such missions include 
patrolling illegal alien activity over national borders, searching for downed aircraft, 
and hurricane weather research. 

One possible direction toward developing an autonomous aircraft would be to 
start with existing remotely piloted vehicles (RPVs) and extend their capabilities to 
an autonomous state. The Defense Advanced Research Projects Agency (DARPA) is 
currently conducting research in low-cost RPVs which must stay airborne longer than 
current drones [21]. DARPA seeks to endow their RPVs with the ability to alter their 
mission plans independently of ground controller interaction. This could evolve into 
an autonomous aircraft requiring no remote pilot for navigation. The remote con
troller or pilot may play a lesser role: as a supervisor to the actions an autonomous 
aircraft performs on its own, or possibly as a supervisor to several autonomous air
craft. 

Although the development of a smarter RPV may lead into the development of 
an autonomous aircraft based on the RPV mission objectives, there is also interest in 
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developing a vehicle which is a general purpose autonomous aircraft. Progress in 
computer architectures for parallel and symbolic processing has evolved to the point 
where prototype autonomous air vehicles are now being developed. 

The objective of a Robotic Air Vehicle (RA V) program of DARP N AFW AL 
(Air Force Wright Aeronautical Laboratories) is to design, implement, and demon
strate an expert system for piloting robotic air vehicles [5,38,39]. The approach used 
for this research is to combine passive terrain following and navigation with an 
artificial intelligence expert system "pilot" U.S. Air Force fighter pilots provide the 
expertise for the expert system, and U.S. Air Force standards for evaluating pilot per
formance establish the validation measure for the system. 

Researchers at the Georgia Tech Research Institute have been developing the 
Autonomous Helicopter System (AHS) through the use of artificial intelligence tech
nology [16,17]. The AHS is a simulation system integrating the tasks of vision, plan
ning, and control. The AHS uses a knowledge-based terrain navigation system that 
analyzes digital terrain maps, performs scene interpretation to generate path routes, 
maintains a record of its position through scene matching, and validates its plans 
confirming predetermined mission goals. 

Artificial intelligence (An techniques are playing an important role in the 
development of autonomous vehicles. The use of AI techniques is not, however, 
applicable in all areas of the development. With respect to the control of an auto
nomous vehicle, the use of AI techniques is most applicable to higher level control 
tasks. The role of AI in the control system of an autonomous aircraft will be dis
cussed further in the next section. 

AI in the Control Loop 

Aircraft operation involves the guidance and control of a complex physical sys
tem. In general, this task requires controlling systems which have varying charac
teristic time constants. Naturally, the systems with the slowest time constants appear 
in the outermost loops of a control system, commanding inner loop systems with fas
ter time constants. 

For aircraft, guidance is the action of detennining the course and speed, relative 
to some reference frame, to be followed by the vehicle. Guidance tasks are per
formed in mission planning loops, navigation loops, and flight path loops. These 
outer loops require the inner loop control of lateral and longitudinal modes of the air
frame. These loop closures are shown in Figure 1.1. t 

t All figures and tables appear at the back of the chapter in which they are first cited. 
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The inner loop control systems for an aircraft tend to control or change the 
fastest modes of motion of the vehicle. Mathematical models describe the physical 
dynamics of the aircraft, which typically exhibit dynamic modes with time constants 
of the order of 0.1 second, sometimes quicker. Fast numerical algorithms, such as 
recursive digital flight control laws, legislate the control commands. The feedback 
control is reactive - the control involves correcting for errors between the plant state 
and the desired state. 

In contrast to the inner loop characteristics, the characteristics of the outer loops 
include slower time constants, and involve planning and reasoning. Flight path com
mands are less frequent; time constants between 1 second and 60 seconds may be 
expected. Planning prevails in the outermost loops, where reasoning about mission 
objectives, flight maneuvers, and alternative flight paths is necessary - all within the 
performance capabilities of the aircraft. Whereas algorithmic reasoning is often 
unsuitable, symbolic processing and expert systems are applicable. At times, in mis
sion planning there is a need to reason with incomplete and often inexact data. Thus, 
heuristic solution techniques common to the artificial intelligence field may be useful 
in solving planning problems in guidance. 

At this point, one can see that AI techniques may be useful in the navigation and 
mission planning loops. The next sections will explain in more detail how a control 
structure for an autonomous aircraft can be constructed and where some AI tech
niques could be useful in solving some related problems. 

A Hierarchical Autonomous Control System 

An anthropomorphic breakdown of the control problem for an autonomous air
craft results in a composition of planner, navigator, and pilot systems. As shown in 
Figure 1.2, a hierarchical structure for controlling an aircraft emerges. The hierarchy 
is arranged in order of decreasing time constants of respective systems. The planner 
system determines high level global plans from overall mission objectives. A broad 
view of the world is invoked. For example, the planner may use a map labeled with 
strategic locations, mountain ranges, danger zones, and other general information to 
determine an order of flight destinations that should be followed for a mission. The 
planner commands the navigator to perform intermediate level planning based on a 
more detailed view of the world. For example, the navigator may use Digital Map 
Agency (DMA) map data and detailed threat information to plan a flight through 
mountainous terrain. The navigator specifies waypoints for a path to be generated by 
the pilot system. Finally, the pilot system synthesizes the actual aircraft trajectory 
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sending commands to generate surface deflections and engine adjustments that result 
in airframe forces and moments. The pilot system uses a narrow, but detailed view of 
the world. For example, the pilot system might be a terrain following/terrain 
avoidance system which uses DMA map data, forward-looking radar data, and radar 
altimeter data in the immediate look-ahead region of flight. One should note that 
although the control system is composed of planner, navigator, and pilot systems, 
these systems are not designed to replace or model actual human mission planners, 
navigators, or pilots. The mission planner, navigator, and pilot systems are simply 
designed to perform the tasks described above. 

The planner, navigator, and pilot systems work in parallel, sending goals and 
constraints to the next lower system and status reports back to higher systems. The 
general flow of control for any of these systems is shown in Figure 1.3 (suggested by 
[11]). Whereas the diagram is the same for each system, the level of abstraction is 
different. For instance, the maps and information used for planning the global mis
sion are different from that of navigation planning, so the expected world state and 
observed world state components are at different levels of abstraction for the planner 
and navigator. 

Each control system is linked to a knowledge base, which stores global informa
tion and information about the expected and observed world states. Global informa
tion may include facts about the aircrafts performance capabilities, infonnation about 
other airplanes abilities, weather patterns, etc. The expected world state may be com
posed of a model from map data and terrain feature data, while the observed world 
state may be composed of a model based on results of the state assessment system. 
The state assessment system coordinates sensor readings and performs sensor 
interpretation, possibly using external data, e.g. Global Positioning System (GPS) 
data, in order to establish an observed world state. 

Additional components of each system include a comparator component, an 
emergency response component, a diagnoser, and a command generator. The com
parator analyzes the expected world state and the observed world state and either 
reports to the command generator, the emergency response component, or the diag
noser. If the differences in world state require simple adjustments, then the command 
generator combines this infonnation with the nominal plans to form goals and con
straints for the next hierarchical system. If the differences indicate a recognized ano
maly, then the emergency response component produces an emergency response to 
the command generator. If the differences indicate an unrecognized anomaly, then 
the diagnoser must reason about the anomaly and derive modified goals and con
straints for replanning. 
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Thesis Organization 

This thesis focuses on the planning and navigation systems of the hierarchical 
structure presented above. Mission planning is treated only to review some tree 
search techniques related to the planner system. Greater emphasis is given to the 
problem of navigation in mountainous terrain, which is representative of the naviga
tor system. No problem representative of the pilot system is presented. 

The planner determines high level global plans based on mission objectives, as 
described previously. A mission plan may be composed of, say, a sequence of desti
nations that satisfies some local and global constraints. It is proposed that the Travel
ing Salesman Problem is typical of such a mission planning problem. The Traveling 
Salesman Problem is stated in Chapter 2, and a survey of solution techniques is 
presented in Chapter 3. Variations of the Traveling Salesman Problem are investi
gated and presented in Chapter 4. 

After a sequence of destinations is generated, flight paths between these loca
tions are generated by the navigator system. One of the more difficult scenarios for a 
mission plan would require a flight that progresses through mountainous terrain at 
low altitude. Chapter 2 gives a problem statement for a navigation problem in moun
tainous terrain with threats. Chapter 3 surveys approaches to navigation path plan
ning. Finally, a solution technique is presented in Chapter 5 through Chapter 7. 

Conclusions from the investigation of the Traveling Salesman Problem and the 
navigation problem will be presented in Chapter 8, and recommendations for further 
related research is stated in Chapter 9. 

The appendices of this thesis provide for further reading on topics related to the 
content of this thesis, but not significant enough to include as individual chapters. 
Appendix A presents the simulated annealing algorithm and its application to the 
Traveling Salesman Problem. Appendix B presents the construction of Delaunay Tri
angulations and Voronoi Diagrams, which is the basis for the navigation solution 
technique presented in Chapter 5 through Chapter 7. Appendix C presents proofs of 
the feasibility of Voronoi diagram search graphs, which is cited in Chapter 5. 
Finally, Appendix D states some properties of the A· algorithm, which is a general 
graph search algorithm used in the navigation solution technique. 
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CHAPTER 2 

PROBLEM STATEMENTS 

In this chapter a concise definition of the mission planning and navigation prob
lems will be stated. First. general descriptions of these problems are given so that the 
terminology needed to understand these problems is introduced. Then, concise prob
lem statements follow. 

The Mission Planning Problem 

The mission planning problem consists of planning events that compose a mis
sion in such a way as to optimize some constraints associated with the plan. Consider 
a sequence of events to be a state. The solution criteria for a plan involves satisfying 
possible local and global constraints based on the state. For example, a local con
straint may restrict the ordering of a particular set of events, such as, event A must 
not follow event B in a mission plan. A global constraint may require that the entire 
state meet some criteria, say, the mission plan is not acceptable if any event is left out 
of the plan. Finally, a particular state that satisfies the local and global constraints of 
the solution criteria is called a solution state or a goal state. Of course, more than 
one solution state may exist depending on the problem. Using these terms, the mis
sion planning problem may be stated in general: 

Arrange a sequence of events for a solution state such that local and global 
constraints are satisfied. 

This problem statement is general enough to encompass a wide variety of problems. 
This thesis will focus on a problem that is from this class of problems but more nar
row in its stated application area. Hopefully, the ability to transfer the results of the 
particular problem back to similar problems of this class will not be difficult. 

From the class of problems stated above, the particular problem that will be 
treated in this thesis is the Traveling Salesman Problem. In its simplest form, the 
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N -city Traveling Salesman Problem is stated as: 

A salesman, starting at one city, wishes to visit each of N -1 other cities 
once and only once and return to the start. In what order should the sales
man visit the cities to minimize the total cost of visiting all the cities? 

This problem will be solved along with variations of this problem where local and 
global constraints will be introduced. 

The Navigation Path Planning Problem 

One statement of the navigation problem is to find a path from an initial start 
location to a final destination location through mountainous terrain while optimizing 
parameters associated with the trajectory. These parameters may include altitude, 
speed, time, exposure to threats, and fuel used. A navigation path solution is com
posed of a sequence of waypoints describing a path. At each waypoint the altitude, 
heading, and velocity of the vehicle is specified. 

The particular problem solved will be a problem much more constrained than 
the general statement above. The navigation problem will be to find a path from a 
start location to a finish location on a mountainous terrain map minimizing the path 
length and the exposure to threats. The problem considered is constrained to a con
stant altitude. The mountains are described by a terrain contour map and the threats 
are stationary, ground based, and are described by danger regions on the contour 
map. For any segment of a trajectory that crosses a threat area, it is assumed that a 
cost associated with danger can be assigned to that segment. 
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CHAPTER 3 

A SURVEY OF MISSION PLANNING AND NAVIGATION APPROACHES 

This chapter surveys several solution techniques for mission planning and navi
gation path planning. The specific mission planning problem treated is the Traveling 
Salesman Problem. The navigation path planning approaches surveyed include 
methods for planning the path of an object amongst polygon obstacles and methods 
for mobile robot terrain navigation. 

The Traveling Salesman Problem: A Mission Planning Problem 

The Traveling Salesman Problem, as stated in the preceding problem statement, 
minimizes the total cost of visiting all the cities in a tour. For surveys of Traveling 
Salesman Problem solution techniques and related problems see [4,18,32,55]. In gen
eral, the cost metric may be related to distance, time, direction, airfare, or other 
notions of cost. However, for the purpose of this background discussion, the cost will 
be associated with the distance traveled. (All figures with cities are understood to 
have a cost proportional to the Euclidean distance between the city locations as 
presented.) 

The cost data for the N -city Traveling Salesman Problem is contained within 
an NxN cost matrix C, where cij is the cost to travel from city i to city j. Since the 
cost depends only on distance and, in particular, not on direction, the cost matrix C 
will be symmetric, i.e. cij = Cji' The diagonal elements Cjj are assigned an infinite 
value to maintain that they are not to be considered in a tour. Although the Euclidean 
distance cost metric does not allow an asymmetric cost matrix, an asymmetric cost 
matrix can result in other cost metrics. For instance, if the cost is airfare, the cost 
matrix may be asymmetric because the cost to travel from city i to city j may not be 
the cost to travel from city j to city i. The Traveling Salesman Problem with an 
asymmetric cost matrix will not be discussed here, but can be reviewed in [32]. 



-

-

12 

The Traveling Salesman Problem is a special case of a broader problem known 
as the assignment problem [49], a standard combinatorial optimization problem. The 

assignment problem is to choose N elements from an NxN cost matrix C, one from 
each row and column, so that the sum of the chosen elements is a minimum. To for
mulate the optimization problem, an assignment matrix X is introduced: let Xij =1 if 

the element with corresponding cost Cij is chosen as an assignment, otherwise let 

Xij=O. Note that the assignment matrix is a permutation matrix. The total cost Co to 

be minimized is: 

Now the equalities 

N 

N N 
Co = "" "" c, ,x·· ~~ IJ IJ' 

i=lj=l 

LXij = 1 j = 1,2, ... , N and 
i=1 

N 
LXij = 1 i = 1,2, ... , N 
j=1 

must be satisfied since only one element is selected from any particular column and 
row respectively. 

The Traveling Salesman Problem restricts the assignment problem in the fol

lowing manner. Now Xij = 1 indicates that the salesman travels from city i to city j. 

The Traveling Salesman Problem restricts the assignment problem by requiring that 
no subtours be allowed. Mathematically, this requires X to be a cyclic permutation 
matrix t. Alternatively, we can define (S, S) to be a nontrivial partitioning of the 
integers 1,2, ... ,N : that is, SnS=0 and SUS={1,2, ... ,N}. If we let (S,S) 

represent the set of all N cities, then the no subtour restriction is represented by: 

L _Xij ~ 1. 
ieS, jeS 

t A cyclic permutation matrix is a permutation matrix with elements describing a cycle for a 
graph. For the assignment matrix X , we associate the assignment xij with the arc from node i to 
node j in a graph. Consider the assignment matrices: 

[

0 a 0 I] [0 I 0 0] 1000 1000 
X I = 0100 X 2 = 0001' 

0010 0010 

Assignment matrix X 1 is a cyclic permutation matrix because it forms a cycle linking node 1 to 
node 4 to node 3 to node 2 back to node I, however, the assignment matrix X 2 is not a cyclic 
permutation matrix (although it is a permutation matrix) because it forms two cycles, one from 
node 1 to node 2 back 10 node 1 and another from node 3 10 node 4 back to node 3. 
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There are t"-l inequality constraints imposed by this restriction. 

Stated another way, the Traveling Salesman Problem is the problem of finding 
the Hamiltonian cycle [1] of shortest length for the graph defined with arc lengths 
corresponding to the cost matrix entries. This formulation is posed in terms of graph 
theory terminology, from which several heuristics have been developed. In particu
lar, the minimum spanning tree [1] of a graph and the Eulerian cycle [1] have been 
useful. 

The Traveling Salesman Problem is easy to formulate, yet it is difficult to solve. 
The mathematical statement provided above formulates the Traveling Salesman 
Problem into an integer linear programming problem [32,49]. However, because the 
number of inequality constraints (2N-l) grows exponentially, linear programming is 
considered an intractable solution technique when N is large. Another technique, 
dynamic programming [22,49], is also not feasible for large N, since the recursive 
solution of dynamic programming imposes extremely large storage space require
ments on a computer. 

Branch-and-bound algorithms [32] can also be used to solve the Traveling 
Salesman Problem [36,49]. These algorithms sulxlivide the problem according to 
potential subsets of tours. For example, one subset of tours may consider only those 
tours which include a particular edge between two cities, i.e., the set of tours that 
must include a visit from city i to city j. The other subset of tours considers only 
those tours which do not include a particular edge between two cities, i.e., the set of 
tours that does not allow a visit from city i to city j. Bounds are established for the 
tour costs of these subsets, with the hope that some subsets can be eliminated from 
the search based on the bounds. Subsets are divided into subproblems until they can 
be solved easily. An optimal solution is obtained, provided that the branching does 
not become intolerable for storage. Finding optimal solutions can be expedited by a 
judicious selection of which subsets to explore first. For large problems, this 
becomes necessary to keep the problem manageable within computer limitations. 
Chapter 4 will give examples of search techniques based on this principle. 

What should one attribute as the underlying difficulty with solving the Traveling 
Salesman Problem? One can see that the number of possible tours is large. There are 
(N -1) ! possible tours, and there may be more than one optimal tour. Simplyexplor
ing all possible paths to find the optimal tour is not feasible. Additionally, it has been 
shown that the Traveling Salesman Problem is in the class of NP - complete prob
lems (nondeterministic polynomial time complete), for which it is conjectured that no 

polynomial algorithm can solve [15,32]. Finding an optimal solution for a problem 
that is NP -complete would in the worst case require an exponential amount of time, 
thus, NP - complete problems are considered to be inherently intractable from a 
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computational point of view [15]. 

Because of the complexity of the Traveling Salesman Problem. approximate 
solution techniques - rather than optimal solution techniques - must be considered. 

Approximate solution techniques. called tour composite procedures. invoke tour con

struction and tour improvement procedures. Tour construction procedures generate 
approximately optimal tours given the cost matrix C. Tour improvement procedures 
start with a feasible tour and systematically modify it using a sequence of city inter

changes. Some tour construction procedures include the arbitrary insertion pro
cedure. Christofides' procedure, Clarke and Wright Savings procedure, convex hull 
procedure. greatest angle insertion procedure. nearest neighbor procedure, ratio times 
difference insertion procedure. and several minimum spanning tree procedures, 
including the depth first traversal procedure, nearest insertion procedure, nearest 
merger procedure, nearest addition procedure, and cheapest insertion procedure. 
Some tour improvement procedures include the k-opt and Or-opt edge exchange 

procedures, the simulated annealing procedure, a neural-network procedure, and 
genetic search procedures. Detailed descriptions of these procedures are given in 

[18,19,24,32]. A few examples of these procedures follow. 

An example of a simple heuristic for a tour construction is the nearest neighbor 

procedure [4]. The procedure is to build a tour from the start city to the nearest (or 
least costly) neighbor city, then from this city to its nearest neighbor city (that has not 
already been visited), and so on. until finally the last city is connected back to the 

start city. This rule for generating a route does not generally give the shortest path, 
since the final trip from the last city back to the start city can often be quite costly. 

An example is given in Figure 3.1. 

Another example of a heuristic for a tour construction procedure utilizes the 
minimum spanning tree of the graph defined by the cost matrix C. A spanning tree 
of a graph of N cities is a tree with N -1 edges connecting all the vertices. The 
minimum spanning tree is the spanning tree of minimum total length. Finding the 
minimum spanning tree can be done quite efficiently by a number of methods [1]. A 

depth first traversal of the minimum spanning tree gives a good tour, however. this 
tour may include some cities more than once. Nevertheless, given the depth first 

traversal, if a city has been visited, then that city can be skipped and the tour can 
proceed to the next city (not already visited) as indicated by the depth first traversal. 

A tour generated by this minimum spanning tree procedure is shown in Figure 3.2. In 

addition to offering a good initial route, the minimum spanning tree also provides a 
lower and upper bound on the optimal tour length. The optimal tour length for the 

Traveling Salesman Problem must be strictly greater than the length of the minimum 

spanning tree. and no more than twice the length of the minimum spanning tree [32]. 
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An example of a tour improvement procedure is one that uses an edge exchange 
heuristic. Given a tour for the Traveling Salesman Problem, the tour can be modified 
by removing k edges from the tour, then replacing them with k edges to form a new 
tour. Such a modification is called a k-change. Figure 3.3 illustrates a 2-change 
modification of a tour. If it is not possible to improve a tour via a k-change, then the 
tour is termed k-optimai or k-opt. The 2-opt and 3-opt heuristics were first intro
duced by Lin [35]. A procedure may start with an initial tour chosen randomly from 
the set of all possible tours, or an initial tour generated using a tour construction pro
cedure. Then, the k -change heuristic is repeatedly invoked until the tour is 
k-optimal. Usually, only a local optimum solution is reached. The 2-opt exchange 
procedure will generally terminate at an inferior local optimum in comparison to the 
3-opt exchange procedure. Although k-opt exchange procedures (k>3) will gen
erally terminate with even better local optimum, their complexity makes them less 
tractable. A simple composite procedure performs a 2-opt and thereupon a 3-opt 
procedure. This gives good results and runs relatively fast computationally. More 
elaborate procedures [55] use sophisticated methods for determining what level of 
k-change to use at any given stage of a search. 

Simulated annealing [29,40] is another tour improvement procedure that can be 
applied to the Traveling Salesman Problem [28,29,52]. A crystal system provides a 
good example for explaining the simulated annealing concept. When one desires to 
form a crystal structure, one starts by heating the system to some high temperature 
where the system is in a liquid state. At this stage the system is in a high energy 
state. By slowly cooling the system, the system settles into a solid crystal structure, 
which is a minimum energy state. This process does not, however, guarantee that the 
resulting crystal will be a "perfect crystal" - a global minimum energy state. If the 
temperature scheduling is too fast, impurities may form in the crystal structure. 
Unfortunately, when impurities form at high temperatures, they cannot be removed at 
any lower temperature. Nonetheless, if a suitably slow temperature schedule is used, 
then a crystal structure with relatively few impurities should result. The simulated 
annealing optimization procedure for general combinatorial optimization problems 
attempts to simulate the annealing of a physical structure like this crystal system. In 
this technique, the states of the optimization problem are generalized to states of a 
physical system, the objective function of the optimization problem is generalized to 
the energy of the physical system, and a control parameter of the optimization prob
lem is generalized to the temperature of the physical system. Near optimal solutions 
are sought by allowing the system to anneal from a high temperature to a low tem
perature. Appendix A explains in greater detail the simulated annealing procedure 
and its application to the Traveling Salesman Problem. Figure 3.4 illustrates the 
results of applying simulated annealing to a 22-city Traveling Salesman Problem. 



-

16 

Navigation Path Planning 

A pilot often avoids mountains and creates masking by flying through the val
leys of mountainous terrain. In the course of navigating through natural terrain, 
mountains can be thought of as obstacles. The task of planning an aircraft route 
through mountainous terrain is similar to the task of planning a path for a robot mani
pulator arm through a work environment of obstacles. Also, aircraft path planning is 
similar to mobile robot and autonomous land vehicle path planning. Because of the 
similarity, there may be attributes of solution techniques in the mobile robot and 
robot manipulator arm problems which are useful in solving the path planning prob
lem for aircraft. 

Several methods for path planning in robotics are now reviewed. Methods for 
planning amongst polygon obstacles and methods for terrain navigation planning are 
considered. The additional complications of inexact or unclear maps are not 
addressed. 

The configuration space approach for path planning proposed by Lozano-Perez 
[37] deals directly with the free space rather than the space occupied by obstacles. 
The process shrinks the manipulated object down to a single source point and 
expands the obstacle regions according to the object shape. The venices of the 
expanded obstacle regions constitute a search graph. All venices that can be joined 
without intersecting an expanded obstacle are connected to form a visibility graph, 
which is searched for a path between start and finish locations. Figure 3.5 shows the 
search graph generated by the configuration space approach for a square object 
amongst polygon obstacles. The dashed search arcs correspond to the expanded obs
tacle shapes. The location of the obstacle at the start S and finish F are indicated with 
the object shown at the start location. The path generated is typically close to the obs
tacles, which doesn't allow for large uncertainties in the obstacle representation or 
the object position. If obstacle shapes are expanded to compensate for these errors, 
then it is possible that some paths between obstacles may be excluded needlessly. 

In an attempt to create paths that stay in the middle of corridors between obsta
cles rather than along the edges of obstacles, Brooks [6] developed a generalized 
cone method. All pairs of obstacle edges are examined, and those that have free 
space between them compose the sides of a generalized cone. Figure 3.6 shows a 
generalized cone between two polygon obstacles with the axis of the cone shown as a 
dashed line. The union of generalized cones constitutes free space. Intersecting cone 
axes determine nodes for a connectivity graph, and arcs between nodes are paths 
along the generalized cone axes. The connectivity graph is used to search for paths 
between start and finish locations. Figure 3.7 shows the search graph created from 
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generalized cone axes for an object (not shown) amongst polygon obstacles. Dashed 
lines indicate the search graph. In this method, the clearance of the object must be 

checked at the bottlenecks of the generalized cones while searching the graph. 

In a mixed representation, Kuan, et al. [30] use generalized cones and convex 
polygons to represent free space. First, all the polygon obstacles must be decom
posed into convex obstacles to create a unifonn obstacle representation. Next, a 
topological neighborhood graph is constructed to identify which shapes constitute 
distinct obstacles. The dual of this neighborhood graph is a connectivity graph dep
icting free space. The arcs of the connectivity graph represent channel regions 
between neighboring obstacles, and the nodes represent passage regions where those 
channels meet. The channels may be thought of as streets and the passage regions as 
street intersections. At each arc of the connectivity graph, a generalized cone is used 
to represent the channel, and at each node of the connectivity graph, convex polygons 
are used to represent the passage region. The intersection of generalized cone axes 
and convex polygon segments are used as nodes of a search graph representing free 
space paths. Figure 3.8 illustrates the partitioning of the free space into channels and 
passage regions. Figure 3.9 shows a search graph generated with the mixed represen
tation of free space. The start node S and finish node F are connected to the nodes in 
their respective channel and passage regions in order to complete the search graph. 
The graph is then used to search for paths between start and finish points. 

Potential field approaches are another technique which carry over from manipu
lator arm problems [2,27]. In this method, the obstacles are represented as groupings 
of charged particles that repel the manipulated object while the finish location is 
modeled with a charge that would attract the object. The manipulator ann moves 
toward the finish location following the gradient of the potential field - additional 
heuristics are often needed to maintain the progress towards the finish and to avoid 
box canyons which typically occur. 

A simple approach to establishing a search graph is to use a regular grid method 
([26,43] applies it to DARPA's Autonomous Land Vehicle). Free space is 
represented using an evenly spaced grid of points. Each grid point connects with four 
or eight neighbors to fonn a graph. Two simple graphs generated from the same grid 
points are shown in Figure 3.10 and Figure 3.11. Grid points are superimposed on 
the polygon obstacle map, and those that fallon or within obstacle regions are 
removed. Graph arcs are then connected in order to fonn a search graph. An alterna
tive to removing grid points would be to assign infinite costs to the arcs that connect 
grid points that fallon or within obstacle regions. The start node S and finish node F 
can be connected to the closest grid point, as shown in Figure 3.12. Alternatively, the 
grid can be constructed so that the start and finish locations are grid points - thereby 
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influencing the size and orientation of the grid with their relative locations, as illus
trated by Figure 3.13. 

The path relaxation method of Thorpe [59J combines a regular grid graph and 
aspects of the potential field method in a two-step process. First, one seeks a solution 
using a regular grid search. Then in a relaxation step, the nodes of the regular grid 
solution are perturbed into nearby positions. Each node varies in a motion restricted 
perpendicular to the line between preceding and following nodes. In a sense, the 
nodes are positioned by a potential field established as a cost function for the prob
lem. 

Methods which rely on search graphs developed from a quadtree representation 
[23,25,44J partition free space into square regions. Free space is recursively decom
posed using quadtrees. Initially, the largest possible squares are fitted to partition the 
obstacle region. These partitions will either be full, partially full, or free of obstacles. 
The partially full partitions are further subdivided into four smaller square partitions, 
and each resulting square is appropriately identified as full, partially full, or free of 
obstacles. This process of subdividing partially full squares repeats until the square 
size becomes sufficiently small to well represent the obstacle boundaries. Figure 3.14 
shows a free space partitioning with quadtrees. A search graph for path planning can 
be constructed by connecting nodes located at the center points of adjacent squares. 
The start node S and finish node F can be connected to the node in the center of their 
respective squares. An example of a search graph established using the quadtree 
representation for free space is shown in Figure 3.15. This method has the salient 
advantage of representing large open spaces with a coarse grid and more congested 
(with obstacles) regions with finer grids. The quadtree representation is easily formed 
from a binary array or raster representation of obstacle data. Furthermore, free space 
data processed into a hierarchical quadtree representation saves substantial computa
tional time during a search. 

Finally. Voronoi diagrams also assist various path planning problems. 
O'Dunlaing and Yap [48J plan the motion of a disc amongst polygon obstacles, 
O'Dunlaing, Sharir, and Yap [46,47] for the motion of a ladder, and Canny [7,8] for 
the motion of a polygon object. A review of Voronoi diagrams and their use in 
motion planning is given in [56]. In these methods, the Voronoi diagram of the obs
tacle polygon line segments are used to create a diagram of straight and parabolic 
arcs connected to form a search diagram for paths. Except in the vicinity of the ini
tial and final locations of the object, the search is constrained to the Voronoi diagram. 
Thus, a search for a path in a two dimensional space of obstacles is reduced to a 
search on a one dimensional manifold, the Voronoi diagram. Figure 3.16 shows the 
Voronoi diagram of a set of polygons in an application of moving a triangular object 
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amongst a set of polygon obstacles. In three dimensions, Canny [7,8] applies the 
Voronoi diagram for polyhedra to solve the Piano-Movers Problem (moving a 

polyhedral object amongst polyhedral obstacles). The Voronoi diagram of three 

dimensional space is a two dimensional manifold made up of planar and quadratic 
surfaces. This is a set of points equidistant from two or more obstacle faces, edges, 

or vertices. Paths can be found by searching the Voronoi diagram, however, Canny 
uses a simplified Voronoi diagram to find paths. Simplified Voronoi diagrams, intro

duced by Canny and Donald [7,10], are based on a measure of distance which is not a 
true metric, resulting in a lower algebraic complexity for the search space compared 

to the true Voronoi diagram. 

In this thesis, the Voronoi diagram of a set of points - rather than a set of line 

segments - provides a search graph for path planning. The polygon vertex points of 
the mountain boundaries, or obstacles, create a Voronoi diagram from which one 

constructs a search graph for path planning. The Voronoi diagram is modified by 

eliminating certain edges so that no edge in the final search graph will cross over an 
obstacle boundary. Consequently, the lengths of different paths in the graph could be 
meaningfully compared. Although the paths at this planning level could be traversed, 
the purpose of the comparison is to decide on a reasonably good path to consider for 
further investigation in the path planning hierarchy. Whereas the paths generated by 
the Voronoi diagram of a set of line segments may be closely followed in the path 
planning applications mentioned above, the paths generated by the modified Voronoi 
diagram search graphs in this thesis are not considered as the paths to be followed. 
The hierarchical role of path planning using the modified Voronoi diagram presented 
in this thesis will become apparent in further chapters. 
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Figure 3.1. In this Traveling Salesman Problem, the nearest neighbor heuristic gen
erates a tour with a final edge from node 4 to the start node S which is quite 
costly. The final edge constitutes 30% of the total tour cost The final tour is 
(S 8 5 2 1 3 6 7 4 S). 
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(c) 1 

Figure 3.2. The minimum spanning tree can be used to generate a tour for the Trav
eling Salesman Problem. (a) Construct the minimum spanning tree, (b) perfonn 
a depth first traversal of the minimum spanning tree, and (c) modify the depth 
first traversal by skipping over nodes that are revisited. The final tour is 
(S 8 5 3 6 7 4 1 2 S). 
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Figure 3.3. The tour (S 8 5 2 1 3674 S) is modified using a 2-change to form the 
tour (S 8 5 2 1 3 47 6 S). This 2-change decreases the total tour cost by 7.3%. 
The modified edges are shown in dashed lines. 
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(a) Randanly Connected Cities (b) High Temperature 

(c) Low Temperature (d) Zero Temperature 

Figure 3.4. Simulated annealing results for a 22-city Traveling Salesman Problem. 
Initially, the cities are randomly connected (a). As the temperature parameter is 
lowered from higher temperatures (b) to lower temperatures (c), costly tour 
edges are removed. The final tour (d) shows a path that visits each cluster once, 
visiting all the cities within the cluster and then proceeding to visit another clus
ter. 
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Figure 3.5. A search graph generated with the configuration space approach for path 
planning. 
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Figure 3.6. A generalized cone. 
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Figure 3.7. A search graph generated with generalized cones. 
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Figure 3.8. Free space between polygon obstacles partitioned into channel regions, 
labeled with a C, and passage regions, labeled with a P. 
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Figure 3.9. A search graph generated with a mixed representation of free space. 
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Figure 3.10. A graph connecting four neighboring grid points. 

Figure 3.11. A graph connecting eight neighboring grid points. 
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Figure 3.12. A search graph generated from a simple grid connecting four neighbor
ing grid points. The start and finish locations are connected to the closest grid 
points. 
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Figure 3.13. A search graph generated from a simple grid connecting eight neigh
boring grid points. The start and finish locations are forced to be grid points. 
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Figure 3.14. Free space between polygon obstacles partitioned using quadtrees. 

Figure 3.1S. A search graph generated using quadtrees. 
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Figure 3.16. The Voronoi diagram is used to plan the motion of a triangUlar object 
amongst polygon obstacles. The triangular object is initially at point S. Shaded 
polygon regions around obstacles represent the enlarged obstacles - planning is 
then simplified to moving a point obstacle amongst these enlarged obstacles. 
The Voronoi diagram of the enlarged obstacles establishes the search graph for 
motion planning. This figure is taken from [10] with pennission from the 
authors [9]. 



-

-

32 

CHAPTER 4 

TREE SEARCH SOLUTIONS FOR 
V ARIA TIONS OF THE TRAVELING SALESMAN PROBLEM 

This chapter investigates tree search techniques for the Traveling Salesman 
Problem. Initially, the terminology and complexity of the search space is discussed. 
Then, an II-city Traveling Salesman Problem is introduced, for which all the search 
problems in this chapter are based. Uninformed search techniques are applied, then 
heuristic search techniques. Next, the basic Traveling Salesman Problem is varied so 
that local and global constraints are added. These variations make the problem appli
cable to more complex mission planning problems. 

The Search State Space 

In general, a sequence of events constitutes a mission plan. For the Traveling 
Salesman Problem, an event is to visit a city, e.g., visit city A or visit city B. A 
sequence of events is called a state, representing a portion of a tour. A state is suit
ably represented as a list of cities, e.g., the state (A Be) represents the portion of a 
tour for a visit from city A followed by a visit to city B followed by a visit to city C. 
The state space is the set of all states. In order to create one state from another, a 
state operator is invoked. A state operator modifies a state by adding another city, 
not already in the current state, to the end of a tour. It also maintains the cost of a 
state. For example, the state operator Oc modifies the state (A B) with cost g = cAB, 

adding the visit to city C, to create the new state (A B C) with cost g=cAB+cBC' 

Since the salesman travels from the final city back to the start city, the state operator 
modifies the state by adding the start city to the state only after all the cities are 
included in the tour. 

When solving the Traveling Salesman Problem using tree search techniques, the 
entire state space is represented by a state space tree. The state space tree represents 
all the states as nodes and connects all the states with arcs. Each arc represents the 
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appropriate state operator that must be invoked to create the state. Figure 4.1 presents 
a state space tree for a 4-city Traveling Salesman Problem. The state (S) is the root 
node or the start node for the tree. If a state (node) is modified to create a new state 
(node) with the state operator, then the new state (node) is called the successor of the 
previous state (node). Creating all the successor nodes of a particular node in a tree 
is called expanding the node. A state (node) that has no successor is called a leaf 

node. 

The state space tree exhibits some notable qualities. First, the exponential 
growth of the tree is apparent. Let N denote the number of cities in the problem. At 
depth 0 the start city composes the root node. At this depth the state operator creates 
N -1 new states at depth 1. At depth 1 the state operator creates N -2 new states at 
each node, and at depth d (d < N -1) the state operator creates N - d -1 new states at 
each node. The last invocation of the state operator adds the start city to the end of 
the tour, represented by a single successor for all states at depth N -1. Notice that 
there are (N -1)! leaf nodes of the state space tree. These nodes represent possible 
solutions to the problem, since these states satisfy the global constraint that all the 
cities are visited and the tour finishes at the start city. Variations of this problem 
(investigated later) will allow for local constraints that specify that a particular city 
must be visited prior to another city. A particular state that satisfies the local and glo
bal constraints of the criteria is called the solution state or the goal state. Of course 
more than one solution state may exist. 

The size of the state space is characterized by the number of states or the 
d 

number of arcs. The state space tree has 1 node at depth 0, n (N -k) nodes at depth 
k=l 

d (O<d <N), and (N -I)! nodes at depth N. For every node at depth d (d ;to), there is 
one arc connecting it to some node at depth d -1 (the root node is the exception). 
Thus, there is only one less arc than the number of nodes, and either the number of 
nodes or the number of arcs can characterize the state space. The total number of 

N-l d 
states (or nodes) in the search tree is 1+(N-1)!+ L nCN-k) and the total number of 

d=lk=l 
N-l d 

arcs in the search tree is (N-l)!+ L I1CN-k). Using these equations, the size of the 
d=lk=l 

search tree can be computed before the search is started. If the size of the tree is 
detennined to be too large for computer storage, then the search may have to rely on 
efficient pruning of the tree to be able to arrive at a solution to the problem. 

In tree searches, the state operator creates (or builds) the state space tree. If the 
state operator can create a search tree to find a solution without creating the entire 
search tree, then the sections of the tree that are not created are considered pruned 
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sections of the tree. If a node at depth d is pruned from the search tree, then none of 
its successor nodes at a depth greater than depth d are created by the state operator, 
and a subtree of size N -d is eliminated from the search. Some of the search tech
niques investigated in this chapter will show how pruning can be performed while 
still computing optimal solutions. 

Computing the number of nodes or arcs used in the search tree establishes a 
means for comparing the search efforts of different search techniques. In this 
chapter, the number of nodes created in the search tree will be used to compare 
search efforts of different search techniques. 

An II-City Traveling Salesman Problem 

Consider the problem where a salesman must visit the cities Atlanta (A TL), 
Boston (BOS), Chicago (Cm), Dallas (OFW), Denver (DEN), Detroit (OTT), Los 
Angeles (LAX), Minneapolis (MSP), New Orleans (MSY), Pheonix (PHX), and Seat
tle (SEA). The salesman must start at Detroit and visit all the cities once before 
returning home, minimizing the cost to travel to all the cities. To complete this prob
lem statement, a table of intercity costs is given which specifies the cost to travel 
from any city to any other city. Table 4.1 gives the intercity costs for the II-city 
Traveling Salesman Problem example (from [13]). These intercity costs establish the 
cost matrix C as discussed in Chapter 3. 

The search tree for the II-city Traveling Salesman Problem is large, yet the tree 
can be searched by several techniques without computational difficulties. The II-city 
search tree has a total of 13,492,901 nodes with 3,628,800 leaf nodes (or solution 
nodes). This search tree size is not unmanageable for computer storage, and even an 
exhaustive search can be performed, however, for the purpose of comparing many 
search techniques, this represents a reasonable size problem. 

Uninformed Search Techniques for the Traveling Salesman Problem 

Exhaustive search is a simple example of an uninformed search technique. An 
exhaustive search considers all the leaf nodes of the state space tree and compares 
their costs to arrive at the minimal cost tour. This search can be established by an 
exhaustive breadth first search [51], as illustrated in Figure 4.2, or a exhaustive depth 
first search [51], as illustrated in Figure 4.3. The breadth first search establishes the 
search tree by progressively creating the tree in layers of equal depth. The depth first 
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search establishes the search tree by creating all the nodes of the leftmost branch first, 
then creating the next possible solution the problem (leaf node), etc. While these 
techniques provide optimal results and are easy to program, these techniques are 
inefficient in computational cost. For large problems, the entire search tree cannot be 
stored in computer memory, and thus, exhaustive search is ineffective. 

For the II-city problem, an exhaustive search creates all 3,628,800 possible 
solutions to the problem, incurring the cost of creating 13,492,901 nodes for the 
search tree. The optimal solution is found as (DIT CHI MSP DEN SEA LAX PHX 
DFW MSY A TL BOS DIT) with a tour cost of 2220. The results of applying 
exhaustive search to the II-city problem are presented in Table 4.2. 

Another uninformed search technique can be performed with a depth first search 
with pruning. Recall, a depth first search establishes the tree by creating all the nodes 
of the leftmost branch of the state space tree first. After creating the first possible 
solution, a current best cost is known. If another solution is created with a better cost, 
then it becomes the current best solution. This current best cost is maintained for the 
purpose of pruning. When the search is investigating a branch of the state space tree 
and at that node the cost exceeds the current best cost, then the rest of the tree beyond 
that node is pruned. After all the possible solutions are considered, the optimal solu
tion is the current best solution. The use of pruning makes this method more efficient 
than simple enumeration. 

For the ll-city problem, a depth first search with pruning creates 1,455,016 
nodes of the state space tree. This represents only 10.8% of the nodes of a full state 
space tree. The optimal solution is found as (DIT CHI MSP DEN SEA LAX PHX 
DFW MSY A TL BOS DTI') with a tour cost of 2220. The results of applying a 
depth first search to the ll-city problem are presented in Table 4.3. Notice that some 
nodes are pruned at depth 5. Although a reduced search effort is realized through the 
pruning of the depth first search, no heuristics are used. The following section con
siders informed search techniques that utilize heuristic information about the state 
space to further reduce search effort. 

Informed Search Techniques for the Traveling Salesman Problem 

When a human plans a tour around the United States, he often uses heuristics to 
aid him in achieving a plan. For example, when flying from the midwest to the west, 
it is cheaper to use a flight which stops over in Denver or St. Louis, rather than to fly 
direct. If time is also a factor, then a stop at Denver may be avoided if it is snowing 
there. Humans utilize heuristics to avoid the complications of considering many 
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possible alternatives. When using tree search techniques, the reasoning procedure is 
not necessarily the same as that of a human, but both the human and the computer 
can benefit by using heuristics to reduce the amount of search effort. 

Informed search techniques use heuristics to prune the state space tree. With 
certain heuristics, pruning will not effect the optimality of the search. If a search 
algorithm terminates finding an optimal path from the start node to a goal node when
ever a path from the start node to a goal node exists, then the search algorithm is 
termed admissible. In the tree searches that follow, only heuristics that lead to admis
sible searches are applied. 

Informed search techniques utilize an evaluation function for the purpose of 
pruning. At each node, it is desired to have an estimate for the cost of any of the 
solution states which lie below the current node in the tree. The evaluation function 
f (n ), for a node n , takes the form: 

f (n) = g (n) + h (n ). 

The term g (n ) is the cost of the state at node n. The term h (n) is the heuristic func
tion which estimates the optimal cost from node n to a solution state. The evaluation 
function estimates at node n the cost of a solution state. If this estimate is conserva
tive, i.e., underestimates the actual cost, then it can be used for pruning while main
taining an admissible search. That is, if f (n) exceeds the current best cost, then the 
states below node n can be pruned from the state space tree without effecting the 
optimality of the search. For example, the depth first search with pruning is an 
admissible search because the hueristic h (n ) = 0 is an underestimate of the cost of 
going from node n to a solution state. 

The minimum element c min of the cost matrix C provides a simple heuristic for 

an admissible search. Since all flights cost at least C min' then one can estimate for 
any state at depth d of the state space tree that it must cost at least an additional 
(N -d)c min to reach a solution state. Thus, h (n )=(N -d)c min is the heuristic function. 
This is certainly an underestimate of the actual cost of completing a tour; an admissi
ble search is guaranteed. Notice that the c min heuristic is a less conservative estimate 
of the cost from node n to a solution state when compared to no hueristic h (n ) = O. 

For the II-city problem, a depth first search with the heuristic function 
h (n )=(N -d)c min creates 356,141 nodes of the state space tree. This represents 2.6% 
of the nodes of a full state space tree. Table 4.4 shows the results of this search tech
nique, which indicates that the optimal solution is found. Notice that the pruning of 
this search occurs first at depth 4, which is one depth level before the same search 
with no heuristic function . 
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A more powerful heuristic than the c min heuristic can be formed using the 
minimum elements of all the rows and columns of the cost matrix C. Using C min to 
estimate the cost of all of the remaining arcs in a tree is conservative, since in actual
ity, if the flight costing C min were used, it could only be used once. Next, consider 
that since each city is visited only once, then one can utilize the minimum cost of 
each colwnn or each row of the cost matrix for a heuristic. The reasoning is as fol
lows. If one city remains to be added to the tour, then it must cost at least C min' If 

two cities remain, then c min should be used to estimate one flight, but the other flight 
cost must come from some other column (row) of the cost table. Thus, the minimum 
cost element not in the column (row) of C min should be used to estimate this other 
cost. In general, estimates could be made with the minimum elements of each 
column (row) of the cost matrix. For these N minimums, the lowest cost should be 
used to estimate the flight represented at depth N of the search tree, the second lowest 
cost for the arc at depth N -1, the third lowest cost for the arc at depth N -2, and so 
on. For example, consider the heuristic function hI (n) that involves a vector of 
column minimums. Let C minCOL be the vector of column minimums, sorted in 

increasing order. For the ll-city problem, C min COL = (100 120 130 140 150 150 170 

200 200 270). Let C min COL (i) be the i th element of this vector. The heuristic func-
N-d(n) 

tion for a node n at depth d (n) is hI (n) = L C min COL (i). Next, one notes that this 
i=1 

heuristic could be improved by using information imbedded in the rows of the cost 
matrix. The sorted vectors cm;n established using the columns of C and C ~;n 

~'COL "~'ROW 

established using the rows for C establish the two heuristic functions 
N-d(n) N-d(n) 

h1(n) = L Cminco/i) and h2(n) = L CminRow(i)· Let the CminRowlcoL heuristic 
i=1 i=l 

be defined as h(n)=max[h 1(n),h 2(n)]. This provides a heuristic leading to an 
admissible search. 

For the II-city problem, a depth first search with the C minROWICOL heuristic creates 

195,827 nodes of the state space tree. This represents 1.5% of the nodes of a full 
state space tree. Table 4.5 shows the results of this search technique, which indicates 
that the optimal solution is found. Notice that the pruning of this search occurs first 
at depth 3, which is one depth level before the depth first search with the c min heuris
tic and two depth levels before the depth first search with no heuristic function. 
Notice also that out of the 3,628,800 possible solutions (leaf nodes) of the state space 
tree, only 368 leaf nodes were created. 

The choice of a search strategy can also effect the pruning of a search tree. Up 
to this time, only the depth first search technique has been employed for the above 
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heuristics. While this helped identify that the C minROWICOL heuristic is a powerful 

heuristic, it does not necessarily indicate that the most effective search has been per
formed. With the depth first search, the heuristic function aids pruning of the search 
tree, but it does not help guide the search toward branches of the search tree which 
are most promising to contain the optimal solution. The order of node expansion in a 
depth first search (or a breadth first search) is determined by the structure of the 
search, as described previously and in Figure 4.2 and Figure 4.3. An alternative 
search strategy is one that uses the evaluation function f to determine which nodes 
should be expanded. The best first search technique [51] expands nodes in the search 
tree based on which node has the minimum evaluation function value. The best first 
search starts by expanding the root node to create all the states at depth 1. Next, the 
state with the best (minimum) evaluation function value is expanded. The search 
continues to expand nodes that have the best evaluation function value, no matter 
where these nodes appear in the partially developed search tree. Thus, the best first 
search creates the tree based on which node at any stage of the search has the most 
promise of being part of the optimal solution. In fact, when the best first search 
selects a leaf node for expansion, then that leaf node must be the optimal solution to 
the problem. This is easily seen because first, a leaf node is a solution to the problem, 
second, the evaluation function value for a leaf node is also the actual cost g of this 
solution, and third, if this leaf node has the lowest evaluation function value, then no 
other leaf node in the tree can have a lower evaluation function value (or actual cost 
g). 

For the II-city problem, a best first search with the C minROWICOL heuristic function 

creates 27,075 nodes of the state space tree. This represents 0.2% of the nodes of a 
full state space tree. Table 4.6 shows the results of this search technique, which indi
cates that the optimal solution is found. Notice that the pruning of this search occurs 
first at depth 2, which is before any of the previous search techniques employed. 
Also note that only one leaf node, the optimal solution, is created, although 3,628,800 
leaf nodes exist. 

A final comparison of the search techniques applied to the II-city Traveling 
Salesman Problem shows the computational benefits of informed search techniques. 
All the searches are admissible, and thus they all arrive at the same optimal tour 
(OTI em MSP DEN SEA LAX PHX DFW MSY ATL BOS DIT) with a tour cost 
of 2220. However, the differences between the searches employed should be com
pared in terms of some cost metric; the notion of heuristic power is useful. Heuristic 

power is a measure of the amount of pruning induced by a heuristic function. This 
can be expressed as the percentage of nodes pruned by an informed search technique 
compared to the total number of nodes in a full state space tree. Figure 4.4 shows a 
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comparison in tenns of heuristic power for the search techniques applied to the 11-
city problem. Based on heuristic power, the most effective search technique 
employed was the best first search technique with the C minROWICOL heuristic function. 

The effect of implementing an infonned search technique with a good heuristic for 
pruning is apparent; the optimal solution can be found with far fewer nodes searched. 

Informed Search Techniques for Variations of the Traveling Salesman 
Problem 

The basic Traveling Salesman Problem is now varied so that local and global 
constraints are added. Two variations are presented. The first problem does not 
require much search effort, but is presented to introduce local and global constraints. 
The second problem is much more difficult, and demonstrates how more complex 
mission planning problems may be solved. 

Consider the II-city Traveling Salesman Problem with a budget limit and a city 
order constraint. A planner is interested in any tour that is less than $3000 provided 
that the horne city is Detroit (DIT) and Boston (BOS) is visited before Los Angeles 
(LAX). The $3000 budget limit constraint is an example of a global constraint, and 
the city order constraint is an example of a local constraint. To solve this problem, it 
is most applicable to use a depth first search rather than a best first search because 
only one solution node is sought out of many possible solutions - there are actually 
781 tours less than $3000 that obey this city order constraint. The breadth first search 
should not even be considered since it creates all the nodes below depth N before 
creating a single solution node at depth N. The depth first search should allow for 
more solution nodes to be investigated sooner than the best first search. 

The budget limit and city order constraints can both be used for pruning. When
ever a node has an evaluation function value that exceeds the budget limit, the rest of 
the tree beyond this node can be pruned. Additional pruning can be done based on 
the city order constraint. When the state operator adds LAX to a tour that does not 
contain BOS, then the rest of the tree beyond this node can be pruned. These cases of 
pruning can easily be seen to lead to an admissible search because the optimal tour 
must comply with the budget limit and the city order constraints. 

For the II-city problem with the $3000 budget limit constraint and the BOS 

before LAX city order constraint, a depth first search with the C minROWICOL heuristic 

function creates only 70 nodes of the state space tree. Table 4.7 shows the results of 
this search technique, which indicates that a solution is (DTT A TL BOS CHI DFW 
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DEN LAX PHX SEA MSP MSY 011) with a tour cost of 2930. The optimal tour 
that meets the budget limit and city order constraints is (DIT CHI DEN DFW MSY 
ATL BOS LAX PHX SEA MSP 011) with a tour cost of 2510. Essentially, this 
problem is not very difficult to solve. The budget limit allows for a solution to be 
found without a difficult search. The next problem presented will be more con
strained and will require a search that is more complex than the ones performed so 
far. 

Consider a relaxed II-city Traveling Salesman Problem with a budget limit and 
city order constraints. A relaxed II-city Traveling Salesman Problem allows for 
solutions that do not contain all 11 cities, provided all the local and global constraints 
are met. A planner is interested in a tour that contains as many of the 11 cities as 
possible, is less than $2000 in cost, has the home city of Detroit (011), visits Boston 
(BOS) before Los Angeles (LAX), and includes at least Boston (BOS), Chicago 
(CHI), Dallas (DFW), Denver (DEN), Detroit (D11), and Los Angeles (LAX). The 
budget limit and requirement to include BOS, cm, DFW, DEN, DIT, and LAX are 
examples of global constraints, and the city order constraint is an example of a local 
constraint. 

The state space of this relaxed II-city Traveling Salesman Problem is larger 
than the state space of the basic Traveling Salesman Problem. For the basic Traveling 
Salesman Problem, the state operator adds the start city to the end of a tour only after 
all 11 cities have been visited. In the relaxed II-city problem, the state operator can 
add the start city to the end of a tour after any number of cities have been visited. Of 
course, after the start city is added to the end of a tour, the tour is considered com
plete, and further cities cannot be added. Because the state operator can complete a 
tour consisting of any number of cities, the state space tree has solution nodes at 
depth 2 though depth N. Figure 4.5 presents a state space tree for a relaxed 4-city 
Traveling Salesman Problem. The relaxed II-city problem has 19,728,201 nodes and 
9,864,100 solution nodes (leaf nodes), compared to the 13,492,901 nodes and 
3,628,800 solution nodes (leaf nodes) of the basic Traveling Salesman Problem. 

One does not know a priori if the budget limit will allow for a full II-city tour. 
Indeed, from the previous search results, one notes that the $2000 budget limit is 
insufficient to allow for any full II-city tour. However, this information is not 
known at the beginning of the search, so it cannot be anticipated that a full II-city 
tour cannot be realized. The search technique must proceed to look for the best 11-
city tour until it discovers that an II-city tour is not possible. Also, a solution node 
investigated at depth d is the optimal solution only if it meets all the local and global 
constraints, and if no solution node at a depth greater than depth d meets these con
straints. Naturally, it follows that the best first search is the most appropriate search 
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strategy. A depth first search and breadth first search are less appropriate because 
they do not direct the search toward the optimal solution. 

Pruning for the relaxed N -city Traveling Salesman Problem must account for 
the possibility of tours with less than N cities. The C minROWICOC. heuristic function esti

mates at any depth the cost of a full N -city tour. However, when all the nodes of a 
search tree have an evaluation function value that exceeds the budget limit, one can 
conclude that the full N -city solution is not possible. In this case, the heuristic func
tion should be changed to estimate the cost of a (N -1)-city tour. This is easily 
implemented with the C minRowiCOC. heuristic. Define k to be the k-city tour searched 

for in the relaxed Traveling Salesman Problem (initially, k =N). The cm;" 
~'ROWICOC. 

heuristic, defined as h(n)=max[h t (n),h 2(n)], can be modified to allow for k-city 
k-d(n) k-d(n) 

tours by letting h1(n)= L CminCOc.(i) and h 2(n)= L CminRow(i). Finally, addi-
i=l i=l 

tional pruning can be done by using the city order constraint as described in the pre
vious search. 

The relaxed N -city Traveling Salesman Problem has the salient feature that the 
best k - city tour (2Q. g.J) can easily be retained during the search for the optimal 
tour. This may be useful for large N. That is, if computation time or storage 
becomes excessive during a search, the current best solution to the problem can be 
immediately retrieved. This is not the case with the search of the basic Traveling 
Salesman Problem, since only the leaf nodes of the search tree represent tours that 
return back to the start city - if the search is stopped before a leaf node is created, 
then a complete tour cannot be immediately retrieved. 

For the relaxed II-city problem with the $2000 budget limit, a best first search 
with the C minROWICOC. heuristic function and pruning based on the city order constraint 

creates 17,660 nodes of the state space tree. This represents only 0.09% of the nodes 
of a full state space tree. Table 4.8 shows the results of this search, which indicates 
that the optimal solution is (OTT BOS LAX PHX DEN DFW MSY A TL CHI MSP 
OTT) with a tour cost of 1910. Table 4.9 shows intermediate results. The first tour 
created that meets all the local and global constraints is (OTT cm BOS LAX PHX 
DEN DFW OTT) with a cost of 1530, which is found after creating 6168 nodes of the 
search tree. This tour includes only 7 cities so the search proceeds to look for solu
tions which include more cities. Note that the search determines that an II-city tour 
is not possible after creating 17,660 nodes. Then, a to-city tour is sought, however, 
at this stage of the search the best to-city tour has already been found. Thus, the 
optimal solution is found and the search is complete. This problem shows how local 
and global constraints can be added to the basic Traveling Salesman Problem. The 
resulting problem is representative of a complex mission planning problem. 
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Figure 4.1. A state space tree for a 4-city Traveling Salesman Problem. City A, city 
B, city C, and city D compose a tour, with city A as the start city. States are 
shown in parentheses, and state operator decisions are shown on the arcs, e.g., 
0B denotes the decision to add city B as the next city on the tour. The root 
node, leaf nodes, and depths are also labeled. 
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Figure 4.2. The general behavior of an exhaustive breadth first search. Numbers 
beside nodes indicate the ordering of node expansion for a search of a 4-city 
Traveling Salesman Problem state space tree. 
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Figure 4.3. The general behavior of an exhaustive depth first search. Numbers 
beside nodes indicate the ordering of node expansion for a search of a 4-city 
Traveling Salesman Problem state space tree. 
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Figure 4.4. A comparison of Traveling Salesman Problem search results. The four 
search techniques are (a) depth first search with pruning, (b) depth first search 
with the C min heuristic, (c) depth first search with the C minROW/cOL heuristic, and 
(d) best first search with the C minROWtCOL heuristic. 
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Table 4.1. Intercity costs for an II-city Traveling Salesman Problem. 

INTERCITY AIRLINE FARES 

From ATL BOS CHI DFW DEN DTT LAX MSP MSY PRY SEA 
To 
ATL 320 220 250 330 220 600 310 150 420 550 
BOS 270 290 410 460 230 780 310 360 580 620 
cm 190 250 230 260 100 640 130 240 380 450 
DFW 220 490 270 200 330 400 250 150 250 430 
DEN 390 550 300 230 370 290 240 300 190 340 
orr 190 200 120 280 310 600 170 270 440 490 
LAX 500 320 270 340 250 510 290 430 140 270 
MSP 260 370 140 290 210 200 340 290 340 370 
MSY 170 430 280 170 350 310 520 340 410 630 
PHX 490 690 450 300 220 520 150 410 350 360 
SEA 660 750 530 520 280 590 320 440 530 310 

- --

- ---

-
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Table 4.2. Uninformed exhaustive breadth first search results. 

SEARCH RESULTS 

Search Strategy: Exhaustive Breadth First Search 
Heuristic: None 
Optimal Tour: (DIT Cll MSP DEN SEA LAX PHX DFW MSY A TL BOS DIT) 
Optimal Tour Cost: 2220 

Local Search State Space Analysis: 

Depth 0 
Depth 1 
Depth 2 
Depth 3 
Depth 4 
Depth 5 
Depth 6 
Depth 7 
Depth 8 
Depth 9 
Depth 10 
Depth 11 

Nodes 
Created 

1 
10 
90 

720 
5040 

30240 
151200 
604800 

1814400 
3628800 
3628800 
3628800 

First Pruning: not applicable 

Global Search State Space Analysis: 

Nodes in Full 
State Space Tree 

1 
10 
90 

720 
5040 

30240 
151200 
604800 

1814400 
3628800 
3628800 
3628800 

Total Number of Nodes Created: 13492901 
Number of Nodes in a Full State Space Tree: 13492901 
Percent of Nodes Created: 100% 

Percent 

100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
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Table 4.3. Uninfonned depth first search with pruning results. 

SEARCH RESULTS 

Search Strategy: Depth First Search with Pruning 
Heuristic: None 
Optimal Tour: (DIT cm MSP DEN SEA LAX PHX DFW MSY A TL BOS DIT) 
Optimal Tour Cost: 2220 

Local Search State Space Analysis: 

Depth 0 
Depth 1 
Depth 2 
Depth 3 
Depth 4 
Depth 5 
Depth 6 
Depth 7 
Depth 8 
Depth 9 
Depth 10 
Depth 11 

Nodes 
Created 

1 
10 
90 

720 
5040 

30012 
138945 
401396 
554211 
286700 

36535 
1356 

First Pruning: Depth 5 

Global Search State Space Analysis: 

Nodes in Full 
State Space Tree 

1 
10 
90 

720 
5040 

30240 
151200 
604800 

1814400 
3628800 
3628800 
3628800 

Total Number of Nodes Created: 1455016 
Number of Nodes in a Full State Space Tree: 13492901 
Percent of Nodes Created: 10.8% 

Percent 

100% 
100% 
100% 
100% 
100% 

99.2% 
91.9% 
66.4% 
15.3% 
7.9% 
1.0% 

0.04% 
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Table 4.4. Infonned depth first search results with C min heuristic. 

SEARCH RESULTS 

Search Strategy: Depth First Search 
Heuristic: C min Heuristic 
Optimal Tour: (DlT CHI MSP DEN SEA LAX PHX DFW MSY ATL BOS DlT) 
Optimal Tour Cost: 2220 

Local Search State S pace Analysis: 

Depth 0 
Depth 1 
Depth 2 
Depth 3 
Depth 4 
Depth 5 
Depth 6 
Depth 7 
Depth 8 
Depth 9 
Depth 10 
Depth 11 

Nodes 
Created 

1 
10 
90 

720 
4578 

20856 
61355 

108792 
105465 
47216 

6690 
368 

First Pruning: Depth 4 

Global Search State Space Analysis: 

Nodes in Full 
State Space Tree 

1 
10 
90 

720 
5040 

30240 
151200 
604800 

1814400 
3628800 
3628800 
3628800 

Total Number of Nodes Created: 356141 
Number of Nodes in a Full State Space Tree: 13492901 
Percent of Nodes Created: 2.6% 

Percent 

100% 
100% 
100% 
100% 

90.8% 
69.0% 
40.6% 
18.0% 
5.8% 
1.3% 

0.18% 
0.01% 
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Table 4.5. Informed depth first search results with C minROWI'COL heuristic. 

SEARCH RESULTS 

Search Strategy: Depth First Search 
Heuristic: C minROWI'COL Heuristic 
Optimal Tour: (DIT CHI MSP DEN SEA LAX PHX DFW MSY A TL BOS DIT) 
Optimal Tour Cost: 2220 

Local Search State Space Analysis: 

Depth 0 
Depth 1 
Depth 2 
Depth 3 
Depth 4 
Depth 5 
Depth 6 
Depth 7 
Depth 8 
Depth 9 
Depth 10 
Depth 11 

Nodes 
Created 

1 
10 
90 

584 
3108 

11952 
32230 
55252 
57498 
29272 

5462 
368 

First Pruning: Depth 3 

Global Search State Space Analysis: 

Nodes in Full 
State Space Tree 

1 
10 
90 

720 
5040 

30240 
151200 
604800 

1814400 
3628800 
3628800 
3628800 

Total Number of Nodes Created: 195826 
Number of Nodes in a Full State Space Tree: 13492901 
Percent of Nodes Created: 1.45% 

Percent 

100% 
100% 
100% 

81.1% 
61.7% 
39.5% 
21.3% 
9.1% 
3.2% 

0.81% 
0.15% 
0.01% 
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Table 4.6. Infonned best first search results with C min ROW,(Xl{. heuristic. 

SEARCH RESULTS 

Search Strategy: Best First Search 
Heuristic: C min ROW,ox. Heuristic 
Optimal Tour: (DTT CHI MSP DEN SEA LAX PHX DFW MSY A TL BOS DTT) 
Optimal Tour Cost: 2220 

Local Search State Space Analysis: 

Depth 0 
Depth 1 
Depth 2 
Depth 3 
Depth 4 
Depth 5 
Depth 6 
Depth 7 
Depth 8 
Depth 9 
Depth 10 
Depth 11 

Nodes 
Created 

1 
10 
71 

423 
1757 
4825 
7858 
7560 
3767 
794 

8 
1 

First Pruning: Depth 2 

Global Search State Space Analysis: 

Nodes in Full 
State Space Tree 

1 
10 
90 

720 
5040 

30240 
151200 
604800 

1814400 
3628800 
3628800 
3628800 

Total Number of Nodes Created: 27075 
Number of Nodes in a Full State Space Tree: 13492901 
Percent of Nodes Created: 0.20% 

Percent 

100% 
100% 

78.9% 
58.7% 
34.9% 
16.0% 
5.2% 
1.3% 

0.21% 
0.02% 
0.00% 
0.00% 
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Table 4.7. Search results for a variation of the Traveling Salesman Problem. 

SEARCH RESULTS 

Search Strategy: Depth First Search 
Heuristic: C min ROW/COL Heuristic 
Tour: (DTT A TL BOS cm DFW DEN LAX PHX SEA MSP MSY DTT ) 
Tour Cost: 2930 

Local Search State Space Analysis: 

Depth 0 
Depth 1 
Depth 2 
Depth 3 
Depth 4 
Depth 5 
Depth 6 
Depth 7 
Depth 8 
Depth 9 
Depth 10 
Depth 11 

Nodes 
Created 

1 
1 
1 
1 
1 
1 
1 
3 
9 

17 
17 
17 

First Pruning: Depth 1 

Global Search State Space Analysis: 

Total Number of Nodes Created: 70 

Nodes in Full 
State Space Tree 

1 
10 
90 

720 
5040 

30240 
151200 
604800 

1814400 
3628800 
3628800 
3628800 

Number of Nodes in a Full State Space Tree: 13492901 
Percent of Nodes Created: 0.00005% 

Percent 

100% 
10.0% 
1.1% 
0.1% 
0.9% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
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Table 4.8. Search results for a relaxed Traveling Salesman Problem. 

SEARCH RESULTS 

Search Strategy: Best First Search 
Heuristic: C mIDROW,ICOL Heuristic 
Optimal Tour: (DTT BOS LAX PHX DEN DFW MSY A TL cm MSP DTf) 
Optimal Tour Cost: 1910 

Local Search State Space Analysis: 

Nodes I Nodes in Full I Percent 
Created State Space Tree 

Depth 0 1 1 100% 
Depth 1 10 10 100% 
Depth 2 70 100 70.0% 
Depth 3 423 810 52.2% 
Depth 4 1616 5760 28.1% 
Depth 5 3787 35280 10.7% 
Depth 6 5352 181440 2.9% 
Depth 7 4055 756000 0.54% 
Depth 8 1924 2419200 0.08% 
Depth 9 408 5443200 0.01% 
Depth 10 14 7257600 0.00% 
Depth 11 0 3628800 0.00% 

First Pruning: Depth 2 

Global Search State Space Analysis: 

Total Number of Nodes Created: 17660 
Number of Nodes in a Full State Space Tree: 19728201 
Percent of Nodes Created: 0.09% 
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Table 4.9. Intermediate search results for a relaxed Traveling Salesman Problem. 

INTERMEDIATE SEARCH RESULTS 

Nodes Created Current Best Tour Cost 

6168 (DTT CHI BOS LAX PHX DEN DFW DTI) 1530 
6911 (DTT CHI MSP BOS LAX PHX DEN DFW DTI) 1690 
9164 (DTT CHI BOS LAX PHX DEN DFW MSY A TL DTI) 1760 
11592 (DTT CHI MSP BOS LAX PHX DEN DFW MSY A TL DTI) 1920 
12912 (DTT BOS LAX PHX DEN DFW MSY A TL CHI MSP DTI) 1910 
17660t (DTT BOS LAX PHX DEN DFW MSY A TL CHI MSP DTI) 1910 

t State when II-city problem is determined not possible. 
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CHAPTERS 

VORONOI DIAGRAM SEARCH GRAPHS FOR 
MODELING PATHS IN MOUNTAINOUS TERRAIN 

This chapter investigates the problem of generating search graphs of the free 
space around polygon obstacles. This approach can be used to detennine paths 
through mountainous terrain or paths for nap of the earth flight. First, a simple grid 
graph is presented for comparison with the Voronoi diagram graphs that follow. 
Three methods of generating search graphs from Voronoi diagrams are presented: the 
centroid point method, the circle rule method, and the contour vertex point method. 
Several terrain examples are discussed in order to illustrate the salient features of 
these terrain modeling techniques. 

The Terrainrrhreat Environment 

In order to characterize the environment through which the vehicle will travel, a 
search graph is constructed. Since the navigation problem, as defined in this thesis, is 
restricted to a constant altitude flight through mountainous terrain with stationary 
threats, the search space could be represented as a contour map depicting mountain 
regions - these will be thought of as obstacle boundaries. Threats can be modeled 
on the contour map as regions of increased risk, as illustrated in Figure 5.1. 

The obstacles on the contour map are modified to become polygons through a 
process involving hysteresis filtering of obstacle data to smooth jagged boundaries 
and a polygonization process to represent the obstacles as polygons. Many techniques 
have been developed to produce polygons with as few sides as necessary, including 
methods which totally enclose the original region and methods which minimize the 
error between the polygon and the obstacle data [17,41,42,50]. 

A terrain path planning search graph depicts possible paths through the 
terrain/threat search space. A good search graph includes at least one path between 
all neighboring obstacles. These paths are represented within a graph of nodes 
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connected by arcs, where the arcs represent possible paths to be flown. The search 
environment can be thought of as separated into two spaces, the free space and the 
obstacle space. The free space, through which the vehicle is free to move, is unoccu
pied by obstacles, and the obstacle space is occupied by obstacles. Nodes and arcs of 
a search graph do not necessarily have to be in the free space, however, if arc lines 
cross obstacle boundaries, then they cannot be followed on a flight trajectory. Paths 
along these arcs must be eliminated during a search procedure, possibly by assigning 
infinite costs to traveling these arcs. A better method of modeling the polygon obsta
cle search space is to model only the free space with afeasible search graph. A feasi
ble search graph includes only nodes and arcs that are in the free space. 

Frequently, the planning objective is to minimize the path length and threat 
exposure cost for a trajectory. For this purpose, infonnation on path length and threat 
cost should be represented by the search graph. The path length can be represented 
by simply labeling graph arcs with the distance between nodes. Threat information is 
combined with the path length arc costs, assuming that for any segment of a trajec
tory that crosses a threat region, a cost value can be assigned to the segment. This 
cost would represent the increased risk incurred by flying over the segment. Path 
length and threat costs are weighted and summed according to their relative impor
tance, and a final cost is then assigned to each graph arc. 

Finally, when modeling the terrain/threat environment, one should note that the 
threat regions are not modeled as obstacles. Threat regions can be flown through, 
while mountains are obstacles that cannot be flown through. There is always the pos
sibility that an aircraft is flying in an extremely threatening environment where bar
riers of threats must be penetrated. If threat regions were modeled as obstacles, there 
would not exist the option to fly through a barrier of threats, rather than to fly around 
them. 

Graphs From Simple Grids 

Consider the graph search space generated from a simple square lattice, as 
presented in Chapter 3. Two types of grid connections are typical, connecting four or 
eight neighboring grid points. Figure 5.2 illustrates the application of a four neighbor 
grid for the graph of the terrain in Figure 5.1. This search graph is created for com
parison with the Voronoi diagram search graphs that will follow. 

It will not be discussed how the sizing of the grid should be established. Cer
tainly, the grid size is an important parameter since using a fine grid would require a 
large quantity of solutions to be considered by a search algorithm, and a coarse grid 
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may not represent all possible paths through the terrain. The smallest obstacle con
sidered in the terrain model and the proximity of obstacles influence the size of the 
grid. Difficulties in grid sizing has motivated the development of techniques that 
have varying grid sizes. The quadtree technique discussed in Chapter 3 is an example 
of a technique with a varying grid size. 

The search graph constructed from a square lattice has a few notable qualities. 
First, establishing the grid graph is made simpler (computationally) by the uniform 
structure of the graph. If fine detail is needed for a path solution, a finer grid can be 
chosen. However, if the computational work in searching a graph becomes exces
sive, it is difficult to generalize the grid to a more coarse grid and maintain a good 
representation of free space. The simple grid point method can fail to represent some 
paths between obstacles when a coarse grid is used. 

Graphs from Voronoi Diagrams t 

The use of Voronoi diagrams for establishing a search graph will now be dis
cussed. First, the definition of a Voronoi diagram is given to introduce this geometric 
construct. Then, through a series of examples, the use of Voronoi diagrams for ter
rain search graphs will be presented. 

A Voronoi diagram for a set of N points Pi, l'5.i'5.N, in the Euclidean plane is a 
partitioning of the plane into N polygonal regions, one region associated with each 
point Pi' A point Pi is referred to as a Delaunay point. Figure 5.3 shows the Voronoi 

diagram for a set of points. The Voronoi region V(Pi) associated with point Pi is the 
locus of points closer to Pi than to any of the other N -1 points. The Voronoi edge 

separating V(Pi) from V(Pj) is composed of the points equidistant from Pi and Pj. 

Note that not all Voronoi edges are bounded; some extend to infinity. The intersec
tion of Voronoi edges occur at vertices called Voronoi points. Appendix B gives 
details of the construction of Delaunay triangulations (used in the construction of 
Voronoi diagrams) and Voronoi diagrams. 

Voronoi diagrams provide useful information for solving a number of problems 
involving the proximity of N points in the plane. The geometric structure of the 

t All Delaunay triangulations and Voronoi diagrams in this thesis assume that no four points 
are cocircular and that no three points are colinear. These assumptions allow for a simple 
procedure for the generation of these geometric constructs, however, these assumptions are not 
necessary in general - Guibas and Stolfoi [20} present a procedure that allows for these 
anomalies. 
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diagram allows for efficient solutions to problems involving the k nearest and farthest 
neighbors, the two closest points, the smallest circle enclosing the set, and the 
Euclidean minimum spanning tree [57]. The use of Voronoi diagrams for defining 
neighboring points is also useful for navigation path planning. Consider the Voronoi 
edge to separate two neighboring Delaunay points. Using the terminology of Appen
dix B, two Delaunay points are neighbors if a Delaunay edge connects them in the 
Delaunay triangulation. With this definition, the following example should introduce 
the fundamentals for generating search graphs using Voronoi diagrams. 

A simple example using Voronoi diagrams for establishing a search graph 
involves search paths with maximum avoidance of point obstacles. The problem is to 
find a path from a start location S to a finish location F in a plane while maximizing 
the distance from nearest point obstacles and minimizing the distance traveled. The 
maximization of the distance from point obstacles shall be considered of much 
greater importance than minimizing the path length. However, specific weights are 
not given since this problem is intended to be a pedagogical example introducing 
Voronoi diagrams and not a numerical exercise. 

From the definition of a Voronoi edge, we see that the objective of maximizing 
the distance from the two nearest point obstacles is achieved by following the paths 
on Voronoi edges. Since the start and finish locations most likely will not be on a 
Voronoi edge, then a path must be constructed from these locations to a Voronoi edge 
to start and finish a search. A convenient way to do this is to construct a line segment 
from the start (or finish) location to the closest Voronoi edge. The start point, finish 
point, and Voronoi points of the Voronoi diagram are used as nodes of a search graph 
with the Voronoi edges as arcs. Costs can be assigned to the arcs based on the dis
tance between the nodes. A graph search could be perfonned to find a path from the 
start node to the finish node, while minimizing the total arc cost. Any Voronoi edge 
that extends infinitely could be assigned an infinite length cost and will consequently 
be eliminated from appearing as part of a minimum length path solution. Figure 5.4 
shows an example of a search graph for an arbitrary set of points. 

The Centroid Method 

The previous example for maximum avoidance of point obstacles may be used 
to model the terrain for the navigation path planning problem. Each obstacle in the 
plane could be represented by one point at its centroid. The Voronoi edges that 
extend infinitely could be bounded by a region that encloses the entire terrain map, 
creating path search arcs around the boundary of the terrain map. Figure 5.5 
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illustrates a search graph for the terrain map of Figure 5.1. Defining nodes and arcs 
for the start and finish locations as mentioned above, a search can be performed using 
Voronoi edges and these boundary arc additions. 

This method would not do a good job in representing clear paths to follow 
because some of the Voronoi edges may intersect obstacles. For example, Figure 5.6 
illustrates a Voronoi diagram which clearly has a Voronoi edge that crosses an obsta
cle. This is due to the fact that the obstacles are of varying shapes and sizes, and the 
Voronoi edges are only representing points equidistant from the center points within 
obstacles. Indeed, the only space that this method would model correctly would be 
the case of nonoverlapping circular obstacles, all of the same radius. This would 
effectively be solving the path problem of flying at low altitude in an environment of 
telephone poles and street lamps. This is of limited practical use. 

The graph developed from the Voronoi diagram has some notable qualities. 
Very few nodes are used to create a graph that attempts to represent all possible 
routes around obstacles. Although lines may cross over obstacle boundaries, the 
resulting graph is an attempt to create a single path between neighboring obstacles. 
Thus, the topological structure of free space is well represented. Only one path 
between neighboring obstacles exists, consequently, when searching the free space 
for a path, the only decision to be made at each node is which passage way to proceed 
through next. With the grid search graph, many possible paths through each passage 
way between neighboring obstacles may exist. Nonetheless, the centroid method is 
hardly useful when having to model complex terrain. As iIlustrated in Figure 5.6, it 
is quite possible to have a Voronoi edge cross over an obstacle boundary even with 
fairly simple obstacle shapes. However, further modifications to the way a Voronoi 
diagram is used to model obstacles will mitigate these problems. These methods are 
discussed next. 

The Circle Rule Method 

The previous method using single point locations at the center of obstacles lacks 
the information of where the boundaries of obstacles are located. The boundaries of 
obstacles are not modeled and, consequently, it is quite possible for a Voronoi edge 
to intersect an obstacle boundary. The next logical step for improving this model 
would be to incorporate information on shapes of obstacles. This can be done using 
multiple Delaunay points to model the obstacles and performing some modifications 
to the Voronoi diagram for edges that are associated with Delaunay points common 
to the same obstacle. 
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This method entails modeling obstacle boundaries with well placed Delaunay 
points within obstacle boundaries. For any Delaunay point within an obstacle, ima
gine a construction circle around it All Delaunay points will have a construction cir
cle around them with the same radius. To model an obstacle, the union of the interior 
regions enclosed by overlapping construction circles must completely enclose the 
obstacle polygon boundary (but not necessarily the entire obstacle interior). Con
struction circles from neighboring obstacles must not overlap. Developing guidelines 
for the placement of Delaunay points within obstacle boundaries using the circle rule 
method will not be discussed. Figure 5.7 shows two obstacles, one modeled with a 
single Delaunay point and another modeled with several Delaunay points. The con
struction construction circles are shown in dashed arcs. 

After Delaunay points are placed within all the obstacles, the Voronoi diagram 
is constructed. The Voronoi edges that extend infinitely could be bounded by a region 
that encloses the entire terrain map, creating path search arcs that allow for paths 
around the boundary of the terrain map. Figure 5.8 shows the Delaunay points and 
the Voronoi diagram for the terrain of Figure 5.1. The next step is to remove those 
Voronoi edges that are defined by two neighboring Delaunay points modeling the 
same obstacle. Figure 5.9 shows the final search graph. 

In comparison to the grid graph for the polygon obstacles of Figure 5.1, the 
resultant Voronoi graph of Figure 5.9 models the free space in fewer nodes. Again, 
as mentioned for the centroid point method, the graph gives paths that topologically 
represents all possible routes around the obstacles with only one path between neigh
boring obstacles. The circle rule method does a good job modeling complex terrain 
environments. A typical terrain environment that is difficult to model for some 
methods is a box canyon. As seen in Figure 5.10 and Figure 5.11, the box canyon 
can be modeled well with the circle rule method. The graph shows that no path leads 
into the box canyon. Using multiple Delaunay points to model obstacles requires a 
more complex Voronoi diagram to be constructed, however, the resulting search 
graph will no longer have Voronoi edges that cross over obstacle regions, provided 
the circle overlap condition is met. The justification for this is discussed next. 

The motivation for construction circles around the Delaunay points is to allow 
for boundary information of obstacles. In the modified Voronoi diagram graph, a 
Voronoi edge passes between neighboring Delaunay points, provided that these 
Delaunay points are not from the same object. Note that when neighboring Deluanay 
points are from the same object the construction circles intersect, and when they are 
from neighboring obstacles they do not. Consequently, a Voronoi edge that passes 
between two Delaunay points from the same obstacle may pass over the two con
struction circles for these points, while the Voronoi edge that passes between two 
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Delaunay points from neighboring obstacles may will not cross over either of the 
construction circles, but will pass exactly between them. Only the Voronoi edges 
that are fonned from Delaunay points from the same obstacle may cross over the con
struction circles and the obstacle boundary for that obstacle. Since the construction 
circles for an obstacle completely cover the obstacle boundary and the corresponding 
Voronoi edges are removed from the resultant Voronoi diagram, then all the Voronoi 
edges that cross over obstacle boundaries are removed. All the remaining Voronoi 
edges lie completely in free space, since they do not cross over any construction cir
cles. The resultant Voronoi diagram graph is a feasible search graph (Appendix C 
provides a more detailed proof). 

The Contour Vertex Point Method 

The method of modeling obstacles with multiple Delaunay points requires the 
choice of a circle radius parameter and the judicious placement of Delaunay points in 
order to get a good representation of free space. This work can be eliminated by using 
existing points on the obstacle contours for establishing Delaunay point locations. 
The polygon obstacle vertices can conveniently be used as Delaunay point locations 
to model the obstacles. Intuitively, one can see that the vertices of obstacles are the 
points that should be avoided when searching for a path through polygon obstacles. 

The procedure is similar to that of the circle rule method. First, a Voronoi 
diagram is constructed for the set of Delaunay points describing the obstacle vertices. 
The Voronoi edges that extend infinitely could be bounded by a region that encloses 
the entire terrain map, creating path search arcs around the boundary of the terrain 
map. Figure 5.12 illustrates the complete Voronoi diagram search graph using the 
vertices of the obstacles in Figure 5.1. Voronoi edges that are defined by two neigh
boring Delaunay points of the same obstacle are removed. Start and finish search 
nodes can be added to the search graph by connecting these point locations to the 
closest Voronoi edge. The resulting search graph maximizes the distance from the 
closest obstacle vertices, as shown in Figure 5.13. 

In comparison with the previous methods for developing search graphs (cf. Fig
ure 5.2, Figure 5.5, Figure 5.9, and Figure 5.13), the vertex point method gives a 
good representation for free space using a fairly small amount of nodes. The number 
of Delaunay points typically exceeds the number of Delaunay points needed using the 
circle method, but the vertex point method does not require additional analysis to 
detennine where to locate Delaunay points. However, the vertex point method does 
require polygonization of obstacles. One should note that although the vertex point 
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method typically creates a search graph with more search nodes, many of these nodes 
do not increase the complexity of the search. That is, many of the Voronoi points 
representing search nodes connect only two Voronoi edges in the search graph, and 
when a search proceeds to expand such a node, there is only one direction to proceed. 
In contrast, when a Voronoi point connects three Voronoi edges in the search graph, a 
comparison must be made to determine which of the two Voronoi edges should be 

traversed after arriving at the Voronoi point from the third Voronoi edge. 

Like the circle rule method, the vertex point method guarantees that the resul
tant Voronoi diagram graph will depict only feasible paths, paths that are completely 
in the free space. In the case of the vertex point method, feasible paths are 
guaranteed based on a parameter of the polygonization: 

Let the closest distance from any vertex of an obstacle to a neighboring 
obstacle be defined as O. If obstacle polygonization is performed using 
polygon sides no greater in length than 0, then the resultant Voronoi search 
graph will depict only feasible paths. 

Appendix C provides a proof of the feasibility of search graphs generated with the 
contour vertex point method. 

The combination of using few nodes to represent all possible paths through the 
passage ways of mountains and depicting only feasible paths makes the vertex point 
method a useful method of modeling free space. The Voronoi diagram graph pro
vides a simple graph that can be used for deciding which passage ways to proceed 
through while progressing from a start to a finish location. Later, after the passage 
ways have been chosen by a search algorithm, a search for a finer solution in the pas
sage regions could be performed. This will be discussed in more detail later for the 
navigation path planning examples in Chapter 7. 
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Figure 5.3. The Voronoi diagram for a set of 20 points. 
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Figure 5.4. A graph search space for point obstacles. 
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Figure 5.5. A graph search space for polygon obstacles modeled with the centroid 
method. 
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Figure 5.6. An example of a Voronoi edge crossing an obstacle boundary. 
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Figure 5.7. Two obstacles modeled with the circle rule. 
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Figure 5.8. The complete Voronoi diagram graph for polygon obstacles modeled 
with the circle rule. 
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Figure 5.9. The modified Voronoi diagram graph for polygon obstacles modeled 

with the circle rule. 
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Figure S.10. The complete Voronoi diagram graph for a box canyon modeled with 
the circle rule. 

Figure 5.11. The modified Voronoi diagram graph for a box canyon modeled with 
the circle rule. 
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Figure 5.12. The complete Voronoi diagram graph for polygon obstacles modeled 
with Delaunay points at the vertices of the obstacles. 

Figure 5.13. The modified Voronoi diagram graph for polygon obstacles modeled 
with Delaunay points at the vertices of the obstacles. 
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CHAPTER 6 

GRAPH SEARCH TECHNIQUES 
FOR NAVIGATION PATH PLANNING 

This chapter presents some graph search techniques suitable for the grid lattice 
graphs and the Voronoi diagram graphs presented in Chapter 5. The dynamic pro
gramming algorithm, Dijkstra's algorithm, and the A· algorithm are presented and 
illustrated with examples. 

The Dynamic Programming Solution Technique 

Dynamic programming was first introduced by Richard Bellman [3] as a compu
tational method for solving optimization problems. One set of application of dynamic 
programming is sequential decision process problems. Path planning is such an 
application since one must select a sequence of graph arcs to traverse in order to 
achieve an optimal path based on the cost associated with those arcs. The dynamic 
programming technique will now be introduced with an example of a grid search. 

Consider the directed search graph constructed from the uniform grid of Figure 
6.1 (hereafter the directed arcs will be omitted and arrows on arcs will correspond to 
pointers indicating intermediate results). The objective is to find a path from the start 
node S to the goal node F on the graph, constrained to proceed only from left to right, 
which minimizes the sum of the arc costs. An arc cost represents the non-negative 
cost to travel from one grid point to another. The optimal direction to proceed is the 
decision made at each node. 

Dynamic programming segments a problem in stages based on one variable that 
progresses monotonically. This is typically the time variable (where applicable). 
However, the grid search problem is not stated to progress in stages of time, but in 
terms of grid arcs which lead to the goal node. To direct the grid search, the path is 
restricted to progress from the left to right, from S to F. This restriction guides the 
search and prevents cycling within the graph network. 
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The path problem progresses in stages. At each stage a decision is made. Fig
ure 6.2 shows the six stages where decisions are made. At stage I, one can decide to 
go from node S to node A or node B, each of which is located at stage II. Similarly, 
at node A, one can decide to proceed to node C or node D, each of which is located at 
stage ill. Any path from S to F is called a policy. An example of a policy would be 
the path (SADGJMF) or (SBDHLNF). Any connected section of a policy is called a 
subpolicy, e.g., sections (SAD), (SBDHL), (LNF), and (GJM). 

At the heart of the dynamic programming technique is Bellman's principle of 
optimality [3]: 

An optimal policy has the property that whatever the initial state and initial 
decisions are, the remaining decisions must constitute an optimal policy 
with regard to the state resulting from the first decision. 

More simply stated for the context of this path planning problem: 
An optimal policy must contain only optimal subpolicies. 

The justification of this is quite simple for the path problem. Suppose that an 
extracted subpolicy of the optimal policy was not optimal. Then, there exists another 
subpolicy that could be substituted for this extracted subpolicy that would improve 
the optimal policy. This constitutes a deduction that violates the hypothesis that the 
original policy was an optimal policy. 

The principle of optimality makes it possible to retain the optimal solution with 
fewer calculations than brute-force enumeration. In general, the dynamic program
ming algorithm converts a problem into smaller subproblems. Subproblems are 
solved sequentially, and the corresponding optimal solutions are combined to yield 
the overall optimal solution. The amount of work to solve a problem with dynamic 
programming increases linearly with the number of SUbproblems. A brute-force 
enumeration procedure would have an exponential growth with the number of sub
problems. Thus, the computational work of dynamic programming is far less than 
brute-force enumeration procedures. 

In order to represent the problem mathematically, it is convenient to define the 
following terms: 

CU, n, m) = the cost between node n at stage i and node m at stage (i + 1), 
g U, n) = the minimum cost from node n at stage i to the final node F. 

A fundamental approach of dynamic programming is to solve the problem back
wards (the implications of solving the problem forward will be discussed later). The 
first problem solved is at stage VI. The optimal policy from node M to node F is 
(MF) with a cost of 3, and the optimal policy from node N to node F is (NF) with a 
cost of 5: written as g (VI,M)=3, and g (VI,N)=5. A pointer can be used to maintain 
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this optimal subpolicy result on the graph. The pointer indicates which direction to 
proceed at a node. The next step is to solve the optimal policy problem from stage V. 
From node J to F the optimal policy is (JMF) with a cost of 7. From node K to node 
F the optimal policy is (KMF) with a cost of 7. From node L to node F the optimal 
policy is (LNF) with a cost of 9. These results are found as follows: 

g (V, J) = min [g (VI, m) + C(V, J, m)] = 7 with m=M, 
m=M 

g (V, K) = min [g (VI, m) + C(V, K, m)] = 7 with m=M, 
m=M,N 

g (V, L) = min [g(VI, m) + C(V, L, m)] = 9 with m=N. 
m=N 

This procedure is followed backward to stage I to find the optimal policy from S to F. 
The general procedure is the following: 

g(i,n)= min [g(i+l,m)+C(i,n,m)], 
m=SUCC (i,1I) 

where SUCC (i, n) is a successor at stage (i + 1) to the node n at stage i. For this 
example the successor to a node n is either the node to the upper right or lower right 
of node n. The optimal policy for this example is (SACGJMF). This policy is shown 
in a dashed line in Figure 6.3. The values of g are shown in parentheses above each 
node, and subpolicy pointers are also labeled. Note that is is possible to have two 
pointers (thus two optimal subpolicies) for one node, such is the case shown for node 
E. 

The solution graph has some auxiliary information. Not only is the optimal pol
icy for a path from S to F known, but the optimal policy from any point in the graph 
to F is also known. This assists error corrections since the new optimal policy is 
instantly known if the state drifts from one node to a different one. This is the benefit 
of the backward direction solution. If the dynamic programming solution had been 
performed in the forward direction, the auxiliary information would be different. The 
pointers for the solution graph would indicate the optimal policy for going from S to 
any node on the graph - rather than the optimal policy from any node on the graph 
to F. Nonetheless, both solution procedures will find the same optimal solution for 
the path from S to F. Figure 6.4 shows the optimal policy for the graph when solved 
in the forward direction. Choosing the direction of progression for the dynamic pro
gramming solution is usually just a decision based on what auxiliary information is 
more useful. 

The dynamic programming algorithm presented here is well suited for searching 
grid lattice graphs. However, Voronoi diagram graphs are less uniform in terms of 
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node positions. For Voronoi diagram graphs, one needs a method for searching an 
arbitrary graph. 

Dijkstra's Dynamic Programming Algorithm 

In the previous section a grid search illustrated the general procedure of 
dynamic programming. The following example extends the technique as applied to 
arbitrary graphs. 

Consider an arbitrary undirected graph as shown in Figure 6.5. The problem is 
to find a path from S to F on the graph such that the sum of the arc costs is a 
minimum. As before, the arc costs are non-negative and represent the cost to travel 
from one node to another, and the decisions made are simply decisions of which 
direction to proceed at each node. 

In contrast with the previous example, the arbitrary graph does not necessarily 
have a natural progression from left to right. However, the problem could still be for
mulated to progress from S to F. To proceed, successions of nodes are investigated 
while keeping track of previous investigations so that cycling does not occur. The 
progression will become apparent as the example is explained. 

Some notation established in the previous example will be used, but will be 
altered in the following manner: 

C(n, m) = the cost between node n and node m , 

g (n) = the minimum cost from the start node S to the node n. 

In addition to these functions, the node successor operator will be used. Simply 
stated, a successor of a node n is any node connected to the node n in the graph. For 
example, the successors of node S in Figure 6.5 are nodes A,B, and D. 

An algorithm which implements dynamic programming for arbitrary graphs is 
called Dijkstra's dynamic programming algorithm [14], stated in Figure 6.6. The 
algorithm invokes a forward search from S to F and stops when the optimal policy is 
found. The procedure fails if the node S or F is never found (the algorithm does not 
assume that these nodes exist). The search often does not encompass the entire 
graph, consequently the auxiliary information of the search is not found. If auxiliary 
information is important to the application, the procedure can easily be modified to 
run in either the forward or backward manner, and to run to completion, so that all 
the nodes are investigated. 

Using Dijkstra's dynamic programming algorithm, the example search would 
proceed as follows. The problem is solved forward starting with node S where 
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g (S)=O. In the first loop of the algorithm, the node S is expanded creating the list of 
successors M={A,B,D). S is put on CLOSED. Since the nodes A, B, and D are nei
ther on OPEN nor CLOSED, pointers are directed from these nodes to the start node 
S, and the costs g (A), g (B), and g (0) are recorded. Nodes A, B, and D are put on 
OPEN. Figure 6.7 shows these costs labeled above these nodes in parentheses. Next, 
node A is selected for expansion because this node minimizes the cost g : 

g(A) < g(D) < g(B). 

Expanding node A creates the list of successors M={S,B,E}. Node A in put on 
CLOSED. Node E is neither on OPEN nor CLOSED so a pointer is directed from 
node E to node A and node E is put on OPEN. Next, node B is already on OPEN, so a 
decision has to be made to redirect its pointer from S to A. The pointer is redirected 
because: 

g (A) + C (A,B) < g (B). 

The cost g (B)=3 is established because of the pointer modification. Node S is 
ignored since it is CLOSED. 

The algorithm proceeds to expand nodes which minimize the cost function g. 

The algorithm does not stop, though, when the node F is found (put on OPEN). This 
is because there may be some other policy that includes node F and has a lower value 
for g (F) (this is where pointer modifications change g (F». Finally, when g (F) is the 
minimum cost value for all OPEN nodes, then no other policy can be created within 
the graph that has a solution better than the optimal policy currently indicated from S 
to F. No subpolicy exists starting with a node on OPEN which has a cost lower than 
g (F), thus the current policy with the cost g (F) must be optimal. The final solution 
graph is shown in Figure 6.8, with the optimal policy (SABCF) shown as a dashed 
line. 

A shortcoming of Dijkstra's dynamic programming algorithm is that it lacks a 
mechanism to direct the search toward the finish node F. That is, the technique will 
explore as many nodes that lead towards the solution as it does that lead away. This 
is shown in Figure 6.9 with a forward search through a simple grid having unit arc 
costs. The square nodes are CLOSED while the circled nodes are OPEN. Only the 
pointers associated with the optimal solutions are shown. Notice that there are many 
nodes to the left of S that are explored, even though the finish node is to the right. 
The next section will focus on an algorithm that will be more informed on where to 
look for the solution during the search. 
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A General Graph Searching Procedure 

Dijkstra's dynamic programming algorithm described in the previous section is 

a typical uninformed search. Although uninformed search methods provide a tech

nique for solving the path planning problem, they are inefficient if they expand too 

many nodes before a solution is found: computational time and storage may become 

excessive. An alternative algorithm which overcomes these deficiences is a heuristic 

search technique. 

Heuristic search techniques use problem dependent information to reduce the 

number of nodes investigated. Essentially, the heuristic search technique expands 

nodes based on which node is the most promising to be on the optimal solution path. 

In order to establish the promise of a node, the evaluation function is introduced. 

The evaluation function f (n) evaluates the promise that node n is on the 

optimal solution path. Define the evaluation function to be the estimate of the sum of 

the cost of the minimal cost path from S to n plus the cost of the minimal cost path 

from n to F. Stated in this manner, f (n ) is the minimum cost path constrained to go 
through node n. The evaluation function takes the form: 

f (n) = g (n) + h (n). 

The term g (n ) is an estimate of the optimal cost of the path from node S to node n. 

A good estimate for g (n) is the cost of the path indicated by summing the arc costs 
from node S to node n directed by the current pointers in the search graph. The term 

h (n) is called the heuristic function. The heuristic function estimates the optimal 

cost from node n to node F. 

The evaluation function guides the general graph searching algorithm [45], as 

shown in Figure 6.10. This algorithm is very similar to Dijkstra's algorithm, except 
the evaluation function determines the order for which the nodes will be expanded for 

the general searching algorithm. Notice that Dijkstra's algorithm results from using 
h (n)=O so that f (n )=g (n) in the general graph searching algorithm. 

Some important properties of the GRAPHSEARCH algorithm arise when the 

heuristic function h (n) is a lower bound to a function h'" (n) which is the actual cost 
of a minimal cost path from node n to node F (see Appendix D and (451). \Vhen 

h (n) is a lower bound to h'" (n), the GRAPHSEARCH algorithm is termed the A '" 

algorithm. If there exists a path from the start node S to the goal node F in the search 
graph, then the A· algorithm will terminate finding the optimal path from the start 

node S to the goal node F. This is termed the admissibility property of the A· algo

rithm. 
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Consider the square lattice path planning problem of Figure 6.9 where the 
minimum distance path is sought. The arcs of the graph each have unit cost 
representing the distance between neighboring nodes. The evaluation function 
f (n ) = g (n ) + h (n) can be formed using the sum of the arc costs from the start node 
S to node n as g (n), and the Euclidean distance from node n to the finish node F as 
the heuristic function h (n). Note that h (n) is a lower bound to h * (n) so the GRA
PHSEARCH algorithm becomes an A * algorithm and the optimal path will be found. 

The search begins by expanding the start node S. Figure 6.11 shows the first 
stage of the search and the values of f (n), g (n), and h (n) for each node. The start 
node is also labeled with the number 1 to indicate that it is the first node expanded. 
The algorithm proceeds to expand nodes as explained in the section on Dijkstra's 
algorithm except on the basis of minimal evaluation function value f (n). Figure 
6.12 shows the state of the search when the optimal solutions are found (more than 
one optimal path exists). The values of f (n), g (n), and h (n) are shown for each 
node and the order of node expansion is indicated within each node. The order of 
node expansion shows how the search proceeds toward to finish node F. In com
parison to the solution shown in Figure 6.9 for Dijkstra's algorithm, the solution from 
the A * algorithm expanded far fewer nodes, as shown in Figure 6.13. For this exam
ple of the square lattice grid with the Euclidean distance heuristic, it can be shown 
that the A· algorithm will expand no more than 18% of the nodes expanded by 
Dijkstra's algorithm [51]. 

The A * algorithm is developed from the same structure of Dijkstra's algorithm; 
both are applicable to arbitrary search graphs such as the Voronoi diagram graphs 
presented in Chapter 5. These algorithms will be applied to an example in navigation 
path planning in the following chapter. 
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Figure 6.1. A simple grid search graph. 
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Figure 6.2. A simple grid search graph with stages marked. 
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Figure 6.3. The backward solution graph with the optimal solution (dashed line). 
- --
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Figure 6.4. The forward solution graph with the optimal solution (dashed line). 
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Figure 6.5. An arbitrary search graph. 
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Procedure DIJKSTRA 

1. Given a search graph G put the start node S on a list called 
OPEN. If S does not exist, then exit with failure. Establish the 
cost g (S)=O. 

2. Create a list called CLOSED that is initially empty. 

3. LOOP: if OPEN is empty, exit with failure. 

4. Select the node n on OPEN that minimizes the cost g , remove 
it from OPEN, and put it on CLOSED. 

5. If n is the goal node F, exit successfully with the solution 
obtained by tracing a path along the pointers from S to F in G. 
(Pointers are established in step 7.) 

6. Expand node n ,generating the set M of its successors. 

7. For each member m of M that was not already on OPEN or 
CLOSED, establish a pointer from m to n. Add m to OPEN 
with the cost 

g (m) = g (n ) + C(n , m). 

For each member m of M that was already on OPEN, decide 
whether or not to change its cost g (m) and redirect its pointer 
from n based on 

g (n) + C(n , m) < g (m), 

or if 
g (n) + C(n , m) = g (m), 

then establish two pointers. 

8. Go LOOP. 

Figure 6.6. Dijkstra's dynamic programming algorithm. 
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Figure 6.7. The first stage of the search of an arbitrary graph. 
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Figure 6.8. The backward solution graph when the optimal policy is found. 
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Procedure GRAPHSEARCH 

1. Given a search graph G put the start node S on a list called 
OPEN. If S does not exist, then exit with failure. Establish the 
value! (S). 

2. Create a list called CLOSED that is initially empty. 

3. LOOP: if OPEN is empty, exit with failure. 

4. Select the first node on OPEN, remove it from OPEN, and put it 
on CLOSED. Call this node n. 

5. If n is the goal node F exit successfully with the solution 
obtained by tracing a path along the pointers from S to F in G. 
(Pointers are established in step 7.) 

6. Expand node n, generating the set M of its successors in G. 

7. For each member m of M that was not already on OPEN or 
CLOSED, establish a pointer from n to m. Add m to OPEN 
with the value 

! (m) = g (n) + C(n , m) + h (m ). 

For each member m of M that was already on OPEN, decide 
whether or not to change the value of ! (m) and redirect its 
pointer based on 

g (n ) + C(n, m) < g (m ), 

or if 
g (n ) + C(n , m) = g (m ), 

then establish two pointers. 

8. Reorder the list OPEN according to heuristic merit. 

9. Go LOOP. 

Figure 6.10. A general graph searching procedure . 
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CHAPTER 7 

NAVIGATION PATH PLANNING EXAMPLES 

The following navigation path planning examples use Dijkstra's dynamic pro
gramming algorithm and the A * algorithm as search procedures for Voronoi diagram 
graphs. Search results will be presented and compared both numerically and graphi
cally. 

A Planning Scenario t 

It has been determined by a high level global planning system that a path 
through mountainous terrain with threats is needed to complete a mission plan. A 
low altitude flight in mountainous terrain is planned so that the aircraft has high 
masking and minimal exposure of electromagnetic emissions. It is desired to find a 
constant altitude path from some start location S to a finish location F. The path 
should have minimal exposure to threats, should not cross mountain contours at the 
chosen constant altitude, and should stay within or on the map boundaries. 

The Terrain Search Graph 

The first step in the modeling of the terrain is to polygonize the terrain contour 
map. It is important that the polygonization process guarantees that a mountain 
boundary is contained in the interior of the polygon. This insures that if search graph 
paths do not cross over polygon edges, then a vehicle traversing these search graph 
paths will not hit any mountains. The search process will find a path for moving a 
point aircraft around polygon mountains. This assumes that the dimensions of the 

t This path planning scenario may apply to a helicopter or an aircraft Furthermore, instead of 
mountainous terrain, a planning scenario could also include planning nap of the earth trajectories. 
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aircraft are negligible in comparison to the distances between neighboring mountains. 
If the aircraft dimensions are not negligible, then the polygon mountains can be 

expanded to account for the aircraft's wing span, or some other characteristic dimen

sion. 

The polygons of the terrain map define a set of vertices suitable for the contour 

vertex point method of generating a search graph. Consider the set of 24 polygons 

from Figure 7.1 which represent mountains at a constant altitude. These polygons 

generate the Voronoi search graph shown in Figure 7.2. Graph arcs from map boun

daries eliminate any arcs from infinite Voronoi edges. Also, the start and finish nodes 

do not fall on the Voronoi diagram, so these nodes are added to the graph by connect

ing them to the closest Voronoi point nodes. Notice that the Voronoi search graph is a 

feasible search graph allowing for paths between all mountains (see Appendix C for a 
proof of the feasibility of search graphs generated with the contour vertex point 

method). 

The next step is to assign costs to the arcs of the search graph. The cost is com

posed of the length of the segment between search nodes plus an additional positive 

cost if the Voronoi edge crosses over a threat region. The additional threat cost takes 
into account the relative importance in weight between distance traveled and threat 

exposure. The cost assignment establishes a positive cost to each arc in the graph so 

that the monotone restriction for the A· algorithm is established (see Appendix D). 

The weighting of these costs will be discussed in the examples where threats are part 

of the environment. 

The Search Algorithms 

Two methods for performing the search are used: Dijkstra's dynamic program
ming algorithm and the A· algorithm. The cost function g (n) is the total arc cost 

from the start node S to the current node n. Because the monotone restriction is 

satisfied, the value established for g (n) when node n is chosen for expansion in 
Dijkstra's algorithm and the A· algorithm is the optimal value for the path from the 

start node S to the node n. Dijkstra's algorithm expands nodes on OPEN that have 

the least value of g (n), as described in Chapter 6. The A· algorithm combines the 
cost function g (n) with a heuristic function h (n) to arrive at the evaluation function 

f (n) which determines the node that is expanded next in the search. The heuristic 

function used in the following examples is the Euclidean distance from the node n to 

the finish node F. This is an admissible heuristic, and thus, the results of Dijkstra's 

algorithm and the A • algorithm will be the same optimal result. 
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While both Dijkstra's algorithm and the A· algorithm guarantee finding an 
optimal path, they differ in the amount of work they perform in searching the graph. 
Comparing parameters associated with Dijkstra's algorithm and the A· algorithm 
shows a difference in search effort. The following parameters can be recorded for 
comparison: the number of nodes on OPEN when the optimal solution is found, the 
number of nodes on CLOSED when the optimal solution is found, the total number of 
nodes investigated (equal to the sum of the nodes on OPEN and the nodes on 
CLOSED), the number of nodes uninvestigated, and the number of pointers assigned 
to the graph arcs during the search. Other useful comparison quantities are the ratio 
of the total number of nodes investigated by the A· algorithm to the total number of 
nodes investigated by Dijkstra's algorithm, denoted RN , and the ratio of the number 
of pointers assigned to graph arcs by the A· algorithm to the number of pointers 
assigned to graph arcs by Dijkstra's algorithm, denoted Rp. Since the A· algorithm is 

more informed than Dijkstra's algorithm (which is uninformed), then the RN ratio 
will not exceed unity. Also, since both algorithms may reassign a different number 
of pointers during a search, then the Rp ratio may exceed unity. Nonetheless, for the 

purpose of comparison, as RN and Rp approach unity, the amount of effort for a 

given search using the A· algorithm approaches the effort using Dijkstra's algorithm. 

The comparison of these algorithms shown through numerical quantities can be 
enhanced by a graphical comparison. The search arcs for which pointers are assigned 
during a search will be shown for each of the search algorithms. From these graphs, 
additional information on which part of the search space was not investigated and 
where the OPEN search graph arcs are located can provide further comparison infor
mation not indicated by the numerical parameters. 

Example 1: A ~tinimum Distance Path 

The Voronoi diagram search graph of Figure 7.2 is searched to find the 
minimum distance path from the start node S to the finish node F with no threats in 
the environment. The optimal path plan is shown in Figure 7.3. This optimal path is 
found by both Dijkstra's dynamic programming algorithm and the A· algorithm. 

For comparison, the numerical results of the searches are shown in Table 7.1. 
The A· algorithm investigates 33% of the total nodes in the search graph, while 
Dijkstra's algorithm investigates 79%. It is clear from all of the parameters, espe
cially RN=.41 and Rp =.37, that the A· algorithm uses less effort in finding the 

optimal solution. This is the result of the heuristic used which guides the A· solution 
towards the finish node F. 
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A graphical presentation of the search efforts of Dijkstra's algorithm and the A • 
algorithm is shown in Figure 7.4 and Figure 7.5. One can see how the A· algorithm 
is guided to the final node F by the Euclidean distance hueristic. Dijkstra's algorithm 

searches many more nodes further away from the finish node, including many of the 
boundary arcs. In fact, if the boundary arcs were removed and more mountains were 
introduced around this map, Dijkstra's algorithm would probably include still more 
arcs in the solution, while the A· algorithm would remain the same as shown. 

Example 2: A Terrain Environment with Threats 

In this example, the Voronoi diagram search graph for the terrain/threat environ
ment of Figure 7.6 is searched to find a path from the start node S to the finish node 
F. The dashed circular regions indicate threat regions. A solution path should have 
minimal exposure to threats. To account for this, arcs of the search graph are 
assigned a threat cost in addition to the length cost. For this example, the cost for 

traversing an arc that is in a threat region is ten times the cost for traversing an arc of 

the same length in a non-threat region. This level of danger is indicated in parenthesis 
as (lOx) in Figure 7.6. 

Using the search graph of Figure 7.2 and the above convention for assigning arc 
costs, the optimal path plan is shown in Figure 7.7. In general, the solution path is the 
minimum distance path clear of threats. Initially, the path leads toward a threat 
region, but turns away before entering the threat region. This is not the effect of the 

search algorithm making a last minute adjustment due to the threat, rather, the Vom
noi diagram search graph has a node at this location which allows for two path 

choices: to proceed through the threat region or to turn away. If the mountain 
polygonization were performed differently, or if the threat region were larger, then 
the Voronoi diagram search graph may have represented this branching within the 
threat region, since there is no threat location information used in the construction of 
the Voronoi diagram search graph. For this example a better path plan may be found 

near the solution presented in Figure 7.7, possibly with more clearance of the threat 
region. Arriving at such a solution will be discussed later. 

For comparison, the numerical results of the searches are shown in Table 7.2. 
Once again, it is clear from all of the parameters that the heuristic of the A· algo
rithm allows for less effort in finding the optimal solution. However, compared to the 
previous example, the difference in search effort is less pronounced, as indicated 
from RN =.72 and Rp =.69. This can be explained by the lack of a heuristic for threat 

information. Such a hueristic would be difficult to establish, and would probably be 
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inadmissible. Neither of the search algorithms have any heuristic guidance informing 
them which paths may lead toward threat regions, and the result is that both algo
rithms search paths that lead directly into threat regions. 

A graphical presentation of the search efforts of Dijkstra's algorithm and the A • 
algorithm is shown in Figure 7.8 and Figure 7.9. From these two figures, one can see 
how the A· algorithm is guided to the final node F by the hueristic. It can also be 
seen that the heuristic keeps the search of the A· algorithm away from the boundary 
arcs. Once again, Dijkstra's algorithm searches many more nodes further away from 
the finish node, including many of the boundary arcs. 

In comparison to the previous example that had no threats, more nodes are 
investigated by the A· algorithm when threats are included in the search graph, but 
according to the numerical results, the number of nodes investigated by Dijkstra's 
algorithm remains about the same. Comparing Figure 7.4 and Figure 7.8 indicates 
that Dijkstra's algorithm expands different nodes for the graph with threats, even 
though the number of nodes investigated is about the same as the case of the environ
ment free of threats. The fact that Dijkstra's algorithm investigates about the same 
number of nodes should not be typical of all path planning examples. One would 
expect that more nodes would be searched by both algorithms when more threats are 
introduced. 

Example 3: A Terrain Environment with a Barrier of Threats 

In this example, the Voronoi diagram search graph for the terrain/threat environ
ment of Figure 7.10 is searched to find a path from the start node S, to the finish node 
F. The dashed circular regions indicate threat regions, which create a barrier of 
threats between the start and finish nodes. In the threat regions, the arcs of the search 
graph are assigned a threat cost in addition to the length cost, which is either three 
times the cost or ten times the cost for traversing an arc of the same length in a non
threat region. These levels of danger are indicated in parenthesis as (3x) and (lOx) in 
Figure 7.10. In addition to these threat regions, a constraint is added so that the solu
tion path does not use the boundary arcs to pass around the barrier of threats. This is 
established by assigning a cost of 100 times the length cost for using an arc on the 
boundary. 

Using the search graph of Figure 7.2 and the above convention for assigning arc 
costs, the optimal path plan is shown in Figure 7.11. Since no path free of threats 
exists, the solution path must penetrate the barrier of threats in the least dangerous 
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region. The optimal path found by both Dijkstra's dynamic programming algorithm 
and the A· algorithm is a path that penetrates two low weighted (3x) threat regions. 
A comparison of the search efforts follows. 

For comparison, the numerical results of the searches are shown in Table 7.3. 
RN =.94 and Rp =.94 indicate that both algorithms exert approximately equal effort in 
searching for the optimal solution. The A * algorithm searched 75% of the nodes in 
the search graph and Dijkstra's algorithm searched 79%. While the heuristic of the 
A * algorithm allows for slightly less effort, the lack of a heuristic involving the threat 
information makes it search as many arcs as Dijkstra's algorithm. The lack of a 
heuristic for threat information in a high threat environment leads to additional work 
in the search for a solution. 

The above comparison indicates that the two algorithms perform quite equally 
in high threat environments. This is actually misleading. Figure 7.12 and Figure 
7.13 show that almost the entire search space, with the exception of the boundary 
arcs, was searched by both algorithms. If the search graph were not limited to within 
the search boundary, then as seen by the previous examples, the heuristic for path 
length would once again guide the A * algorithm search from staying too far from the 
region around the finish node. 

The important parameter to note for this example is the total number of nodes 
investigated and the total number of pointers used in each of the searches. This 
should be compared to the previous search example where fewer threats were present. 
The comparison shows that more nodes had to be investigated and more pointers 
were used when searching a more complex threat environment. (Also consider that 
the boundary arcs of this example were heavily weighted to keep them from being 
chosen for a path solution.) In this example, when searching for a low cost path free 
of threats, the search runs into many paths that enter threat regions. The search 
proceeds to search around threat regions for a path free of threats. However, no 
threat-free path exists, so in the process of trying to look for a low cost path, many 
search arcs away from the finish node are investigated. Because the search was lim
ited to within the boundary arcs, neither algorithm was allowed to stray away from 
the immediate vicinity of the start and finish nodes. As noted previously, if a larger 
map was used with more mountains, the A * algorithm would show less nodes investi
gated, namely, nodes far away from the start and finish nodes. 

This example also brings about a discussion on the boundary limits of a search 
graph. Reviewing the optimal path as presented in Figure 7.11, one may conclude 
that the initial part of the solution path is not a good solution, as illustrated in Figure 
7.14. Three paths, path A, path B, and path C, depict paths from the start location S 
to an intermediate location T. Referring back to Figure 7.2, only path A and path C 
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are depicted in the Voronoi diagram search graph. Consequently, the optimal solution 
includes path A which is shorter than path C. However, path B, which is not 
represented by the Voronoi diagram search graph, is actually a shorter path! The rea
son why there is not a good representation of a path similar to path B, rather than path 
C, is that this path is near the boundary limits. The Voronoi edges that fonn the arcs 
that constitute path C are from points that are on or very near to the convex hull of 
the set of DeIaunay points that are used to construct the Voronoi diagram. In the 
Voronoi diagram, Voronoi edges associated with Delaunay points on the convex hull 
extend infinitely. Boundary arcs are used to bound these infinite length Voronoi 
edges and to allow for paths that lead around the outsides of the mountains. However, 
path C, which is created by boundary arcs and Voronoi edges associated with points 
near the convex hull, is not representative a good path from the start location S to the 
intennediate location T. In tenns of modeling good paths around mountains, this 
suggests that the Voronoi diagram search graph does a poor job in modeling paths 
near map boundary limits. Qualitatively analyzing the Voronoi diagram search graph 
of Figure 7.2 supports this statement. Even with this attribute, the Voronoi diagram 
search graph can still be used to represent good paths around mountains provided that 
the optimal path is not close to the convex hull described above. In terms of the ter
rain model, this means that the Voronoi diagram search graph should be constructed 
using mountains that are on all sides of the start and finish locations, so that the start 
and finish locations are not near the convex hull of the vertices of the mountains. 

Additional Optimization Parameters 

The above examples were primarily concerned about minimizing a cost that was 
a combination of length and threat costs. Additional optimization parameters can be 
weighted and added to the arc costs as appropriate for the problem. However, as 
shown by the above examples, when additional parameters are introduced and no 
corresponding heuristic can be fonnulated, the search efforts of both Dijkstra's algo
rithm and the A • algorithm are increased. 

Solutions Near the Voronoi Diagram Optimal Path 

The method for establishing a path through the terrain environment using Vore
noi diagram search graphs gives a good plan that determines which passageways to 
proceed through from the start point to the finish point. The next step in path 
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planning may be to consider solutions near the Voronoi diagram optimal path. 

One possible procedure for searching for path plans near the Voronoi diagram 
optimal path is to search a grid search graph in the region around the Voronoi 
diagram optimal path. Figure 7.15 shows a region around the Voronoi diagram 
optimal path for the path from S to F. A fine grid may be used within this region to 
search for further path plans. The spacing for such a grid should be sufficient to gen
erate a final path plan that defines waypoints at intervals within the expected range of 
the pilot system. 

Another possible procedure for searching for path plans near the Voronoi 
diagram optimal path is to use an iterative improvement procedure. Since the Voro
noi points are unequally spaced, additional points would have to be placed along the 
solution path at evenly spaced intervals. Then, each node would be allowed to vary 
in a motion restricted perpendicular to the line between the preceding and following 
nodes. An example of this approach is shown in Figure 7.16 for the path from S to F 
in the environment free of threats. Such a procedure would resemble Thorpe's [59] 
relaxation step in the path relaxation method of path planning (see Chapter 3). 

The search performed at this level should result in a sequence of waypoints that 
are directed to a pilot system for the synthesis of the actual flight. The more detailed 
searches suggested above should not be of such fine detail that they create a discrete 
representation of the actual path trajectory, rather, sufficient spacing between grid 
points should be used to assign waypoints compatible with the input expectations of 
the pilot system. Furthermore, since the search performed will be at a finer level than 
the general Voronoi diagram search, further information may be included in the cost 
function. For example, the cost function may account for the aircrafts performance 
capabilities or limitations. Large changes in heading angle may be punished, as well 
as paths that come too close to mountain boundaries . 
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Figure 7.1. A terrain environment free of threats. 
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Figure 7.2. A Voronoi search graph. The polygon vertices for 24 mountains define 
the Delaunay points for the vertex point method that generates this graph. 
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Figure 7.3. The shortest distance path for the Voronoi search graph. 
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Figure 7.4. The Voronoi search graph arcs searched by Dijkstra's algorithm for the 
shortest distance path. 
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Figure 7.5. The Voronoi search graph arcs searched by the A· algorithm for the 
shortest distance path. 
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Figure 7.6. A terrain environment with threats. 
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Figure 7.7. The optimal path for the Voronoi search graph with length and threat 
costs. 
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Figure 7.8. The Voronoi search graph arcs searched by Dijkstra's algorithm for the 
terrain environment with threats. 
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Figure 7.9. The Voronoi search graph arcs searched by the A· algorithm for the ter
rain environment with threats. 
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Figure 7.10. A terrain environment with a barrier of threats. 
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Figure 7.11. The optimal path for the Voronoi search graph with a barrier of threats. 
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Figure 7.12. The Voronoi search graph arcs searched by Dijkstra's algorithm for the 
terrain environment with a barrier of threats. 
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Figure 7.13. The Voronoi search graph arcs searched by the A· algorithm for the 
terrain environment with a barrier of threats. 
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Figure 7.14. Only path A and path C are depicted in the Voronoi diagram search 
graph. However, path B (dashed lines) is shorter than both path A and path C. 
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Figure 7.15. A region around the optimal solution from the Voronoi diagram search 

graph may be considered for further investigation path plans. 
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Figure 7.16. Nodes are placed on the optimal solution from the Voronoi diagann 
search graph and on lines perpendicular to this solution. An iterative improve
ment of the solution path allows nodes to vary into new positions. 
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Table 7.1. Search parameters when the optimal solution is 
found for the shortest distance path example. 

Dijkstra's Algroithm A· Algorithm 

Nodes on OPEN 7 11 
Nodes on CLOSED 126 44 
Nodes investigated t 133 (79%) 55 (33%) 
Nodes uninvestigated t 36 (21 %) 114 (67%) 
Pointers used 148 55 

R == Nodes investigated by" the A· algorithm == 41 
N Nodes investigated by Dijkstra's algorithm . 

R == Pointers used by the A· algorithm == .37 
I' Pointers used by Dijkstra's algorithm 

t Percentages shown indicate the percent of total nodes investigated 
or uninvestigated. There are 169 nodes in the search graph. 
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Table 7.2. Search parameters when the optimal solution is found 
for the example terrain with threats. 

Dijkstra's Algroithm A * Algorithm 

Nodes on OPEN 13 19 
Nodes on CLOSED 121 78 
Nodes investigated t 134 (79%) 97 (57%) 
Nodes uninvestigated t 35 (21 %) 72 (43%) 
Pointers used 147 102 

R = Nodes investigated bl the A· algorithm = 72 
N Nodes investigated by Dijkstra's algorithm . 

R = Pointers used bl the A· algorithm = 69 
P Pointers used by Dijkstra's algorithm . 

t Percentages shown indicate the percent of total nodes investigated 
or uninvestigated. There are 169 nodes in the search graph. 
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Table 7.3. Search parameters when the optimal solution is found 
for the example terrain with a barrier of threats. 

Dijkstra's Algroithm A· Algorithm 

Nodes on OPEN 18 21 
Nodes on CLOSED 116 105 
Nodes investigated t 134 (79%) 126 (75%) 
Nodes uninvestigated t 35 (21 %) 43 (25%) 
Pointers used 139 l31 

R = Nodes investigated by' the A· algorithm = 94 
N Nodes investigated by Dijkstra's algorithm . 

R = Pointers used b1. the A· algorithm = 94 
P Pointers used by Dijkstra's algorithm . 

t Percentages shown indicate the percent of total nodes investigated 
or uninvestigated. There are 169 nodes in the search graph. 
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CHAPTERS 

SUMMARY AND CONCLUSIONS 

In this thesis the design of an architecture for the control of an autonomous air
craft is presented. The architecture is a hierarchical system representing an anthropo
morphic breakdown of the control problem into planner, navigator, and pilot systems. 
The planner system determines high level plans from overall mission objectives. 
Mission planning subgoals are directed from the planner to the navigator for inter
mediate level planning. Finally, the pilot system synthesizes the flight trajectory 
creating the control commands to fly the aircraft. 

The particular navigation problem solved in this thesis is the problem of plan
ning a path for a vehicle flying at constant altitude in mountainous terrain. Mountains 
(considered as obstacles) from a contour map are first polygonized. The dimensions 
of the vehicle are considered negligible in comparison to mountain sizes, so the vehi
cle can be considered as a point. The problem is to construct a path for a point vehi
cle from a start location to a finish location while avoiding polygon obstacles. Search 
graphs are constructed to model paths in free space. Three techniques utilizing the 
Voronoi diagram of points are presented for modeling paths: the centroid point 
method, the circle rule method, and the contour vertex point method. 

The centroid point method models polygon obstacles with a single Delaunay 
point at the centroid of the polygon. The Voronoi diagram of these Delaunay points 
is used to construct a search graph. This method is shown to topologically represent 
free space well, but fails to guarantee a feasible search graph for arbitrary polygon 
obstacle configurations. The only space that this method models correctly with a 
feasible search graph is an environment of nonoverlapping circular obstacles, all of 
the same radius. 

The circle rule method models polygon obstacles with multiple Delaunay points, 
and removes edges from the Voronoi diagram that are formed from two Delaunay 
points modeling the same obstacle. The search graphs that result have the salient 
features that they are feasible search graphs, they topologically represent free space 
well, and are simple to search. The major drawback to this method is that a judicious 
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selection of Delaunay point locations and construction circle radius parameter must 
be performed in order to model polygon obstacles well. 

The contour vertex point method models polygon obstacles with Delaunay 
points located at polygon obstacle vertices. The Voronoi diagram of these Delaunay 
points is used to construct a search graph, removing Voronoi edges that are fonned 

from two Delaunay points modeling the same obstacle. The search graphs that result 
have the salient features that they are feasible search graphs, they topologically 
represent the free space well, and are simple to search. 

Several navigation path planning examples are presented using the contour ver

tex point method to model mountainous terrain. Dijkstra's dynamic programming 
algorithm and the A • algorithm are used to search the Voronoi diagram search graph. 
The first example demonstrates how the minimum distance path in the Voronoi 

diagram search graph can be found. Next, a terrain environment with threats is con

sidered to show how threat information is added to the search graph. The search 
finds a solution path that minimizes a combination of distance and exposure to 
threats. The final example involves a terrain environment with a barrier of threats. 

The search results indicate an optimal path that penetrates the least costly threat 
regions. For all these example problems, the search efforts of Dijkstra's dynamic 
programming algorithm and the A· algorithm are compared. The heuristic applied in 
the A· algorithm is the distance from the current position to the finish location. This 
heuristic reduces the search effort of the A· algorithm compared to Dijkstra's algo
rithm for all the search examples. However, the reduced search effort is less pro
nounced in the examples with threats due to the lack of a heuristic based on estimat
ing threat infonnation. 

Additional search problems treated in this thesis are related to mission planning. 
It is proposed that the Traveling Salesman Problem is typical of the mission planning 
problem solved by the planner system. An II-city Traveling Salesman Problem is 
solved using breadth first, depth first, and best first search techniques. Two heuristics 
that that lead to admissible searches are presented. Finally, the basic Traveling Sales
man Problem is varied by introducing local and global constraints. The resulting 
problems are representative of complex mission planning problems. 
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CHAPTER 9 

RECOMMENDATIONS 

The following recommendations are made for further research related to the 
content of this thesis. 

AI in the Control Loop 

This thesis poses the problem of controlling an autonomous aircraft as a prob
lem of controlling a vehicle through the mixture of classical control techniques in the 
inner loops and AI techniques in the outermost loops. A greater understanding of this 
general structure is needed. For instance, if an expert system is used to reason about 
the mountainous terrain in the immediate region of an autonomous aircraft, what 
kinds of requirements must be imposed on the amount of time and precision of the 
reasoning for stable control of the aircraft. Will the path plans generated by a naviga
tion path planning system like the one proposed in this thesis command a terrain 
following/terrain avoidance algorithm properly? Also, can the reasoning in the out
most loops be used to help the innermost loops gain predictive information about 
what might happen in the immediate future of inner loop controllers. 

Voronoi Diagram Search Graphs for Polygon Obstacles 

Only feasible search graphs are useful for searching for paths amongst obstacles. 
The Voronoi diagram of the set of points that define the vertices of obstacles was 
used in this thesis to create a feasible search graph. However, the true Voronoi 
diagram of a set of polygons also guarantees feasibility by definition. Bounds on the 
error between the modified Voronoi diagram from the contour vertex point method 
and the true Voronoi diagram should be established. Is one diagram better to use 
than the other? Theoretically, the true Voronoi diagram produces paths maximally 
clear of polygon obstacles. Furthermore, Canny and Donald [10] introduce the 
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simplified Voronoi diagram which is a feasible search graph that eventuates to a 
search of a piecewise linear graph. None of these paths are likely to be followed 
exactly by an aircraft. Thus, the method with the least complexity should be most 
useful, provided that the paths generated do not violate the constraints of the dynam
ics of the vehicle. The modified Voronoi diagram of this thesis, the true Voronoi 
diagram, and the simplified Voronoi diagram should be compared in terms of com
plexity and analytically for the application of navigation path planning for aircraft. 
Bounds on the error between the Euclidean optimal path and the paths generated with 
any of these methods should be established. 

Searching for Paths over Three Dimensional Terrain 

The navigation problem solved in this thesis is for flying in mountainous terrain 
at a constant altitude. A more general navigation problem is to fly over a three dimen
sional mountainous terrain while avoiding mountains and minimizing parameters, 
perhaps distance and exposure to threats. The threat environment should also be con
sidered as three dimensional, as well as dynamic. 

Methods for modeling paths in three dimensional terrain should be investigated. 
One possible way to model the free space above three dimensional terrain is to use 
the Voronoi diagram of polyhedra. However, constructing the Voronoi diagram of 
the polyhedra that represent mountains is not computationally easy. Another possible 
way in which a Voronoi diagram can be used to model three dimensional terrain is to 
discretize the problem by considering Voronoi diagram search graphs for several con
stant altitudes. The Voronoi diagram of polygons (representing mountains at con
stant altitude) can be constructed for mountains at altitudes from the lowest flyable 
altitude to the highest altitude feasible for flying. These search graphs can then be 
connected by search arcs that "staple" the constant altitude graphs together. Model
ing techniques investigated should be analyzed empirically to determine if the paths 
represent strategic paths for the aircraft path planning application. 
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Appendix A: Simulated Annealing and its Application to the Traveling Salesman 
Problem 

Simulated annealing is a statistical optimization technique for solving optimiza
tion problems with many variables. The genesis of simulated annealing is from the 
study of interacting individual molecules using a classical analysis in statistical phy

sics [40]. Metropolis, et a1. [40], studied the equations of state for systems of many 

particles and developed the Metropolis algorithm which provides an efficient simula
tion of the evolution of a configuration of particles in a random state toward an 
equilibrium state at a fixed temperature. Kirkpatrick et a1. [29] developed optimiza
tion by simulated annealing using this fixed temperature algorithm. The simulation 
of annealing of a system of particles is performed by running the Metropolis algo

rithm at an annealing schedule of temperatures which evolves the system from a ran
dom state at a high temperature to an annealed state at a low temperature. 

A crystal system provides a good example for explaining the simulated anneal
ing concept. When one desires to form a crystal structure, one starts by heating the 
system to some high temperature where the system is in a liquid state. At this stage 
the system is in a high energy state. By slowly cooling the system, the system settles 
into a solid crystal structure, which is a minimum energy state. This process does 

not, however, guarantee that the resulting crystal will be a "perfect crystal" - a glo

bal minimum energy state. If the temperature scheduling is too fast, impurities may 
form in the crystal structure. Unfortunately, when impurities form at high tempera
tures, they cannot be removed at any lower temperature. Nonetheless, if a suitably 
slow temperature schedule is used, then a crystal structure with relatively few impuri
ties should result. 

The simulated annealing optimization procedure for general combinatorial 
optimization problems attempts to simulate the annealing of a physical structure like 
this crystal system. In this technique, the states of the optimization problem are gen

eralized to states of a physical system, the objective function of the optimization 
problem is generalized to the energy of the physical system, and a control parameter 

of the optimization problem is generalized to the temperature of the physical system. 

Near optimal solutions are sought by allowing the system to anneal from a high tem
perature to a low temperature. 
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The basis of the simulated annealing procedure is Metropolis algorithm. The 
Metropolis algorithm is essentially an iterative improvement on the state of the sys
tem, thus, iterative improvement methods will be reviewed preceding the presenta
tion of the simulated annealing procedure. 

Iterative Improvement 

Iterative improvement is a common technique used in solving computational 
optimization problems with heuristic guidance. The procedure starts with an initial 
system state Sj which obeys all the constraints of the problem. Next, the system is 

rearranged to an improved state Sj which again must also obey the problem con

straints. The state Sj then becomes the starting point for further improvements to the 
system, and the process is continued until no further improvements can be made or a 
satisfactory solution is achieved. 

The inherent limitation of the iterative improvement process is that it locates 
only local minima. To advance from a local minimum state to another solution 
region, more complex improvement alterations may be required. Typically, iterative 
improvement changes involve the swapping of two state components, or the varying 
of one of the variables of a multivariable system, however, more complex improve
ment alterations may be required to escape a local minimum. Such changes may be 
more difficult to perfonn under the problem constraints and may require more expert 
reasoning about the local minimum convergence state. To incorporate expert reason
ing knowledge about the problem requires more elaborate programming approaches 
and requires a domain expert. Applications of iterative improvement should not 
require such "expert system qualities" in order to be effective. 

One solution to the local minima problem would be to find many local minima, 
and keep track of the best solutions found. However, finding repeated local minima 
may be fruitless for converging to a global minimum for large system. Additional 
criteria for selecting new initial locations would be needed, however, this may require 
more effort than the computational worth of such a process. Simulated annealing is 
introduced as an alternative. 

Simulated Annealing 

Simulated annealing is just iterative improvement done in a sequence of finite 
temperature movements governed by the Metropolis criterion for accepting or 
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rejecting randomly generated trial states Sj. The Metropolis criterion replaces the 

"improvement only" rule used in the basic iterative improvement process described 
above. The Metropolis criterion [40] states: 

if M $; 0, accept the state Sj' or 
if M > 0, accept the state Sj with probability e-MlkT 

where M is the change in energy 6.E = E (Sj) - E (Si), k is the Boltzmann constant, 
and T is the temperature parameter. As the system is altered by accepting and reject
ing new states at a fixed temperature, the system tends towards thennal equilibrium at 
that temperature. Using this probability function has the consequence that the likeli
hood of the system being in a given state is governed by the Boltzmann distribution 
for that temperature. That is, in thennal equilibrium, the probability that the system 
is in the state with energy E is proportional to e-ElkT • 

The Metropolis criterion allows changes in the state of the system that are at 
higher energy states, thus allowing for the search to proceed away from a local 
minimum. Because of the nature of the Boltzmann distribution, a positive change in 
energy is accepted with greater probability at high temperatures, however, fewer 
positive changes in energy are accepted at lower temperatures. The probabilistic 
aspect of accepting a new state Sj is implemented by comparing e-6.ElkT to a random 

number drawn from a unifonn distribution in the interval (0,1). If e-AE1kT is less 
than the random number the new state Sj is accepted, and this new state Sj becomes 

the current state Si' This selection of new states is repeated until equilibrium is 
achieved. Then, the temperature is lowered and the procedure is repeated. Figure 
A.l shows a generalized procedure for simulated annealing. 

Some of the basic questions that must be dealt with when using the simulated 
annealing procedure involve selecting the initial temperature and the temperature 
schedule that are used [28,60]. The initial temperature should be high enough so that 
no impurities are fixed in the system at the start of the search. Usually, this is not 
difficult to establish unless the temperature parameter has little physical meaning or it 
is difficult to interpret. The temperature schedule plays an important role in control
ling the search, yet the temperature schedule is not well defined by the theory, and a 
good annealing schedule is usually highly dependent on the problem domain. In gen
eral, though, decreasing the system temperature monotonically by a constant ratio is 
an efficacious scheme for a temperature schedule [28]. Additionally, once at a tem
perature, every state should be be altered at least a fixed number of times, or a certain 
number of attempted changes to the state should be achieved before moving on to the 
next temperature. Often, a running average of the energy is kept to maintain that the 
system has sufficiently reached thermal equilibrium before proceeding to a new 
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temperature. 

The Traveling Salesman Problem 

Because of the complexity of the Traveling Salesman Problem, it is often useful 
to consider approximate solution techniques, rather than optimal solution techniques. 
Simulated annealing is one such approximate solution technique. For large problems, 
the computation of an optimal solution is considered impractical, simply because of 
the computer time needed to arrive at the solution. Instead, what is truly desired is a 
very good solution in a reasonable amount of computation time. For the Traveling 
Salesman Problem, the solution can be determined to be a good solutions simply by 
inspection: by viewing the results and noting that the tour does not have any large 
links included, and that close cities are visited while the salesman is in their vicinity. 

Consider the Traveling Salesman Problem where the cities are arranged such 

that they are grouped together in clusters. One can generalize that a good solution for 
a tour should proceed from one cluster to another, visiting each city within a cluster 
while at the cluster. Figure A.2 presents four clusters of cities for a 22-city Traveling 
Salesman Problem. All the cities are within a 100x 100 unit square, initially compos
ing a randomly connected tour. The change of state of the system is performed by 
considering that two cities chosen randomly from a tour can be interchanged in their 
position in a tour to form a new tour. When two cities are interchanged, two possibil
ities can occur. First, if the two cities follow each other in the tour, then three links 
are broken and three new links are replaced. Second, if the two cities do not immedi
ately follow one another in the tour, then four links between cities are broken, and 
four new links are replaced. These tour modifications are shown in Figure A.3. 

The temperature parameter for the annealing schedule can be thought of as a 
distance parameter for the selection of tour modifications. For the energy function 
that is the total tour length, the change in energy is simply the change in the tour 
length caused by the tour modification. Since a modification to a tour can cause four 
links to be altered, then the temperature parameter should somehow be related to this 
length. The initial temperature used in the example is 200, about twice the longest 
possible link in a tour. It was determined empirically that this temperature was 
sufficiently high for beginning the annealing procedure. The temperature schedule 
was controlled through two means: a static iteration count to determine when the 
system reached thermal equilibrium, and a constant temperature ratio a for reducing 
the temperature. The system temperature was decreased monotonically by the con
stant ratio a = .75 when the system reached thermal equilibrium. Thus, when thermal 
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equilibrium was reached at the temperature T, the next temperature in the schedule 
was set to aT. 

The results of applying simulated annealing to the example Traveling Salesman 
Problem can be judged as reasonably good results. The progress of the solution pro
cedure is illustrated in Figure AA. The final tour, 489 units long, visits each of the 

clusters once, visiting all the cities within the cluster and then proceeding to visit 
another cluster. In general, this is considered a good trait. Thus, this solution is 

judged, by inspection, to be a reasonably good one. 
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procedure Simulated_Annealing (X o,T 0) 

COMMENT: Input an initial state X 0 and a sufficiently high starting tem
perature To. 

X t-Xo 
T t-To 

COMMENT: Stopping Criterion: Search for a solution until T SO or until 
the allowable computation time runs out. 

while (T > 0 or time_limit) 

endwhile 

COMMENT: Generate a random state change. 
X' t- Generate_New_State (X) 

COMMENT: Calculate the change in energy M . 
M t- E(X') - E(X) 

COMMENT: Accept lower energy states unconditionally, and 
accept higher energy states with probability P . 

if(M < 0) then X t-X' 
else 

endif 

P t- e-MfkT 

R t- Random_Number (0,1) 
if (R < P) then X t- X ' 

COMMENT: If there is no significant decrease in energy for 
many iterations then lower the temperature T. 

if (static_iteration_number > iteration_limit) 
then T t- U pdate(T) 

end procedure Simulated_Annealing 

Figure A.1. The generalized simulated annealing procedure. 
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Figure A.2. The cities for a 22-city Traveling Salesman Problem. These cities fonn 
four clusters with the cities in close proximity within each cluster. 
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(a) (b) 
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(c) (d) 

Figure A.3. Tour modifications consist of interchanging two cities in a tour. In the 
first case, the consecutive cities "2" and "3" are interchanged, thus changing the 
tour (1 234567 8 1) in (a) to become (1 3245 67 8 1) in (b). In the second 
case, the nonconsecutive cities "2" and "7" are interchanged, thus changing the 
tour (1 234567 8 1) in (c) to become (1 7 345628 1) in (d). 
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(a) T-200 Random Order (b) T-112 E-I265 

(c) T-lS E=869 (d) T:() E=489 

Figure A.4. Simulated annealing results for a 22-city Traveling Salesman Problem 
with clustered cities. Initially, the cities are randomly connected (a). As the 
temperature parameter T is lowered from higher temperatures (b) to lower tem
peratures Cc), costly tour edges are removed. The final tour Cd) shows a path that 
visits each cluster once, visiting all the cities within the cluster and then 
proceeding to visit another cluster. The final tour is judged to be a reasonably 
good tour by inspection (k =.5, a=.7 5). 
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Appendix B: The Construction of Delaunay Triangulations and Voronoi Diagrams 

A navigation graph model depicts mountains that are to be avoided and valleys 
which are flown through. By representing mountains with select points and valley 
passageways as curves around these points, a search graph can be constructed to aid a 
decision process for flying though mountainous terrain. Delaunay triangulations [12] 
and Voronoi diagrams [54] provide the geometric framework for such a model. 

Procedures for constructing the Delaunay triangulation and the Voronoi diagram 
(also known as the Thiessen tessellation [58]) of a set of points in the plane are given 
henceforth. The accompanying discussion explains the basic concepts necessary for 
constructing these geometric structures and not the detailed computer code t. 

Much of the difficulty in constructing a Voronoi diagram is in determining its 
topological structure. That is, the vertex locations and edge connections are difficult 
to maintain while constructing the diagram. The construction of the Voronoi diagram 
can be simplified by working with its straight-line dual, the Delaunay triangulation of 
the set of points. For this reason, a discussion of Delaunay triangulations is given 
first and is followed by an explanation of how a Voronoi diagram can be constructed 
from a Delaunay triangulation. 

The Delaunay Triangulation 

A triangulation of a finite set of points S in the Euclidean plane is obtained by 
joining the points of S by nonintersecting straight line segments so that every region 
internal to the convex hull of S is a triangle. The convex hull of a set of points is the 
smallest convex set containing them. Intuitively, the greatest area polygon with 
edges formed using points in S is the convex hull. Each point in S will either be a ver
tex of this polygon or be enclosed by this polygon. The Delaunay triangulation of S 

t The code presented in this discussion is a pseudo-code not intended to represent any 
particular language, however, the procedures presented are easily implemented in Ada, C
Language, Lisp. or Pascal - languages that support recursion. 
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is the triangulation which has the property that the circumcircle of any triangle in the 
triangulation contains no point of S in its interior. Examples of triangulations are 
given in Figure B.l and Figure B.2. 

A few properties of the Delaunay triangulation are stated without proof. (Proofs 
are given in [33]). See Figure B.3 for an example. 

Lemma. Given a set of N points S = {sl' s2. s3 • . , .• SN}, any edge 

between two points Sj and Sj is a Delaunay edge of the Delaunay triangula
tion of S if and only if there exists a point x such that the circle centered at 
x and passing through Sj and Sj does not contain in its interior any other 

point in S. 

Lemma. (The Circle Criterion) Given a set of N points 5 = 
{SI' s2. s3 • .. , • sN}. ~jSjSk is a Delaunay triangle of the Delaunay tri

angulation of S if and only if its circumcircle does not contain any other 
point of S in its interior. 

The circle criterion is a fundamental rule for the construction of the Delaunay tri
angulation. Note that the circle criterion (implicitly) assumes that no four points in 
the set S are cocircular. Furthermore. a triangulation requires that not all the points in 
5 are colin ear. 

The algorithm presented for constructing the Delaunay triangulation of a set of 
points utilizes a divide-and-conquer technique by Lee and Schachter [34]. The algo
rithm has the following basic structure: 

Procedure DELAUNAY_TRIANGULATION (S) 

Step 1: Partition S into two subsets Sl and S2 of 
approximate equal size. 

Step 2: Construct the Delaunay triangulation for 
SI and S2 recursively. 

Step 3: Merge the Delaunay triangulations for 
S 1 and S2 to get the resulting Delaunay 
triangulation of S. 

End procedure DELA UNA Y _TRIANGULATION 

As indicated by the basic structure. the procedure for calculating the Delaunay 
triangulation is recursive. First, the set S of N points is sorted in lexicographically 
ascending order. That is. by increasing x-coordinate or, if the x-coordinates are 
equal, then by increasing y-coordinate. Duplicate points are removed from the data 
set. The set S is divided into two subsets S 1 and 52 where: 

51 = {sl' s2. s3 • ..•• S[NI2J} and 
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S2 = {S[NI2]+l' '" ,SN}' 

Delaunay triangulations of Sl and S2 are recursively constructed by repeatedly divid

ing these subsets into smaller subsets as described above. Recursion terminates when 
the set S contains either two or three points. (The two point set is not a triangulation. 
However, it acts as a proper tenninating condition for the recursion.) Finally, in 

backtracking recursive steps, the Delaunay triangulation of the union of two subsets 
S1 and S2 is obtained by merging the individual triangulations of these subsets. The 

merge process entails finding the upper and lower common tangents of the convex 

hulls of S1 and S2' and zigzagging upward from the lower tangent to the upper 

tangent making the appropriate insertions for Delaunay edges based on the circle cri

terion. 

Before presenting a more detailed description of the 
DELAUNA Y _ TRIANGULATION procedure, some preliminary notation must be 
adopted. The data structure for representing the triangulation is a doubly linked, cir

cular list. For each point Sj in the triangulation, an ordered adjacency list of points is 

kept to represent the edges that Sj makes in the triangulation. For example, if S 1 is 

connected to S 2' S 3' S 4' S 5' and S 6 in a triangulation, then the associated list would be 

(s 1 S 2 S 3 S 4 S 5 S 6)' The counter-clockwise progression of edges is imbedded in this 

notation. Figure BA graphically illustrates this arrangement. 

For each point in the configuration there is an associated list, and the entire 
configuration can be represented as a grouping of all such lists. For the example in 
Figure BA, the configuration can be represented as the data structure: 

( (s 1 S 2 S 3 S 4 S 5 S 6) 

(S2 S3 S1 S6) 

(S3 S 4 S 1 S2) 

(s 4 S 5 SIS 3) 

(S 5 S 6 SIS 4) 

(S 6 S 2 S 1 S 5) ). 

This list is the configuration list CONFIG_LIST. In addition to the configuration list, 
a list describing the convex hull of the triangulation is stored. The convex hull of the 

set of points S, denoted CH(S), is represented as a list of points in counter-clockwise 
order. For Sj' a point on CH(S), let FIRST(sj) denote the point immediately counter

clockwise from Sj on the convex hull. For the example in Figure BA, CH(S) = (s 2 S 3 

S 4 S 5 S 6) and S 2 = FIRST(s 6)' 

In order to locate points relative to a Delaunay edge, the operators PRED(sj Sj) 

and SUCC(Sj Sj) are introduced. PRED(sj Sj) denotes the point which appears 

immediately clockwise to the edge from Sj to Sj' similarly, SUCC(Sj Sj) denotes the 
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point immediately counter-clockwise. For the example in Figure BA, s 6 = 

PRED(s1 s2) and s3 = SUCC(s1 s~. Let LINE_SEG(si Sj) denote the line segment 
directed from Sj to Sj. For determining the location of points relative to line seg

ments (not necessarily Delaunay edges), the simple predicates IS_RIGI-IT_OF and 
IS_LEFT_OF are used. For points in a set S, let RM(S) be the rightmost point and let 
LM(S) be the leftmost point. 

A detailed top level Delaunay triangulation procedure will now be presented. 
The following procedure DELAUNA Y _TRIANGULA TION uses four other pro
cedures to perform most of the work. Procedures LOWER_COMMON_ TANGENT 
and UPPER_COMMON_ TANGENT will return the lower and upper common 
tangents (L T and UT) for two convex hulls. Procedure MERGE_CONVEX_HULLS 
will merge two convex hulls into one, and procedure MERGE_TRIANGULATIONS 
will merge two triangulations into one. These four procedures will be described in 
more detail later. The procedure for construction of Delaunay triangulations is 
shown: 

Procedure DELAUNAY_TRIANGULATION (S CONFIG_LIST) 

Comment: CONFIG_LIST is a data structure describing 
the current state of the triangulation configuration. 

Comment: Assume that the set S of N points is in 
lexicographically ascending order. 

N = number of points in S 

If N = 2, then 

CH(S) = the line segment between the points in S 
CONFIG_LIST = the line segment between the points in S 
Return CH(S) and CONFlG_LIST 

Else if N = 3, then 

CH(S) = the CCW triangle formed by the points in S 
CONFIG_LIST = the triangle formed by the points in S 
Return CH(S) and CONFIG_LIST 

Endif 

S1 = first [N /2] points of S 
S2 = [N /2]+ 1 through N points of S 
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Comment: Find the Delaunay triangulation of S1 and S2 through recursion. 

CH(S1) = DELAUNA Y _TRIANGULATION (S1 CONFIG_LIST) 
CH(S2) = DELAUNAY_TRIANGULATION (S2 CONFIG_LIST) 

Comment: Find the lower and upper common tangents; merge the 
convex hulls and triangulations. 

LT = LOWER_COMMON_TANGENT (CH(S1) CH(S2)) 
UT = UPPER_COMMON_TANGENT (CH(S1) CH(S~) 
CH(S) = MERGE_CONVEX_HULLS (L T UT CH(Sl) CH(S2)) 
CONFIG_LIST = MERGE_ TRIANGULA TIONS (L T UT CONFIG_LIST) 

Return CH(S) and CONFIG_LIST 

End procedure DELAUNA Y _TRIANGULATION 

The lower common tangent and upper common tangent of two convex hulls are 
important segments used in the DELAUNA Y _TRIANGULATION procedure. These 
tangent segments are found from two convex hulls. The segments are used in the 
merge procedures of convex hulls and of triangulations. The lower and upper com
mon tangents of two convex hulls is illustrated in Figure B.5. The procedures for 
constructing the lower and upper common tangents are now presented: 

X=RM(Sl) 
Y =LM(S2) 
Z=FIRST(Y) 
Z' = FIRST(X) 
Z" = PRED(X Z') 

Loop: If (Z IS_RIGHT_OF LINE_SEG(X V)) 
TEMP=Z 
Z = SUCC(Z Y) 
Y=TEMP 

Else 
If (Z" IS_RIGHT_OF LINE_SEG(X V)) 

TEMP = Z" 
Z" = PRED(Z" X) 
X = TEMP 

Else 



Return (XY) 
Endif 

Endif 

GO Loop 
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End procedure LOWER_COMMON_TANGENT 

X=RM(St) 
Y=LM(S2) 
Z' = FIRST(Y) 
Z = PRED(y Z') 
Z" = FIRST(X) 

Loop: If (Z' IS_RIGHT_OF LINE_SEG(Y X» 
TEMP =Z' 
Z' = SUCC(Z' X) 
X=TEMP 

Else 
If (Z IS_RIGHT_OF LINE_SEG(Y X)) 

TEMP=Z 
Z=PRED(ZY) 
Y=TEMP 

Else 
Return (XY) 

Endif 
Endif 

GO Loop 

End procedure UPPER_COMMON_ TANGENT 

The MERGE_CONVEX_HULLS procedure for merging two convex hulls will 
not be shown. This procedure simply breaks the lists representing the two convex 
hulls at the lower and upper common tangent points, and then connects the two 
remaining lists that represents the convex hull of the union. For the example in Fig
ure B.5: 

CH(St) = (s1 s5 s6 s3 S2) 

CH(S2) = (s7 s9 s 12 S8) 

CH(S) = (S1 S9 S 12 S8 S3 S2)' 
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Finally, the procedure MERGE_TRIANGULATIONS will be described. This 
procedure takes the lower and upper common tangents of the two convex hulls and 
merges two triangulations. The circle criterion is used to connect either: 

1. the left endpoint of the lower common tangent to a point adjacent to the 
right endpoint of the lower common tangent, or 

2. the right endpoint of the lower common tangent to a point adjacent to 
the left endpoint of the lower common tangent. 

This process determines the next Delaunay edge to be connected to one of the lower 
common tangent points. The edge is inserted into the triangulation configuration list 
and the process is repeated with this edge becoming the new starting segment. The 
process zigzags upward until the inserted edge is the upper common tangent. An 
example is shown in Figure B.6. 

The following procedures are used in the merge procedure. The topological 
operators INSERT(X Y) and DELETE(X Y) are used to create and destroy edges in 
the configuration list. INSERT(X Y) will insert X into the adjacency list of Y and Y 
into the adjacency list of X. DELETE(X Y) will delete X from the adjacency list of 
Y and Y from the adjacency list of X. The geometric predicate CIRCLE_TEST is the 
procedure that applies the circle criterion. CIRCLE_ TEST(X Y Z W) will test the 
circumcircle of ~YZ and return true if W is not contained in its interior, otherwise it 
returns false. Note that if CIRCLE_ TEST(X Y Z W) is true for all W in S excluding 
X, Y, and Z, then the triangle l:,.XYZ is a Delaunay triangle. 

The procedure to merge two triangulations follows: 

Procedure MERGE_TRIANGULATIONS (LT UT CONFIG_LIST) 

Comment: L T is the lower common tangent, UT is the upper common tangent. 

L = left endpoint of L T 
R = right endpoint of L T 

Loop 1: If (L T equals UT) then 
CONFIG_LIST = INSERT(L R) 
Return CONFIG_LIST 

Endif 

A = false 
B = false 
CONFIG_LIST = INSERT(L R) 
Rl = PRED(R L) 
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If (Rl IS_LEFT_OF LINE_SEG(L R» then 
R2 = PRED(R Rl) 
If (R2 equals L) then skip Loop2 

Loop2: If (CIRCLE_ TEST(RI L R R2» then exit Loop2 
Else 

CONFIG_LIST = DELETE(R Rl) 
Rl =R2 
R2 = PRED(R Rl) 
If (R2 equals L) exit Loop2 

Endif 
GO Loop2 

Else 
A = true 

Endif 
Ll = SUCC(L R) 
If (LI IS_RlGHT_OF LINE_SEG(R L» then 

L2 = SUCC(L LI) 
If (L2 equals R) then skip Loop3 

Loop3: If (CIRCLE_ TEST(L R LI L2» then 
exit Loop3 

Else 
CONFIG_LIST = DELETE(L LI) 
LI =L2 
L2 = SUCC(L LI) 
If ( L2 equals R ) exit Loop3 

Endif 
GO Loop3 

Else 
B = true 

Endif 

If (A) then 
L=Ll 

Else 
If (B) then R = RI 
Else 

If (CIRCLE_TEST(L R RI Ll) then 
R=RI 

Else 
L=LI 



Endif 
Endif 

Endif 

GO Loop 1 
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End procedure MERGE_ TRIANGULATIONS 

A recursive procedure for finding the Delaunay triangulation for a set of N 
points has been given. Lee and Schachter [34] show that this procedure has running 
time 0 (NlogN), which is asymptotically optimal. Other procedures exist which may 
be more computationally tractable, to witt, iterative procedures, however, these pro
cedures have running time 0 (N 2) which is less desirable. 

The Voronoi diagram for a set S of N points can be obtained from the straight
line dual of the Delaunay triangulation of S. The following is the Theorem of 
Delaunay [12]. 

Theorem. The straight-line dual of the Voronoi diagram of a set S of points 
is the Delaunay triangulation of S. 

The procedure for finding the Voronoi diagram given the Delaunay triangulation can 
be performed in linear time 0 (N). Such a procedure will be presented next. 

The Voronoi Diagram 

A Voronoi diagram for a set S of N points, Pi' 1 ~i ~ , in the Euclidean plane is 
a partitioning of the plane into N polygonal regions, one region associated with each 
point Pj. Figure B.7 shows the Voronoi diagram for a set of points. The Voronoi 

region V(Pj) associated with point Pi is the locus of points closer to Pi than to any of 
the other N -1 points. The Voronoi edge separating V(Pi) from V(Pj) is composed of 

the points equidistant from Pi and Pj. Note that not all Voronoi edges are bounded; 
some extend infinitely. The intersection of Voronoi edges occur at vertices called 
Voronoi points. 

The construction of the Voronoi diagram given the DeIaunay triangulation is 
based on the following Voronoi diagram properties. Assume that no four points in the 
set S are cocircular. (Proofs are given in [53]). 
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Theorem. Every vertex of the Voronoi diagram is the common intersection 
of exactly three edges of the diagram. 

Next, consider the points connected by the Delaunay triangulation to be neighboring 
points. 

Theorem. Every nearest neighbor of Pi defines an edge of the Voronoi 

region V(Pi)' 

From these two theorems, the Voronoi diagram can be constructed for a set of 
points by finding all the Voronoi points and connecting them accordingly. Note that 

each DeIaunay triangle has an associated Voronoi point which is the circumcenter of 
the three points of the Delaunay triangle. Two Voronoi points are connected to each 
other to form a Voronoi edge if their Delaunay triangles are adjacent. If the 

Delaunay triangle has an edge that is on the convex hull of the set of points, then the 
Voronoi edge for that side will extend infinitely. This geometric relationship is 
shown in Figure B.S. 

The procedure for constructing the Voronoi diagram given the Delaunay tri

angulation is presented next. For each point si in the set S, all the Delaunay triangles 

with a vertex at Sj are processed as follows. A Voronoi point is calculated for each 

triangle (if not previously calculated). This point is the mutual intersection of the 
perpendicular bisectors of the edges of a Delaunay triangle. This Voronoi point is 
connected to the Voronoi point formed for the adjacent triangle counter-clockwise 

from the current triangle (provided the connection does not already exist). If the 
current triangle has a Delaunay edge on the convex hull of the set of points, then the 
Voronoi edge associated with the current Voronoi point is extended infinitely. The 

process continues in a counter-clockwise fashion until all the Delaunay triangles with 
a vertex at Sj are processed, as shown in Figure B.9. In this figure, the Voronoi points 

are shown as dots connected with Voronoi edges in dashed lines. Finally, the process 

is repeated for all the points, Pj, in the set S. 

The procedure VORONOCDIAGRAM constructs the Voronoi diagram of a set 
of N points given the Delaunay triangulation. This procedure constructs a data struc
ture V _PT_LIST which stores the Voronoi points and edge connections (this struc

ture is identical to the configuration list structure described previously). The function 
CALC_ V (Sj Sj Sk V _PT_LIST) will calculate the Voronoi point for the Delaunay 

triangle ~Si Sj Sk and insert this Voronoi point into the V _PT _LIST structure. If this 

Voronoi point is already in the V _PT_LIST structure, then CALC_ V will simply 

retrieve it. CONNECf (Vj Vj V _PT_LIST) will create a Voronoi edge between 

Voronoi points Vi and Vj in the V _fYI'_LIST data structure. 
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Procedure VORONOCDIAGRAM (CH CONFIG_LIST) 

Loopl: For Sj in S 

So = an arbitrary point in the adjacency list of Sj , 
S =so 
s" = SUCC(Sj s') 

If (FIRST(s') equals Sj and FIRST(sj) equals S ") then 
vo = 00 

Else 
v 0 = CALC_ V (SiS' S ") 

Endif 

Loop2: s" = s' 
s' = SUCC(s ') 

If (FIRST(s ') equals Sj and FIRST(sj) equals s'') then 
v=oo 

Else 
v = CALC_ V (Sj s' S ") 

Endif 

If (s " equals so) then 
V_PT_LIST = CONNECT (v Vo V_PT_LIST) 
Exit Loop2 

Endif 

V_LAST=v 

GO Loop2 

GO Loop 1 

End Procedure VORONOCDIAGRAM 

To recapitulate, the procedure to compute the Delaunay triangulation of a set S 
of N points is an 0 (N 10gN) process, which is asymptotically optimal. The pro
cedure for constructing the Voronoi diagram from the Delaunay triangulation is 
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o (N). Thus, the combined procedure presented here for constructing the Delaunay 
triangulation and Voronoi diagram of a set of points is 0 (NlogN), which is asymp

totically optimal. 

A final note should be made about the assumptions made for the construction of 
these geometric structures. The circle criteria is used to determine if a Delaunay edge 
should be constructed or deleted from the triangulation. This required that no four 
points could be cocircular. This also lead to the fact that every vertex of the Voronoi 
diagram is a common intersection of exactly three Voronoi edges. The assumption 
that no four points are cocircular is not essential for the construction of the Delaunay 
triangulation and Voronoi diagram. However, a more detailed analysis must be exe

cuted in the computation of these structures. A simple example is the set of four 
points that define a rectangle, for which the triangulation could include either of the 
diagonals of the rectangle. The Delaunay triangulation of the set of points where four 

or more points are cocircular may not be unique, however, the Voronoi diagram will 
be unique. The only strict assumption that must be maintained is that all the points 
must not be colinear. In this case, the problem is a degenerate case and the solution 
for the Voronoi diagram is trivial. An algorithm that handIes degenerate cases is 

presented by Guibas and Stolfi [20]. 
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Figure B.1. A triangulation of a set of points. 

Figure B.2. The Delaunay triangulation of a set of points. 
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Figure B.3. An illustration of a Delaunay edge, Delaunay triangle, and the circum
circle of the Delaunay triangle. 
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s. 

Figure B.4. An example illustrating the linked list (s 1 s 2 S 3 S 4 S 5 s 6)' 
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Figure B.S. The lower and upper common tangents of the convex hulls of two tri
angulations. 
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(c) 

(b) 

(a) 

Figure B.6. The triangulation merge procedure starts with the lower common tangent 
(a), then zigzags upward (b), and ends with the upper common tangent (c). 
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Figure B.7. The Voronoi diagram for a set of 20 points. 
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Figure B.8. The Delaunay triangulation (dotted lines) and the Voronoi diagram 
(solid lines) of a set of 20 points. 
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Figure B.9. The Voronoi edges formed when processing the triangles with a vertex at 
Sj. 
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Appendix C: Proofs of the Feasibility of Voronoi Diagram Search Graphs 

A good method of modeling the polygon obstacle search space is to model only 
the free space with a feasible search graph. A feasible search graph includes only 
nodes and arcs that are in the free space. This appendix provides proofs of the feasi
bility of the search graphs generated with the circle rule method and the contour ver
tex point method. 

The Circle Rule Method 

The circle rule method entails modeling obstacle boundaries with well placed 
Delaunay points within obstacle boundaries. All Delaunay points have construction 
circles around them with the same radius. To model an obstacle, the union of the 
interior regions enclosed by overlapping construction circles must completely enclose 
the obstacle polygon boundary. Construction circles from neighboring obstacles 
must not overlap. After Delaunay points are placed within all the obstacles, the 
Voronoi diagram is constructed. The Voronoi diagram search graph consists of only 
those Voronoi edges that are associated with two Delaunay points from different obs
tacles. Any Voronoi edge that is associated with two Delaunay points from the same 
obstacle is not part of Voronoi diagram search graph. The proof of feasibility is esta
blished by simply showing that no construction circle crosses over any Voronoi edge 
in the Voronoi diagram search graph. Since construction circles enclose obstacle 
polygon boundaries, then no Voronoi diagram edge will cross over any obstacle 
boundary. 

Consider the Delaunay triangulation of the set S of N points defining constnlc
tion circles that completely overlap obstacle boundaries. The Delaunay triangulation 
and Voronoi diagram for a set of N points can be constructed as discussed in Appen
dix B. This proof is limited to the restrictions of Appendix B; only consider cases 
where no three points are colinear and no four points are cocircular. Because the 
Voronoi diagram is the geometric dual of the Delaunay triangulation, each edge of a 
Delaunay triangle has an associated edge of the Voronoi diagram, and each Delaunay 
triangle defines a Voronoi point. Recall from the Circle Criterion that the Voronoi 
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point is the center of the circumcircle defined by the three vertices of a Delaunay tri
angle. 

Let the points A, B, and C be the Delaunay points defining the smallest circum
cirle OABC for a Delaunay triangle .1ABC with at least two Delaunay points that do 
not define the same obstacle. Circumcircle OABC has radius r ABC' Let Delaunay 
points A and B be from different obstacles (point C mayor may not be from the same 
obstacle as point A or point B). There are two cases to consider for a Delaunay trian
gle .1ABC: Case I, the Voronoi point (center of the circle for the Circle Criterion) 
and point C are on opposite sides of (or on) the line from A to B, or Case II, the 
Voronoi point and the point C are on the same side of the line from A to B. Exam
ples of these two cases are shown in Figure C.l. Since we have assumed that the 
points_A and B are from different obstacles, then there must be an associated Voronoi 
edge V AB on the perpendicular bisector of the line segment AB, as shown in Figure 

C.2. 

We are interested in analyzing the Voronoi edge V AB' One endpoint of the 
Voronoi edge is the center of the circumcircle defined by the points A, B, and C. The 
other Voronoi point defining the Voronoi edge is from the adjacent Delaunay triangle 
MBD, where the two triangles .1ABC and .1ABD share the common edge AB. An 
example is shown in Figure C.3 where the Voronoi edge V AB is the segment connect

ing V ABC and VABD • Because these two triangles are adjacent with the common edge 
- -
AB, the points C and D are on opposite sides of AB. The Voronoi point V ABD is on 
the ray V directed away from point C on the perpendicular bisector of the line seg
ment AB, as shown in Figure C.4. This is because points C and D are on opposite 
sides of AB, and because of the constraint that D cannot be located on or within the 
circle OABC (this would be a violation of the Circle Criterion). Note that if the edge 
AB is on the convex hull of the set of points S, then there is no adjacent triangle shar
ing the common edge AB. In this case, the Voronoi edge extends infinitely. 

Can the construction circle for point C intersect the Voronoi edge VAB ? Let the 
construction circles for the DeIaunay points A, B, and C each have the same radius r, 
where r <rABC' For Case I, it is simple to see that the answer is no. Since r <r ABC 

and VABC is on the opposite side of AB compared to point C, then the construction 
circle for point C cannot intersect the Voronoi edge VAB . The closest the construction 

circle for point C comes to the Voronoi edge VAB is the positive distance d=rABC-r. 

For Case II, the closest that a construction circle for point C comes to the Voronoi 
edge V AB is no closer than the construction circles for points A and B. Since the con

struction circles for points A and B do not cross over V AB' then neither can the con

struction circle for point C. Figure C.5 illustrates these cases. 



159 

Can the construction circle for point D intersect the Voronoi edge V AB? First, 

we note that since the circle OABC was chosen to be the smallest Delaunay circum

cirle with at least two points from different obstacles, then the construction circle 

OABD must have a radius greater than rABC' Now the construction circle for point D 

has radius r and r <r ABC <r ABD' The closest the construction circle for point D can 

come to the Voronoi edge VAB is when point D is arbitrarily close to one of the points 

A or B. Figure C.6 illustrates this for case I and case II. 

Can the construction circle for any point Pi outside of the circumcircles OABC 

and OABD intersect the Voronoi edge VAB ? It is easily seen that since all construc

tion circles are the same radius r, then no construction circle outside of the circum

circles OABC and OABD can come any closer to the Voronoi edge V AB than any 

construction circle for a point on these circumcircles. 

If V AB is on the convex hull of the set of points S, then there is no point D (no 

adjacent Delaunay triangle), and the Voronoi edge extends infinitely. For this case, 
the argument that the construction circle of point C does not intersect V AB remains 

the same. Considering any construction circle for a point outside the circumcircle 

OABC must be limited to points outside the circumcircle, but within the convex hull 
of S. As illustrated by Figure C.7, the construction circle for a point outside of the 
circumcircle OABC cannot lie any closer than a construction circle on the circumcir
cle, which cannot intersect V AB • 

Finally, we complete the proof by considering all possible Voronoi edges VAB . 

We note that a Voronoi edge VAB only exists when at least two points of the 

Delaunay triangle MBC are from different obstacles. Since the arguments above are 
based on the smallest Delaunay circumcircle of this sort, then any other circumcircle 
with at least two points from different obstacles must be larger. The above arguments 
for feasibility can be applied to any circumcircle with at least two points defining dif
ferent obstacles by allowing the Delaunay triangle ~ABC to be assigned to the 

smaller of the two circumcircles of two adjacent Delaunay triangles. 

The Contour Vertex Point Method 

The vertices of obstacle polygons define a set of Delaunay points used for con

structing a Voronoi diagram search graph. Voronoi edges that are defined by two 
neighboring Delaunay points of the same obstacle are removed, creating the resultant 

Voronoi diagram search graph. Let 0 be defined as the shortest distance from any ver

tex of one polygon obstacle to another polygon obstacle, as illustrated in Figure C.S. 
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If the polygonization process of the obstacles is perfonned such that no polygon edge 
exceeds (5 in length, then the resultant Voronoi diagram search graph will be a feasi
ble search graph. That is, the resultant Voronoi diagram search graph will not have 
any Voronoi edge that crosses over an edge of a polygon obstacle. A proof of this 
follows. 

The Voronoi diagram search graph consists of the Voronoi edges that are associ
ated with two points that are from different obstacles. Any Voronoi edge that is asso
ciated with two points of the same obstacle is not part of Voronoi diagram search 
graph. The proof of feasibility can be shown by simply showing that no obstacle 
polygon edge can cross over a Voronoi edge in the Voronoi diagram search graph. 

Consider the Delaunay triangulation of the set S of N points defining the ver
tices of the polygon obstacles. Once again, this proof is limited to the restrictions of 
Appendix B; only consider cases where no three points are colinear and no four 
points are cocircular. Because the Voronoi diagram is the geometric dual of the 
Delaunay triangulation, each edge of a De1aunay triangle has an associated edge of 
the Voronoi diagram, and each Delaunay triangle defines a Voronoi point. Recall 
from the Circle Criterion that the Voronoi point is the center of the circumcircle 
defined by the three vertices of a Delaunay triangle. 

Let the points A, B, and C be the Delaunay points defining the Delaunay triangle 
MBC, and let A and B be vertices from two different obstacles. There are two cases 
to consider for a De1aunay triangle ~ABC: Case I, the Voronoi point (center of the 
circle for the Circle Criterion) and point C are on opposite sides of (or on) the line 
from A to B, or Case II, the Voronoi point and the point C are on the same side of the 
line from A to B. Examples of these two cases are shown in Figure C.I. 

Since we have assumed that the points A and B are from different obstacles, 
then there must be an associated Voronoi edge V AB on the perpendicular bisector of 
the line segment AB, as shown in Figure C.2. One endpoint of the Voronoi edge is 
the center of the circumcircle defined by the points A, B, and C. The other Voronoi 
point defining the Voronoi edge is from the adjacent Delaunay triangle ~ABD, where 
the two triangles ~ABC and MBD share the common edge AB. An example is 
shown in Figure C.3 where the Voronoi edge VAB is the segment connecting V ABC 

and VABD . Because these two triangles are adjacent with the common edge AB, then 

the points C and 0 are on opposite sides of AB. The Voronoi point V ABD is on the ray 

directed away from point C on the perpendicular bisector of the line segment AB, as 
shown in Figure CA. This is because points C and 0 are on opposite sides of AB, 
and because of the constraint that D cannot be located on or within the circle OABC 
(this would be a violation of the Circle Criterion). Note that if the edge AB is on the 
convex hull of the set of points S, then there is no adjacent triangle sharing the 
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common edge AB. In this case, the Voronoi edge extends infinitely. 

Case I and Case II will be treated separately to show that no obstacle edge can 

cross over the Voronoi edge V AB • 

The Contour Vertex Point Method: Case I 

Proving by contradiction, it can be shown that no polygon edge from an obstacle 
can cross over the Voronoi edge VAB . Assume that there exist two points PI and P2 

from the same obstacle so that the edge from PI to P2 crosses V AB' as illustrated in 

Figure C.9. Since the Voronoi point V ABD is defined by the circle containing the 

points A,B, and D, and since the point D lies on the opposite side of AB from the 

point C, then one can easily see that V ABD is further from the segment AB than V ABC, 

as was shown in Figure C.4. Notice that for Case I, the radius r ABD must be larger 

than r ABC' Also, because of this, the Voronoi edge V AB lies completely within the 

circle OABD. In order for a line segment to cross VAB , that segment must cross over 

the circle OABD, creating a chord to the circle OABD that crosses VAB • The other 

constraint for such a segment from PI to P 2 is that P 1 and P 2 may not lie on or within 

the circles OABC or OABD so that the circle criterion is not violated. The shortest 
possible segment (the limiting case) that meets these constraints is the segment AB 
itself, as shown in Figure C.lO. However, by the initial assumption that A and B are 
from different obstacles, AB is of length greater than or equal to 8. Thus, any seg

ment crossing over V AB which is formed from two points PI and P 2 outside the cir

cles OABC and OABD must be greater in length than 8. Since all segments of an 
obstacle boundary must be less than or equal to 8 in length, then by contradiction, 

there cannot be any obstacle segment that crosses over the Voronoi edge V AB' This 

can also be stated as no Voronoi edge VAB crosses over any obstacle edge. 

When the segment AB is on the convex hull of the set of points, then the Voro-
- -

noi edge VAB is a ray directed away from the edge AB. In this situation, if the points 

PI and P2 are any two points from the set of obstacle points, then the line connecting 

them will remain within the convex hull. This line cannot intersect V AB' which lies 

outside the convex hull. 
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The Contour Vertex Point Method: Case IT 

Again proving by contradiction, it can be shown that no polygon edge from an 
obstacle can cross over the Voronoi edge V AB' Assume that there exist two points P 1 

and P2 from the same obstacle so that the edge from p 1 to P2 crosses VAB , as shown 
in Figure C.11. For Case II, the point V ABC lies above AB while the point V ABD must 
lie below VABC as shown in Figure C.4. A particular case is shown in Figure C.3. 
Next, split V AB at the point where VAB intersects AB to form two segments VABI and 
- --
V AB l' as shown in Figure C.12. If AB does not intersect V AB' then only the case of 

V AB1 results. Now for V ABI (if it exists), one can show that no segment from P 1 to P2 

can cross V ABI using the same argument as Case I above. For V AB z' the argument 

resides with the fact that the segment V AB 1 is completely enclosed within OABC. 

The limiting case is once again the segment AB. By the initial assumption that A and 
B are from different obstacles, AB is of length greater than or equal to O. Thus, any 
segment crossing over VAB which is formed by two points PI and P 2 outside the cir
cles OABC and OABO must be greater in length than O. Since all segments of an 
obstacle boundary must be less than or equal to 0 in length, then by contradiction, 
there cannot be any obstacle segment that crosses over the Voronoi edge V AB' This 
can also be stated as no Voronoi edge V AB crosses over any obstacle edge. 

Finally, we complete the proof by considering all possible edges V AB' The 

above arguments for Case I and Case II can be applied to all Voronoi edges V AB 

where the Delaunay points A and B are defined from different obstacles. 
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Figure C.I. Two cases to consider for a Delaunay triangle. Case I, where V ABC and 
C are o~posite sides of AB, and Case II, where V ABC and C are on the same 
side of AB. The circumcircle OABC for Delaunay triangle ~ABC is shown in 
dashed arcs. 
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Figure C.2. The Voronoi edge VAB , with one endpoint VABC ' is on the perpendicular 
bisector (dashed line) of AB. 
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Figure C.~. The Voronoi edge VAB is the segment connecting V ABC to V ABD' Note 
that V AB lies on the perpendicular bisector of AB. Circumcircles for Delaunay 
triangles ~ABC and ~ABD are shown in dashed arcs. 
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Figure C.4. The Voronoi point V ABD is located on the ray V, with endpoint V ABC. 
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CASE I CASE II 

Figure C.S Can the construction circle for point C intersect the Voronoi edge V AD? 
For Case I, the construction circle for point C comes no closer than the distance 
d = 'ABC - r. For Case II, the closest the construction circle for point C comes to 
V AB is when C is arbitrarily_close to point A or point B. The Eoint C' is at the 
distance d'= 'ABC-' from VAB , and the point C" is closer to VAB than the dis
tance d', that is, d" <d', but not closer than the construction circles for points A 
and B, that is, d min<d" <d'. Construction circles are shown as solid circles. 
The circumcircle for the Delaunay triangle ~ABC is shown in dashed arcs. 
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Figure C.6 Can the construction circle for point D intersect the Voronoi edge V AB? 

For Case I, the construction circle for point D comes no closer than the distance 
d min= r ABC-- r. For Case II, the closest the construction circle for point D 
comes to VAB is when D is arbitrarily close to point A oryoint B. This figure 
shows point D' which is at the distance d'= rABD- r from VAB , and the point D" 
which is closer to V AB than the distance d', that is, d" <d', but not closer than 
the construction circles for points A and B, that is, drnin<d"<d'. Construction 
circles are shown as solid circles. The circumcircles for the Delaunay triangles 
~ABC and MBD are shown in dashed arcs. 
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Figure C.7 When AB is a segment on the convex hull of the set of points S, then no 
constuction circle int~sects the Voronoi edge VAB . The closest a construction 
circle can be to the V AB is when the construction circle is arbitrarily close to 
points A or B, for which the construction circle would still be at least the dis
tance d min from V. For example, the point p' is at a distance d'= rABe - r from 
V, and the point p" is at a distance d" »d min' CH(S) denotes the half plane 
where the convex hull of S may exist. 
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Figure C.S The shortest distance from any vertex of one polygon obstacle to another 
polygon obstacle defines o. 
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Figure C.9. An arbitrary example foE. Case I. Assume the segment from PI to P2 
crosses over the Voronoi edge V AB, noting that the points P 1 and P 2 must lie 
outside the circles OABC and OABD due to the Circle Criterion. Circle OABC 
has radius r ABC and circle OABD has radius r ABD • 
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Figure C.IO. The limiting case where the segment fro~ p 1 to p 2 is considered to be 
the segment AB which touches the Voronoi edge V AB. 
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Figure C.lI. An arbitrary example f~r Case II. Assume the segment from PI to P2 
crosses over the Voronoi edge V AB' noting that the points PI and P2 must lie 
outside the circles OABC and OABD due to the Circle Criterion. Circle OABC 
has radius rABC and circle OABD has radius rABD' 
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Figure C.12. The Voronoi edge VAB is split at the point where V AB intersects AB to 

fonn two segments VAB \ and V AB2 as shown. 
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Appendix D: Properties of the A· Algorithm 

This appendix presents the terminology and results of some important properties 
of the A" algorithm from the artificial intelligence/operations research fields. The 

terms used are standard in these fields. A detailed discussion and proofs of the pro
perties of the A· algorithm are given in [45]. 

Consider the general graph searching algorithm of Figure 0.1. The terms! (n ), 

g (n), and h (n) are defined as follows. The evaluation function! (n) estimates the 
sum of the cost of the minimal cost path from the start node S to node n plus the cost 
of the minimal cost path from node n to a goal node: 

!(n)=g(n)+h(n). 

The term g (n) is called a cost function, and the term h (n) is called a heuristic func
tion. 

Let the function f" (n) be defined as the sum of the actual cost of a minimal 
cost path from the start node S to node n plus the actual cost of a minimal cost path 
from node n to a goal node: 

f • (n) = g • (n ) + h • (n ). 

With the notation from above, f (n) estimates f· (n), g (n) estimates g. (n), and 
h (n ) estimates h • (n ). 

Before properties of the general graph searching algorithm can be stated, some 
additional terms must be defined. The notions of admissibility and the monotone res
triction are now stated. If a search algorithm terminates finding an optimal path from 

the start node S to a goal node whenever a path from the start node S to a goal node 
exists, then the search algorithm is termed admissible. The monotone restriction is 
satisfied by the heuristic function h (n ) if for all nodes nand m , with m the successor 

of n: 

h (n ) ~ h (m) + C(n , m) 

where C(n, m) is the arc cost between nodes nand m. 

The general graph search procedure GRAPHSEARCH in Figure 0.1 is termed 

the A algorithm. If the evaluation function f (n) uses a heuristic function h (n) 

which is a lower bound on h" (n), then this general graph search procedure is termed 
the A" algorithm. The GRAPHSEARCH (A algorithm) and the A· algorithm have 
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some important properties [45]: 

Property 1. GRAPHSEARCH always tenninates for finite graphs. 

Property 2. At any time before A· tenninates, there exists on OPEN a node 
n that is on an optimal path from node S to a goal node, with 
f (n ) $. f· (S). 

Property 3. If there is a path from the start node S to a goal node, then A • 
terminates. 

Property 4. The A· algorithm is admissible. 

Property 5. For any node n selected for expansion by A·, f (n) $. f· (S). 

Property 6. If A 1 and A 2 are two versions of A· such that A 2 is more 

infonned than AI' then at the termination of their searches on any graph 
having a path from the start node S to a goal node, every node expanded by 
A 2 is also expanded by A 1. It follows that A 1 expands at least as many 

nodes as does A 2. 

Property 7. If the monotone restriction is satisfied, then A· has already 
found an optimal path to any node it selects for expansion. That is, if A • 
selects n for expansion, and if the monotone restriction is satisfied, then 

• g (n) = g (n). 

Property ~ If the monotone restriction is satisfied, then the value of the 
evaluation function f (n) of the sequence of nodes expanded by A· is non
decreasing. 
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Procedure GRAPHSEARCH 

1. Given a search graph G put the start node S on a list called 
OPEN. If S does not exist, then exit with failure. Establish the 
value! (S). 

2. Create a list called CLOSED that is initially empty. 

3. LOOP: if OPEN is empty, exit with failure. 

4. Select the first node on OPEN, remove it from OPEN, and put it 
on CLOSED. Call this node n. 

5. If n is the goal node F exit successfully with the solution 
obtained by tracing a path along the pointers from S to F in G. 
(pointers are established in step 7.) 

6. Expand node n, generating the set M of its successors in G. 

7. For each member m of M that was not already on OPEN or 
CLOSED, establish a pointer from n to m. Add m to OPEN 
with the value 

! (m) = g (n) + C(n , m) + h (m ). 

For each member m of M that was already on OPEN, decide 
whether or not to change the value of ! (m) and redirect its 
pointer based on 

g (n ) + C(n , m) < g (m ), 

or if 
g (n ) + C(n , m ) = g (m ), 

then establish two pointers. 

8. Reorder the list OPEN according to heuristic merit. 

9. Go LOOP. 

Figure 0.1. The general graph searching procedure GRAPHSEARCH. 
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