CONCEPTUAL DESIGN AND PROGRAMMATIC STUDIES
OF SPACE STATION ACCOMMODATIONS FOR
LIFE SCIENCES RESEARCH FACILITIES (LSRF)

FINAL REVIEW DOCUMENT - DR3
CONTRACT NAS8-35472

NOVEMBER 1, 1985

PREPARED FOR
GEORGE C. MARSHALL SPACE FLIGHT CENTER
ALABAMA 35812

BY
LOCKHEED MISSILES & SPACE COMPANY, INC.
SPACE STATION BIOASTRONAUTICS GROUP
ASTRONAUTICS DIVISION
SUNNYVALE, CA 94088
AGENDA
STUDY FINAL REVIEW

CONCEPTUAL DESIGNS AND PROGRAMMATICS OF
SPACE STATION ACCOMMODATIONS FOR
LIFE SCIENCES RESEARCH FACILITIES (LSRF)

OVERVIEW
INTRODUCTION
SCIENCE REQUIREMENTS
TRADEOFF ANALYSIS & UPDATE
ENGINEERING & MISSION DESIGN REQUIREMENTS
MISSION SCENARIOS & OPERATIONS TIMELINES
CONCEPTUAL LAYOUT OPTIONS
ENGINEERING & OPERATIONAL RELATIONSHIPS,
INTERACTIONS, AND INTERFACES
WORK BREAKDOWN STRUCTURE AND DICTIONARY
TECHNOLOGY DEVELOPMENT REQUIREMENTS
COST ESTIMATES
PRELIMINARY SCHEDULES & PLANS
ASSESSMENT OF CONCEPT EFFECTIVENESS

J. HILCHEY
C. RUDIGER
M. HEINRICH
P. DOLKAS
B. JESSEE
M. HEINRICH
J. CERNAC
B. JESSEE
G. ELVENHOLL
J. CERNAC
G. ELVENHOLL
B. JESSEE
M. HEINRICH
LABORATORY OUTFITTING ORGANIZATION

BIOASTRONAUTICS
T. M. OLCOTT, MGR.
- VRF/VGRF
- LSRF
- HRF
- RAHF
- GPWS
- HMF
- ECLSS
- CREW EQUIPMENT
- HUMAN PRODUCTIVITY

LABORATORY OUTFITTING
C. RUDIGER, MGR.
J. SMITH, DEPUTY

MEDICAL ADVISOR
DR. W. HARVEY, M.D.

CUSTOMER ACCOMMODATIONS
DR. M. HEINRICH
- DR. L. ACTON, ASTROPHYSICS
- DR. B. LICHTENBERG, CREW SYSTEMS
- DR. S. SCHWARZKOPF, PLANT STUDIES
- DR. L. YOUNG, LIFE SCIENCES
- DR. J. ZIMMERMAN, ANIMAL STUDIES

SYSTEMS ENGRG
DR. W. CUTLER
- J. DIPPEL
- P. DOLKAS
- G. ELVENHOLL
- S. FARRELL, MD
- W. JESSEE
- BIOISOLATION AD

DESIGN ENGRG
J. CERNAC
- M. BALLESTRAINSE
- C. CHIN
- C. HARRIS
- K. JOHNSON
- R. SWENSON
- METABOLIC CAGE ID
- CENTRIFUGE ID
- CAGE WASHER ID
- EXERCISE EQUIP ID

DATA ACQUISITION & MANAGEMENT
F. PEARLMAN
- ATI S/C (INFO. & COMM. SYSTEMS)
- SRI S/C (BIOCHEMICAL ANAL. AND PHYSIO. INSTRUMENTATION)
- BIOMEDICAL DATABASE ID
- PHYSIOLOGICAL MONITORING ID
SUBTASK 3.1 CONCEPT & MISSION DESIGN REQUIREMENTS

3.1.1 REVIEW SCIENCE REQUIREMENTS

3.1.2 UPDATE & ANALYZE TRADES

3.1.3 DEVELOP ENGINEERING AND MISSION DESIGN REQUIREMENTS FOR NON-HUMAN SAAX 0307 SAAX 0302, & TRANS.

SUBTASK 3.2 CONCEPTUAL DEFINITIONS & DESIGNS

3.2.1 MISSION SCENARIOS AND OPERATIONS TIMELINES

3.2.2 CONCEPTUAL LABORATORY LAYOUT OPTIONS

3.2.3 ANALYZE ENGINEERING & OPS RELATIONSHIPS, LAB ACCOMMODATIONS & SSPE INTERACTIONS AND INTERFACES

SUBTASK 3.3 PROGRAMMATIC & ASSESS CONCEPTS

3.3.1 FINAL WBS & WBS DICTIONARY

3.3.2 DEFINE TECH. DEVELOPMENT REQUIREMENTS

3.3.3 ESTIMATE COSTS

3.3.4 DEVELOP PRELIM. SCHED & PLANS

3.3.5 ASSESS CONCEPT EFFECTIVENESS

PRELIMINARY CONCEPTUAL DESIGN REQUIREMENTS DATA PACKAGE

STUDY FLOW DIAGRAM (FINAL REPORT SUPPLEMENTS)

MANY OF THE CURRENT EXPERIMENTS HAVE BEEN UPDATED TO CONFORM TO PRESENT SPACE STATION PLANNING. AN EXAMPLE IS EXPERIMENT BLIA, BONE LOSS IN RATS, AS SHOWN ON THE 2 FOLLOWING CHARTS.
Midterm report (4/85) gave Lockheed's prioritized lists of both experiments and equipment. Those lists have not changed, although different combinations of both have been considered for various missions and module configurations.

The official NASA list of experiments will probably change, as a result of the workshop of scientists held by NASA headquarters in Rosslyn 6/10/85. We have not yet received the new experiments or priorities.

Many of the current experiment descriptions have been updated to reflect current views of space station operations. Example: experiment BL1A, bone loss in rats.
EXPERIMENT DATA SHEET

EXPERIMENT TITLE: BONE LOSS IN RATS
OBJECTIVE: Determine Effects of Microgravity on Calcium/Mineral Balance in Rats; Radiology, Histology, Biomechanics, Osteoblast Differentiation, Tooth Eruption Rate, Joints, Calcium Metabolism.

SPECIES: Rat, Mature Males
SIZE: 400-600 g
DURATION: 90 Days

SUGGESTED NUMBER: 90

STATION G LEVEL
FRACT G (Centrifuge) 45 (50%)
1 G (Centrifuge) 45 (50%)

TASK

<table>
<thead>
<tr>
<th>VIVARIUM</th>
<th>FREQUENCY</th>
<th>POTENTIAL FOR AUTOMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine/Feces Sample</td>
<td>2 days/week</td>
<td>X</td>
</tr>
<tr>
<td>RAHF/VGRF Maintenance</td>
<td>Every 7 days</td>
<td>X</td>
</tr>
</tbody>
</table>

Support Lab:

Inject ß Fluorochromes	2 days/month
Weigh Specimens	Every 7 days
Blood Samples/Preserve	Every 7 days
Sacrifice/Dissect/Preserve	6 each at 2, 10, 20, 30, 50, 85 days
X-Ray	Every 14 days
Bone thin sections & U-V Microscopy	At sacrifice

EQUIPMENT - VIVARIUM

<table>
<thead>
<tr>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAHF/Rodent Environment, Food & Water Consumption, Activity</td>
</tr>
<tr>
<td>VGRF/Rodent Environment, Food & Water Consumption, Activity</td>
</tr>
<tr>
<td>Solid & Liquid Waste Storage</td>
</tr>
<tr>
<td>Hand Wash Facility</td>
</tr>
<tr>
<td>Cage Cleaning Facility</td>
</tr>
</tbody>
</table>

3.1.1 SCIENCE REQUIREMENTS
<table>
<thead>
<tr>
<th>EQUIPMENT - SUPPORT LAB</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgical Workbench</td>
<td>Chemical Storage (opt)</td>
</tr>
<tr>
<td>Mass Measurement Device (Small)</td>
<td>Dry Storage (opt)</td>
</tr>
<tr>
<td>Sacrifice Kit</td>
<td>Freeze Dryer (opt)</td>
</tr>
<tr>
<td>Blood Collection Kit</td>
<td>Thin Section Saw</td>
</tr>
<tr>
<td>Laboratory Centrifuge</td>
<td>X-Ray & Developer</td>
</tr>
<tr>
<td>Wet Trash Storage</td>
<td>X-Ray Digitizer</td>
</tr>
<tr>
<td>Freezer</td>
<td>Binoc. Microscope</td>
</tr>
<tr>
<td>Quick Freeze Unit</td>
<td>-</td>
</tr>
<tr>
<td>Hand Wash Facility</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAMPLE STORAGE & RETURN</th>
<th>FREEZE DRY</th>
<th>REFRIG.</th>
<th>FREEZE</th>
<th>FIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone</td>
<td>X</td>
<td>X</td>
<td>X (opt)</td>
<td>-</td>
</tr>
<tr>
<td>Feces</td>
<td>X</td>
<td>X</td>
<td>X (opt)</td>
<td>-</td>
</tr>
<tr>
<td>Urine</td>
<td>X</td>
<td>X</td>
<td>X (opt)</td>
<td>-</td>
</tr>
<tr>
<td>Blood</td>
<td>X</td>
<td>X</td>
<td>X (opt)</td>
<td>-</td>
</tr>
<tr>
<td>Carcasses</td>
<td>X (opt)</td>
<td>X</td>
<td>X (opt)</td>
<td>-</td>
</tr>
</tbody>
</table>

SPECIMEN RETURN/SACRIFICE

20% (18) returned live
80% (72) returned sacrificed

SPECIAL ENVIRONMENTAL REQUIREMENTS (IF ANY)

None - Because of fluorochrome injection, probably cannot be generally shared

3.1.1 SCIENCE REQUIREMENTS
Each experiment does not require a separate group of specimens. Many observations can be made on one animal and many analyses on a single blood sample. In the case of sacrificed specimens, all tissues should be available and should be used in a variety of studies. The tissues will require different procedures for freezing, fixation, analysis, depending on the experiment.

The NASA list of experiments calls for many species. Obviously not all species can be provided in sufficient number on one mission. Selection of species for a mission will depend on the numbers required, types and size of holding facilities available, utility of specimens for several experiments, equipment required, crew time and skills required, and crew time and skills available, among other factors.
CHARACTERISTICS OF LIFE SCIENCES EXPERIMENTS

0 MOST EXPERIMENTS FOLLOW TIME-COURSE OF CHANGES. THUS, GROUPS OF SPECIMENS WILL BE TESTED OR DISSECTED AT INTERVALS DURING A MISSION. IMPACTS: REQUIREMENTS FOR FOOD, WATER, STORAGE, FREEZERS

0 TISSUES FROM EACH SPECIMEN CAN PROBABLY BE USED FOR EXPERIMENTS IN SEVERAL DISCIPLINES, SO EACH EXPERIMENT DOES NOT REQUIRE A SEPARATE GROUP OF SPECIMENS

0 ONLY A FRACTION OF TOTAL EXPERIMENT LIST CAN BE ACCOMMODATED ON A SINGLE MISSION

0 MOST EXPERIMENTS WILL BE REPEATED SEVERAL TIMES ON DIFFERENT MISSIONS. REPEAT UNDER SAME CONDITIONS TO CONFIRM RESULTS; OR CHANGE CONDITIONS, BASED ON PREVIOUS RESULTS

3.1.1 SCIENCE REQUIREMENTS
UPDATED TRADE STUDIES FROM THE DECEMBER 1984 REPORT ENCOMPASS THOSE TOPICS ITEMIZED IN THE FOLLOWING CHART. ANIMAL ECLSS AND GROWTH OPTIONS FOR LSRF ARE EMPHASIZED HERE.
- ANIMAL ECLSS
 ARCHITECTURE (CENTRALIZED VS. DISTRIBUTED)
 SUBSYSTEMS (OPEN VS. CLOSED VS. CABIN AIR)
- EQUIPMENT SHARING/COMMONALITY
- VIVARIUM LOCATION (IN LAB VS. LOGISTICS MODULE VS. SPECIAL MODULE)
- LOGISTICS - ANIMAL RESUPPLY
- CENTRIFUGE
 LOCATION
 ARCHITECTURE
- WASTE STORAGE
 VENTING EMISSION CONTROLS
THE ANIMAL ECLSS SYSTEM FOR THE LSRF PROVIDES TEMPERATURE-HUMIDITY CONTROL, AIR CIRCULATION, AND LIFE SUPPORT (O₂ PRODUCTION AND CO₂ REMOVAL) FUNCTIONS FOR EXPERIMENTAL SUBJECTS. THREE ECLSS OPTIONS HAVE BEEN STUDIED. THE FIRST OPTION UTILIZES A SPACELAB APPROACH IN WHICH AIR CIRCULATION IS CONTROLLED AT THE CAGE, TEMPERATURE - HUMIDITY FUNCTIONS ARE CONTROLLED AT THE RACK(S) HOLDING THE CAGES, AND CREW AND EXPERIMENTAL ANIMALS UTILIZE CABIN AIR FOR THE LIFE SUPPORT FUNCTIONS.
Option #1

Circulation - cage level
Isolation - cage
Tentry/Humid - rack
Life Support - module or
station

Rack #1

35-45 cfm
Cage Module

Note: 1. 95% HEPA Filter
2. 99.97% HEPA Filter

Centralized
Life Support

To cabin
From cabin

Rack #2

Rack #3

To cabin

ANIMAL ECLSS - SPACELAB APPROACH
THE SECOND ECLSS OPTION UTILIZES A DEDICATED LIFE SUPPORT SYSTEM IN WHICH SEPARATE O_2
SUPPLY AND CO_2 REMOVAL SYSTEMS ARE PROVIDED FOR CREW AND EXPERIMENTAL ANIMALS. THE SECOND
OPTION UTILIZES SEPARATE HEAT EXCHANGERS (CHX) FOR EACH RACK AS WELL. THIS CONFIGURATION
RESULTS IN 3 CPM OF AIR PUMPED TO THE MODULE LIFE SUPPORT SYSTEM THEREBY REDUCING THE
AMOUNT OF CHARCOAL REQUIRED FOR FILTRATION. AIR CIRCULATION IS CONTROLLED AT THE CAGE
LEVEL.
Option #2

Circulation: cage level
isolation: O
Temp/humidity: rack
Life support: module

Rack #1

35 cfm

Cage Module

Bypass Damper

CH2

3 cfm

Rack #2

Rack #3

TCCS

99.97% HEPA

Module Life Support

95% HEPA Filter

Note: O 95% HEPA Filter

CENTRALIZED ANIMAL LIFE SUPPORT
THE THIRD OPTION ALSO UTILIZES A DEDICATED ANIMAL LIFE SUPPORT SYSTEM ANALOGOUS TO THAT USED IN OPTION 2. UNLIKE THE SECOND OPTION, HOWEVER, THE HEAT EXCHANGER IS CENTRALIZED FOR SERVICING ALL RACKS. IN THIS CONFIGURATION 35 CFM OF AIR IS PUMPED TO THE MODULE LIFE SUPPORT SYSTEM INCREASING THE FILTERING CAPACITY REQUIRED TO PURIFY THE AIR.
Option #3

Circulation: Cage level
Isolation: Cage
Temp/Humid: Module
Life Support: Module

Cage Module

Dropper

35 CFM

CHx

TCCS

Module
Life Support

Supply

Return

To Additional Racks

Note: 99.97% HEPA filter

CENTRALIZED ANIMAL ECLSS
PARTITION SCHEMES REALLY DO NOT PROVIDE VERY GOOD BIOLOGICAL ISOLATION. THEIR WIDESPREAD USE IN INDUSTRY STEMS FROM THE FACT THAT MOST RESEARCHERS DISLIKE WORKING INSIDE LAMINAR FLOW HOODS, PREFERING AN OPEN BENCH TOP INSTEAD. HOWEVER, AS THE SPACELAB 3 (SL-3) FLIGHT SHOWED, THE BEST WAY TO PROVIDE TRULY EFFECTIVE ISOLATION IS TO CONTAIN CONTAMINANTS AT THEIR SOURCE AND NEVER LET THEM CONTAMINATE THE CABIN. IT IS CONCLUDED THAT THE BEST APPROACH WOULD BE TO HOUSE THE ANIMALS IN "MICROISOLATOR" CAGES, SIMILAR IN CONCEPT TO THOSE CURRENTLY USED IN INDUSTRY. ONE CONCEPT FOR A SPACE STATION VERSION IS SHOWN IN THE ACCOMPANYING CHART. THE ANIMAL, ITS FEEDER, AND WASTE TRAY ARE HOUSED BETWEEN TOP AND BOTTOM MICROBIAL FILTERS. AIRFLOW IS FROM THE TOP OF THE CAGE TO THE BOTTOM TO AID IN GETTING THE ANIMAL WASTE INTO THE WASTE TRAY.
GETTING AN APPRECIABLE AIRFLOW THROUGH THE MICROBIAL FILTERS IN THE DESIGN SHOWN ON THE PREVIOUS CHART REQUIRES CONSIDERABLE FAN POWER; CONSEQUENTLY THE AIR VELOCITY INSIDE THE CAGE IS LIKELY TO BE LIMITED TO 0.1 - 0.15 MPS. THIS AIR VELOCITY IS NOT ENOUGH TO GIVE THE ANIMAL A PREFERRED ORIENTATION (I.E. BACKSIDE TOWARD THE DRAFT). THEREFORE, THE ANIMAL WAS Seldom POINTED TOWARD THE WASTE TRAY ON THE SL-3 ENGINEERING FLIGHT TEST OF THE RESEARCH ANNUAL HOLDING FACILITY (SEE SECTION 7). THUS THE UPPER MICROBIAL FILTER WOULD HAVE TO BE PROTECTED BY A "SPLASH GUARD" TO PREVENT THE ANIMAL FROM URINATING ON IT. THE DUAL MICROI SOLATOR CAGE CONCEPT SHOWN HERE SOLVES THESE PROBLEMS.
DUAL MICROISOLATOR CAGE CONCEPT
TWO GROWTH OPTIONS WERE CONSIDERED FOR TRANSITIONING THE COMMON MODULE LSRF (SAAX 0307) TO A DEDICATED LSRF (SAAX 0302). THE FIRST OPTION REQUIRES THAT NEW ANIMAL-PLANT RESEARCH EQUIPMENT, INCLUDING THE CENTRIFUGE AND ANIMAL ECLSS, BE INTEGRATED WITH THAT CONTAINED IN THE COMMON LAB TO FORM A DEDICATED LSRF MODULE.
THE SECOND OPTION ASSUMES THAT THE CENTRIFUGE AND ANIMAL ECLSS ARE PART OF THE IOC COMMON LAB MODULE AND THAT THE HUMAN RESEARCH EQUIPMENT PORTION OF THE COMMON LAB WILL BE TRANSITIONED ON-ORBIT TO THE NEW HUMAN SCIENCE AND ASTRO-LAB EQUIPMENT MODULE DEDICATED TO HUMAN RESEARCH. THIS APPROACH MINIMIZES CHANGEOUT OF LARGE EQUIPMENT ITEMS (E.G., CENTRIFUGE) ON-ORBIT.
SUBTASK 3.1 CONCEPT & MISSION DESIGN REQUIREMENTS

3.1.1 REVIEW SCIENCE REQUIREMENTS

3.1.2 UPDATE & ANALYZE TRADES

3.1.3 DEVELOP ENGINEERING AND MISSION DESIGN REQUIREMENTS FOR NON-HUMAN SAAX 0307 SAAX 0302, & TRANS.

SUBTASK 3.3

PRELIMINARY WBS AND ACCOUNTING STRUCTURE

SUBTASK 3.2 CONCEPTUAL DEFINITIONS & DESIGNS

3.2.1 MISSION SCENARIOS AND OPERATIONS TIMELINES

3.2.2 CONCEPTUAL LABORATORY LAYOUT OPTIONS

3.2.3 ANALYZE ENGINEERING & OPS RELATIONSHIPS, LAB ACCOMMODATIONS & SSPE INTERACTIONS AND INTERFACES

SUBTASK 3.3 PROGRAMMATIC & ASSESS CONCEPTS

3.3.1 FINAL WBS & WBS DICTIONARY

3.3.2 DEFINE TECH. DEVELOPMENT REQUIREMENTS

3.3.3 ESTIMATE COSTS

3.3.4 DEVELOP PRELIM. SCHED & PLANS

3.3.5 ASSESS CONCEPT EFFECTIVENESS

PRELIMINARY CONCEPTUAL DESIGN REQUIREMENTS DATA PACKAGE

(FINAL REPORT SUPPLEMENTS)

☐ WBS LEVEL 3
☐ WBS LEVEL 4
REQUIREMENTS DOCUMENTATION IS NECESSARY TO SUPPORT THE DESIGN OF THE LSRF SYSTEM. THIS DOCUMENTATION IS TO CONSIST OF A SPECIFICATION AND ASSOCIATED ICDs. REQUIREMENTS ANALYSIS IS THE PROCESS FOR DETERMINING THE FORM AND CONTENT OF THIS DOCUMENTATION. WE HAVE CHOSEN THE MIL-STD-490 TYPE A SYSTEM SPECIFICATION TO FACILITATE DEVELOPMENT OF LSRF REQUIREMENTS. COMPLETION OF THE DETAILS OF THIS REQUIREMENTS DOCUMENT IS A TASK FOR FUTURE WORK.

SCOPE (PARA. 1.1) THE SPECIFICATION ESTABLISHES PERFORMANCE, DESIGN, DEVELOPMENT, AND TEST REQUIREMENTS FOR THE LSRF SYSTEM.

GENERAL DESCRIPTION (PARA. 3.1.1) THE LSRF SYSTEM CONSISTS OF THE OUTFITTING OF THE COMMON MODULE ASSIGNED TO THE LSRF, THE ASSOCIATED GROUND SEGMENT AND STS EQUIPMENT AND FACILITIES, SOFTWARE, AND DOCUMENTATION.

SYSTEM COMPOSITION (PARA 3.1.4.2) THE LSRF SYSTEM CONSISTS OF EQUIPMENT ITEMS, GROUPED AS DEFINED IN PARA. 3.2 AND DESCRIBED IN MORE DETAIL IN PARA. 3.7, PLUS OPERATIONS.
0 SCOPE
OPERATION, PERFORMANCE, DESIGN, DEVELOPMENT, TEST

0 APPLICABLE DOCUMENTS
SPACE STATION PROGRAM DESCRIPTION, MISSION DEFINITIONS,
STANDARDS, ICDs

0 GENERAL DESCRIPTION
OUTFITTING (EQMT, INTERFACES, MODS TO COMMON MODULE)
GROUND AND STS EQUIPMENT
SOFTWARE
DOCUMENTATION

0 MISSIONS
NONHUMAN LIFE SCIENCE RESEARCH
SPACE STATION EQUIPMENT AND SAFE HAVEN
FULL LIFE CYCLE

0 FUNCTIONS AND COMPOSITION
FUNCTIONS - LIFE CYCLE, OPERATIONS
COMPOSITION - EQUIPMENT GROUPINGS

3.1.3 ENGINEERING & MISSION DESIGN REQUIREMENTS
INTERFACE DEFINITION (PARA. 3.1.5) THE LSRF SYSTEM HAS EXTERNAL INTERFACES WITH THE REST OF THE SPACE STATION, THE STS, GROUND FACILITIES, AND CUSTOMERS. THESE WILL BE DEFINED IN APPROPRIATE TOP-LEVEL ICDs. THE LSRF SYSTEM ALSO HAS INTERNAL INTERFACES AMONG AND WITHIN THE EQUIPMENT GROUPINGS. THESE WILL BE DEFINED IN APPROPRIATE LOWER-LEVEL INTERFACES (AT THE LEVEL OF THE INDIVIDUAL DESIGN ITEMS).
INTERFACES

0 SPACE STATION
 CREW LOADS
 POWER, THERMAL, EMC, ETC.
 CONTAMINATION
 MICRO-G AND REBOOST
 SERVICING
 OUTFITTING ACCESS

0 SHUTTLE
 LAUNCH LIMITS - VOLUME, SHAPE, MASS
 SUPPORT FUNCTIONS DURING LAUNCH AND RETURN
 ALLOCATED ON-ORBIT FUNCTIONS (NOT LIKELY)

0 GROUND (SEE 3.2.3)
 PLANNING, PREPARATION, LOGISTICS, DATA AND CONTROL

0 CUSTOMER
 EQUIPMENT, PROCEDURES, DATA, SAFETY, TEST AND VERIFICATION

3.1.3 ENGINEERING & MISSION DESIGN REQUIREMENTS
OPERATIONAL AND ORGANIZATIONAL CONCEPTS (PARA. 3.1.7) THE FOLLOWING ARE INCLUDED: PROCEDURES, ORGANIZATION, SUPPORT EQUIPMENT, RESOURCES, AND FACILITIES FOR DESIGN, PRODUCTION, ASSEMBLY/DEPLOYMENT, VERIFICATION AND TEST, OPERATION (FLIGHT, LAUNCH-RETURN, AND GROUND), GROWTH, AND DISPOSAL.
OPERATIONAL AND ORGANIZATIONAL CONCEPTS

- LIFE-CYCLE ORIENTED
 - VERIFICATION AND TEST
 - ASSEMBLY AND DEPLOYMENT
 - EXPERIMENT OPERATIONS
 - PRE-LAUNCH AND POST-LANDING
 - FLIGHT AND GROUND OPS
 - RESUPPLY
 - SERVICING

- ROLE OF FLIGHT CREW, GROUND CREW, PI TEAM

- COORDINATION WITH SPACE STATION
 - CREW ACTIVITY
 - CONCURRENT MISSIONS
 - STS DOCKING, REBOOST, ETC.
PERFORMANCE CHARACTERISTICS (PARA. 3.2.1) IDENTIFY SYSTEM FUNCTIONS AND PERFORMANCE ATTRIBUTES FROM SCIENTIFIC OBJECTIVES, THE NEEDS OF EACH PI THROUGHOUT THE LIFE CYCLE OF AN EXPERIMENT, AND THE FUNCTIONS NECESSARY TO SUPPORT THESE. QUANTIFY WHERE POSSIBLE, IN AREAS SUCH AS ENVIRONMENT, RESOURCES, EQUIPMENT PRECISION, AND AVAILABILITY. OTHERWISE STATE FUNCTIONS AND LOGICAL OR SEQUENTIAL RELATIONSHIPS.
PERFORMANCE

0 OPERATIONAL TIMELINES
 INTEGRATE COMPATIBLE ACTIVITIES
 SEPARATE CONFLICTING ACTIVITIES
 MAXIMIZE PRODUCTIVITY

0 EQUIPMENT PERFORMANCE
 ENVIRONMENTS: ATMOSPHERE, TEMPERATURE, ETC.
 MEASUREMENTS: PARAMETERS, RANGE AND ACCURACY
 FUNCTIONS: OPERATING MODES, COMMAND, AUTOMATION
 RESOURCE ALLOCATIONS: POWER, THERMAL, ETC.
 DATA SUPPORT ALLOCATIONS
PHYSICAL CHARACTERISTICS (PARA 3.2.2) IDENTIFY THE EQUIPMENT GROUPINGS AND THE ITEMS THEY CONTAIN, WITH WHICH THE LAB IS OUTFITTED. DEFINE ALLOCATIONS FOR WEIGHT, SPACE, ACCESS, ETC. ALSO DEFINE FLOORS AND PARTITIONS, WINDOWS AND PORTS, AIRLOCKS, AND RETENTION MEANS FOR EQUIPMENT AND PERSONNEL.

RELIABILITY (PARA. 3.2.3) ALLOCATE RELIABILITY REQUIREMENTS TO INDIVIDUAL ITEMS AND SPECIFY THE METHOD OF COMPUTATION. INCLUDE REDUNDANCY, FAULT-TOLEANCE, AND VARIOUS WORK-AROUND OR DEGRADED MODES AS A MEANS TO QUANTIFY RELIABILITY.

MAINTAINABILITY (PARA. 3.2.4) SPECIFY MAINTAINABILITY FEATURES AND CRITERIA TO BE APPLIED AT EACH LEVEL OF DESIGN, FROM OVERALL LSRF OUTFITTING TO THE LOWEST LEVEL OF EQUIPMENT COVERED. THE REQUIREMENTS WILL BE DETERMINED IN CONJUNCTION WITH CUSTOMER SERVICING, AND WILL IN GENERAL CONSIST OF A RANGE OF OPTIONS TO BE UTILIZED AS APPROPRIATE IN EACH SPECIFIC CASE.

AVAILABILITY (PARA. 3.2.5) AVAILABILITY IS A PREREQUISITE TO PRODUCTIVITY. AVAILABILITY GOALS WILL BE ACHIEVED THROUGH A COMBINATION OF RELIABILITY, MAINTAINABILITY, CAPABILITY TO MEET OPERATIONAL LOADS, AND LOGISTICS.

SYSTEM EFFECTIVENESS MODELS (PARA. 3.2.6) SYSTEM EFFECTIVENESS MODELS WILL BE DEVELOPED FROM STUDIES AND TRADES IN AREAS SUCH AS CUSTOMER ACCOMMODATIONS, CREW PRODUCTIVITY, AUTONOMY, AND AUTOMATION AND ROBOTICS. AS SYSTEM EFFECTIVENESS MODELS ARE DEVELOPED, THEY WILL BE INCLUDED IN THE SPECIFICATION.
PHYSICAL CHARACTERISTICS

- TIME-PHASED EQUIPMENT LISTS
- MASS, SHAPE, VOLUME
- ACCESS
- FLOORS, PARTITIONS, FURNISHINGS, ETC.

SPECIAL TOPICS

- RELIABILITY, MAINTAINABILITY, AVAILABILITY REQUIREMENTS
 ALLOCATED BY TRADING EQUIPMENT COST AGAINST LOST LAB PRODUCTIVITY
- SYSTEM EFFECTIVENESS MODELS: QUANTIFY SYSTEM PERFORMANCE VERSUS
 DESIGN OPTIONS IN AREAS SUCH AS OPERATIONS, LOGISTICS, ETC.
ENVIRONMENTAL CONDITIONS (PARA. 3.2.7) THIS SECTION COVERS THE EXTERNAL NATURAL AND MAN-MADE ENVIRONMENTS IMPINGING ON THE LSRF DURING ALL STAGES OF ITS LIFE CYCLE. THE MAIN CONSIDERATION IS THE SPACE ENVIRONMENT: RADIATION, MICROMETEORITES, CONTAMINATION FROM OTHER PORTIONS OF THE SPACE STATION, ETC. EMI/RFI/EMC ARE EXPLICITLY INCLUDED IN PARA. 3.3.2.

MATERIALS, PROCESSES, AND PARTS (PARA. 3.3.1) PROVIDE STANDARDS FOR MATERIALS, PROCESSES, TOLERANCES, FASTENERS, JOINING, FITTINGS, MECHANISMS, CONNECTIONS AND WIRING, SEALS, COATINGS FOR ALL EQUIPMENT, SECONDARY STRUCTURE, SUBSYSTEMS, AND COMPONENTS. SUCH STANDARDS AS APPLY TO THE SPACE STATION, STS, OR GROUND SEGMENT AS A WHOLE SHALL BE INCLUDED BY REFERENCE. STANDARDS APPLICABLE SPECIFICALLY TO THE LSRF WOULD INCLUDE COMPATIBILITY WITH SPECIMENS, CLEANING AND STERILIZABILITY, HANDLING AND COMPATIBILITY OF REAGENTS, PHARMACEUTICALS, SOLVENTS, AND CLEANING AGENTS, AND SIMILAR ISSUES.

ELECTROMAGNETIC RADIATION. (PARA. 3.3.2) DEFINE REQUIREMENTS GOVERNING INADVERTENT EMI/RFI/EMC, BOTH EXTERNAL AND INTERNAL TO THE LSRF SYSTEM. NOTE, THE INTERNATIONAL ASPECTS OF EMI/RFI/EMC ARE COVERED IN PARA. 3.1.5, INTERFACES.

DESIGN (PARA. 3.3) ESTABLISH RECOMMENDED DESIGN APPROACHES (E.G., SECONDARY STRUCTURES AND PLUMBING), GOING BEYOND THE STANDARDS DEFINED IN PARA. 3.3.1.

COMMONALITY, STANDARDIZATION, AND INTERCHANGEABILITY. (PARA 3.3.5) ESTABLISH REQUIREMENTS REGARDING IMPLEMENTATION OF THESE ATTRIBUTES, BOTH INTERNAL AND EXTERNAL TO THE LSRF SYSTEM.

SAFETY. (PARA. 3.3.6) ESTABLISH REQUIRED LEVELS OF SAFETY. PLACE LIMITS ON UNSAFE EQUIPMENT OR PRACTICES. DEFINE ACCEPTABLE MEANS OF CONTROLLING OR MITIGATING HAZARDS.
0 ENVIRONMENTS

GROUND AND LAUNCH ENVIRONMENT

NATURAL SPACE ENVIRONMENT (RADIATION, ETC.)

COMPOSITE SPACE STATION ENVIRONMENT (CONTAMINATION, EMI)

0 DESIGN AND CONSTRUCTION

MATERIALS, PROCESSES, PARTS

DESIGN STANDARDS

ISSUES: COMPATIBILITY WITH SPACE STATION

COMPATIBILITY WITH LIFE SCIENCE

0 SAFETY

HAZARD IDENTIFICATION

EQUIPMENT STANDARDS

OPERATIONS STANDARDS

3.1.3 ENGINEERING & MISSION DESIGN REQUIREMENTS
HUMAN ENGINEERING. (PARA. 3.3.7) ESTABLISH REQUIREMENTS ON THE MAN-MACHINE INTERFACE, AND ON THE GENERAL SENSORY ENVIRONMENT WITHIN THE LSRF, SO AS TO ENHANCE THE PRODUCTIVITY AND WELL-BEING OF THE CREW.

DOCUMENTATION. (PARA. 3.4) DEFINE THE NECESSARY DOCUMENTATION AND THE STANDARDS IT IS TO MEET.

LOGISTICS. (PARA. 3.5) DEFINE THE REQUIREMENTS ON LOGISTICS, AS FLOWING FROM THE GENERAL OPERATIONAL CONCEPT AND PERFORMANCE REQUIREMENTS AS DEFINED ABOVE.

PERSONNEL AND TRAINING. (PARA. 3.6) DEFINE THE PERSONNEL COMPLEMENT FOR THE LSRF, EITHER AS DERIVED FROM FUNCTIONAL AND OPERATIONAL REQUIREMENTS, OR AS ALLOCATED FROM HIGHER LEVELS. DEFINE THE REQUIRED RESPONSIBILITIES AND SKILLS, AND THE NECESSARY TRAINING PROGRAM AND FACILITIES.

EQUIPMENT GROUPING CHARACTERISTICS. (PARA. 3.7) FOR EACH OF THE EQUIPMENT GROUPINGS DEFINED IN PARA. 3.2.2, REITERATE THE ATTRIBUTES DEFINED IN PARAS. 3.2 AND 3.3, AT A GREATER LEVEL OF DETAIL. THESE BECOME IN EFFECT THE DESIGN REQUIREMENTS FOR EACH EQUIPMENT GROUPING, TO BE INCORPORATED IN A DESIGN SPECIFICATION FOR THAT GROUPING, AND FLOWED DOWN TO THE INDIVIDUAL EQUIPMENT ITEMS IN THE GROUPING.

QUALITY ASSURANCE (PARA 4.1.4) DEFINE THE RESPONSIBILITY AND THE MEANS WHEREBY THE CONFORMANCE OF THE LSRF SYSTEM TO ITS REQUIREMENTS WILL BE VERIFIED. THIS SECTION FORMS THE BASIS FOR THE TEST AND VERIFICATION PLAN.

THE BRIEF PARAGRAPH DESCRIPTIONS ABOVE ARE TO INDICATE THE DIRECTION PROPOSED FOR THE LSRF SYSTEM REQUIREMENTS ANALYSIS.
o HUMAN ENGINEERING
 ERGONOMETRICS
 UNDERSTANDABILITY/OPERABILITY OF EQUIPMENT
 WORK LOAD
 AESTHETICS

o LOGISTICS
 GROUND, SHUTTLE, SPACE STATION SUPPORT FACILITIES
 RESUPPLY SCHEDULE

o TRAINING
 GENERAL ACADEMIC BACKGROUND AND SKILL
 EXPERIMENT - SPECIFIC

o QUALITY ASSURANCE
 VERIFIABILITY OF REQUIREMENTS
 DESIGNED-IN VERIFIABILITY
 TEST AND VERIFICATION MATRIX AND PLAN

3.1.3 ENGINEERING & MISSION DESIGN REQUIREMENTS
GUIDELINES USED FOR ASSEMBLING A MISSION SCENARIO

- LIMIT THE NUMBER OF SPECIES
- MAXIMUM USE OF EACH SPECIMEN: DATA OR SAMPLES TO MANY EXPERIMENTS
- GROUP EXPERIMENTS WITH REQUIREMENTS FOR SPECIALIZED EQUIPMENT OR PROCEDURES
- GROUP EXPERIMENTS WITH SIMILAR TIMELINES
- INCLUDE PLANT EXPERIMENTS IN EACH MISSION
LIFE SCIENCES MISSION SCENARIO A

EXPERIMENTS: BL1A BONE LOSS IN RATS
 BL4 BONE LOSS IN RATS USING 40CA
 ML1A MUSCLE LOSS IN RATS
 VP1 STRUCTURAL CHANGES IN LABYRINTH OF RATS
 PC 1 PLANT GROWTH
 PC 3 PLANT GROWTH/CELSS APPLICATION

3.2.1 MISSION SCENARIOS (CONT'D)
ANIMAL SPECIMENS: 90 MATURE MALE WHITE RATS, 400-600 GRAMS
(45 AT STATION GRAVITY)
(45 AT 1-G ON CENTRIFUGE)
MAINTAINED IN STANDARD RODENT HOLDING FACILITY
SACRIFICE SCHEDULE: 6 FROM EACH GROUP (O-G AND 1-G)
AT 2, 10, 20, 30, 50, AND 85 DAYS
REMAINING 9 ANIMALS FROM EACH GROUP RETURNED TO GROUND AT 90 DAYS,
TO FOLLOW READAPTATION TO 1-G
PROCEDURES:

ALL LIVE ANIMALS WEIGHED EVERY 7 DAYS. ALL LIVE ANIMALS X-RAYED APPROX. EVERY 14 DAYS; X-RAYS DEVELOPED, DIGITIZED, AND DATA DOWNLINKED. INCISOR TEETH MEASURED APPROX. EVERY 7 DAYS TO DETERMINE ERUPTION RATE. TOTAL URINE AND FECES COLLECTED FOR EACH RAT IN 7-DAY PORTIONS, FOR STABLE CALCIUM ISOTOPE ANALYSIS AFTER RETURN. AT SACRIFICE, BONES DISSECTED OUT, WEIGHED, AND PRESERVED FOR HISTOLOGY AND MECHANICAL STRENGTH TEST; JAW FOR OSTEOSTEPSTAL DIFFERENTIATION; JOINTS AND KIDNEYS FOR CALCIUM DEPOSITS. MUSCLES DISSECTED, WEIGHED, AND PRESERVED FOR STRENGTH TEST, CHEMICAL AND ENZYMATIC ANALYSIS, AND HISTOLOGY. VESTIBULAR ORGANS OF THE HEAD REMOVED AND PRESERVED. ALL THE OTHER TISSUES WILL BE AVAILABLE FOR MANY ADDITIONAL STUDIES.
EQUIPMENT:

RODENT HOLDING FACILITY
RODENT HOLDING FACILITY ON 1-G CENTRIFUGE
CAGE WASHER
FOOD, WATER
SURGICAL WORKBENCH
MASS MEASUREMENT DEVICE
SACRIFICE KIT
BLOOD COLLECTION KIT
SMALL ANIMAL X-RAY
DISSECTING MICROSCOPE
MUSCLE TENSOMETER

LAB CENTRIFUGE
FREEZER
CHEMICALS
VIALS
X-RAY DEVELOPER
X-RAY DIGITIZER
WASTE STORAGE

3.2.1 MISSION SCENARIOS (CONT'D)
PLANT SPECIMENS: APPROX. 25 SEEDS EACH OF ARABIDOPSIS, CARROT, PINE, AND BEAN IN A PLANT GROWTH UNIT. APPROX. 20 SEEDS EACH OF RADISH AND LETTUCE IN A SECOND PLANT GROWTH UNIT.

PROCEDURE: WET AN ALIQUOT OF EACH TYPE OF SEED WITH NUTRIENT SOLUTION AT 5 DAY INTERVALS. MAINTAIN GROWTH CONDITIONS. RETURN ALL PLANTS LIVE TO GROUND FOR STUDY.

EQUIPMENT: PLANT GROWTH UNITS
NUTRIENT SOLUTIONS
VIDEO CAMERA, DOWNLINKED
PHOTO CAMERA

3.2.1 MISSION SCENARIOS (CONT'D)
LIFE SCIENCES MISSION SCENARIO B

EXPERIMENTS:
ML1B NITROGEN BALANCE AND MUSCLE LOSS IN SMALL PRIMATES
FE1B FLUID AND ELECTROLYTE BALANCE IN SMALL PRIMATES
MB1B METABOLIC BALANCE IN THE SMALL PRIMATE
MB5 RESPIRATORY GAS EXCHANGE IN SMALL PRIMATES
MB7 GLUCOSE TOLERANCE AND METABOLITES IN SMALL PRIMATES

THE ABOVE EXPERIMENTS ON SQUIRREL MONKEYS REQUIRE THE USE OF METABOLIC CAGES
PC8 PLANT GROWTH - MULTIPLE GENERATIONS

MISSION DURATION: 90 DAYS

3.2.1 MISSION SCENARIOS (CONT'D)
LIFE SCIENCES MISSION SCENARIO C

EXPERIMENTS:

CV1 CARDIOVASCULAR FUNCTION IN RESTRAINED RHESUS MONKEYS
FE2 FLUID AND ELECTROLYTE BALANCE IN RESTRAINED RHESUS MONKEYS
VP2C VESTIBULAR FUNCTION IN RESTRAINED RHESUS MONKEYS
PC5 STUDY OF CHLORELLA

MISSION DURATION: 30 DAYS
LIFE SCIENCES MISSION SCENARIO D

EXPERIMENTS:

ML1A NITROGEN BALANCE AND MUSCLE LOSS IN RATS
FE1A FLUID AND ELECTROLYTE BALANCE IN RATS
MB1A METABOLIC BALANCE IN THE RAT
MB4 RESPIRATORY GAS EXCHANGE IN THE RAT

THE ABOVE EXPERIMENTS REQUIRE THE USE OF METABOLIC CAGES FOR RATS

RD2C EMBRYONIC DEVELOPMENT IN TERRESTRIALLY IMPREGNATED MICE
PC4A PLANT GROWTH AND NUTRIENT RECYCLING

MISSION DURATION: 90 DAYS
Eight module arrangement layouts are presented with non-human equipment outfitting volumes equal to either 1/2 of a module or a full module. The options are based on the use of a 2.75m diameter centrifuge combined with a horizontal or vertical layout or a 3.75m diameter double rotor centrifuge combined with a horizontal or vertical layout.
MODULE ARRANGEMENT LAYOUTS

1/2 MODULE – 2.75 M DIA CENTRIFUGE – HORIZONTAL
FULL MODULE – FULL DIAMETER CENTRIFUGE – VERTICAL

- FOUR OPTIONS FOR 1/2 MODULE
- FOUR OPTIONS FOR FULL MODULE

WITH CHANGE-OUT BETWEEN SECOND CENTRIFUGE
AND MINI-LAB CONSIDERED FOR FULL MODULE

ELECTRICAL INTERFACES (1/2 MODULE, HORIZ., 2.75 M DIA)
SECONDARY STRUCTURE
STRUCTURAL CONSIDERATIONS

3.2.2 CONCEPTUAL LAYOUT OPTIONS
THE 1/2 MODULE HORIZONTAL LAYOUT WITH 2.75M CENTRIFUGE UTILIZES 23.0M3 OF VOLUME APPORTIONED AS FOLLOWS: 3.5M3 FOR THE CENTRIFUGE, 15.0M3 OF RACK VOLUME AND 4.5M3 OF STOWAGE VOLUME.
THE 23.0m³ EQUIPMENT, STOWAGE, AND RACK VOLUME ACCOMMODATES 20.0m³ OF ANIMAL AND PLANT RESEARCH EQUIPMENT AND 3.0m³ OF SHARED HUMAN AND PLANT AND ANIMAL RESEARCH EQUIPMENT.
Non-Human Lab Equipment

<table>
<thead>
<tr>
<th>Rack Number</th>
<th>Rack Volume (Cubic M)</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>ROCKET STANDARD HOLDING FACILITY (#52), SPECIMEN FOOD AND WATER (+56.57%), STORAGE.</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
<td>ROCKET BREEDING HOLDING FACILITY (#53).</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>PLANT RESEARCH FACILITY (#81).</td>
</tr>
<tr>
<td>4</td>
<td>1.6</td>
<td>ROCKET STANDARD HOLDING FACILITY (#52).</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>CENTRIFUGE CONTROLS, PH.ION ANALYZER (#308), OSCILLOSCOPE (+2077), MICROSCOPES (+1).</td>
</tr>
<tr>
<td>6</td>
<td>2.0</td>
<td>GENERAL PURPOSE WORK STATION (#11), DISSECTION KIT (#2), SPECIMEN-MONITOR # (#2018), MASS SPEC/ DRY ANALYZER (+2033), ANIMAL MONITORING (+2033).</td>
</tr>
<tr>
<td>7</td>
<td>2.0</td>
<td>CAGE WASHER (#20), INCUBATOR (20), EGG INCUBATOR (+76), CELLS (+90), FROZER (+45).</td>
</tr>
<tr>
<td>8</td>
<td>2.0</td>
<td>DRAIN SYSTEM (9-90), COMPUTER (+51), STRIP CHART RECORDER (+102), MICROPROCESSOR (+2019), VIDEO CAMERA AND RECORDER (+41).</td>
</tr>
<tr>
<td>9</td>
<td>2.0</td>
<td>HAND WASHER (+40), REFRIGERATION/REFRIGER (#45), ENVIRONMENTAL MONITOR (+42), PHYSIOLOGICAL AMPLIFIER (+143), CO2 MONITOR (+120), SMALL MASS MEASUREMENT (+127).</td>
</tr>
<tr>
<td>10</td>
<td>2.5</td>
<td>SOLIDS WASTE STORAGE (+53), STORAGE.</td>
</tr>
<tr>
<td>11</td>
<td>2.0</td>
<td>LIQUID WASTE STORAGE (+92).</td>
</tr>
<tr>
<td>12</td>
<td>3.5</td>
<td>2.75 M DIA ARTIFICIAL GRAVITY CENTRIFUGE (#63).</td>
</tr>
<tr>
<td>21.0</td>
<td>1.6</td>
<td>TOTAL VOLUME</td>
</tr>
</tbody>
</table>

1/2 Lab Equipment
THE FULL MODULE HORIZONTAL LAYOUT DEDICATED TO ANIMAL-PLANT RESEARCH CONTAINS TWO 2.75M DIAMETER CENTRIFUGES AND UTILIZES 44.2m³ OF VOLUME APPORTIONED AS FOLLOWS: 2 CENTRIFUGES 7.0m³, RACK SPACE 27.7m³ AND STOWAGE SPACE 9.5m³.
THE ENTIRE 44.2m³ EQUIPMENT VOLUME IS DEDICATED TO ANIMAL-PLANT EXPERIMENTS IN THE FULL LAB HORIZONTAL CONFIGURATION.
Non-Human Lab Equipment

<table>
<thead>
<tr>
<th>Rack Number</th>
<th>Rack Volume (Cubic ft)</th>
<th>User Designation</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>Non-Human</td>
<td>Rodent Standard Holding Facility (#52), Specimen Food and Water (#50.2), Storage</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>Non-Human</td>
<td>Rodent Breeding Holding Facility (#53)</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>Non-Human</td>
<td>Plant Research Facility (#61)</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td>Non-Human</td>
<td>Rodent Standard Holding Facility (#52)</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>Non-Human</td>
<td>Centrifuge Controls, pH Ion Analyzer (#88), Oscilloscope (#27), Microscopes (#1)</td>
</tr>
<tr>
<td>6</td>
<td>2.0</td>
<td>Non-Human</td>
<td>General Purpose Work Station (#11), Dissection Kit (#34), Spectrophotometer (#205), Mass Spectrometer (#186), Animal Monitoring (#5041)</td>
</tr>
<tr>
<td>7</td>
<td>2.0</td>
<td>Non-Human</td>
<td>Cage Washer (#38), Incubator CO2 (#2021), Egg Incubator (#76), Celsis (#218), Freezer (#45), Laboratory Centrifuge (#201)</td>
</tr>
<tr>
<td>8</td>
<td>2.0</td>
<td>Human, 1.0</td>
<td>Data System (#33-361), Computer (#61), Strip Chart Recorder (#112), Microprocessor (#201), Video Camera and Recorder (#111)</td>
</tr>
<tr>
<td>9</td>
<td>5.0</td>
<td>Human, 1.0, 5.0</td>
<td>Hand Washer (#100), Refrigeration Freezers (#44), Environmental Monitor (#42), Physiological Amplifier (#132), Mass Meter (#126), Small Mass Measured (#112)</td>
</tr>
<tr>
<td>10</td>
<td>2.0</td>
<td>Human, 1.0, 5.0</td>
<td>Storage, Primate Restraint Kit (#2051)</td>
</tr>
<tr>
<td>11</td>
<td>2.0</td>
<td>Human, 1.0, 5.0</td>
<td>2 Refrigeration Freezers (#44), Freezer (#46)</td>
</tr>
<tr>
<td>12</td>
<td>1.0</td>
<td>Human, 1.5, 5.0</td>
<td>Metabolic Facility (#1)</td>
</tr>
<tr>
<td>13</td>
<td>2.0</td>
<td>Human, 1.5</td>
<td>Storage</td>
</tr>
<tr>
<td>14</td>
<td>1.5</td>
<td>Human, 1.5, 5.0</td>
<td>Additional Plant Research Facility (#61)</td>
</tr>
<tr>
<td>15</td>
<td>1.5</td>
<td>Human, 1.6</td>
<td>Additional Rodent Holding Facility (#50)</td>
</tr>
<tr>
<td>16</td>
<td>1.0</td>
<td>Human, 1.5</td>
<td>Additional Plant Research Facility (#61)</td>
</tr>
<tr>
<td>17</td>
<td>1.0</td>
<td>Human, 1.6</td>
<td>Large Primate Holding Facility (#58), Specimen Food and Water (#46.11)</td>
</tr>
<tr>
<td>18</td>
<td>5.0</td>
<td>Non-Human</td>
<td>Solids Waste Storage (#49.1), Storage</td>
</tr>
<tr>
<td>19</td>
<td>4.0</td>
<td>Non-Human</td>
<td>Liquid Waste Storage (#52)</td>
</tr>
<tr>
<td>20</td>
<td>5.5</td>
<td>Non-Human</td>
<td>2.75 in Dia Artificial Gravity Centrifuge (#63)</td>
</tr>
<tr>
<td>21</td>
<td>3.5</td>
<td>Non-Human</td>
<td>2.75 in Dia Artificial Gravity Centrifuge (#63)</td>
</tr>
</tbody>
</table>

Full Lab Equipment

[Diagram of full lab equipment]
THE MODIFIED RACETRACK 1/2 MODULE LAYOUT HAS RADIAL DOCKING PORTS LOCATED TOWARD THE MODULE LENGTH MID-POINT AND CONTAINS THE 3.75M DOUBLE CENTRIFUGE. 37.2M³ OF VOLUME IS APPORTIONED AS FOLLOWS: THE CENTRIFUGE UTILIZES 18M³, RACK VOLUME 15.4M³, LIQUID STOWAGE 2.0M³, AND DRY STOWAGE 1.8M³.
1/2 LAB LAYOUT IN MODIFIED RACETRACK (MRT) PATTERN
A TOTAL OF 13.9m³ OF DEDICATED ANIMAL-PLANT RESEARCH EQUIPMENT AND 22.4m³ OF SHARED HUMAN AND ANIMAL/PLANT RESEARCH EQUIPMENT CAN BE ACCOMMODATED IN THE 1/2 LAB MODIFIED RACETRACK HORIZONTAL CONFIGURATION.
NON-HUMAN LAB EQUIPMENT

<table>
<thead>
<tr>
<th>PACK NUMBER</th>
<th>VOLUME (CUBIC M)</th>
<th>USER DESIGNATION</th>
<th>EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1</td>
<td>HUMAN</td>
<td>CENTRIFUGE ANCELLARY EQUIP STORAGE (+53)</td>
</tr>
<tr>
<td>2</td>
<td>1.1</td>
<td>HUMAN</td>
<td>CENTRIFUGE CONTORIAL SYSTEM (+63)</td>
</tr>
<tr>
<td>3</td>
<td>2.2</td>
<td>NON-HUMAN</td>
<td>RODENT STANDARD HOLDING FACILITY 2 UNITS (+52)</td>
</tr>
<tr>
<td>4</td>
<td>2.2</td>
<td>NON-HUMAN</td>
<td>GENERAL PURPOSE WORK STATION (#11), DISSECTION BENCH (+12), SPECTROPHOTOMETER (+26), MASS SPECTRAL ANALYZER (+63), ANIMAL MONITORING (+263)</td>
</tr>
<tr>
<td>5</td>
<td>2.2</td>
<td>NON-HUMAN</td>
<td>PLANT RESEARCH FACILITY (CELL G/5), CELL CULTURE (+50), PHONOSCOPE (+242), SCOPESCOPE (+243), MICROSCOPES (+1 FOOD AND WATER (+26.5))</td>
</tr>
<tr>
<td>6</td>
<td>2.9</td>
<td>NON-HUMAN</td>
<td>HAND WASHER (+504), REFRIGERATOR/FREEZERS (+44, 45), ENVIRONMENTAL MONITOR (+12), PHYSIOLOGICAL AMPLIFIER (+142), OSMOMETER (+261), SMALL MASS MEASUREMENT (+112)</td>
</tr>
<tr>
<td>7</td>
<td>2.2</td>
<td>NON-HUMAN</td>
<td>CAGE WASHER (+268), INCUBATOR (+221), EGG INCUBATOR (+61), FREEZER (+46)</td>
</tr>
<tr>
<td>8</td>
<td>2.2</td>
<td>NON-HUMAN</td>
<td>DRI SYSTEM (+93-361), COMPUTER (+43), STRIP CHART RECORDER (+162), MICROPROCESSOR (+263), VIDEO CAMERA AND RECORDER (+141)</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>NON-HUMAN</td>
<td>3.75 M DIA ARTIFICIAL GRAVITY CENTRIFUGE I (+63)</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>NON-HUMAN</td>
<td>3.75 M DIA RESEARCH CENTRIFUGE II (+63)</td>
</tr>
<tr>
<td>17</td>
<td>1.8</td>
<td>NON-HUMAN</td>
<td>SOLID WASTE STORAGE (+631), STORAGE</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>NON-HUMAN</td>
<td>LIQUID WASTE STORAGE (+221)</td>
</tr>
<tr>
<td>24.6</td>
<td>11.7</td>
<td>NON-HUMAN</td>
<td>TOTAL VOLUME</td>
</tr>
</tbody>
</table>

EQUIPMENT - 1/2 LAB - MRT
THE FULL LAB MODIFIED RACETRACK HORIZONTAL LAYOUT CONTAINING THE 3.75M CENTRIFUGE UTILIZES 54.2M³ APPORTIONED AS FOLLOWS: CENTRIFUGE 18.0M³, RACK VOLUME 28.6M³, LIQUID STOWAGE 4.0M³, AND DRY STOWAGE 3.6M³.
THE DEDICATED FULL MODIFIED RACETRACK LAYOUT USES 53.2\text{m}^{3} FOR ANIMAL-PLANT EXPERIMENTS AND EQUIPMENT.
NON-HUMAN LAB EQUIPMENT

<table>
<thead>
<tr>
<th>RACK NUMBER</th>
<th>STATION</th>
<th>VOLUME (CM³)</th>
<th>USER DESIGNATION</th>
<th>EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1</td>
<td></td>
<td>NON-HUMAN</td>
<td>CENTRIFUGE RACK/MEAT EQUIP STORAGE (+63)</td>
</tr>
<tr>
<td>2</td>
<td>1.1</td>
<td></td>
<td>NON-HUMAN</td>
<td>CENTRIFUGE CONTROL SYSTEM (-63)</td>
</tr>
<tr>
<td>3</td>
<td>2.2</td>
<td></td>
<td>NON-HUMAN</td>
<td>RODENT STANDARD HOLDING FACILITY 2 UNITS (+62)</td>
</tr>
<tr>
<td>4</td>
<td>2.2</td>
<td></td>
<td>NON-HUMAN</td>
<td>GENERAL PURPOSE WORK STATION (+111), DISSECTION KIT (+127), SPECTROPHOTOMETER (+128), MASS SPECTROMETER (+133), DIGITAL THERMOMETER (+135), PERISTALTIC PUMP (+193), FOOD AND WATER (+96, 97)</td>
</tr>
<tr>
<td>5</td>
<td>2.2</td>
<td></td>
<td>NON-HUMAN</td>
<td>PLANT RESEARCH FACILITY (+41), ULTRA (+201), PHOTOMULTIPLIER (+205), CO2 CONCENTRATOR (+206)</td>
</tr>
<tr>
<td>6</td>
<td>2.2</td>
<td></td>
<td>NON-HUMAN</td>
<td>HAND WASH (+100), REFRIGERATOR/FREEZER (+44, 46), ENVIRONMENTAL MONITOR (+142), PHYSIOLOGICAL AMPLIFIER (+143), DIGITAL THERMOMETER (+135), SCALED MIRROR (+126)</td>
</tr>
<tr>
<td>7</td>
<td>2.2</td>
<td></td>
<td>NON-HUMAN</td>
<td>INCUBATOR (+201), EGG INCUBATOR (+206), FREEZER (+46)</td>
</tr>
<tr>
<td>8</td>
<td>2.2</td>
<td></td>
<td>NON-HUMAN</td>
<td>DATA SYSTEM (+33-361), COMPUTER (+61), STRIP CHART RECORDER (+322), MICROPROCESSOR (+206), VIDEO CAMERA AND RECORDER (+141)</td>
</tr>
<tr>
<td>9</td>
<td>2.2</td>
<td></td>
<td>NON-HUMAN</td>
<td>RODENT BREEDING HOLDING FACILITY (+63)</td>
</tr>
<tr>
<td>10</td>
<td>2.2</td>
<td></td>
<td>NON-HUMAN</td>
<td>2 REFRIGERATOR/FREEZER (+44), FREEZER (+46)</td>
</tr>
<tr>
<td>11</td>
<td>2.2</td>
<td></td>
<td>NON-HUMAN</td>
<td>METABOLIC FACILITY (+1), ADDITIONAL RODENT HOLDING FACILITY (+62)</td>
</tr>
<tr>
<td>12</td>
<td>2.2</td>
<td></td>
<td>NON-HUMAN</td>
<td>STORAGE, PRIMATE RESTRAINT KIT (+206)</td>
</tr>
<tr>
<td>13</td>
<td>2.2</td>
<td></td>
<td>NON-HUMAN</td>
<td>LARGE PRIMATE HOLDING FACILITY (+58), SPECIMEN FUND AND WATER (+96, 97)</td>
</tr>
<tr>
<td>14</td>
<td>2.2</td>
<td></td>
<td>NON-HUMAN</td>
<td>ADDITIONAL PLANT RESEARCH FACILITY (+41)</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td></td>
<td>NON-HUMAN</td>
<td>3.76 M DIA ARTIFICIAL GRAVITY CENTRIFUGE 1 (+63)</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td></td>
<td>NON-HUMAN</td>
<td>3.76 M DIA RESEARCH CENTRIFUGE 1 (+63)</td>
</tr>
<tr>
<td>17</td>
<td>3.0</td>
<td></td>
<td>NON-HUMAN</td>
<td>SOLIDS WASTE STORAGE (+931), STORAGE</td>
</tr>
<tr>
<td>18</td>
<td>4</td>
<td></td>
<td>NON-HUMAN</td>
<td>LIQUID WASTE STORAGE (+92)</td>
</tr>
<tr>
<td>E3.2</td>
<td></td>
<td></td>
<td>NON-HUMAN</td>
<td>TOTAL VOLUME</td>
</tr>
</tbody>
</table>

FULL LAB LAYOUT - MRT

SPACE STATION
THE 1/2 MODULE VERTICAL LAYOUT WITH 2.75 M CENTRIFUGE UTILIZES 23.0 M³ OF INTERNAL VOLUME ON TWO LEVELS APPORTIONED AS FOLLOWS: 3.5 M³ FOR CENTRIFUGE, 15.0 M³ RACK VOLUME, AND 4.5 M³ STOWAGE. NON-HUMAN RESEARCH EQUIPMENT UTILIZES 20.0 M³ AND SHARED PLANT/ANIMAL AND HUMAN RESEARCH 3.0 M³ OF THE TOTAL VOLUME, RESPECTIVELY.
THE FULL MODULE VERTICAL LAYOUT WITH 2.75M CENTRIFUGE DEDICATED TO ANIMAL-PLANT EXPERIMENTS UTILIZES 43.0M³ OF WHICH 3.5M³ IS CENTRIFUGE VOLUME, 22.5M³ IS RACK VOLUME, 15.0M³ IS DRY STOWAGE AND 2.0M³ IS LIQUID STORAGE VOLUME.
FULL LAB - VERTICAL ARRANGEMENT

NON-HUMAN LAB EQUIPMENT

<table>
<thead>
<tr>
<th>RACK NUMBER</th>
<th>RACK VOLUME [GAL]</th>
<th>EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>CENTRIFUGE CONTROLS (463), STORAGE</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>RODENT STANDARD HOLDING FACILITY (468)</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>CAGE WASH (468), SPECIMEN FOOD AND WATER (468-27), STORAGE</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>RODENT BREEDING HOLDING FACILITY (468)</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>RODENT STANDARD HOLDING FACILITY (468)</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>STORAGE PH/ION ANALYZER (468), OSCILLOSCOPE (468), MICROSCOPE (1), FRIDGE KIT (468)</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>HAND WASHER (468)</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>GENERAL PURPOSE WORK STATION (468), DISSECTION APPARATUS (468), MICROSCOPE (468), PH/ION ANALYZER (468), METABOLIC MONITORING (468)</td>
</tr>
<tr>
<td>9</td>
<td>3.5</td>
<td>2.75 IN DIA ARTIFICIAL GRAVITY CENTRIFUGE (468)</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>LIQUID WASTE STORAGE (462)</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>SOLID WASTE STORAGE (461)</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>INCUBATOR (CO2) (461), EGG INCUBATOR (461), CELABS (461), FREEZER (461), LABORATORY CENTRIPETE (461)</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>PLANT RESEARCH FACILITY (461)</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>REFRIGERATOR/FREEZER (461), ENVIRONMENTAL NICHES (461), PHYSIOLOGICAL DEVICES (461), PH/ION ANALYZER (461), SMALL ANIMAL MONITORING (461)</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>DATA RECORDER (461), COMPUTER (461), STRIP CHART RECORDER (461), DURALOSER (461), VIDEO CAMERA AND RECORDER (461)</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>TOTAL VOLUME</td>
</tr>
</tbody>
</table>

NON-HUMAN LAB EQUIPMENT

<table>
<thead>
<tr>
<th>RACK NUMBER</th>
<th>RACK VOLUME [GAL]</th>
<th>EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>2</td>
<td>LARGE PRIMATE HOLDING FACILITY (468), SPECIMEN FOOD AND WATER (468-27), STORAGE</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>ADDITIONAL RODENT HOLDING FACILITY (468)</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>STORAGE</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>METABOLIC FACILITY (468)</td>
</tr>
<tr>
<td>20</td>
<td>0.5</td>
<td>STORAGE</td>
</tr>
<tr>
<td>21</td>
<td>0.5</td>
<td>STORAGE</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>STORAGE</td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>STORAGE</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>STORAGE</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>STORAGE</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>2 REFRIGERATOR/FREEZER (461), FREEZER (461)</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>ADDITIONAL PLANT RESEARCH FACILITY (461)</td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td>STORAGE</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>STORAGE</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>STORAGE</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>STORAGE</td>
</tr>
<tr>
<td>32</td>
<td>0</td>
<td>TOTAL VOLUME</td>
</tr>
</tbody>
</table>
IN THE FULL LAB WITH TWO 2.75M CENTRIFUGES AND MINILAB OPTIONS 6M³ OF RACKS MAY BE USED FOR EXPERIMENT SPECIFIC LAB EQUIPMENT OR A SECOND CENTRIFUGE WITH CONTROLS. IN THIS ARRANGEMENT 43.0 OF EQUIPMENT CAN BE ACCOMMODATED WITH DRY STOWAGE VOLUME REDUCED FROM 15.0M³ TO 10.5M³ AND AN ADDITIONAL 1.0M³ OF RACK VOLUME AVAILABLE.
NON-HUMAN LAB EQUIPMENT

<table>
<thead>
<tr>
<th>RACK NUMBER</th>
<th>BACK VOLUME (CUBIC FT)</th>
<th>EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>CENTRIFUGE CONTROLS (#63), STORAGE.</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>RODENT STANDARD HOLDING FACILITY (#50).</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>CAGE WASHING (#61); SPECIMENT FOOD AND WATER (#9027), STORAGE.</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>RODENT BLEEDING HOLDING FACILITY (#63).</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>RODENT STANDARD HOLDING FACILITY (#63).</td>
</tr>
<tr>
<td>6</td>
<td>0.6</td>
<td>STORAGE, PHOREN ANALYZER (#508), OSCILLOSCOPE (+297), MICROSCOPES (+ 1), PRIVATE KIT (+206).</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>HAND WASHING (#149).</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>GENERAL PURPOSE WORK STATION (+1); DISSECTION KIT (+294); SPECIMEN YPER (+206); AIR/WATER GAS ANALYZER (#153), PULMONAL MONITOR (#201-3).</td>
</tr>
<tr>
<td>9</td>
<td>3.5</td>
<td>2.75 IN DIA. ARTIFICIAL GRAVITY CENTRIFUGE (#63).</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>LIQUID WASTE STORAGE (+221).</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>60.10 DE WASTE STORAGE (+221).</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>INCUBATOR CO2 (#202); EGG INCUBATOR (#202); CELLS (#201); FREEZER (#204); LABORATORY CENTRIFUGE (#201).</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>PLANT RESEARCH FACILITY (+211).</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>REFRIGERATOR/FREEZER (#144.6), ENVIRONMENTAL MONITOR (#144), CRYOLOGICAL AMPLIFIER (#442); OXYGEN METER (#2285); SMALL MASS MEASUREMENT (#4217).</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>HUMIDIFIER (#30-35); COMPUTER (#55); STRIP CHART RECORDER (#65); MICROPROCESSOR (#2081); VIDEO CAMERA AND RECORDER (#44).</td>
</tr>
</tbody>
</table>

TOTAL VOLUME:

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 TOTAL VOLUME</td>
</tr>
</tbody>
</table>

FULL LAB WITH SECOND CENTRIFUGE AND MINILAB OPTIONS

[Lockheed]
THE VERTICAL LAYOUT WITH THE 3.75M CENTRIFUGE PROVIDES 42.0 m³ FOR EXPERIMENT EQUIPMENT. THE DOUBLE CENTRIFUGE OCCUPIES 14 m³, RACK VOLUME EQUALS 20 m³ AND DRY STOWAGE VOLUME EQUALS 8.0 m³. AT THIS TIME, VERTICAL ARRANGEMENT IS THE PREFERRED INTERNAL LAYOUT BECAUSE WITH SIMILAR EQUIPMENT VOLUMES VERTICAL ARRANGEMENTS ARE SIMPLER AND MORE UNIFORM WITH A GREATER DEGREE OF COMMONALITY POSSIBLE. VERTICAL MODULE PACKAGING ALSO APPEARS TO BE MORE SIMPLY ARRANGED ALLOWING MORE WORKING SPACE AS WELL AS HIGHER PACKAGING EFFICIENCY RESULTING IN MORE DESIRABLE EQUIPMENT ACCOMMODATION THAN HORIZONTAL ARRANGEMENTS.
FULL LAB WITH LARGE CENTRIFUGE
THE 1/2 LABORATORY MODULE VERTICAL ARRANGEMENT WITH A LARGE (3.75M) CENTRIFUGE UTILIZES 30.0m3 OR TWO LEVELS IN WHICH 12.0m3 IS ANIMAL-PLANT RESEARCH EQUIPMENT.

AND 18.0m3 IS SHARED PLANT-ANIMAL AND HUMAN RESEARCH EQUIPMENT.
ELECTRICAL POWER AND DATA SERVICES FOR A TYPICAL EQUIPMENT ARRANGEMENT IS SHOWN IN THIS FIGURE. DETAIL DIAGRAMS OF THIS TYPE WERE USED TO ASSIST IN DEFINING COMMON REQUIREMENTS FOR EQUIPMENT GROUPS AND DEVELOPMENT OF CANDIDATE COMMON ELEMENTS FOR THE LSRF.
RACK STANDARDIZED INTERFACES ARE DESIGNED WITH THE OBJECTIVE OF SUPPORTING RACK MOUNTED HARDWARE FOR ALL MAJOR SUBSYSTEMS SHOWN ON THE FOLLOWING THREE PAGES.
THE RACK STANDARD INTERFACES ARE ADDITIVE TO THE INDIVIDUAL RACKS AS REQUIRED TO SUPPORT THE CONTENTS OR ACTIVITIES AT THAT RACK.

1) POWER EPSP

2) DATA PROCESSOR/BUS INTERFACE/BUS ARBITRATOR
MICROPROCESSOR & INTERFACES
3) CAUTION AND WARNING
 THIS WILL REQUIRE ONLY A CONNECTOR - MAY BE INTEGRATED WITH EPSP

4) THERMAL COOLING - AVIONICS AIR
 INLET & OUTLET FOR ABOUT 100 MM DIA AIR DUCTS

5) THERMAL COOLING - EXPERIMENT UNIQUE
 A) WATER LOOP AT ABOUT 24 DEGREES CENTIGRADE
 INLET AND OUTLET ABOUT 12 MM DIA WATER LINES
 B) HEAT PIPE(S) TO THERMAL BUS AT ABOUT ZERO DEGREES CENTIGRADE
 APPROXIMATELY 30 MM DIA HEAT PIPES

6) ANIMAL ECLSS - PROVIDES THERMAL & HUMIDITY CONTROL AS WELL
 AS AIR REVITALIZATION FOR ANIMAL FACILITIES
7) FIRE SUPPRESSION - LIKELY A FREON BOTTLE TYPE

8) VIDEO CONNECTOR - CONNECTOR INTERFACE THAT MAY BE INTEGRATED WITH EPSP

9) INTERCOM - PANEL WITH SPEAKER, MICROPHONE, TO/FROM SWITCHES, JACKS TO PLUG IN HEADSET/VOICE ACTIVATED MICROPHONE.
OR GROUND CHANGEOUT MAINTENANCE AND SERVICING ACTIVITIES.

INTERNAL ARCHITECTURE AND PROVIDE FOR EASY TRANSITION OF HARDWARE FOR ON-ORBIT SECONDARY STRUCTURE OF THE LISR IS DESIGNED TO BE COMPATIBLE WITH COMMON MODULE
THE LSRP WILL BE AN ELEMENT OF THE SPACE STATION SCIENCE LABORATORY MODULE AND CONSISTS OF A COMMON MODULE SHELL WITH INTERNAL AND EXTERNAL STRUCTURAL ELEMENTS, HARD POINTS AND ATTACHMENT INTERFACES. LSRP USES STANDARD RACKS FOR ATTACHING LAB EQUIPMENT AND STOWAGE. THE COMMON MODULE CONTAINS SECONDARY STRUCTURE AND NETWORK DISTRIBUTION SYSTEM FOR LIFE SUPPORT, DATA MANAGEMENT, ELECTRICAL POWER DISTRIBUTION AND FINAL CONDITIONING, THERMAL MANAGEMENT AND COMMUNICATIONS.
THE LAB MODULE STRUCTURE WILL CONSIST OF THE COMMON MODULE SHELL WITH INTERNAL AND EXTERNAL STRUCTURAL ELEMENTS, HARD POINTS AND ATTACHMENT INTERFACES PLUS STANDARD RACKS AND CONTAINERS FOR ATTACHMENT OF LABORATORY EQUIPMENT AND STORAGE.
INTERNAL LSRF OUTFITTING MUST BE COMPATIBLE WITH EXTERNAL STRUCTURAL FEATURES TO FACILITATE EQUIPMENT/SPECIMENS/SUPPLIES TRANSFER FROM STS ORBITER INTO THE SLM, EARTH VIEWING, POWER, EGRESS, THERMAL AND DATA MANAGEMENT INTERFACES WITH THE LOGISTICS MODULE AND SAFETY EGRESS REQUIREMENTS FOR CREW IN EMERGENCY SITUATIONS.
• Module Attachment to Space Station Structure
• Module Interface to Other Modules
• Attached Payloads
• Attached Solar Collectors & Radiators
• Optical Fiber, Electrical & Thermal Routing
LSRF internal arrangements must be compatible with common module interior characteristics shown on the following page to ensure proper interface during ground and on-orbit assembly activities. Early identification and input of LSRF requirements on common module design will assure smooth achievement of this integration.
OPTICAL FIBER, ELECTRICAL, ECLSS, & THERMAL ROUTING

ATTACHMENT POINT FOR STANDARD RACKS AND CONTAINERS

ATTACHMENT POINT FOR CENTRIFUGE

INDIVIDUAL RACKS & CONTAINERS

INDIVIDUAL EQUIPMENT ITEMS
INTERNAL LSRF ARRANGEMENTS MUST BE SUFFICIENTLY FLEXIBLE TO ACCOMMODATE AN INTERNAL/EXTERNAL AIRLOCK; IN ADDITION, BUILT-IN FLEXIBILITY FOR OPTICAL FIBER, ELECTRICAL AND THERMAL PASS-THRU'S MUST BE INCLUDED TO ALLOW FOR PAYLOAD AND/OR CONFIGURATION CHANGES DURING THE TRANSITION FROM THE SPACE STATION IOC THROUGH GROWTH PHASES.
EXTERNAL/INTERNAL

- SCIENTIFIC AIR LOCK FOR LIFE SCIENCE-EXOBIOLGY
- OPTICAL FIBER, ELECTRICAL & THERMAL PASS-THRU

GROWTH & TRANSITION

- TETHERED PAYLOADS
- EXTERNAL PORCH
- EXTERNAL MANIPULATOR
- ADDITIONAL CENTRIFUGE

ADDITIONAL STRUCTURAL CONSIDERATIONS
THE METHODOLOGY DETAILED ON THE FOLLOWING PAGE PROVIDES THE NECESSARY INFORMATION REQUIRED TO ESTABLISH LSRF COMMONALITY AND FLEXIBILITY TO MEET THE DESIGN REQUIREMENTS FOR THE SLM IOC AND GROWTH VERSIONS.
- Define configuration based on requirements
- Identify loads and environments
- Perform computer aided analysis
 - Space station system interfaces
 - Structural attachment of lab equipment
 - Standard racks & containers
 - Unique laboratory equipment designs
- Iterate configuration and analysis
SUBTASK 3.1 CONCEPT & MISSION DESIGN REQUIREMENTS

3.1.1 REVIEW SCIENCE REQUIREMENTS

3.1.2 UPDATE & ANALYZE TRADES

3.1.3 DEVELOP ENGINEERING AND MISSION DESIGN REQUIREMENTS FOR NON-HUMAN SAAX 0307 SAAX 0302, & TRANS.

SUBTASK 3.2 CONCEPTUAL DEFINITIONS & DESIGNS

3.2.1 MISSION SCENARIOS AND OPERATIONS TIMELINES

3.2.2 CONCEPTUAL LABORATORY LAYOUT OPTIONS

3.2.3 ANALYZE ENGINEERING & OPS RELATIONSHIPS, LAB ACCOMMODATIONS & SSPE INTERACTIONS AND Interfaces

SUBTASK 3.3 PROGRAMMATICS & ASSESS CONCEPTS

3.3.1 FINAL WBS & WBS DICTIONARY

3.3.2 DEFINE TECH. DEVELOPMENT REQUIREMENTS

3.3.3 ESTIMATE COSTS

3.3.4 DEVELOP PRELIM. SCHED & PLANS

3.3.5 ASSESS CONCEPT EFFECTIVENESS

PRELIMINARY CONCEPTUAL DESIGN REQUIREMENTS DATA PACKAGE

(FINAL REPORT SUPPLEMENTS)
LSRF MISSION SCENARIOS AND INTERNAL LAYOUTS ARE THE PRIMARY DRIVERS INFLUENCING LAB OPERATIONS AND SUPPORT FACILITIES. ELEMENTS IN THE OPERATIONAL SEQUENCE INCLUDE PRE-MISSION, ON-ORBIT, POST-MISSION SUPPORT AND GROUND-BASED FACILITY SUPPORT ACTIVITIES. THESE ACTIVITIES MUST BE FULLY INTEGRATED TO HANDLE ALL EXPERIMENTS IN VARIOUS PHASES OF THE OPERATIONAL SEQUENCE AT ANYTIME.
MISSION SCENARIO AND LSRF OUTFITTING LAYOUTS DRIVE EXPERIMENT OPERATIONS AND SUPPORT FACILITIES

PRE-MISSION SEQUENCE

ON-ORBIT AND GROUND MISSION OPERATIONS

POST MISSION SUPPORT

PRE-, DURING-, AND POST-MISSION OPERATIONS AND FACILITIES MUST BE INTEGRATED TO HANDLE ALL THE EXPERIMENTS IN THE PIPELINE AT ANYTIME

3.2.3 ENGINEERING & OPERATIONAL RELATIONSHIPS, INTERACTIONS, & INTERFACES
THE PRE-MISSION ACTIVITY SEQUENCE ENCOMPASSES SEVEN FUNCTIONS RANGING FROM EXPERIMENT SELECTION, DEFINITION, AND PLANNING TO LOADING SPECIMENS ONTO THE SHUTTLE FOR TRANSFER INTO ORBIT. ON-ORBIT OPERATION INCLUDES INTEGRATING EXPERIMENT UNIQUE EQUIPMENT (EUE), CORE, AND LSLE EQUIPMENT INTO THE LAB, TRANSFERRING SPECIMENS INTO THE LAB FROM SHUTTLE, RESUPPLYING LAB CONSUMABLES, PERFORMING EXPERIMENTS AND RETURNING EXPERIMENTAL PRODUCTS TO THE GROUND. POST MISSION SUPPORT FUNCTIONS ARE PRIMARILY CONCERNED WITH PROCESSING EXPERIMENTAL DATA AND SPECIMENS AND REFURBISHING EUE, CORE, OR LSLE EQUIPMENT. GROUND BASED FACILITY SUPPORT PROVIDES ON-ORBIT LOGISTICS SUPPORT, COMMAND, REAL AND NON-REAL TIME DATA ACQUISITION FUNCTIONS AND FACILITIES FOR CONDUCTING SYNCHRONOUS EXPERIMENTAL 1G CONTROLS.
3.2.3 ENGINEERING & OPERATIONAL RELATIONSHIPS, INTERACTIONS, & INTERFACES
EXPERIMENT OPERATIONS (CONT'D)

- Experiment Selection, Definition, and Planning
- Logistics
 - EUE Assembly
 - Training
- EUE Test & Verify
 - Test kits & equip.
 - Integration procedure
 - System Checkout
- Facility Equipment Preparation
- Ground Controls Preparation
 - Facility
 - Procedures
- NSTS/Equipment Integration
 - Installation
 - I/F Verification
 - Pre launch Checkout
- Specimen Loading

Pre-mission Sequence
THE ON-ORBIT OPERATION FUNCTIONS ENCOMPASS ON-ORBIT INTEGRATION, I/F VERIFICATION, AND FUNCTIONAL CHECKOUT OF LSRF EQUIPMENT WITH OTHER SS ELEMENTS (E.G. LOGISTICS MODULE). SPECIMENS TRANSPORTED VIA THE NSTS ORBITER WILL BE TRANSFERRED TO THE SLM MAINTAINING BIOISOLATION TO THE MAXIMUM EXTENT PRACTICABLE; EXPERIMENT RELATED-ECLSS CONSUMABLES NECESSARY TO CONDUCT THE EXPERIMENTS WILL BE TRANSFERRED FROM THE LOGISTICS MODULE TO THE SLM WHERE EXPERIMENTS WILL BE PERFORMED AND THE EXPERIMENTAL PRODUCTS (E.G. DATA, TISSUE SAMPLES) AND LSRF EQUIPMENT REQUIRING CHANGEOUT (E.G., ORU) WILL BE RETURNED TO THE GROUND VIA DOWNLINKING TO THE GROUND FACILITY OR VIA NSTS ORBITER TRANSFER.

POST-MISSION SUPPORT INCLUDES REPAIR-REFURBISHMENT OF ORU'S AND ROUTINE GROUND MAINTENANCE OF EQUIPMENT THAT COULD NOT BE MAINTAINED ON-ORBIT. POST-LANDING DATABASE MANAGEMENT, DATA ANALYSIS AND SPECIMEN HANDLING WILL BE PERFORMED IN GROUND BASED FACILITIES AT KSC AND THE CONTRACTOR'S SITE.
GROUND BASED FACILITIES SUPPORTING PRE-MISSION, ON-ORBIT, AND POST-MISSION ACTIVITIES INCLUDE: (1) THE PAYLOAD OPERATIONS CONTROL CENTER (POCC) RESPONSIBLE FOR MANAGING AND PERFORMING NORMAL P/L OPERATIONS AND COMMANDING, COORDINATING RELATED EXPERIMENTS, AND SERVING AS THE CENTER FOR P/L PERFORMANCE ANALYSIS. (2) THE SPACE STATION SUPPORT CENTER (SSSC) WHICH HAS RESPONSIBILITY FOR STRATEGIC ASPECTS OF SPACE STATION OPERATION (E.G. LAUNCH, RENDEZVOUS, ASSEMBLY AND CONSTRUCTION, ORBITAL ADJUSTMENT) AND POCC COORDINATION AND MONITORING; (3) AN INTEGRATED LOGISTICS SUPPORT FACILITY (ILS) CAPABLE OF RESUPPLYING CONSUMABLES TO THE LSRF AND ACQUIRING EQUIPMENT RETURNED FOR REPAIR OR MAINTENANCE, ACQUIRING, PROVISIONING AND MAINTAINING SPARES, AND TRAINING PERSONNEL IN MAINTENANCE OF SPACE STATION HARDWARE ON-ORBIT OR ON THE GROUND; (4) A GROUND FACILITY IN WHICH 1G EXPERIMENTS MIMICKING ON-ORBIT EXPERIMENTS CAN BE CONDUCTED CONCURRENTLY WITH ORBITAL EXPERIMENTS.
EXPERIMENT OPERATIONS (CONT'D)

Resupply Logistics
- Consumables
- Specimens

Realtime Requirements
- Data Acquisition
- Commands
- PI/Crew Communication

Non-Realtime Requirements
- Data Analysis
- Sample Handling
- Sample Storage

Synchronous Ground Experiment Controls
- Monitoring
- Procedures

Ground-based Facility Support

3.2.3 ENGINEERING & OPERATIONAL RELATIONSHIPS, INTERACTIONS, & INTERFACES
THE WBS REPRESENTS AN UPDATED VERSION OF THE WBS PRESENTED IN THE DECEMBER 1984 REPORT AND CORRESPONDS TO WBS ELEMENTS PRESENTED IN THE SPACE STATION RFP. WBS ELEMENTS 1.0 - 7.0 ADDRESS COMMON MODULE END-ITEMS THAT MUST BE ENHANCED TO ACHIEVE AN OPERATIONAL LSRF BY IOC. DEFINITIONS FOR EACH WBS ELEMENT ARE PROVIDED ON THE FOLLOWING FIVE CHARTS.
WORK BREAKDOWN STRUCTURE

LIFE SCIENCES RESEARCH FACILITY

1.0 STRUCTURE
2.0 THERMAL CONTROL
3.0 POWER
4.0 ECLSS
5.0 CREW ACCOMM.
6.0 COMMAND & DATA S/S
7.0 CONTAM. CONTROL (EXTERNAL)

8.0 SYSTEM TEST HARDWARE
9.0 INTEGR. ASSEMBLY & CHECKOUT
10.0 PRODUCT ASSURANCE
11.0 SYSTEM TEST OPERATIONS
12.0 FLIGHT SOFTWARE
13.0 GROUND LOGISTICS SUPPORT EQUIPMENT
14.0 SE&I

15.0 PROGRAM MGMT
16.0 GENERAL PURPOSE FACILITIES & EQUIP
17.0 OPERATIONS
18.0 STATION EQUIPMENT
19.0 CUSTOMER ACCOMM. HARDWARE
20.0 GROUND SOFTWARE
21.0 SPARES

3.3.1 WORK BREAKDOWN STRUCTURE AND DICTIONARY
WBS ELEMENT DESCRIPTION

1. Structure
Consists of all structure that bridges between Common Module hardpoints and the structural interfaces of equipment in all other groupings. Includes primary and secondary structure, mechanisms, tanks (pressurized and unpressurized) and subsystem engineering.

2. Thermal Control
Consists of all thermal and thermoelectric equipment. Includes radiators, insulation, liquid cooling systems, gas cooling systems, sensors and controls, heat pipes, thermionics, cold plates and subsystem engineering.

3. Power
Consists of all electrical power equipment including power storage, distribution, conditioning, regulation and control and subsystem engineering.

4. Environmental Control & Life Support
Consists of any required modifications to the Common Module ECLSS and any additional ECLSS items required to support the life science hardware. Includes internal contamination control, temperature and humidity control, pressure and atmospheric composition monitoring and control, ventilation and cabin air distribution, food and potable water supply, waste management systems, trash collection and disposal, equipment and module cleaning and subsystem engineering.

3.3.1 WORK BREAKDOWN STRUCTURE AND DICTIONARY
5. Crew Accommodations
Consists of personnel restraints, tool kits, special purpose lighting, personal hygiene subsystem, emergency medical kits and human factors engineering.

6. Command & Data Handling Subsystem
Consists of data processing, display, entry, memory, peripheral equipment, data bus, and interfaces with the instrumentation and SSIS. Includes displays and controls, instrumentation, communications interfaces, command and data handling, data storage and subsystem engineering.

7. Contamination Control
Consists of external contamination control including effluent control, window cleaning apparatus and shields and covers.

8. System Test Hardware
Consists of equipment items used for qualification, acceptance and other testing activities. Includes equipment used for mechanical, r-f, electrical, thermal and vacuum/thermal test, alignment and mass properties measurement equipment, and equipment interface simulation equipment.
WBS ELEMENT DESCRIPTION (CONT'D)

9. Integration, Assembly & Checkout
Consists of integration and assembly hardware, checkout consoles and supporting hardware, design maintenance and liaison, and tool planning, design and fabrication.

10. Product Assurance
Consists of all efforts to support safety, reliability, quality assurance and maintainability activities.

11. System Test Operations
Consists of the conduct of all systems testing of laboratory equipment. Includes electrical, vibration and acceleration, thermal, EMI, EMC, alignment, calibration, thermal vacuum and acoustic tests and simulation modeling.

12. Flight Software
Consists of the generation and testing of all software for inflight application. Includes software for data handling and processing, command, communication, applications interface, fault isolation, and BITE.

13. Ground Logistics Support Equipment
Consists of equipment required to checkout, handle and transport all material and specimens during inflight, postflight and inflight operations.
WBS ELEMENT DESCRIPTION (CONT'D)

14. Systems Engineering & Integration
Consists of effort required to conduct all SE&I activities. Includes
hardware development planning, configuration control, mission
analysis, interface requirements, specifications, engineering data, and
engineering analyses.

15. Program Management
Consists of effort required to conduct all program management
activities. Includes project management and coordination, planning and
scheduling, controls, subcontractor/vendor liaison, management data,
reviews, and design to cost.

16. General Purpose Facilities and Equipment
Consists of equipment required to conduct and support life science
experiments. Includes module specific and other science equipment.

17. Operations
Consists of all operations and procedures associated with the general
functions of the science laboratory except for specific experimental
protocols. Includes training, logistics, airborne support equipment,
maintenance and servicing, mockups, ground operations (preflight,
inflight and postflight), flight operations and recovery.

3.3.1 WORK BREAKDOWN STRUCTURE AND DICTIONARY
18. Station Equipment
Consists of secondary equipment required to be housed within the laboratory. Includes safe haven, secondary controls, lighting, caution and warning, fire detection and suppression equipment and work stations.

19. Customer Accommodation Hardware
Consists of equipment to support generalized science experiment requirements in the laboratory. Includes electrical, data and thermal interfaces for experiment equipment. Does not include experiment unique equipment.

20. Ground Software
Consists of the generation and testing of all software required for ground operations. Includes software for system test, inflight verification and checkout, data handling and processing, telemetry and command, communications, applications interfaces, and real-time on-orbit interface.

21. Spares
Consists of initial and production spares for hardware items. Includes batteries, filters and light bulbs.
TECHNOLOGY DEVELOPMENT ACTIVITIES WILL PLAY AN INTEGRAL PART IN THE DEVELOPMENT OF A FULLY OPERATIONAL LSRF THAT IS COMPATIBLE WITH OTHER SPACE STATION ELEMENTS. IN NO CASE WILL THESE TECHNOLOGY DEVELOPMENT AREAS LISTED IN THE NEXT FOUR PAGES BE REQUIRED FOR THE IOC AND GROWTH VERSIONS OF THE LSRF.
- LABORATORY EQUIPMENT DESIGN
 - ADVANCED TECHNOLOGY
 - NEW INNOVATION IN APPLICATION OF EXISTING TECHNOLOGY

- CONTAMINATION/BIOISOLATION
 - CONTAMINANT IDENTIFICATION & CONTROL
 - BIOISOLATION OF ANIMALS & ANIMAL SPECIES

- DATA INSTRUMENTATION, MANAGEMENT & PROCESSING
 - BIOSSENSOR DEVELOPMENT
 - METHOD CAPACITY, MEDIA, & SPEED: TEMPORARY/PERMANENT
 - STANDARD INTERFACE MODULES FOR EQUIPMENT

- MATERIALS & PROCESSES
 - WEIGHT REDUCTION
 - CONTAMINATION/TOXICITY/FLAMMABILITY
 - SERVICE LIFE/MAINTAINABILITY/RELIABILITY

- ROBOTICS, AUTOMATION, & "SMART" SYSTEMS
 - HUMAN PRODUCTIVITY

3.3.2 TECHNOLOGY DEVELOPMENT REQUIREMENTS
• CAGE WASHER
 • DYNAMIC ISOLATION
 • LIQUID CONTROL & PROCESSING
 • BIOISOLATION
 • STERILIZATION

• CELSS EXPERIMENT
 • PLANT & ANIMAL SYSTEMS INTEGRATION
 • BIOISOLATION & CONTAMINATION CONTROL
 • AUTOMATION

• ANIMAL HOLDING FACILITIES
 • WASTE MANAGEMENT
 • LONG TERM FEEDERS
 • ECLSS/BIOISOLATION
 • AUTOMATION
- **PLANT FACILITIES**
 - LIGHTING (POWER EFFICIENT)
 - MICROGRAVITY
 - NUTRIENT SUPPLY SYSTEM(S)
 - MODULARITY/CENTRIFUGE COMPATIBILITY

- **RODENT BREEDING FACILITY**
 - WASTE MANAGEMENT
 - LONG TERM FEEDERS
 - ECLSS/BIOISOLATION
 - MATING ACCOMMODATION
 - NESTING ACCOMMODATION

- **METABOLIC FACILITY**
 - URINE & FEECES COLLECTION/SAMPLING
 - BIOISOLATION
THE VARIABLE GRAVITY CENTRIFUGE IS A PRIME DRIVER IN THE LSRF DESIGN. THE Bearing assembly is a key portion of the centrifuge. To minimize friction and vibration, magnetic bearings will be designed for the centrifuge within SLM weight, power, and volume limitations.
Bearing Weights

1 Radial Rotor: 175 lbs
1 Radial Stator: 350 lbs
1 Thrust Stator: 10 lbs

Bearing Volume

1 Radial Rotor and Stator: 2368.8 in³
1 Thrust Stator: 35 in³

Power Required

Maximum Voltage: 28 volts
Maximum Current: 40 amps

Load Capacity

Radial Bearing: 2500 lbs
Thrust Bearing: 2500 lbs
INCREASING CENTRIFUGE DIAMETER INCREASES SPECIMEN LOADING CAPACITY RESULTING IN HIGHER NUMBERS OF REPPLICATE SAMPLES PER EXPERIMENTAL RUN. INCREASED CENTRIFUGE CAPACITY, THEREFORE, ENHANCES EXPERIMENT STATISTICAL PRECISION AND RELIABILITY AND FACILITATES EXPERIMENT OPERATIONS IN TERMS OF INFORMATION GAINED PER UNIT OF EXPERIMENT TIME.
SPECIMEN ACCOMMODATION ON VARIOUS DIAMETER CENTRIFUGES

<table>
<thead>
<tr>
<th>Key</th>
<th>Centrifuge Diameter (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1...</td>
<td>2.5</td>
</tr>
<tr>
<td>2...</td>
<td>3.0</td>
</tr>
<tr>
<td>3...</td>
<td>4.0</td>
</tr>
<tr>
<td>4...</td>
<td>7.7</td>
</tr>
</tbody>
</table>

Diagram

The diagram shows the number of specimens plotted against the percentage centrifuge volume for different species and diameters of centrifuges. The key indicates the following:

- **Rats (7.7m)**
- **Small Plants (1.7m)**
- **Small Primates (7.7m)**
- **Rats (4.0m)**
- **Small Plants (4.0m)**
- **Large Plants (7.7m)**
- **Small Primates (4.0m)**
- **Small Plants (3.0m)**
- **Small Primates (3.0m)**
- **Small Plants (2.5m)**
- **Large Plants (4.0m)**
- **Small Primates (2.5m)**
- **Large Plants (3.0m)**
- **Large Plants (2.5m)**
CHOICE OF CENTRIFUGE MUST BE MADE WITHIN THE SPACE STATION POWER, COOLING, AND THERMAL LOAD CAPABILITIES. RESOURCE REQUIREMENTS FOR EACH CENTRIFUGE SIZE ARE SHOWN IN THE ACCOMPANYING TABLE.
<table>
<thead>
<tr>
<th>CENTRIFUGE DIAMETER (m)</th>
<th>VOLUME (m3)</th>
<th>WEIGHT (kg)</th>
<th>POWER (kW)</th>
<th>THERMAL LOAD (kW)</th>
<th>THERMAL LOAD (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>BALL</td>
<td>AIR</td>
<td>MAGNETIC</td>
</tr>
<tr>
<td>2.50</td>
<td>4.24</td>
<td>429</td>
<td>3.43</td>
<td>3.91</td>
<td>5.01</td>
</tr>
<tr>
<td>8.20</td>
<td>149.7</td>
<td>935</td>
<td>4.60</td>
<td>5.33</td>
<td>6.49</td>
</tr>
<tr>
<td>3.00</td>
<td>6.10</td>
<td>610</td>
<td>6.93</td>
<td>8.31</td>
<td>9.03</td>
</tr>
<tr>
<td>9.84</td>
<td>215.4</td>
<td>1354</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>10.85</td>
<td>1085</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.12</td>
<td>383.1</td>
<td>2392</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.70</td>
<td>38.88</td>
<td>3988</td>
<td>14.03</td>
<td>14.42</td>
<td>21.67</td>
</tr>
<tr>
<td>25.26</td>
<td>1374</td>
<td>8588</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CENTRIFUGE RESOURCE REQUIREMENTS
IN ADDITION TO MEETING THE SCIENCE REQUIREMENTS FOR THE LSRP THE CENTRIFUGE MUST BE INTEGRATED INTO THE SLM SUCH THAT NON-CENTRIFUGE LSRP OPERATIONS REMAIN UNAFFECTED BY ITS PRESENCE. MOREOVER, THE CENTRIFUGE MUST NOT SIGNIFICANTLY EFFECT CREW EGRESS IN EMERGENCY SITUATIONS AND ITS LOCATION MUST NOT PRECLUDE ON-ORBIT SERVICING AND MAINTENANCE ACTIVITIES.
<table>
<thead>
<tr>
<th>CENTRIFUGE DIAMETER (METER) (FT)</th>
<th>CENTRIFUGE MOUNT</th>
<th>MODULE TRAFFIC PATTERN</th>
<th>MODULE VOLUME EFFICIENCY</th>
<th>COMMON MODULE MODIFICATION REQUIRED</th>
<th>DIFFICULTIES WITH ON-ORBIT INSTALLATION OR MODULE RECONFIGURATION</th>
<th>MODULE SHELL ACCESS</th>
<th>CENTRIFUGE REPAIR AND MAINTENANCE ACCESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.50</td>
<td>AXIAL</td>
<td>FAIR</td>
<td>FAIR</td>
<td>NONE</td>
<td>SOME</td>
<td>FAIR</td>
<td>FAIR</td>
</tr>
<tr>
<td>8.20</td>
<td>AXIAL</td>
<td>FAIR</td>
<td>FAIR</td>
<td>NONE</td>
<td>SOME</td>
<td>FAIR</td>
<td>FAIR</td>
</tr>
<tr>
<td>2.50</td>
<td>SIDE</td>
<td>GOOD</td>
<td>POOR</td>
<td>NONE</td>
<td>SOME</td>
<td>FAIR</td>
<td>FAIR</td>
</tr>
<tr>
<td>9.20</td>
<td>SIDE</td>
<td>POOR</td>
<td>POOR</td>
<td>SOME</td>
<td>MANY</td>
<td>GOOD</td>
<td>FAIR</td>
</tr>
<tr>
<td>3.00</td>
<td>SIDE</td>
<td>GOOD</td>
<td>GOOD</td>
<td>MAJOR</td>
<td>MOST</td>
<td>WORST</td>
<td>BEST</td>
</tr>
<tr>
<td>9.94</td>
<td>AXIAL WITH CENTER PASS-THROUGH</td>
<td>GOOD</td>
<td>GOOD</td>
<td>MAJOR</td>
<td>MOST</td>
<td>WORST</td>
<td>BEST</td>
</tr>
<tr>
<td>4.00</td>
<td>AXIAL END MOUNT</td>
<td>BEST</td>
<td>BEST</td>
<td>MAJOR</td>
<td>MANY</td>
<td>WORST</td>
<td>WORST</td>
</tr>
<tr>
<td>13.12</td>
<td>AXIAL END MOUNT</td>
<td>BEST</td>
<td>BEST</td>
<td>MAJOR</td>
<td>MANY</td>
<td>WORST</td>
<td>WORST</td>
</tr>
<tr>
<td>7.70</td>
<td>AXIAL END MOUNT</td>
<td>BEST</td>
<td>BEST</td>
<td>MAJOR</td>
<td>MANY</td>
<td>WORST</td>
<td>WORST</td>
</tr>
<tr>
<td>25.26</td>
<td>AXIAL END MOUNT</td>
<td>BEST</td>
<td>BEST</td>
<td>MAJOR</td>
<td>MANY</td>
<td>WORST</td>
<td>WORST</td>
</tr>
</tbody>
</table>
A stringent microgravity requirement of $10^{-5}g$ must be maintained for technology development and plant experiments in the LSRF. Centrifuge operations potentially impact this microgravity level and depending upon its orientation, may induce undesirable gyroscopic torques on the entire space station. Dynamics for LSRF candidate centrifuges are illustrated on the following page.
<table>
<thead>
<tr>
<th>CENTRIFUGE DIAMETER (METER) (ft)</th>
<th>CENTRIFUGE VOLUME (METER3) (ft3)</th>
<th>CENTRIFUGE WEIGHT (KG) (lb)</th>
<th>RADIUS OF GRAVITY (METER) (ft)</th>
<th>INERTIA (Kg-m2) (lb-ft2)</th>
<th>SPIN RATE (RPM) (Rads/Sec)</th>
<th>ANGULAR MOMENTUM (Kg-m2) (Rads/Sec)</th>
<th>GYROSCOPIC TORQUE (Kg-m) (ft-lb)</th>
<th>TILT ANGLE (# TO CENTER GYROSCOPIC TORQUE OF 'Z' AXIS)</th>
<th>TORQUE REQUIRED FOR 2 MIN SPIN-UP (METER3) (ft-lb3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td>3.45</td>
<td>345</td>
<td>0.60</td>
<td>0.33</td>
<td>17.6</td>
<td>31.3</td>
<td>0.066</td>
<td>0.05*</td>
<td>0.49</td>
</tr>
<tr>
<td>2.50</td>
<td>4.24</td>
<td>424</td>
<td>0.78</td>
<td>0.39</td>
<td>33.8</td>
<td>27.8</td>
<td>0.113</td>
<td>0.04*</td>
<td>0.49</td>
</tr>
<tr>
<td>3.00</td>
<td>4.10</td>
<td>410</td>
<td>1.125</td>
<td>12.10</td>
<td>70.0</td>
<td>25.3</td>
<td>0.214</td>
<td>0.17*</td>
<td>0.49</td>
</tr>
<tr>
<td>3.50</td>
<td>4.31</td>
<td>433</td>
<td>1.53</td>
<td>16.46</td>
<td>130</td>
<td>23.1</td>
<td>0.363</td>
<td>0.29*</td>
<td>0.49</td>
</tr>
<tr>
<td>4.00</td>
<td>4.94</td>
<td>495</td>
<td>2.00</td>
<td>21.52</td>
<td>221</td>
<td>21.6</td>
<td>0.571</td>
<td>0.46*</td>
<td>0.49</td>
</tr>
</tbody>
</table>

CENTRIFUGE DYNAMICS
PROPER POSITIONING OF THE CENTRIFUGE IN THE SLM IS A PRIME REQUISITE FOR
MAINTAINING MICRO-G LEVELS AND MINIMIZING GYROSCOPIC TORQUES TO THE SPACE
STATION. THE PREFERRED POSITION IS AN END-CONE MOUNTED 12.5 FOOT CENTRIFUGE IN A
MODULE WHOSE AXIS IS PARALLEL TO THE SPACE STATION "Y" AXIS.
AN LMSC TRADE STUDY INDICATED THAT RESOURCES ARE BETTER USED BY WASHING DIRTY
ANIMAL CAGES THAN RESUPPLYING CLEAN CAGES USING THE LOGISTICS MODULE. A CAGE
WASHER-CONCEPT WHICH COULD SPRAY WASH, STERILIZE AND DRY SOILED CAGES IS
CURRENTLY BEING DEVELOPED.
CAGE WASHER SCHEMATIC
THERE ARE SEVERAL QUESTIONS REGARDING THE EFFECT OF PROLONGED WEIGHTLESSNESS ON PHYSIOLOGICAL MECHANISMS THAT POTENTIALLY EFFECTS MAN'S PERFORMANCE AND WELL-BEING IN SPACE.
QUESTIONS

- Does Weightlessness Affect Levels of Fluid/Electrolyte Regulation Hormones?

- Does Prolonged Exposure to Weightlessness Severely Alter Fluid/Electrolyte Balance?

- Does Tissue Degeneration and Loss of Nitrogen Continue Indefinitely or Does Nitrogen Balance Reach a New Steady State?

- Does Weightlessness Affect the Balance of Other Nutrients?

- Does the Metabolic Rate Change in Response to Acute and/or Chronic Exposure to Weightlessness?
A FIRST STEP TO ANSWERING THESE QUESTIONS IS TO PERFORM EXPERIMENTS ON NON-HUMAN Vertebrates in a controlled environment under weightless conditions. The controlled environment shall be capable of providing all life support functions to the specimens and be used for data collection and analysis as well.
REQUIREMENTS

EXPERIMENTAL SUPPORT
- Holding Facility
- Food and Water
- Waste Management
- Environmental Control

EXPERIMENTAL MEASUREMENT
- Data Collection and Quantitation
- Computer Capability

EXPERIMENTAL DESIGN
- Protocol
THE METABOLIC MEASUREMENT SYSTEM IS CURRENTLY UNDER DEVELOPMENT AND IS BEING DESIGNED TO MEET PREVIOUSLY DEFINED REQUIREMENTS. THE SYSTEM IS SELF-CONTAINED, PROVIDES FOOD AND WATER TO SPECIMEN(S), PROVIDES A CONTROLLED THERMAL AND ATMOSPHERIC ENVIRONMENT AND IS INTERFACED TO AN ON-BOARD COMPUTER FOR DATA ANALYSIS.
FOOD and WATER CONSUMPTION:
IMPROVED RAHF DESIGN

FECES AND URINE PRODUCTION:
RAHF DESIGN, CERMA DESIGN
CENTRIFUGAL SEPARATOR

METABOLIC
MEASUREMENT
SYSTEM

DATA COLLECTION:
LOCAL COMPUTER
MAINFRAME LINK

ANIMAL ACTIVITY

METABOLIC GASES
OXYGEN
CARBON DIOXIDE

TEMPERATURE and HUMIDITY

3.3.2 TECHNOLOGY DEVELOPMENT REQUIREMENTS
THE URINE–FECES COLLECTION PORTION OF THE METABOLIC MEASUREMENT SYSTEM IS
DESCRIBED IN THIS FIGURE. THIS DEVICE IMPROVES UPON PREVIOUS RESEARCH ANIMAL
HOLDING FACILITY (RAHF) CONCEPTS AND UTILIZES IMPROVED TECHNOLOGY AND DESIGN
BASED ON CENTRIFUGAL PRINCIPLES TO SEPARATE URINE FROM FECES AND COLLECT THEM.
A schematic representation of the closed configuration atmospheric control and measurement system is presented in this figure. Oxygen consumption and carbon dioxide production are measured and the atmospheric environment regulated. This system is considerably more complicated than the open configuration described in the following figure.
CLOSED METABOLIC MEASUREMENT SYSTEM

CO2 CONTROLLER

CO2 ANALYZER

CO2 SCRUBBER

FLOW DETECTOR

阀

AIR PUMP

DISPLAY CONTROL

PRESSURE REGULATOR

FLOW DETECTOR

OXYGEN

OXYGEN CONTROLLER

OXYGEN ANALYZER

P-TOT

CPU

OXYGEN

VALVE

CPU
A schematic representation of the open configuration atmospheric control and measurement system is presented in this figure. Oxygen consumption and carbon dioxide production are maintained. The atmospheric environment within the chamber is regulated to within 0.5% of the incoming bleed air-supply concentration. The complexity and support of this system is decreased considerably compared to the closed metabolic measurement system.
3.3.2 TECHNOLOGY DEVELOPMENT REQUIREMENTS
COST ESTIMATES FOR THE COMBINED LAB (SAAAX 0307) AND THE DEDICATED LAB (SAAAX 0302) ARE PROVIDED ON THE ACCOMPANYING CHART. THE SAAAX 0307 ESTIMATE REPRESENTS THE LSRF PORTION OR ONE HALF OF THE LAB AT IOC. THE SAAAX 0302 ESTIMATE IS FOR A DEDICATED ANIMAL-PLANT VIVARIUM LAB WHICH BECOMES OPERATIONAL TWO YEARS AFTER IOC. THE DDT&E COST ESTIMATE FOR SAAAX 0302 IS LESS THAN DOUBLE THAN THAT FOR SAAAX 0307 BECAUSE SAAAX 0307 CONTAINS EXPENSIVE LAB EQUIPMENT (E.G. CENTRIFUGE) THAT WILL BE SUPPLEMENTED BY LESS EXPENSIVE VIVARIUM EQUIPMENT DURING TRANSITION TO SAAAX 0302. ANNUAL OPERATING COSTS FOR SAAAX 0302 ARE ESTIMATED TO DOUBLE THAT FOR SAAAX 0307. DETAILS OF THE DDT&E AND ANNUAL OPERATING COSTS FOR SAAAX 0307 ARE PROVIDED ON THE FOLLOWING TWO CHARTS.
<table>
<thead>
<tr>
<th>OPTION</th>
<th>DDT&E ($M)</th>
<th>ANNUAL OPS ($M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAAX0307</td>
<td>233.6</td>
<td>31.5</td>
</tr>
<tr>
<td>SAAX0302</td>
<td>309.5</td>
<td>63.0</td>
</tr>
</tbody>
</table>
DDT&E COSTS FOR SAAK 0307 ARE ESTIMATED FROM AN OUTFITTERS POINT OF VIEW AND THEREFORE
ASSUME THAT THE COMMON MODULE PROVIDES ECLSS AND UTILITY RUNS FOR LSRF EQUIPMENT
INTERFACE. ITEMS LISTED IN THIS CHART ARE THOSE NECESSARY TO CONVERT THE COMMON MODULE TO
A FULLY OPERATIONAL LIFE SCIENCES MODULE AT IOC AND INCLUDE THE FOLLOWING:

- STRUCTURE - SECONDARY STRUCTURE IN ADDITION TO THAT PROVIDED IN THE COMMON MODULE.
- THERMAL CONTROL - ADDITIONAL RADIATORS REQUIRED FOR LSRF HEAT DISSIPATION.
- POWER - ADDITIONAL POWER STORAGE IN THE FORM OF BATTERIES AND SUPPLEMENTAL WIRING TO
 ACCOMMODATE ADDITIONAL POWER.
- ECLSS - CONTAMINATION CONTROL EQUIPMENT AND WASTE MANAGEMENT ITEMS IN ADDITION TO
 THAT PROVIDED IN THE COMMON MODULE.
- CREW ACCOMMODATIONS - RERAINTS, TOOL KITS, SPECIAL LIGHTING, PERSONAL HYGIENE,
 EMERGENCY MEDICAL KIT.
- C & D - HARDWARE AND COMMUNICATIONS INTERFACES.
- EXTERNAL CONTAMINATION CONTROL - EFFLUENT CONTROL, WINDOW CLEANING EQUIPMENT AND
 SUPPLIES, SHIELDS AND COVERS.
- SYSTEM TEST H/W - EQUIPMENT USED FOR QUALIFICATION, ACCEPTANCE, AND OTHER TESTING.
- INTEGRATION, ASSEMBLY & CHECKOUT - INTEGRATION AND ASSEMBLY HARDWARE, CHECKOUT
 CONSOLE, DESIGN MAINTENANCE AND LIAISON AND TOOL PLANNING, DESIGN AND FABRICATION.
- PRODUCT ASSURANCE - SAFETY, RELIABILITY, QA, AND MAINTAINABILITY
- SYSTEM TEST OPERATIONS - CONDUCT SYSTEMS TEST OF ALL LABORATORY EQUIPMENT.
- FLIGHT S/W - GENERATION AND TESTING OF ALL S/W FOR INFLIGHT APPLICATION.
- GROUND LOGISTICS SUPPORT EQUIPMENT - TO CHECKOUT, HANDLE AND TRANSPORT ALL MATERIAL
 AND SPECIMENS DURING PREFLIGHT, INFLIGHT, AND POSTFLIGHT OPERATIONS.
- SYSTEMS ENGINEERING & INTEGRATION - H/W DEVELOPMENT PLANNING, CONFIGURATION CONTROL,
 MISSION ANALYSIS, I/F REQUIREMENTS, SPECIFICATIONS, ENGINEERING DATA AND ANALYSES.
- PROGRAM MANAGEMENT - PROJECT MANAGEMENT AND COORDINATION, PLANNING AND SCHEDULING,
 CONTROLS, SUBCONTRACTOR LIAISON, MANAGEMENT REVIEWS, AND DESIGN-TO-COST.
- GENERAL PURPOSE FACILITIES AND EQUIPMENT - EQUIPMENT AND FACILITIES TO CONDUCT AND
 SUPPORT LIFE SCIENCE EXPERIMENTS.
- OPERATIONS (REQUARED ONLY DURING DDT&E) - TRAINING, ASE, LOGISTICS, MAINTENANCE AND
 SERVICING, MOCKUP, GROUND AND FLIGHT OPERATIONS.
- STATION EQUIPMENT - SAFE HAVEN, SECONDARY CONTROLS, WORK STATION.
- CUSTOMER ACCOMMODATION H/W - EUE, POINTING SYSTEM, OPTICAL WINDOW, SCIENTIFIC
 AIRLOCK, RAPID SPECIMEN RETURN CAPSULE.
- GROUND S/W - GENERATION AND TESTING OF ALL SOFTWARE REQUIRED FOR GROUND OPERATIONS.
- SPARES - INITIAL AND PRODUCTION INCLUDING BATTERIES, FILTERS AND LIGHT BULBS
<table>
<thead>
<tr>
<th>Category</th>
<th>Cost (M$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRUCTURE</td>
<td>3.2</td>
</tr>
<tr>
<td>THERMAL CONTROL</td>
<td>1.3</td>
</tr>
<tr>
<td>POWER</td>
<td>0.7</td>
</tr>
<tr>
<td>ECLSS</td>
<td>15.0</td>
</tr>
<tr>
<td>CREW ACCOMMODATIONS</td>
<td>1.6</td>
</tr>
<tr>
<td>COMMAND AND DATA HANDLING</td>
<td>25.4</td>
</tr>
<tr>
<td>CONTAMINATION CONTROL (EXTERNAL)</td>
<td>1.0</td>
</tr>
<tr>
<td>SYSTEM TEST HARDWARE</td>
<td>1.8</td>
</tr>
<tr>
<td>INTEGRATION, ASSEMBLY AND CHECKOUT</td>
<td>4.2</td>
</tr>
<tr>
<td>PRODUCT ASSURANCE</td>
<td>2.3</td>
</tr>
<tr>
<td>SYSTEM TEST OPERATIONS</td>
<td>21.5</td>
</tr>
<tr>
<td>FLIGHT SOFTWARE</td>
<td>2.5</td>
</tr>
<tr>
<td>GROUND LOGISTICS SUPPORT EQUIPMENT</td>
<td>9.6</td>
</tr>
<tr>
<td>SYSTEM ENGINEERING AND INTEGRATION</td>
<td>27.9</td>
</tr>
<tr>
<td>PROGRAM MANAGEMENT</td>
<td>15.1</td>
</tr>
<tr>
<td>GENERAL PURPOSE FACILITIES AND EQUIPMENT</td>
<td>71.4</td>
</tr>
<tr>
<td>OPERATIONS</td>
<td>8.3</td>
</tr>
<tr>
<td>STATION EQUIPMENT</td>
<td>5.3</td>
</tr>
<tr>
<td>CUSTOMER ACCOMMODATION HARDWARE</td>
<td>5.6</td>
</tr>
<tr>
<td>GROUND SOFTWARE</td>
<td>7.6</td>
</tr>
<tr>
<td>SPARES</td>
<td>2.3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>233.6</td>
</tr>
</tbody>
</table>
ANNUAL OPERATIONS COSTS ARE ESTIMATES BASED UPON PRE-LAUNCH, ON-ORBIT, AND POST-RETURN OPERATIONAL ACTIVITIES INVOLVING THE LSRF PORTION OF THE COMBINED LAB (SAAX 0307). THE ACTIVITIES INCLUDE THE FOLLOWING:

- **TRAINING** - TRAINING FOR 2 FULL-TIME CREW MEMBERS PLUS BACK-UP FOR EIGHT ADDITIONAL CREW MEMBERS PLUS TRAINING INSTRUCTIONS AND EFFORT FOR KEEPING TRAINING HARDWARE CURRENT.

- **LOGISTICS** - RESUPPLY TRANSPORTATION EQUIPMENT CHANGEOUT, SPECIMEN CONSUMABLES, MAINTENANCE OF OPERATIONS SPARES.

- **AIRBORNE SUPPORT EQUIPMENT** - STRUCTURAL SUPPORT EQUIPMENT, AUXILIARY POWER SUPPLIES, AUXILIARY ECLSS AND SUPPLIES.

- **MAINTENANCE AND SERVICING** - SERVICING AND MAINTENANCE OPERATIONS ON-ORBIT AND ON GROUND (E.G., CHANGEOUT AND MAINTENANCE OF ORU'S AND LRU'S).

- **MOCKUPS** - MAINTAINING MOCKUPS.

- **GROUND OPERATIONS** - RAPID SPECIMEN RECOVERY, CONFIGURATION MANAGEMENT AND SUSTAINING ENGINEERING QUALITY ASSURANCE.

- **FLIGHT OPERATIONS** - CREW TIME AND SCHEDULING.

- **RECOVERY** - END-OF-LIFE DISPOSAL.

- **PROGRAM MANAGEMENT** - OVERALL MANAGEMENT AND COORDINATION OF OPERATIONS ACTIVITIES.
<table>
<thead>
<tr>
<th>Annual Operations Cost ($M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAAX0307</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Cost ($M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>1.2</td>
</tr>
<tr>
<td>Logistics</td>
<td>18.5</td>
</tr>
<tr>
<td>Airborne Support Equipment</td>
<td>0.1</td>
</tr>
<tr>
<td>Maintenance and Servicing</td>
<td>2.5</td>
</tr>
<tr>
<td>Mockups</td>
<td>0.1</td>
</tr>
<tr>
<td>Ground Operations</td>
<td>3.4</td>
</tr>
<tr>
<td>Flight Operations</td>
<td>4.2</td>
</tr>
<tr>
<td>Recovery (End-of-Life Disposal)</td>
<td>TBD</td>
</tr>
<tr>
<td>Program Management</td>
<td>1.5</td>
</tr>
<tr>
<td>Total</td>
<td>31.5</td>
</tr>
</tbody>
</table>
THE LSRF PROGRAM PLAN ENCOMPASSES A PHASED APPROACH, CONSISTENT WITH SPACE STATION PHASING, TO ACCOMPLISH THE REQUIREMENTS DEFINITION, DESIGN, DEVELOPMENT, ASSEMBLY, VERIFICATION, INTEGRATION AND ALL ASPECTS OF MISSION SUPPORT. THE PURPOSE OF THE PLAN IS TO (1) PROVIDE A COMPREHENSIVE PLAN FOR DEVELOPING THE LSRF FOR INCLUSION IN SPACE STATION; (2) HELP ESTABLISH NECESSARY RESOURCES FOR LSRF; (3) SUMMARIZE MANAGEMENT AND SUPPORTING RESPONSIBILITIES; (4) SUMMARIZE IMPLEMENTATION OF KEY DEVELOPMENT ACTIVITIES; AND (5) IDENTIFY INTERFACES NECESSARY FOR CONDUCTING ALL PROJECT ELEMENTS.
0 PROVIDES A COMPREHENSIVE PROJECT PLAN FOR DEVELOPING
THE LSRF FOR INCLUSION IN SPACE STATION
0 AIDS IN ESTABLISHING NECESSARY RESOURCES FOR LSRF
0 SUMMARIZES MANAGEMENT AND SUPPORTING RESPONSIBILITIES
0 SUMMARIZES IMPLEMENTATION OF KEY DEVELOPMENT ACTIVITIES
0 IDENTIFIES INTERFACES NECESSARY FOR CONDUCTING ALL PROJECT ELEMENTS
THE LSRF PROGRAM PLAN ADDRESSES EACH OF THE FOLLOWING: THE LSRF CONCEPT IN TERMS OF SCIENCE MANAGEMENT, DEVELOPMENT AND IMPLEMENTATION ENGINEERING, LSRF OPERATION AND MISSION PLANNING, EQUIPMENT CHANGEOUT AND RESUPPLY AND TRAINING; PROJECT SUMMARY OF ACTIVITIES ASSOCIATED WITH LSRF DEVELOPMENTAL PHASES; AND LSRF PROJECT SCHEDULES THAT ARE PHASED WITH THE OVERALL SS SCHEDULE.
0 LSRF CONCEPT IN TERMS OF INVESTIGATIONS SELECTION (SCIENCE MANAGEMENT); DEVELOPMENT AND IMPLEMENTATION ENGINEERING; LSRF OPERATIONS INCLUDING FOLLOW-ON MISSION PLANNING, EQUIPMENT CHANGEOUT AND RESUPPLY; AND TRAINING

0 PROJECT SUMMARY PRESENTING ACTIVITIES ASSOCIATED WITH LSRF DEVELOPMENTAL PHASES

0 PROJECT SCHEDULES ENCOMPASSING OVERALL SPACE STATION SCHEDULE INCLUDING KEY DRIVING MILESTONES
THE LSRF PROJECT PLAN ENCOMPASSES THOSE BASELINE CONCEPTS NECESSARY FOR THE ORDERLY DEVELOPMENT, OPERATION AND MAINTENANCE OF AN ORBITING LSRF. THESE CONCEPTS INCLUDE:

SCIENCE MANAGEMENT - ENTAILS THE CREATION OF A LSRF REQUIREMENTS DOCUMENT WHICH DOCUMENTS NEW SCIENCE REQUIREMENTS AND EXPERIMENTS WHICH ARE SUBSEQUENTLY USED TO DEVELOP EXPERIMENTAL PROTOCOLS AND A LSRF DATABASE.

DEVELOPMENT AND IMPLEMENTATION ENGINEERING/ - CREATES A PRELIMINARY ENGINEERING/OPERATIONS DOCUMENT CONTAINING EQUIPMENT OPERATING PARAMETERS, AND IOC MISSION ENGINEERING OPERATIONS SPECIFICATION MAXIMIZING THE NUMBER OF PRIORITY INVESTIGATIONS POSSIBLE, DESIGN, DEVELOPMENT, TEST AND DELIVERY OF LSRF COMPONENTS TO KSC AND DEVELOPMENT OF LSRF SUPPORT FACILITIES.

OPERATIONS ACTIVITIES - ENCOMPASSING TRAINING ON LABORATORY START-UP PROCEDURES, EQUIPMENT CHANGE-OUT, ON ORBIT MAINTENANCE, EXPERIMENT PROTOCOL, DATA COLLECTION AND LOGISTICS, ON-ORBIT OPERATIONS AND DATA PROCESSING, GROUND MISSION SUPPORT PLANNING AND SCHEDULING.
0 SCIENCE MANAGEMENT
 - MAINTAIN LSRF REQUIREMENTS DOCUMENT
 - DOCUMENT NEW SCIENCE REQUIREMENTS
 - ESTABLISH LSRF DATABASE
 - DETERMINE IOC EXPERIMENTS
 - DEVELOP DETAILED EXPERIMENT PROTOCOLS

0 DEVELOPMENT AND IMPLEMENTATION ENGINEERING
 - PRELIMINARY ENGINEERING/OPERATIONS DOCUMENT
 - IOC MISSION ENGINEERING/OPERATION SPEC
 - DESIGN, DEVELOPMENT AND TEST
 - FACILITIES DEVELOPMENT

0 OPERATIONS
 - TRAINING
 - ON-ORBIT OPERATIONS AND DATA PROCESSING
 - GROUND MISSION SUPPORT
 - PLANNING AND SCHEDULING
 - EQUIPMENT CHANGEOUT AND SUPPLY

LSRF PROJECT PLAN - CONCEPT
common module, and to optimize operational compatibility with the overall space.
All project phases to assure interface compatibility between the LSR and the
station office and other pertinent participants will be maintained throughout
Certification and operational support. Close coordination with the space
until preliminary planning, and phase D, flight unit manufacture, flight
development planning, phase C, development, testing, final design, and flight
concept definition, phase B, requirements definition, preliminary design, and
project planning guidelines utilizing phase A for preliminary requirements and
conduct of the LSR project is structured reasonably consistent with phased
0 PHASE A - CONCEPTUAL DESIGN AND PROGRAMMATIC STUDIES

0 PHASE B - REQUIREMENTS DEFINITION, PRELIMINARY DESIGN AND DEVELOPMENT PLANNING

0 PHASE C - SYSTEM DEVELOPMENT, TESTING, FINAL DESIGN, FLIGHT UNIT PRELIMINARY PLANNING

0 PHASE D - FLIGHT UNIT PRODUCTION, CERTIFICATION AND OPERATIONAL SUPPORT
LSRF PROJECT PLAN SCHEDULES ARE STRUCTURED TO: BE CONSISTENT WITH KEY MILESTONES OF THE SPACE STATION, PROVIDE ADEQUATE FLEXIBILITY TO FACILITATE SYNCHRONIZATION WITH CHANGES IN SPACE STATION SCHEDULES, FORM THE BASIS FOR PLANNING RESOURCE REQUIREMENTS AND PROVIDE BASIC STRUCTURE FOR PLANNING PROJECT IMPLEMENTATION IN MORE DETAIL.
0 STRUCTURED CONSISTENT WITH KEY MILESTONES OF THE SPACE STATION DEVELOPMENT SCHEDULE

0 ADEQUATE FLEXIBILITY TO FACILITATE SYNCHRONIZATION WITH CHANGES IN SPACE STATION SCHEDULES

0 FORM THE BASIS FOR PLANNING RESOURCE REQUIREMENTS AND PROVIDE BASIC STRUCTURE FOR PLANNING PROJECT IMPLEMENTATION IN MORE DETAIL
The LSRF summary IOC schedule time phases LSRF design and development activities to meet key space station milestones thereby ensuring that LSRF requirements are integrated in concert with overall space station development. Detailed schedules for phases B, C, & D follow.
<table>
<thead>
<tr>
<th>SS PHASE</th>
<th>CY</th>
<th>FY</th>
<th>QTR</th>
<th>KEY SS MILESTONE</th>
<th>MILESTONE DATES</th>
<th>PHASE A</th>
<th>PHASE B</th>
<th>PHASE C</th>
<th>PHASE D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CY85</td>
<td>FY85</td>
<td>2</td>
<td>RUR-1</td>
<td>J 18/7/21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CY86</td>
<td>FY86</td>
<td>3</td>
<td>SRR ISR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CY87</td>
<td>FY87</td>
<td>4</td>
<td>SDR CSD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CY88</td>
<td>FY88</td>
<td>1</td>
<td>PDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CY89</td>
<td>FY89</td>
<td>2</td>
<td>FFRR 1ST LAUNCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CY90</td>
<td>FY90</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CY91</td>
<td>FY91</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CY92</td>
<td>FY92</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SPACE STATION LIFE SCIENCE RESEARCH FACILITY

PHASE B - REQ'S. DEF./PRELIM. DESIGN/DEV. PLANNING

<table>
<thead>
<tr>
<th>SS PHASE</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>YEAR</td>
<td>FY</td>
<td>CY 1986</td>
</tr>
<tr>
<td>MONTHS</td>
<td>ON</td>
<td>D</td>
</tr>
<tr>
<td>KEY MILESTONES</td>
<td>SPACE STATION PROGRAM</td>
<td>DAY OF MONTH</td>
</tr>
<tr>
<td>RUR-2</td>
<td>IRR</td>
<td>SRR</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>21</td>
</tr>
</tbody>
</table>

PHASE B1
- **REQ'S. DEFINITION:**
 - SCIENCE
 - ENGINEERING
 - SYS./SUBSYS. CONCEPTS
 - PRELIM. FAC. CONCEPTS

PHASE B2
- DESIGN ANALYSES
- CANDIDATE EQUIP. INVEST.
- EQUIP. EVALUATIONS
- PRELIM. DESIGN
PHASE B - REQ'S. DEF./PRELIM. DESIGN/DEV. PLANNING (Concluded)

<table>
<thead>
<tr>
<th>SS PHASE</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>MONTHS</td>
<td>ON</td>
<td>D</td>
</tr>
</tbody>
</table>

KEY MILESTONES

<table>
<thead>
<tr>
<th>SPACE STATION PROGRAM</th>
<th>RUR-2</th>
<th>IRR</th>
<th>SRR</th>
<th>ISR</th>
<th>SDR</th>
<th>CSD</th>
<th>PDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAY OF MONTH</td>
<td>18</td>
<td>17</td>
<td>21</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

PHASE B3

- Prelim. Phase C Planning
 - Req's. Completion
 - Prelim. Design: DWS, SPECS, DOC.
 - Prelim. Test Plans
 - Prelim. Facility Plans
 - Prelim. Ops. Support Plans
 - Project Plan Update
- Phase C/D Contractor Selection
- Phase B Reports
- Reviews
TRANSITIONING FROM THE COMBINED LABORATORY (SAAX 0307) TO THE DEDICATED PLANT-ANIMAL LAB (SAAX 0302) SHOULD MINIMIZE EQUIPMENT CHANGEOUT TO THE MAXIMUM EXTENT PRACTICABLE. GIVEN THIS OPERATIONAL CONSTRAINT AND ASSUMING THAT THE COMBINED LAB CONTAINS A CENTRIFUGE, IT IS RECOMMENDED THAT THE COMBINED LAB BECOME THE DEDICATED ANIMAL-PLANT LAB LEAVING THE CENTRIFUGE IN PLACE. THE NEW MODULE THEN BECOMES THE HUMAN RESEARCH FACILITY.
TRANSITION DISCUSSION

0 ASSUME FIRST SLM (SAAX 0307) CONTAINS A SPECIMEN CENTRIFUGE

0 AT TRANSITION TO SAAX 0302, NEW MODULE TO ORBIT

0 IF NEW MODULE IS TO BECOME ANIMAL AND PLANT FACILITY, CENTRIFUGE
 WOULD HAVE TO BE DISMANTLED AND MOVED FROM FIRST MODULE TO NEW
 MODULE, OR LEFT IN WHAT HAS BECOME THE HUMAN RESEARCH FACILITY

0 MORE LOGICAL TO LEAVE CENTRIFUGE IN FIRST MODULE, WHICH BECOMES
 ANIMAL AND PLANT FACILITY. NEW MODULE THEN BECOMES HUMAN RESEARCH
 FACILITY.

0 BEST TO HAVE LARGE CENTRIFUGE, OR ONE EASILY ENLARGED, IN FIRST
 MODULE
SPECIMEN CAPACITY FOR LARGE (3.75M) AND SMALL (2.75 M) CENTRIFUGES INDICATES THAT THE LARGE CENTRIFUGE IS PREFERABLE BECAUSE OF ITS INCREASED CAPACITY FOR ANIMALS AND PLANTS AS WELL AS HUMAN SUBJECTS.
APPROXIMATE CENTRIFUGE CAPACITIES (SAAX 0307 OR 302)

<table>
<thead>
<tr>
<th>DIAMETER (M)</th>
<th>RATS</th>
<th>SMALL PRIMATES</th>
<th>SMALL PLANTS</th>
<th>LARGE PLANTS</th>
<th>HUMANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.75</td>
<td>63</td>
<td>24</td>
<td>31</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>4.0</td>
<td>100</td>
<td>40</td>
<td>53</td>
<td>22</td>
<td>1 OR 2</td>
</tr>
</tbody>
</table>
EVALUATION OF LAYOUT OPTIONS FOR THE COMBINED LABORATORY (MISSION SAAK 0307) SUGGESTS THAT THE VERTICAL LAYOUT UTILIZING THE 3.75M CENTRIFUGE IS THE PREFERRED OPTION PRINCIPALLY BECAUSE IT PROVIDES MAXIMUM VOLUME FOR 0-G EXPERIMENTS AND THE CENTRIFUGE AND BECAUSE THE LARGE CENTRIFUGE CAN ACCOMMODATE HUMAN SUBJECTS.
<table>
<thead>
<tr>
<th>CENTRIFUGE DIAMETER (M)</th>
<th>LAYOUT OPTION</th>
<th>VOL. AVAIL. 0-6 EXPTS.</th>
<th>CENTRIFUGE VOLUME AVAIL.</th>
<th>ADAPTABLE TO HUMAN</th>
<th>OPTION OVERALL RANKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.75</td>
<td>HORIZ.</td>
<td>CLOSE TO MINIMUM</td>
<td>MINIMUM</td>
<td>NO</td>
<td>4 - LOWEST</td>
</tr>
<tr>
<td>2.75</td>
<td>VERT.</td>
<td>MAXIMUM</td>
<td>MINIMUM</td>
<td>NO</td>
<td>3</td>
</tr>
<tr>
<td>4.0</td>
<td>HORIZ.</td>
<td>MINIMUM</td>
<td>MAXIMUM</td>
<td>YES</td>
<td>2</td>
</tr>
<tr>
<td>4.0</td>
<td>VERT.</td>
<td>CLOSE TO MAXIMUM</td>
<td>MAXIMUM</td>
<td>YES</td>
<td>1 - HIGHEST</td>
</tr>
</tbody>
</table>
EVALUATION OF LAYOUT OPTIONS FOR THE DEDICATED ANIMAL PLANT LABORATORY (MISSION SAAX 0302) SUGGESTS THAT THE VERTICAL LAYOUT OPTION IS FAVORED BECAUSE IT PROVIDES THE GREATEST VOLUME FOR THE LARGE DOUBLE CENTRIFUGE DESPITE THE LOW VOLUME AVAILABLE FOR 0-G EXPERIMENTS.
EVALUATION OF LAYOUT OPTIONS (SAAX 0302)

<table>
<thead>
<tr>
<th>CENTRIFUGE DIAMETER (M)</th>
<th>LAYOUT OPTION</th>
<th>VOL. AVAIL. 0-6 EXPTS. RANKING</th>
<th>CENTRIFUGE VOL. AVAIL. RANKING</th>
<th>ADAPTABLE TO HUMAN</th>
<th>OPTION OVERALL RANKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.75</td>
<td>HORIZ</td>
<td>2</td>
<td>4-LEAST</td>
<td>NO</td>
<td>6</td>
</tr>
<tr>
<td>2.75 + 2.75</td>
<td>VERT</td>
<td>3</td>
<td>3</td>
<td>NO</td>
<td>4</td>
</tr>
<tr>
<td>2.75</td>
<td>VERT</td>
<td>1-MOST</td>
<td>4-LEAST</td>
<td>NO</td>
<td>5</td>
</tr>
<tr>
<td>4.0 (DOUBLE)</td>
<td>HORIZ</td>
<td>6-LEAST</td>
<td>1-MOST</td>
<td>YES</td>
<td>2</td>
</tr>
<tr>
<td>4.0 (SINGLE)</td>
<td>HORIZ</td>
<td>4</td>
<td>2</td>
<td>YES</td>
<td>3</td>
</tr>
<tr>
<td>4.0 (DOUBLE)</td>
<td>VERT</td>
<td>5</td>
<td>1-MOST</td>
<td>YES</td>
<td>1</td>
</tr>
</tbody>
</table>

3.3.5 CONCEPT EFFECTIVENESS ASSESSMENT

SPACE STATION

Lockheed
CONCEPTS CURRENTLY UNDER CONSIDERATION SATISFY THE MAJOR FUNCTIONAL REQUIREMENTS OF THE LSRF WHICH ARE:

- BIOISOLATION OF PRIMATES AND RODENTS FROM CREW.
- FLEXIBLE FACILITIES FOR HOLDING RODENTS, SMALL PRIMATES AND PLANTS.
- EXCHANGEABLE METABOLIC AND HOLDING CAGES.
- SUFFICIENT RACK VOLUME FOR BASIC RACK-MOUNTED EQUIPMENT COMPLEMENT.
- LAMINAR FLOW WORKBENCH.
- SUFFICIENT FROZEN STORAGE CAPACITY.
- MULTI-G CENTRIFUGE CAPABLE OF SUPPORTING RODENT, PRIMATE, AND HUMAN EXPERIMENTAL SUBJECTS.
END

DATE

June 6, 1988

3.3.5 CONCEPT EFFECTIVENESS

SPACE

STATION