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(ABSTRACT)

Three test methods were employed to characterize the response of unidirectional Boron / Alunii-

num metal matrix composite material under monotonic and cyclic loading conditions, namely:

losipescu Shear, Off-Axis Tension and Compression. The characterization of the elastic and plastic

response includes the elastic material properties, yielding and subsequent hardening of the

unidirectional composite under different stress ratios in the material principal coordinate system.

The elastic response is compared with the prediction of the transformation theory, based on the far

field stress U.., the Pagano-Halpin Model, and finite element analysis. Yield loci generated for dif-

ferent stress ratios are compared for the three different test methods, taking into account residual

stresses and specimen geometry. Subsequently, the yield locus for in-plane shear is compared with

the prediction of an analytical, micromechanics model. The influence of the scatter in the exper-

imental data on the predicted yield surface is also analyzed. Lastly, the experimental material

strengths in tension and compression are correlated with the Maximum Stress and the Tsai-wu

failure criterion.
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1.0 INTRODUCTION

The search for new and advanced materials for structural applications has always been a major task

for researchers, analysts, and designers. Special and unique problems in structural design require the

use of special and unique materials. Fiber-reinforced composite materials are an example of these

new advanced materials. Composites enlarge the choice of materials to the designer for various

applications, such as tailoring procedures for airplanes, cars, or other structures. By changing the

stacking sequence and fiber orientations of the laminate, for instance, the same type of material can

be taylored for a large number of special geometrical applications.

The increase in the number of useable composite systems available today is a result of various re-

search projects taking place all over the world. Combining different fibers with different matrix

materials has resulted in a large number of new and unique material systems possessing new and

unique properties. The use of these newly developed materials, on the other hand, requires a

thorough and complete study of the material response in the elastic (linear) and plastic (nanlinear)

`	 range. Anisotropic materials like composites, with their complex and direction-dependent material
,

response characteristics under different loading conditions, require deeper and more sophisticated

analysis than homogeneous, isotropic materials such as alloys and steels.
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1.1 Literature Review

I

The amount of experimental information available in the open literature on the clastoplastic be-

havior of metal matrix laminae is rather limited. Viswanathan, Davis, and I Ierakovich 11, 21 studied

the tensile and compressive behavior of borsic/aluminum composite laminates. In this investigation,

monotonic and cyclic off-axis tension and compression tests were performed and yielding as well

as strain-hardening characteristics were analyzed. In 1976, Pipes et al (31 studied the acoustic

emission response of metal matrix composites, following the work of Kreider and Prewo 141. In the

course of the above investigation, the authors carried out monotonic off-axis tension tests for vari-

ous off-axis orientations of unidirectional boron/aluminum coupons. Subsequently, they compared

the strength obtained from the off-axis tension tests with several failure criteria. However, the

character of the observed clastoplastic response was not discussed in detail. Kennedy, Herakovich,

and 'Penney 15-71 studied the influence of temper conditions and cyclic loading on the nonlinear

behavior of boron/aluminum laminates. As a part of their investigation, monotonic and cyclic

tension and compression tests on six different laminates were performed. In 1977 Shuart and

Herakovich 181 studied the tensile and compressive response of 0° and 90° boron/aluminum laminae

and angle- and cross-ply laminates, using the off-axis tension test and different compression test

methods. A subsequent study [91 carried out by the same authors focused on the Poisson's Ratio

for metal matrix composite laminates.

In France, Bursell and Nguyen 1101 developed a technique to measure the radial strength of large

diameter elastic fibers and applied it to boron fiber composites such as boron/aluminum. This study

demonstrated the influence of splitting of large boron fivers on the composite strength. Recently,

Johnson 1111 published a report on "fatigue Damage Accumulation in various Metal Matrix

Composites". The major part of this report focused on matrix dominated fatigue damage, as it oc-

,j

>t



'Theoretical studies oil systems were performed by Shorshorov et al 1 121 un the

USSR in 1981, addressing the effect of interfacial strength on the strength of the aluminum-boron

composite. In 1983, Datta and Ledbetter 1131 developed a mathematical model for the evaluation

of the elastic constants of fiber-reinforced boron/alumuium. Recently, Aboudi 114, 151 developed

extensive models for evaluating elastic constants as well as viscoplastic behavior for two-phase

composite systems. Dvorak ct al 116, 171 developed different models for characterizing the behavior

of composite materials un the elastoplastic region. General information on metal matrix compos-

ites, such as fiber and matrix properties, manufacturing processes etc., can be found in the book

by Lynch and Kershow 1181 on "Metal Matrix Composites' published in 1972.

^E

'k

i

r

1.2 Objectipes and Thesis Outline

Metal matrix composite materials are one of the first continuous fiber-reinforced composites ever

studied 111]. The high manufacturing costs, as well as the high cost of the individual components

however, were major drawbacks in the early days of composite materials. In addition, the require-

ment for special equipment needed for post-processing of these metal matrix composites (MMC)

(special grinder, diamond saw, etc.), limited their use. Recently, interest in MMC has revived due

to their advantages over the more common polymer-based composites. Besides such features as

high stiffness-to-weight and strength-to-weight ratio common to all advanced composites, the

MMC exhibit several other desirable material characteristics. MMC are known for then better

environmental tolerance to moisture, corrosion and temperature, as well as better impact and

lightning damage resistance 111]. Likewise, the transverse modulus, transverse strength, and

interlaminar strength of MMC is higher than that of resin matrix composites, especially in the case

of boron/aluminum composites. The major advantage of MMC however, is the higher melting

point of the matrix, combined with the small coefficient of thermal expansion (CTE) alongthe fiber
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direction, This results in higher thermal dimensional stability, opening new temperature ranges for

composite materials which had been previously reserved for steels and ceramics, 'rids is particularly

important in space applications where the materials are exposed to high temperature changes and

radiation.

The present investigation was carried out in order to provide the analyst and designer with the basic

and essential information for subsequent investigations of the response of laminated composites,

both in the linear and nonlinear region. The objective of this study was the characterization of the

linear and nonlinear mechanical response of unidirectional boron/alumuium under combined

loading conditions (biaxial state of stress). The knowledge of the constitutive response of

unidirectional composites is a requirement for characterizing the response of multidirectional lami-

nates.

In order to achieve the above goal, three different test methods were used, namely: off-axis tension,

off-axis compression, and Iosipescu shear.

The tensile response of 0°, 90° and five off-axis configurations was characterized using the off-axis

tension test (Section 2.2). An optimized specimen geometry was used in conjunction with a spe-

cially designed tensile test fixture 1191, and the experimental results were corrected for end-constraint

effects. The compressive response of 0°, 90° and four off-axis configurations was characterized with

the aid cif a newly designed compression test fixture (Section 2.3). The advantages and disadvan-

tages of this fixture are discussed in Section 2.3.1.3. Correction procedures for the off-axis com-

pression test results follow in Section 2.3.3. In the off-axis tests, different stress ratios were obtained

along the principal material directions by varying the fiber orientation of the specimen. Tine dif-

ferent stress ratios changed the in-plane state of stress and resulted in stress-interaction effects in the

plastic region.

For the characterization of the elastic response of the unidirectional composite, the elastic material

}i

p
properties were evaluated experimentally in tension and compression for different fiber orientations

Y
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and compared with several theoretical predictions. losipescu shear test~ (Section 2.4) were also

performed in order to provide additional data on the in-plane ;;hear modulus (112, u ► -Mani shear

strength and failure strains. 0% 90% and three off-axis configurations were tested using the

'Wyoming' losipescu shear test fixture and an optimized specimen whose geometry was based on

an extensive finite element analysis. finite element analysis was used for the correction of the ex-

perimental results.

Characterization of the plastic response included the evaluation of the yield point in tension and
r

compression for various on- and off-axis configurations. Also, subsequent hardenluig was analyzed,

including permanent strain accumulation, dissipation, and other plastic phenomena, as a function

of fiber orientation, An attempt was male to provide data on material hardening for the develop-

ment of hardening rules based on a power law expression. The functional form of the plastic

stress-strain response was presented graphically for the various on-and off-axis configurations. A

further objective of this investigation was to provide failure stresses and strains for the

boron/aluminium system. The experimentally evaluated failure stresses of the composite in tension

and compression were compared with the maximum stress and the Tsai-Wu failure criterion. Also,l
the difiercrit failure modes fbi the three diflb:cnt test methods and the different fiber orientations

were analyzed.
G,.

The experimental results on in-plane yielding were compared with an analytical microrneclianics

model (Chapter 5) employed to predict the yield surface of the boron/aluminum composite. The

influence of the scatter in the experimental results on the shape of the predicted yield surface was

subsequently analyzed.

All experimental results obtained from the three different test methods are presented in Chapter 3

(apparent values) and in Chapter 4 (corrected values) and compared with theoretical predictions.
s

k

Summary, conclusions and recommendations are giver. in Chapter 6. The appendices contain the

F	 individual test results in the form of tables and diagrams. Also included in the appendices are the
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individual finite element results along with the results of a quantitative analysis of residual thermal

stresses in the coupons due to the manufacturing process.

w>

1.3 Constituent Properties and Material Fabrication

The composite used Ibr the present investigation contained 0,0056 inch-diameter boron fibers im-

bedded uniformly in a 6061 OT aluminum alloy (Figure 1). The material properties of the fiber and

matrix are given in Table 1. The fiber properties were taken from 13, 181, the matrix properties are

a result of additional tests on pure 6061 OT aluminum (monotonic tension test results). Both fiber

and matrix are assumed to be isotropic.

Table 1. Constituent Properties	 ,

Fiber Properties Matrix. Properties

U	 = 55.00 (msi) Gm	 =	 10.00 (msi)

GI	 =	 22.92 (msi) Gm	 =	 3.75 (msi)

yr	 =	 0.20 vm	 =	 0.31

The boron fibers were synthesized by chemical vapor deposition from the reduction of boron

thrieloride on a tungsten filament at 1100 to 1300 °C or 2000 to 2350 °F. The presence of the

tungsten core inside the boron fiber is evident in Figure 1.

i
r

i
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Figure 1. 'Tungsten Cure in Iturun Fiber (275 X)

Fabrcation of the composite was accomplished by lirst wrapping a foil a1' 6061 OT aluminum alloy

around a mandrel. The foil was than sprayed with a resin matrix (polystyrene:) in a volatile Solvent

(xylene) before and alter winding baron fibers onto the drum. In order to form the laminate, the

plies were heat treated at aii0 °C (750 T) for one lour to exhaust the resin binder. Immediately

after the heat treatment, the plies were subjected to a high-pressure bonding, to preserve the fibers

and the foils. The high-pressure bonding is carried out at 520 °C (975 'F) and 5000 psi or (35 MPa)

for one-half hour, followed b) a slow coaling process of the entire laminate to room temperature.

The manufacturing process resulted in a nc:erly prefect fiber spacing in the matrix, as shown in

Figures 2 and 3. Figure 3 also shows that the I:u ►unate consists of 8 layers. The quoted thickness

of the alum. -im layer at the top and the bottom of the composite is O.O02 inch and the thickness

of the aluminum  betweon each layer is O.OU18 inch, based on information provided by DWA

Composite Specialty Inc., Chatwurth, CA. California.
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2.0 TEST METHODOLOGY

2.1 General Test Description

U

I 
In order to characterize the linear and nonlinear response of the uniaxial boron/aluminum com-

posite system, three test methods were employed; namely : off-axis tension, off-axis compression,

and Iosipescu shear. All tests were performed on a displacement-controlled UTS testing machine

at an approximate strain rate of 0.75% per minute. All specimens were been instrumented with

TML FRA-2-11 rosettes, oriented at 0°, 45°, and 90° with respect to the specimens' axes. In ad-

dition, the off-axis tension and compression specimens were instrumented with a TML FLA-2-11

uniaxial (0°) gage mounted back-to-back with the rosette to correct for possible bending of the

specimen during testing. The amount of bending for the off-axis tension tests and the Iosipescu

shear tests was negligibly small; however, bending played an important role in the off axis com-

pression test (Section 2.4). The acquisition of the data was accomplished with the aid of a signal

conditioning unit (Vishay 2120), consisting of amplifiers and Wheatstone Bridges, which was con-

nected to an IBM-X'1' personal computer data acquisition system. Five data sweeps per second
0 fz

per channel were acquired in the course of performing the various tests. The tests were fully au-

tomated and controlled by the IBM-XT personal computer, using "MATPAC" and "MATPAC2"



kilo
software packages developed at Virginia Tech. One-half of the losipeseu shear tests was performed

using a MINC data acquisition system (see Appendix C), but this system was subsequently rejected

due to the limited number of acquired Jai;a sweeps per second (only up to I sweep per second) and

its sensitivity to outside electronicai noise; The results of these tests are listed in the tables in Ap-

pendix C for completeness, but remain questionable.

All test data were corrected for misalignment of strain gages using photographs and/or a Nicoll

(type 104) microscope. Additionally, the data were corrected for bending, as mentioned before, and

transverse sensitivity effects. The fiber orientations measured from fracture angles were employed

in the data reduction.

All specimens were out from a 12 inches x 21 'inches panel using a high-speed diamond saw, and

were subsequently ground to the specified dimensions. The noiniial panel thickness was 0.055 hi

which corresponds to a 8-ply lay-up, with the fibers nearly perfectly spaced in the matrix (Figures
t

1, 2, and 3). The fiber volume fraction was 46 %. All tests have been performed at ambient con-

ditions. The specimen geometries for the off-axis tension, the off axis compression, and the

Iosipescu shear tests are shown in Figure 4.

r
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F 2.2	 Off-Axis Tension Test
t

2.2.1	 General Information 4
4
^r

2.2.1.1	 Test Procedure

The monotonic off-axis tension test is the most widely used test for the characterization of the linear
h;

ti and nonlinear in-plane mechanical response of uniaxial composites.	 Data on in-plane elastic con-

stants (E11, E22 1 v 12, and G12), subsequent hardening, and failure can be obtained from this test.

Additionally, cyclic tests may be performed vi order to further characterize the nonlinear_ response

with regard to hardening, dissipation, and material consistency. The wide range of applications and

the advantages of the off-axis tension test are well documented in the literature [ 19-251. s	 h

E The 0 and 90 tensile coupons are sufficient for the complete characterization of the in-plane elastic

constants Ell , E221 v12 and ultimate strength parameters X„ Y, and S.	 One additional off-axis test f

yields data on the remaining in-plane shear modulus G 12 .	 Due to the end-constraint effect caused

by the shear coupling phenomonon in off-axis specimens (Section 2.2.3), the 45° off-axis coupon'

provides the most accurate value of G12 [19, 21, 221. However, the in-plane ultimate shear strength

212 cannot be estimated from this configuration.The studies cited showed that the 10° off-axis cou-

pan provides a better estimate of the ultimate in-plane shear strength ti12 l .	 On the other hand, the
k

E,
10° off-axis test is very sensitive to end-constraint effects. Consequently, if the specimen geometry

is not optimized, this test may provide an inaccurate value for the in-plane shear modulus G 1 2' An

explicit discussion of the end-constraint effect and its influence on the test data is provided in Sec-
1

tion 2.2.3.
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In order to gain a broad underst-wid ng_of the material response of the considered boron/aluminum

system, and in view of the limited amount of test material available, the following off-axis tension

test matrix was chosen :

Table 2. Off--Axis Tension Test Matrix

Fiber

Orientation

Loading Type / Number of Tests

monotonic cyclic

0° 2 1

10° 2 1

15° 1 1

30° 2' 1

45° 2 1

60° 2 1

90° 2 1

2.2.1.2 Specimen Geanetey and Instr utnentation

All off-axis tensile coupons had the same, optimized geometry (Section 2.2.3). They were 10 inches 	 x:
long and 0.5 inches wide. The grip length at each end of the specimen was 2 inches in order to 	

Ex
prevent the coupon from slipping in the grips. 

This 
resulted in an aspect ratio (i.e. gage length/gage

width ) of 12. This aspect ratio was sufficiently high to provide a nearly uniform stress distribution

in the test section even for low off-axis orientations:
t_
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The coupons were instrumented with a TML FRA-2 . 11 strain gage rosette (U° 45^, 90*) and a

TML FLA-2-11 uniaxial strain gage (0°) mounted back-to-back centered in the center of the

specimen.

2.2.1.3 Test Fixture

End-constraint effects due to the gripping of a specimen always influence the actual state of stress

in the specimen. Due to the rigid clamping of the ends of an off-axis coupon, an additional moment

and shear force are introduced into the specimen, resulting in a nonuniform displacement field and

stress distribution in the gage section (Figure 5). The nonutdonnity of the stresses must be taken

into account for the the correct interpretation of the test results.

The test fixture used to perform the uniaxial off-axis tension tests (Figure 6), was designed to re-

duce the influence of the end-constraint effects on the stress distribution in the gage section [ 191.

By allowing the grips to rotate in the x-y plane, the additional moment can be reduced significantly.

Friction between grips and fixture still remained, although lubricants were used.

^I
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Figure G. Uniaial f ensiun Test Fixture & Specimen
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2.2.2 Stress Field

All results from the unidirectional off axis tension tests are based on the assumption that the stress

is uniformly distributed in the test section. The average tensile stress in the specimen is defined as

follows:

QxX	 ( 2h ) Sn h a. dy	 A 	
(2.1)

where

h = half-width of the specimen

P = axial applied load

A = cross-section area

Therefore, the stress field in the principal material coordinate system, based on the far field stress

U,, only, can be obtained as follows

cos29	 sin 2o
	 2 cos 0 sin 0	 6XX

Q22	 =	 sin 20	 Cos 20	 — 2 cos 0 sin 0	 0	 (2,2)

T 12 * 	 — cos 0 sin 0 cos 0 sin 0 cos 20 — sin20	 0

k

j y

#

'i

I
,.s

i

t

(2,3)

and results in :

6; ► = COS20 6„

6i2 = sin20 0'„

T;2 = -sin 0 cos 0 ax,



2.2.2.1 Off Axis Test

In the off-axis tension test, unidirectional coupon behaves effectively as an anisotropic (monoclinic)

material. Axial loading of such an anisotropic system results in a shear deformation (y^y $ 0) as

shown in Figure 5A. if the ends of the off-axis specimen are rigidly clamped, and the coupon is

prevented from rotating, the specimen tends to deform nonuniformly, as shown in Figure, 513. In

addition to the axial load, a moment and a shear force are introduced at the ends of the specimen

contributing to the nonuniform stress field in the test section. This effect is referred to in the liter-

ature as the end-constraint effect 119, 251. The end-constraint effect is a function of specimen ge.

ometry (aspect ratio), material properties, and fiber orientation. In order to obtain accurate

experimental results, correction procedures must be applied by evaluating the influence of all pa-

rameters mentioned above. .A procedure for the correction of the off-axis tension test results is

given in Section 2.2,3 .

2.2.2.2 On-Axis Test

For the on-axis tests (0° or 90°) the end-constraint effects are negligibly small, since the deformation

is nearly uniform under axial loading. The shear angle yxy is zero. Consequently, no additional

moments and forces are introduced into the specimen. All deformations are a result of the axial

load only. , Therefore the stress field in the principal material direction can be simplified in the fol-

lowing manner.



00 TEST	 90 TEST

Q in = ax, Qii = 0

azs = 0 ai: = a.,,	 (2.4)

t ie =0 42 =0

2.2.3 Stress Ratios

By varying the off-axis angle 0 and applying a utuform average stress (eqn. 2.1), different in-plane

stress ratios 1011 , 
62

z , and t12 are obtained in the specimen. The influence of the different stress
at' ,	 (T ii	 oil

ratios on the material response can be seen in the high extent of stress-interaction in the plastic re-

gion. The deviation from the pure plastic in-plane response for various off-axis configurations due

to'dillerent states of stress in the test section is referred to in the open literature as the stress-

interaction effect [19). The extent of stress-interaction for unidirectional boron /aluminum will be

discussed in Chapter 3.1.

Based on eqn. 2.3, the various stress ratios can be calculated in tite following manner:

i

X22 = sin20 ^2tan 0	 (2.5)
Q i	 cos20

M

ti 12	 _ sin 0 cos 0 = - tan 0	 (2.6)
t	

61 I	 cos2e
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For the off-axis orientations shown in Table 2, the different stress ratios obtained in the specimen

are presented in Tablc 3,

Table 3. Stress Ratim for Off-Axis Tests

Fiber
Orientation

In- Plane Stress Ratios

all a22 Zit
a ll ail all

100 1.0 0,031 0.176

15 0 1.0 0.072 0.268

30° 1.0 0.333 0,577

450 1.0 1.000 1.000

600 1.0 3.000 1.732

U

V

j

x
z

f

2.2.4 Correction of the Tension Test Results

The end-constraint effect was first: discussed by Pagano and Halpin ]25]. Inclusion of the shear

stress component that results from the end effects leads to the following relationship between the

in-plane strains and stresses in test section of the specimen:

£xx	 311 S12 916	 axx

ryy	 S12 S22 S26	 0	 (2.7)

Yxy	 916 '326 966	 Txy

„ k
Pagano and IIalpin used the above form of constitutive equation in conjunction with an assumed`

form of the displacement field to estimate the error in the detennunation of the off -axis Young's	 j
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Modulus IF,, (0). The extent of the error was characterized by the ratio ^;'x which was derived by
x,	 EkA

Pagano and Halpin using local stresses at the mid-point of the text section, where * indicates an

apparent modulus,	 in the above, Sly are the transformed compliances in the laminate coordinate

system, and a„ and r,y are functions of the applied center line strain, material properties and spec-

imen geometry. By relatung a„ and t,y to the average laminate stress in the loading direction (&,,j,

it was shown subsequently by Pindera and lierakovich 1 191 that the Young 's Modulus E„ and the
i

Poisson's ratio v,y can be related to their apparent laminate values E;, and v,*y in the following

manner: 1
a

Exx	 —-—	 (2.8)
LXx	

1 — 
3 q

1
+RS16

vxY 
c	 911	

(2.9) 1

r	 vim'	 1 +	
S26

S12
k`

where
i

t

6(11
T l

i

911_	 (2.10) i
1 + 6(h)2

166
 

1	 S11 i

and t1 is defined as;
F

6( h '\2	 S16 
l2)1 \S11!

r1 = —	 (2.11)

1 + 6( h 12S66
! /l	 ,511

'	 with E and h being gage length and half-width of the specimen, respectively.
i
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In the same investigation, Pindera and Ilerakovich developed a procedure for the accurate deter-

mination of the in-plane shear modulus G 12 from the off axis tension test. Relating the apparent

in-plane shear stress in the principal material direction to the average applied axial stress

	

T't2	 axx sin 0 cos o 	 (2.12)— 

i

{

	

they obtained the following relationship between G12 and its corresponding, apparent laminate value 	 jj

G
J12

G 1 2 _ T 12	 1	 1 _ (cos2 0 — sin20)	
{

G 1 2	 1T12	
_ 2	 R	 sun 0 cos 0

(2.13)
G 12	 1	 3 n

i
A subsequent thorough study and comparison of equations (2.8), (2.9), and (2.13) with exper-

imental results 1191 revealed that the end-constraint effect may result in a significantly greater error a
in the determination of G12 that EXX or vXy . The extent of the error is a function of the aspect ratio

C/21i, the ratio of anisotropy (Ell /E22) and the fiber orientation. It is significantly greater for G 12 than

Exx in the low off-axis fiber orientation range. These conclusions resulted in a specimen optimiza-

tion procedure which iteratively minimizes the error between the actual and apparent values of the

elastic moduli for small off axis orientations by increasing the aspect ratio to its lowest suitable

value. s
I
i

	For the investigated boron/aluminum system, an aspect ratio of 12 is sufficient to minimize the 	
f

r.
error in the determination of the material properties. This is primarily due to the fact that the ratio

of the longitudinal and transverse Young's Modulus (Ell/E22) is only 1.6. In comparison to other

composite systems (e.g. graphite/aluminum: E11 /E22	 16.7, boron/epoxy: E„ /E22	 10.0) this	 j

ratio is small.

A complete comparison between theoretical predictions of the elastic moduli as a function of the

fiber orientation based on the far field stress only, the Pagano-Halpin model, and experimental re-
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i
sults is shown in Section 3.1 . It will be conclusively demonstrated that the uniaxial off-axis tension

test is the most accurate and simplest test method to determine the tensile in-plane elastic constants

(C11 , Iii, v12 , and G„ ), subsequent hardening, and ultimate values such as cx,", cull , and cull whenYY

the specimen geometry is properly optimized..

2.3 Off-Axis Compression Test

2.3.1 General Description

k

G

i
l

f	 .

2.3.1.1 Test Procedure

Unlike the off-axis tension test, the off-axis compression test is far more complicated in its proce-

dure, specimen preparation, and interpretation of the test results. In order to determine the

compressive properties of a composite system, numerous test procedures have been developed [8,

26, 27, 281. In general, the major problem associated with compression testing is the elimination

of buckling of the specimen inside the test fixture. Other parameters such as specimen misalign-

ment, eccentricity of the applied load, and end-constraint effects also must be considered. Each of

these parameters can influence the stress field in the test section and lead to incorrect interpretation

of test results.

At least three different types of compression test procedures, requiring their own unique test fix-

tures, have been developed to overcome the problems mentioned above [211. The unsupported



coupon test method attempts to solve these problems by using a short coupon with a completely

unsupported gage section. The load can be either applied directly at the end of the specimen or by

shear action using end tabs (IITRI specimen) 181. The disadvantage of tills method is the very short

gage section, which makes it difficult to instrument the coupon slid which may introduce significant

end effects. The second method is the so-called supported coupon test. I3ere, a relatively long gage

section is fully supported along the unloaded edges. Similar to the unsupported coupon test

method, the load can be introduced by shear action using end tabs, or directly at the end of the

specimen. By far the most complicated and most expensive test method is that using sandwich

beam constructions, in which the specimen is imbedded and loaded either in three or four point

bending, or edgewise in compression. This test method requires a costly and time consuming

preparation of the specimen. A combination of the three test methods is also possible. Slivart and

Herakovich 181 imbedded an IITRI specimen in a honeycomb sandwich beam construction and

loaded it edgewise and in four point bending.

r:^

Based on the above information, the author decided on a supported coupon test method, using a

newly designed test fixture (Section 2.3.1.3.) developed at Virginia Tech 121). Taking into account

the limited amount of test material and the capability of the test fixture, the following off-axis

compression test test matrix was employed:



Table 4. Off-Axis Compression Test Matrix

Fiber
Orientation

Loading Type J Number of Specimen

monotonic cyclic

0° 2 1

10° 2 1

15° 1 0

30° 2 0

45° 1 0

90° 3 0

2.3.1.2 Specimen Geometry and Instrumentation

R

All off-axis compression test specimens were 1.5 inches long and 1.0 inch wide. In the process of

optimizing the specimen geometry the critical buckling load was calculated using an orthotropic

plate solution with all four edges simply supported 121J. The coupons were instrumented with a

TML FRA-2-11 rosette oriented at 0°, 45°, and 90° and a TML FLA-2-11 uniaxial gage oriented

at 0 mounted back-to-back in the middle of the specimen. The specimen geometry of the off-axis

compression test specimen is shown in Figure 4.

2.3.1.3 Test Fixture

E

The fixture used in this investigation consists of two major parts as shown in Figure 8. The top

'	 plate consists of the top grip and four linear bearings and the bottom plate consists of the bottom
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grip and four guide pins on which the bearings slide up and down. This assemblage, combined

with the use of alignment shims in the grip area, guarantees perfect alignment of the two grips with

respect to each other. Therefore, eccentricity and misalignment problems were solved by requiring

small tolerances for the manufacturing and subsequent cutting of the specimen. This can be assured

using diamond saw and grinder for the fabrication of the specimens.

The specimen is loaded at the ends (top and bottom) and fully supported by four cylindrical side
r

support puns, preventing out-of-plane deformation at the unloaded edges. Grip size and the length

of the side support puns are variable, which allows various specimen geometries to be tested. The

specimen thickness can be varied by changing the size of the alignment shims. A major advantage

of this test fixture is its capability of accommodating large specimens. The fairly long gage section

facilitates mounting of strain gages. No tabbing of the end of the specimen is necessary. Also, the 0
stress concentration due to the Poisson's effect at the grips is reduced and the in-plane boundary

condition are better defined (Section 2.3.3), using four thin, quarter-circular pieces to prevent side-

ways deformation of the specimen in the grip areas.

k
Beside the small machining tolerances imposed on the geometry of the specimens, another fimita-

tion of this fixture is its initial response to the applied axial load. An accurate study of the initial

loading portion showed that the load was initially introduced directly into the test fixture and not i
into the specimen, due to friction inside the bearings. Using a correction procedure based on the 	 t;

comparison of stress-strain and strain-strain with stress-time and strain-time diagrams, the real iii-

.

­
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2.3.2 Stress Field

The stress field in the off-axis compression specimen was obtained in the same manner as for the

off-axis tension test. Based on the assumption of uniform stress in the gage section (eqn. 2.1) an

apparent stress field in the principal material coordinate system was calculated as a function of the

far field stress (axx) only. Consequently, the stress field in a compression specimen can be calculated

in a similar fashion as for the tensile specimen using equation (2.3) and (2.4).

cwt I

2.3.2.1 Off-Axis Test

As mentioned in the case of the off -axis tension test, the end-constraint effects and tine resulting

shear coupling influence the actual state of stress in the gage section. These effects are more sig-

nificant for the off-axis compression specimens than for the off-axis tension coupons, due to the

small aspect ratio (specimen length / specimen width) of the compression specimen. The small

aspect ratio also influences the load introduction into the specimen. In the case of the off-axis

tension coupons with an aspect ratio of 12, only the 0° coupon has fibers running from the top to

the bottom grip, whereas in the case of the off-axis compression specimens with an aspect ratio of

1.5, fibers run from the top to the bottom grip in 0°, 10°, 15°, 30° orientations. This influences not

only the stress distribution in the gage section by affecting the end-constraints, but it may also in-

fluence yielding and failure, as discussed in Chapter 3. In order to obtain meaningful results which

take into account the actual state of stress in the gage section, a correction procedure must be ap-

plied.

I.

a
r

i

x.
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2.3.2.2 On-Axis rest

The above mentioned end-constraint effects can be neglected for the on-axis compression tests, as

in the case of the tension tests. Since loading of the specimen does not produce rotation of tile,

specimen's ends, no additional shear force and moment are introduced. Disregarding the influence

of local and global buckling, the state of stress in the test section remains undisturbed and nearly

uniform. Therefore, the actual stress field can be expressed using eqn. (2.4).

2.3.3 Stress Ratios	 E

z

Since the stress field in off-axis compression coupons is calculated in the same manner as for the	 r
Lr

ofd axis tension test, the stress ratios for the various off-axis configurations are the same in tension 	
k
f

and compression. Therefore the different stress ratios for the off axis compression test specimens

are given in Table 3.

j	
r:

2.3.4 Correction of the Test Results

For the off-axis compression test, several effects influence the state of stress in the gage section. In ,

order to obtain meaningful results for the actual elastic and plastic response of the boron/aluminum 	 }

system, several correction procedures must be applied to the measured apparent data.

As mentioned previously, it was observed that the load was introduced initially into the test fixture

and not into the specimen. By plotting axial strain versus time and axial stress versus time, it could

be determined how much load was introduced into. the fixture. A typical set of plots for one in.

dividual test is given in Figures 9 and 10. A subsequent study of this issue revealed that the amount
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of loud which was initially  introduced into the fixture was independent of the fiber orientation and

therefore could be considered independent of the actual material response, The amount of this load

was approximately 190 pounds (3.5 ksi), The exact amount for each individual test was determined

on the basis of individual stress vs, time and strain vs, time plots. The results presented hi Chapter

3 were obtained by subtracting the amount of stress carried by the fixture itself for each individual

test from the stress measured in the experiments. It is believed that the the load was not released

back into the specimen during the test, since no change hi the strain or stress rate had been ob-

served.

The second phenomenon effect which influences the Stress distribution inn the gage section is the 	 I

end-constraint effect. For the ofd axis compression test the influence of the end constraints on the

stress field in the test section is more significant than for the off-axis tension test due to the small
1

aspect ratio of the compression specimens (1.5 instead of 12), as mentioned previously. In order

to characterize the effect of the end constraints on the stress distribution un the off-axis compression

test specimen, two different correction procedures were applied.	 r

The Pagano-Ilalpin model and the Pindera-I-lerakovich correction were used for the off-axis com-

pression tests in order to evaluate the error between the actual and apparent (experimental) values.

The reader is referred to equations (2.8), (2.9), and (2.13). In order to confirm the theoretical

predictions based on the Pagano-I'Ialpin model, an additional finite element analysis was performed.

Comparison of the finite element analysis results and test data (Chapter 3.2) demonstrates that the

Pindera-l•ferakovich correction methodology predicts well the amount of error between the appar-

ent and actual elastic moduli even for very small aspect ratios in the case of compressive loading.

The finite element analysis was performed using the FORTRAN code "ANFRAC", developed at

Vir6inia Tech 1291. This code is based on a standard displacement formulation using six-noded, 	 €

isoparametric elements and was developed for modeling anisotropic materials. The mesh used for 	 w
t_

the analysis of stress and strain distribution un the off-axis compression coupon is shown in	 n

Figure 11. It consists of 240 elements and 525 nodes. In order to model the actual gripping condi-
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tions and the influence of the end-constraint effects on the stress distribution in the compression

coupon, two different sets of boundary conditions weie used. 'These were; 1.) fully clamped, ;md

2.) simply supported at one node hi the y-direction. 'These houndary conditions simulated the

stiffest and softest possible responses of the compression specimens. The material input data f'or

the finite element analysis are the off-axis compression test results (Ell, E22, v12ni ), shown in Table

10. The value for the in-plane shear modulus was taken from the 45° off-axis tension test, since it

is believed that it provides the most accurate value of G12 1211.

The first set of boundary conditions, which was chosen to simulate the stiffest response, fully con-

strained the specimen at the top and at the bottom grip. In the finite element code the x- and y-

displacements were fixed for the 21 bottom nodes and the y-displacements were fixed for the 21 top

nodes. Additionally, in order to model the loading, a constant negative displacement in the x.

direction was specified for the 21 top nodes. The second set of boundary conditions, simulating the

softest possible response, simply supported the specimen only at two points in the y-direction and

constrained it in the x-direction. This was modeled in the finite element analysis by fixing the x-

displacements for the 21 bottom nodes, specifying a constant negative displacement in the x-

direction for the 21 top nodes, and additionally fixing the right bottom and the left top node in the

y-direction. Results and correlation between the two theoretical predictions and the experimental

results are given in Section 3.2. The individual results of the finite element analysis are presented in

Appendix 1).

All stresses in the finite element analysis were normalized with respect to the average shear stress

(eqn. 2.1) in order to perform a quantitative, elastic analysis of the stress distribution in the gage

section of the of a; ,,!s compression specimen.

The in-plane shear modulus G t2 is much more affected by the end-constraints than any other elastic

constant. It can further be stated that correction of the apparent values of the Young's Modulus

E,, (0) and Poison's Ratio v,,y(0) was not necessary due to the small difference between theoretical

predictions based on the far field stress a„ only, the Pagano-Halpin prediction and the experimental 	 ;r

a t!
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results. however, since the in-plane shear modulus G 12 is very sensitive to the end-constrains in the

fixture, especially 1'or small off-axis configurations, a correction procedure to evaluate the actual

in-plane shear modulus in compression is essential.

A procedure similar to that used for the off-axis tension test was applied to the off-axis compression

test. The procedure incorporates the transformation theory and the results from the finite element

analysis. The in-plane shear stress in the principal material direction can be expressed in terms of

the laminate stresses in the following manner:

T 12 = — sin 0 cos Ovx r + sin 0 cos O6yy + (cos20 — sin 20)T Xy 	(2.14)

Consequently, the ratio indicating the amount of error between the actual and apparent in-plane

shear modulus can be obtained in a similar manner as obtained for the I'agano-Ilalpin model by

r

	

	 relating the actual in-plane shear stress T12 (eqn. 2.14) to the apparent in-plane shear stress t13 (eqn

2.3), This results in the following expression:

rJ 12	 T12 _ (TXX _ 6yy	 ( Cos 10 — Sin20) T,	 (2.15)
G112 	 T12 GXX 	 6XX	 sin 0 cos 0	 UXX

The ratios 6*" , 6yy , and -T=y are obtained from the finite element analysis of the stress distrib-
6xx 6xx	 6xx

ution along the center-line of the specimen (see Appendix D).

The test results also were corrected for bending. In the case of the off-axis compression tests,

bending of the specimen was significant and influenced the recorded material response. Since two

0° strain gages were mounted on each specimen in a back-to-back fashion, two separate strain

readings were recorded for each individual test. The axial strains reported in this investigation are

the arithmetical mean of both strain readings, front and back, following eqn. (2.16) shown below.

r.
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ront	 back

Exx	
4x	 Exx	 (2.16)

l

	The amount of bending for the other two test methods was negligibly small and therefore not ex- 	 !

plicitly mentioned. C:

}}
1
h

2.4 Iosipeseic Shear Test

2.4.1 General Description

2.4.1.1 Test Procedure

i`

	

	 The third mctliod used to characterize the linear and nonlinear response of the boron/aluminum

composite system was the losipescu shear test. This test method was used for the determination
F

of the in-plane shear modulus G„ , the ultimate in-pane shear strength r12 and the ultimate in-prune
F

shear strain yu, . The unique specimen geometry (Figure 4) and fixture design ( Figure 12) result

in a state of stress in the test section, which is close to a state of pure shear. The unique specimen

geometry is the result of a thorough study by Walrath and Adams [30-331 using finite clement

analysis, and was originally studied by Bergner and Herakovich [341. The test fixture used for the

current project is a modified version recently developed by Walrath and Adams [32]. Application
[

and verification of the losipescu shear test procedure was discussed by Walrath and Adams 129-341

for various composite systems. Swanson et al (351 compared the losipescu shear test with the

torsion tube, a more traditional method for the determination of the in-plane shear modulus G,,.

TEST MET110DOLOGY- 	 38
:t



Pindera et al 1361 subsequently showed that if the test results of an losipescu shear test were inter-

preted correctly, using correction procedures, accurate results can be obtained. The correction of

the losipescu shear test results was based on fuiite element analysis, taking into account the nonu-

niform stress distribution in the test section (Section 2.4.3). Very good correlation between off-axis

tension test results and corrected losipescu shear test results was obtained in the above investi-

gation.

The Iosipescu shear test program consisted of monotonic and cyclic test y outlined in Table 5,.

Table 5. losipescu Shear Test Matrix

Fiber
Orientation

Loading 'Type j Number of Specimen

monotonic cyclic

0° 4 2

75° 2 0

80° 4 2

85° 4 1

90° 3 0

2.4.1.2 Specimen Ceonretr y and Instrumentation

The losipescu specimen geometry is shown in Figure 4. The specimen is 3.0 inches long and 0.75

inches wide with two 110° V-notches centered in the middle of the loaded edges.. The nominal	 s

specimen thickness is 0.055 inches and corresponds to an 8-ply lay-up.

All losipescu shear specimens were instrumented with TML FRA-2-11 rosettes oriented at 0 0 , -4511,

and -90°. Experience showed that uniaxial gages needed to correct for bending of the specimen

i
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during the test were not necessary for the Iosipescu shear specimens. For this reason only rosettes

mounted on the front of the specimens were used.

2.4.1.3 Test Fixture

The modified version of the losipescu shear test fixture, proposed by Walt •ath and Adams, is shown

in Figure 12. This fixture consists of two major parts, the left and right grip assemblies. The left

grip assembly is attached to the bottom plate with a guide pin in the right back corner of the bottom

plate, and the right grip assembly, which is connected to the moving part of the testing machine,

contains a linear bearing and slides up and down on the guide pin. This bearing, guide-pin combi-

nation assures axial application of the load in the test (V-notch) area. Thin, ductile aluminum irn-

serts were used between grips and specimen to guarantee a more uniform load introduction into the

specimen and therefore a reduction of the high stress concentration at the edges.

After fixing the bottom plate using c-clamps, the fixture could be used for reversed cyclic tests, ap-

plying positive and negative shear stresses. Results of these reversed cyclic tests are presented in

Appendix C.2.

y
y

i

t

t

r

F

k

n,
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2.4.2 Stress Field
	 j

2.4.2.1 Off-Axis Test

The average shear stress in the notched section of the losipescu specimen is calculated as follows

Txy 	 w ^W w/2 Txy dy =	 (2.17)
An

where

w = width in the notched section

P = applied axial load

A,, = cross section area in the notched section

	

a^x and cy,, are assumed to be zero in the test section. Consequently, using the transformation 	 +'

theory, the stresses in the principal material directions can be obtained as follows,i	 i.

cos20	 sin'O	 2 cos 0 sin 0	 0

622	 =	 sin20	 c0320	 — 2 cos 0 sin 0 	 0	 (2.18)

k	
T12	 — cos 0 sin 0 cos 0 sin 0 cos20 - sin20	 T,o,

which results in the following apparent material, principal stresses, 	 f

_	 s
6j, = 2 sin O cos O Tzy

_	 e

a	 - 2 sin 0 cos 0 TO	 (2.19)	 F

tt2 = (cos20 - sin20) TO	 p

where 0 indicates the angle between global and principal material coordinate system.
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2.4.2.2 On-Axis Test

The stress field in an on-axis losipescu specimen (i.e. 0° or 90° orientation) can be simplified in a

similar manner as for the off-axis tension test. Assuming a uniform stress distribution in the gage

section, the stress field in the Iosipescu coupon reduces to

	

00 TEST	 90° NEST

	

0	 bit -0

	

his = 0	 637 = 0	 (2.20)

	

T12=tier	 T12=-i,y

In reality, however, the shear stress distribution in the test section of on-axis and off-axis Iosipescu

specimens is not uniform. The nonuniform shear stress distribution is a result of the unique spec-

imen geometry and the manner of load introduction. Thus, correction procedures must be applied

in order to obtain an accurate value of the in-plane shear modulus C; 12 . 'I'hc stress distributions in

the test section of the Iosipescu specimens employed in the present invesligation are given in Ap-

pendix C.

2.4.3 Stress Ratios

For the Iosipescu shear test, different stress ratios were obtained using the average shear stress as-

sumption (eqn. 2.17). Based on eqn. (2.18) and (2.19), the stress ratios can be calculated in the

following manner..
E
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tie __ (cos20 — sin20)

(71,	
2 sin 0 cos 0

(2.21)

The different stress ratios for the off-axis configurations (75*, 80°, and 85°) are listed in Table 5.

Table 6. Stress Ratios for losipescu Shear Tests

F iber
Orientation

In-Plane Stress Ratios

all 622 r,2

all 61I (T11

750 1.0 -1.0 -1.732

80 0 1.0 -1.0 -2.748

850 1.0 -1.0 -5.671
f	

'
a

d

S
E

2.4.4 Correction of the Test Results

E
n

Since the stress distribution in the Iosipescu shear test specunen is nonuniform, the use of an av-

erage shear stress TXy eqn. (2.17) in the post-processing calculation yields only data on the apparent

in-plane shear modulus G12. It can be shown that the ratio TXY/ -,c where sxy is the local stress at	 I

the point whc.a the shear strain y ,,y is measured, corresponds to the ratio G 121G,2 in the case of the
s

on'-axis specimens. This ratio indicates the error introduced in the determination of the in-plane

shear modulus using the average shear stress assumption for the post-processing calculations. The

use of the average stress assumption is coirunon practice in material testing. The ratio of G12 IG2
i

can be used as a correction factor, correcting for stress nonuniformity along the center line (x = 0.0)

of the specimen.

l
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The FOR'T'RAN code "ANT+'RAC" was also used for the finite element analysis of the stress dis-

tribution in an losipescu coupon. The mesh employed for the analysis, shown in figure 12, con-

tains 468 elements and 1001 nodes, The boundary conditions, simulating experimental conditions,

are also shown in Figure 12. The input values for the finite element analysis were taken from the

off-axis tension test ( E11t E221 v12i G12 ), The input value for the in-plane shear modulus G12i in par-

ticular, was taken from the 45° off-axis tension test. The resulting stresses were normalized with

respect to the average shear stress Tx,,, eqn. (2.17), in order to compare the magnitudes of the in-

plane stresses in the gage section.

For the on-axis tests (0°, 90°), the ratio %Y/Txy is directly related to the ratio of the actual and ap-

parent in-plane shear modulus G12 /G12i since for on-axis configurations 1' r ,1 = I T12 ( . For off-axis

configurations however, the stresses in the global coordinate system must be transformed to the

principal material coordinate system. Applying the transformation theory, the in-plane shear stress

T12 can be expressed in terms of global stresses in the same way as was done for the off-axis com-

pression tests (see eqn. (2:14)).

Relating the actual in-plane shear stress T,2 to the apparent in-plane shear stress c;,, the following,,

expression for the ratio of the actual and apparent in-plane shear moduli can be obtained

t

G12 __ T 12	 ( sin 0 cos 0)	 °'xx +	 ( sin 0 Cos 0)	 ayy + Txy (2.22)
G 12	 412

_ 	
(cos20 — sin20) Txy	 ( COS20 — sin 20) t

xy	 Txy

Again, the ratios 6—x , a'''' , and — MY were obtained from the (mite element analysis. The individual
Txy T„y	 TO

finite element resuits for the various on- and off-axis configurations are presented in Appendix L.
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3.0 EXPERIMENTAL RESULTS

The experimental results presented in this chapter are all apparent values, 'They were obtained as-

suming a uniform stress distribution it the gage section based on the average axial stress assumption

(eqn. 2.1) and the average shear stress assumption (eqn. 2,16). The measured elastic constants :are

compared with the theoretical predictions of the transformation theory, neglecting the shear cou

piing effect due to end-constraints, the Pagano-Halpin model, taking into account the shear cou-

pling effect, and the finite element analysis, 	 -

For the evaluation of the elastic properties the fallowing definitions were used, The Young's

Modulus CXx (0) is defined as the ratio of the initial average axial stress 6xx divided by the measured

initial strait s,,,, (eqn. 3.1), Poisson's ratio v^ y(0) is defined as the ratio of the measured negative

initial transverse strain -cyy divided by the measured initial longitudinal strain c,,, (eqn. 3.2), The

apparent in -plane shear modulus C;, was obtained by dividing the initial apparent in-plane shear

stress T I'= by the measured initial in-plane shear strain y,= (eqn. 3.3).

U.xx(0)	
(3.1)exx(e>	

E,rX(o)

711t

r4



vxy(0) _ — cyy(0)
cxx(0)

G12(0) 	
rl2(0)	

(3.3)
712(0)

The expressions for the Youngs Modulus and Poisson's ratio for an orthotropic lamina in the

global coordinate system can be obtained by performing a transformation with respect to the off-

axis angle 0 (see Figure 4),

Exx(0) =	 1	 (3,4)

1 cos40 +	 1 _ 2v12
) sin20 cos2A + 1 siriA

	

I	 (G12 EI I 	 E22

v(0) = Exx(0) y
12 ( sin40 + cos40) —	 + 1	 1	 sin 20 

COS 20	 (3,5)xy
Ell	

(T!1_1	 E22 — G12 )	 I

The input values for equations (3.4) and (3,5) were taken .from the 0 ( E 11 , v} = ) and 90° ( E22 )

on-axis tests and the 45° ( G12 ) off axis tension test,
f

A

R

3.1 Tension Test Results

Typical results of the monotonic on- and off-axis tension tests are shown in Figures 14 and 15,
r

where the global stress-strain and Poisson's responses are presented. Results of individual tests are

given in Appendix A.1 . The scatter in the test results obtained from different specimens of the same
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configuration was extremely small (less than 1 %), which justifies the presentation of only one

representative plot for each orientation.

Transforming the global results shown in Figure 14 to the principal material directions, the in-plane

material responses shown in figures 16 18 are obtained, The in-plane longitudinal response was

normalized with respect to C►► , whereas the in-plane transverse response was normalized with re-

spect to the transverse Young' Modulus C„ .

mow=
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3.1.1 Elastic Response

The average values of initial moduli obtained from the various off-axis cotdigurations are summa-

rued in Tables 7 and 8. Also included in the tables are the maximum stress and strain recorded at

failure.

'fable 7. Average Tensile Properties

Fiber
Orientation

0

Elastic
Modulus
Exx(msi)

Poisson's
Ratio

vxy

Ultimate
Stress

6x.,(ksi)

Ultimate
Strain
s„(%)

0' 32.93 0.237 187.5 0.826

100 31.36 0.257 94.5* 1.688*

15° 30.64 0.272 66.8* 1.846*

300 26.50 0.318 26.9 0.638

450 22.03 0.317 25.0 1.708

600 19.90 0.271 16.9 0.204

900 20.21 0.150 17.1 0.184

cyclic loading

c

t
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Table 8. Average Shear Properties from Off-Axis Tension 'Pest

Fiber
Orientation

0

Shear
Modulus
Ci2(msi)

Ultimate
Stress

'ri2(ksi)

Ultimate
Strain
712("/u)

100 8,50 15.67* 5.513*

150 8.41 16.08+ 5.672*

300 8.59 11.41 1.297

45 0 8.35 12.46 2.806

600 8.05 7.60 0.285

* cyclic loading

Comparison between apparent experimental results and theoretical predictions of the elastic moduli

is given in Figures 19 - 21. Due to the fact that boron/aluminum is not highly anisotropic and the

aspect ratio of the off-axis tension specimens is fairly high, no significant difference between the

Pagano-Halpin prediction, which takes into account the shear coupling effect due to end-

constraints, and the prediction based on the far field stress (6 xx) only, is observed.

For the global Young's Modulus EJO) (Figure 19), the correlation between experimental results

and theoretical predictions is excellent. Six out of seven experimental values fall directly on top of

the theoretical predictions.

'I'lic experimentally obtained Poisson's ratio v xj, (0), Figure 20, exhibits some scatter. The thcore-

tical predictions are somewhat lower than the experimental values, but follow the same general

trend. A remarkable result is the agreement between experiment and theory for the transverse value

v21. it is generally recognized that the evaluation of the transverse Poisson's ratio is very difficult.

High amount of scatter in the experimentally observed transverse Poisson's response of many ad-

vances composites is typical, which is a result of small failure strains. 'Phis affects the size of the

initial region and makes it difficult to determine an initial transverse value. Small failure strains for



the 90° on-axis tests have been also noted in the present investigation. Nevertheless, the amount

of scatter in the data presented in Figure 20 is fairly small. It is certainly reassuring that the

difficult-to-satisfy relationship between longitudinal and transverse response (eqn. 3.6) holds for the

obtained tensile experimental data.

f^
	

V12	 _ 121

El 	 E22

	 (3.6)

The correlation of the measured apparent in-plane shear modulus G12 and the prediction of the
i

Pagano-llalpui model is also fairly good (Figure 21), For small off-axis orientations the difference j

Between the actual and apparent value is very small. 'This result was expected, since the ratio of

anisotropy ( Ell / E22 ) is very small and the aspect ratio of the off-axis tension coupons is fairly

large. The poor correlation of the values obtained from the 60 ° off-axis test is not understood. It

can be seen in Figure 21 that the use of the G 12 value obtained from the 45° of-axis tension test

as an input value for the theoretical analysis is justified. 	 It can be shown analytically that the 45°

off-axis coupon is virtually unaffected by the shear coupling effect and therefore gives the most ac-

curate value of G 12 . Considering the stress field in the gage section used by Pagano and Halpin, eqn.

(2.7), the actual in-plane shear stress can be expressed in the following manner including the shear

coupling effect.

r12 = —	 sin 0 cos Ou	 + ( cos20 —	 sin 20).r 	 (3.7)
XY

i

For the 0 = 45°, cos-0 = sin20 and the shear coupling term vanishes. t

}
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3.1.2 Plastic Response

Yielding

In order to determine the yield point for each individual test, three different methods were used.

The yield point was defined as the proportional limit of the stress-strain or Poisson's responses.

The first indication of nonlinearity from the initial linear curve of the tensile stress-strain response

( 6x,, vs. exx ), the Poisson's response ( -cyy VS. sxx ), and the in-plane shear response ( t„ vs, Y1 2 )

was defined as the initiation of yielding in the present study. Comparison between the yield loci

obtained from the tensile response, Poisson's response, and the in-plane shear response for the av-

erage axial stress 6,x , the actual axial strain e xx , the apparent in-plane shear stress T 12 , and the actual

inn -plane shear strain Y12 is presented in Figures 22 - 25. In these figures average values for each on-

and off-axis configuration were plotted. In general, it can be said that the difference between the

three different approaches for determining the yield point is small, with the in-plane shear response

predicting generally the lowest yield stresses. The highest values are obtained from the tensile

stress-strain response. The results of each individual test are given in Appendix A. The scatter for

each on- and off-axis configuration is fairly small.

k
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Subsequent Hardening

Monotonic Test

As shown in Figure 14, the nonlinear (plastic) response of boron/aluminum is a function of the

fiber orientation. The amount and rate of material softening increases with increasing off-axis angle

0. 'The change in the off-axis angle 0 results in a change of the in-plane stress ratios. The resulting

stress-interaction effects for the various in-plane responses (611 vs. e 111 (Y22 vs, F1221 and T 12 vs. y 12 )

are well documented in Figures 16 - 18. It should be mentioned that the 10° and 15° off axis ten-

sion coupons were not tested monotonically to failure due to grip slippage or strain gage malfunc-

tion. For these low off axis coupons, the strain gages were not able to record the high plastic strain

at failure. Consequently, the tests were stopped, the specimens were regaged and _subsequently re-

loaded to failure.

As a first attempt to determine the functional form of the plastic response of boron/aluminum in

the global and material principal coordinate systems, the global axial and in-plane longitudinal and

transverse response as well as the in-plane shear response were plotted on a logarithmic scale (Fig-

ures 26 - 29). In these figures, only the plastic strains are presented. Recalling the following clas-

sical definition of the total strain,

F 
r._ E1. + cJl.	 (3.16)

the global axial plastic strain can be expressed in the following manner,

Exx = clo . — 
6xx
Exx	

(3.17)

where the one-dimensional Hooke's Law,

6xx = BXX sxx	 (3.18)

ls	 has been used.
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The other plastic strain components (cjI, sg2 t and y„ ) were calculated in a similar fashion. The

linearity of the curves in Figures 26 - 29 illustrates the possibility of approximating the plastic re-

sponse of boron/aluminum by a power law expression, using the same power exponents for each

global or in-plane response, but different coefficients depending on the different off-axis oricn-

tations, The coefficients represent the varying amount of stress-interaction. The only exception

was the 0° test, where a bimodular hardening was observed.

For completeness, the result obtained from a typical 0° Iosipescu shear test was included in Figures

f 18 and 29. From Figure 29 it can be seen that the plastic response of a 0° Iosipescu shear test is

very close to that observed in.  an off-axis tension test, but at a higher stress level. A complete

comparison of the Iosipescu shear test and off-axis tension test results is given in Chapter 4.

The individual monotonic off-axis tension test results are given in Appendix A.1, The small amount

of scatter in the results for each individual orientation forms a solid base for subsequent statements

and conclusions.

The global Poisson's response exhibited some scatter for different tests of the same on- and off-axis

configurations for high off-axis angles. The plastic response exhibited linear behavior for all oricn-

tations.

4
The in-plane shear response exhibits highly nonlinear behavior. Thus is especially true for small

off-axis orientations (10°, 15°), where the high extent of nonlinearity and corresponding dissipation

is seen. Thus leads to the conclusion that the nonlinear response of the entire lamina was influenced

to a large extent by the intralaminar shear stress.

t

t`.
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Cyclic Test

In order to obtain a complete characterization of th y,. plastic response of boron/aluminum, cyclic

tests were performed, The dissipative nature of the nonlinear response is well documented in the

figures shown in Appendix A.2, where a large amount of permanent strain accumulation is ob-

served. L'ven for the 0° tensile test, permanent strains are evident, This is unlike the results of 0°

compression tests as will be shown in Section 3,2.2. Another significant result of the cyclic tests is

the fact that the unloading and reloading paths are nearly identical, even though loud cracking

noises could be heard, indicating the possibility of interior damage during the last loading cycle.

The difference between the unloading and reloading paths increased with the number of cycles

during each test, but still remained very small. The slope of each unloading and reloading cycle also

remained nearly the same during each cyclic test. The large amount of permanent strain accumu-

lation in the 10°, 15°, and 45° off-axis tests and shear strain accumulation in the 10 and 15° off-axis

tests is a result of large plastic strains in the aluminum matrix.

The cyclic loading of the specimens also influenced the ultimate strength values. With the exception

of the 45' off-axis test, where early grip failure due a high stress concentration at the interface be-

tween grip and gage area occurred, cyclic loading increased the failure stresses and strains. For the

other off-axis tests, the failure stress was increased by about 4 % and the failure strain by about

20"/" , The largest increase was observed un the case of the 90° on-axis test, where the failure stress

was increased by about 25 "/o and the failure strain by almost 40

Failure Stress (Strength

The failure stress (strength) of a material is always an important factor in material characterization,

The strength may be influenced by factors such as temperature, radiation, humidity, loading con-

ditions and history, and the material structure itself. For anisotropic materials such as composites,

the material structure plays an unportant roll. Recent studies by Johnson 1111 on fatigue damage

and by Shorshorov et al 1121 on interface strength showed the dependence of the strength of

A.
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boron/aluminum composites on the various effects mentioned above, Lynch et al 1181 showed how

material strength depends on thermal history during the tnanuflaeturing process and stihwquent

application. For the present study it can be shown that the axial strength of the unidirectional

boron/aluminum is a function of the fiber orientation. As illustrated in Figure 30, the strength

decreases drastically in the off-axis range 0° - 20

Two different failure criteria were used to predict failure for the tested off-axis configurations, The

first criterion is the 'Maximum Stress Criterion', where failure is predicted by relating in-plane

stresses directly to the various failure modes given in eqn. (3.19) 1201.

a l = X,

	

62 = Yt 	(3.19)

I T 121 = s

In the above, X, is the longitudinal and Y, is the transverse strength in tension and S is the in-plane

shear strength. The predicted failure occurs when the first of the three equations is satisfied.

The second criterion usej !o predict strength is the 'Tsai-Wu Criterion', which uses a tensor

polynomial approach. For on orthotropic lamina under plane stress, the three-dimensional tensor

polynomial expression

	

FFwU = 1	 (3,20)

reduces to

2

	

Fi 6I + F262 + F6T 12 + F1161 + 
F22(T2 2	

2
+ 1

66T , 2 + 2F126162 = 1	 ( 3.21)



4

'I

where

f.1 = I + _L
Xl	XC

12 = I	 +	 I

Yc 	 Yc

_	 l

1'22
l

Yc Yc

1'^ 2 =
!" I 1 r22

2

i

(3.22)

5

In view of the fact that the shear strength in the principal material directions is independent of the

shear stress sign 1201, the shear terms in the Tsai-Wu polynomial become

F'6 = 0

1'66 = 
1
12

The influence Of the r12 term on the Tsai-Wu polynomial was thoroughly studied by Pipes et al 120,

37). They concluded that the coupling term 1 %12 does not influence significantly the 'Tsai-Wu pre-

diction. In the present study the in-plane coupling term was included for completeness.

In order to incorporate the end-constraint effects caused by the shear coupling phenomenon in the

failure criteria. the Maximum Stress and the 'Tsai-Wu criterion were modified as follows.

Considering the state of stress in the, off-axis coupon derived by Pagano and Halpin (25) (eqn. 2.7),

a' 1	COSs20	 sin 20	 2 sin 0 cos 0	 tTxx

02	-	 sin20	 Cos 2 0	 2 sin 0 cos 0	 0	 (3.24)

2	 2
T12	 —s 0 COS a Sul 0 cos a cos u — Sit) 0	 Txy

(3.23)
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21:

Co s'()	 sin 0

CY	
YI

Sill . 	
20 sill 0 Cos

S
CY XA

sin 0 cos 0 -

While the modified 'I'sai-Wu criterion (eqn. 3.21) takes the 
1,61-111:

,4(jxx 2 
+ Bo , , — I = ()	 ( I .1,S)

where
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Based on the new dermition of the in-plane stcea• ixuipont.nts tcxttt.	 ttt:` Mamt►tuttt Sttt,^,:s

criterion becomes.

cos2O + 20 sin 0 cos 0

x' sin''0 — 211 sin 0 cos O

6xz

	

sin 0 cos 0	 Vii( cos 10 - si,12O)

While the modified Tsai-Wu criterion (eqn. 3.21) takes the form:

Avxx 2 + BcTxx — 1 = 0
i	 (	 )

3	
where

t^.
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k

A = Ft l (cos40 + 41) sin 0 cos3 0 + 4p2 sin2 0 COS20)

+ F22( Sill 40 — 411 Su13 0 COS 0 + 4112 sin 0 cos 0)

+ 1 U6[ sun 2 0 C0820 — 2p Sill COS 0( COS20 — sin20) + (3 2 ( cos2 0 sin 20)2)

+ 21' 12[ Sin20 COS20 — 211 Sill 0 COS 0( COS20 _ Sit120) — 4112 s in20 
COS '2

	

8 = 11 ( COS20 + 211 sill 0 COS 0) + 1'2( s4i20	 2fi sin 0 Cos 0)

After Solving (lie quadratic equation (3,28), the axial strength as a function of the fiber orientation

0 finally can be written un the following mwiner,

Oxx 
_	 B + 132 + 4A	 (3,29)" '" 2A	 ^/ 4,1 2

where the negative root is neglected for physical reasons.

'fable 9. Material Strengths

X, _	 187.5 ksi

Y, 17.1 ksi

A1, —	 • 194.4 ksi.

Y, _	 -45.3 ksi

S,, —	 19.5 ksi

SIM =	 15.7 ksi

S,o, 0 losipescu test results
S„, 10° tension test results

The input data for the two failure criteria are given in 'fable 9, In the above table, the subscripts

t and c denote tensile and compressive properties, respectively. The axial strength in tension ( X, )

is somewhat questionable due to the fact that all 0 0 tension test specimens failed in the grip area

and not in the gage section. The location of the failure may also explain the large scatter in the

experimental data. Therefore, the value given in Table 9 may be interpreted as a lower bound of
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the axial strength. Pipes ct al 13) obtained a value of X, = 223,9 ksi fir monotonic loading condi-

tions, which is close to the value obtained from the 0° cyclic test, The transverse strength in tension

(Y,) obtained from the 90° test is larger than the strength values from the 60° off'-axis test, as also

observed. by Pipes 131,

Two values are given in `fable 9 for the in-plane shear strength 'S'. One was obtained from the 10°

off'-axis test ( S„,, = 15,5 ksi ) quid the other from the 0° losipcscu shear test ( 51,, = 19.9 ksi ),

The shear strength from the 0° losipcscu shear test was defined as the stress level where the first

drop in the recorded load occurred, This drop corresponds to the initiation of axial splitting at the

V-notch of the losipcscu specimen, It is believed that alter the first crack occurred, the measured

data is: more representative of structural rather than material response, Recent studies at Virginia

Tech 121, 361 indicate that this particular value from the 0° losipcscu shear test yields a good upper

lower bound oil 	 in-plane shear strength 'S',

The two different theoretical predictions, Maximum Stress and Tsai-Wu criteria, are compared in

Figure _30. For both criteria, the shear strength estimate froin the 0' losipcscu test was used, It can

be seen in Figure 30 that the Maximum Stress criterion overestimates the off-axis strengths in

comparison to the tensor polynomial criterion. For a n ►ore sophisticated approximation of the

material strength, the Tsai-Wu criterion was used, taking into account the linear and quadratic

terms. Comparison between the theoretical predictions, using the two different del'uaitions of the

in-plane shear strength, and the experimental results from monotonic and cyclic tests is given in

Figure 31. The influence of the different defuution of shear strength oil Tsai-Wu tensor

polynomial, is also illustrated in Figure 31. For the 30 and 60° off-axis tests, S,,, provided an ex-

cellent correlation between theoretical prediction and experimental results, whereas for the other

off-axis configurations the prediction based on the 0 losipescu shear test value Sl,,j gave a better

correlation.
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Failure Modes

Different failure modes were observed for different configurations. (catastrophic failure was ob-

served for the 0° test, resulting in a rough failure surface. Up to 40 % of the fibers were broken ill

the 10° off-axis test; one test failed in shear along the fibers. The amount of fiber breakage was

smaller for all other off-axis tests. Whereas for the 30° off-axis test only shear failure along the fibers

occurred, up to 10 % of the fibers were broken in a 15° and 45° test. For the 60° off-axis test fibers

were broken throughout the failure surface in an irregular pattern. In the case of the 90° test fiber

breakage was observed at both edges of the failure surface.
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Figure 32. Failed Off-Axis Tension Test Specimens
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Fiber
Orientation

0

Elastic
Modulus
8,,,(msi)

Poisson's
Ratio

yxy

Ultimate
Stress

o^,(ksi)

Ultimate
Strain
a„C%)

00 33.27 0.421 194.4 0.610

100 32.10 0.333 183.9 0.771

150 31.21 0.465 128.9 0.740

300 27.00 0.373 79.4 2.106

45 0 23.44 0.396 55.7* 7.184*

900 20.44 0.140 45.3 2.592

3.2 Compression Test Results

Typical results for global stress-strain, Poisson and principal shear response from monotonic off-

axis compression tests are given in Figures 33 and 35. The presented results are all apparent values

corrected only for bending. As in the case of the of-axis tension tests, only one representative plot

for each fiber orientation is given ui the above figures. The observed scatter in the experimental

data was larger than for the off-axis tension tests, but still small enough to justify the choice of a

representative plot for each fiber orientation.

3.2.1 Elastic Response

The average compressive material properties are given in Tables 10 and 11, whereas the individual

w
monotonic test results arc given in Appendix B.1.

f Table 10. Average Compressive Properties
rt	 {

i

i
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Figure 33. Global Compressive Stress-Strain Response
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Table 11. Average Shear Properties from Off-Axis Compression 'Pest

Fiber Shear Ultimate Ultimate
Orientation Modulus Stress Strain

0 Gis(msi) tiz(ksi) Y ► s(%)

10" 10.38 32.01 1,658

150 9.71 33.10 2,850

300 9.82 34.46 4.311

450 7.94 27,83* 7.301*

* no failure

The individual test results are compared with the theoretical predictions of the transformation the-

ory based on the far field stress only, the Pagano-Halpin model, and finite clement analysis (Figures

36 - 38). For the global Young's Modulus in compression (Figure 36), tike influence of the small

aspect ratio is negligibly small, as shown in the small difference between the theoretical predictions

based on the far field stress (6 x„) only and the Pagano-flalpin model. The correlation between

theory and experiment is excellent. The finite element predictions also correlate well with the ex-

perimental results. Small differences between the results of finite clement analyses based on two

different boundary conditions are observed. The finite element results based on boundary condition

##2 (only one side node fixed in the y-direction at the top and at the bottom grip) yielded the best

correlation with experimental data.

The remaining elastic constants were influenced by the end-constraint effects. For the global

Poisson's ratio (Figure 37), distinct differences between the predictions based on the far field stress

(axx) and Pagano-I lalpin model were observed. The predictions of the finite element analysis exhibit

the same general trend as the Pagano-Halpin model, with the fully clamped boundary conditions

predicting higher, and the simply supported in the y-direction boundary conditions smaller,

Poisson's ratios. The experimental results did not follow any pattern, resulting in poor correlation

between theory and experiment. Whereas the transverse Poisson's ratio in. compression (v2I'm

l

f

G
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1

p,140) was close to the one in tension (v,r _ 0. 150), the longitudinal Poisson's ratio in compression

(vl;'^ = 0.421) was nearly twice. as large as that in tension (v(p = 0.237), The small amount of

scatter in the data of v„ m confirms the consistency of the experimentally obtained value. The reason

for the discrepancies observed in the compressive Poisson's response is not clear.

The: influence of the end-constraint effects on the in-plane shear modulus G11 is documented in

Figure 38, Large differences between the actual and apparent values can be seen, especially for

small olf-axis ano, es. '['his is due to the small aspect ratio of the employed compressive specimens,

in contrast to the tensile coupons. The difference in the finite element results based on the the two

different set of boundary conditions increases with decreasing off'-axis angle, The correlation be-

twec,a the theoretical predictions and the experimental results is not as good as for the off-axis

tension test. The difference in the extent of scatter in the experimental results in tension and

compression can be explained by the far more complicated test procedure in compression than in

tension.

a
l	 3.2.2 Plastic Response

Yielding

The same methods were used to determine the yield point in compression as in tension. The yield
i

point was defined as the proportional limit of the compressive stress-strain response (a,, vs. a,,),

the compressive Poisson's response (-syy vs, a„), and the compressive in-plane shear response (T*l

VS , 712). Figures 39 - 42 show the various yield loci of the average axial stress 6,,, the actual axial

strain e„ , the apparent in-plane shear stress T1 2 r and the actual in-plane shear strain 712 . Average

values for each on- and off-axis configuration were plotted. The difference between the results of

s	 the three different methods is small, except for the 0 on-axis test. The in-plane shear response
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predicted the smallest values. The highest values were obtained from the Poisson's response, which

were nearly identical to the values obtainedfrom the stress-strain respome.

The high yield stress of the 0° specimen is most likely due to tensile residual stresses in the matrix.

Due to the high-pressure bonding at approximately 100011, thermal residual stresses are introduced

into the composite during cooling to room temperature. A quantitative analysis of the thermal

residual stresses is given in Appendix F. Based on a closed form elasticity solution for an isotropic

cylindrical fiber surrounded by isotropic matrix, the magnitudes of axial, radial, and circumferential

residual stresses, due to a temperature change of AT = -100°F are given. The particular choice of

the ironer and outer radius of fiber and matrix corresponds to the :fiber volume fraction of 46 ;'o.

An extensive study is necessary in order to determine the effective temperature change ATO# corre-

sponding to the actual residual stresses present in the boron/aluminum composite after curing. This

is beyond the scope of the present investigation. However, it can be qualitatively stated that high

tensile residual stresses must be present in the matrix of the boron/aluminum composite due to the

large temperature drop during manufacturing process, resulting in the differences in tensile and

compressive yield stresses.

The high yield points obtained from the 10° and 15° off-axis tests can be explained by the specimen

geometry and the resulting boundary conditions, since for the 10° and for the 15° off-axis coin-

pression test 74 % and 60 % of the fibers in the specimen are simultaneously held by the top and

bottom grips. This imposes an additional constraint on the deformation of the specimen. Al-

though in the 30° off axis compression specimen 15 % of the fibers were running directly from the

top to the bottom grip, the yield point was not noticeably different from the yield point of the

corresponding tensile coupon. Complete comparison between the yield loci in tension, com-

pression, and shear is given in Chapter 4.
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Subsequent Hardening	 10

Monotonic Test

The nonlinear response in compression is a function of the fiber orientation. For the off-axis
^x

compression test,the specimen geometry and the resulting end constraints arc also an influencing

factor. Material softening was observed for all on- and off-axis configurations. 	 The extent of sof-

tening observed in the response of 0°, 10° and 15° spechnens is limited. 	 In the case of the 0°
a

specimen the majority of the load is carried by the fibers, while in the case of the 10° and 15° 	 I	 i

specimens the constraint of the fibers might have influenced the plastic deformation. 	 In the re-

maining orientations, significant amount of plastic deformation is evident.

Material stiffening was also observed in the plastic region after an initial softening due to yielding
a,

inn 10°, 15° and 30° specimens. This phenomenon is questionable and may be the result of the end

constraints mentioned above. I3y loading fibers directly and preventing them from rotating, global

and local buckling effects influence the experimental test results in compression, especially in the

t plastic range. A distinction between pure material and structural response must be made in such

` circumstances. In view of the high amount of bending observed in the individual compression tests,

f
the recorded experimental data become meaningless after a certain point. For the 45° off-axis and

`
,

for the 900 specimens, on the other hand, no stiffening of the material was observed in the plastic 	 w
r

range. This was expected, since the fibers were able to rotate, being constrained only by the matrix

(material response) and not by the fixture (structural response). It can be stated in general that for	 i

all! on- and off-axis compression tests of the same fiber orientation, differences in the nonlinear

(plastic) response were observed in contrast to the initial elastic response.

l

The Poisson's response exhibited even larger differences for the same on- and off-axis configurations

in the plastic range, especially in the case of the 30° off-axis test. In the case of the 0°, 10°, and 15°

specimens, the Poisson's ratio approaches infinity at large strains (Appendix I3), which has to be

interpreted as a structural and not a material response. The 45 0 off-axis test exhibits a nearly con-
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stant Poisson's ratio, as expected, since it is unaffected by the end constraints. For the 90° tests the

Poisson's response produced two different trends. In one test, the Poisson's ratio approached in-

finity, as observed in the 0", 10°, and 15" tests, whereas a chat ►ge in sign in the plaslic range was

observed in two other 'tests. This phenomenon was also observed by Ilerakovich and Shuart [9],

who argued that it was caused by "a failure mechanism in the matrix material."

The in-plane shear response in compression exhibited material stiffening in the nonlinear region for

the 10*, 15°, and 30° off-axis tests, after art initial material softening. Again, this can be seen as a

result of the end constraints, and therefore as a structural response. Similar to the off-axis tension

tests, pronounced nonlinear behavior in the in-plane shear response in compression was observed.

This leads to the conclusion that the overall nonlinear response in compression also is influenced

significantly by the intralaminar shear stress.

Cyclic Test

The significant effect of the end constraints on the nonlinear stress-strain response was clearly

demonstrated in cyclic compression tests. Unlike the cyclic off-axis tension tests, the 0° and 10°

ofd: axis test exhibited no permanent strain accumulation. Also, enormous differences between un-

loading and reloading paths, especially for the 10° off-axis test, were observed, resulting in ques-

tionable Poisson's and in-plane shear responses. Comparison of front and back gage readings

showed that bending was present in the specimen during loading and reloading. However, no

permanent out-of-plane deformation occurred since during the unloading the specimen lost its

curvature and was perfectly flat at the zero load level. The results of the 45° cyclic test are somehow

more meaningful and useful for the characterization of the material response. Like the cyclic off -axis

tension tests, a high extent of nonlinearity and dissipation was observed, resulting in a large amount

of permanent strain accumulation. Also, the unloading and reloading paths were nearly identical.



Failure Stress (Strength)

Based on the equations given in Section 3.1,2, the failure strength curves shown in Figures 43 and

46 were obtained, In these figures theoretical predictions and experimental results are compared.

The influence of the different aspect ratios in tension and compression is additionally shown in

Figure 44. A change in aspect ratio in the modified Tsai-Wu failure criterion had significant in-

fluence on the predicted strength. The influence of the different Poisson's ratio in tension (v12 =

0.237) and in compression ( v12 = 0.421) on the other hand, was negligibly small. In Figure 43, the

two different failure criteria arc compared with each other, using compressive input data (L,/I7 =

1.5) and the shear strength from the 0° losipescu test. A large difference between the two criteria

tier high off-axis angles was observed. The correlation between the theoretical predictions based on

the Tsai-Wu failure criterion and the experimental results is rather poor ( Figure 44). The poor

correlation can be explained to a certain extent by the presence of end-constraint effects which result

in a structural rather than material response at failure. Also, the tensile residual stresses in the

supporting matrix, by delaying matrix yielding, may increase the failure stress. This may explain

the difference in the transverse strength in tension I Y, I = 15.7 ksi and compression I Y, = 19.9

ksi, where the matrix is directly loaded.
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Failure Modes
ax x

The failure modes in compression were influenced by the specimen geometry and end-constraint
7

effects.. The failure of the 0° specimen was catastrophic and characteristic of compression tests. The

failure was accompanied by an extremely load noise. Parts of the failed specimen were scattered in i
all directions and other parts were attached to the grips of the test fixture and had to be removed

with screw-driver and sand paper. The 10°, 15°, and 30° oft'-test coupons failed differently than the

0° coupons. Only the directly supported fibers were broken, always at the same location for each	 1

individual test. failure occurred always close to, but never in the Vip area. All failures for each

individual on- and off-axis compression test occurred in the test section. In the 45° off-axis test a

shear failure was observed, resulting in no fracturo of the specimen, but in an asynunctric barrel-like

permanent deformation. The deformation in this case reached the limit of the fixture, so that the

loading of the specimen up to failure was not possible. No fiber breakage was observed. 'File 90°

coupon showed the characteristic 45° shear failure before buckling occurred, which was ultimately

responsible for failure. Failure. in this case occurred close to the location where failure took place

in the 10°, 15', and 30° off-axis specimens. Representative failed off-axis compression specimens

are shown in Figure 45.

{

t

F
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3.3 losipescit Shear Test Results

The Iosipescu shear test was performed in order to provide additional data on the in-plane prop-

erties, such as the shear modulus G 1 = , the shear strength S (t 111211), and the ultimate shear strain yr,'.

Typical monotonic in-plane shear responses for various on- and off-axis Iosipescu shear tests are

given in Figure 46, As mentioned earlier, two different data acquisition systems were used for the

losipescu shear tests, The results presented in Figures 46 and 47 are based on results obtained with
3

the aid of the [13M-X"1' computer system, which was believed to give more accurate values, For

completeness, the data obtained with the MINC system are also fisted together with the individual

test results in Appendix C, Only one representative plot for each on- and off-axis orientation is

presented in Figure 46.

i

3,3.1 Elastic Response

Based on the individual test results (Appendix C), the average shear properties are listed in Table

12. The average values for the yield point and the in-plane shear modulus are based on individual

tests obtained using both data acquisition systems. For the determination of the ultimate stresses

and strains only the results obtained with the aid of the IBM-X'I' computer system were considered.

-
i

r
u
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Table 12. Average Shear Properties from losipescu Shear Test

Fiber
Orientat ion

10

Shear
Modulus
G12(msi)

Ultimate
Stress
t;2(ksi)

Ultimate
Strain
712(%)

00 6.67 19.87 6.540

75 0 6.42 14.44 8.965

80° 6.65 17.39 4.047

850 6.72 17,47 3.796

900 5.67 15.23 6.915

The apparent in-plane shear modulus G1 2i obtained from the various on- and off-axis losipescu

shear tests is shown in Figure 47, together with the theoretical predictions by the finite clement

analysis, based on an input value of G,z = 8.35 ksi from the 45° off-axis tension test. The corre-

lation between theory and experiment and between the off-axis tension test and the Iosipcscu shear

test results was unexpectedly poor. The results were unexpected because recent studies at Virginia

Tech 121, 361 have illustrated the ability of the losipescu shear test to provide an accurate value of

the in-plane shear modulus for resin matrix composites. A more complete discussion of this issue

is given in Chapter 4.

3.3.2 Plastic Response

Yielding

The yield point was defined as the proportional limit of the in-plane shear response (t;, vs. '112).

The corresponding yield loci for the apparent shear stress t12 and the actual shear strain Y12 are given
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in [Figures 48 and 49. It is interesting to note the large differences in the yield stress obtained from

the 0° and 90° Iosipescu specimens. 'l'heoretically, these should be the same if' the applied shear

stress is the same. While some differences exist in Ilia test section shear stress distributions in the

0° and 90° Iosipescu specimens, these diffeences are not sufficient to explain the large differences in

the yield stress observed in the two specimens.
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Subsequent If Iardening

Monotonic 'Pest

As observed in the off-axis tension and off-axis compression tests, the nonlinear response is a

function of the fiber orientation. However, no discernible trend could be observed in the hardening

response obtained from the Iosipescu shear tests which could be related to the off-axis angle. The.

amount of hardening in the plastic region followed an irregular pattern. As in the case of the yield

stress, significant differences in the nonlinear response of the 0° and 90° specimens are observed.

This may be due to the way the load is introduced into the test section of the Iosipescu specimen

in the presence of relatively large boron fibers. Nevertheless, the extent of nonl nearity and corre-

sponding dissipation is well documented in Figure 46 and in the individual test results hi Appendix

C, leading to the conclusion that the nonlinear response of the unidirectional boron/aluminum

composite is highly influenced by the intralaminar shear stress.

Cyclic 'Pest

Cyclic Iosipescu shear tests provided additional information on the nonlinear response of

boron/aluminum (see Appendix Q. The cyclic tests exhibited a high extent of permanent strain

accumulation. Similar to the previous test results, the unloading and reloading paths were nearly

identical throughout the entire test. A very small increase in the difference between the two paths

was observed during the last unloading-reloading cycle of the 0 0 Iosipescu specimen. By fixing the

b' tt	 1 t	 C41, 1	 h	 f	 !0 us"p a c o e v3 P13" s ear test fixture, reverse cycho tests also were performed. T ie reverse

cy', clic test results were characterized by large permanent strain accumulation in the positive and

negative plastic range, linearly elastic unloading and reloading during different states of the loading

history, and kinematic hardening. The above results indicate that plasticity is the major dissipative

mechanism in this material system.
tj..
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The cyclic loading also influenced the ultimate values. For the off-axis specimens, a decrease in

failure strength and strain was observed, whereas for the 0° specimens the cyclic loading resulted in

an increase in the ultimate stresses and strains. This increase, however, was rather small.

Failure Stress (Strength)

The fiber orientation also influenced the failure stress in an losipescu shear test. The influence of

the fiber orientation on the shear strength was not as drastic as on the tensile or compressive

strength. Individual results are presented in Appendix C.

Failure Modes

The failure modes of the Iosipescu shear specimens were also a function of the fiber orientation.

For the 0° specimen, failure occurred at the notch tip running along the fibers. After the first crack

initiated, a drop in load (stress) was observed, but the specimen could be reloaded to higher load

levels. The loading of the damaged specimen resulted in no further propagation of the crack hi the

test section, but in damage to the specimen in the grips, until finally a grip failure occurred. This

can be interpreted as structural and not material response.

The off-axis Iosipescu specimens also failed hi the test section. Two cracks initiated nearly simul-

tarieously at the opposite notch tips. The cracks propagated initially along the fibers. After failure,

about 10 % fiber breakage was observed ui the off-axis losipescu shear specimens. For the 90° test,

failure also initiated at the notch tip, running along the fibers. Whether a crack initiated at one or

both notch Mips can not be said, due to the fast crack propagation.

t,r
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4.0 COMPARISON AND DISCUSSION

In this chapter, the results obtained from the three different test methods, namely; off-axis tension,

ofd'-axis compression, and losipescu shear, are compared. 'The apparent material properties pre-

sentcd in Chapter 3 are corrected for end-constraint effects and stress nonunifomiity in the test

section, and listed for the various on- and off-axis configurations. A discussion of the correlation

between the experimental data and the corrected results is given for the three different test methods.

4.1 Young's Modulus

Typical stress -strain responses in tension and compression are shown in Figure 51 for the 0° and 	 }

90° tests, and in Figure 52 for the off-auk tests. These figures show that the global Young 's Moduli

G
	 in tension and in compression are essentially the same for any given fiber orientation. Comparison

of the results presented in Tables 7 and 10 indicates that the olf -axis compression moduli are

Cslightly higher than the tensile moduli (by about 1 to 6 %). All results correlate quite well with the

theoretical predictions. The good correlation between theoretical predictions and experimental re

^x
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cults, and the very small influence of the shear coupling effect indicated by the very small difference

between the prediction based on the far field stress (a„x) and the Pagwio-lialpin model, made the

correction of the apparent values of the global Young's Modulus unnecessary,.

4.2 Poisson's Ratio

{

i Typical results for the Poisson's response in tension and compression are compared in Figure 53

for the on-axis tests and in Figure 54 for the off-axis tests. The on-axis tests in figure 53 exhibit

a different slope for the 0 tests in tension and in compression, resulting in different longitudinal

Poisson's ratios (v;a' = 0.237, ve' = 0.421). For the 900 tests no significant change in the initial

slope between tension and compression is evident. Nearly the same value for /the transverse

Poisson's ratio in tension and compression was obtained (v2,' = 0.150, vZqm 0.140). Since the

on-axis loading does not result in shear deformation of the specimen, no correction of the test data

is necessary.

The off-axis results (Figure 54) follow no regular pattern. Because of the inconsistency and the high

amount of scatter in the experimental data, correction based on the Pagano-lialpin model was

deemed mean-gless. Due to the limited amount of test material, the present study could not

provide meaningful values of the off-axis Poisson's ratio in compression.

p	 f
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4.3 In-Plane Shear Modulus

The apparent and actual values of the in-plane shear modulus G12 are given in 'fables 13, 14 and

15 for all three different test methods and fiber orientations. Likewise, the correction factors based

on the Pagano-Halpin model and finite element analysis are given. The apparent shear moduli

listed in the tables below are average values for each different fiber orientation and each different

test method.

Table 13. In-Plane Shear Modulus for Off-Axis Compression Test

ll	 .

Fiber Apparent Correction Actual
Orientation Modulus Factor Modulus

G12Gi2(msi ) Gu(msi)
Gil

Pagano-llalpin Correction

100 10,38 0.7779 8.07

150 9.71 0.8059 7.83

300 9.82 0.9160 8.99

45° 7.94 1.0192 8.09

Finite Element Correction

100 10.38 0.7979 8.28

150 9.71 0.8148 7.91

300 9.82 0.9240 9.01

450 7.94 1.0449- 8.30



"." 11

Table 14. In-Plane Shear Modulus for Off-Axis Tension Test	
0 11

Table 15. In-Plane Shear Modulus for Iosipescu Shear Test

Fiber
Orientation

Apparent
Modulus

Gi2(msi)

Correction
factor

Cz

Actual
iviodulus

Gu(msi)

Pagano-Halpin Correction

100 8.50 0.9875 8.39

150 8.41 0.9898 8.32

300 8.59 0.9967 8.56

45 0 8.35 1.0000 8.35

60 0 8.24 1.0010 8.25

Fiber
Orientation

Apparent
Modulus

G12(msi)

Correction
Factor

61212

12

Actual
Modulus

GIZ(msi)

Finite Clement Correction

00 6.67 1.0231 6.82

750 6.42 1.0589 6.80

80° 6.65 1.0680 7.10

850 6.72 1.0810 7.26

900 5.67 1.0899 6.18

r

1

f

F

v Y

Cr i!

is
From Table 14 it can be seen that the shear modulus from the 45° off-axis tension test gives the

1	 most accurate value of G 12 . The amount of scatter in the oil'-axis tension test results was fairly'
>r
x
t	
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small. The corrected off-axis compression test results, on the other hand ('fable 13), exhibit a larger

amount of scatter than the off axis tension test results.

The poor correlation between the shear modulus obtained from the losipescu shear and the oil-axis

tension test is not understood. The fact that the losipescu shear test provided excellent results for

other highly anisotropic composites 121, 361 leads to the conclusion that the observed discrepancy

is not caused by the testing procedure. The large boron fibers and the complicated displacement

field in the test section (Figure 55), may be responsible for the low apparent moduli. The finite

element code "ANFRAC" developed for modeling homogeneous, anisotropic materials, predicted

the nonuniform stress distribution quite well for composites with small fibers, such as aramid/epoxy

1;1]. For large fiber composites such as boron/aluminum however, the predicted stress-distribution

might not be accurate. Consequently, the calculated correction factor might be inaccurate. Addi-

tional correction procedures have to be developed, in order to incorporate effects such as the large

fiber diameter and/or the fiber rotation in the test section of the losipescu specuncn. The difference

between a state of simple shear and pure shear also has to be considered for the correct interpreta-

tion of the stress field in the losipescu specimen.
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4.4 Yield Loci

The different yield loci obtained by the three different test methods are shown in Figures 56 - 59.
F

Only one representative curve for each test method is presented. The presented curves are not av-

eraged for each test method. Due to the different test methods and the correspondingly different

end-constraint effects, different in-plane states of stress were present. In order to obtain meaningful

comparison of the yield loci in tension, compression and shear, all parameters have to be consid-

ered.

The difference in the axial yield stresses observed in tension and compression (Figure 56) can be

explained by the presence of the tensile residual stresses in the matrix in the case of the 0° tests, and

the end-constraint effect in the case of the off-axis tests. Good correlation between the two different

yield loci in tension and compression was obtained for higher off-axis angles, where the end-

constraint effect was negligibly small.

The end-constraint effects also influenced the in-plane shear yield loci in compression. Since the

fibers were rigidly constrained and directly loaded in low off-axis configurations, early yielding was

prevented. This resulted in high yield shear stresses in the low off-axis range. The differences in

the yield stresses between the results of losipescu tests and off-axis tension tests are due to the

presence of different stress ratios in the test sections of the respective specimens.

i
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5.0 MICROMECHANICAL MODEL

In order to predict the yield surface of the boron/aluminum composite, an analytical microme-

chanical model was used 1381. C;lastic properties of the fiber, matrix and composite are employed

in the model hi conjunction with a yield criterion for the matrix please in the course of generating

the composite yield surface, In the present study, only the in-plane shear yield stress was investi-

gated. For future work the model can be easily extended to predict the in-plane longitudinal and

transverse yield loci in a similar fashion. The dependence of the model on the experimentally ob-

tained input parameters, which takes into account the influence of scatter in the experimental data,

is also discussed.

5.1 Mathematical Model

For an accurate mathematical description of the material behavior at yield, the interaction between

fiber and matrix has to be modeled accurately. The nonlinear response of the composite is a result

of the nonlinear behavior of its softest component; the aluminum matrix in this case. Yielding of
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mpression Test Results;

Shear	 Ultimate
Modulus,	 Stress,
Q„(msi)	 v x(ksi)

f

Ultimate
Strain,
B x(%)

Table B,1	 Individual Off-Axis Ca
Material Properties

Specimen Specimen 	 Elastic	 Poisson'sGroup	 Number Modulus,	 Ratio,
E„(msi)	 v.r

s

0° 1

monotonic
2
3

33.82
32.55

0,426
0.415

+ 181.3 0.581
cyclic * 207.4 0:658

1 33.43 +++ 207,8 0.670mean 33.27 0.421 + 194.4+** 0.610++•
10°

monotonic
2
3

32.81
31.67

0.305
0,360

10.81 206.3 0,845
cyclic 8.47 161.5 0,696

_ 1 31.82 +*+^ 11,87 171.6 0,652	 r3mean 32.10 0.333 10.38 183.9+'*+ 0.771+++
15°
cyclict

1 31.21 0.465 9.71 128.8 0.740
mean 31.21 0.465.. 9.71 128.8 0.740

300
monotonic

! 1
2

26.70
27.30

0.373
0.372

10.45 79.0 1.872
9.19 79.8 2.339

, mean 27.00 0.373 9.82 70 a+++ I rlG r i r



Table 13,1	 Individual Off-axis Compression Test Results,
Material Properties (continued)

Specimen	 Specimen	 Elastic Poisson's Shear Ultimate Ultimate
Group	 Number	 Modulus, Ratio, Modulus, Stress, Strain,

G,a (msi) vxr Cjz(nsi) a Cksi) ca (%)

iii

i

901,

monotonic
t	 21,59 0,1 16 	* 44,8 2,685
2	 18,57 0.104	 * 44.7 2,748
3	 21,60 0,199	 * 46,4 2,344

mean	 20,44 0,140	 * 45,34** 2, 592*

Not annlicahl
** Grip failure
*+^ Only monotonic data included in average
* * * * Data not available
# No Failure
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Table B.2 Individual Off-axis Compression 'rest Results,
Yield Point obtained from the Stress-Strain Response

Specimen Specimen Yield Yield Yield Yield
Group Number Stress Strain Stress Strain

ay,.(ksi) Eya( %) g2(ksi) Y12(%)

0°

monotonic
1 48,20 0,148 + +
2 39,75 0,118 « +
3 52.88 01151 + +

mean 46.94 0,139
} }

10°

monotonic

2 31.29 0,087 5.35 0.061
3 34.59 0,112 6.49 0,085

mean 32 .94 0.099 5.92 0.073

15°
monotonic

1 26.06 0.087 6,50 0,094
mean 26 .06 0.087 6.50 0.094

30°

monotonic
1 6.97 0.026 3,02 0.045
2 7. 18 0.031 3.46 0,041

mean 7.08 0,029 3.24 0.043

45°
monotonic

mean *++* +++ +««^ ++t+

90°

monotonic
1 6.18 0.030 + «
2 5.37 0.030 + +
3 6.20 0.029 + •

mean 5.92 0.030 t

Not applicable
E	 +« Grip Failure

►* Only monotonic data included in average
+++* Data not available

di
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0°
monotonic

1 34.96 0,107
2 34.66 0.103 + +
3 33.93 0.105

mean 34.52 0,105

10°
monotonic

1 +++t ++*+ ++++ ++++
2 36,05 0.112 6.17 0.081
3 33.58 0.098 5.17 0.074

mean 34.81 0,105 5.67 0.077

15°
monotonic

1 27,66 0,094 6.91 0.094
mean 27.66 0.094 6.91 0.094

30°
monotonic

1 8.05 0.031 3.48 0.053
2 6,89 0.030 2.96 0,039

mean 7.47 0.031 3.22 0,046

45°
monotone

1 ++++ +*++ **++ +++*

mean +++ +*++ +*++ ++++

90°
monotonic

1 6.18 0.030
2 5.37 0.030
3 6.20 0.029

mean 5.92 0.030

-
s.

Y

'Table 13,3	 Individual Off-axis Compression Test Results:
Yield Point obtained from the Poisson's Response

Specimen Specimen
Group	 Number

Yield. Yield
Stress Strain

ay,X(ksi) cnx('%)

Yield	 Yield
Stress	 Strain.

Tf2(ksi)	 yi'2( %)

Not applicable
* * Grip Failure

++ Only in n atonic date[ included in average,;	
t+++ Data not available

is
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Table 13.4 Individual Off-axis Compression Test Results:
Yield Point obtained from the Shear Response

Specimen Specimen Yield Yield Yield Yield
Group Number Stress Strain Stress Strain

a;,(ksi) F,y„%°) s12(ksi) 712(%)

0°
monotonic

2 + + +
3 + * * +

mean + • +
+

10°
monotonic

2 23.79 0.074 4.07 0.051
3 25.81 0.084 4.41 0,063

mean 24.80 0.079 4.24 0.057

15°
monotonic

1 25.16 0.085 6.29 0.085
mean 25.16 0.085 6.29 0.085

30°
monotonic

1 4.63 0.017 1.97 0.026
2 5.39 0,025 2.33 0.032

mean 5.01 0.021 2,15 0,029

45°
monotonic

mean +++ *+++ ++++ ++++

90°
monotonic

2 + + + +
3 * * +

mean

+* Urip Failure
+** Only monotonic data included in average

* * * Data not available
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B.1 Monotonic Test Results
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B.2 Cyclic Test Results
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Appendix C. Individual Iosipescu Shear Test Results



Specimen Specimen Shear Ultimate Ultimate Yield Yield
Group Number Modulus, Stress, Strain; Stress, Strain,

Gi=(msi) r;l(ksi) Yfi^( %) t,2(ksi) Yiz

a'

0°

monotonic
1(1) 6.69 28.82 4.101(3) 3.98 0.059
2(1) 6.83 25.99 4.112(3) 3.63 0.054
3(l) 6.31 35.23 4.101(3) 3.91 0.054
4(2) 7.23 22.09(3) 9.521(3) 3.95 0.063
5(2) *+** 19.95(3) t+++ ++++ ++++
6(2) 6.31 17.77(3) 3.561(3) 3.81 0.057

mean 6.67 19.87(4) 6.541(4) 3.81 0.055

75°
monotonic

1(1) 6.23 180 4.659 3.38 01050
2(2) 6.61 14.44 8.965 3.21 0.050

mean -	 6.42 14.44(4) 8.976(4) 3.29 0.050

80°
Cyclic

1(1) 6.43 19.36 3.649 2.44 0.036
2(l) 6.57 18.91 3.624 2.39 0.037
3(2) 6.39 17.04 3.261(3) 2.13 0.034
4(2) 6.79 17.73 4.832(3) 2.52 0.037
5(2) *+++ ++++ +*++ +++• ++++

cyclic
6(2) 7.05 15.01 1.986 2.34 0.0331

mean 6.65 17.39(4) 4.047(4) 2.37 1.846



Table C.I Individual Iosipescu Shear Test Results,
Material Properties (continued)

Specimen	 Specimen	 Shear Ultimate Ultimate Yield Yield
I	 Group	 Number	 Modulus, Stress, Strain, Stress, Strain,

Gi2(msi) ril(ksi) 712( %) 'tiz(ksi) 712

85°
monotonic

1(I) 7.09 20.25
2(1,) 6.63 19.45
3(2) 6.68 17.04(3)
4(2) 7.01 17.90(3)

cyclic
5(2) 6.17 15.02

mean 6.72 17.47(4)

* Not applicable
** Grip Failure
*** Only monotonic data included in average
++++ Data not available
(1) M INC Data Acquisition System
(2) IBM -XT Data Acquisition System
(3) Gage Failure
(4) Only monotonic IBM-XT data included in average

d
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D.] Boundary Condition #1 (fully clamped)
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D.2 Boundary Condition ##2 (one side node supported)
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Appendix F. Thermal Residual Stresses

The following results are based on a closed form elasticity solution. The composite is modeled as

a cylinder as shown below. Fiber and matrix are assumed to be isotropic.

F



The input data are listed in the table blow.

Table 17. Input Data for Elasticity Solution

Fiber Properties Matrix Properties

FJ	 =	 55.00 (msi)

G/	 =	 22.92 (msi)

of 	=	 0.20

Em	 =	 10.00 (nisi)

Gm	 =	 3.75 (msi)

vm	 =	 0.31

Temperature Change

AT = -100.0 °F
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VIRGINIA TECH CENTER FOR

COMPOSITE MATERIALS AND STRUCTURES

The Center for Composite Materials and Structures
is a coordinating organization for research and
educational ,activity at Virginia Tech. The Center was
formed in 1982 to encourage and promote continued'
advances in composite materials and composite
structures. Those advances will be made from the
bast of individual accomplishments of the forty
members who represent ten different departments
in two colleges,

The Center functions through an Administrative
Board which is elected yearly and a Director who
is elected fora three-year term, The goneral purposes
of the Center include:

0; collection and dissemination of information
about composites activities at Virginia Tech,

•! contact point for other organizations' and
individuals,

• mechanism for collective educational and
research pursuits,

• forum and agency for internal interactions at
Virginia Tech,

two million dollars.

Research is conducted in a wide variety of areas
including design and analysis of composite materials
and composite structures, chemistry of materials and
surfaces, characterization of material properties,
development of new material systems, and relations
between damage and response of composites.
Extensive laboratories are available for mechanical
testing, nondestructive testing and evaluation, stress
analysis, polymer synthesis and characterization,*"
material surface characterization, component
fabrication, and other specialties.

Educational activities include eight formal courses
offered at the undergraduate and graduate levels
dealing with the physics, chemistry, mechanics, and
design of composite materials and structures, As of
1984, some 43 Doctoral and 53 Master's students have
completed graduate programs and several hundred
Bachelor-level students have been trained in various
aspects of composite materials and structures. A
significant number of graduates are now active in
industry and government,

The Center for Composite Materials and Structures
is supported by a vigorous program of activity at
Virginia Tech that has developed since 1963. Research
expenditures for investigation of composite materials
and structures total well over seven million dollars
with yearly expenditures presently approximating

Various Center faculty are internationally recog-
nized for their leadership in composite materials and
composite structures through books, lectures,
workshops, professional society activities, and
research papers.

MEMBERS OF THE CENTER
Aerospace and Ocean Enginering Science J. N. Reddy
Engineering and Mechanics Kenneth L. Reifsnider

Raphael T. Haflka Hal F. Brinson C. W. Smith
William L. Hallauer; Jr. Robert Czarnek Wayne W. Stinchcomb
Eric R. Johnson David Dillard Industrial Engineering
Rakesh K. Kapania Norman E. Dowling and Operations Research

Chemical Engineering John C. Duke, Jr. Joel A. Nachlas
Donald G. Baird Daniel Frederick

O. Hayden Griffin, Jr. Materials Engineering
Chemistry Zafer Gurdal David W. Dwight

James E. McGrath Robert A. Heller D. P. H. Hasselman
Thomas C. Ward Edmund G.	 e, II Robert E. Swanson,
James P. Wighiman

kovich
Carl T. Herakovich W1 . van Ooii

Civil Engineering Robert M. Jones Mathematics
R. M. Barker Alfred C. Loos Werner E. Kohler
Raymond H. Plaut Don H. Morris Mechanical Engineering

Electrical Engineering Ali H. Nayfeh Charles E. Knight
loannis M. Besieris Marek Pindera S. W. Zewari
Richard O. Claus Daniel Post

Inquiries should be directed to:

Center for Composite Materials and Structures
College of Engineering

Virginia Tech
Blacksburg, VA 24061
Phone: (703) 961-4969
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