Title: Parallel Image Compression

Technical Topic Category: 07.04 - Signal and Information Processing

Amount of Funding: $49,932.

Name and Address of Proposing Firm:
RSIC Associates
350 Lake St.
Belmont, MA 02178

Principal Investigator: John H. Reif.

Keywords: Data compression, image compression, vector quantization, adaptive algorithm, parallel algorithm, massively parallel processor (MPP).

Table of Contents

Section 1: Summary
Section 2: Technical Foundations
Section 3: Results
Section 4: Simulation Code
Section 5: MPP Code
1. Summary

This document reports on the research performed for SBIR Phase I funding of RSIC associates. This research has now been completed. We have developed a parallel compression algorithm for the 16,384 processor MPP machine developed by NASA. This algorithm has the following properties:

- It is on-line; that is only a single pass over the data is made.
- It is dynamic; no prior knowledge of the data is needed. A dictionary of "patterns" on which compression is based is dynamically constructed.
- The tradeoff between fidelity and the amount of compression achieved can be adjusted via a single integer parameter. As a special case, pure lossless compression may be specified.
- Because our algorithm is on-line, dynamic, and the degree of lossiness can be adjusted, it provides the basis for a single universal device that can be used for a variety of data types, including:
 - digital images
 - video
 - speech
 - text
 - database information

The above data types are common to many NASA missions that involve data acquisition and storage.

- It can be implemented with current technology to operate in real-time, even for extremely high-bandwidth applications; e.g., 30 frames per second of 512 by 512 pixels per frame video.
- The cost of the hardware goes down as the bandwidth of the application goes down.
- The amount of compression that is achieved for a given degree of fidelity on a given type of data compares favorably with existing, more specialized algorithms.
2. Technical Foundations

The serial version of our algorithm can be viewed as a combination of online dynamic lossless text compression techniques (which employ simple learning strategies) and vector quantization. We start by describing these concepts. Later we will discuss how we combine them to form a new strategy for performing dynamic on-line lossy compression. Finally we will discuss our this algorithm has been implemented in a massively parallel fashion on the MPP.

Lossless Text Compression

Algorithms for lossless text compression have been known since the 1950's. During the past decade, algorithms that dynamically "learn" about the data and replace frequently occurring fragments of data by tokens have been widely studied. We shall now briefly discuss a general framework for dynamic lossless compression that is developed in the book by J. Storer. The basic idea is to maintain a dictionary of commonly occurring data fragments; this dictionary is constantly being modified by some learning heuristic.

We use Σ to denote the underlying alphabet from which "characters" of data are drawn. For example, with text, the characters might be 7-bit ASCII codes stored one per byte whereas with digitally stored speech the characters might be 12-bit samples stored in two's complement form. Algorithm 1 is an encoding algorithm, which reads a stream of characters over Σ and writes a stream of bits, and Algorithm 2 is a decoding algorithm, which receives a stream of bits and outputs a stream of characters over Σ. Note that for both the presentation of these algorithms and for the discussion to follow we shall use the notation $|D|$ to denote the current number of entries in the local dictionary D and $<D>$ to denote the maximum number of entries that D can hold. We shall refer to indices into a dictionary of strings as pointers.

Like many dynamic compression algorithms, a key idea behind the methods we shall discuss is to have the encoder and decoder to work in lock-step to maintain identical local dictionaries (which may be dynamically changing). The encoder repeatedly finds a match between the incoming characters of the input stream and the dictionary, deletes these characters from the input stream, transmits the index of the corresponding dictionary entry, and updates the dictionary with some method that depends on the current contents of the dictionary and the match that was just found; if there is not enough room left in the dictionary, some deletion heuristic must be performed. Similarly, the decoder repeatedly receives an index, retrieves the corresponding dictionary entry as the "current match", and then performs the same algorithm as the encoder to update its dictionary.

It can be seen that left out of Algorithms 1 and 2 is the specification of the following:

The initialization set, INIT: A set of strings that are to be used to initialize the local dictionary; it must be that Σ is a subset of INIT and $|INIT| \leq <D>$.

The match heuristic, MH: A function that removes from the input stream a string t that is in D.
Algorithm 1, Encoding Algorithm:

(1) Initialize the local dictionary D with the set $INIT$.

(2) repeat forever

(a) Get the current match:
$t := MH(inputstream)$
Advance the input stream forward by $|t|$ characters.
Transmit $\log_2 |D|$ bits corresponding to t.

(b) Update the local dictionary D:
$X := UH(D)$
while $X \neq \emptyset$ and (D is not full or $DH(D) \neq \epsilon$) do begin
Delete an element z from X.
If z is not in D then begin
If D is full then Delete $DH(D)$ from D.
Add z to D.
end
end

Algorithm 2, Decoding Algorithm:

(1) Initialize the local dictionary D by performing Step 1 of the encoding algorithm.

(2) repeat forever

(a) Get the current match:
Receive $\log_2 |D| \epsilon$ bits.
Obtain the current match t by a dictionary lookup.
Output the characters of t.

(b) Update the local dictionary D by performing Step 2b of the encoding algorithm.
The update heuristic, UH: A function that takes the local dictionary D and returns a set of strings that should be added to the dictionary if space can be found for them.

The deletion heuristic, DH: A function that takes the local dictionary D and either returns ϵ (in which case there is no string that can be deleted from D) or a string of D that is not a member of INIT (which may legally be deleted from D).

The choice of the above heuristics will be discussed shortly. However, for the moment let us consider the basic structure of Algorithms 1 and 2 that is independent of these heuristics. The reader should convince himself or herself that these algorithms are inverses of each other; that is, the input to the encoding algorithm is always the same as the output from the decoding algorithm. The key observations are:

- D is initialized to contain at least the characters of Σ (since Σ must be a subset of INIT) and these characters can never be deleted.

- Since D always contains Σ, MH is always well defined. Hence, any input string to the encoding algorithm can always be encoded (at worst at a character at a time).

- Encoding is unique (since MH must return a unique value).

- The local dictionaries of the encoder and decoder must always remain identical (since Step 2b of the decoding algorithm is identical to Step 2b of the encoding algorithm).

The condition that INIT must include Σ implies that Step 1 of the encoding and decoding algorithms guarantees that each character of Σ is initially present in D. Furthermore, since DH is never allowed to return a character of Σ, the characters of Σ must always be present in D. This condition guarantees that Step 2a must always find a match that is at least one character long. Because the existence of the current match has been guaranteed by the existence of Σ in the dictionary, we say that Algorithms 1 and 2 have dictionary guaranteed progress. Another way to guarantee progress is to relax the conditions that Σ be a subset of INIT and DH cannot return a character of Σ, and modify Step 2a of the encoding algorithm to transmit $\lceil \log_2 |D| \rceil + 1$ bits that represent the pointer to t and the character of Σ that appears immediately after t in the input stream (and then advance the input stream forward by $|t| + 1$ characters). Step 2a of the decoding algorithm is similarly modified to receive a pointer and a character of Σ. Methods that guarantee progress in this fashion have pointer guaranteed progress. A compromise between dictionary guaranteed progress and pointer guaranteed progress is on-the-fly dictionary guaranteed progress. Here, we again relax the conditions that Σ be a subset of INIT and DH cannot return a character of Σ. Instead, we reserve one pointer value as the nil-pointer. Any rule for what value value is assigned to the nil-pointer suffices so long as it is consistent between the encoder and decoder; for convenience, we always assume that the nil-pointer is $|D| + 1$ (one more than the largest current legal pointer value); that is the nil-pointer starts off as 0 and increases by one each time $|D|$ increases by one until the nil-pointer value reaches $|D|$. Hence, one entry of D is in some sense "wasted" since D can never have more than $\langle D \rangle - 1$ entries; in practice, assuming that D is reasonably large (e.g., more than 100 entries), this waste is insignificant. Given that a null pointer is available, each time no match can be found, progress can be guaranteed by transmitting the null pointer (to signal to the decoder that a new character of Σ is to follow) followed by the next character of the input stream. In addition, the next character of the input stream can be added to the dictionary. On-the-fly dictionary guaranteed progress derives its name from the fact that characters of Σ are added to D (to
guarantee progress) only when they are encountered. Hence, it represents a compromise between dictionary and pointer guaranteed progress because unlike dictionary guaranteed progress it does not use space in \(D\) for characters of \(\Sigma\) that are not being used but unlike pointer guaranteed progress it does not add overhead to every pointer; overhead is only incurred the first time a character is used (or the first time the character has been used since it has last been deleted from \(D\)).

In the limit as \(D\) becomes large, it makes little difference which of the above three methods are used to guarantee progress. However, for practical implementations, where \(D\) is bounded in size, the overhead of including \(|\Sigma|\) bits with each pointer used by pointer guaranteed progress can be substantial. Since for most typical applications, \(<D>\) is relatively large compared to \(|\Sigma|\) (e.g., \(<D>\) is larger that 4096 and \(|\Sigma|\) is smaller that 256), we restrict our attention for the moment to dictionary guaranteed progress, as is used by Algorithms 1 and 2. However, in practice, on-the-fly dictionary progress typically performs equally well; that is, the overhead incurred is typically insignificant so long as the size of the text being compressed is reasonably large (e.g., larger than \(<D>\)). We have not chosen to use it here because the standard form of dictionary guaranteed progress is "cleaner" for presentation purposes. However, and we will employ on-the-fly dictionary guaranteed progress when we generalize Algorithms 1 and 2 to lossy compression.

If \(MH\) is taken to be the function that returns the longest prefix of the input stream that is in the dictionary, then Step 2a of the encoding algorithm amounts to a greedy algorithm for obtaining the current match. We shall henceforth refer to this heuristic as the greedy match heuristic. In terms of worst-case performance, significantly better compression can be achieved by incorporating some amount of look-ahead. However, little advantage is gained in practice and we do not address this issue further. We shall assume the greedy heuristic from this point on.

The key idea behind dynamic dictionary methods, is to use an update heuristic that adds the previous match concatenated with some set of strings based on the current match\(^\dagger\). That is, if \(pm\) denotes the previous match, \(cm\) the current match, and \(INC\) is an "incrementing" function that maps a single string to a set of strings, then for some choice of \(INC\):

\[
UH(D) = \{pm \text{ concatenated with all strings of } INC(cm)\}
\]

The following are three effective choices for \(INC\).

- **FC**: The first character heuristic: \(INC(cm)\) is the first character of \(cm\).

- **ID**: The identity heuristic: \(INC(cm)\) is \(cm\).

- **AP**: The all-prefixes heuristic: \(INC(cm)\) is the set of all (non-empty) prefixes of \(cm\) (including \(cm\)).

Example 1: Suppose that the previous match was "THE_" and the current match is "CAT", where we use the underscore to denote a space. Then \(UD(D)\) has the following values for the update heuristics discussed above:

FC: \{"THE_C"\}

\(^\dagger\) Since we have defined the update function \(UD\) of Algorithms 1 and 2 as a function of \(D\), to simplify notation, we shall always assume that it is possible to determine from \(D\) both the previous and current match.
In general, the FC and ID heuristics always produce exactly one string whereas the AP heuristic always produces a number of strings equal to the length of the current match. In fact, included in the set produced by the AP heuristic are the strings produced by the FC and ID heuristics. Hence, it is illustrative to consider a longer example with respect to the AP heuristic. Consider the phrase

"THE_CAT_AT_THE_CAR_ATE_THE_RAT"

where the underscore character is used to denote a space. Assuming that we start with the dictionary containing only the single characters, the following table shows what strings are added to the dictionary as this phrase is processed:

<table>
<thead>
<tr>
<th>MATCH</th>
<th>STRINGS ADDED</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>H</td>
<td>TH</td>
</tr>
<tr>
<td>E</td>
<td>HE</td>
</tr>
<tr>
<td>-</td>
<td>E_</td>
</tr>
<tr>
<td>C</td>
<td>_C</td>
</tr>
<tr>
<td>A</td>
<td>CA</td>
</tr>
<tr>
<td>T</td>
<td>AT</td>
</tr>
<tr>
<td>-</td>
<td>T_</td>
</tr>
<tr>
<td>_A</td>
<td>_A_AT</td>
</tr>
<tr>
<td>-</td>
<td>AT_</td>
</tr>
<tr>
<td>_TH</td>
<td>_T_TH</td>
</tr>
<tr>
<td>E_</td>
<td>THE_THE_</td>
</tr>
<tr>
<td>CA</td>
<td>E_C E_CA</td>
</tr>
<tr>
<td>R</td>
<td>CAR</td>
</tr>
<tr>
<td>_AT</td>
<td>R_A R_AT</td>
</tr>
<tr>
<td>E_</td>
<td>_ATE ATE</td>
</tr>
<tr>
<td>THE_</td>
<td>E_T E_TH E_THE E_THE_</td>
</tr>
<tr>
<td>R</td>
<td>THE_R</td>
</tr>
<tr>
<td>AT</td>
<td>RAT</td>
</tr>
</tbody>
</table>

The following are two common deletion heuristics.

FREEZE: The freeze heuristic: $DH(D)$ is the empty string, that is, once the dictionary is full, it remains the same from that point on.

LRU: The least recently used heuristic: $DH(D)$ is that string in D that has been matched least recently.

A third deletion heuristic that can be viewed as a variation of the LRU heuristic is the following:

LFU: The least frequently used heuristic: $DH(D)$ is that string in D which has been matched least frequently. In order to prevent this heuristic from degenerating into the FREEZE heuristic, some sort of weighting has to be performed when
entering a new match into the dictionary. For example, the new match can be assigned a frequency equal to the average frequency of the entries currently in the dictionary. When a match is found that is already in the dictionary, it may be necessary to scale down all frequency counts of dictionary entries (making fractional counts 0) if any given count reaches the maximum allowable value for an integer.

In practice, the LFU deletion heuristic performs comparably to the LRU heuristic but is less convenient to implement. We shall not consider this deletion heuristic any further.

A fourth deletion heuristic that can be viewed as as lying somewhere between the FREEZE and LRU deletion heuristics is the following.

SWAP: The swap heuristic: When the primary dictionary first becomes full, an auxiliary dictionary is started, but compression is continued based on the primary dictionary. From this point on, each time the auxiliary dictionary becomes full, the roles of the primary and auxiliary dictionaries are reversed, and the auxiliary dictionary is reset to be empty. Although this heuristic does not fit directly into Algorithms 1 and 2, they can be modified to accommodate it.

With the exception of rapidly changing data, the SWAP deletion heuristic performs comparably to the LRU heuristic. However, this deletion heuristic will provide a useful alternative to the LRU deletion heuristic for our parallel implementation on the MPP to be discussed later.

A host of data compression methods can be derived from different combinations of the heuristics above. We now list four widely used combinations. Except as noted, the computational resources required by these four heuristics are are equivalent in the asymptotic sense, but in practical implementations can differ by significant constant factors for both time and space requirements. The trade-offs between compression performance and these constant factors will be an important concern.

FC-FREEZE: This heuristic is the most simple to implement and, except for the start up phase when the dictionary is not full, runs faster because no time is spent on updating.

FC-LRU: This heuristic requires more computational resources than FC-FREEZE, but typically yields significantly better compression. It is also more stable than FC-FREEZE, in a sense to be discussed later.

AP-LRU: As we shall see, this heuristic requires approximately the same computational resources as FC-LRU but typically yields better compression on text files.

ID-LRU: This heuristic typically yields better compression than the FC-LRU heuristic and sometimes yields better compression than the AP-LRU heuristic. Although the ID-LRU heuristic may appear at first glance to be simpler or more basic than the AP-LRU heuristic, the ID-LRU heuristic requires significantly greater computational resources than the AP-LRU heuristic for an efficient serial implementation. However, the situation for parallel implementations is much different; we shall employ the ID heuristic for our MPP implementation.
Vector Quantization

Vector quantization traditionally refers to any method that partitions the input into blocks of blocksize characters and maps each block to one of the elements in a table of tablesize entries, where each entry is a blocksize tuple of characters from Σ. Compression is achieved by outputting only the indices into the table. Decompression is just table lookup. A nice feature of this simple approach is that we know in advance that the compression ratio achieved (bits out divided by bits in) will be exactly (to simplify notation, assume that $|\Sigma|$ and tablesize are powers of two):

$$\frac{\log_2 |\Sigma|^{\text{blocksize}}}{\log_2 (\text{tablesize})}$$

We do not, however, have any guarantees about the quality of the "quantized" image. The methods used to get the best quality possible are what motivate the term "vector" quantization.

We can view the set of all possible blocksize-tuples, blocksize ≥ 1, of characters from Σ as forming a blocksize-dimensional vector space. If V is a vector of blocksize characters from Σ, then we let V_i through $V_{\text{blocksize}}$ denote the components of V. A metric for the distance between two vectors V and W, $d(V,W)$, can be defined. For the purposes of defining such a metric, depending on the particular application, we henceforth assume one (but not both) of the following:

nn characters: To each of the characters of Σ is associated a unique non-negative integer in the range 0 to $|\Sigma| - 1$.

tc characters: To each of the characters of Σ is associated a unique integer in the range $-|\Sigma|/2$ to $(|\Sigma|/2)-1$. That is, if $|\Sigma|$ is a power of 2, then the set of integers corresponding to the characters of Σ is the set of integers that can be represented in two's complement notation using $\log_2 |\Sigma|$ bits.

In most applications, DSAD is stored in one of the above two forms. For example, with digitally stored black and white images or video, 8-bit nn characters are typically used whereas with digitally sampled speech, 12 or 16-bit tc characters are typically used. Perhaps the three most commonly used metrics are:

\[
L_1: \quad d(V,W) = \sum_{i=1}^{\text{blocksize}} |V_i - W_i|
\]

\[
L_2: \quad d(V,W) = \sum_{i=1}^{\text{blocksize}} (V_i - W_i)^2
\]

\[
L\text{-INFINITY}: \quad d(V,W) = \max_{i=1}^{\text{blocksize}} |V_i - W_i|
\]
A natural way to visualize the above three metrics is to think of them in the context of 3-dimensional Euclidean space (\text{blocksize}=3). The \(L_1 \) metric corresponds to traveling from \(V \) to \(W \) by only moving along the coordinate axes. The \(L_2 \) metric corresponds to traveling from \(V \) to \(W \) in the shortest distance possible (a straight line segment). The \(L-\infty \) metric simply measures the component on which the two vectors differ the most; it derives its name from the following observation. If for any integer \(K > 0 \) we define the \(L_k \) metric as

\[
d(V, W) = \sum_{i=1}^{\text{blocksize}} (V_i - W_i)^K
\]

then \(L_1 \) and \(L_2 \) correspond to \(k=1 \) and \(k=2 \), and:

\[
L-\infty(V, W) = \lim_{k \to \infty} L_k(V, W)
\]

Although the name \(L-\infty \) arises naturally as indicated above, we shall henceforth refer to it simply as the \text{MAX} metric; this name is motivated more directly by the way the metric is actually computed and is also shorter to write.

\textbf{Example 2:} Suppose that the input is a raster scan of a black and white image where each pixel is stored as a byte. A simple way to achieve 2-to-1 compression is to simply discard the low-order 4 bits of each pixel (i.e., replace them by 0). This is an example of vector quantization where \(|\Sigma| = 256 \), \text{blocksize}=1, and \text{tablesize}=16. By performing this quantization using any of the metrics \(L_1, L_2, \) or \(\text{MAX} \) (which are equivalent when \text{blocksize}=1), we have replaced 256 distinct intensity levels by 16 levels that are spread uniformly. This loss in precision has been traded for the 2-to-1 compression.

\textbf{Preprocessing for the Lossless Algorithm}

As illustrated by Example 2, a special case of vector quantization is \textit{scalar quantization}, where \(\text{blocksize}=1 \). Scalar quantization provides a very simple method for on-line dynamic lossy compression:

\textit{Quantize the incoming characters of the input stream before passing them to an on-line dynamic lossless compression algorithm.}

This approach can be viewed as preprocessing the input for the lossless compressor to make characters that are "similar" be identical (so that the lossless compressor can more easily find patterns). This preprocessing step also has the desirable side-effect that compression ratio of the entire algorithm is the product of the ratio obtained by the scalar quantization and the ratio obtained by the lossless algorithm. In practice, this product has a "snowballing" effect; that is, the more compression achieved by the scalar quantization, the more that is achieved by the lossless compression.

Given that we are viewing scalar quantization as a preprocessing step to lossless compression, if \(Q \) is the scalar quantization function, then from the point of view of the lossless compressor, the input alphabet is just the set of distinct values of \(Q(a) \) where \(a \) is a character of \(\Sigma \). Hence, from this point on, it will be convenient to view scalar quantization as the \text{INIT} heuristic.
That is, a function that places a set of characters \((INIT)\) in the dictionary with the understanding that if a character of \(\Sigma\) that is not in \(INIT\) arrives on the input stream, then it is mapped to the closest (in the sense of whatever metric is being used) character in \(INIT\). Some common scalar quantization methods (dictionary initialization heuristics) are:

ALL: Place all possible characters in the dictionary. No compression is achieved, no information is lost. If we are compressing data by first scalar quantizing and then performing lossless compression, then instructing the scalar quantizer to use ALL quantization forces the system to pure lossless compression.

UNIFORM: Example 2 is an example of UNIFORM scalar quantization. In the literature, any technique that spreads values approximately evenly is considered to be uniform quantization. For our purposes, given an integer parameter \(\text{spacing} > 0\), for \(nn\) characters \(\text{UNIFORM}(d)\) places into the dictionary the values

\[0, \text{spacing}, 2\times \text{spacing}, \ldots, |\Sigma| - 1\]

and for \(tc\) characters the values:

\[0, \text{spacing}, -\text{spacing}, 2\times \text{spacing}, -2\times \text{spacing}, \ldots, |\Sigma|/2, -1, -|\Sigma|/2.\]

LOG For a given integer parameter \(\text{extrabits}\), with log scalar quantization the idea is to save only the position of the leading non-zero bit of the character along with the next \(\text{extrabits}\) bits that follow it.

It should be noted that if the scalar quantization is sufficiently crude, dithering may be an effective pre and post-processing step to help smooth artificial discrete boundaries that can arise.

Our Generalization of the Lossless Algorithm

Scalar quantization followed by lossless compression is a simple approach that has a lossy component (provided by the scalar quantization) that is completely separate from a pattern matching component (provided by the lossless compression algorithm). We now consider a potentially more powerful approach that combines these two components.† The idea is to use Algorithms 1 and 2 with just two changes.

The first change is that the definition of the match heuristic is generalized to:

The match heuristic, MH: A function that removes from the input stream a string \(t\) that is acceptably close (according to a specified metric) to a string in \(D\).

The algorithm must be supplied a vector distance metric \(VM\) that takes a single string \(s\) as an argument and returns a non-negative integer equal to the “distance” between \(s\) and the first \(|s|\) incoming characters of the input stream. This function must satisfy two constraints:

- \(VM(s) = 0\) if and only if the first \(|s|\) incoming characters of the input stream

† In practice this approach may be more powerful. In theory, a result of Ziv shows that this may not be true.
are exactly the characters of s.

- $VM(s) = \infty$ if there are less than $|s|$ characters left in the input stream.

Given that such a metric is supplied to the algorithm, "acceptably close" is defined by a single integer parameter Epsilon that is also supplied to the algorithm. That is, all dictionary entries a such that $VM(a) < \text{Epsilon}$ are acceptably close. Because of the conditions placed on VM, the value $\text{Epsilon} = 0$ forces pure lossless compression.

The second change that we make to Algorithms 1 and 2 is to employ on-the-fly dictionary guaranteed progress. The reason for this change is that we no longer wish to force INIT to contain all of Σ since in many practical applications (e.g. 16-bit digitally sampled speech), $|\Sigma|$ is very large (possibly larger than $|D|$). The reader should note that even if $|\text{INIT}| < |\Sigma|$, the on-the-fly mechanism will never be used if INIT contains enough characters so that every character of Σ is acceptable close to some character in INIT.

Given the two changes discussed above, Algorithms 1 and 2 are a general purpose framework for performing on-line dynamic lossy compression, where the tradeoff between the degree of lossiness and the amount of compression can be adjusted via a single integer parameter Epsilon.

Parallel Implementation on the MPP

The basic ideas behind our translation of the techniques described above to the massively parallel environment of the MPP, which were developed during SBIR Phase 1, are the following:

- The MPP is a 128 by 128 two-dimensional array of 16,384 processors. However, we view it as 128 independent parallel compressors that operate in a pipeline fashion, one compressor operating on each row of the MPP. One of these compressors can be used for serial sources such as speech or text. The entire machine is needed for real-time compression of successive digital images. Each 512 by 512 digital black and white image is divided into 128 horizontal "bands", each 4 pixels high. Each band is fed into a row of the MPP in a pipelined fashion. In this situation, the i/o rate is extremely high; that is, 128 time the i/o rate of an individual processor.

- The new MPP chip designed by J. Reif at MCNC and the modified version of it that we propose to design contains a 8 by 16 sub-array of MPP processors. However, for the purposes of data compression, we will use it as a 1 by 128 array of processors that forms the parallel systolic pipeline that forms one of our dynamic on-line data compressors.

- The ID growing heuristic is used. This minimizes on-chip memory that is needed (which is critical with the MPP design) because dictionary entries can be represented by simple pointer pairs.

- Since our compressor will use a MPP chip to form a systolic pipelined associative memory, matches will be constructed in a bottom-up fashion instead of the top-down fashion that is used in the serial case. That is, instead of discovering a longest possible match all at one time (as is the case with the greedy match heuristic employed in the serial algorithm), pairs of pointers are successively combined as they flow down the pipe. Simulations performed during SBIR Phase I show that the bottom-up construction of
matches that results from the parallel parsing does not compromise compression performance in practice, and in some cases, even improves it. Note that this is not true if a dictionary computed elsewhere is simply loaded into the processor array. It is key that the dictionary is dynamically learned in the array.

- The SWAP deletion strategy is used. Simulations show that this is equivalent in performance to the LRU strategy. However, from a hardware point of view, it is much simpler to implement, requiring only some simple re-routing of the i/o paths.

- To improve the running time, a "recycling strategy" is used where partially compressed data is fed through the array at a faster rate.
3. Results

For the six month duration of the SBIR Phase I funding (March 1987 through August 1987), the work to develop our algorithm proceeded as follows:

- Basic research was performed on combining the techniques of vector quantization with lossless learning strategies. The result is a novel on-line dynamic compression algorithm where the tradeoff between the degree of lossiness and the amount of compression can be tuned with a single integer parameter.

- Studies were performed to show the ID learning heuristic in conjunction with the SWAP deletion heuristic to be most appropriate for our implementation.

- Studies on the effect of parallel parsing on the pure version of our algorithm were performed (see the notes preceding the simulation code). A buffering / parsing strategy for an individual processor was developed.

- Modifications and simplifications of our algorithm were made to allow more direct implementation on the MPP architecture.

- The recycling strategy was developed to enhance through-put.

- Code for the VAX 11/780 was written to perform simulations to determine the amount of compression that could be expected with the modified version of our algorithm.

- Code for the MPP was written and runs were made on the MPP at Goddard Space Flight center.

RSIC, Inc. would like to take this opportunity to thank members of the NASA Goddard Space Flight center for their help and support during this project. In particular, J. Devany and D. Wildenhain for the considerable time they spent helping us program and use the MPP, and J. Fischer, M. Halen, H. K. Ramapriyan, and J. Tilton for numerous technical consultations.

As indicated in the project summary, the algorithm has the following properties:

- It is on-line; that is only a single pass over the data is made.

- It is dynamic; no prior knowledge of the data is needed. A dictionary of “patterns” on which compression is based is dynamically constructed.
• The tradeoff between fidelity and the amount of compression achieved can be adjusted via a single integer parameter. As a special case, pure lossless compression may be specified.

• Because our algorithm is on-line, dynamic, and the degree of lossiness can be adjusted, it provides the basis for a single universal device that can be used for a variety of data types, including:

 • digital images
 • video
 • speech
 • text
 • database information

• It can be implemented with current technology to operate in real-time, even for extremely high-bandwidth applications; e.g., 30 frames per second of 512 by 512 pixels per frame video.

• The cost of the hardware goes down as the bandwidth of the application goes down.

In addition to having the desirable performance properties listed above, the amount of compression that is achieved for a given degree of fidelity on a given type of data compares favorably with existing, more specialized algorithms. Typical amounts of compression achieved can be summarized as follows:

 text: With pure lossless compression, state-of-the-art performance was obtained; e.g., 3-to-1 for English text, 5-to-1 for programming language source code, and as much as 10-to-1 for very compressible text such as spreadsheet data. Our test data consisted primarily of technical papers that were stored electronically on the VAX 11/780 system we were using.

 speech: Speech sampled 8,000 times per second, 12 bits per sample (96 kilo-bit speech is an industry standard), could be compressed by more than 12-to-1 while retaining good quality, and by more than 30-to-1 and still be understandable. Our test data was obtained by having students read passages from books into a microphone connected to a digital-to-analog converter. Quality was accessed by playing back the
decompressed data to independent listeners.

video: Black and white video stored 512 by 512 pixels per frame, 8 bits per pixel could be compressed by factors of 30-to-1 to 50-to-1 while retaining good quality. Our test data was some black and white video of a person speaking against a relatively static background.

Section 4 is the VAX simulation Pascal code. Note that Section 4 begins with some documentation and a brief discussion of some technical details pertaining to the processor buffering strategy. Section 5 is the corresponding parallel Pascal code for the MPP.

The result of this work is a very flexible algorithm that is well-suited for real-time compression for a variety of on-line data. We have applied for SBIR Phase II funding to build a chip set (based on the new MPP chip being developed at MCNC) for our algorithm.
4. Simulation Code

Basic Algorithm

rowsim implements a data compression algorithm designed to work on a single row of the MPP, which can be viewed as an independent SIMD machine consisting of a linear arrangement of processors in which each processor can communicate to its neighbors on either side. The algorithm itself is an adaptation of the ID strategy (discussed in the technical background section); each processor manages its own input buffer and its own dictionary of previously encountered token pairs.

The main loop of the algorithm makes each processor read from its left neighbor enough tokens to fill its own input buffer. Each processor then looks up the contents of that buffer in its dictionary; should a match be found between the buffer and one of the entries in the dictionary, the output code associated with that entry replaces the two input tokens in the input buffer. Otherwise, the "oldest" entry in the input buffer is output to the next processor in the line, and the other entries in the buffer are shifted in.

Each processor updates its local dictionary by adding to it the concatenation of the current oldest token to the last token output (the ID heuristic). Only in those iterations where no match was found between the processor's input buffer and its dictionary does each processor add a new entry to its dictionary as described. We further limited the learning process so that only the leftmost processor with a non-full dictionary would learn new token pairs at any one time.

Implementation Details

The preceding description, although brief, suggests at least two directions in which an implementation of the algorithm described could affect its performance: in our implementation we chose to examine the effects of both the size of the input buffer each processor uses and the method used to find what matches
may exist between the buffer and entries in the dictionary.

Buffer Size

Since the algorithm used to add new entries to local dictionaries worked by concatenating the last two matches found at each processor, our initial implementation of rowsim used a two-element input buffer at each node plus a one-token output buffer. The matching was done then straightforwardly between the buffer and each one of the entries in the dictionary; when no such match was found, a new entry was added to the corresponding local dictionary by concatenating the last token output (in the output buffer) and the "older" of the two entries in the input buffer.

This first approach seemed to work as expected until we tried to compress a large file of blanks. We expected a very large rate of compression on this file, and yet we only obtained a 25 percent reduction in the size of the input file. The problem was due to the fact that the first processor in the array was only able to learn 4 different token pairs, and since its own dictionary never filled, no other processor could learn new token pairs to further compress the input sequence. This suggested we improve our implementation by increasing the size of each processor's input buffer to 3, 4 or even longer buffers. This created a second question, namely how to search for matches between entries in the dictionary, each one of which would only have two tokens, and input buffers of sizes larger than 2.

Buffer Matching Strategies

The matching algorithm for the case in which the input buffer is as long as each entry in the dictionary is straightforward: it is enough to do a one-to-one matching between the input buffer and each dictionary entry. When the length of the input buffer is increased, however, two decisions must be made when designing the matching algorithm: (1) should the algorithm try to find only the first possible match between the input buffer and the dictionary, or would it be more efficient to replace each match when found and repeat the matching process until no more matches are found; and (2) should the algorithm test the input buffer against the dictionary entries starting with the most recent pair and then work its way towards the previous entries until a match is found, or should it start with the earliest pair in the buffer and work its way back.
rowsim was implemented so that we could compare the results obtained from all combinations of both alternatives: the user may specify either left-to-right (most recent to least) or right-to-left matching, and he may also specify either full matching (in which case after a match is found the two tokens are replaced by the corresponding code and the matching process is restarted on the new, shorter buffer) or first matching (in which case the matching process continues only until the first possible match is found and then replaces both tokens with the correct code).

We discovered, when running experiments trying all possible combinations, that in pathological cases (such as a file consisting of 100k blanks) the best results were obtained when using the full matching strategy and a buffer length of 4. On most files however, the performance difference among the different strategies was not significant enough to justify the extra effort required to implement any of these strategies instead of our original straight comparison between the input buffer of size 2 and the entries in the dictionary.

The Simulation Code

```plaintext
{ program: rowsim }
{ RSIC, Inc. }
{ date: July, 1987  }

{ description: }
{ This program provides a serial implementation of a data compression }
{ algorithm suitable for the MPP computer. It satisfies the same per }
{ processor constraints, in terms of processor memory, that processors }
{ on the MPP have to fulfill. Furthermore, the algorithms used were }
{ chosen to make the transition to an implementation on the MPP machine }
{ as straightforward as possible. }

{ usage: }
{   [-S skip] [-B buffer] [-E entries] }
{ where: }
{   -r use right-to-left buffer matching }
{   (default: left-to-right) }
{   -f use fast matching algorithm }
{   (default: full buffer matching is used) }
{   -D dictionaryname of dictionary file (default: 'dictionary') }
{   once the whole input file has been compressed, }
{   the final dictionary is written to this file }
{   -G breakcodes will be split into two groups: less than }
```
program rowsim(input, output);

const SmallestProcessorIndex = 0; { Processors }
 LargestProcessorIndex = 127;
 SmallestDictIndex = 0; { Dictionary }
 LargestDictIndex = 31;
 MaxNumberOfEntries = 32;
 LeftmostBufferIndex = 0; { Buffers }
 RightmostBufferIndex = 7;
 MaxBufferSize = 8;
 SmallestPointer = 0; { Output Tokens }
 LargestPointer = 4095;
 MaxStringLength = 80; { Strings }

 { Default parameter values }
 DefaultDictionary = 'Dictionary';
 DefaultEntries = 32;
 DefaultReserved = 256;
 DefaultBufferSize = 3;
type ProcessorIndex = SmallestProcessorIndex .. LargestProcessorIndex;
EntryIndex = SmallestDictIndex .. LargestDictIndex;
DictSize = 0 .. MaxNumberOfEntries;
Pointer = SmallestPointer .. LargestPointer;
DictEntry = record
 Left, Right: Pointer
end;
LocalDictionary = array [EntryIndex] of DictEntry;
Link = record
 Type: (Empty, Valid);
 Value: Pointer
end;
BufferIndex = LeftmostBufferIndex .. RightmostBufferIndex;
BufferSize = 0 .. MaxBufferSize;
Buffer = array [BufferIndex] of Link;
StringIndex = 1 .. MaxStringSize;
String = array [StringIndex] of char;

var { Per Processor Global Data Structures}
Dictionary: array [ProcessorIndex] of LocalDictionary;
NumEntries: array [ProcessorIndex] of DictSize;
InputData: array [ProcessorIndex] of Buffer;
OutputData: array [ProcessorIndex] of Link;
{ Global Data Structures}
BreakSupplied: boolean;
Reserved, BreakPoint: Pointer;
PairsToSkip: BufferSize;
Learn: array [ProcessorIndex] of boolean;
{ Implementation Global Data Structures}
EntriesPerProcessor: DictSize;
LearningProcessor: Pointer;
BufSize: BufferSize;
RightmostMatchFirst, UseFullMatchAlg: boolean;
DictionaryFilename: String;
MaxTokenValue: Pointer;
Ignore: integer;

{ Global variables needed by low-level I/O routines}
rlosize, rleftover, wlosize, wleftover: integer;

#include "utilities.i" { Useful low level functions}
#include "row.args.i" { Process command line arguments}
#include "io/i" \{ Low Level I/O Routines\}

function Code(Processor: ProcessorIndex; Entry: EntryIndex): Pointer;
begin
 Code := Reserved + Processor*EntriesPerProcessor + Entry
end;

function IsCode(Value: Pointer; var Proc: ProcessorIndex;
 var Entry: EntryIndex): boolean;
begin
 if (Value < Reserved) then IsCode := false
 else begin
 Proc := (Value - Reserved) div EntriesPerProcessor;
 Entry := (Value - Reserved) mod EntriesPerProcessor;
 IsCode := true
 end
end;

function Length(Processor: ProcessorIndex; Entry: EntryIndex): integer;
var
 Proc: ProcessorIndex;
 Offset: EntryIndex;
 Result: integer;
begin
 if IsCode(Dictionary[Processor][Entry].Left, Proc, Offset)
 then Result := Length(Proc, Offset)
 else Result := 1;
 if IsCode(Dictionary[Processor][Entry].Right, Proc, Offset)
 then Result := Result + Length(Proc, Offset)
 else Result := succ(Result);
 Length := Result
end;

procedure SaveDictionary;
var
 Processor: ProcessorIndex;
 Entry: EntryIndex;
 DictionaryFile: text;
begin
 rewrite(DictionaryFile, DictionaryFilename);
for Processor := SmallestProcessorIndex to LargestProcessorIndex do
 for Entry := 0 to pred(NumEntries[Processor]) do
 writeln(DictionaryFile, Processor, ' ', Entry, ' ',
 Code(Processor, Entry), ' ',
 Dictionary[Processor][Entry].Left, ' ',
 Dictionary[Processor][Entry].Right, ' ',
 Length(Processor, Entry), ' ')
end;

function FindMatch(Processor: ProcessorIndex;
 var LeftPtr, RightPtr: Link;
 Size: DictSize;
 var LocalDict: LocalDictionary) : boolean;
var
 Index: DictSize;
 Entry: DictEntry;
 Found: boolean;
beginn
 Found := false;
 Index := SmallestDictIndex;
 while (Index < Size) and not Found do
 begin
 Entry := LocalDict[Index];
 Found := (Entry.Left = LeftPtr.Value) and
 (Entry.Right = RightPtr.Value);
 if not Found then Index := succ(Index)
 else if RightmostMatchFirst then
 begin
 LeftPtr.Value := Code(Processor, Index);
 RightPtr.Type := Empty
 end
 else begin
 LeftPtr.Type := Empty;
 RightPtr.Value := Code(Processor, Index)
 end;
 FindMatch := Found
end;

function ValidMatch(Processor: ProcessorIndex;
 var LocalDict: LocalDictionary;
 Current, Last: Pointer) : boolean;
var
 Repeat: boolean;
 LastIndex: EntryIndex;
begin
 if NumEntries[Processor] = 0 then Repeat := false
else begin
 LastIndex := pred(NumEntries[Processor]);
 Repeat := (LocalDict[LastIndex].Left = Current) and
 (LocalDict[LastIndex].Right = Last);
end;
if not BreakSupplied then ValidMatch := not Repeat
else ValidMatch := (((Last < BreakPoint) and (Current < BreakPoint)) or
 ((Last >= BreakPoint) and (Current >= BreakPoint)))
 and not Repeat
end;

procedure UpdateDictionary(Processor: ProcessorIndex;
 var LocalDict: LocalDictionary;
 Current, Last: Pointer);
var
 NewEntry: EntryIndex;
begin
 if PairsToSkip > 0 then PairsToSkip := pred(PairsToSkip)
else if ValidMatch(Processor, LocalDict, Current, Last) then
 begin
 NewEntry := NumEntries[Processor];
 if Code(Processor, NewEntry) <= LargestPointer then
 begin
 LocalDict[NewEntry].Left := Current;
 LocalDict[NewEntry].Right := Last;
 NumEntries[Processor] := succ(NewEntry);
 end
 end
end;

function BufferIsFull(var LocalBuffer: Buffer): boolean;
var
 Index: BufferSize;
 Result: boolean;
begin
 Result := true;
 Index := LeftmostBufferIndex;
end;
while Result and (Index < BufSize) do
begin
 Result := Result and (LocalBuffer[Index].Type = Valid);
 Index := succ(Index);
end;
BufferIsFull := Result
end;

procedure UpdateProcessor(Processor: ProcessorIndex;
begin
end;

var LocalDict: LocalDictionary;
var Learn: boolean;
var InData: Buffer;
var OutData: Link;
var{ More per processor scratch variables...}
Match: boolean;
{ Implementation variables...}
Localsize: DictSize;

procedure FullLeftmostMatch;
begin
 BufIndex: BufferIndex;
 for BufIndex := LeftmostBufferIndex to BufSize - 2 do
 Match := Match or
 FindMatch(Processor, InData[BuIndex],
 InData[succ(BufIndex)],
 Localsize, LocalDict);
end;

procedure FullRightmostMatch;
begin
 BufIndex: BufferIndex;
 for BufIndex := BufSize - 2 downto LeftmostBufferIndex do
 Match := Match or
 FindMatch(Processor, InData[BuIndex],
 InData[succ(BuIndex)],
 Localsize, LocalDict);
end;

procedure FirstLeftmostMatch;
begin
 BufIndex: BufferIndex;
 BufIndex := LeftmostBufferIndex;
 while (BufIndex < pred(BufSize)) and not Match do
begin
 Match := Match or FindMatch(Processor, InData[BufIndex],
 InData[succ(BufIndex)],
 LocalSize, LocalDict);
 BufIndex := succ(BufIndex)
end end;

procedure FirstRightmostMatch;
var
 BufIndex: BufferIndex;
begin
 BufIndex := pred(BufSize);
 repeat
 BufIndex := pred(BufIndex);
 Match := Match or FindMatch(Processor, InData[BufIndex],
 InData[succ(BufIndex)],
 LocalSize, LocalDict);
 until Match or (BufIndex = LeftmostBufferIndex);
end;

begin
 OutData.Type := Empty;
 if BufferIsFull(InData) then
 begin
 Match := false;
 LocalSize := NumEntries[Processor];
 if UseFullMatchAlg then
 if RightmostMatchFirst then FullRightmostMatch
 else FullLeftmostMatch
 else if RightmostMatchFirst then FirstRightmostMatch
 else FirstLeftmostMatch;
 if not Match then
 begin
 if Learn then
 UpdateDictionary(Processor, LocalDict,
 InData[pred(BufSize)].Value,
 OutData.Value);
 OutData := InData[pred(BufSize)];
 end
 end;
end;

function CurrentDictIsFull: boolean;
begin
CurrentDictIsFull :=
(NumEntries[LearningProcessor] = EntriesPerProcessor) and
Learn[LearningProcessor]
end;

procedure SwitchToNextDict;
begin
Learn[LearningProcessor] := false;
if LearningProcessor < LargestProcessorIndex then
begin
LearningProcessor := succ(LearningProcessor);
Learn[LearningProcessor] := true;
{ Every new processor must skip first 'BufSize' pairs}
PairsToSkip := BufSize
end
end;

procedure ShiftBuffer(var LocalBuffer: Buffer);
var
 Target, BufIndex: BufferIndex;
begin
 Target := pred(BufSize);
 for BufIndex := BufSize - 2 downto LeftmostBufferIndex do
 if LocalBuffer[BufIndex].Type = Empty then Target := BufIndex;
 for BufIndex := Target downto succ(LeftmostBufferIndex) do
 LocalBuffer[BufIndex] := LocalBuffer[pred(BufIndex)];
end;

procedure ProcessToken(InputToken: Link);
var
 Processor: ProcessorIndex;
begin
 InputData[0][LeftmostBufferIndex] := InputToken;

 { All processors work on their buffers }
 for Processor := SmallestProcessorIndex to LargestProcessorIndex do
 UpdateProcessor(Processor, Dictionary[Processor], Learn[Processor],
 InputData[Processor], OutputData[Processor]);

 { Shift processor buffers right }
end;
for Processor := SmallestProcessorIndex to LargestProcessorIndex do
 ShiftBuffer(InputData[Processor]);

{ Broadcast data to the next processor in the row }
for Processor := SmallestProcessorIndex + 1 to LargestProcessorIndex do
 InputData[Processor][LeftmostBufferIndex] :=
 OutputData[pred(Processor)];

if CurrentDictIsFull then SwitchToNextDict;

if (OutputData[LargestProcessorIndex].Type = Valid) then
 WriteBits(OutputData[LargestProcessorIndex].Value, LargestPointer)
end;

procedure FlushLeftOver;
 var
 LeftOver: integer;
 Index: BufferIndex;
 begin
 for LeftOver := LargestProcessorIndex downto SmallestProcessorIndex do
 for Index := pred(BufSize) downto LeftmostBufferIndex do
 if InputData[LeftOver][Index].Type = Valid then
 WriteBits(InputData[LeftOver][Index].Value, LargestPointer)
 end;
 end;

procedure ProcessInput;
 var
 InputToken: Link;
 begin
 PassThru(Ignore);

 while not EndOfBits(MaxTokenValue) do
 begin
 InputToken.Type := Valid;
 InputToken.Value := ReadBits(MaxTokenValue);
 ProcessToken(InputToken)
 end;

 FlushLeftOver;
 FlushBits
procedure InitializeProcessors;
 var
 Processor: ProcessorIndex;
 Index: BufferIndex;
 begin
 for Processor := SmallestProcessorIndex to LargestProcessorIndex do
 begin
 Learn[Processor] := false;
 NumEntries[Processor] := 0;
 for Index := LeftmostBufferIndex to pred(BufSize) do
 InputData[Processor][Index].Type := Empty;
 OutputData[Processor].Type := Empty
 end;
 LearningProcessor := SmallestProcessorIndex;
 Learn[SmallestProcessorIndex] := true;
 { Initial processor must skip first pair }
 PairsToSkip := 1;
 end;
 begin
 rlosize := 1;{ I/O initialization}
 wlosize := 1;

 UseFullMatchAlg := true;
 RightmostMatchFirst := false;
 BufSize := DefaultBufferSize;
 BreakSupplied := false;
 BreakPoint := 0;
 Ignore := 0;
 Reserved := DefaultReserved;
 EntriesPerProcessor := DefaultEntries;
 ProcessArguments;
 InitializeProcessors;
 ProcessInput;
 SaveDictionary
The functions in this file provide a means for low-level I/O. They were originally written by James Storer.

```pascal
function ReadByte( var SomeFile: text ): integer;
const
  CarriageReturn = 10;
var
  NextChar: char;
  Byte: integer;
begin
  if (eof( SomeFile )) then Byte := 0
  else if (eoln( SomeFile )) then
    begin
      {read blank that PASCAL replaced for line end}
      read( SomeFile, NextChar);
      Byte := CarriageReturn
    end
  else begin
    read( SomeFile, NextChar );
    Byte := ord( NextChar );
    {check for two's complement form of a non-ascii character}
    if (Byte < 0) then Byte := Byte + 256
    end;
  ReadByte := Byte
end;
```

```pascal
procedure WriteByte( var SomeFile: text; Byte: 0..255 );
begin
  write( SomeFile, chr( Byte ));
end;
```

{ The following functions implement a means to read/write integers using }{ least number of bits that can still represent integers in the relevant }{ range. All input/output these functions make is from 'input' and to }{ 'output'. }

```pascal
function EndOfBits( MaxValue: integer ): boolean;
```
begin
 if (rlosize > MaxValue) then EndOfBits := false
 else EndOfBits := eof(input)
end;

{read smallest number of bits capable of holding the argument}
function ReadBits(MaxValue: integer): integer;
var
 Value, Length, MaxLength: integer;
begin
 Value := 0;
 Length := 1;
 MaxLength := 2;
 while (MaxLength <= MaxValue) do MaxLength := MaxLength * 2;
 while (Length < MaxLength) do
 begin
 if (rlosize = 1) then
 begin
 rleftover := ReadByte(input);
 rlosize := 256;
 end;
 rlosize := rlosize div 2;
 Value := (Value * 2) + (rleftover div rlosize);
 rleftover := rleftover mod rlosize;
 Length := Length * 2
 end;
 ReadBits := Value
end;

{write on arg1 arg2 using the smallest number of bits capable of holding arg3}
procedure WriteBits(Value, MaxValue: integer);
var
 Length, MaxLength: integer;
begin
 MaxLength := 2;
 while (MaxLength <= MaxValue) do MaxLength := MaxLength * 2;
 Length := MaxLength;
 while (Length > 1) do
 begin
 Length := Length div 2;
 wleftover := (wleftover * 2) + (Value div Length);
wlosize := wlosize * 2;
Value := Value mod Length;
if (wlosize = 256) then
 begin
 WriteByte(output, wleftover);
 wlosize := 1;
 wleftover := 0
 end
end

{flush to output any left over fraction of a byte}
procedure FlushBits;
 begin
 if (wlosize > 1) then
 begin
 wleftover := wleftover * 2;
 wlosize := wlosize * 2;
 WriteByte(output, wleftover)
 end
 end

{pass through a number of bytes given by argument}
procedure PassThru(num:integer);
 var
 index: integer;
 begin
 index := 0;
 while ((index < num) and (not eof(input))) do
 begin
 index := index + 1;
 WriteByte(output, ReadByte(input))
 end
 end;

{ This procedure reads in all command line parameters and modifies the}
{ initial state of the program accordingly. Absolutely NO error }
procedure ProcessArguments;
 var
 index: integer;
 argument: String;
 DictionaryGiven: boolean;
 Buffer: String;
 begin
 index := 1;
 DictionaryGiven := false;
 while (index <= argc - 1) do
 begin
 argv(index, argument);
 case argument[2] of
 'r': begin RightmostMatchFirst := true;
 UseFullMatchAlg := false;
 end;
 'b': begin
 index := succ(index);
 argv(index, Buffer);
 BufSize := Atoi(Buffer);
 end;
 'e': begin
 index := succ(index);
 argv(index, Buffer);
 EntriesPerProcessor := Atoi(Buffer);
 end;
 'g': begin
 index := succ(index);
 argv(index, Buffer);
 BreakSupplied := true;
 BreakPoint := Atoi(Buffer);
 end;
 'd': begin
 index := succ(index);
 DictionaryGiven := true;
 argv(index, DictionaryFilename);
 end;
 'r': begin
 index := succ(index);
 argv(index, Buffer);
 Reserved := Atoi(Buffer);
 end;
 's': begin
 index := succ(index);
 argv(index, Buffer);
 end;
 end;
 end;
 end;
Ignore := AtoI(Buffer)
end;
index := succ(index)
end;
if not DictionaryGiven then DictionaryFilename := DefaultDictionary;
MaxTokenValue := pred(Reserved)
end;

function Digit(SomeChar: char): integer;
begin
Digit := ord(SomeChar) - ord('0');
end;

{ The following AtoI function will only work if its string argument is a valid integer number in string representation. Absolutely NO error checking is done. }
function AtoI(SomeString: String): integer;
var
Result: integer;
Minus: boolean;
Index: StringIndex;
ThisChar: char;
begin
Result := 0;
Minus := false;
for Index := 1 to MaxStringLength do
begin
ThisChar := SomeString[Index];
if (ThisChar = '-') and (Result = 0) then
Minus := not Minus
else if (ThisChar in ['0'..'9']) then
Result := Result * 10 + Digit(ThisChar);
end;
if Minus then Result := - Result;
AtoI := Result
end;
5. MPP Code

```plaintext
program row( input, output, row_index, col_index, DataIn, DataOut );

const FirstProc = 0; { Processors}
    LastProc  = 127;
    FirstIndex = 0; { Dictionary Entries}
    LastIndex  = 29;
    MaxEntries = 30;
    FirstPtr   = 0; { Output Tokens}
    LastPtr    = 4094;
    NullPtr    = 4095; { Special Null Token}
    MaxPtr     = 4095;
    FirstImage = 0; { Images}
    LastImage  = 1;

    NoShiftUp   = 0; { Number of cells to shift data N/S}
    ShiftRight  = -1; { Number of cells to shift data E/W}
    ShiftLeft   = 1;

    DefEntries  = 32; { Default Values}
    DefReserve  = 256;

type ProcIndex = FirstProc .. LastProc;
    EntryIndex = FirstIndex .. LastIndex;
    DictSize   = 0 .. MaxEntries;
    Pointer    = FirstPtr .. MaxPtr;
    ImageIndex = FirstImage .. LastImage;
    PtrParArr  = parallel array [ ProcIndex, ProcIndex ] of Pointer;
    BoolParArr = parallel array [ ProcIndex, ProcIndex ] of boolean;
    SizeParArr = parallel array [ ProcIndex, ProcIndex ] of DictSize;
    IOBuffer   = stager array [ ProcIndex, ProcIndex ] of DictSize;
    StagerBuf  = stager array [ ImageIndex, ProcIndex, ProcIndex ]
                of Pointer;
```
DictArray = array [EntryIndex] of PtrParArr;

var { Parallel (Per Processor) Global Data Structures}
 OldBufPtr : PtrParArr; { Input Buffer }
 OldBufVal : BoolParArr;
 NewBufPtr : PtrParArr;
 NewBufVal : BoolParArr;
 OutputPtr : PtrParArr; { Output Token}
 OutputVal : BoolParArr;
 LeftDict : DictArray; { Dictionary}
 RightDict : DictArray;
 LocalSize : SizeParArr;
 Learning : BoolParArr; { Miscellaneous}
 Mask : BoolParArr;
 MustSkip : BoolParArr;
 ImageBuf : StagerBuf; { Input/Output}
 ImageIn : PtrParArr;
 ImageOut : PtrParArr;
 DataIn : file of IOBuffer;
 DataOut : file of IOBuffer;

{ Scalar Global Data Structures}
 MaxOutTkn : integer; { Max Output token}
 MaxInTkn : integer; { Max Input token }
 InputImage : ImageIndex; { # of current input image}
 OutImage : ImageIndex; { # of current output image}
 InputCol : ProcIndex; { # of current input column}
 OutputCol : ProcIndex; { # of current output column}
 EndOfInput : boolean; { true when last image done}

%include 'io.i'{ Low Level I/O Routines}

procedure restrc; extern; { PE initialization}

procedure FindMatch;
 var
 Index : DictSize;
 Temp : BoolParArr;
 Searching : BoolParArr;
begin
 Searching := OldBufVal and NewBufVal;
 Temp := (LocalSize > 0);
 Searching := Searching and Temp;
 Index := FirstIndex;
 while (Index < MaxEntries) and any(Searching, 1, 2) do
 begin
 { Select processors where a match could be expected }
 Mask := (LocalSize > Index) and Searching;
 { Reduce Mask set to those where a match exists }
 Temp := (OldBufPtr = RightDict[Index]) and
 (NewBufPtr = LeftDict[Index]);
 Mask := Mask and Temp;
 { Update processors where a match was found }
 where Mask do OutputPtr := col_index * MaxEntries;
 where Mask do OutputPtr := OutputPtr + (Index + DefReserve);
 where Mask do OutputVal := true;
 where Mask do Searching := false;
 where Mask do OldBufVal := false;
 where Mask do NewBufVal := false;
 Index := Index + 1;
 end;
end;

procedure UpdateDict;
var
 DictIndex : DictSize;
 Offset : DictSize; { to get around compiler bug }
 LastSize : DictSize;
 Candidates : BoolParArr;
 Temp : BoolParArr;
 BothUnder : BoolParArr;
 BothOver : BoolParArr;
 ValidMatch : BoolParArr;
begin
 Candidates := OldBufVal and NewBufVal;
 LastSize := max(LocalSize, 1, 2);
 if LastSize > LastIndex then LastSize := LastIndex;
 for DictIndex := 0 to LastSize do
 begin
 { decide which processors should update the DictIndex'th }
 { entry in their dictionary -> Temp }
 Offset := DictIndex;
Temp := LocalSize = Offset;
Temp := Temp and Candidates;
Temp := Temp and Learning;
{ Reject those processors that do not have a valid match }
BothUnder := (OldBufPtr < DevReserve) and
(OutputPtr < DefReserve);
BothOver := (OldBufPtr >= DevReserve) and
(OutputPtr >= DefReserve);
ValidMatch := BothUnder or BothOver;
Temp := Temp and ValidMatch;
{ first pair to be learned must be skipped }
where MustSkip do Mask := false otherwise Mask := Temp;
where Temp do MustSkip := false;
if any(Mask, 1, 2) then
begin
where Mask do LeftDict[Offset] := OldBufPtr;
where Mask do RightDict[Offset] := OutputPtr;
where Mask do LocalSize := LocalSize + 1;
where Mask do Candidates := false
end
end
end;

procedure UpdateAll;
begin
{ Clear output flag in all processors }
OutputVal := false;
{ Find all matches between buffers and dictionaries }
FindMatch;
{ Update Dictionaries, where necessary }
UpdateDict;
{ Output older buffer entry if no match was found }
Mask := OldBufVal and NewBufVal;
where Mask do OutputPtr := OldBufPtr;
where Mask do OutputVal := true;
end;

procedure SwitchDict;
var
NewMask: BoolParArr;
begin
{ Mask = true if local dictionary is full }
Mask := LocalSize = MaxEntries;
Mask := Mask and Learning;
 \{ NewMask = true if new dictionary is being enabled\}
NewMask := shift(Mask, NoShiftUp, ShiftRight);
 where Mask do NewMask := false;
 \{ new dictionaries must skip their first pair\}
MustSkip := MustSkip or NewMask;
 \{ Update Learning mask\}
 where Mask do Learning := false
 otherwise Learning := Learning or NewMask;
end;

procedure ProcTokens;
 begin
 \{ Load input data on first column of processors\}
NextColumn;

 \{ Update Processor status\}
UpdateAll;

 \{ Shift Buffers right, where appropriate\}
where NewBufVal do OldBufPtr := NewBufPtr;
where NewBufVal do OldBufVal := NewBufVal;

 \{ Broadcast data to next processor in row\}
NewBufPtr := shift(OutputPtr, NoShiftUp, ShiftRight);
NewBufVal := shift(OutputVal, NoShiftUp, ShiftRight);

 \{ Switch to next dictionaries, if necessary\}
SwitchDict;

 \{ Output, if necessary...\}
ColumnOut;
 end;

procedure InitProcs;
 begin
 LocalSize := 0;
OutputVal := false;
OldBufVal := false;
NewBufVal := false;
Learning := false;
end;
where (col_index = FirstProc) do Learning := true;
where (col_index = FirstProc) do MustSkip := true
end;

begin

restrc; // Initialize PECU system data structures
MaxOutTkn := LastPtr;
MaxInTkn := DefReserve - 1;

LoadImages; // Load input images into Stager buffer
InitProcs; // Initialize processor data structures
InitOutput; // Initialize output routines

while not EndOfInput do ProcTokens;

FlushBuffers; // Flush remaining tokens

end.

procedure LoadImages;
var
 Index : ImageIndex;
 Offset : ImageIndex;
 Temp :_PtrParArr;
begin
 reset(DataIn);
 for Index := FirstImage to LastImage do
 begin
 Offset := Index;
 get(DataIn);
 transfer(DataIn, Temp);
 waitio;
 transfer(Temp, ImageBuf[Offset, ,]);
 waitio;
 end;
 InputCol := 0;
 InputImage := 0;
 EndOfInput := false;
 transfer(ImageBuf[InputImage, ,], ImageIn);
procedure NextColumn;
 var
 Value: integer;
 begin
 Mask := (col_index = FirstProc);
 where Mask do NewBufPtr := ImageIn;
 where Mask do NewBufVal := (NewBufPtr <> NullPtr);
 ImageIn := shift(ImageIn, NoShiftUp, ShiftLeft);
 if (InputCol < LastProc) then InputCol := InputCol + 1
 else begin
 InputCol := 0;
 if (InputImage = LastImage) then EndOfInput := true
 else begin
 InputImage := InputImage + 1;
 transfer(ImageBuf[InputImage, ,], ImageIn)
 end
 end
 end;

procedure InitOutput;
 begin
 rewrite(DataOut);
 ImageOut := NullPtr;
 OutputCol := 0
 end;

procedure ColumnOut;
 begin
 Mask := (col_index = LastProc);
 where Mask do
 where OutputVal do ImageOut := OutputPtr
 otherwise ImageOut := NullPtr;
 Mask := Mask and OutputVal;
 if any(Mask, 1, 2) then
 begin
 if (OutputCol < LastProc) then
 begin
 OutputCol := OutputCol + 1;
 end
 end
 end;
ImageOut := shift(ImageOut, NoShiftUp, ShiftLeft)
 end
else begin
 OutputCol := 0;
 transfer(ImageOut, DataOut);
 waitio;
 ImageOut := NullPtr;
 put(DataOut)
 end
end;

procedure FlushOne(var PtrArray: PtrParArr; var BoolArray: BoolParArr);
begin
 OutputVal := BoolArray;
 OutputPtr := PtrArray;
 ColumnOut;
 BoolArray := shift(BoolArray, NoShiftUp, ShiftRight);
 PtrArray := shift(PtrArray, NoShiftUp, ShiftRight)
end;

procedure FlushBuffers;
var
 Index: ProcIndex;
 Offset: ProcIndex;
begin
 for Index := LastProc downto FirstProc do
begin
 FlushOne(OldBuffPtr, OldBufVal);
 FlushOne(NewBuffPtr, NewBufVal)
end;
 close(DataOut)
end;