Advanced Transmission Studies

(NASA-TH-100867) ADVANCED TRANSMISSION STUDIES (NASA) 15 p

Unclas
G3/37 0140262

John J. Coy
Lewis Research Center
Cleveland, Ohio

and

Robert C. Bill
Propulsion Directorate
U.S. Army Aviation Research and Technology Activity—AVSCOM
Lewis Research Center
Cleveland, Ohio

Prepared for the
44th Annual Forum of the American Helicopter Society
Washington, D.C., June 16–18, 1988
ADVANCED TRANSMISSION STUDIES

John J. Coy
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

and

Robert C. Bill
Propulsion Directorate
U.S. Army Aviation Research and Technology Activity - AVSCOM
Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

The NASA Lewis Research Center and the U.S. Army Aviation Systems Command share an interest in advancing the technology for helicopter propulsion systems. In particular, this paper presents highlights from that portion of the program in drive train technology and the related mechanical components. The major goals of the program are to increase the life, reliability, and maintainability; reduce the weight, noise, and vibration; and maintain the relatively high mechanical efficiency of the gear train. The current activity emphasizes noise reduction technology and analytical code development followed by experimental verification. Selected significant advances in technology for transmissions are reviewed, including advanced configurations and new analytical tools. Finally, the plan for transmission research in the future is presented.

INTRODUCTION

Since 1970 NASA Lewis and the U.S. Army Aviation Systems Command have shared an interest in advancing the technology for helicopter propulsion systems. The major goals of the program are to increase the life, reliability, and maintainability; reduce the weight, noise, and vibration; and maintain the relatively high mechanical efficiency of the gear train. The current activity emphasizes noise reduction technology and analytical code development followed by experimental verification. Selected significant advances in technology for transmissions are reviewed, including advanced configurations and new analytical tools. Finally, the plan for transmission research in the future is presented.

ANALYSIS

The current activity emphasizes analytical code development and validation with emphasis on noise reduction technology for drive systems, Figure (2). This information is being used to validate the advanced configurations and new analytical tools. Finally, the plan for transmission research in the future is presented.

Gear and Transmission Life

Pitting fatigue is a natural wear out mode of gear failure and occurs even under ideal operating conditions with proper lubrication and stress levels. For each hour of operation there is a reliability...
level which can be calculated. Early work at NASA provided an analytical methodology for calculating life and reliability for gears assuming a quasi-static load on the gear teeth, Reference (9). It was desired, therefore, to improve on this methodology by replacing the assumed quasi-static load with a calculated dynamic load in the life and reliability model.

TELSGE, a NASA gear dynamic load prediction program, Reference (10), was modified, a pitting-fatigue-life prediction analysis was added and parametric studies were performed. The study identified contact ratio and operating speed as the two most influential parameters among those studied, Reference (11). As a result, gear life can be increased through the improved analytical life prediction method.

Drive system life and reliability are important issues during the design, development and field operation of helicopters. Analytical tools are needed for design and for comparing competing and alternate designs.

To meet this need, a versatile computer program was developed to predict helicopter transmission life, Figure (4), Reference (12). The program can analyze a variety of configurations composed of spiral bevel gears and planetary gears. The program determines the forces on each bearing and gear for a given transmission configuration and applied load. The life of each bearing and gear is determined. Program output includes component and total system lives and load capacity for a given mission profile. The program predicts mean time between failures (MTBF) and can be used to evaluate proposed new designs and to project spare parts requirements for helicopter fleet operations.

Gear Noise

Historically, helicopters have been plagued by internal noise problems. Noise levels range from 100-120 dBA in the cabin. The sound can be from many sources, such as the transmission gear noise, the turbine engine compressor and exhaust noise, the rotor blades, and air turbulence. The transmission is a particularly troublesome source and is believed to be the main source of annoying noise in the helicopter cabin. The noise from the transmission enters the cabin following two paths, structure borne radiation and direct radiation, Figure (5). The magnitude of the direct radiation is a function of the acoustic power radiated from the transmission case, transmitted acoustically to the cabin outer walls, and transferred through to the cabin. Of course if there are any small openings in the wall between the transmission compartment and the cabin the sound will directly enter the cabin. The structure borne path is particularly hard to block because the transmission case and its mounts are an integral part of the lift-load bearing path. The transmission mounts must be strong and rigid: strong enough to support the entire helicopter by transferring the lift-load from the rotor blades to the air frame; and rigid enough for stable control of the helicopter. The stiff mounts pass the gear vibrations exceedingly well to the airframe, and the sound transmits to the cabin directly. The major portion of our present program in transmissions is devoted to finding solutions to this problem.

Spiral bevel gears are used in helicopters to transmit power “around the corner” from a horizontal engine output shaft to the vertical rotor shaft. Vibration from spiral bevel gears is a strong source of transmission noise, Figure (6), Reference (13).

The goal of a recent study was to relate gear noise to physical factors such as deviations of tooth surfaces and gear shaft centerlines from their ideal positions; tooth and gear body stiffness; bearing and housing support flexibility and input shaft torque. Equations have been developed for computing the vibration and noise of the gear drive system. The work completed: (a) provides the first detailed mathematical understanding of generalized transmission error in spiral bevel gears, (b) allows prediction of vibration excitation based on gear tooth measurements, and (c) relates gear noise to physical design parameters and therefore provides a basis for future improvements in spiral bevel gear design, Reference (14).

ADVANCED TRANSMISSIONS

Advancements in transmissions can come from either improved components and improved designs of the transmission system, Figure (7). The split torque arrangement is in the second category; Figure (7a) shows a split torque design which is compatible with the Blackhawk (UH-60A) helicopter. The fundamental concept of the split torque design is that the power from the engine is divided into two parallel paths prior to recombination on a single gear that drives the output shaft. Studies have shown that replacement of the planetary gear reduction stage with a split torque results in weight savings and increased reliability, Reference (15). There can be many pinions driving the output gear, but in the case of the UH-60A application it was found that four pinions gave the optimum design on the basis of least overall weight, reduced power losses, comparable total parts count compared to the existing UH-60 design, and least number (one) of nonredundant gears. The advantage of split torque over planetary is greatest for the larger sized helicopters.

The engineering analysis showed that the following performance benefits can be achieved for a 3600 hp split torque transmission compared to the conventional transmission with a planetary gear stage: (a) weight is reduced 15 percent, (b) drive train power losses are reduced by 9 percent, (c) reliability is improved and vulnerability is reduced because of redundant power paths, and (d) the number of noise generation points (gear meshes) is reduced.

The transmission has potential for installation in the Blackhawk helicopter. The design study has carried the transmission to the detail design stage for a test model to be used for validation
One recent development in the area of high-performance power transmissions is the self-aligning, bearingless planetary (SABP). Reference (17), Figures (7c) and (7d). This transmission arrangement can be generically classified as a quasi-compound planetary which utilizes a sun gear, planet spindle assemblies, ring gears, and rolling rings.

The design study projects a weight savings of 17 to 30 percent and a reliability improvement factor of 2:1 over the standard transmission. The benefits of using a SABP transmission are most effective when one uses reduction ratios between 16:1 and 26:1. It permits high reduction in two compound stages of high efficiency, providing sufficient flexibility and self-centering to give good load distribution between planet pinions, while effectively isolating the planetary elements from housing deflections.

This new transmission concept offers advantages over transmissions that use conventional planetary gears: higher reduction ratio, lighter weight, increased reliability, and decreased vulnerability. Since it has no planet bearings, there is a weight savings and power losses and bearing failures commonly associated with conventional-design transmission are nonexistent.

In conventional-design transmissions, planet bearings are heavily loaded and are the weak link when the lubricant is interrupted. The SABP transmission has decreased vulnerability because of increased operating time after loss of lubricant since there are no planet bearings.

One SABP transmission, Figure (7c), with a 17.44:1 ratio is currently being tested in the 500 hp transmission facility at NASA Lewis, and another variant, Figure (7d), with a ratio of 101:1 is being fabricated for testing.

FUTURE PLANS

Rotorcraft for the 1990's and beyond require an extremely light, long-lived and quiet drive systems. The NASA/Army research, along with the helicopter builders' careful designs, has provided reliable and strong drive systems for civilian and Army helicopters. This paper has reviewed significant research in drive systems and their components.

The critical issues are: (a) to achieve significant advances in power-to-weight ratio, (b) to increase reliability, and (c) to reduce the transmission noise. New concepts to achieve these goals have been investigated. The advanced 500 hp transmission has explored an increased power-to-weight ratio using advanced design techniques, component improvements, and advanced materials. The value of this kind of research activity was realized during the upgrading of the Army's OH-58D model. The bearingless planetary transmission with helical gears offers advantages in reliability and reduced noise. The slip torque concept offers significant weight savings for large size helicopters.

Our plan for future NASA/Army Transmission Research calls for increased emphasis on noise reduction, an aggressive development of computer-aided design codes for transmissions, and the design and construction of demonstrator transmissions in large and small size categories, Figure (8).
The Advanced Rotorcraft Transmission (ART) Technology Integration Demonstration is an Army/NASA program incorporating key emerging material and component technologies and new design concepts for advanced rotorcraft transmissions. The intent is to make a quantum jump in the state-of-the-art. The program provides for the design, construction and testing of two different-sized transmissions. One size range will be applicable to a 10,000 lb to 20,000 lb gross weight future attack rotorcraft. The other size is for a 60,000 lb to 85,000 lb advanced cargo aircraft.

There are three objectives to the program: (a) transmission weight is to be reduced by 25 percent compared to design and component capabilities represented by currently fielded transmission state-of-the-art; (b) transmission noise levels are to be reduced by 10 dB compared to state-of-the-art capabilities; and (c) mean time between removal is to be at least 5000 hr. These are recognized as being ambitious but realistic objectives, and address attributes of rotorcraft transmissions that significantly impact aircraft performance.

ART provides the rotorcraft industry, for the first time, an opportunity to advance the technology baseline of transmissions via a path similar to that traditionally followed in engine development, namely through technology demonstrator programs.

ART consists of two phases. The first phase, just recently initiated, is the “Preliminary Design and Component Development” phase, and involves four industry participants. In the early part of this phase a conceptual baseline transmission representing currently fielded state-of-the-art will be defined. This will provide the basis for comparing different advanced design concepts and for assessing the impact of various component technologies with respect to achieving the ART objectives. A final selection of the ART transmission configuration along with a list of key technologies requiring substantiation or additional development then follows. The key technology issues are addressed through execution of a supporting test plan, and the results are integrated into the preliminary design. It is expected that the first phase of the ART program will be completed by 1992. A summary of the component technologies that will be addressed in the ART program is in Table I. Note that the specific ART objectives areas (weight, noise, and mean time between removal) by component technology are indicated. The expected long range impacts and follow-ons to the ART phase one contributions are summarized in Table II.

The second phase of the ART program scheduled for initiation prior to full completion of the first phase, is “Detailed Design, Fabrication, and Demonstration” of the transmission conceived in the first phase. It is anticipated that two participants will be involved in the second phase. The immediate result of the second phase effort will be a validated transmission incorporating proven advanced technology materials and components, readily adaptable to next generation rotorcraft systems. Completion of the ART second phase is expected in 1994.

REFERENCES

Table 1. Technical Content of Art Program

<table>
<thead>
<tr>
<th>Major Technology Emphasis</th>
<th>WT</th>
<th>Noise</th>
<th>MTBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Housing</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integral high-speed coupling/shaft</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Clutches</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spherical/tapered</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonmetallic (i.e. rollers, cage)</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Shaft integral</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improved analysis</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matl./processing/MFG</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Gears</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herringbone/buttress</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Conformal</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Soft torque device</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>High contact ratio spur and bevel</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Zero kinematic error spiral bevel</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise attenuation/cancellation</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Shaft seals</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Lubricants/cooling</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Mini lube system</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Grease lubricant</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Diagnostics</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Presently applied</td>
<td>ART input</td>
<td>10 years ahead (research topics)</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Lubricants</td>
<td>MIL L- 23699</td>
<td>Mini-lube; high temperature tubes; grease lube</td>
<td>Dry lubricants unlubricated</td>
</tr>
<tr>
<td>Bearings</td>
<td>DVM steels; stacked balls, ball/roller; Lundberg Palmgren life prediction</td>
<td>Ceramic rolling elements; spherical roller, high speed tapered roller</td>
<td>Magnetic bearings, wide use of ceramics; life prediction for ceramics</td>
</tr>
<tr>
<td>Gears</td>
<td>Carb/nit 9310; involute tooth forms; scoring, scuffing, bending fatigue life prediction</td>
<td>High hot hardness steels, ion implant and plating, near net forged; high contact ratio, non involute forms (conformal), zero kinematic error; finite element modelling, dynamic analysis</td>
<td>Dual alloy light weight gears, advanced coatings and surface treatments; full transient load structural model</td>
</tr>
<tr>
<td>Configurations</td>
<td>Planetary</td>
<td>Self aligning bearingless planetary; split torque</td>
<td>Variable speed; direct turb. drive; electro-magnetic systems</td>
</tr>
<tr>
<td>Clutches</td>
<td>Sprague; roller ramp</td>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>Shafts</td>
<td>Steel forgings</td>
<td>Composite (organic matrix)</td>
<td>Metal matrix composite</td>
</tr>
<tr>
<td>Housings</td>
<td>Cast Mg</td>
<td>Composite</td>
<td></td>
</tr>
<tr>
<td>Analysis</td>
<td>Principles of mech design; component level struct. analysis</td>
<td>Dynamic finite element analysis of all important structures</td>
<td>Comprehensive transmission modeller</td>
</tr>
<tr>
<td>REQUIREMENT</td>
<td>GOAL</td>
<td>BENEFIT</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>LIGHTER</td>
<td>DRIVE TRAIN SPECIFIC WEIGHT</td>
<td>INCREASED RANGE AND PAYLOAD</td>
<td></td>
</tr>
<tr>
<td>STRONGER</td>
<td>0.3 TO 0.5 lb/hp</td>
<td>CURRENTLY 0.4 TO 0.6 lb/hp</td>
<td></td>
</tr>
<tr>
<td>MORE RELIABLE</td>
<td>5000-hr MEAN TIME BETWEEN OVERHAULS (MTBO)</td>
<td>LOWER OPERATING COST AND SAFER OPERATION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(CURRENTLY 500 TO 2000 hrs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUIETER</td>
<td>70 TO 80 dB IN CABIN</td>
<td>GREATER USE FOR COMMERCIAL COMMUTER SERVICE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(CURRENTLY 100 TO 110 dB)</td>
<td>INCREASED PASSENGER AND PILOT COMFORT</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 1. - TRANSMISSION TECHNOLOGY REQUIRED FOR 1990's.

![Diagram of transmission technology]

FIGURE 2. - CURRENT RESEARCH ACTIVITY IN TRANSMISSIONS.
TRANSMISSION CONCEPT EVALUATION, TESTING AND OPTIMIZATION

FIGURE 3. - COMPREHENSIVE TRANSMISSION AND MODELING SYSTEM.
SIGNIFICANCE:
- Versatile computer program for predicting transmission life and reliability
- Tool for evaluating preliminary and competing designs
- Provides information that can be used to plan spare parts required

FEATURES:
- Inputs: transmission configuration, load, and speed
- Outputs: transmission components and system lives

FIGURE 4. - HELICOPTER TRANSMISSION LIFE AND RELIABILITY COMPUTER PROGRAM.

FIGURE 5. - TRANSMISSION NOISE REDUCTION TECHNOLOGY FOR ROTORCRAFT.
MILESTONES COMPLETED:

- MATHEMATICAL MODEL OF ZONE OF TOOTH CONTACT FOR SPIRAL BEVEL GEARS
- NEW UNDERSTANDING OF THREE-DIMENSIONAL NATURE OF TOOTH MESHING
- TIME AND FREQUENCY DOMAIN ANALYSIS FOR NOISE EXCITATION FUNCTION
- NASA CR 4081

SIGNIFICANCE:

- ALLOWS PREDICTION OF VIBRATION FROM GEAR MEASUREMENTS
- PROVIDES BASIS FOR FUTURE IMPROVEMENTS IN SPIRAL BEVEL GEAR DESIGN

FIGURE 6. - SPIRAL BEVEL GEAR NOISE MODELING.
(a) 3600-hp SPLIT TORQUE.

(b) 500-hp/ADVANCED COMPONENTS.

FIGURE 7. - ADVANCED TRANSMISSIONS.
(c) 500-hp BEARINGLESS PLANETARY (LOW-RATIO).

(d) 500-hp BEARINGLESS PLANETARY (HIGH-RATIO).

FIGURE 7. - CONCLUDED.
ANALYSIS
AND
VALIDATION

NOISE REDUCTION
TECHNOLOGY

DESIGN
OPTIMIZATION

NEW GEAR GEOMETRY
ACOUSTIC TREATMENTS
NOISE ISOLATORS

LIGHTWEIGHT
LOW NOISE
LONG LIFE

U.S. ARMY ADVANCED ROTORCRAFT
TRANSMISSION DEMONSTRATOR PROGRAM

21st CENTURY
TRANSMISSIONS
FOR ADVANCED
CARGO AIRCRAFT (ACA)
AND FUTURE ATTACK
ROTORCRAFT (FAR)

FIGURE 8. - FUTURE THRUST.
Title and Subtitle
Advanced Transmission Studies

Author(s)
John J. Coy and Robert C. Bill

Performing Organization Name and Address
NASA Lewis Research Center
Cleveland, Ohio 44135-3127

U.S. Army Aviation Research and Technology Activity—AVSCOM
Cleveland, Ohio 44135-3127

Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Washington, D.C. 20546-0001

U.S. Army Aviation Systems Command
St. Louis, Mo. 63120-1798

Abstract
The NASA Lewis Research Center and the U.S. Army Aviation Systems Command share an interest in advancing the technology for helicopter propulsion systems. In particular, this paper presents highlights from that portion of the program in drive train technology and the related mechanical components. The major goals of the program are to increase the life, reliability, and maintainability; reduce the weight, noise, and vibration; and maintain the relatively high mechanical efficiency of the gear train. The current activity emphasizes noise reduction technology and analytical code development followed by experimental verification. Selected significant advances in technology for transmissions are reviewed, including advanced configurations and new analytical tools. Finally, the plan for transmission research in the future is presented.

Key Words (Suggested by Author(s))
- Helicopter transmissions
- Gears
- Vibrations
- Mechanical design

Distribution Statement
Unclassified—Unlimited
Subject Category 37