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A constitutive theory for use in structural and durability analyses of
high-temperature isotropic alloys is presented. Constitutive equations based
upon a potential function are determined from conditions of stability and phys-
ical considerations. The theory is self-consistent; terms are not added in an
ad hoc manner. It extends a proven viscoplastic model by introducing the
Kachanov-Rabotnov concept of net stress. Material degradation and inelastic
deformation are unified; they evolve simultaneously and interactively. Both
isotropic hardening and material degradation evolve with dissipated work which
is the sum of inelastic work and internal work. Internal work is a continuum
measure of the stored free energy resulting from inelastic deformation.

INTRODUCTION

The nucleation, growth and coalescence of voids and microcracks are physi-
cal phenomena that degrade a material's continuity. This degradation results
in a loss of strength, and is the eventual cause of failure. Continuous damage
mechanics applies whenever the distribution of defects does not include one or
more dominating macroscopic cracks; otherwise, fracture mechanics applies. The
subject of this paper falls under the topic of continuous damage mechanics;
applications to fracture mechanics are not discussed.

A constitutive theory applicable to structural and durability analyses of
high-temperature isotropic alloys is developed. A set of constitutive equa-
tions based on a single potential function is determined from stability con-
ditions and physical considerations. A specific potential function from a
proven viscoplastic theory is extended to account for internal damage by intro-
ducing the Kachanov - Rabotnov (refs. 1 and 2) concept of a net stress. Inter-
nal damage and inelastic deformation are unified in this approach; they evolve
simultaneously and interactively. The theory is self-consistent in that it is
derived from a potential function; terms are not added in an ad hoc manner.
Other viscoplastic theories that incorporate continuous damage mechanics have
been proposed. The evolutionary equations for material degradation in the
theories of Chaboche (ref. 3), Bodner (ref. 4), and Walker and Wilson (ref. 5)
are phenomonologically determined, whereas, the Perzyna theory (ref. 6) is
micromechanistically based. In this paper the evolutionary equation for mate-
rial degradation is derived from a potential function.

*NASA Lewis Resident Research Associate.
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Continuous damage mechanics deals with, an infinitesimal volume element
of material (called a particle), whose dimensions are large enough to contain
many material defects, yet small enough to be treated as a mathematical point
in a continuum sense. Consider a face on such an element whose unit normal is
given by n1.] Let A denote its surface area in a flawless (or undamaged)
state, and Tet A' denote its net surface area in the presence of material
defects (or in a damaged state); thus A' < A. The internal damage associated
with this particle, and in the direction of this unit normal, is defined by

A-A
w="7 ()

which is bounded by the interval 0 ¢ w < 1 where w =0 1in an undamaged
state. Whenever the orientations of material defects have preferred direc-
tions, damage becomes a function of these directions resuiting in an entity of
tensorial nature (refs. 7 to 9); otherwise, damage is isotropic and can be
represented by a scalar. In this paper, damage is taken to be isotropic as a
simplifying assumption. Kachanov (ref. 1) calls the quantity ¢ =1 - w the
continuity of the material.

Consider once again a face on an infinitesimal material volume element.
In an undamaged state, traction is the ratio of the force transmitted through
the surface Fj to the surface area A. It is related to the unit normal nj
by a homogeneous linear operator oij called the applied (or Cauchy) stress,

that is?2

Fi
In a damaged state, traction becomes the ratio of the force transmitted through
the surface Fj to the net surface area A'. It is related to the unit normal
nj by a homogeneous linear operator o'1j called the net (or Kachanov-
Rabotnov) stress; thus

Fi
AT = °ijnj &)
Combining equations (1) to (3) results in
g

% =0 - o
which relates the net stress to the applied stress.

) Like the classical theories of creep and plasticity, strain e, is
given by the sum 1]

TA11 scalar, vector and tensor fields are defined at particles whose spa-
tial coordinates are xj at the instant t 1in a Cartesian reference frame.

2Repeated indices are summed over in the usual manner.
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- p
e1j = sij + eij (%)

where e?j is the elastic strain and e?j is the inelastic (or plastic)
strain. From a thermodynamic viewpoint, the elastic change in strain is the
reversible portion of a change in strain, while the inelastic change in strain
is the irreversible portion of that change in strain. Small displacements and
rotations are assumed.

The elastic response of polycrystalline metals is given by the relation-
ship
€ij ~ EQ - )

where v is the Poisson ration, « 1is the mean coefficient of thermal expan-
sion, AT is the temperature change and 5ij is Kronecker's delta. Since E
is Young's modulus in an undamaged state, and E' = E(1 - w) can be considered
as Young's modulus in a damaged state, we obtain the following expression:

(E - E")
w="—F (N

This is a useful measure of internal damage, because it can be readily deter-
mined by experiment (ref. 10).

CONSTITUTIVE THEORY

Much of the essential structure in the classical theory of plasticity
derives, not so much from thermodynamic concepts, but from concepts of mate-
rial stability as described by Drucker (ref. 11). A single postulate of
stability is sufficient to unify the description of inelastic behavior of time-
independent materiais under isothermal conditions. A dual postulate of stabil-
ity has been applied by Ponter (ref. 12) to time-dependent materials whose
hereditary behavior can be represented in terms of internal state variables &g
(o = 1,2,...,n) and their conjugate thermodynamic forces f,. In that work,
small isothermal changes in stress at constant internal state are assumed to
obey the inequality

P
doy; def; 20 (8)

where fa and T are constant; whereas small isothermal changes in internal
state at constant stress are assumed to satisfy the inequality

dfF dE_ > 0 (9)
a a - .

where 95 5 and T are constant. In contrast, a thermodynamic counterpart

to the second-order inequality in equation (9) is the restriction of positive
internal dissipation
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FE 50 0

which i1s derived from the second law.

Since changes in inelastic strain rate and internal variable rates are
path independent in the complete state space, the inequalities in equations (8)
and (9) can be integrated along a straight-line path between two arbitrary

states (olj,fl,T) and (afj.fz,T) resulting in the following inequality:
[+ 3 [+ 3

2 1 ‘p2 ‘pl 2 1Y .2 -1
(oij -Cij)(eji - eji)+<fa-fq>(ga-gq)')'o (]])

Along a constant stress path (i.e. under conditions of creep) only the last
term in this inequality remains, and we can easily show that a sufficient con-
dition for its satisfaction is

.30
£, = o (12)
[e 2

where Q(ci.,fa,T) is convex and positive definite in 054,fq- Here we assumed

that equation (12) is not constrained just to constant stress conditions, but
is valid in general. Rice (ref. 13), Martin (ref. 14), and others have shown,
using thermodynamic arguments, that if the kinetic (or evolutionary) law can be
expressed as equation (12), then the flow law given by

‘p 30

et ., = — a3
i acij

is a derived result.

The criteria for stability and the resulting kinetic and flow laws lead to
a vital theorem (ref. 12):

"The stress and state histories are uniquely defined for time t > ty by
the initial conditions at t = ty and the loading history."

The existence of this theorem is essential if this is to be a meaningful con-
stitutive theory for use in structural analyses.

Following the lead of Ponter and Leckie (ref. 15) and Ponter (ref. 12), we
adopted an additional constitutive assumption, that is

@ ¢ o._80
h(f )~ “a ~  of
o

(14

in which h is a hardening function of the internal force f,. The physical
origin of equation (14) in describing the local response of a crystallographic
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slip system, and the limitations that result in transferring from a local
format to a global one, are discussed by Ponter and Leckie. An additional
motive for adopting equation (14) comes from considering conditions in the
neighborhood of a stress free state, as depicted in figure 1. 1In particular,
for a "Jo-type" material (considered in the following section), the surface
(Q€0,f,,T) = constant) is a sphere of radius |fy| {n thermodynamic force
space. The gradient vector 23Q/3f, at each point on the surface where Q =
constant is directed along the outward normal. By considering the constitu-

tive assumption fq/h - -éa. the thermodynamic restriction in equation (10)
can be expressed as fofy,/h < 0, which for positive h constrains the vector

f./h to be contained within a half-sphere in thermodynamic force space. (See
f?g. 1.) The Ponter-Leckie constitutive assumption equation (14) selects the

direction of f,/h so that its projection on fo 1s a maximum; that is, the
Ponter-Leckie constitutive assumption ensures that state recovery occurs under
maximum internal dissipation in the neighborhood of a stress free state.

The extended normality structure expressed in equations (13) and (14)
provides the basis for the present development. Moreover, this structure is
assumed to hold under nonisothermal conditions.

A SPECIAL POTENTIAL FUNCTION

The governing differential equations of a theory of viscoplasticity that
accounts for internal damage are taken to be associated with the normality
structure of a potential function Q as discussed in the previous section.
The independent arguments of this potential function are the applied stress
ojy, an internal stress Bj4, a threshold strength Z, the damage w, and the
temperature T; thus, Q(oy3§,B13.Z,w), where the temperature dependence is
implicit. From a thermodynamic viewpoint, the internal stress and the thresh-
old strength are averaged thermodynamic forces, and damage is an averaged
internal variable (or thermodynamic displacement). The internal stress and
threshold strength are associated with kinematic and isotropic hardening
behaviors, whereas damage is associated with material degradation.

Moderate states of hydrostatic pressure have virtually no influence on
the inelastic response of metals.3 The stress dependence of Q can therefore
be expressed in terms of the deviatoric applied stress

S (15)

%k1j

w|—

i3 = %3 "
and the deviatoric internal stress

B1j = Bij -3 Bkksij 16)

3Moderate states of hydrostatic pressure have a strong influence on the
formation and growth of material defects and, therefore, on the damage. This
effect, however, is accounted for in the degradation function, not in the
potential function.
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where their difference

L.. = S,

i ij - Bij an

is the effective stress associated with inelastic deformation. Under condi-
tions of full isotropy, the invariants

1
I = 2 By3By;
(18
1
I3 = 3 B3B38y
and
I, = tr.x
2 7 2 "ijTii
a9
1
93 = 3 B30k
provide a complete description of the stress dependence of Q.
For the chosen potential function, the flow law is
po_ 90
eij = a°ij (20)
and the evolutionary laws are taken to be
B. .
e 1)
2 b aBij
4 aQ
™ = - a7 (22)
hz az
and
© _ 30
D = 30 (23)

in accordance with the results of the previous section. Here hp and h,

are the hardening functions for the internal stress and the threshold strength,
and D is a degradation function. Equation (20) is the flow law of Rice

(ref. 13). Equations (21) and (22) are the evolutionary laws of Ponter and
Leckie (ref. 15) and equation (23) is the proposed evolutionary law for damage.
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Since damage is an internal variable, whereas internal stress and thresh-
old strength are thermodynamic forces, the sign for equation (23) is different
from that for equations (21) and (22). The reason for this difference is a
Legendre transformation, like those used in equilibrium thermodynamics. These
equations form the foundation for a theory of viscoplasticity that incorporates
internal damage. A specific model is obtained by choosing a particular form
for the potential function.

The potential function considered for this model is

21 2
Q- IK 3 F(F) dF IK 9(G) dG + jz(l) dz (24)

where the stress dependence enters through the functions F(Eiy) and G(Bjjy).
This extends the function used by Robinson (ref. 16) to include isotropic
effects. The fact that equation (24) is a sum of integrals is consistent with
Rice's formulation (ref. 13). 1In his definition of the potential function,
each integrand denotes the rate of change of a thermodynamic displacement (or
internal variable), which is integrated with respect to its conjugate thermo-
dynamic force.

In the spirit of von Mises (ref. 17), the stress dependence of F and G
relies only on the second invariants; in particular,4

J
Fs_g_] (25)
K
and
I
G=—§ (26)
K

Equation (25) is a Bingham-Prager (refs. 18 and 19) yield condition with K
denoting the yield strength in shear. Inelastic strain only occurs when

F > 0; an elastic domain is defined by the inequality F < 0. The boundary
between these two regions, F = 0, is a sphere in deviatoric stress space; it
is the threshold or quasi-static yield surface. The origin of this sphere is
at Bjy, and its radius is K. The inelastic domain, at a fixed inelastic
state, consists of a nested family of spherical surfaces in deviatoric stress
space; each is a surface of constant F, and thus of constant Q. Viscoplas-
ticity differs from classical plasticity in that stress states that lie out-
side the quasi-static yield surface are admissible; they are not admissible in
classical plasticity.

4Many theories of viscoplasticity take F = J2/K2 instead of equa-
tion (25); thus, there is no elastic domain. The only influence that this
choice for F would have on the resulting theory is that the inequality would
be removed from the flow function.
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If the stress dependence of F and G is to be a net stress dependence
in the sense of Kachanov (ref. 1) and Rabotnov (ref. 2), then K must be a
linear homogeneous function of damage,

K=« - w) 27

where « is the quasi-static yield strength in shear. Although damage,

by definition, influences the state of stress, this influence is manifested
by a reduction in strength as exemplified in equations (7) and (27). 1In
equation (27) the reduction in strength due to material degradation competes
with the process of hardening which enhances strength.

Given the potential function (eq. (24)), the flow law of equation (20)
becomes Prager's flow equation (ref. 20),

2u é?j = f(P)Ly (28)

where u is the viscosity and f 1is the flow function. (This is derived in
the appendix.) The Bingham-Prager yield condition (eq. (25)), constrains the
flow function so that it is zero in the elastic domain. Coaxiality between

the effective stress and the inelastic strain rate is implied in equation (28).
Stability (in the sense of eq. (8)) constrains the flow function f(F) to be
nondecreasing with increasing values of F. Most theories of viscoplasticity
use the general form of this flow equation.

Given the potential function (eq. (24)) the evolutionary law for internal
stress (eq. (21)), becomes a Bailey-Orowan type relationship (refs. 21 and 22),
that is

u .
Bij = Zhb(G)e1j - rb(G)B (29)

1

where hy and rp are the kinematic functions for hardening and thermal
recovery. (Equation (29) is derived in the appendix.) The first term in this
equation, for constant hp, is Prager's rule for kinematic hardening (ref. 20).
To model dynamic recovery of the internal stress, Robinson (refs. 23 and 24)
presents a kinematic hardening function that exhibits an analytical discontinu-
ity whenever there is a reversal in stress.

The second term in equation (29) accounts for the thermal recovery of the
internal stress state. This is an anelastic response since it continues until
the internal stress has relaxed to zero, regardless of whether the current
deformation state is elastic or inelastic.

The experimental results of Mitra and McLean (ref. 25) verify the
Bailey-Orowan hypothesis that inelastic deformation occurs as a result of two
competing mechanisms: a hardening process that progresses with inelastic
deformation, and a thermal recovery process that progresses with time. When-

ever these two mechanisms balance such that 313 = 0, the internal stress is
in a steady state. Stability (in the sense of eq. (9)) constrains the func-~
tion g(G) = rp(G)/2hp(G) to be nondecreasing with increasing values of G.
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The general form of this evolutionary equation for the internal stress is used
in many viscoplastic models.

Data from metals that strain-age indicate that the evolution of the quasi-
static yield strength (defined in eq. (27)) depends on the history of thermo-
mechanical loading (ref. 26). These data suggest an evolution such that

k = T2 - (DT (30)

where the parameter T reflects the temperature dependence of the quasi-static
yield strength in an annealed state, and the function © represents the change
in quasi-static yield strength resulting from a change in temperature. The
evolution of the quasi-static yield strength given by equation (30) is path
independent whenever the following equation is satisfied:

Q.

oc2) = -7 9L N

Q.

If equation (30) is to be self-consistent, then « must be path independent
in the annealed state; therefore

(32)

Qo
~i|=1

6(Za) = —Za

where 0 < Z3 < Z. This constraint must always be satisfied; it is like an
initial condition for the functional dependence of 6.

Given the potential function (eq. (24)) and the equation of evolution for
the quasi-static yield strength (eq. (30)), the evolutionary law for the thres-
hold strength (eq. (22)) becomes a Bailey-Orowan type relationship (refs. 21
and 22),

£ :
a9 W
2= h (D (r ; Io ¥ dt) A (33)
where
. . B, .B..
_ P _ 1 1
W= opyed, U ) (34)

b

and h, and r, are the isotropic functions for hardening and thermal
recovery. (These equations are derived in the appendix.) Equation (33)
implies that the path of thermomechanical loading influences the rate of iso-
tropic hardening; under isothermal conditions it reduces to

hZ(Z)N
Z

l = - rZ(Z) (35
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The first term in equations (33) and (35) implies that isotropic hardening
progresses with dissipated work. This dissipated work, as defined in equa-
tion (34), is the sum of the inelastic work and internal work.3 The internal
work can be thought of as a continuum measure of the free energy stored in the
material that arises from inelastic deformation. MWith the exception of the
viscoplastic model of Bodner and Partom (ref. 27) (where kinematic hardening is
not present, and isotropic hardening evolves with inelastic work), all visco-
plastic models that incorporate isotropic hardening, to the best of our knowl-
edge, assume that this process progresses with inelastic path length

I(eij 51’4 dt. This is an assumption that our theoretical derivation does not
support.

The second term in equations (33) and (35) accounts for the anelastic
thermal recovery (or annealing) of the threshold strength. This function must
be constrained so that recovery terminates when the annealed value of thresh-
old strength is obtained. Stability (in the sense of eq. (9)) constrains the
function z(Z) = rz(Z)/h,(Z) to be nondecreasing with increasing values of Z.

Given the potential function (eq. (24)), the evolutionary law for damage
(eq. (23)) becomes

w = D(w) (36)

] - w

where D 1is the degradation function. <(Equation (36) is derived in the
appendix.)

Since materials do not degrade in states of sufficient hydrostatic com-
pression, in general the degradation function ought to switch off the evolu-
tion of internal damage when a critical state of hydrostatic compression is
reached. Equation (36) implies that damage evolves with dissipated work, as
defined in equation (34). Hereditary effects are included through the depend-
ence of dissipated work on inelastic strain and internal stress; thus, equa-
tion (36) has the potential to account for time-dependent effects in a natural
way. Stability (in the sense of eq. (9)) is satisfied if D(w) does not
increase with increasing values of w; but this is not observed. Initially
the dissipation function is virtually a constant, and the material response is
stable for all practical purposes. However, near the end of life, the value
of the dissipation function explodes, thereby leading to material instability
or failure. This is not to say that this theory is undesirable, for it is
precisely this instability that continuum damage mechanics attempts to
characterize.

Many researchers have used inelastic work as a parameter to characterize
fatigue damage (e.g. refs. 28 to 31). The equation of damage evolution given
in equation (36) differs from these earlier, largely empirical, energy crite-
ria by including the influence of internal work. Albeit this is a lesser

SIn accordance with equations (14) and (21), the quantities -81 /2h
denote the rates of change in the thermodynamic disp]acements (or interna? var-
fables) conjugate to the thermodynamic forces Pj3j. Therefore, the quantity

- 3138j,/2hb can be interpreted as the rate of change in the internal work.
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effect than that of inelastic work, nevertheless, it is believed not to be a
negligible one, especially when time-dependent effects are present. Addi-
tional insight is gained from an equivalent expression for the dissipated work
rate (eq. (34)), that is

. D I2

W = zijeji + rb(G) Fg (Q) 37
which is obtained from equations (29) and (34). The first term in this rela-
tionship evolves with inelastic deformation and is a measure of fatigue damage.
(See fig. 2.) The second term evolves with time at internal stress (I 1is the
second invariant of internal stress) and is a measure of the interactive creep
damage. Thus, the interaction between fatigue and creep damage is specified.
The temperature dependence for this measure of creep damage is accounted for,
to a large extent, in the thermal recovery function rp.

CONCLUDING REMARKS

A theory of viscoplasticity has been derived from conditions of stability
and physical arguments, for an initially isotropic continua that exhibits
internal damage. This material degradation was incorporated through the
Kachanov-Rabotnov concept of a net stress. Damage was assumed to be an inter-
nal variable that evolves isotropically according to a Ponter-Leckie type con-
stitutive assumption. A potential function was considered that extends the
Robinson viscoplastic model by including the effects of isotropic hardening
and material degradation. The yield strength was not considered to be an inde-
pendent variable; rather, it was assumed to evolve with changes in threshold
strength and temperature.

We determined that inelastic strain evolves according to a Prager type
flow equation, and that Bailey-Orowan type kinetic equations govern the evolu-
tion of both internal stress and threshold strength. The internal stress har-
dens like a Prager hardening rule, whereas the threshold strength hardens with
dissipated work - not inelastic path length - at a rate that depends on ther-
mal history. Internal damage was shown to evolve with dissipated work leading
to a loss of material stability. Dissipated work is the sum of inelastic work
and internal work. Internal work is a continuum measure of the free energy
stored in a material due to inelastic deformation.
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APPENDIX

This appendix provides the derivations for the flow and evolutionary equa-

tions given in equations, (28), (29), (33), and (36).

By using equations, (15), (17), (19), (24), and (25), the flow law

(eq. (20)) can be written as
80 oF 83, oI, 8.

P
€ =
1y ~ oF 8J2 oL, asmn ao1j

(o]

by the chain rule, where

gg_g Kf(F)
aF 2u
aF 1
J, K2
%2
azuv uv
Py o
asmn vm-un
and
P _ 5 .8 . - x5 &
aoij T onitmy  3Tnmij

Combining these equations results in

©

2p ofy = £CF) Iy

which is the flow equation (28).

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

By utilizing equations (16) to (19) and (24) to (26), the evolutionary

law for internal stress (eq. (21)) can be written as

- —oh (© (@M 2w mae D2 ) e
ij b aF dJ, axuv aan 3G aI, aan anij
by the chain rule, where
TR
d mn vm-un
a0 2
36 = K g(Q@)

(A8)

(A9)

(A10)



&L (ATT)
2 K
812
—% _ B (A12)
aan mn
and
aB
nm 1
aBij = snismj - 35nm51j (A13)
Combining equations (A2) to (A4) with equations (A8) to (A13), we obtain
. L..
= 1l
Bij = hb(G)f(F) ” 2hb<G)g(G)Bij (A14)
which when joined with the flow equation (eq. (A7)) results in
- .
Bij = 2hb(G)eij - rb(G)Bij (A15)

where rp(G) is defined to be 2hy(G)g(G). This is the evolutionary equation
for internal stress given in equation (29).

We define the following expression:

\ 80 8F 80 3G
N=—K(3—Fa + 55 aK) (A16)

L..Z
F _ _ iiit (A7)
aK 3
K
B, .B..
9 Tij ji (A18)
3K 3

which when substituted into equation (A16), along with equations (A2) and
(A10), gives

. F(P)L,,L
W= — 3 aeB

o (A19)

11841
By substituting equations (A7) and (A15) into this relationship, it becomes
o BiyBy;
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which can be expressed as

. BBy
IR T R i L
W w1351 = TR © (A21)

because of equations (15) and (16), and the fact that .1j and B1J are
deviatoric. This is the rate of dissipated work given in equation (34).

From equations (24) to (27), the evolutionary law for threshold strength
(eq. (22)) can be written as

. o0 9F 80 3G ) 3K
Z=-h (D) K— + 5 BK) + z(Z)] (A22)

by the chain rule, where

K _ K dx
37 = % 3 (A23)
and where (from eq. (30)),
3c t s :
37 © r - 57—T dt (A24)
0

Joining equations (A16) and (A22) to (A24) results in

. t :
98 W
= hZ(Z) (r - 0 37 T dt) - rz(Z) (A25)

where r,(Z) s defined to be h,(2)z(Z). This is the evolutionary equation
for threshold strength given in equation (33).

By using equations (24) to (27), the evolutionary law for damage
(eq. (23)) can be written as

aQ gf 30 3G} 3K
= D(w) (5—— K * 3¢ BK) (A26)
by the chain rule, where
K _ K
% - " T-w (A27)
Combining equations (Al16), (A26), and (A27) results in
w = D(w) (A28)

T -

which is the evolutionary equation for damage given in equation (36).
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Q(O,fa,T) = constant

fcx/h(fcx) = - aQ/afa

. B
fa/h(fa)
Figure 1. - In the stress free state f,/h(f,) provides maximum internal dis-
sipation during state recovery.
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Figure 2. - Dissipated work in cyclic shear in the absence of thermal recovery.
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