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Four current viscoplastic models are compared experimentally for Inconel
718 at 593° C. This material system responds with apparent negative strain
rate sensitivity, undergoes cyclic work softening, and is susceptible to low
cycle fatigue. The models used include Bodner's anisotropic model, Krieg,
Swearengen, and Rhode's model, Schmidt and Miller's model, and Walker's
exponential model. Schmidt and Miller's model and Walker's model correct for
negative strain rate sensitivity response. A correction similar to Schmidt's
is applied to the models of Bodner and Krieg, et al.

A series of tests has been performed to create a sufficient data base |
from which to evaluate material constants. A method to evaluate the constants i
is developed which draws on common assumptions for this type of material,
recent advances by other researchers, and iterative techniques. A complex
history test, not used in calculating the constants, is then used to compare
the predictive capabilities of the models.

The combination of exponentially based inelastic strain rate equations
and dynamic recovery is shown to model this material system with the greatest
success. The method of constant calculation developed in this work was
successfully applied to the complex material response encountered. Backstress
measuring tests were found to be invaluable and warrant further development.
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INTRODUCTION

This paper experimentally compares four current viscoplastic models for
metals at elevated temperature. The primary objective of this work is to
uncover the mathematical forms which model reality most successfully and to
develop basic understanding of the models. A secondary objective is to
develop methods of constant calculation which are systematic and repeatable.
A final objective is to develop experimental tests and test software to
support viscoplastic modeling.

This research produces many positive results. First, the aspects of each
model which need further development are uncovered. Also, the most accurate
mathematical forms of the models are determined. Third, basic understanding
of the models is generated. Such understanding is necessary for actual
engineering application of the models and for expanding the capabilities of
the models. Fourth, systematic methods of material parameter evaluation are
developed which draw on advances by all the modelers. Systematic constant
calculation methods make the models much easier to use by researchers and
engineers in the field and advance the technology toward automation and
standardization. Finally, experimental techniques and needs are developed or
reported which can either lead or support theoretical advances.

MATERIAL CONSIDERATIONS

The material used in this work was Inconel 718 and was provided by NASA
Lewis Research Center in Cleveland, Ohio. The temperature used was 593° C.
(1100° F.). The average value of Young's modulus was 169.9 GPa. The material
used in this work had .2% yield stress values between 792 and 903 MPa. The
material cyclically work softened. Strain ageing and negative strain rate

sensitivity effects were observed between the strain rates of 1X10'5 sec‘1

and
1X10'3 sec’l. A fatigue life of 5 to 30 cycles resulted when specimens were
cycled at strain amplitudes over +1% strain. Lower strain rates and the
inclusion of creep hold times also adversely affected the fatigue life.

A11 samples were subjected to the same heat treatment prior to testing.
The heat treatment used was given by the Metals Handbook [1]. The material

was annealed at 954° C for one hour and then 011 quenched. The next step was
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ageing at 718° C. for eight hours with a furnace cool. The furnace used was a
Hevi Duty Electric Co. type 66-P. Temperature was monitored with a Keithly
871 Digital Thermometer. The resulting material state was found to be the
easiest to machine. Therefore, the heat treatment was carried out before
machining and again before testing.

OVERVIEW OF MODELS

The models chosen for this work include Bodner's anisotropic model [2],
Krieg, Swearengen, and Rhode's model [3], Schmidt and Miller's model [4], and
Walker's exponential model [2]. These models were chosen because they are
under active development, methods of determination of the constants have been
reported, and some attempt has been made or is being made to expand them to
transient temperature modeling. The material utilized in this work responded
with negative strain rate sensitivity due to strain ageing. The models of
Schmidt and Miller and Walker were able to handle this phenomenon. The models
of Bodner and Krieg, et al. needed corrections to handle this effect. The
models are reviewed below.

Bodner's Anisotropic Model
The growth laws for Bodner's anisotropic model have the following form:
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where Dy, n, my, Zy, Zyo, Ay, T, Mo, I3, Ay, and ry are material constants.

The flow law is exponentially based as seen in equation (1). The model
gives a limiting strain rate in shear of Dy [5]. The term —leI Wp is a
dynamic recovery term for ZA in the isotropic growth law (3)
and - A2 [(Z-1,) Z;l]rl is a static thermal recovery term. B is a
uniaxial representation of a second order tensor in the multiaxial state which
handles directional or anisotropic hardening. B is assumed to act as an
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isotropic variable on an incremental basis [6]. The growth law for B (4) has
the same components as the growth law for D (3).

Bodner's model is seen to use the rate of plastic work instead of
inelastic strain rate as the measure of work hardening (3,4). This is
designed to allow for better modelling of strain rate jump tests [7]. The
correction used to account for the strain ageing effects was Schmidt and
Miller's non-interactive solute strengthening correction [4]. The inelastic
strain rate equation was then written in the following form:

Z+F

1 75—— D,exp|- ; ( = sol )Zn] sgn o (5)
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Feop= F expf - | log(|¢ I)B- log(J) 2 (6)

where F is the maximum correction, J is the strain rate of maximum correction,
and g is the width of correction.
Krieg, Swearengen, and Rhode's Model

Krieg, et al.'s growth laws have the following form:

el ¢ (—9—6—§—)n sgn o (7)
R 2

B = Alél- AZBZ[ elAsB)_ ] sgn B (8)
D=Az2-A(D-D)" (9)

where C, n, Al, Az, A3, A4, and A5 are material constants.

The flow law is seen to be a power law based equation. The back stress
and drag stress growth laws (8,9) contain static thermal recovery terms but no
dynamic recovery terms. The recovery term in (8) is based on a dislocation
climb model by Friedel. The recovery term in (9) is based on a special case
of the same climb recovery model used in (8) [3,8].

Schmidt and Miller's non-interactive solute strengthening correction was
again used with this model to produce the following inelastic strain rate
equation:

.1 o -B
¢'= C(——=—F—) sgn(o-B) (10)
D+ Fso1
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Schmidt and Miller's Model
Schmidt and Miller's growth laws have the following form:
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where B', n, Hl’ As Ho, C2, As, F, J, and g are material constants.

(11)

(12)

(13)

(14)

(15)

The flow law has the form of a hyperbolic sine. This form was chosen to

model creep response better [9]. This same form is found in the stat
thermal recovery terms of the back stress and drag stress growth laws

ic

(13,14). The drag stress hardening term contains a hardening term, a dynamic

recovery term, and a term which couples drag stress hardening to back stress

magnitude. These three terms provide the proper cyclic, hardening, softening

and saturation behavior [9]. The same non-interactive solute strengthening

correction ( Feol ) as mentioned earlier is seen in this model.
Walker's Exponential Model

The growth laws for Walker's exponential model have the following form

[2,10]:
1. exp (‘i'ﬁ‘g‘] -l sgn(s-8)
B = n- 8 [ [ nye nyexp(on | Tog(lehy 1) ] &+ ng)
0
D = D,+ D,exp(-n,R)
R = |el]

(16)

(17)

(18)

(19)

where 8, Nos N3, Ngy Ng, Rys Ngs 01, DZ’ and ny are material constants.

This version of Walker's flow law (16) is based on an exponential
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function. The term nzéI is seen to be a work hardening term in the back

stress growth law. The term B [ n,+ n“exp(-n5|1og(|§|/§°|)|] R 1s a dynamic
recovery term. Negative strain rate sensitivity effects can be modelled with
the term n“exp(-n5|1og(|ﬁ|/éo)|) . Back stress thermal recovery is handled by
the B n, term. Orag stress hardening is modelled through

the D,exp(-n,R) term. No provision is made for drag stress recovery in this
model.

EXPERIMENTAL PROGRAM

The basic experimental program consisted of the following tests:
(1) 2 monotonic tension tests to 1.5% strain ( strain rates of
3.15x1073 sec™! and 7.25x1076 sec™!);
(2) 5 fully reversed cyclic tests to + .8% strain ( strain rates
between 1.00X10™3 sec™! and 7.63x107 sec! R
(3) 5 constant load creep tests ( applied stresses between 820 MPa
and 958 MPa );
(4) 4 back stress measuring tests during cyclic loading and 4 during
secondary creep; and
(5) 1 complex history test.
Table 1 provides more specific information on the test program. Column 1
provides the test number. The type of test is given in column 2. The strain
rate and strain limits are given in columns 3 and 4. The applied stresses for
the creep tests are given in column 5. A complete data set in tabular form is
provided in reference [11].
Back Stress Measuring Tests

Back stress measuring tests during secondary creep as described by Krieg,
et al. [3] and during saturated cyclic loading as used by Walker [12] were
performed in this work. The cyclic back stress numbers were obtained by
holding a saturated cyclic test at various points on the unloading curve,
switching to load control and monitoring the strain rate following the hold.
The material was recycled and a hold time at another stress value was carried
out. Fatigue lifetime problems for the material used in this work did not
permit complete saturation of the microstructure for fear of sample
fracture. The criterion used to define saturation in this work was a cycle to
cycle variation of the maximum stress of less than 6.89 mpa. These conditions
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Table 1 - Test Program

Test | Type capp1 “Vim %app

sec” MPa
70 tension | 3.151E-3 1.5%
71 tension | 7.253E-6 1.5%
86 cyclic 1.002E-3 | +/-.8%
56 cyclic 9.966E-4 | +/-.8%
65 cyclic 3.127E-4 | +/-.8%
83 cyclic 9.926E-5 | +/-.8%
80 cyclic 3.054E-5 | +/-.8%
72 cyclic 7.626E-6 | +/-.8%

64 creep 956.3
63 creep 922.6
62 creep 875.0
61 creep 854.4
60 creep 819.9

84 back 2.812E-3 | +/-.8%
88 back 9.272E-4 | +/-.8%
81 back 8.635k-4 | +/-.8%
65 back 3.127E-4 | +/-.8%

63 back 922.6
62 back 875.0
61 back 854.4
60 back 819.9

89 complex

were met after 10 to 15 cycles for this material.

A linear least squares regression to the strain rate data provided a
strain rate at each hold time. Each transient test had to be individually
scrutinized to decide how many points to consider in the regression analysis
as the onset of thermal recovery following a hold time was a very subjective
decision. The back stress was assumed to be equal to the hold stress at which
a zero strain rate was produced. This hold stress was determined by the use
of a linear least squares curve fit to the strain rate versus hold stress
data.

The creep back stress numbers were obtained in a similar fashion. The
stress on a sample in secondary creep was dropped to various lower levels.
The inelastic strain rate immediately following each drop was analyzed in the
same manner as with the cyclic tests.

The back stress numbers were invaluable in estimating some material
constants. The results were also promising enough to warrant further study.
The procedures used here could be greatly enhanced by equipment with greater
resolution such as used by Jones, et al. [13] and less subjective methods of
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data reduction such as the method of Blum and Finkel [14]. Other techniques
such as torsional cycling used by E11lis and Robinson could also be considered
{15]. The stress transient test [16] might also provide information for a
material such a Inconel 718 which suffers from a short fatigue life when
cycled. Reference [11] contains more information on the results observed and
software developed for these tests.

EXPERIMENTAL APPARATUS

The load frame utilized in these tests was an MTS (Materials Test System)
model 880 electrohydraulic testing machine shown in Fig. 1. MTS 652.01 Water-
cooled hydraulic grips allowed fully reversed cyclic tests to be carried out
at high temperature. The frame was controlled by a Digital Micro PDP-11
computer. Computer programs were written to run monotonic tension tests,
cyclic tests, cyclic tests with hold times, creep tests, and creep stress drop
tests. The Micro PDP-11 also handled data acquisition functions. An MTS
661.21A-02 50 KN load cell was the load transducer. An MTS 632.41B-02 axial
extensometer was the strain transducer. This device had quartz extension rods
which contacted the sample at two 120° punch holes. The material samples
designed to ASTM E606-77T specifications for low cycle fatigue specimens.

An MTS 652 three-zone clamshell furnace and three Research Incorporated
63911 Process Temperature and Power Controllers were used for temperature
control. Temperature Measurement was handled by six 28 gauge K-type
thermocouples. These were placed in contact with the sample. Three
thermocouples were fed into a Fluke 2176A Digital Thermometer for readout.
These were placed with one each at the top, middle, and bottom of the gauge
section. The other three thermocouples were fed into the temperature
controllers. These were placed in the center of the furnace zone each was to
sense with one thermocouple placed in the center of the gauge section and one
on each grip.

The thermocouples were fastened to the grips by fiberglass thread
attached to the sample by self-supporting means. The thermocouples at the top
and bottom of the gauge section were wound around the sample. The
thermocouples used in the center of the gauge section were brought into the
oven from different directions and tied to each other. These thermocouples
were then wound around the sample for contact. Welding the thermocouples to
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the sample would have produced harder contacts with more reliable temperature
measurement. However premature failure occurred at the welds.

CALCULATION OF MATERIAL CONSTANTS

The complex response of Inconel 718 at 593° C prompted flexible methods
of constant calculation to be developed. The method for calculating constants
for the models began by making a series of judicious assumptions which aliowed
commonly used constant calculation schemes to produce initial estimates of the
constants. Some nonlinearity was avoided in this step and was reintroduced by
a series of repeatable iterations to the final constants. The iterative step
numerically integrated the models to predict the stress-strain response at a
certain point. One material constant was then changed to match the prediction
to the experimental value at this point. Another material constant was then
changed to match another material point.

Physical insight, familiarity with the uncertainty in the data set, and
engineering intuition guided the organization of the calculation process.
However, the actual process was carried out as systematically as possible.
The eventual creation of systematic and automatable methods to calculate
constants has been a major driver in this phase of the work. The method used
to calculate the material constants will be summarized using a generic
viscoplastic model in the first subsection of this section. The generic model
used as an example will be presented first followed by a subsection outlining
the general method of initial calculations and a subsection outlining the
iterative step.
Generic Viscoplastic Model

The growth laws for the example model are presented below:

5ol I
=C,é+CBe+C.B (21)
D =c,lel| +cpD (22)

n is a constant measuring strain rate sensitivity. (; is a constant measuring
back stress hardening. C2 is handling back stress dynamic recovery and C3
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measures back stress thermal recovery. C4 produces drag stress hardening and
Cg models drag stress recovery.
Initial Assumptions

The following initial assumptions were made in this work:

(1) back stress was assumed responsible for hardening in
monotonic tension;
(2) drag stress was assumed responsible for cyclic softening;
(3) thermal recovery was assumed negligible for rapid
tests (éIz 1.0X10’“sec'l] ;
(4) drag stress thermal recovery was present in Tow
 strain rate saturated cyclic tests; and
(5) back stress thermal recovery was present in creep tests.
These assumptions allowed the constants for the inelastic strain rate
equations, back stress hardening, drag stress hardening, drag stress recovery,
and back stress recovery to be calculated in that general order. These
assumptions also allowed much of the constant calculation schemes reported in
the literature to be utilized with this material [2,3,4,5,9,12,17,18].
The first step was to estimate the constants in the back stress growth
law assuming thermal recovery was negligible. The back stress growth law took
on the following form:

B=[c+BC,] & (23)

Differential techniques for calculating work hardening such as seen in Chan's
gamma and theta plot concepts [2] were useful. Experimental estimations of
back stress values such as used by Krieg, et al. [3] and Walker [12] were
usually necessary. Relationships between saturated stresses and saturated
back stresses as used by Miller [9] have also been used.

The next step was to calculate the strain rate sensitivity constant n and
the initial value of drag stress denoted by DO' Rewriting the inelastic
strain rate equation in the following form was useful:

1

(o -B)=—1n( &) +1n(D,) (24)

A linear fit to several data points typically provided 1/n as the slope and
In( Dy ) as the intercept. This is a technique commonly used with Bodner's
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model [19). The ability to estimate saturated stresses and back stresses
using techniques such as the gamma or theta plot [2] and relations between
saturated stress and back stress are useful [9,2].

Initial determination of the drag stress parameter C, was carried out by
assuming that thermal recovery could be neglected for rapid tests. The
cumulative inelastic strain was calculated at a point on the cyclic curve
where B and D could be estimated. The drag stress recovery parameter Cg was
then calculated by assuming the drag stress growth law was equal to zero for
the saturated cycle of a low strain rate test. The back stress recovery
parameter C3 was calculated by assuming the growth law for back stess was zero
for creep tests.

Computer Iterations

The computer fterations began by pairing each material constant with an
experimental stress-strain point which the constant should intuitively have
the greatest effect in predicting in a sequential fashion. The constants in
the generic model were paired in the following fashion for this work:

(1) Dy was paired with a stress-strain point at .8% strain on test 70

( & = 3.151x1073 sec™]);

(2) C, was paired with a stress-strain point at 1.3% strain on test 70;

(3) C; was used to assure that the theoretical back stress values were in

the same range expected from experimental values;

(4) n was paired with a stress-strain point at .8% strain on test 71 ( ¢ =

7.253x1076 sec71);

(5) C3 was paired with a point at 1.3% strain on test 71;

(6) C4 was paired with a point at .8% on the 10th cycle of test 86 ( ¢ =

1.002x1073 secly;

(7) Cg was paired with a point at .8% ot the 4th cycle of test 72 ( ¢ =

7.626X1070 sec'l);

The iterative procedure then progressed by numerically integrating the
model to predict the experimental stress-strain value for a specific
constant. The constant was altered to match this point while the others were
held constant. Then another constant was altered to produce the proper
prediction at its paired experimental point. The expected order with which
these steps were to be carried out is shown in Table 2. The x marks indicate
which constant is being altered during the step indicated in column 1. Steps
1 through 5 are setting the back stress hardening characteristics. Steps 6
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through 9 are setting the strain rate sensitivity of the model. Steps 10
through 12 are setting the drag stress hardening constant. The back stress
recovery constants are being set in steps 13 through 15. Drag stress recovery
is set in steps 16 through 18.

Table 2 - An Example Set of Iterations

1 X
2 X
3 X
4 X
5 X
6 X
7 X
8 X
9 X
10 X
11 X
12 X
13 X
14 X
15 X
16 X
17 X
18 X

This method allows the entire process to be recorded. Automation of such
a method is also possible if the initial calculations produce values which are
close to the final constants. A systematic set of iterations may also allow a
standard method for calculating constants to be produced. The lack of
correction for strain ageing effects in the initial calculations caused
problems in implementing this iterative scheme. Reference [11] provides some
suggestions to avoid this as well as the specific application of this method
to the models used in this work. Table 3 gives the final values of the
constants with stress units of MPa, strain units of cm/cm, and time units of
sec.

MODEL RESULTS

The forms of the models to be covered in this section include Bodner's
model without a correction for solute strengthening, Bodner's model with a
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Table 3 - Final Constants for Models

Krieg, Swearengen and Rhode's Schmidt and Miller's
Model Model
Constant Final Value Constant Final Value
n 15.00 n 7.0
C (1/sec) 2.000E-4 Al (1/MPa) 1.451£-4
Al (MPa) 9,646 A2 (MPaE-3) .030572
A2 (1/(MPa sec)) 0.000 B' (1/sec) 1.5E6
A3 (MPat-2) 2.387E-5 C2 (MPa) -2.067E5
A4 (MPa) -3445 00 (MPa) .006890
A5 (MPaE(1-n)/sec) [ -1.137E-19 H1 (MPa) L4823
DO (MPa) 689.0 H2 (secE(1/n)) 1E-7
F (MPa) 379.0 F (MPa) .04823
B 1,000 8 3.5
J 7.000E-6 J 1£-9
Bodner's Anisotropic Walker's Exponential
Model Model
Constant Final Value Constant | New Value
n .8132 C 1.000E40
Al {1/sec) -.0010 D1 (MPa) 4,823
A2 (1/sec) 0.000 D2 (MPa) 2.067
Ml (1/MPa) .007257 n2 (MPa) 2.274E5
M2 (1/MPa) .05805 n3 750.0
rl .4926 nd -250.0
r2 .4926 nb .6600
70 (MPa) 6201 né 2.5E-4
21 (MPa) 4823 n/ 18.00
22 (MPa) 6201 RO 3.050E-5
723 (MPa) 2184
F (MPa) -2412
8 3.0
J 1.0E-6
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solute strengthening correction, the model of Krieg, et al. with and without a
correction for solute strengthening, Schmidt and Miller's model, and Walker's
exponential model. The models were numerically integrated with an Euler
forward integration scheme on a Perkin-Elmer 32-10 computer. The time steps
used ranged from 5.0X10"% sec for test 70 to 5.0x1072 sec for test 71.
Reproduction of Test Data

Fig. 2 shows the response of the models as compared to test 70 ( ¢ =

3.151X10‘3 sec'l). The models are all oversquare except for Walker's.
Walker's model is showing adverse effects from its dynamic recovery term as
the stress is decreasing at higher strain levels. This is more of a problem
with the method of constant calculation than the model itself. The iterative
portion of the constant calculation process was performed with access to only
two points on this curve. Using three points or interactive graphics would
have solved this problem.

Fig. 3 compares the model outputs to test 71 ( ¢ = 7.253%107° sec'l).
Walker's model is still following the shape of the curve best. The dynamic
recovery problem still exists with the Walker model. The Krieg, et al. model
is showing some numerical instability due to the presence of the
solute strengthening parameters. The uncorrected versions of Bodner and
Krieg, et al. are much lower than the other models. The Fso] parameter was
simply set to zero in these versions. The other constants remained the same
as in the corrected versions. Therefore, the reponse of the uncorrected
versions could have been averaged over the strain range better. However, the
basic strain rate sensitivity would have remained the same.

Fig. 4 interpolates the model response and experimental response between
these two strain rates presented above by picking off stress values at .8%
total strain for tests of intermediate strain rates and plotting these values
versus the log of the applied strain rate. The tests used in Fig. 2 and Fig.
3 are shown on this figure also. Walker's model is exhibiting negative strain
rate sensitivity and the corrected Bodner model is showing no strain rate
sensitivity. The other models clearly produce positive strain rate
sensitivity.

Fig. 5 shows the stress values at +.8% strain for the saturated cycle
response. The slowest strain rate provides data from the fourth cycle and the
other points are from the 10th cycle. The trend has changed and all the
models with correction for solute strengthening are exhibiting negative strain
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rate sensitivity. This is probably an effect of the drag stress thermal
recovery parameters and the cyclic work softening response.

Fig. 6 allows interpolation between the first cycle and the 10th cycle of
test 86 ( ¢ = 1.002x1073 sec'1 } by presenting the values at +.8% strain for
each cycle. The corrected Krieg, et al. model and the uncorrected Bodner
model reproduce this data closest. Fig. 7 provides the same data for test 80
(¢ = 9.926x10°5 sec~! ). This strain rate shows Walker's model following the
experiment the closest. The peak value at the second cycle is reproduced with
this model only. Fig. 8 presents the cyclic data for test 72 ( ¢ = 7.626X10'6
sec'1 ). The corrected Bodner model is following the data closest. The
Walker model is clearly suffering from the lTack of a drag stress thermal
recovery term.

Predictive Capabilities

The predictive capabilities of the models were explored by the use a
complex history test. This experimental test was not used in the calculation
of the material constants. Table 4 gives the input history of this test.
Fig. 9 through Fig. 14 show the comparison of the models to this complex
history test. The corrected Bodner model in Fig. 10 is the le .st affected by
strain rate jumps. Bodner attributes this to the use of plastic work as the
measure of work hardening [7]. The interaction of the solute: strengthening
corrections of all the models may be having an effect on this aspect of all
the models. The uncorrected versions in Fig. 9 and Fig. 11 are very
suseptible to these jumps. Yao and Krempl report that the overshoots and
undershoots observed during the strain rate jumps are a transient effect of
the behavior of a system of coupled nonlinear differential equations [20].

A comparison of the response of the corrected and uncorrected versions of
the Bodner and Krieg, et al. models at the zero strain hold time shows that
the F¢, 7 correction negates the effects of thermal recovery in such
instances. This could be a result of the low value of J or the inelastic
strain rate of maximum correction used in these models. The corrected Bodner
model had J = 1.0x1078 sec™!l, the mode) of Krieg, et al had J = 7.0X107®

sec™!, and Schmidt and Miller had J = 1.0X10 9sec™}. Schmidt and Miller's
model showed no thermal recovery at this hold either. The small inelastic
strain rates produced by thermal recovery terms would meet increasing hardness
if their magnitude was below J. Increasing hardness would tend to drive the
stresses up and oppose the action of the thermal recovery terms.
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Table 4 - Complex History Test Input

Interval | Beginning Strain | Ending Strain | Strain Rate | Time(sec)
1 0.0 .004 9.991E-5 40
2 .004 .006 4.784E-4 4
3 .006 .008 9.762E-4 2
4 .008 0 -5.0E-3 1.6
5 0 0 0.0 60
6 0 -.004 -9.878E-4 4
7 -.004 -.009 -9.795E-5 50
8 -.009 .006 9.933E-4 15
9 .006 008 9.532E-6 200

10 .008 .01 5.0E-3 .4
11 .01 .01 0 60
12 .01 .015 4.95E-4 10
13 .015 0 -1.4925E-3 15

The Walker model follows the shape of the stress strain curve better than
the other models. This could be a result of the better modelling of the back
stress growth and the lack of an inelastic strain rate exponent. The model of
Krieg, et al. had n = 15.0 and Schmidt and Miller had n = 7.0. The constant
values of work hardening have also been reported as reasons for this [3,21].
Bodner's model may be suffering from the lack of a back stress or the effects
of the plastic work measure of strain hardening. However, further study would
be required to show this. The corrected model of Krieg, et al. reproduces the
actual stress levels best after initial yield. No explanation can be given

for this at this time.

CONCLUSIONS AND RECOMMENDATIONS

Conclusions and Recommendations based on the Models

The theories of Walker and Bodner with exponentially based inelastic
strain rate equations and dynamic recovery terms handle the strain rate

sensitivity the best. Bodner's model shows less sensitivity to strain rate
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jumps possibly due to the plastic work rate measure of strain hardening. The
reproduction of the general shape using Walker's model may be aided by better
mode11ing of the back stress term and by the exponentially based inelastic
strain rate equation. The drag stress growth law of the Walker model provided
the closest fit to data over several cycles at higher strain rates. The
second cycle peak seen at the lower strain rates was modelled only by

Walker. Bodner's model handled cyclic response best over several cycles at
the lower strain rates due to the thermal recovery term. The solute
strengthening correction caused numerical instability, negating the effect of
thermal recovery during hold times and may have lessened the sensitivity to

strain rate jumps.
Future study of these models could take two directions. First, a

comparison to a material which does not exhibit strain ageing effects would be
beneficial. The corrections necessary to account for this phenomenon masked
some of the information which could have been obtained in this work. An
example of this is information about the effect of strain jumps on the
predictive capabilities of the models. The thermal recovery capabilities of
the models were also adversely affected by the strain ageing corrections. The
methods for calculating constants should be checked with a positive strain

rate sensitive material.
Second, further study which concentrates on the specific model form

should be carried out by the use of extended models. These would be models
extended from the existing ones. An example of this would be to replace the
inelastic strain measure of work hardening in the model of Krieg, et al. with
a measure based on plastic work. The inelastic work measure in Bodner's model
could be replaced with an inelastic strain measure. The extended models could
then provide true insight into the ramifications of using a measure of plastic

work. The effect of using an inelastic strain rate equation based on
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exponential, power law, and hyperbolic sine functions could be studied. The
advantages and disadvantages of providing a model with a back stress term
could be studied by providing the Bodner model with one as Moreno and Jordan
have done [22].

Conclusions and Recommendations based on the Calculation of Constants
The initial assumptions that back stress is responsible for hardening in

monotonic tension and drag stress is responsible for cyclic
hardening/softening appear to be good assumptions for this material system.
These assumptions were used for every model in the hand calculations and the
computer iterations with success. Krempl, McMahon, and Yao report that a
changing drag stress parameter alters the strain rate sensitivity of the model
[23]. This effect was not considered in this work and might warrant further
study. The initial assumptions that thermal recovery is negligible for rapid
tests (& > 1.0x10714 sec~1 ), drag stress recovery dominates in low strain
rate cyclic tests, and back stress recovery dominates in creep tests appear
difficult to apply in the presence of solute strengthening effects. This
material system requires that a correction for solute strengthening be
employed before recovery effects can be calculated. The recovery effects were
much smaller than the original hand calculations for the models of Krieg, et
al., Bodner, and Walker produced. This observation leads to the conclusion
that the recovery effects are largely insignificant for ¢ > 1.0X10'5 sec‘l.
Miller's model! requires the recovery terms to be much morve active than the

other models. This inflexibility gave some problems in the calculation of

Miller's constants.
The solute strengthening effects also masked the true strain rate

sensitivity of the material. Information on the strain rate sensitivity needs
to be obtained outside the region of solute strengthening effects. The

following initial assumptions would have been more appropriate based on these
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observations:

(1) back stress was assumed responsible for hardening in

monotonic tension;

(2) drag stress was assumed responsible for cyclic softening;

(3) thermal recovery effects were small and masked by solute
strengthening effects;

(4) solute strengthening or strain aging effects masked the

basic positive strain rate sensitivity of the material.

The model of Krieg et, al. was an easy model to work with since each term
in the growth laws could be scaled somewhat separately of the others. An
interesting observation of this model was that the constants of the inelastic
strain rate equation could be swept over a broad range but the monotonic
hardening remained relatively constant. There was also a mathematical
ambiguity between the constant C and the scaling of the drag stress. The
scaling could be transferred from one parameter to the other without any

visible change in model response.
Bodner's model "converged" to the final constants with fewer iterations

than the other models using the iterative scheme developed in this work. This
was probably due to the lack of a back stress parameter. A mathematical
ambiguity existed between n and the scaling of the internal state variables
when information was not available to calculate n. This is why a value for n

can often be picked and still1 produce a workable model.
Miller's model was highly coupled in that the recovery terms were not

separated from the hardening terms. The recovery terms can therefore change
the same order of magnitude as the hardening terms. Miller readily admits
that this model is designed for materials which have a very active drag stress
parameter [9]. He states that this model may not be applicable for this type

of material system. However, a reevaluation of the constants for Miller's
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model might prove fruitful. A majority of the constants should be calculated
outside the region of solute strengthening effects and without artificially
separating the hardening and recovery terms. A solute strengthening parameter
would then be added to fit the response to the negative strain rate sensitive

region.
Miller's model also maintains control over the saturated states of the

internal state variables B and D with the A; and A, constants. A correction
for strain ageing as well as cyclic work softening might be possible by
controlling these saturated states. A recommendation for further study based
on this model would contain an expanded study of back stress magnitudes over
the entire strain rate region considered. A possible method for this fis
disscussed in reference 11. The latest form of Miller's model [24] should

also be studied, as it may be used with material systems similar to this.
Walker's model holds promise for automating the calculation procedure for

this type of material. Walker's model has fewer constants, appears to be
tailored for this type of material, and can utilize the theta plot concept
[2]. The drag stress scaling performs the same strain rate sensitivity
functions as the n in the power law related models. Expanding knowledge of
the back stress values would also be useful for this model.

Conclusions and Recommendations Based on the Experimental Work
The back stress measuring tests both in creep and in cyclic loading were

very subjective and uncertain. However, their extreme usefulness and relative
success in application with an automated test set-up warrant further study.

It appears possible that these tests can be developed into useful inputs to
the constant calculation process. More sensitive data acquisition devises
with greater resolution and a smaller and less massive load frame for more
precise control would greatly enhance the usefulness of these tests. The

subjectivity could be lessened by using a method such as proposed by Blum and
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Finkel [14] to analyze the data.
The back stress measuring tests during creep were useful for strain rates

less than 1.0X10‘7 sec'l. The cyclic back stress measuring tests were useful
for strain rates greater than 1.0x1074 sec”l. The region between these two
tests could be filled by performing tests during monotonic tension such as the
stress transient test mentioned by Soloman, Alhquist and Nix [16]. This type
of test takes on greater usefulness for a material such as Inconel 718 which

exhibits good ductility in tension and high susceptibility to low cycle

fatigue.
An automated load frame was invaluable in this work for the complex

tests. A smaller load frame might provide more stability during highly
sensitive and mode-switching tests. A dead weight load frame would also be
useful for the creep and creep-stress drop tests. A more advanced and
controllable method of load-up would be a necessity. It would also be useful
to utilize the same grips, furnace, extensometer, and data aquisition
equipment as with the automated load frame. This would remove some relative

errors between the two systems.
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Stress (MPa)

TEST 70 -- STRAIN RATE = 3.151£-3/SEC
---------- BODNER MODEL (W!THOUT FSOL CORRECTION)
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Fig. 2. Model Response as Compared to Test 70
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Stress (MPa)

TEST 71 -- STRAIN RATE = 7.253f-6/SEC
BODNER MODEL (WITHOUT FSOL CORRECTION)
BODNER MODEL [WITH FOL CORRECTION)
KRIEG MODEL (WITHOUT FSOL CORRECTION}
KRIEG MODEL (WITH FSOL CORRECTION)

-MILLER MODEL

WALKER MODEL

1000.0
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! | | I 1 ! I ! | ! 1

| { ] i 1 | { | | i

0.0

1
.00z .004 .006 .008 .010 .C12

Strain (in/in)
Fig. 3. Model Response as Compared to Test 71
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TEST B9 -- COMPLEX INPUT HISTORY
BOONER MODEL (WITHOUT FSOL CORRECTION)

800.0 p=

400.0 p=

| 1 l | I

Stress (MPa)

—-2C0.0p=-

—400.0p=

—600.0 p=

Time (sec)

1 | l ] |

12 -.008 -.0C« 0.0 .004 .008 .C

N

Strain (in/in)

Fig. 9. Complex History - Bodner's Uncorrected Model
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TEST B9 -- COMPLEX INPUT HISTORY
BODNER MODEL (WITH FSOL CDRRECTION)

B0O.0 p=

600.0 p=

400.0 =

200.0 =

0.0

| l | I I

Stress (MPa)
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'\/ 500.0

-.012 -.008 -.004 ¢.0 .004 .008 .012

Strain (in/in)

Fig. 10. Complex History - Bodner's Corrected Model
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Stress (MPa)
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600.0

40C.0

200.0

-200.0

-4090.0

-600.0

-800.0

-1000.C

TEST BS -- COMPLEX INPUT HISTORY
KRIEG MODEL {WITHOUT FSOL CORRECTIDN

1

Time (sec)

-.012 -.008

-.004

0.0 .004

Strain (in/in)

.008 .012 .016

Fig. 11 Complex History - Uncorrected Model of Krieg, et al.
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TEST 83 ~-- COMPLEX INPUT HISTORY
---------- KRIEG MCDEL (WITH FSOL CORRECTION)

1 I i | L

800.0 =
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400.0 b=
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0.0
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~400.0 p=

-600.0 =
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Fig. 12. Complex History - Corrected Model of Krieg, et al.
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TEST B3 -- COMPLEX INPUT HISTDRY

.......... MILLER MODEL

1 | I | |

800.0 =
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400.0 b=
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0.0

Stress (MPa)

-200.0 p=-

—400.0 p=

-600.0p=

—-B800.C =

Time (vec)
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Fig. 13. Complex History - Schmidt and Miller's Model
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TEST B9 -- COMPLEX INPUT HISTORY

---------- WALKER MODEL
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Fig. 14. Complex History - Walker's Model
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