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The paper focuses on the development of a general mathematical model
and solution methodologies, to examine the behavior of thin structural
elements such as beams, rings, and arches, subjected to large
non—-isothermal elasto-viécoplastic deformations. Thus, geometric as well
as material—-type nonlinearities of higher order are present in the
analysis.

For this purpose a complete true abinito rate theory of kinematics and
kinetics for thin bodies, without any restriction on the magnitude of the
transformation is presented. A previously formulated elasto-thermo-
viscoplastic material constitutive law is employed in the analysis.

The methodology is demonstrated through three different straight and
curved beams problems. Moreover importance of the inclusion of large

strains is clearly demonstrated, through the chose applications,
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1. Introduction

The prediction of inelastic behavior of metallic materials at elevated
temperatures has increased in importance in recent years. The operating
conditions within the hot section of a rocket motor or a modern gas turbine
engine present an extremely harsh thermo-mechanical environment. Large
thermal transients are induced each time the engine is started or shut down.
Additional thermal transients from an elevated ambient occur, whenever the
engine power level is adjusted to meet flight requirements. The structural
elements employed to construct such hot sections, as well as any engine
components located therein, must be capable of withstanding such extreme
conditions. Failure of a component would, due to the critical nature of
the hot section, lead to an immediate and catastropic loss in power and
thus cannot be tolerated. Consequently, assuring satisfactory long term
performance for such components is a major concern for the designer.

Traditionally, this requirement for long term durability has been a
more significant concern for gas turbine engines rather than rocket motors.
However, with the advent of reusable space vehicles, such as the Space
Shuttle, the requirement to accurately predict future performance following
repeated elevated temperature operations must now be extended to include
the more extreme rocket motor application.

Under this kind of severe loading conditions, the structural behavior
is hightly nonlinear dut to the combined action of geometrical and physical
nonlinearities. On one side, finite deformation in a stressed structure
introduces nonlinear geometric effects. On the other side, physical
nonlinearities arise even in small strain regimes, whereby inelastic
phenomena play a particulary important role. From a theoretical

standpoint, nonlinear constitutive equations should be applied only in
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connection with nonlinear transformation measures (implying both
deformation and rotations). However, in almost all of the works in this
area (See Ref. 1), the two identified sources of nonlinearities are always
separated. This separation yields, at one end of the spectrum, problems of
large response, while at the other end, problems of viscous and/or
non—-isothermal behavior in the presence of small strain.

The classical theories, in which the material response is
characterized as a combination of distinct elastic, thermal, time
independent inelastic (plastic) and time dependent inelastic (creep)
deformation components cannot explain some phenomena, which can be observed
in complex thermo—mechanical loading histories., This is particularly true
when high-temperature non-isothermal processes should be taken into account.
There is a sizeable body of literature'»2 on phenomenological constitutive
equations for the rate - and temperature - dependent plastic deformation
behavior of metallic materials. However, almost all of these new "unified"
theories are based on small strain theories and several suffer from some
thermodynamic inconsistencies.

In a previous paper3, the authors have presented an alternative
constitutive law for elastic-thermo-viscoplastic behavior of metallic
materials, in which the main features are: (a) unconstrained strain and
deformation kinematics, (b) selection of reference space and configuration
for the stress tensor, bearing in mind the rheologies of real
materials, (¢) an intrinsic relation which satisfies material objectivity,
(d) thermodynamic consistency, and (e) proper choice of external and
internal thermodynamic variables. Accuracy of the formulation was checked

on a wide range of examples“.
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The formulation presented in this paper focuses on a mathematical
model to examine the behavior of thin structural elements subjected to
large non-isothermal elasto-viscoplastic deformations. Thus, geometric as
well as material-type nonlinearities of higher order are present in the
analyses. Such thin elements, including beams, rings and arches, are
intended to present generic types of components, which might be located
within or adjacent to the hot section of a rocket motor or gas turbine
engine.

The rate form of the constitutive equations suggests that® a rate

approach be taken toward the entire problem so that flow is viewed as

history dependent process rather than an event. A direct consequence of
the consistent adoption of the rate viewpoint in a spatial reference frame
is that the probiem is found to be governed by quasi-linear differential
equations in time and in space. Hence, the analysis requires solution of
an initial- and boundary- value problem involving instantaneously linear
equations. The quasi-linear nature of the problem not only suggests an
ineremental approach to numerical solution, but also provides confidence in
the completeness of the incremental equations. 1In this case, finite
element solution capability is established; it should be noted, however,
that the linearity of the instantaneous governing equations admits use of a
wide variety of other established numerical procedures for spatial
integration. A complete true ab initio rate theory of kinematics and
kinetics for continuum and double curved thin structures, without any
restriction on the magnitude of the strains or the deformation was
formulated in Ref. 4 and will be rephrased here.

Formulation of problems concerned with finite deformation of beams has

followed two different paths6. Prescribing the beam by its deformed or
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undeformed centroidal axis and cross section, one may introduce at the
outset beam stress resultants and their conjugate kinematic variables
characterizing displacement and rotation of the cross section. Together
Wwith appropriate beam constitutive equations and a global balance law a
consistent theory is obtained. Alternatively, one may imbed beam theory in
the setting of deformable solid continua, in which case one 1s concerned
with local constitutive equations connecting the stress tensor with a
strain tensor, which may in turn be expressed in terms of a combination of
undetermined beam kinematic variables and functions of the beam coordinates.
Momentum may then be balanced globally by integrating the local equations
over the deformed beam configuration. Both paths will be considered in
what follows,

2. Two-Dimensional Plane Beams (A Plane Stress Problem)

2.2 - Kinematics of the Continuum

Let a continuum in space be described by two systems of coordinates,

the xi-system, which stays at rest (the fixed system) and the ua—system,

which is associated with materials points (the convected material system).

The transformation equations from one system to the other are:

dx* = fi au® (1)
o
a a i
du” = ug dx (2)
where
i
pl 2% (3)
o o
ou
a
£ L 2u (4)
i i i
X
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The covariant components of the metric tensor in the material system u®

are:

-t
£y T3 Oy (5)

8s8
where Gyj are the covariant components of the metric tensor in the fixed
system xl. For the fixed cartesian system (Euclidian space) we have,
Gij = 81y (6)

where §1j are the components of the Kronecker delta. The coordinate lines

of the xi-system are assumed to "deform"™ with the continuum in order to

enable the material points to keep their coordinates (in the ua—system)

unchanged.

The contravariant components of the velocity vector in the fixed

system are defined by:

v = em——— (7)

It is impossible to define velocity as a change in the coordinates in the
material system, however, distances are obviously changing. The length of

the elementary arc in the material coordinates is given by:
2 _ a . B
ds” = 84g du” du (8)

Defining the rates of change in the material system by _%E’ the rate of

change of the elementary arc is,

o8
0 2 - of a B
—gz(ds ) ¢ du du (9)

From Eq (9) one may conclude also that

og a B
(108 dSJ - _1_ of du du

2 3t a5 ds (10)

1 3(ds)
“ds ( dt )

9
ot
The clue for the intrinsic rates of change may be unraveled, then, by the

derivation of the rates of change of the metric tensor.
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It can be shown® that the rate of change of the metric tensor in the

materlal coordinates is given by

g
aB - i
ot VO.B Y vslc () ‘\
where
Y Yy i Y 9 i
Va8 " Bva ¥V 8 " Bya f1 V.5 " 8y, £, —5¢ (fg) (12)
9 i i X
So —3E(f8) or v 8 is the velocity in the fixed system as observed in

the material system. The components of the deformation rate tensor defined

as follows,

98
81 0B _ 1 -
dyg =375t = 2Ve,8 * Vp,0) = Y50 (13)
and the components of the spin tensor as,
wo ALy -y ) e -y (14)
o8 2" a,B Bro Ba
Substitution of Eq. (13) into Eq. (10) yields,
2 (10g ds) = d_, »°® )8 (»® = QEE] (15)
ot aB ds

As soon as the deformation’rate is established as the time derivative
of the metric tensor, the intrinsic characteristics of the continuum, being
metric properties of space, are readily differented (with respect to time).
For more details see Ref. 4,

2.2 The Rate of Global Principles

The principle of virtual power (or of virtual velocities),

13 f J J J

dav - f~ v, dv - T 8§v, dA = 0 16
J ] ij,i ] p vJ v vJ (16)
' Vv A

is equivalent to the equations of equilibrium along with the complete set
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of boundary conditions. In Eq. (16), gl are the contravariant components

of the Cauchy stress tensor, p the mass density, and fJ is a vector of

specific body forces.

Total differentiation of Eq. (16) yields®,

ij . J
j (o=, o1 g% o vhk oK) ey, | oav - j P
v

dt k j,i dt J
Vv
J . dév, . dév,
_[ 4T (13 3 I S IR
J Y at GVJdA + J "] at !’ idv J pf at dv
A \' Vv
, dév
- J y1? dtj dA = 0
A

(in

At any instant Eq. (17) must be satisfied. The virtual velocity and

its time derivative are, then, independent. Moreover, the last three terms

of Eq. (17) are equivalent to Eq. (16). Hence, the principle of the rate of

virtual power may be obtained in its concise form. For further

classifications, the total derivative of the stress components will be

represented by the Jauman derivative, namely

1j .
do vij & ki . 4 ik
gt "0 twe 0t

and the following integrals are defined by

Vij

Ie = I o GVJ,idV

\'

- ij k  _ kI i
I j (o 4", o d.k) ovy 4V
v
[y ik

Ir = I W o 6VJ,1 dv

v
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Then, substitution in Eq. (17) yields the final form of the principle of

the rate of virtual power,

J J
df dT
I-= Ie + Id + Ir = J P ~gt GVJ dv + J Y T ij dA (22)
r A
which is equivalent to
Ji . J .
do _ LK ij ar ko JJ |
ST SR AN B SR T S (23)
and
ij
alvrl) | Ao vy (24)
dt dv

A similar process can be appliedu to obtain the principle of the rate of
balance of energy from the first law of thermodynamics.

2.3 Constitutive Equations

In a previous paper3, the authors have presented a qomplete set of
constitutive relations for nonisothermal, large strain, elasto-viscoplastic
behavior of metals. It was shown there3 that the metric tensor in the
convected (material) coordinate system can be linearly decomposed into
elastic and (visco) plastic parts. So a yield function was assumed, which
is dependent on the rate of change of stress on the metric, on the
temperature and a set of internal variables. Moreover, a hypoelastic law
was chosen to describe the thermo—elastic part of the deformation.

A time and temperature dependent "viscoplasticity" model was
formulated in this convected material system to account for finite strains
and rotations. The history and temperature dependence were incorporated
through the introduction of internal variables. The choice of these
variables, as well as their evolution, was motivated by thermodynamic

considerations.
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The nonisothermal elasto-viscoplastic deformation process was
described completely by "thermodynamic state" equations. Most
investigators1t2 (in the area of viscoplasticity) employ plastic strains as
state varlables. This study3 shows that, in general, use of plastic
strains as state variables may lead to inconsistencies with regard to
thermodynamic considerations. Furthermore, the approach and formulation
employed in previous works leads to the condition that all the plastic work
is completely dissipated. This, however, is in contradiction with
experimental evidence, from which it emerges that part of the plastic work
is used for producing residual stresses in the lattice, which, when
phenomenologically considered, causes hardening. Both limitations were
excluded from this formulation.

The constitutive relation will be rephrased here as follows

i i k k 2 P
a) if F=(t -Cp_ g8t -Cop gs)-k(Wr)=0 (25)
i i Po i
where, s, the Kirchhoff stress tensor, sk = —E o and the temperature T

are independent process variables, t; being the deviator of the Kirchhoff

p
stress. si, and W and Bi are internal parameters, then
i1 v Ui R i
dk=&}v{sk—1+vsr6k}+0T6k+2L(tk—CpogBkJ (26)
J v Y
Ei Pi
dk dk
Wwith
i k k
) = {1l 7 -1} (27)
4n k2
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b) if

and

then

with

c) if

or

p
I
W= — % d
pO
v P
i i
F=0
v
OF 'i  OF
asi Sl‘< \'5,.-[:T>0
K
E
i i
d = dy
P
Py Vi ey i
d =0 d =2x(t, - Co_ g8,)
v 2
- 1 i iy 'k 3KS s
b= 2{2(t’k Co, &8t =t 1
8nk
v,
F=0 and & gl 2+ o
T %k " aT
3s
K
F <0

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)



. E.
1 1
then dk = dk (38)
P
W=0 (39)
vy
B, = 0 (40)

2.4 Plane Stress Approximation

By definition, a body is said to be in the state of plane stress
parallel to the u', u2 plane when the stress components ¢!3, ¢23, ¢33
vanish?. It is well known in literature that the case of plane stress is
difficult to handle theoretically. Even linear elasticity has to treat
this case in an approximate manner. To remove some of theoretical
difficulties Durban and Baruch® introduced the notion of Generalized Plane
Stress, where instead of dealing with the quantities themselves, one deals
with their average values,

In our case the problem is even more difficult. The nonlinearities,
which the general three-dimensional theory takes into account will also
cause a large change of the geometrical quantities in the u3 direction.
Clearly, some assumptions are needed to treat the case of plane stress as
a two-dimensional case.

The first basic assumption is that the thickness, h, of the plate
defined by the coordinates u1, u2 located in its middle plane, is small

as compared with the other two dimensions. A second assumption is that the
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external forces act in the ul, u?2 directions and are symmetrically
distributed with respect to the middle plane.

In a way similar to the procedure proposed by Durban and Baruch5, all
the kinematic expressions are obtained by averaging the three-dimensional
expressions.

A basic assumption for the case of plane stress is that the components
connected with the third direction are small and can be neglected. So, a

new concept of generalized stress tensor is introduced

i
o, h
i Kk
™ T ()
(e}

It must be noted that in the linear theory of elasticity, where the
geometry does not change, the averaged and generalized stress tensors
coincide.

So the three—-dimensional incremental elasto-viscoplastic theory,
developed previously, can be adopted for two-dimension plane stress

problems.

3. A Thin Curved Beam

3.1 Doubly Curved Element

A complete rate theory of kinematics and kinetics for doubly and
singly curved thin structures, without any restriction on the magnitude of
the strain or the deformation, was presented in Ref, 4,

Five different shell theories (approximations), in rate form, starting
Wwith the simple Kirchhoff-Love theory and finishing with a completely
unrestricted one, were considered therel,

The kinematic and kinetic equations for intrinsic shell dynamics,
introduced in Ref. 4 are presented here, in compact form, together with

basic notations. For simplicity we consider here Kirchhoff motion only8.
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The components of the velocity vector w = § are

w o=y oy, Wo=y-y% w o=y-n (42)

where n is the unit normal to y, and y is the weighted motion.

Expressions for the components of the velocity gradients, }, follow
from differentiation of Eq. (42)

daB - ya ’ yB T u’cx;B - baB wn (43)
i =ney =w _+Db_ w (44)
o B n,o o

The time rates of the components of the metric and curvature tensors
follow immediately from the above as

~ Y
3 =dgtdy o By a gt Ay By (45)

To complete the kinematics, we get the components of the acceleration
vector by time differentiation of Eq. (42) and through use of Egs. (43) and

(4h),

(46)

. . ~ o
Yy en=W_+ww
n

The accelerations form the right sides of the equations of motion. The
left sides are the static terms that can, for example, be expressed in

terms of symmetrical stress resultantsl., The result becomes

ca  —1 r=Bo . —o =B ~a —B
w m [n;B + b):B + m "+ be m;

+ p®] - % WP e % (u7)

A
8 B n
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4ere 27, n, m are loading components and mass, respectively, per unit area

b

A Simplified Version of Curved Beam Element

Al
.
(AN

Fig. 1 - Reference Line of a Curved Beam

4 portion of the reference line for a curved beam is shown on Fig. 1.
Tne current arc length is denoted by s, while ¢ is the current angle of
inalination of the normar to the reference line, and p is the radius of
urvagure,

The stress resultants acting on the beam cross section are the bending
1oment M, the axial force N, and the shear force Q. The external load,

7233ir2d per unit of current length of the reference line, has the components

>, in the direction of the unit vectors Es and En respectively.
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I1f vs and vrl denote the velocity components in the direction of the

unit vectors Es and En respectively, the rate of extension is

Bvs v
d=-—a—'s""—p' (’49)

The rate of rotation, &, of a given section is given by

w=¢=—~—§+—:' (50)

M v
;;..3%=_3_( n, _s) (51)

The rate of equilibrium equations for this simplified version may be

put in the following form:

ON _ , 9 _ 236, - -
23 Q35 ~ Q s " Pg” d Pg = 0
59 % , =« 3, - _
s ' N s | N 5s = Pn " dp, = 0 (52)
%% + Q+dQ=0

4, Numerical Solution

The quasi-linear nature of the velocity equilibrium equations suggests
the adoption of an incremental approach to numerical integration with
respect to time. The availability of the field formulation provides
assurance of the completeness of the incremental equations and allows the
use of any convenient procedure for spatial integration over the domain B,
In the present instance the choice has been made in favor of a simple first

order expansion in time for the construction of incremental solutions from
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the results of finite element spatial integration of the governing
equations.

The procedure employed permits the rates of the field formulation to
be interpreted as increments Iin the numerical solution. This is
particularly convenient for the construction of incremental boundary
condition histories.

The finite element method for spatial discretization has been well
documented (see, e.g. Zienkiewicz? or 0den'0) and will not be detailed here.
It should be noted, however, that as a consequence of the present
formulation, the velocity equilibrium equations are not symmetric. This
feature precludes implementation of a Ritz procedure as commonly employed
in finite element analysis of infinitesimal deformation. Linear algebraic
equations governing the discrete model for the finite case are developed
employing the method of Galerkin.

The spatial discretization results in:

[k] {v} = {&} (53)
where [K] is the nonsymmetric stiffness matrix, {v} is the vector

containing the generalized nodal velocities, and {R} is the rate of the

load. The solution to Egq. (53) at time to provides a basis for evaluation
of a deformation increment and associated changes in internal stresses and
boundary loading. The incremental solution defines the deformed
configuration and stress rate at t = t5 + §t thereby permitting definition
of a new spatial problem at the later time.
5. Applications

The capabilities of the models presented here in have been evaluated

through three simple numerical examples. The first example demonstrates

the capability of the plane stress approximation to predict deflections and
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23 in a »eam loaded by a constant moment. Figure 2 illustrates the

ALy
i

=23
21 and tae “ilnite element model, A quarter of the beam was divided into
Tl 2l272nts3 in the vertical direction and into five elements in the
.rizontal lirection. The external moment was introduced by six parallel
fyroes azting on tne section BC (see Fig. 2).
n2 value of the external moment is 3500 kg/cm, and the material of
Tne 9z2am 13 THR-17. The viscoplastic properties of the material were
sotained experimentally from uniaxial tests in Ref. 1. This properties
<272 20.1laborated into the present material model.
The variation of the deflection of point E as a function of time is
ivan Ia Fig. 3. It is important to point out the value of the large

cefzrmation analysis. After ten minutes of the deformation is increased by

-2% 4rn o3t tne same time there are important changes in the stress field

.

( D-——-—--————-——-—-—-————————-—i
G

F'e

BYVVY B

m

I

Fiz. 2 - The Beam Model
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Fig. 3 - Point E Deflection
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Fig. 4 - Stress Distribution
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The next example consists of a straight simply supported beam, loaded
by a transverse concentrate force at the midspan. The beam is 25 inches
long, two inches high and one inch wide. The material is stainless steel
304 (Heat 9T2796). The material constants in sub section 2.3 were
correlated with the uniaxial tension experimental results given in Ref. 12.
The beam was subjected to a load of 2000 pounds at 1100°F, this load was
then held constant for 312 hr., and then increased to 2250 pounds at
1400CF.

The primary purpose of this example is to compare the results,
obtained by the two previously discussed models, The first one is the
two—dimensional plane stress model, and the second one is the thin beam
model as derived from thin shell theory. Figure 5 presents results in the
form of load versus midspan deflection. The finite element model consists
of five simple plane stress elements (dashed line in Fig. 5) or five
sophisticated beam elements (full line in Fig. 5).

It can be seen (Fig. 5) that the results agree quite well up to the
312-hour hold period (points 3,4). During the hold period, the material
hardens and only the beam model can represent this behavior after the load
is further increased.

The last example presents an analysis of a circular arch. The
geometry of the shallow circular arch is shown on Fig., 6. The material is
once again the 304 stainless steel. The arch is fixed at both ends and
carries a concentrated load at the center. The elasto-viscoplastic
analysis of this arch is performed with the aid of a ten curved beam elment
model and with the inertia terms taken into account. The load P is assumed
to be applied in a quasi-static manner at t = 0. The results of this

analysis are shown on Fig. 6, as the time-history of the midspan
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displacement., The response of the arch starts with the instantaneous
elastic deformation at t = 0, followed by slow deformation up to point B,
which can be considered as a limit point for the given value of the load P.
Beyond point B, the displacements increase rapidly towards point C. This

may suggest the existence of critical time for the prescribed load.
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