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INTRODUCTION 

Remote sensing has been applied in recent years to monitoring snow cover properties for applica- 

tions in hydrologic and energy balance modeling (e.g. Dozier, 1987). In addition, snow cover has been 

recently shown to exert a considerable local influence on weather variables (e.g. Namias, 1985; Dewey, 

1987; Walsh, 1987). Of particular importance is the potential of sensors to provide data on the physical 

properties of snow with high spatial and temporal resolution. Visible and near-infrared measurements of 

upwelling radiance can be used to infer near-surface properties through the calculation of albedo. 

Microwave signals usually come from deeper within the snow pack and thus provide depth-integrated 

information, which can be measured through clouds and does not rely on solar illumination (Burke et al., 

1984; Foster et al., 1984). Fundamental studies examining the influence of snow properties on signals from 

various parts of the electromagnetic spectrum continue in part because of the promise of new remote sen- 

sors with higher spectral and spatial accuracy. Information in the visible and near-infrared parts of the 

spectrum comprise nearly all of the available data with high spatial resolution. Current passive microwave 

sensors have poor spatial resolution and the data are problematic where the scenes consist of mixed 

landscape features, but they offer timely observations that are independent of cloud cover and solar illumi- 

nation. 

In interpreting remote sensing signals from snow, discrete scatterer models have been used with 

inferences about the connection between model parameters and the physical properties of the snow cover. 

Such models use Mie theory to descrii the scattering and absorbing properties of the snow particles and 

radiative transfer theory to describe the radiation intensity field at various depths in the pack. Whereas 

these theoretical models treat the snow as homogeneous layers of spheres. the snow cover actually consists 

. 

of layers of irregular grains, bonded to each other, and often separated by horizontal crusts and ice lenses. 

It is well known that the scattering and absorbing properties of a snow layer can be mimicked by selecting 
suitable sphere sizes. Much of our effort has been to obtain a set of data about the snow properties, micros- 

copic and macroscopic, so that different characterizations of the snow cover can be tested. 

Experimental Objectives 

This report is the result of experimental study toward three objectives. Most of the work has pro- 

ceeded concurrently except for the snow season 1986-1987, when no microwave measurements were 

taken. 

1. Measure the Angular Variation of Spectral Reflection from Snow 

All radiation of importance to the energy balance of a snow cover is contained in the spectral region 

(0.3-50~). In this study snow reflectance was measured for the visible and near-infrared wavelength 

range 0.3 to 1 . 1 p  with two different instruments. Reflection from snow is moderately anisotropic, so 
measurements must be made at many view angles and azimuths, for a variety of sun angles. The variation 
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measuring the liquid water content of snow based on the dilution of fluorescing dye (Davis and Dozier, 

1984). 

As our confidence in measuring liquid water in snow and the energy budget of the pack rose (Davis 

et al.. 1984; Davis et al., 1985; Perla et al., 1987). we began developing techniques to sample and observe 

undisturbed microstructure in snow, with the help of Dr. Ron Perla, Environment Canada. During the 

winter 1984-1985, samples of snow were collected during measurement scans of snow reflectance and 

microwave emission, returned to a cold room, and prepared for section analysis. This technique requires 

much practise and adaptation to a particular cold facility and equipment Many data sets were collected 

using the slow-scan spectrometer over different snow and solar conditions. In addition, many sets of 

microwave data (at 35GHz) were collected for a range of snow properties and snowpack structures using a 

hand-held radiometer borrowed from NASNGSFC. 

During the summer and fall 1985, the microwave data and stereological measurements of snow 

microstructure were analyzed and interpreted. This work resulted in the dissertation of Robert Davis, and 

publication of the findings (Davis, 1986; Davis et al.. 1987). Also during this time it was determined that 

the scan time of the visible and near-infrared spectrometer was prohibitive to collecting a complete obser- 

vation of snow reflectance for given illumination conditions. The scan rate for the instrument was twenty 

minutes, too long for the usual atmospheric changes at the Mammoth Mountain study plot (See accom- 

panying technical draft.) 

In the winter, 1985-1986, the technique for measuring snow microstructure was improved substan- 

tially by introducing the pore filler then quick freezing the sample in the field, which reduces the chances of 

disturbing delicate snow structures. Data were obtained on many consecutive days so that the changes in 

near-surface snow microstructure were closely monitored with coincident reflectivity and energy balance 

data. Other improvements to the technique resulted in a few publications on methodology (Perla et al., 
1986; Dozier et al., 1987a; Davis et al., 1987; Dozier et al., 1987b). 

The angular distribution of solar reflectance was measured in April, 1986 using a new instrument 

borrowed from NASNGSFC, and brought to Mammoth by Dr. Al Chang and Ken Brown of GSFC. Spec- 

tral data are acquired in 256 bands (wavelengths 0.4-1.1~) and the integration time for a target like snow 

is less than a second. Although data were collected for only a short period of the season, the fast scan rate 

allowed many observations for a given snow condition. 

The snow season at the Mammoth study plot started late in the 1986-1987 snow water year, with 

very little snow until mid-February. The instruments borrowed from NASNGSFC arrived in late Febru- 

ary, and radiometric measurements were collected from this time until mid-May, when the most of the 

snowpack had ablated. The AC power line to the site was cut by a snowcat in early March, which limited 

radiometric measurements because of limited battery power and prompted moving the site during the sum- 
mer 1987. Snow property measurements were made from snow pits to guide the sampling for specimens 

for microstructure analysis. Results from analysis of stereologic measurements for the two winters were 



presented at the 1987 Fall meeting of the American Geophysical Union and are presented herein. Results 

of the work on snow reflectance were presented the Fourth International Colloquim on Spectral Signatures 

in Remote Sensing and are also included in this report. Continuing work with this data set will examine 

near-surface grain growth in snow, its relationship to simple meteorologic parameters, and the albedo of 

snow. 
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All of the work reported here was performed on snow at a study plot where the pack remained undis- 

turbed during the season, and there was little lateral variation in the snow cover over the plot. The snow 

study plot lies at about 2900m on Mammoth Mountain, California on flat terrain, with relatively little 

vegetation. The site was instrumented for measuring the components of the energy balance over snow and 

the heat and mass budget in the snow pack (Davis et al., 1980,1984). Snow properties other than tempera- 

ture, settlement, and runoff were measured manually by visiting the site. 

Modem theories on physical processes in snow require parameters describing the microstructure of 

snow as well as the classical measurements depth, density, etc. Snow is a network of ice grains intercon- 

nected in a complex structure whose properties are constantly changing as a strong function of density. 

However, the snow properties important to its radiometric response depend on the microstructure at any 

density (Mitzler et al., 1980; Colbeck, 1982). For discrete scatterer modeling the critical properties are the 

equivalent grain size and number density for dry snow, with the addition of the liquid water content for wet 

% snow. 

The assumption of isotropy of microstructural features - the arrangement, shape, and packing of 

snow crystals and pore space - in seasonal snow is common in modeling the transfer of radiation, heat, and 

water vapor. However, the microstructure of seasonal snow and flm may exhibit strong orientation, result- 

ing from vertical temperature and vapor density gradients and from loading stresses. Bader et al. (1939) 

noticed that in shallow snow packs there might be some preferred orientation in the growth of individual 

particles and that the resultant three-dimensional patterns might be useful topics for future study (Bader, 

1%2). Keeler (1969) recognized that the fabric of snow, the mutual relationship between particles in the 

aggregate and the orientation of individual particles, is probably the single most fundamental property. 

Kry (1975) used measurements from section planes to analyze snow samples prepared by seiving snow 

into containers in the laboratory, and subjected to metakorphism at low temperature gradients. He 

reported that the assumption of isotropy of grain and gnin bond location and orientation was satisfied to 

within 10 percent for equilibrium-metamorphosed snow in a density range of 27&34OKg m-3. Slightly 

longer ice-intercept lengths were noted parallel to the direction of deformation, but these were disregarded 

in his analysis. Kry used randomly placed test grids on orthogonal planes prepared from the same sample, 

and therefore did not test directional dependence of stereological parameters. 

Snow Pack Density 

Profiles of density were measured with a l m m 3  cutter and an electronic top-loading balance. The 

empty cutter is tared on the balance so that the readout in grams converts easily to Kgm-3. Four or more 

samples were taken for a given layer, usually at least 50cm apart, providing a meter-scale index of snow 

layer variability, and providing a check on the densities obtained from stereologic analysis. The densities 

obtained from the stereologic analysis were checked against the densities of the specimens prepared. The 



density profiles in the field were measured every lkm,  and since the vertical dimensions of the cutter are 

the same, the profile data contains no gaps. 

For two winter seasons, the average densities of the pack were sampled spatially to evaluate lateral 

variations of the snow cover. Measurements of average density were made with a Mt. Rose snow sampler, 

sometimes called a Federal sampler. A point sample of snow water equivalent is obtained from the net 

weight of the snow in the sample tube, and the average density from the quotient of the net weight divided 

by the depth. Examinations of the bias of the Mt Rose sampler suggested by Letvak (1978) and carried 

out by Fames et al., (1982) and this study show that the tube can have a positive bias of more than lOper- 

cent Therefore, the measurements were calibrated with a snow pit the same day that samples were 

obtained from locations around the study site. 

Liquid Water Content 

Much effort has been spent developing techniques to measure snow wetness for correlation with 

microwave remote sensing data. Information is needed about the liquid mass or volume fraction and the 

shape of the liquid water inclusions. Measurement of the snow liquid water content in the field must be a 

quick and simple procedure to be successful. The two most promising principles for measuring snow wet- 

ness are direct measurement of the snow liquid water frac'tion and dielectric measGements in radio and 

microwave frequencies, relying on the sharp dielectric contrast between liquid water and ice (Colbeck, 

1978). Currently all of the techniques in use involve destructive sampling, including the dielectric tech- 

niques (Denoth et al., 1984). Measurements of the structure of the liquid inclusions in snow have only 

been done by inference, using measurements of the real part of the dielectric constant and mixing or empir- 

ical formulae (Denoth, 1980,1982). 

/ 

Measurements of snow liquid water content were o b 9 4  using the dilution method. The dilution 

method has been refined and tested for accuracy and repeatability (Davis and Dozier, 1984; Perla and 

LaChapelle, 1984; Davis et al., 1985) and compared with freezing calorimetry, alcohol calorimetry, and a 

dielectric method (Boyne and Fisk, 1987). The tests show that the the methods are equivalent, but that the 

dilution method is the one of the most rapid, requiring about 5 minutes per sample, 

The dilution method relies on the dilution of an aqueous solution when it is mixed with wet snow. 

The concentration change forms the basis for measurement. A stock solution of mass S and impurity con- 

centration C, is mixed thoroughly into a wet snow sample of mass M, with unknown water mass W. The 

solution is at O°C and mixing is in an insulated container, so that melt or refreezing is minimized. The 

impurity concentration in the stock solution is small enough so that freezing point depression is negligible, 

but large enough to be well above the impurity concentration C, in the liquid water in the snow sample. 

The mixture of stock solution and snow liquid water has impurity concentration C, : 

s e,+ w c, 
s+w c, = 



of snow albedo and emission is attributable to a number of parameters; size, shape and packing of the 

snow particles, the spectral and angular distribution of the propagating radiation field, the amount and dis- 

tribution of impurities, departures from an optically thick homogeneous layer, and the liquid water content. 

2. Quantify Snow Cover Characteristics 

Because the response of snow to electromagnetic energy and thermodynamic gradients is controlled 

by the properties of the ice and water phases, most of the measurement effort was concentrated on analysis 

of snow properties, microstructure, stratigraphy and wetness. Stereological measurements were made from 

sections prepared from snow specimens, temperature profiles in the snow cover were monitored, snow wet- 

ness was measured, and the traditional snow pit observations were made (e.g. density). From these data we 

calculate: effective parameters for input to radiative transfer models, thermal properties to identify condi- 

tions governing metamorphic processes and thereby changes in radiative properties, and lateral variation in 

key parameters. 

3. Measure the Angular Variation of Microwave Emission 

The signal from snow in the microwave part of the spectrum contains information about the emis- 

sivity and volume scattering, which are controlled by the microscopic and macroscopic structure of the 

pack, and its liquid water content This portion of the research was devoted to obtaining measurements of 

microwave emission of snow at 35 GHz. Measurements were acquired at a variety of angles at horizontal 

and vertical polarization during snow accumulation, metamorphism and melt. The emission data are be 

used to test existing and modified radiative transfer models that use M e  scattering theory. 

Overview of Studies 

This study started in July, 1983 with the goals of developing better methods for measuring snow pro- 

perties. designing experimental configurations for observing the radiometric responses of snow, and 

improving techniques to monitor the components of the energy balance over snow. During the first year of 

the study, preliminary attempts were made to measure solar reflectance from snow by trying out a spec- 

trometer borrowed from NASNGSFC. Other work included upgrading the micrometeorological study site, 

mostly by redesigning instrument arrays to withstand severe winter environmental conditions. This was 

prompted by the failure of some sensor support structures. 

The following winter, 1983-1984, marked the beginning of earnest efforts, with the help of Dr. Al 

Chang and NASA engineer Ken Brown, to evaluate an instrument to measure the angular distribution of 

snow reflectance. Data logging capability was upgraded at the snow study site to allow more rapid scan- 

ning of up and down looking hemispheric radiometers. This was neceSSary in order to monitor solar radia- 

tion, which sometimes changed markedly during a reflectance scan. Redundant data channels were also 

added to prevent potential data loss. During this winter we also began using a new technique for 



This can be solved for W and divided by the snow mass M to give the liquid water mass fraction x,. Typ- 
ically x ,  x 100 is in the range 0 to 30%: 

w s  
%,E- =- M M  

Cm 
c* 1-- 

The absolute concentrations Cs, C,. and C, are not needed, only their ratios. The volume fraction 

of liquid water 8, can be obtained 

P S  

Pi 
e, =x ,  - (3) 

If mixing of the stock solution is complete, errors in the dilution method result from errors in the measure- 

ments of S , M , CmIC s, and C ,IC s. 

Snow Microstructure 

Snow samples were obtained from snow pits at the same time conventional snow properties were 

observed. In addition to the field description, micrographs of selected snow samples were used with refer- 

ence grids to obtain estimates of the grain average diameter. 

Each sample of snow was subdivided into specimens of about 3x3x5cm, carefully avoiding the 

edges of the blocks. Sections were prepared from the specimens according to recently reported procedures. 

Micrographs were then taken of the sections with a Nikon HFX photomicroscope using Kodak Ektachrome 

400 35mm slide transparency film. A fiberoptic ring illuminator was used to provide a cool light source, 

almost coaxial to the main optic tube of the photomicroscope. The lighting arrangement produces bright 

reflection from the pore filler and maximum light penetration into the exposed ice grains, which appear 

darker. 

The micrographs were digitized with 8-bit brightness levels as 512x512 pixels using a frame-grabber 

video digitizer, part of a Model 70F image computer from International Imaging Systems. The 

classification procedure starts by calculating the snow density corresponding to most values of the bright- 

ness level threshold. By comparing the calculated densities to those measured independently for the snow 

specimen, this relationship guides the user in determining a threshold brightness value. Next a visual thres- 

hold is determined, which best replicates the micrograph appearance with a real-time density slicing opera- 

tion while the image is displayed on the monitor. 

The classified images are processed with a line sampling technique that results in three measurement 

parameters and their distributions: 
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EOOR QUALITY 



1) Point density P p  , the number of pixels falling on ice profiles divided by the total number of pixels. 

2) Intercept number density N, , the number of ice-pore and pore-ice transitions. 

3) Ice intercept lengths L , the distances between pore-ice and ice-pore transitions. 

All of these are ratio estimates of statistical parameters and are subject to the standard estimates of 

error, which become smaller with increasing numbers of sample estimates. 

Volume density is equal to the point density, i.e. the ice volume fraction Oi : 

Pi is the number of pixels falling on ice, and PT is the total number of pixels. The snow density is 

p, = pi P p  , where pi = 917 kg m-3 is the density of ice. 

Surface density, or surface area per containing volume, is 

Ni sv =2NL =2- 
L, (5) 

where NL is the intercept density of the grain boundaries, Ni is the number of profile boundary intersec- 

tions, and L, is the length of the line scan. 

Results 

Figure 1 shows density data from bulk measurements for the last four winters, obtained from snow 

pits. The lines drawn are based on best visual fit. Density profiles for dry snow in the early winter for all 

years studied show trends with depth similar to the empirical models proposed by Bader (1963). Herron 
and Langway (1980), Ling (1985) and others. The model of Ling (1985), for example, requires only that 

the density of the surface be known and a maximum representative density for the time of season. 

(6) (P-pJ4Pm-PJ=1-e i z  JH 1 

The density at the surface is po, the maximum density is p,,, , z is the depth, and H is a characteristic length 

scale (fitting parameter). This model shows promise for characterization of snow densities over wide areas 

from few measurements. Near the base of the pack, it is common to find a layer or zone of lower density, 

presumably because of depth hoar formation while the pack is thin. In general, the density reaches a con- 

stant value in the lower two thirds of the pack by March, except for frequent lower values near the snow- 

soil surface (Figure 1). In the spring, the snow has usually attained a uniform density if it is freely draining 

except for the near-surface zone. 

The density measurements obtained for three winters at the study plot show that old snow layers, 

buried more than l m  in the pack show little lateral variation prior to melt. Layers of new snow exhibited 
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significant variation, depending on storm characteristics such as wind. An example of snow pit data show- 

ing five density profiles taken about 0.6- 0.8m apart in Table 1 illustrates these observations. 

Depth(cm) 

00-10 

10-20 

20-30 

3040 

40-50 

50-60 

60-70 

70-80 

80-90 

90-100 

100-1 10 

TABLE 1 : Snow Pit, March 11,1987 

(all densities expressed as k g n ~ - ~ )  

Dens. 1 Dens.2 Dens.3 Dens.4 Dens. 5 
294 3 18 329 324 332 

354 323 344 37 1 356 

303 308 3 17 295 340 

361 349 378 38 1 359 

335 344 337 34 1 336 

334 344 33 1 332 333 

327 3 16 310 3 14 3 14 

324 3 17 307 311 314 

283 287 288 318 312 

290 280 28 1 282 284 

218 225 244 240 245 

Stand Dev. 

13.5 

15.8 

15.5 

12.1 

3.4 

4.7 

5.7 

5.8 

14.7 

3.6 

10.9 

110-120 202 200 205 210 209 3.9 

120-133 205 207 218 217 206 5.7 

Table 2 shows measurements from the Mt. Rose snow sampler taken adjacent to the pit. 

TABLE 2 : Mt. Rose SWE Sample, March 11,1987 

MEASURE SAMP.1 SAMP.2 SAMP.3 SAMP.4 

DEPTH(cm) 132 130.8 129.5 127 

S W E  (cm) 41.4 41.7 38.1 40.64 

Comparison between the average densities derived from the two methods shows that the Mt. Rose sampler 

had a positive bias of almost 4percent. Data from both winters 1985-1986 and 1986-1987 show that the 

bias can be related to the total absolute snow water equivalent SWE at the Mammoth site by 

SWE SWE,,(-O.005) + 0.131 (7) 

where SWE is the estimated snow water equivalent, and SWE,, is the measurement from the Mt. Rose 

Sampler. We are currently examining methods use a value of average density and depth, determined from 

Mt. Rose measurements, in modeling the profiles of density over an area. 

Measurements performed on sections f h m  1985 to 1987 show that planes cut parallel to the snow 

stratigraphy exhibit little, if any, anisotropy in the parameter L, while some snow types show 



inhomogeneity in sections cut vertically, which was not apparent from snow pit observations. The section 

images were measured in orthogonal directions and counting measures tabulated to calculate L. Figure 2 

shows the ratio of L measured vertically cto L,, the same parameter measured horizontally as a function 

of depth in the snow pack The apparent vertical elongation of snow fabric is most prominent around 

depths of about 0.25m. There were no significant correlations found between this feature and the magni- 

tude or direction of the imposed temperature gradients or the densities, except that most samples were old 

snow with intermediate densities (22&380&1-~). This figure also shows that most sampling for micros- 

tructure analysis was done in the near-surface layers. 

Figures 2 and 3 show examples of sections illustrating these trends, one cut parallel to the snow stra- 

tigraphy and one cut vertically. 
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MICROWAVE EMISSION EXPERIMENT 

Introduction 

Measurements of microwave emission from a snow pack contain information about the snow's liquid 

water content (Chang et al., 1985), water equivalent (Chang et al., 1982), grain size and geometry, and 

temperature (Colbeck, 1982a; Denoth, 1 9 8 2 ~  Chang, 1984). The propagation and attenuation of 

microwaves in snow are controlled by the effective dielectric function. Emission and scattering formula- 

tions generally characterize the snow as a collection of scatterers embedded in a homogeneous background, 

or as a medium described by a randomly fluctuating dielectric constant (Fung, 1982; Fung and Eom, 1982; 

Tiuri, 1982; Schanda et al., 1983; Tiuri et al., 1984; Jin and Kong, 1985; Sadiku, 1985; Stogryn, 1985, 

1986). Problems with applying such models result from the disparity between the radiative parameters 

used in the models and the physical properties of snow measured by experimentalists. Moreover, we lack 

reliable measurements of the complex refractive index of ice at many frequencies in the microwave spec- 

trum (Foster et al., 1984; Warren, 1984; Sihvola et al., 1985). 

The major difficulty in experimentally testing both discrete scatterer and random medium models is 

that the snow property observations made by field scientists are usually inadequate to determine the 

theoretical model parameters to allow comparison with radiometric measurements @om et al., 1983; Davis 

et al., 1987). For random medium models the correlation functions and the mean and variance of the per- 

mittivity are related to the average ice profile dimensions and volume fractions that can be derived from 

plane-section micrographs (Vallese and Kong, 1981; Perla, 1982; Perla et al., 1986). It can therefore be 

assumed that these parameters are related to the actual dimensions and volume fractions in snow, but the 

use of section measurements in field tests of random medium models or discrete scatterer models is rare. 

For discrete scatterer models only limited experiments (this study) have demonstrated that the equivalent 
spheres and number density are related to actual grain dimensions and volume fractions. 

Experimental Design 

Snow property measurements were carried out coincident with observations of microwave brightness 

temperature at the study plot. 

The radiometer used to make the 35 GHz brightness temperature measurements is a periodically cali- 

brated, AC coupled, total power type. The manufacturer's specifications are given in Table 3. The cali- 

brate command signals are provided by external circuitry as an operate-calibrate duty cycle of about 8 to 1. 

The output during the calibration part of the cycle is a signal that represents the physical temperature at the 

waveguide termination, which affects the gain of the receiver. The operating frequency of 35 GHz varies 

less than 1OOMHz from -1OOC to +45OC. For single samples, during nominal operation the maximum 

error at target temperature 299K is about +3K and at target temperature 98.5K is about -2.5K. Samples 

were collected at a rate of about 9 8 '  using software-controlled 12-bit A/D conversion in a portable 



computer. These were averaged for each scan to reduce the error in brightness temperature determination. 

External calibrations were done by viewing the clear sky, an ambient-temperature Ekcosorb target, and an 

Eccosorb target immersed in liquid nitrogen. 

~~ 

Table 3. Microwave Radiometer Specification Summary 

Radiometer Type Periodically calibrated, ac coupled dc ra- 
diometer with switched automatic gain con- 

trol 

RF Center Frequency 35 GHz 

I-F Bandwidth (B) 6ooMHz 

Overall Receiver Noise Figure 

Output Filter Bandwidth 150 Hz 
Temperature Sensitivity (ATmh) 

7 dB DSB 

1.5 K maximum 

Temperature Measurement Range Oto500K 

Temperature Measurement Error +[0.05 I 3&T, I +6]Kmax for OIT, GoOK 

(T, = radiometric temperature of source) 

Operating Temperature -25OC to +55OC 

The radiometer was hand-held about l m  above the snow. When the snow was dry, as verified by 

temperature measurements, the brightness temperature observations consisted of views at zenith angles 

ranging from 0' to 70° in 10" increments for both horizontal and vertical polarizations. The observations 

compared with the model for each date are averages of two or more scans. When the snow surface was 

wet, detected by a surface radiant thermometer and wetness measurements, the radiometer was held at 
fixed angles as the surface water content changed as well as being scanned over a range of angles. Once 

the snow was wet throughout, only fixed angles were measured. 

The microwave radiation emerging from the snow pack results from natural emission of radiation 

because of atomic and molecular vibration. The emitted spectral radiance L ,  at temperature T, frequency 

v, and look angle  COS-'^ is the product of the spectral emissivity E,@) and Planck's equation: 

where 

The constants in Planck's equation are: 

h 6 .63~10-~~Js  Planck's constant 
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k 1.38~1O-*~JK-' Boltzmann's constant 

c 3x108ms-' speed of light 

If E,@) is known, the Planck equation can be solved for the monochromatic brightness temperature TB 

(10) 
h v  

TB (v&) = ln[ ehv/kT+Ev@)-l] 

E,@) 

Because of the low absorption of ice in the microwave, the emissivity depends on the dielectric composi- 

tion and physical structure of the snow pack integrated over a depth of at least 1 m for near-nadir viewing. 

However, as the snow becomes wet, the contribution to the emitted radiation from the near surface layers 

increases dramatically. 

At microwave frequencies, the exponential function in the above equations can be replaced by its 

first-order Taylor series expansion. Therefore the Planck equation reduces to 

$,,(T) = 2 c - ~  k V* T (1 1) 

and equation (10) reduces to 

In the radiative transfer equation (Chandrasekhar, 1960), then, radiance terms can be replaced by 

brightness temperature. The brightness temperature of a snow pack can be found by solving the radiative 

transfer equation. 

TB (z,,,p) is the monochromatic brightness temperature at optical depth 2, in direction cos-'p. Jv(zV,p) is 

the source function, which accounts for scattering of diffuse radiation from other directions and for emitted 

radiation. 

% and P v  are the single-scattering albedo and phase function; these are generally piecewise continuous 

functions of depth for a nonuniform medium. The optical thickness of a layer is 



N is the number density of scatterers of radius r , z is the layer thickness, aut (v) is the extinction cross 

section, Oi is the volume fraction of ice, and Q,,(v) is the extinction efficiency. The parameters used in 

the Mie calculations are the radius of the equivalent sphere r for the layer and the relative index of refrac- 

tion Low values of g allow us to assume the scattering is isotropic. 

Equation 13 is solved numerically by the invariant embedding technique via recurrence relations 

(Chang and Choudhury, 1978), The technique is based on the principle that the radiation emerging from a 

plane-parallel medium is invariant with respect to the addition or subtraction of layers of arbitrary thick- 

ness. The model accounts for Fresnel reflection at the snow surface by treating the medium as a mixture of 

air, ice, and water, so an estimate of the bulk complex dielectric function of the snow E is also required. By 

this method brightness temperatures TB are calculated for horizontal and vertical polarizations and various 

view angles using parameters that have been estimated from the snow property measurements. 

In the case of a ground based radiometer looking down at the snow at angle  COS-'^, the power 

received or apparent temperature TAP sensed, is a combination of the brightness temperature of the target 

TB and the the component of radiation emitted by the sky and reflected by the target in the direction of the 

radiometer. 

@) = TB @) -k (l -E,)T,SC @) 1 (16) 

The contribution from the sky is small for viewing angles near nadir, but it can become significant for high 

angles. Therefore we assume TAP =TB for viewing angles less than about 60'. 

Input Parameters for Emission Modeling 

The microwave emission model uses Mie theory to compute the average absorption and scattering 

properties of each layer. This requires that the irregular snow grains can be mimicked by some sort of 
equivalent sphere, and requires an approximation of the relative refractive index of the grains. In the cases 

where we treat the background as air, the refkactive index is that of pure ice. Adjustments to the relative 

refractive index compensating for the close proximity of the particles treat the background as a mixture of 

air and ice, and liquid water in the case of wet snow. The properties of the mixture are estimated using 

structure parameters from section analysis, snow density measurements, and snow wetness measurements. 

Equivalent Spheres 

That the irregular grains of ice in snow can be approximated by equivalent spheres in the microwave 

has been shown by Mugnai and Wiscombe (1980). For the range of size parameters encountered in this 

study there is little difference between the scattering and absorbing parameters for nonspherical and even 

concave particles and those of the equivalent spheres tested. In addition, Mungai and Wiscombe (1980). 

find that size averaging tends to reduce the spherical-nonspherical differences as does averaging for orien- 

tation. 
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In microwave modeling it has been generally assumed that the equivalent sphere has the same diam- 

eter as the snow grains. Whether this refers to the mean grain diameter, to the mean maximum diameter, or 

to some other dimension is unclear in most studies. For example, thin section micrographs are presented in 

Miitzler et al., (1980) to illustrate the ice phase variation in a snow cover and the mean intercept length is 

referred to as "mean grain diameter." But in most other studies, field estimation or measurements from 

photomicrographs seem to use mean maximum grain diameter (e.g. Stiles and Ulaby, 1980). 

The measurements from the section micrographs in this study consider structure parameters; the 

measurements from the field and the disaggregated snow samples only allow estimates of caliper dimen- 

sions. In terms of stereological models using section measurements (e.g. Weibel, 1979), the object phase, 

ice, can have any shape, can be interconnected, and can have concave surfaces, but no particle parameters 

are directly measured and ratio estimates must suffice 

In approximating the scattering properties of snow, the section information is transformed to a model 

of discrete particles with uniform size and spherical shape. The conversion procedures tested are: (1) the 

sphere of equal mean chord length, (2) the sphere of equal volume-to-surface ratio, (3) the sphere of equal 

mean diameter to grains in micrographs, and (4) the sphere of equal mean diameter to snow pit estimates. 

The section data are limited to conversions (1) and (2) and the particle parameter measurements are limited 

to conversions (3) and (4). 

% 

1 

For the conversion of stereologic information to equal-chord-length spheres we assume that the mean 

intercept length of the ice profiles is related to the mean chord length of the equivalent sphere weighted by 

the probability that different parts of the sphere would be cut by the section. That is, we assume that the 

mean intercept length of the profiles is equal to the mean intercept lengths of circles that would form the 

profiles of the equivalent spheres. The relationship between the average radius of random circles cutting 

spheres of equal size and the true radius of the spheres is (Weibel. 1979): 
/ 

RL is the sphere radius and 7 is the average radius of the circular section profile. Similarly it can be shown 

that the average radius and mean intercept length of the circles are related by 

- 2 -  r = - L  
II: 

L is the mean intercept length. n u s  

8 -  R L = - L  =0.8lE 
IC 

The surface density Sv and the volume density Vv are used to calculate the radius of the sphere of equal 

volume-to-surface ratio 

R v = 3 [ $ - ]  



The diameter-equivalent sphere can be obtained from the particle information by using the mean diameters 

from the particle observations from the microscope and field. 

and 

D T  is the mean estimated grain diameter from the micrographs of disaggregated grains, 0; is the mean 

estimated grain diameter from the field observations. RDM and RDF are the radii of the equivalent spheres. 

For the wet snow cases, the samples returned from the field were frozen so that the section and disag- 

gregate parameters represent the combined dimensions of the ice and water. We assume that the field 

measurements of particle dimensions also incorporate the liquid inclusions. Therefore the equivalent- 

spheres, of which part is ice and part is water, are described by a total radius rT. Furthermore, for 

volumetric water fractions 8,s 0.07, we assume that during the measurements no liquid drained from the 

layer where the average liquid fraction was measured. 
i 

To estimate the sizes of the ice spheres and water inclusions from rT, 8, and e,, it is necessary to 

use a relationship that makes some assumption about where melt takes place on the grains. For simplicity 

we assume that melt occurs uniformly around the equivalent spheres. Since the total radius rT of the 

spheres is estimated from the samples it is necessary to calculate the radius of the ice cores r, for different 

water contents 

The central ice spheres decrease in radius and number density as the snow liquid water content increases. 

We consider two configurations of the ice and liquid water in approximating the average radiative 

properties. The first characterization treats the equivalent spheres as ice covered by a thin layer of water 

(Chang et al., 1980). While this treatment is questionable for low water contents because equilibrium ther- 

modynamics constrains the liquid to occur as menisci between grains (Colbeck, 1979), and it is inconsistent 

with mixing formulae comparisons to dielectric measurements, it is used to illustrate the effect of different 

ice-water geometry. The problem of scattering from concentric spheres was solved by Aden and Kerker 

(195 1), and is not repeated here. 

The second characterization treats the ice and water separately. The size of the ice spheres as melt 

progresses is calculated using equation 23, and the water is assumed to occur as small menisci approxi- 

mated by a spherical shape held between two ice spheres. This is a more realistic treatment since the liquid 



water in snow nestles between the grains, but it assumes complex shapes. However, the very small Mie 

sizes of the inclusions and the high absorption of water in the microwave allow us to use equivalent spheres 

with some confidence (Mugnai and Wiscombe, 1980). The ratio of the number of water spheres to the 

number of ice spheres is arbifrarily selected based on Colbeck's (1979) suggestion that wet seasonal snow 

may be dominated by two-grain bonds. Thus the radius of the water sphere r, can be calculated from the 

number density of ice spheres N and the liquid water volume fraction 8,  

1/3 

rw = [ 21 
Once the radius of the water spheres is determined, the relative refractive index of the spheres is cal- 

culated and the combined scattering and absorption properties of the layer are estimated according to 

Dozier and Warren (1982). 

water - 
Q, = r. . r .  

Sic, Qsco ue + Swater Qsco 

where S,, and SWcr are the geometric cross sections of ice and ,water respectively. Equation 15 is used to 

calculate the optical depth by adding the contributions of ice and water. 

The refractive index of ice at frequency 35 GHz (A= 8.57 mm) is interpolated from the data compiled 

by Warren (1984). While the real part of the refiractive index of ice is independent of temperature, and is 

1.78 at v=35GHz, the imaginary part is temperature dependent, varying from 3 . 5 ~ 1 0 ~ ~  at -1OC to 

1.4xW3 at -2OOC. This affects Quke and therefore the single scattering albedo a. The rehctive index 

of water is interpolated from the data of Lane and Saxton (1952): mWf = 3.95 + i 2.44 . 
The radiative transfer model assumes that scattering occurs at discrete locations and takes place 

independently. This assumption is generally not questioned when the scatterers are widely spaced relative 

to the wavelength, but doubts arise when the separations between the particles become less than the 

wavelength, and particularly when the particles are in mutual contact. In some of the model runs we 

attempt to compensate for the effects of close particle spacing using the method proposed by Gate (1973). 

The real part of the relative rehctive index of the Mie spheres is divided by the effective refractive index 

of the surrounding medium. For dry snow 

med - ice mre -ei m,, +ea mrcaw 

and for wet snow 



The estimation of the dielectric function of wet snow E,' is discussed in the next section. Here we only 

adjust the real part of the index of refraction of the equivalent spheres and assume that there is no effect on 

the imaginary part. Since the wavelength is large, the medium immediately surrounding the spheres is 

assumed to have the same constituent mix as the bulk. 

Generalizing the Parameters 

Some of the snow pit observations show many layers with quite different properties. Rather than 

increase the model complexity to accommodate several layers, we average the parameters into two layers. 

The averaging scheme is based on the optical thickness of the layer and its optical depth: 

where x is the parameter being averaged. This weighting scheme has the effect of decreasing the contribu- 

tion from deeper layers. We average the temperature of the snow pack and the single scattering albedos for 

all model calculations. 

Dielectric Properties of the Medium 

Numerous experimental relationships and mixing rules have been proposed to calculate the dielectric 

functions of dry and wet snow. Since snow is a mixture, the bulk dielectric function represents contribu- 

tions from the constituents. Some dielectric models may be linearized functions of density and wetness. 

Others are mixing formulae using the permittivities of air, ice, and liquid water and their volume fractions, 
or more theoretical relations accounting for the microscopic structure of the ice and liquid water. Sihvola 

et al. (1985) review various dielectric models and experimental results. Considering the data available we 

will avoid considerations requiring detailed information about the shape of the constituents, though it is 

recognized that no physical insight can be obtained from empirical formulae. 

The complex dielectric function E of a medium is related to the complex refractive index m 

E = E'+ i E" = (m,, + i mh l2 (31) 

For dry snow we sum the refractive indices of air and ice weighted by volume fraction, and square the 

result to obtain the real and imaginary parts of the dielectric function. 

E& = (ei m,, ice + 0, mreaw + i 0; m h  k C ) 2  

where 0, is the volume fraction of air, and maw = 1. This gives the real and imaginary parts with one cal- 

culation and shows good agreement with other formulae. The values for the imaginary part of the dielec- 

tric function may be inaccurate because the measurements of loss in snow show a large variation and 

.-.C-T.l-.p 7 P, 7 P**[ZZ. 15, I " ,  - ' -  



because the imaginary part of the dielectric function of ice is not well determined. 

Recent measurements (Hallikainen et al., 1986; Tiuri et al, 1984) show that the dielectric behavior of 

wet snow is dominated by Debye relaxation spectra for liquid water with a relaxation frequency of about 

8.8 GHz. We use the empirical relationships of Tiuri et al. (1984) in which the dielectric effect of liquid 

water is superposed on the dielectric properties of dry snow. 

AE‘= ews’ - E*’ (33) 

AE’= (0.108, + 0.808,2)~,’ 

E,~~’= (o.ioe, + 0.8Oew2)~,” 

(34) 

(35) 

where E,’ and E,” are the real and imaginary parts of the dielectric function of water. These are given by 

the Debye relaxation spectra 

E, -E- 

1 + ivtv, 
E(V) = E,+ 

Substituting, 

82.8 &,’=4.9+ 
1 + (vhQ2 

and 

82.8(vlvJ 
&,’* = 

1 + (vNJ2 

(37) 

where 82.8 is the difference between the high frequency limit and the static dielectric function of water, v 

is the frequency under consideration (35 GHz) and vo= 8.8 GHz is the relaxation fiequency. These values 

agree well with interpolated experimental data from Lane and Saxton (1952). 

Results 

The brightness temperature of the 35GHz signal increases with liquid water in a thin surface melting 

layer over dry snow. Spheres with equal volume-to-surface ratio and equal mean chord lengths underesti- 

mate the volume scattering in snow at 35 GHz as shown in Figures 4 and 5 for new snow conditions and in 

Figures 6 and 7 for mixed snow conditions. Equal-diameter spheres overestimate the scattering, resulting 

in brightness temperatures lower than the measurements, also shown in the figures listed above. 

The adjustment to the relative refractive index to account for the close spacing and contact of the ice 

grains causes a reduction in the amount of scattering. Therefore only the model parameters using the larger 

equivalent spheres fiom the particle measurements have been modified. Figures 8 through 11 show the 

results for new snow and mixed snow conditions. The corrections improve the correspondence between 

the model and the radiometric measurements considerably, although the model shows poor agreement with 



the horizontally polarized data. Alternatively, the data could probably be matched by finding equivalent 

sphere sizes somewhere between those tested, rather than by adjusting the refractive index of the spheres. 

Thus what constitutes the best equivalent sphere conversion is unresolved. Also, the possible dependence 

of the appropriate equivalent sphere size on frequency remains unaddressed. More accurate microwave 

measurements are needed for at least two frequencies. 

The concentric shell geometry of liquid water in snow yields higher emissivities and better model 

results than the separate-sphere configuration for liquid water contents greater than about 0.05, while at 

lower liquid water contents the separate-sphere treatment gives better results. Whereas the model calcula- 

tions for the early melt case are set up by selecting two dry snow characterizations from runs using meas- 

urements from previous days, then adding a wet snow layer to the top, the model calculations for the wet 

spring snow use a single layer. Figure 12 illustrates the results for a low liquid water content It shows that 

the separate-sphere geometry of water and ice gives better model results, but at 8,20.05 the 

concentric-shell treatment of liquid water gives better results, as shown in Figure 13. This trend is reen- 

forced by the spring data, which are better simulated with a concentric shell model (Figure 14). This result 

may reflect the change in dielectric behavior observed at lower frequencies (Denoth, 1982) when the snow 

undergoes a transition between the pendular and funicular saturation regimes or it may be an artifact of the 

characterization of wet snow. 
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Figure 1. Composite density profiles for January 1, March 1, and May 1 (left to right) taken from data 

from three winters. I ,  
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Figure 2. Relationship between snow sample depth and the ratio of the mean intercept length measured 

vertically L, and the mean intercept length measured horizontally h. 
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Figure 3. Section image from spring, 1987, cut parallel with the snow strata. This image exhibits little pre- 

ferential orientation @Jr, = 0.97). 
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Figure 4. Section image from spring, 1987, cut perpendicular to the snow strata. This image exhibits pre- 

ferential orientation (LJLh = 1.27). 



Figure 5. Results for 2/10/85, symbols represent measurements, and lines represent results from a 
single-layer model. Units of TB are Kelvins and view angle is expressed in degrees from vertical. 
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Figure 6. Results for 2/11/85. Section analysis showed slight grain growth since 2/10/85, and average 

snow temperature increased. 
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Figure 7. Results for 3/14/85, a two-layer model is used. The slight difference in the shapes of the calcu- . 

lated curves for the two equivalent spheres results from the difference between snow densities for 

section data and field data. 
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Figure 8. Results from 3/15/85. Average snow temperature in r 
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Figure 10. Results from 2/11/85, refractive index of spheres has been adj nsities near the snow sur- 

face are used to calculate E. 
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r r  . /  Figure 11. Results from 3/14/85 using refractive index adjustment. 
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Figure 12. Results from 3/15/85, E calculated using surface density. ' . 
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Fimire 9. Resulh finm 2/10/85. refractive index of mheres has been adii - - ~ - -  - - - - -- -. -. ~ -. --, .. usted, densities near the snow sur- 

face are used to calculate E. The model does not account for horizontally polarized signal. . . 
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Figure 13. Results from 3/20/85, showing difference in the geometry of liquid water specified in the 

190 

180 

170 

160 

150. 

model. Upper curves are obtained by using a concentric-sphere configuration and the lower curves 

by using separate spheres of ice and water. Measurements and calculations are for low water con- 

tent. 

- DUAL LAYER f$,, =O.O 1 6 

upPERcuRvEs:co"TRlc 
- T=271.9 

0=0.0021 (TOP LAYER) 

LOWERCURVES: SEPARATE 
-- 

0 VERTCAL POLARIZATION '\\ ' . T=269.7 - 
m=o.0027 (TOP LAYER) 

o HORIZONTAL POLARIZATION \ ; - ~=1.47+0.0321 
! 
B 

I I 1 1 1 1 1 I 

TB 

260 

250 

240 

230 

220 

210 

*0° t 



ORIGINAL PACZ IS 
SE POOR QUALITY, I 

Figure 14. Results from 3/20/85, showing difference in liquid geometry in model, at greater water content. 

The upper curves result from concentric-shell geometry and the lower curves from separate- sphere 

geometry. 
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Figure 15. Results from 4/28/85, wet spring snow. The concentric-shell geometry gives higher emissivity, 

hence better results. 
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SUMMARY 

The period funded by NASA grant NAG 5-328 was from July, 1983 to September, 1987. The fol- 

lowing experimental objectives were realized. In this study snow reflectance was measured for the visible 

and near-infrared wavelength range 0 . 3 ~  with two different instruments. Stereological measurements 

were made from sections prepared from snow specimens, temperature profiles in the snow cover were 

monitored, snow wetness was measured, and the traditional snow pit observations were made (e.g. den- 

sity). Measurements of microwave brightness temperature at 35GHz were acquired at a variety of angles 

at horizontal and vertical polarization during snow accumulation, metamorphism and melt. These 

radiometric measurements were compared with theoretical model calculations, whose input parameters 

were derived from measurements of snow properties. 

1.1 

A summary of the total budget expenditures can be found in Table 4. 

We WOT 

Total Budget of Grant No. NAG 5-328 

Wages & Benefits $78,591.95 

Supplies and Expense $11,156.19 
Domestic Travel $12,342.86 
Sub-total of Direct Costs * $102,091.00 

Overhead $29294.00 
Total of All Sub Accounts $131,385.00 

/ , 

like to also acknowledge the generous support of Mammoth Mountain Ski Area and its 

owner/operator Dave McCoy, whose support and cooperation made this study logistically possible. 
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A radiative transfer model for the bidirectional reflectance- 
distribution function (BRDF) shows that snow is moderately 
anisotropic in the near-infrared wavelengths. Although the 
directional-hemispherical albedo of snow decreases as the grains 
become larger, the forward scattering also increases, with the 
result that the illumination and viewing geometry must be con- 
sidered when interpreting physical properties of the surface 
layer of the snow pack from remote sensing data. Measurements 
of the BRDF for a variety of snow conditions were made 
throughout the winter and spring seasons with a SE-590 spectro- 
radiometer, for wavelengths from 0.38 to  1.11 pm. Coincident 
with these the surface grain properties were analyzed by stereo- 
logical methods. The data show that Mie scattering calculations 
using an ‘equivalent’ spherical radius match the directional- 
hemispherical reflectance, but the BRDF usually shows a small 
peak in the backscattered direction that would not occur from 
spherical grains. The sphere with the same surface-to-volume 
ratio as the ice grains is used as the equivalent sphere. 

Keywords: snow, optical properties, remote sensing. 

1. INTRODUCTlON 

W h y  are we interested in the spectral and angular reflectance’of 
snow? 

‘ f :  
i, 

- We need to  estimate the albedo of snow from satellite in order to 
estimate the net solar radiation flux at the surface, given by the 
convolution of the spectral distribution of the incoming radiation 
and the spectral albedo: .. 

s net = [ [COSeoR, (h,&)) ss (h) -I- Rd (A) s d  (A)] d h (1 1 

S, and s d  are the spectral beam and diffuse irradiance at . _  
wavelength X, and R, and Rd are the spectral direct and diffuse 
albedo. 8, is the solar illumination angle. 

The spectral albedo for direct and diffuse irradiance can be 
modeled from a knowledge of the snow’s physical properties’ 
(Ref 1). However, from satellite or aircraft we can measure only 
a part of the spectral BRDF (bidirectional reflectance- 
distribution function), at a few wavelengths and usually only one 
solar-viewing orientation. We therefore need to know the spec- 
tral BRDF of snow as a function of its physical properties. We 
can use this BRDF as a boundary condition in an atmospheric ra- 
diation model, t o  predict the at-satellite radiance as a function of 
surface snow properties and the atmospheric profile. In this pa- 
per we examine the spectral BRDF of snow. I 

i .  . 
’ 
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2. HYPOTHESES AND ASSUMPTIONS 

We adopt the following hypotheses and assumptions in our model 
of the reflectance of snow. The difference between hypotheses 
and assumptions is that the hypotheses are tested by comparing 
measurements of snow properties and snow reflectance with 
theoretical models of the reflectance. In contrast, the assump- 
tions are not tested. 

Hypothesis 1. The reflectance of snow is modeled as a multiple 
scattering problem, as first proposed by Bohren and Barkstrom 
(Ref.2) and reviewed in detail by Warren (Ref.l). The models 
proposed and described in these papers calculate the directional- 
hemispherical reflectance of snow, i.e. the reflectance to direct ir- 
radiance, where the reflected radiation is integrated over the en- 
tire upward hemisphere (Ref. 3). The calculations match meas- 
ured spectra (e.g. Ref. 41, but the reflectance measurements were 
seldom accompanied by rigorous measurements of snow proper- 
ties. 

Hypothesis 2. Scattering properties of irregularly-shaped 
grains are mimicked by Mie calculations for an 'equivalent 
sphere'. Possible candidates for the equivalent sphere are the 
sphere with the same surface-to-volume ratio, the same projected 
area, same volume, or  same surface area. Although snow grains 
are seldom spherical, they are usually not oriented] so the as- 
sumption that their scattering properties can be mimicked by 
some spherical radius r is reasonable when we want to describe 
the general spectral properties. When we want details about the 
angular characteristics of the reflectance] the spherical hy- 
pothesis could become more critical. 

Hypothesis 3. Because the complex indices of refraction of ice 
and water are similar in the wavelength range from 0.4 to 
2.5pm, liquid water per se has little effect on the optical proper- 
ties of snow. Instead liquid water causes grain clusters (Ref.5), 
which behave optically as large single grains. 

Assumption 1. Near-field effects are assumed unimportant. 
The fact that  the ice grains in a snowpack touch each other 
should not affect the snow's reflectance, because the center-to- 
center spacing is still much larger than the wavelength. That is, 
snow reflectance is independent of density up to about 
650kgm-3. Reflectance measurements carried out over a field 
season and simply analyzed statistically will show a significant 
inverse relationship between density and reflectance, but the 
physical model shows that the explanation for 'changes in 
reflectance lies in other properties of the snow cover, namely an 
increase in grain size and in the amount of contaminants near 
the surface. Measurements of snow reflectance, before and after 
artificially compacting the snow by driving a snowmobile over it, 
show no change in reflectance (Ref.6). In Figure 1, the t<o 
representations of snow would have the same reflectance, even 
though their densities are different. 

- 

, 

I 
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Assumption 2. The effect of absorbing impurities (dust, soot) is 
increased when they are inside the ice grains, because refraction 
focuses light on the impurity and therefore increases the proba- 
bility that  a photon will hit  it. Unfortunately, analytical model- 
ing of this situation is restricted either to  treating the ice and the 
dust or soot as separate spheres, which gives the smallest effect, 
or as concentric spheres with the impurity in the center, which 
gives the largest effect. A proposed theoretical treatment of ran- 
domly located dust or  soot (Ref. 7) apparently has mathematical 
and physical inconsistencies (Ref. 8). Figure 2 shows the two pos- 
sible configurations. 

L 

"i 

3. OPTICAL PROPERTIES OF ICE FROM 0.4 TO 2.5 prn 

The most important optical property of ice, which causes spectral 
variation in the reflectance of snow in visible and near-infrared 
wavelengths, is that the absorption coefficient (i.e. the imaginary 
part of the refractive index) varies by seven orders of magnitude 
at wavelengths from 0.4 and 2.5pm. Normally the index of re- 
fraction is expressed as a complex number n + i K. Figure 3 
shows both the real and imaginary parts of the refractive index 
for ice and water. The important properties t o  note are: (1) the 
spectral variation in the real part n is small, and the difference 
between ice and water is not significant; (2) the absorption 
coefficients k of ice and water are very similar, except for the re- 
gion between 1.55 and 1.75pm, where ice is slightly more absorp- 
tive; (3) in the visible wavelengths k is small and ice is trans- 
parent; and (4) in the near-infrared wavelengths ice is moderate- 
ly absorptive, and the absorption increases with wavelength. 

The right-hand graph of Figure 3 shows the absorption is a 
slightly different manner. Transmission of light along distance s 
through a pure substance decays as exp(-4nK s /X). The right- 
hand graph shows the e -folding distance for ice as a function of 
wavelength, i.e. the distance through which light will propagate 
through pure ice before its intensity is reduced to e-l times its 
initial value. 

4. SPECTRAL PROPERTlES OF THE REFLECTANCE OF SNOW 

Given the hypotheses and assumptions described earlier, the 
scattering properties for an ice sphere of appropriate radius r 
can be calculated by the Mie equations (Ref. 91, the complex an- 
y l a r  momentum approximation (Ref. lo), or, for larger grains, 
by geometric optics (Ref. 11). Then the radiative transfer equa- 
tion (Ref. 12) can be used to calculate the multiple scattering and 
absorption of the incident radiation. 
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L is radiance at optical depth z in direction 8, I$; I$ is the azimuth; 

it results from scattering of both direct and diffuse radiation or, 
at thermal wavelengths, emission. 

e is the angle from zenith, and p=cose. J is the source function; - <  

h 

In our examination of the spectral properties of snow, it is com- 
putationally time-consuming to calculate the angular distribu- 
tion of the reflected radiation. But it is comparatively simple to  
examine the reflectance integrated over all angles, and these cal- 
culations show the interesting spectral properties Therefore, in 
this section we restrict discussion to the spectral ‘directional- 
hemispherical’ reflectance (Ref. 3). This reflectance is defined as 
the ratio of all of the reflected radiation divided by the incoming 
solar beam: 

2% 1 

where 8, is the incident illumination angle, Cb=cose0, and So is 
the direct illumination, measured on a plane normal to  the solar 
beam. 

We can solve this kind of problem analytically with the ‘two- 
stream equations’ for radiative transfer in a homogeneous medi- 
um (Ref. 13): 

where FT and F J  are upward and downward flux, oo is the 
single-scattering albedo (i.e. the ratio of extinction by scattering 
to total extinction), and yi are parameters to  approximate 
scattering function. The Mie equations are used to calculate oo 
and g , the scattering asymmetry parameter, and the yi are func- 
tions of coo, g, and h. To estimate the optical depth coordinate ‘F 

as a function of physical properties, we also need Qext, the ex- 
tinction efficiency. 

The total optical depth of a snowpack, .co, is a function of the ex- 
tinction efficiency and the snow water equivalence W. The snow 
water equivalence W is the product of mean snow density, panow, 
and depth d .  1,- 

1 (5 )  
3 W Q e x t  - - 3 p s n o w d  Q e x t  

To = 

1 

5 

4 r  Pice 4 r Pice 

For the optical depth to  be dimensionless, W is in kgm-2 and r is 
3 

. ‘. in meters. 

ORIGINAL PAGE Ea 
OF POOR QUUm 

c .  -- - 



-. * s 

One solution to  the twostream equations uses the delta- 
Eddington approximation to the yi parameters (Ref. 14), i.e. 

1 

(1 -g 2, 0 0  

1-g2wo 

< 

w* = 

4. 
g* = 

Y1 = 

1 +g 
7 - O* (4+ 3g *) S 

4 
1 - O* (4- 3g *) 

4 i Y2 = - 
2 - 3 g * h  

Y3= 4 

Y4 = 1-Y3 

Then the twostream equations (4a,b) can be solved for the 
directional-hemispherical reflectance of snow. For deep 
snowpacks, 'semi-infinite', the underlying surface has no effect. 
The reflectance R, is a function of the illumination angle 8,. 

The other variables are 

5 = 13 (1 - o*g *) (1 - ,*)]1'2 

P =  25 
3 (1 - W * g * )  

For shallower snowpacks, the optical depth and the reflectance of 
the substrate, R o, are needed. 

The additional variables needed for the finite-depth snowpack 
are 

TO* = (1 -oog2)To s 

1-Ro 
y=  - 

1+Ro 

_- - 



h 
(pm) 
0.45 
0.7 
0.9 
1.6 

m 
4 

? 

j 
I . !  

f 

How thick is a semi-infinite snow pack? For practical purposes, 

reflectance is within 1% of that at .r0==. For a solar zenith angle 

2 , 
we define i t  as a snow pack whose directional-hemispherical 

of 60’. Table 1 shows the minimum values in millimeters of wa- 

grain radius (pm) 
50 300 1000 
1 7  63 145 
10 37 80 
5 15 30 
<1 <1 1 

ter equivalence. 

Table 1. Snow-Water Equivalence (mm) 
of Semi-Infinite Snow Pack 

F i y r e  4 shows the spectral reflectance of pure, deep snow for 
visible and near-infrared wavelengths, for snow grain radii from 
50 to 1,OOOpm, representing the range for the finest new snow to  
coarse spring snow. Because ice is so transparent in the visible 
wavelengths, increasing the grain size does not appreciably affect 
the reflectance. The probability that a photon will be absorbed, 
once it enters an ice grain, is small, and that probability is not in- 
creased very much if the ice grain is larger. In the near-infrared, 
however, ice is moderately absorptive. Therefore, the reflectance 
is sensitive to  grain size, and the sensitivity is greatest at 1.O‘to 
1.3pm. Because the ice grains are strongly forward-scattering in 
the near-infrared, reflectance increases with illumination angle 

- ( F i y r e  5), especially for larger grains. 

The presence of liquid water in the snow should not by itself af- 
fect the reflectance. Except where meltwater ponds in depres- 
sions when melting snow overlies an impermeable substrate, 
liquid water content in snow rarely exceeds 5 or 6%. This small 
amount of water does not appreciably affect the bulk radiative 
transfer properties, except possibly in those wavelength regions 
where the absorption coefficients are appreciably different. In- 
stead, the changes in reflectance that occur in melting snow 
result from the increased crystal sizes and from an effective size 
increase caused by the two- to  four-grain clusters that  form in 
wet, unsaturated snow (Refs. 5,151. These apparently behave 
optically as single grains, causing decreased reflectance in near- 
infrared wavelengths. O’Brien and Munis (Ref. 4) observed the 
spectral reflectance of a snow sample to  be lower after warm air 
had been blown over it, but that  the reflectance did not increase 
when the snow was refrozen. 

There is no explicit dependence on density, a t  least for the semi- 
infinite snowpack. Although Bergen (Ref. 16) has proposed a 
semiempirical formulation with a density term for snow 
reflectance, in prqctice the natural increases in density are usu- 
ally accompanied by increases in grain size. 

1 * 

I 

’ 

I 
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5. MEASUREMENTS OF ANGULAR REFLECTANCE OF SNOW 

Measurements of the spectral BRDF of snow were made at Mam- 

nia, during the winter and spring of 1987. The spectro- 
radiometer we used was a Spectron Engineering SE-590, whose 
characteristics are given in Table 2. 

Table 2. Characteristics of SE-590 

spectral range 0.368-1.11 pm 
spectral sampling c 3 n m  
spectral resolution 5-10nm $ 

fi eld-of-vi ew 7" 

moth Mountain (elevation 2900m) in the Sierra Nevada, Califor- P 

I 

The geometry of measurements covered most of the upward hem- 
isphere. For each of the following angles, spectral measurements 
were made. We assumed that the BRDF would be azimuthally 
symmetric. After each snow measurement, a spectral measure- 
ment of a halon target at 0" nadir angle was made, in order to 
characterize the irradiance (Ref. 17). Because of the clear days at 
high altitude the diffuse irradiance was minimal. 

Azimuth angles from sun: 0 45 90 135 (165) 180 
Nadir viewing angles: 0 15 30 45 60 75 

Figure 6 shows the geometry of the measurements. 

Table 3 shows the range of snow properties and viewing 
geometry observed 

Table 3. Range of Snow Properties and Viewing Geometry 

snow type 

age of top layer 
thickness of top layer 
density 150 to  457 kgm-3 
snow water equivalence (top layer) 
grain radius 
crystal form dendrite, cluster, firnspiegel 
wetness (volume fraction) 
solar zenith angle 

powder, old EQ, firnspiegel, 

1 to 34 days 
170 to 300 mm 

45 to 148 mm 
60 to 500 pm 

0.00 to 0.06 
21" to  58" 

0" to 180" 

corn 

viewing angle from nadir 0" to  75" ' 

viewing azimuth from sun 

Data from selected days are presented in Figures 7 through 9. 
For each azimuth from 0-180" (with reference to solar azimuth) 
the spectral BRDF was measured for viewing angles 0-75" from 
nadir. In each spectral plot, the top line is at 75' viewing angle, 
and the bottom line is at 0". Other specific information is given 
in each figure caption. 
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6. DISCUSSION 

Interpretation of the grain characteristics was made mainly from 
reflectance at wavelengths from 0.80 to  1.05pm. At shorter 
wavelengths reflectance is not so sensitive to  grain size, and con- 
taminants have more effect. For wavelengths close to  1.1 pm we 
do not trust the sensor as well, as we are approaching the limits 
of sensitivity of the silicon detectors. 

The results show that the directional-hemispherical reflectance 
is explained by a radiative transfer model. Mie calculations for 
an equivalent sphere are used for the scattering properties of the 
ice grains, using the spherical radius with the same surface-to- 
volume ratio, measured from stereological sections. The same 
theory also explains the angular characteristics, except that 
there is a small peak in the backscattered direction, which is not 
predicted by the radiative transfer model. Steffen (Ref. 18) noted 
the same peak in his measurements at 0.4 to 0.5 pm. 

The major caveat we must remember is that the spectral range 
up to  1.1pm contains only a small part of the variation in the 
optical properties of ice. Therefore it would be very useful to  also 
make measurements in the spectral range from 1.1 to 1.4pm, 1.5 
to 1.8pm, and 2.1 to  2.3pm. Here we would expect more angular 
variation and more sensitivity to  grain radius. 
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Figure 2. Absorbing impurities can be modeled either as 
separate or  as concentric spheres. The concentric-sphere 
configuration has the maximum effect, becauses refraction 
focuses light on the absorber. 
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and grain radii r from 50 to 1,000pm. 
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Figure 5. Directional-hemispherical reflectance R, of snow a t  
illumination angles e,= 30°, 60°, and 75", for wavelengths from 
0.4 to 2.5 pm and grain radii r =200pm and 1,000pm. 
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F i y r e  6. Viewing geometry of measurements. S pectr a1 meas- 
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Figure 7. Spectral BRDF (xx) on March 30 (0, = 50"): 15 days 
since last snowfall; density 326 kgm-3; equivalent spherical 
grain radius 190pm; wetness of surface layer 3%. 
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Figure 9a. Spectral BRDF (xx) on May 6 (0, = 50"): 34 days since 
last snowfall; density 547 kgm-3; equivalent spherical grain 
radius 440pm; wetness 1%. 
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Figure 9b. Spectral BRDF (XX) on May 6 (0, = 30"): 34 days since 
last snowfall; density 547 kg m-"; equivalent spherical grain 
radius 440 pm; wetness 3%. 
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ABSTRACT 

Reflected solar radiation is a major and often varying 

parameter contributing to the net radiation budget over the 

earth's surface. Snowpacks, which cover approximately 40 

million km2 of the earth's surface in high winter, reflect 

about 8 0 %  of the incident solar radiation. Depending on 

surface roughness, snow crystal size, and contaminates, 

snow reflentances can-vary widely. Accurate evaluation of 

the net radiation over snow fields requires detailed 

knowledge of the bidirectional reflectance distribution 

function (BRDF) and its relationship to typical snow 

conditions. From this knowledge and remote sensing data it 

may be possible to obtain timely reflected solar radiation 

distributions over large snow areas when the snow BRDF can 

be fitted to discrete band multispectral radiometer data. 

In the past, the snow BRDF has received very little 

attention. Yet these measurements when coordinated with 

snow condition and runoff data can significantly improve our 

understanding of snowmelt processes, water survey, and 

climate modeling. A field experiment designed to further 

our understanding of the snow reflectance relationship has 
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been carried 

California. 

and snowmelt 
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out at a test site near Mammoth Lakes,' 

Snow reflentance snowpack characteristics, 

were measureed simultaneously. The most 

critical engineering factor of the initial investigation was 

the instrument measuring speed. This effect complicates the 

extraction of snow reflectance due to atmospheric and solar 

angle changes. Preliminary results from the observed data 

appear to match model calculations. The measured 

reflectances from new snow (r=O.lmm) are within 5% of the 

model calculations and from old snow about 10%. This is 

because the model calculations did not take into account the 

effect of the contaminents accumulated in the snow due to 

aging. 
/ 

INTRODUCTION 

Reflected solar radiation is a dominant component of 

the energy balance over snowpacks. It has been established 

from theoretical studies that this component varies with 

snow and bidirectional conditions and cause large changes in 

reflectivity within the spectral region from 400 to 1800 nm 

(Wiscombe and Warren, 1981; Choudhury and Chang, 1979). 

Approximately 90% of the solar spectral irradiance lies 

within this region. Under typical weather conditions, the 

reflectivity can fall from 90% to 50% in a matter of days. 

During this period there is a significant change in the 

local global energy balance which of course is predominately 

driven by the upwelling radiation. At the same time, snow 

properties are making a transformation impacting the 

_- - 



- 
*- 

-5 snowmelt runoff estimates. The in-situ reflectance- 

measurements will improve the modeling of the .net solar 

budget if the snow conditions can be taken into account. Of 

course, a direct and fundamental goal is to build a 

snowpack runoff model for vital hydrological research in 

projecting water resources. For these reasons, it is 

necessary to observe and understand the relationship between 

snow condition and snow spectral reflectance. 

The goal of this program is to use this information to 

aid in the projection of water resources estimates for areas 

like Southern California which rely on snowmelt for potable 

water supplies or areas like Colorado which use containment 

systems to regulate the rate of outflow from large masses of 

snowpack. Additoinal applications for the data in climatic 

reaearch are promising. The condition of the land surface 

plays a predominate role in the seasonal variance of solar 

radiation and atmospheric heat transport. The modeling of 

reflectivity with respect to snow condition could improve 

the climate anomally investigations. In pursuit of this 

goal, a field experiment was conducted at a California test 

site near Mammoth Lakes area to collect data for determining 

the bidirectional reflective properties of snowpack with 

respect to varying snow conditions. 

The experiment attempted to initially evaluate the 

measuring apparatus, a spectroradiometer operated under . 

unusually severe field conditions at the snow site. Very 

little emphasias has been given this type of experiment in 

ORIGINAL PAGE IS 
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the past, most measurements have not focused on the snow 

state aspects vital to this investigation nor has an 

apparatus been especially developed for use in the hostile 

environment. Most measurements have been conducted in the 

the laboratory with laboratory equipment. An added 

difficulty was that this demonstration was made in a test 

site located at an elevation of 3km in open terrain subject 

to heavy yearly snow activity. 

. .  

INSTRUMENTATION 

Scientific requirements for a field instrument 

measuring snow reflectivity are similar to those for 

investigating 

400 to 2500 

radiation is 

conditions. 

measure solar 

solar spectral irradiance. In the range from 

nm where 90% of the extraterrestial solar 

found snow reflectivity changes with surface 

Hence an instrument originaly developed to 

irradiance from an aircraft platform appeared 

to be a reasonable choice for initial studies. The 

instrument was called the Solar Energy Monitor In Space 

(SEMIS) aircraft model (Thekakera, 1976) . It's general 

specifications include; a spectral range from 500 to 2500 

nm; 7 degrees field of view; prism monochrometric 

dispersion; and dual channel detection. When operating from 

a fixture in the snowfield the sample area 25 cm in 

diameter. The time to complete scaning the spectral range 

is twenty minutes, ten minutes to make a scan and ten to 

back up to the start position. Overall size complete with 

- -  
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ruggedized case, is approximately 50cm x 30'cm x 20cm, and 

total weight is 25 kg. 

A diagram of the optical layout appears in Figure 1. 

Light from the target enters the system through an aperture 

slit. It strikes a collimating mirror and then it passes 

through a quartz prism. The dispersed monochromatic light 

leaving the prism is then refocused and exits the 

monochrometer through a slit which, like the entrance slit, 

is approximately 2 x 10 microns in size. The narrow band 

light from the monochrometer is modulated at 600hz by a 

tuning fork type chopper. The specular chopper blade not 

only chops the light but also acts as a dichroic, 

alternately bending the light onto the infrared detector 

when interrupting the straight through path to the visible 

" . <, 

_._ 

detector. 

Active thermal control of the detector packages limits 

signal gain deviations caused by large swings in 

temperature. Each detector element is packaged in its own 

hermetically sealed case on a thermalelectric wafer. The 

window is made of quality quartz glass. Also within the 

case are two thermistors. One is used in the circuit which 

dynamically cools the wafer and the other is used to check 

the assembly temperature. Heating and cooling are both 

performed by the thermoelectric device which keeps the 

assembly temperature between 0 and 2 C. The maximum signal . 
to noise ratio in the visible and infrared channels are 250 

at 880nm and 98 at 1800nm, as shown in Figure 2 .  
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- -- A scan of the spectrum occurs as the prism rotates - -E, 

dispersing monochromatic light onto the detectors. Prism - 

rotation is driven by a stepper motor and cam. The complete 

cycle of the cam is approximately 20 minutes,ten of which is 

in the scanning phase and ten to return to the beginning of 

the spectral interval. During the scan the two detectors 

continiously respond to the monochromatic light and produce 

chopper modulated signals. These are demodulated 

synchronously, filtered and buffered. The analog outputs of 

detectors and the start of scan marker are acquired by a 

processor which converts the analog signals to digital 

counts. The digitizer sampling of the signal is controlled 

by timing with respect to the start of scan. The detector 

signals ( 0 to 5 Volts ) are quantized to 12 bit code and 

their sample position corresponds to the spectral band 

position of the monichrometer at the time of sampling. 

These scan digital counts are stored as a file on a diskette 

with header data which records day and time and other test 

information. 

CALIBRATION PROCEDURES 

conversion of the data from digital counts to the 

spectral irradiance in flux density units required a 

calibration of the response to controlled standards. Three 

calibration proceedures were required; (1) determine ~ 

wavelength as a function of sample number referenced to the 

start of scan; ( 2 )  conversion of standard irradiance input 
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5. 
traceable to a National Bureau of Standards measured source; 

._  . \-. and ( 3 )  a check of the spectral response linearity. - . .. 

Spectral wavelengths were assigned to the ordered 

position of the amplitude digital samples. For those near 

the start of scan, corresponding to wavelengths from 300 to 

1000 nms, a low pressure mercury lamp was used to locate the 

standard emmission lines. At wavelengths in the near- 

infrared, discrete filters were used. 

To convert counts to radiance, a Quartz Halogen lamp 

standard irradiance source was used. The input vs. output 

response curve from this test was shown in the previous 

section as figure 2. To relate the response curve at a 

particular spectral band to variations in detector gain, a 

linearity check has been run. The source for this test is 

an integration sphere illuminated internally by twelve 

lamps. As combinations of lamps are switched on the output 

radiance (input to the instrument) is raised. The plot of 

all points relates the liearity function at specific 

spectral frequencys. 

Using the calibration data irradiance was computed. 

Figure 3 compares the calculated input solar spectral 

radiances for midaltitude winter atmosphere at 2900m, and 

typical reference measured radiances after calibration. The 

values of solar radiances are within 15% of the calculated 

input solar radiance. By comparing the position of the . 

absorption lines, the errors of wavelength determined by the 

present method is less than 50 nm. 

ORIGINAL PAGE IS 
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5. Reflectivity can be obtained in situ by referencing the 

. sample target response to that of a standard reflence 

target. The standard target used in this field trial is 

formed from halon. This is a powder which has good 

stability and high overall reflective values in the range 

from 300 to 2500 nms (Weidner and Hsia, 1981). Besides its 

excellent diffuse characteristics, it is impervious to 

moisture under most of the field conditions. The target 

used is 30 x 30 cm. 

FIELD OBSERVATIONS 

During the winters of 1983-1984 and 1984-1985 field 

experiments were conducted in a testsite near the Mammoth 

Lakes, California. The spectroradiometer , data were 

collected routinely with varying incidence angles and snow 

conditions. A complete set of bidirectional reflectivity 

observation for a particular arzimuth angle consists of 

spectral scans of the snow, spectral scan of Haylon target, 

and scans of a low pressure Mercury lamp. Scans of the snow 

were made at six angles, starting at nadir and extending out 

to 75 degrees. These scans were facilitated by the yoke 

mount assembly shown in Figure 4. The data was sequenced as 

follows, scan the halon target, scan the mercury lamp and 

then scans of the snow at the following angles: 0, 15, 30, 

45, 60, and 75 degrees. The time for taking this set of 

data was 160 minutes. Solar zenith angle variation is 

obtained by data taken from different time of the day. The 

arzimuth angle variation was controlled by rotating the 

_- - 
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radiometer mounting to lineup on compass headings. Since 1 

the time to obtain a complete set of angular reflectivity - I -  

data was inordinately long, changes in solar irradiance were 

a problem. Incoming solar and reflected solar albedo were 

routinely measured along with other in situ measurements 

such as temperature, density, grain size and free water 

contents. Samples of the snow were removed from the local 

area for further analysis in the cold laboratory. The 

density, grain size and free water content were determined 

by laboratory techniques (Davis, 1986). 

DISCUSSIONS AND PRELIMINARY RESULTS 

During the winter of 1983-1984 efforts were 

concentrated on setting up and to evaluate the applicability 

of this instrument for snow reflectance measurements. The 

instrument seemed to function well in the cold weather. 

However the floppy disk units of the data system became 

intermittant when the air temperature was below -3 C. This 

problem was resolved by warming the drives with heating 

elements. In the winter of 1984-1985, many data sets were 

collected over different snow conditions for clear, partly 

cloudy and cloudy sky conditions with varying sun angles. 

Figure 5 shows a typical new snow reflectance for a clear 

sky. During the data collecting time the pyranometer's 

reading were almost constant. The reflectance result is , 

quite comparable with the model calculations (snow radius = 

O.lmm ) reported by Choudhury and Chang (1979). Figure 6 
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shows snow reflectance from a old snow sample. The values 

are generally lower than thos shown in Figure 5. - This is 

due to the change of snow crystal sizes which grow as the 

snow aging on earth's surface. The observed vaules are 

somewhat lower than the model calculations. This is because 

the model calculations did not take into account the effect 

of contaminants in the snow. 

The major difficult of using this instrument in the 

field is that it takes approximately 10 minutes for the 

spectrometer to scan from 500 to 2500 nm. During the long 

data collecting cycle the solar input at the snow surface is 

subject to atmospheric variations (Byrd et a1,1982). This 

variation of solar input might be corrected by utilizing the 

simultaneous pyranometer data taken during the data scanning 

period. To circumvent the difficulty of varying solar input 

one would conduct the experiment at night using artificial 

light sources. Thus the solar incidence angle, arzimuth 

angle and incidence angle can be totally controlled by 

artifical lighting. This experiment was carried out in the 

snow fields by using lamps mounted inside a 30 cm 

integrating sphere as light source. Due to low lamp 

efficiency and lack of sufficient electrical power to run 

all lamps, the reflected light level was too low to be 

detected by the spectroradiometer. In addition to the low 

light level, the uniformity of the artificial light spot was , 

difficult to control. Due to these problems, the idea of 

using artificial light to replace the sun as light source  

_- - 
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for reflectance measurements was not successful. It is 

difficult if not impossible to obtain bidirectional 

reflectance relationship using this instrument. Even though 

the measurements are accurate enough, the scanning time is 

the limiting factor for this instrument. Future instrument 

for the reflectance measurements should be possible to 

obtain the entire spectral responses in seconds. 

_- - 
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FIGURE CAPTIONS 

(1) The optical layout of the Solar Energy Mon,itor In Space 

(SEMIS) spectroradiometer. 

(2) The spectral responses curve for the visible and 

infrared detectors. 

( 3 )  Comparison of observed solar radiance and calculated 

solar radiance at 2900 m above sea level. 

(4) York mounting assembly of the SEMIS spectroradiometer. 

(5) Comparisons of observed and calculated reflectance of 

new snow (4/5/84) . 
(6) Comparisons of observed and calculated reflectance' of 

old snow (4/27/85). 
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