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PROJECT SUMMARY

The objective of this project is to investigate the potential use of
logistic regression in rainfall estimation from satellite
measurements. Satellite measurements provide covariate informations
in terms of radiances from different remote sensors. The logistic
regression technique can effectively accommodate many covariates and

test their significance in the estimation. The outcome from the
logistic model 1is the probability that the rainrate of a satellite
pixel 1is above certain threshold. By varying the thresholds, a

rainrate histogram can be obtained and from which the mean and
variance estimated. '

A logistic model 1is developed and applied to rainfall data
collected during GATE, using as covariates the fractional rain area
and a radiance measurement which is deduced from a microwave
temperature-rainrate relation. It is demonstrated that the fractional
rain area is an important covariate in the model, consistent with the
use of the so-called 'Area Time Integral' in estimating total rain
volume in other studies.

In order to calibrate the logistic model, simulated rain fields
generated by rainfield models with prescribed parameters are needed.
A strigent test of the logistic model is its ability in recovering the

prescribed parameters of simulated rain fields. A rain field
simulation model which preserves the fractional rain area and
lognormality of rainrates as found in GATE is developed. The

simulated rain fields are quite realistic. A stochastic regression
model of branching and immigration whose solutions are lognormally
distributed in some asymptotic limits has also been developed. This
model makes no assumption about the law of proportionate effect which
is often quoted to achieve lognormality.

This study has demonstrated the effectiveness of the logistic
technique in examining a large number of covariates and in testing
their significance. By identifying important covariates and the way
in which they enter the estimation procedure, this technique will be
useful in the design of a system of remote sensors for the measurement
of rainfall from space and in the development of satellite rainfall
retrieval algorithms.



I. Objectijve
The Earth distinguishes itself from other planets in the presence
of water substances. The heat stored 1in various forms of water

substances, the heat transported by atmospheric water vapor and by the
oceans, the heat released during the transformations between the
different phases have shaped Earth's climate to a large extent. Wwater
vapor is +the working substance of Earth's atmosphere: created to
remove excess heat from the oceans and over land in the form of
evaporation; participates in the radiative heating of the atmosphere
by emission in the 1long wave regime of the atmospheric spectrum;
transports excess heat 1in the tropics and deposits it in the high
latitudes thus modulating the extreme heat and cold on Earth. In the
final stage of this branch of the water cycle, it changes phase and is
deposited in the form of precipitation over the Earth's surface.

Because of the scale of variability, precipitation is probably
one of the least known but yet most sensitive parameter in the water
budget over land and oceans (Miller 1977, Laevastu, et al., 1969). A
knowledge of the amount and distribution of precipitation is crucial
to our understanding of the large scale dynamics of the oceans and
atmosphere. Strong empirical as well as theoretical evidence have
suggested that condensational heating of the tropical atmosphere, as
indicated by the amount of precipitation, 1is instrumental to
circulation anomalies world wide (Horel and Wallace 1981, Gill 1982).

Precipitation and the antecedent 1latent heat release has been
incorporated into General Circulation Models (GCM's) of the Earth's
atmosphere for some time, but the intensity and distribution is still
poorly modeled. A detailed global rainfall data set is therefore
needed to calibrate the GCM's for mean and anomalous conditions. To
accomplish this, a satellite rainfall monitoring mission to measure
precipitation over the tropics, the Tropical Rainfall Measuring
Mission (TRMM), has been proposed (Theon, et al., 1986). The
objective is to obtain at least 3 years of monthly mean rainfall data
over the tropical regions.

To achieve this, a retrieval algorithm by which satellite
measurements can be converted to rainfall data is needed. The
ultimate objective of our work is to develop such an algorithm. The
immediate objective 1is to investigate the potential use of logistic
regression in rainfall estimation from space. Since rainfall is not
directly measured, the information available are covariate information
in terms of radiances from satellite sensors. The logistic regression
technique is especially suited for this purpose since it can
effectively accommodate a large number of covariates and readily test
their significance. A secondary objective is to study the statistics
of rain fields which will be useful in interpreting problems such as
the "beam filling" and estimate biases are due to sampling.



In section 2, the techniques of estimating rainfall from space
are briefly reviewed. The need for multispectral estimation
techniques 1is stressed. Section 3 discusses the logistic model and
demonstrates its wuse in identifying important covariates. The
scenario of concommittant observations of microwave and fractional
rain area data, which may be obtained from visible or infrared
measurements, 1is investigated. A major finding is the importance of
rain area in estimating total rainfall. Since observation of the
fractional area is dependent on the foot print size of the
observation, the statistics of rainfall fields are examined in section
4 using the GATE data as an example. To calibrate the logistic
technique, a simple rain field simulation model and a point process
regression model which exhibit statistical properties of the GATE
rainfall data are developed in section 4. The regression model is
capable of producing rainfall rate with a lognormal distributions in
some asymptotic limits. These limiting conditions are satisfied in
the GATE data for large area averaged conditions. The dependence of
statistical parameters in rain fields on scale is addressed in section
5. Section 6 summarizes our findings and makes recommendations for
future work.

2. Revi f satellite Estimation Techni

The need for satellite monitoring of global rainfall has been
stressed by Atlas and Thiele (1982) and Austin and Geotis (1980).
Barrett and Martin (1981) have reviewed the various estimation
techniques. Another good source of reference is contained in the
preprint volume of the second conference of satellite meteorology in

which two sessions are devoted to the estimation of rainfall from
space.

The source of satellite data is basically derived from three
regions in the atmospheric spectrum: ‘the visible (VIS), infrared
(IR), and microwave windows. The techniques which use information in
the visible part of the spectrum rely on identifying cloud types and
assigning rainrates to them. This cloud type-rain rate relation is
dependent on the local climatology, and hence, this method must be
calibrated regionally.

The infrared techniques rely on information on cloud top
temperatures which are indicators of cloud heights. The implicit
assumption is that the rain-bearing clouds are tall cummulus clouds.
Arkin (1979) developed an index of precipitation which is the number
of pixels within an area in an IR satellite imagery with temperatures
below 235 degrees Kelvin. This index represents the fractional area

of high convective clouds within the area. When compared with
rainfall data measured during GATE, a correlation coefficient of 0.87
is obtained. Arkin's index of precipitation has been adopted for

local calibration of rainfall during the Tropical Ocean Glocbal
Atmosphere (TOGA) experiment. However, at middle to high latitudes,
rainfall from large-scale 1low-level stratiform clouds becomes
increasingly dominant, and this cloud area index becomes less
effective in estimating rainfall in those regions.



A more direct approach relies on the radiative properties of rain
drops in the microwave portion of the spectrum. By modeling the
vertical structure of a rain cloud, a rainfall rate-microwave
temperature relation can be established. Hence, a rainfall rate can
be estimated from an observation of the microwave emission. There are
several pitfalls in this approach.

1. Unfilled Field of View (FOV)--Microwave measurements usually
have large foot print sizes, and, hence, the field of view of
the foot print is usually not filled with rain. A bias is
introduced if the measurements from the unfilled beam is used
to retrieve rainfall through the microwave temperature-
rainfall rate relation.

2. Saturation--The microwave measurements become saturated at
high rainrates. At 19 GHz, the beam becomes saturated at
rainrates above 15-20 mm/hr. Although only a small fraction
of the measurements are contained in this portion of the the
rain spectrum, the high rainrates account for a large
fraction of the total rainfall.

3. Rainfall Rate-Microwave Temperature Relation--In deriving the
rainfall rate-microwave temperature relation, a cloud model
has to be assumed. Such a relationship is rather sensitive
to the assumed parameters, such as profile of ice and liquid
water content. Rather different relationships are found for
different modeling assumptions. For example, the
relationship presented by Wilheit, et al. (1977), showed a
monotonic increase of microwave temperature as a function of
rainfall rates in the range from 0 to about 15 mm/hr at 19
GHz whereas that of Wu and Weinman (1984) shows a decrease.

Estimation schemes which combine information form the different
atmospheric channels, seems to yield good estimates. Lovejoy and
Austin (1979) developed an algorithm which delineates rain areas from
visible and infrared measurements. Radar detected rain patterns are
used as ground truth and a statistical pattern recognition technique
is wused to establish rain area characteristics in the visible and

infrared. Once the rain areas are calculated, the rainfall is
obtained by multiplying the area by a climatological mean rainfall
rate. This multi-spectral approach has had many successful

applications and has been adopted for operational satellite rain
estimation by the Atmospheric and Environmental Service of Canada.

It is argued that if information from different channels are
combined, a better estimation scheme can be developed. Since the
resolutions of the sensors are quite different, it is necessary to
identify the important covariates as well as the way through which
they enter the estimation scheme. In what follows, a logistic model
is described and the scenario of concommitant microwave IR/VIS
observations which delineate rain area is examined.



3. The Logistic Model

The logistic model is useful in determining the relationship
between the distribution of a random variable and a set of covariates.
It has been applied in various forms in reliability testing and the
analysis of survival data (Cox and Oakes 1984). Detail treatment of
the logistic model is given by Cox (1970). The model is briefly
described below.

Let R be the random variable which stands for rainrate and let
2 = (21, « « o, zp)

~

be the vector of covariables related to R. Suppose we are interested
in estimating the probability

P(ReI)

where I is a rainrate interval. Let X be defined by

l1, r in I
X =
0, Otherwise
Then
P(REI) = P(X = 1).

In many respects the simplest way to express the dependence of this
probability on explanatory variables or covariates is to postulate the
model [Cox (1970)].
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This is the logistic model. This model allows great flexibility in
the choice of the covariates and in mathematical manipulations.

The parameters are estimated by maximizing a likelihood function
and the significance of the covariates are readily tested by a
likelihood ratio. The interested reader is referred to our paper
(Chiu and Kedem 1986) for a more detailed discussion. This paper is
attached (attachment A) with this report.




The scenario of a TRMM-like system of sensors which can provide
microwave measurements and fractional rain area within a microwave
foot print size pixel is examined. The data we use are the rainfall
data collected during GATE. The GATE data are binned at 4 kms by 4
kms and are given at 15 minute intervals. A detail description of the
data is given in the next section. The microwave temperature is
mimicked through a microwave temperature-rainfall rate relation (see
attachment Aa). The microwave measurements are assumed to have a
resolution of about 32 kms on the side, somewhat similar to the
resolution of the Electrically Scanning Microwave Radiometer (ESMR)
which was flown on board the Nimbus V satellite. From the 4 kms by 4
kms rainfall rates, a temperature is computed. The temperatures of 64
(32/4 or 8 pixels on the side) neighboring pixels are averaged to
obtain the microwave temperature (T). The fractional rain area with
rainrates above 1 mm/hr (F) is obtained by counting the number of high
resolution pixels (4 kms on the side) with rainrates above 1 mm/hr and
dividing by the total number (64) in a large microwave pixel (32 kms
on the side). Another index, Fl1, which is the fractional area with
rainrate in excess of 20 mm/hr, is also used. This index mimicks
Arkin's index of high clouds which produce heavy rainfall. To test
the usefulness of the logistic technique, another parameter, TL, is
also included in the estimation. TL is the microwave temperature T at
a lag of 1 time units (15 minutes). The results are summarized in
table 2 in Chiu and Kedem (1986)(attachment A). The results show that
the inclusion of TL does not improve the model significantly. This is
probably due to persistence in the time series so that there is not
much new information in TL as most of it is contained in T. The
results also show that T is the best regressor in the model. Since T
is derived from the rain field, this result cannot be taken literally.
An interesting finding is the importance of F in the model. This is a
better regressor than F1, but, when the two parameters F and Fl1 are
combined, a better model 1is obtained. This is consistent with our
finding about the contribution of the rain area in determining the
total rainfall, a point which we shall return to in section 4.

4. GCATE Rainfall Statisti

The fractional area of rain within a pixel is dependent on the
pixel size and the spatial variability of the rain field. Hence, the
structure and statistical properties of the rain field need to be
studied.

4.1 The Data
The study of the statistical properties of the rain field is
based on data collected during GATE. This is one of the most

comprehensive rain measurements made ove the ocean.




1. GATE surface Rainfall Data--The GATE is an observational
program conducted in the summer of 1974. During three
roughly tri-weekly periods, each termed a phase, detailed
rainfall measurements from rain gauges and radars on an array
of research vessels were made over an area called the
B-scale. The center of the B-scale area is located at 8.5N,
23.5E and encompasses an area of about 200 km in diameter.
Arkell and Hudlow (1977) composited the radar measurements
from ships and presented an atlas of the radar echoes at 15
minute intervals. Patterson, et al. (1979), converted the
radar measurements to rainrates and presented rainrate data
in 4 by 4 km? bins.

2. CAPPI--For the height of the rain column, we used the
Constant Altitude Plan-Position Indicator (CAPPI) radar data
taken onboard the research vessel the "Oceanographer," which
was positioned at the center of the B-scale area in GATE, but
was moved to the Southeast quadrant. The original data was
taken from the plane position indicator (PPI) for elevation
angle of about 1.5 to 22 degrees. Ptylowany, et al. (1979),
converted the data from elevation-distance coordinate to
constant altitude plane position co-ordinate, with a vertical
resolution of about 1 km. The maximum echo height reported
is 12 kms, i.e., at higher heights are truncated at 12 kms.
This data covers 3 convectively active days in each phase of
GATE.

4.2 The Mixed Distribution Model

An objective of TRMM is to obtain monthly averages of rainfall.
If rainfall rates can be described by a class of statistical
distribution, the estimation procedure can be simplified since only a
few parameters of the distribution need to be estimated. We examined
the GATE data and found that the rainrates can be described by a mixed

distribution (attachment B). The mixed distribution consists of a
finite probability of no rain and a continuous distribution for the
rainy part. Conditional on rain, it was shown that the lognormal

distribution provides an excellent fit to the data. A detailed
description of the model and its application to sampling studies in
CATE can be found in attachment B of this report.

4.3 Intermittency

Intermittency refers to sporadic changes in a field of
turbulence. It expresses the fact that turbulence does not fill the
whole space in a turbulent flow. This is an important aspect of
turbulent flows, which despite much work, is far from being completely
understood (Schertzer and Lovejoy 1985). A measure of intermittency
is the fraction of time in which an event occurs over a priod of
distance (Tennekes and Lumley 1974). For extreme events, we expect
this measure of intermittency to increase as turbulence sets in
through flow instability, reaches some peak value and then decreases
as the energy of the turbulent flow is cascaded to smaller scales
through dissipative losses.
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In a rough sense, we can consider the rain fields as fields of
turbulence. Precipitation can be considered an "extreme" event, an
index of moist instability. The fraction of time/space that this
event occurs is a measure of intermittency.

An important parameter in the estimation of total rainfall from a
GATE scene is the fractional rain area (Chiu, et al., 1986). Figure 1
shows scatter diagrams of the average rainfall rate for a GATE scan
and the fractional rain area with a rainfall rate of 1 mm/hr and above
on logarithm scales. The correlations between the two variables are
extremely high for both phases of GATE. It is interesting to note
that this correlation of 0.99 is higher than the correlation of 0.87
between rainrate and Arkin's cloud index. Since the rainfall total
(R) for a GATE scene is the product of the fractional area (p)
" multiplied by the average rainrate for the rainy pixels (a), or R =
pa, we can take the logarithm of both sides and compute the variance
of log R as a sum of the variance of 1log p and log a. The
contributions from the various terms are given below for GATE 1 and 2.

var(log R) = var(log p) + var(log a) + 2 cov(log p log a)

(100%) (77%) (3%) (20%) GATE1
(100%) (77%) C o (3%) (20%) GATE2

We pointed out that this index of fractional rain area is
equivalent to the so called "Area Time Integral (ATI)" used in radar
meteorology to estimate rain volume. The ATI is the time integral of
the area of radar echoes. It is shown that the total rain volume of a
system can be obtained by multiplying the ATI by some climatological
mean rainfall rate (Doneaud, et al. 198l). Jackson (1986) examined
the contribution of the number of rain days in a month and the average
intensity of rainfall during raindays in tropical stations to the
monthly rainfall. It is found that the number of raindays is the
dominant factor in determining the monthly total. These are
consistent with our results on the analysis of GATE data and the
logistic model.

4.4 ppatial and Temporal Rain Structure

Because of the phenomena of intermittency in rain fields, it is
difficult to define the usual characteristic functions of a turbulent
field such as correlation or autocorrelation functions. For example,
the autocorrelation functions will have a 1long tail at 1long
separations due to the abundance of no rain observations.

We have examined the structure of the rain field in terms of
conditional probabilities.

Figure 2 shows the probability of observing a rainrate of 1 mm/hr
at a fixed 1location (4 km by 4 km pixel) in GATE at different time
lags conditional on observing such an event at time zero. It can be
seen that the conditional probability drops off rather rapidly but
reaches another secondary maximum in about 10-12 hours. The condition
for independence is derived in the appendix and is plotted on the same
graph. This assumed no sampling error or persistence in the data.
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Figure 3A. Lines of constant probability of observing R>1lmm/hr
consitional on observing R>lmm/hr at a distance for GATE 1.
The distance between two marks on the boundaries are 12 kms apart.
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A similar calculation is performed on the conditional probability
on space. Figure 3 shows lines of constant probability as a function
of distance conditional on the event of having 1 mm/hr at a 4 km by 4
km pixel for GATE 1 and 2. The anisotropy in space is clearly
discernible for GATE 2. The more less east-west orientations of lines
of constant probability is consistent with the meteorological
conditions in GATE of the passage of elongated rain bands oriented in
the east-west direction.

4.5 Cloud Height

In the retrieval of rainfall rate from microwave temperature
measurements, a number of parameters enters into the retrieval. Since
these parameters are quite variable, errors are introduced into the
estimation scheme if some constant value is used. An important
parameter is the height of the rain column. The bias due to the rain
cloud height can be estimated as follows. The attenuation of
microwave radiation (or change in the optical thickness t) in the
presence of rain can be written as

At = ahrb (1)
where a and b are functions of frequency, drop size distribution and
temperature of the drops. Olsen, et al. (1978), have examined the
dependence of a and b over a broad range of frequencies and for
different drop size distribution at various temperatures. At a
frequency of about 20 GHz and 0 degrees Celsius,

.05 < a < 0.09

and
0.9 < b<1l1l,1

with R the rainrate, in mm/hr, h, the effective height of the rain
column, in km. Oftentimes h is defined in terms of the attenuation as

At/aRrb

We would like to get some idea of the distribution of the height of
rain columns and an estimate can then be made of the bias in using a
climatological height in the estimation from microwave sensors.

From equation (1) above (for simplicity, assume b =1), an
estimate of the rainrate using a climatological cloud height, <h>,
where < > denote ensemble averaged quantities, is

R(<h>) = (At/a)l/<h>

The bias in percent can now be written as

B = (<R> - R(<h>) = <R>/R(<h>) -1
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where

<R> = At/a J 1/h p(h)dh

the factor At/a cancels out, and
<R>/R(<h>) = <h> <i/h>

To calculate these quantities, the distribution of h P(h) is
needed. The data we used to calculate P(h) are the so called "CAPPI"
(constant Altitude Plane Position Indicator) data of GATE (pytlowany,
et al., 1978). Figure 4 shows the histrograms of height obtained form
3 days of data in each phase of GATE. We have taken individual pixels
in calculating the statistics as opposed to earlier works which counts
a rain cloud as an entity (e.g., Houze and Cheng, 1979). Our emphasis
here 1is the estimation and correction of the bias associated with
satellite retrieval. Because of the noise in the radar reflectivity,
we have set a low threshold of 24 dbz corresponding to a rainrate of 1

mm/hr. The histograms show bimodal distributions in GATE 2 and 3,
with peaks at 5 and 8 kms respectively whereas this feature is absent
in GATE 1. The double peaks are also present if the statistics is

calculated over cloud clusters (Houze and Cheng 1979).

We noted that the bias is extremely sensitive to the population
at the 1low cloud heights. If the threshold value is changed to the
lowest detectable level, the whole historgram rises over all ranges in
height. The increase in population at the low height will increase
the bias substantially (from about 25 to 50 percent).

Another point is that R and h are related: one expects a higher
rainrate associated with higher cloud top. Adler and Mack (1984) have
examined the wusefulness - of this relation and other environmental
information to estimate rainfall. Figure 5 shows a two dimensional
distribution of distribution of h and radar reflectivity for the same
CATE CAPPI data. The shape of the 1loci of the maxima of the
distributions agree well with the rainrate--cloud height relation
observed in tropical storms (Adler and Mack 1984, their Figure 1).

5. Rain Field Models
5.1 Simulation Model

To extend the data base beyond the scope of GATE for the purposes
of sampling studies and the calibration of the logistic model, a
simulation model of rain field is developed which preserves the
characteristics of GATE rainfall: namely, fractional rain area and
lognormality of the rainy part of the distribution. A description of
the model is given in attachment C. This model is capable of
producing realistic rain fields.

Laughlin (1982) examined the errors associated with satellite
sampling and computed the temporal autocorrelation function for
different area averages for GATE. From the autocorrelation
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Histogram of rainrate for different resolutions. The
histogram with 4 km resolution is plotted on a linear
scale of rainrate whereas the others are in logarithm

scale to depict the resemblance to the lognormal
distribution.
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functions, sampling requirements for different area averages are
calculated. The temporal autocorrelation function for different areal
averages in our model is also calculated. Our results are similar to
those computed by Laughlin (1982)(See attachment C.).

5.2 Stochastic Regression Model

A regression model of replacement and immigration is also
developed (Kedem and Chiu 1986)(attachment D). 1In this model, the
number of raindrops within a rain volume is considered a random
variable which can be changed by replacement and/or immigration.

The model takes the form

Xn-1

Xn= ZJ Yn’i+In, n=l, 2,
i=1

where xp is the number of drops at the nth step which can be replaced

by y fresh drops, and I denotes the number of immigrants entering the
rain volume. It can be shown that if

E(Yp,j) is small but greater than zero; and
E(In) is close to but less than unity

then Xn follows a lognormal distribution. This provides a
justification for the use of the lognormal distribution in fitting
rainfall data. It also bypasses the use of the law of proportionate
effect often quoted to achieve lognormality. When the model
parameters are estimated from the GATE data, it was found that these
conditions are satisfied for large area averages. Since the sampling
frequency 1is 15 minutes during GATE, this result suggests that there
is a spatial and temporal range in which the lognormal distribution
can provide a good description of the rainfall rates. The range over
which the 1lognormal distribution provides a good fit to the data is
investigated in the following section.

6. Scale Dependence Of Rain Field Parameters

The three parameters of a mixed lognormal distribution that
describe a rainfall distribution are dependent on the scale of
averaging. The threshold that define extreme events is (in this case
precipitation), therefore, also dependent on the averaging time/area.
An obvious question then is over what range in time and space does
lognormality provide a good description of rainrate distributions.
As a practical concern, it is of interest to examine the dependence of
the intermittency factor on the pixel size which is determined by the
resolution of satellite sensors and the altitude of the orbits.
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We have examined the GATE data for different area averages. The
three parameters, p, a, B2 in the mixed distribution model of the GATE
rain field have been computed for different averaging areas in the
range from 4 kms to about 350 kms (whole of GATE B-scale area) on the
side. Figure 6 shows the results on a log-log scale. The linear
relation between the log of the parameters and the square root of the
averaging area 1is <clearly discernible at least over the range from
areas of 4 kms to 80 kms on the side. The linear dependence suggests
a power law dependence of the parameters on the averaging area for
sampling frequency of 15 minutes.

Figure 7 shows the histograms of rainrates for square pixels of
4, 40, 80, and about 350 kms on the side. The histograms are
calculated on a logarithm scale. The logarithm scale is used because
a lognormal distribution on a linear scale is a normal distribution on
log scale. Another advantage of using the logarithm scale is that the
no rain category appears at minus infinity. Hence a threshold for the
occurence of events can be defined with no ambiguity.

The general shift from the high values towards the low values are
noted as the resolution decreases. the skewness in the curve is also
increased accordingly. the spatial averaging process smoothes out the
high rainrates and inflates the population at the 1low rainrate

portion. These shifts occur when nonrainy pixels are averaged with
rainy pixels.

7. & 1 Estimate of Technical Feasibilil

A logistic regression model has been developed to estimate the
probability of rainfall given covariate observations such as
radiometric measurements. The parameters of the model are estimated
by maximizing a 1likelihood function. The significance of the
estimators of the model can be readily tested by a ratio of the
likelihoods. This method of testing allowed identification of
important covariates as well as the way in which the covariates enter
into the estimation. The logistic model has been tested on the
rainfall data collected during phase 1 of GATE and successfully
predict the observation for phase 2 of GATE. A major finding is the
usefulness of the fractional rain area within a pixel. This parameter
gives a better regression model than that which uses only the
fractional area of heavy precipitation. The index of heavy
precipitation area 1is interpreted as the <cloud index of Arkin in
estimating rainfall through the use of infrared measurements.

To investigate further this relation, a correlation analysis was
performed on the logarithm of GATE rainfall data and the logarithm of
the fractional rain area. Correlation coefficients of 0.99 are
obtained for both phases of GATE. These coefficients are larger than
the value of 0.87 between the cloud index proposed by Arkin and the
total rain volume.

To estimate the mean and variance of areal average rainfall, a
mixed distribution model was proposed and was found to model the
distribution of rainfall data in GATE quite well. The parameters of
the mixed distribution model consists of +two parts: a discrete
probability of no rain and a continuous distribuiton which describes
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the rainy part of the mixed distribution. It was found that the rainy
part of +the distribution is fairly well described by a lognormal
distribution. The discrete part of the mixed distribution is
interpreted as a measure of intermittency which found familiarity in
the study of turbulent flows.

Because of the nature of intermittency, we propose the use of the
conditional probability in describing the rain field. The probability
of rain conditional on rain at a different time/space for the GATE
period is computed. The anisotropy in space is clearly discernible
for GATE 2.

To broaden the data base for the testing of the logistic model,
a data set of three dimensional rain cloud structure derived from
radar echoes during GATE is used to compile a data set of cloud height
and surface rainfall. The conditional probability distribution of
cloud height and surface rainfall is calculated. The relationship
between surface rainfall and cloud height is consistent with earlier
results on tropical cloud systems.

A model is developed to simulate rain fields observed in GATE.
The simulation model preserves the lognormality and intermittency
characteristics of GATE and the temporal autocorrelation function
computed from rainfields generated by the model is very similar to
that of Laughlin (1982) in estimating the sampling errors associated
with satellite observations.

A regression model of replacement and immigration is also
developed which is capable of producing a lognormal distribution in
some asymptotic 1limits. These asymptotic conditions are observed in
GATE for large area averages (40 kms on the side) but not for small
area averages (4 kms on the side).

Since the GATE data is taken every 15 minutes, this suggest that
the lognormal distirubiton is a valid approximation within some range
of averaging in time and space. This range of wvalidity is
investigated by computing the parameters of the mixed lognormal
distribution model for different area averages in GATE. It was found
that these parameters varies as a power of the averaging area at least
over the range from areas of 4 to 80 kms on the side.

We have demonstrated the feasibility of wusing the logistic
regression in identifying important covariates in the estimation of
rainfall. A logical next step is to refine the logistic technique by
the method of partial likelihood (Cox 1975). This method allows the
disposition of the assumption of independence of the estimators. To
examine the contribution of the radiometric data from the different
atmospheric channels, we need to put together a data of concurrent
visible, infrare and microwave data. Model generated rain fields are.
also needed to calibrate the logistic technique. Rainfall statistics
derived from analyses of the rainfall data sets will proved to be
useful in providing the required constraints for these simulation
models.
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APPENDIX: Criterion for Independence
of Conditional Probabilities

We want to compute the lag time between observations such that
the observed events becomes statistically independent. Assuming
stationarity, the condition for statistical independence can be
obtained as follows. Let A(B) be the event that the rainrate (R) at
time t(t - t) in a fixed location be greater than some prescribed
value, say Ro, i.e.,

A: R(t) > Rg

B: R(t - T) > Rg
The probability of A conditional on B can be written as

P(A|B) = P(A [1 B)/P(B)
if A and B becomes statistically independent, then

P(a M B) = P(A) P(B)
so the condition for statistical independence is

P(A|B) = P(A)

where P(A) is the probability of rainrate greater than Ry.
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INTRODUCTION

The retrieval of meteorological quanti-

ties from satellite observations is based on
covariate information such as radiometric

measurements or physical quantities derived from
them. The covariate information is influenced
by factors other than the desired meteorological
variable. The situation is further complicated
by the different resolutions of the different
sensors. It is useful to identify important
covariates for the prioritization of transmis-
sion of data and to ascertain the possibility

of on board processing.

Accurate measurement of tropical rain-
fall is crucial for the advancement of our
understanding of the large-scale dynamics of the
ocean/atmosphere system. An account of rain-
fall monitoring technigues from satellites is
given by Barrett and Martin (1981). A satellite
mission for the monitoring of tropical rainfall
has been proposed to NASA (Theon et al 1986).
Three instruments are proposed for the mission:
a radar, an Advanced Very High Resolution
Radiometer (AVHRR) and & microwave instrument,
possibly an Electrically Scanning Microwave
Radiometer (ESMR). The expected outcome from
this mission is at least three years of rainfall
data derived from concommitant covariate obser-
vations.

In the following a logistic model that
can effectively accommodate covariate information,
but which has not been used in the context of
rainfall estimation, is described. A major
difference between linear regression and logistic
regression is that the former technique maxi-
mizes the variance explained while in logistic
regression a likelihood function, or probability
of an event, is maximized. The output from such
a model is the distribution of rainrate cate-
gories from which standard errors can be esti-
mated. The significance of the covariates can
be tested rather readily. An example of the
logistic model is given for the scenario of the
proposed tropical rainfall monitoring mission
from which microwave observations and fractional
rain area measurements may be available.

2. THE LOGISTIC MODEL
The logistic model is useful in deter-
mining the relationship between the distribution
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of a random variable and a set of covariates.

It has been applied in various forms in reliabil-
ity testing and the analysis of survival data
(Cox and Oakes, 1984). A detailed treatment of
the logistic model is given by Cox (1970). We
are interested in the relationship between rain-
fall rate averaged over an area R and t, the
vector of covariate variables related to R.

For the event R > Rg, the logistic model is given
by

P(R>Ry) = [1 + exp ( -b't )}7!

where P(R>Rg) is the probability that the rain-
fall rate R exceeds Ry and

b= ( by, by, bys «euy by )

is a vector of constants. From n observations of
R, the b's can be estimated by the method of
maximum likelihood. Let Ry be fixed so that the
a binary variable Y can be defined as

1 R> Ry
Y =
0

The logistic model becomes

otherwise

P(Y = 1) = [1 +exp(=(bg + byt + ...+ be )]
where the t's are covariate variables. We assume
¥y> Y35 ..., Y, are conditionally independent
given the covariate information. Then the
likelihood function L(b) is given by

Yi
/[ 1+ exp(t,'d))

n
L) =1

(exp(t,'b)]
1=1

and the asymptotic covariance matrix is given by
(£ ( 3 log L(b)/ 3, 3, )7

where E is the expected value. To test the sig-
nificance of the regression coefficients, we use
the likelihood ratio test

A = -2 log L/L,

where L., is the maximized likelihood under the
full moéel and L, is the maximized likelihood
under the hypothésis that the some of the
regression coefficients are zero. If q of the b's
are assumed to vanish, then A follows asymptotic~-
ally a chi-square distribution with q degrees of
freedom.



3. A SCENARIO

We consider the scenario when concommi-
tant observations of microwave temperature and
fractional rain area are available. The rainfall
data collected during the phase I of GATE are
used. The basic data are radar-estimated rain-
rates on 4 by 4 km" pixels and measurements are
made at 15 minute intervals. From the basic
data, temperature and fractional rain area data
for the scenario are generated as follows.

We assume that the microwave instrument
measugpes the temperature over an area of 32 by
32 km”~ (i.e. 8 by 8 pixels) which is the unit
area for our scenario. To calcu}ate a mean
temperature over the 32 by 32 km~ box, a simple
relation between the rainrate (r) and tempera-
ture (TR)

TR(r) = Tav(l-x) + Ts e x+ (l- ¢ )Tav(l-x)x (0

where T is the average temperature of the
atmospheric column (=270K), T_ is the surface
temperature (=290K), ¢ is surface emissivity
(=0.5), x=exp(- 1)is optical thickness, is used.
T is approximated as T = 0.2r, with r in mm/hr.
The dependence of T on the height of the rain
column is ignored in this case. A functional
relation between R and T, is shown in fig. 1.
From the rainrate at eacﬁ pixel, a microwave
temperature is computed. The microwave tempera-
tures are then averaged over the 32 by 32 km® box
to yield the average temperature (T). The
fractional rain area (F) is obtained by dividing
the number of pixels with rainrate in excess of
1 mm/hr by 64. The box averaged rainrate (R) is
obtained by averaging the rainrates over the

64 pixels. Fig. 1 shows the scattered diagrams
of R versus T. The fact that T_(R) is greater
than T follows from Jenssen's Inequality
(Feller, 1966). Fig. 2 shows the relationship
between F and R. The strong correlation
between R and F is also noted by Lovejoy (1980)
for the phase III of GATE for the whole GATE
area. Also included in our analysis are
fractional rain area with rainrates in excess of
20 mm/hr (F ). The data have been extracted
from a 32 by 32 km" grid box in the center of
the GATE area. Characteristics of the time
series are summarized in table 1. Data from
another box located approximately 100 km to the
south of the first is used for validation. '

Table 1. Characteristics of the time series

Variable mean s.d, minimum maximun
R (mm/hr) .44  1.48 0.0 17.5
T () 151.5 16.67 145.0 263.1
F 072 .17 0.0 1.0
Fi .006 .03 0.0 .47
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Fig. 1. Scatter diagram or rainfall rate over
the box (R) and microwave temperature (T). The

dashed curve shows that functional relationship
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4. RESULTS

The full logistic model is of the form

P(R>1)=[ 14+exp- (bo+b1F+b2F1+b3T+bl‘TL) ] !
where R, F, F, and T are rainrate, fractional
area with rainrate in excess of 1 mm/hr, frac-
tional area with rainrate in excess of 29 mm/hr
and the temperature over the 32 by 32 km“ box.
T, is T lagged at 1 time unit (i.e. 15 minutes).
A total of 10 different models have been run and
the regression coefficients are presented in
table 2. The maximum log likelihood ranges from
-309.6 for a model with F, as the only regressor
(model 10) to -28.6 for the full model (model 1).
From the table, important covariates can be
identified. For illustration purposes, we
consider models 1 and 8. The hypothesis we want
to test is

Hyt by = by =b, =0
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The likelihood ratio test yields
A = =2 [-159.14+28.6] = 260

and the 5% significance level of x%3) is 7.81.
Hence H, is rejected. To see if covariate T
contributes to the estimation, the hypothesis
Hy: b, = 0 is tested. To do this, we compare
model 1 and 2 and obtain the A value of
-2{-30.1428.6] = 3. The 5% level for x{l) is
3.8 and H, has to be accepted. In this way, it
is readily seen that bl’ b2’ b3 are highly
significant.

The goodness of the model is tested by
applying it to the validation time series which
is taken from an area to the south of the center
of GATE (see section 3). Model 2 is adopted for
validation, i.e. we use

P(R>1mm/hr)=[ l+exp -(~207.8-61.7F+307F,+1.34T) ]!

The values of F, F| and T taken from the location
designated for validation are substituted in (2)
and the probability calculated. We defined as a
goodness of fit criterion the mean square error

n 2
MSE = 1/n T =1 (P(Yisl) - Yi)) .
This is 0.005 for the prediction using model 2.

It can be seen from fig. 3 that the prediction
matches the ohservations verv well.

Table 2. Regression Coefficients for le‘eren'
Logistic Models

10

parameter F Fi1 T T
regression maximized
coeff. bg b bz b3 bg log
likelihood
model
1-217.7 -66.8 309.8 1.33 0,077 -28.6
(46.9) (16.7) (61.0) (.30) (.046)
2 -207.8 -61.7 307.0 1.34 ---  =30.1
(44.8) (16.0) (59.4) (.29)
3 -17.7 16.6 249.7 --- 0,071 -62.8
(4.34) (3.2) (31.4) (.028)
4 -7.,27 22.5 240.5 --- ---  -65.9
(.68) (2.4) (29.3)
5 -166.2 -62.8 --- 1,10 --- -76,2
(18.5) (8.6) (.12)
6 -48.1 -—- - .33 -.,035 -115.0
(3.46) (.08) (.027)
7 -47.9 --- --- .29 == -116.1
(3.4) (.02)
8 -4.9 21.0 -—- - --- -159.1
(.27) (1.4)
9 -34.9 --- --- --- .21 -188.1
(2.1) (.01)
-3.1 ---  249.3 - --- -309.6
{.12) (19.5)

The s.d.s of the coefficients appear in parentheses
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Fig. 3. Time series of predicted probability of

exceeding 1 mm/hr and observed rainrate in
another location.

5. DISCUSSION

In our example, the microwave temperature
data, which integrates the effect of partially
filled non~uniform field of view of the micro-
wave sensor, are not independent since they are
derived from a rainrate-temperature relationship
but in the presence of T, the addition of T, as
a regressor does not improve the model signifi-
cantly. This can be seen by comparing the
maximized likelihood in models 1 and 2 and
models 6 and 7. The interpretation is that most
of the information is contained in T and the
addition of adds redundant information. 1In
the absence o% T, the inclusion of T, improves
the model as the maximized log likelihood is
increased from -65.9 (model 4) to -62.8 (model
3). This increase is significant by the log
likelihood ratio test.

The relationship between average rainrate
and fractional rain area has strong implications
for rainfall estimation. From infrared imagery,
Arkin (1979) accounted for a large fraction of
the rainfall variance by considering the number
of pixels below a threshold temperature.

Implict is the assumption that convective rain-
fall, which is in the heavy rainrate portion of
the rain spectrum, is produced in deep cumulus
clouds. How important the heavy rainrates are in
determining the total rainfall can be examined
by considering F.. If we compare the maximized
log likelihood in model 8 and 10, we see that
model 8, with fractional low rainrates

(>1 mm/hr) area as the only regressor is better
than model 10 which uses only F, in the maximum
log likelihood sense. If both are used, a
significantly better model is obtained (model 4).

In this report, the potential of logistic
models in rainfall estimation is demonstrated.
We plan to extend our analysis using actual
satellite observations such as the ESMR
measurements taken on board the NIMBUS V
satellite.
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Estimating Time Mean Areal Average Rainfall:

A Mixed Distribution Approach
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Abstract

A technique to determine the time mean areal averaged rainfall
is developed. The approach taken is to model the distribution of
rainrate by a mixed distribution. The model is tested on rainfall data
collected during GATE ( GARP -Global Atmospheric Research Program- Atlantic
Tropical Experiment). Sampling designs which select only a portion
of the rain data are used. It was found that a lognormal distribution
provides an excellent fit to the rainy portion of the distribution,
The results are insensitive for sampling frequencies in the range
of half to a few hours in time and 16 to 40 kms in space. Sampling
errors are about 10% of the mean or less for sampling designs which
mimic observations by satellites that are polar orbiting or have a
Tow inclination. An important parameter in the model is the probability
of rain which correlates significantly with the average rainfall,
This is consistent with earlier results such as those which relate
the number of rain days and rain intensity to monthly rainfall and the
use of the Area Time Integral (ATI) in estimating rain volume.
The need for microwave sensors in satellite rainfall monitoring systems
is stressed and an algorithm for estimating monthly mean rainfall from
microwave sensor measurements such as the Electrically Scanning Microwave

Radiometer (ESMR) or a radar is proposed.
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1. Introduction

The latent heat released during the process of precipitation consititues
a major component in the forcing of atmospheric circulations (Lorenz
1967). Theoretical as well as empirical studies have shown that variations
in tropical forcing are instrumental to anomalous weather patterns world
wide (Horel and Wallace 1981, Gill 1982). Accurate measurements of
precipitation as an index of atmospheric variability are therefore useful
both as a tool in diagnostic as well as prognostic studies of atmospheric
circulations.

Over land the problem of estimating time mean areal average rainfall
has occupied hydrologists for a long time (Eagleson 1967, Rodriguez
-Iturbe & Mejia 1974, Bras & Rodriguez-Iturbe 1976, Bras & Colon 1978).

The interest is in river/ground water flow, flood forecasting and catchment
hydrology. A major emphasis is the modeling of the rain field as a two
dimensional random field. Once the parameters of the random field are
estimated, the mean and variance of rainfall total can be calculated.

The applicability of various mapping techniques to fill in missing data

has been assessed by Creutin and Obled (1982) and approaches to network
designs have been summarized by Moses (1982).

Because of the huge extent of the tropical oceans and the errors
associated with in situ measurements on board ships, satellite observation
is probably the ultimate mode by which precipitation measurements can be
made over the vast oceans (Austin and Geotis 1982; Atlas and Thiele
1981). A review of various satellite rainfall estimation techniques is

given by Barrett and Martin (1981).



The method of sampling by satellites differs from that by networks
of land based rain guages. The former provides snap shots of precipitation
information, in terms of radiances from different sensors, while the latter
gives continuous rain gauge measurements at isolated stations.

An alternative approach to modeling the temporal and spatial structure
of the rain field is to consider the distribution of rainfall categories
in the estimation of time areal mean rainfall. If one considers continuous
sampling at a fixed location, it is obvious that the rain volume can be
estimated either through integrating the time series of rainfall rate or
via computing the mean of the rainrate distribution. Once the distribution
of rainfall rates is obtained, the mean and variance of the total rainfall
can be estimated.

The climatology of heavy rainfall statistics at points or rainfall
statistics along lines has been studied because of their importance in
microwave communication (Rogers 1976, Drufuca & Rogers 1978, Lin 1976,
Freeny & Gabbe 1969). The climatology of rainfall statistics for the whole
rain spectrum has also been compiled for climatic studies. A common
feature of these cummulative distributions of rainfall is that their
functional forms are quite similar for a diversity of geographic regimes
(Jones and Sims 1978). Oftentimes, a lognormal distribution is quoted.

The estimation of fime mean areal average rainfall is determined
by two factors: how often does it rain and how hard does it rain when it
rains? An approach that address the first question is the use of the so
called "Area Time Integral" (ATI) in estimating rain volume (Lopez 1976,
Donuead et al 1982a). The ATI is the integral over time of the area of

precipitation as seen by radar. The use of a convective index (Arkin
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1979) and the delineation of rain area from visible and infrared satellite
imageries (Lovejoy & Austin 1982) seem to fall into this category.

Jackson (1986) examines the two factors in toto by studying the relationship
between the number of raindays in a month, the average rainfall intensity

in raindays and the monthly total rainfall.

In this report, we propose a mixed distribution model for the
estimation of time mean areal average rainfall. The model is structured
so that both factors can be combined in a single formulation. A mixed
distribution is described (section 2) and applied to rainrate data
collected during GATE. The GATE rainfall data and estimation procedures
are described in sections 3 and 4. Section 5 presents our results
for different sampling designs. The relative importance of the different
contributing factors in the estimation scheme are examined in section 6.

Section 7 discusses and concludes our findings.



2. Mixed Distribution

Most statistical distributions encountered in practice are
either discrete or continuous. In the discrete case, the random variable
assumes a finite (or countable) number of values while in the continuous
case, the variables assumes all values in the interval which can be
finite or infinite. However, there are situations when the random
variable assumes distinct values with positive probability and other
values in the continuous interval, Such a random variable is said to
have a mixed distribution. An example of a mixed distribution comes
from the reliability and life time testing of light bulbs. Nﬁen a light
bulb is turned on at time zero, there is a positive probability that it
will be burnt out immediately. If the light bulb is not burnt out it
is left on for an hour. The probability that the light bulb may be
burnt out during the hour is positive. Hence the distribution of X has
a jump at X=0 while in the interval (0,1], it is continuously
differentiable (see Hogg and Tanis, 1977). The mixed distribution can
be considered a special case of a mixture distribution.

In the case of rainfall rate sampling, the probability of measuring
no rain at any instance is large. Many previous studies have focused on
the estimation of the raining portion of the distribution. It turns out,
as we shall demonstrate in this paper, that the no rain probability is an
important parameter in the estimation.

The mixed distribution model of rainfall rates can be described as
follows: Let R be the rainfall rate sampled in space and time., The
cummulative probability distribution (CPD) can be written as

F(R)=P(R<r)

where P ( R < r ) is the probability that the rainfall rate R is less than



some fixed r. Let P(R=0) =1 - p. The conditional density

of R given R > 0 is

f(r)=1/paF/ar

It follows that the generalized density g(r) takes the form
0 r<o0
g{r) =1-p r=20 (1)
p f(r) r>0
where f is the density of R conditional on R>0. Thus the CPF can be written

as
F(r) = (1-p) +p | £(x) dx, 5 0
0

The expected mean of R is

and the variance

Var(R) = p | jw x2 f(x) dx - p [ jmx f(x) dx12 |
. 0 0
The above mixed distribution can be described by several

parameters, p and 6 , ( & )=( 67, 82,...) such that

f(r) = f(r,p, 8 )
For a sample size of n which consists of m raining measurements and
n-m non-raining measurements, the likelihood function of p and 6§ is
given by

Nn-m m
L(p, 8 «...) =(1-p) p f(r1, 8 ),...f(ry, 8 )

The parameters can be estimated by various techniques such as the method of

moments or maximum likelihood.




The maximum likelihood estimate of p is

which is independent

p=m/n

of any distribution model (i.e. f).




3. The data and sampling design

This technique has been tested by applying it to rainfall rate data
collected during the GATE (GARP -Global Atmospheric Research Program-
Atlantic Tropical Experiment). The GATE is an observational program
conducted in the summer of 1974, During three roughly tri-weekly periods,
each termed a phase, detailed rainfall measurements from rain gauges and
radars on an array of research vessels were made over an area called the
B-scale. The center of the B-scale area is located at 8.,5N , 23.5E and
encompasses an area of about 200 km in diameter. Arkell and Hudlow
(1977) composited the radar measurements from ships and presented an atlas of
the radar echoes at 15 minute intervals, Patterson et al. (1979)
converted the radar measurements to rainrates and presented rainrate
data in 4 by 4 km? bins. |

To examine the spatial and temporal structure of the rain field
various sampling designs have been used for the sampling. A design is
described by 3 indices (n,k,1). The first index (n) denotes sampling
frequency in time and the latter two (k,1) sampling frequencies in the east
-west (x) and north-south (y) direction in space respectively. For
example, the design (1,10,10) denotes sampling continuously in time
(i.e. all 15 minute scans) but sampling spatially only every tenth
pixel (40 km apart) in the x and y direction. This mimics the
sampling by a raingauge network that continuously measures the rainrate
with gauges placed 40 kms apart. The design (48,1,1) samples all pixels
at an instance, but the time observations are taken only every 12 hrs (48 x
15 minutes). This mimics the sampling by a densely scanning sensor on
board a polar orbiting satellite which passes the same location twice

per day at the same local times (e.g., 12 a.m. and 12 p.m.).



4, Estimation procedure

Once the rainrate data are sampled, the parameters of the mixed
distribution have to be estimated. The lognormal distribution has been
adopted for the raining portion of the mixed distribution here. Much
research effort has been devoted to modeling the rainrate distribution.
Lognormality follows from the law of proportionate effects (Aigg}son and
Brown 1963) and physical cloud models have been proposed which can
explain the lognormal distribution of cloud sizes (Lopez 1977).
Studies using the GATE radar data have shown that rainrates,

size of radar echoes and their durations follow lognormal distributions

(Houze and Cheng 1977, Houze and Betts 1981).

4,1 Lognormal distribution
The lognormal distribution can be written as:

f(r)=1/(r ov2n )exp[ -(logr -y )2 /2 62 ], 0 (2)

The mean o and variance g2 of the lognormal distribution are
a=exp ( u+ d2/2)
82= exp (2 u + o2) [exp( o2) - 1]

B-10

(see Johnson and Kotz, p. 115, 1970). Consequently, The mean and variance

of the complete mixed distribution is given by
E(R) =pexp (u + o2/2)
var(R) = p exp (2 u + o2) [exp ( ¢2) - p]

=p al [exp( o2) - p]

A thorough discussion of the lognormal distribution is given by Aitchison

and Brown (1963).
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4.2 Minimum x2 Estimation

We have grouped the GATE rainrate data into different rainfall
rate categories. The categories are 0-1, 1-2, 2-4, 4-6,6-8, 8-10, 10-12,
12-16, 16-20, and >20 mm/hr. The first category was chosen because it
is difficult to distinguish non-raining pixels and pixels with only a trace
of rain which may be due to noise in radar reflectivity. This low cutoff
at 1 mm/hr has been used in earlier studies (Austin & Geotis 1979).
Because of this truncation, the estimates are slightly lower (about 2%
of the estimated mean) than the means calculated directly even after
adjustments have been made. For a lognormal distribution with typical
parameters found in our study, the interval (0,1) contains about 10 to
15% of the rainy pixels.

Minimum chi square estimation is used in our procedure. This
procedure is asymptotically equivalent to the maximum likelihood method

obtained from (1) (Berkson 1980). The xZ variate can be written as:
i1 (05 - e5)%/e; (3)
j=1 V0§ - &5)7/¢8;

where o0;j's are the number of raining pixels observed in the i th category and
ej are the corresponding frequencies from a lognormal distribution with
parameters u and o .

The truncated distribution RT for R>1 mm/hr can be written as:
RT = f(r)/ [ f(r) dr
1
and so

a ®
PRy <a) =L s f(r)drl/ [ s 1f(r) dr]
1
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If the number of rainy pixels greater than 1 mm/hr is N, then
ey =N[e((log2-u)/o)-0(-u/0o)]l/[l-e(-u/o)l

where ¢ is the distribution function of the standard normal distribution.
Similar expressions can be obtained for the other ej's.

The x 2 estimation procedure can also shed some light on the complex
structure of rainfall. The minimum x 2 value can be inflated or deflated
for statistically dependent data even though the fit to the distribution
is still good (see appendix). The dependence of the observations (oj's)
is introduced in the sampling prbcess. For the (48,1,1) design, too
much spatial dependence may be introduced whiie for the {1,10,10) design,

too much temporal dependence may be introduced.

4,3 Standard Error

The expected mean and variance of the mixed lognormal distribution
are given in subsection 4,1. Rewriting the expected mean as

E(R) =p a (4)

where a is the mean over the lognormal distribution (conditional on rain)
and a =a (6 ). Inthis case 8 =(u, o). Since pand ¢ are
asymptotically independent, i.e., p and 8 become statistically independent
if the number of observations and the number of rainfall catagories goes to
infinity, the variance of E(R) can be expressed as a sum of the variance
of p and a . Consider the functional

h(ps a )=p a

X4
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If p and o are independent an expansion in the form of a Taylor series gives
h(P, @) =p a+ (B-p) ah/ ap+ (G -a) b/ 3a + ...
=pa+(Pp) a+(B-a)p
and so

o~ N 2

Var( 2

pa)= olvar(p) + pivar( Q)

If we consider the rain/no rain sequence as the outcome of a Bernoulli trail
with success rate p, the variance of p can be estimated as
var(f) = $(1-p)/m
The variance of a 1is (Aitchison and Brown, p46, 1963)
Var( G ) * 4 2/m (62 + %4/2)

Hence an approximate expression for the variance of E(R) is

Var(E(R)) = B2 &2/m (52 + §4/2) + &2 B(F)/m  (5)
Although the assumption about the independence of p and a 1is not
strictly valid, this expression provides an estimate of the standard

error which is a good approximation to sampling errors obtianed from

ensembles of different sampling designs.

14
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5. Results

The technique outlined in section 4 1is applied to GATE data.
Table 1 summarizes the results for the sampling design (8,8,8) for
GATE 1. The x2 value is 6.74. For 6 degrees of freedom, the

X26, 959 is 12. Hence the hypothesis that the observed histogram
can be fitted by a lognormal distribution cannot be rejected at the 95%
level. With u =1.14 and 02=1.05, the mean and variance of the
lognormal distribution is 5.28 and 51.5 respectively. Fig. 1 shows the
observed histogram for the design (8,8,8) and a fit to a lognormal
distribution.

The GATE data have been sampled by various designs, with sampling
frequencies of 1 to a few hours in time and 8 to 40 km in space. The
results for GATE 1 and 2 are summarized in table 2. Within this
frequency range of sampling in space and time, the x2 values are
small and the lognormal distribution provides a good fit to the data.
It is noted that these are sample estimates since each histogram is but

one realization of a sampling design.

5.1 Sensitivity to saturation at high rainrates
A major problem assoicated with passive microwave sensors is the
saturation at high rainrates. A test was conducted using the sample obtained
from the (8,8,8) design, but with only 8 categories instead of 9. The
two heavy rainrate categories are combined and the x2 statistics
computed, The results for the two run are very similar, the estimated
mean rainrates are within 5% of each other. Since only 8 categories are
used, the degrees of freedom are reduced and the 95% confidence level is

accordingly higher. This sensitivity test serves to illustrate the

W




possibility of applying this method to estimate rainfall from existing
microwave measurements such as by the Electrically Scanning
Microwave Radiometer flown on board NIMBUS V since this technique is

not sensitive to the problem of saturation at the high rainrates.
5.2 Comparison with Gamma Distributions

In this subsection, we compare the x% statistics between a
lognormal and Gamma distribution. The Gamma distribution can be written
as

flry=2x@/T (a)ra-l exp (-r x ), ™0, a, x>0
where T( a ) is the Gamma function, A procedure as outlined in section
4 was carried out and the results for lognormal and Gamma distribution
for some selected designs are given in table 3. The lognormal
distribution consistently gives a better fit to the observed histogram

in the minimum x2 sense, However as we shall demonstrate later, the
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exact choice of the rainrate distribution is not crucial in the estimation

scheme,

5.3 Satellite sampling

To mimic the satellite sampling of rainfall by a polar orbiting
satellite, the design (48,1,1) is applied to GATE. This is equivalent
to sampling at roughly 12 hour intervals. Within the GATE period, there
are periods when observations are missing. This design samples every 48
snap shots in the sequence, paying no attention to missing periods.
Hence not all samples are at intervals of 12 hours. As a comparison,
sample estimates from the designs (24,1,1), (72,1,1) and (96,1,1), i.e.,

sampling at intervals of 6, 18 and 24 hours are made for GATE 1 and 2.

\%
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The results are summarized in table 4, Although the X2 values are
large, probably due to over-sampling in space and inadequate sampling
in time, the estimated rainrates are quite close to the actual mean
values of 0.45 and 0.37 for GATE 1 and GATE 2.
Since the design (48,1,1) samples every 48th snap shot,
48 distinct estimates from this design can be realized; i.e., the
first estimate is derived form sampling the 1st, 49th, 97th, ..., etc
snap shots, the second from the 2nd, 50th, 98th,...,and so on to the
48th estimate. The estimated means from these sample designs form a
sample distribution. The histogram of these estimated means are shown
in fig 2 (left column). The means and standard deviations of these
distributions are computed and indicated in the figures. It should
be noted that the menbers of the.sampling emsemble are not independent.
If the local diurnal cycle can be described entirely in terms of the
first harmonic, sampling twice a day at 12 hours intervals is sufficient
to specify the diurnal cycle. However any higher harmonics would
introduced a bias. It is therefore of interest to examine the sampling
errors associated with sampling frequencies slightly less than 12 hours
so that the diurnal cycle is sampled through the course of about a month.
A unique feature associated with the proposed Tropical Rainfall
Measuring Mission (Theon et al, 1986) is a revisiting time of the
satellite every roughly 10 hours, giving a total of about 80 partial visits
(30 complete views) of a 600 by 600 km¢ grid box. We mimic this strategy
by the sampling design of (40,1,1). This design will actually give more
than 30 complete visits per month. The important point here is that

it will sample through the diurnal cycle. The histograms for the 40
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estimated means are given in fig. 2 (middle column). There is a reduction
in the standard deviation of the estimated means of the (40,1,1) design
compared to the (48,1,1) design even the number of estimated means is less

in the former case.

5.4 Network Sampling

To mimic the sampling by a network of gauges, the rainrates in GATE 1
and 2 are samplied by the (1,10,10) design. Similar to the procedure
described in section 5.2, 100 samples are obtained from the (1,10,10) design.
The 100 different samples are obtained by sampling which starts at different
locations in space. From the 100 sample estimates of the rainfall
rates, the sample means for GATE 1 and 2 are 0.446 and 0.367 mm/hr and
the s.d.s are 2.6% and 2.2% of the means respectively. The normality
of the estimated rainfall rates are tested by using a minimum y2
test similar to that described in section 4.2, The estimated rainfall
rates are divided into 10 equal interval categories and the yZ values
are computed to be 4.9 and 7.2 respectively for GATE 1 and 2 compared to
x;,.95=14. The hypotheses of normality therefore must be

accepted at the 95% level,

(1§
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6. Correlations and analyses of variance

In estimating the standard error, the independence of p and a is
assumed, This assumption can be examined by considering the
correlation between the mean rainrate conditional on rain ( o ) and p
for each of the 15 minute observations. p is calculated as the percent
of pixels with rain rate in excess of 1 mm/hr to the total number of pixels.

o is calculated as R/p and the condition of p=0 is not considerd in
the calculation,

The linear correlation between « and p is 0.58 (0.52) whereas
that between p and R is 0.94 (0.94) for GATE 1 (2). Similar relations
are also found in the GATE 3 data (Lovejoy 1982). The correlation
coefficients between the 1ogarithm of the quantities are higher. The
results are summarized in fig. 3 which shows the scatter diagrams between
the three quantities. The correlation coefficient between log p and
log R is 0.99 for both GATE 1 and 2 whereas that between log =« and log
p is 0.63 and 0.51 respectively for GATE 1 and 2.

The histograms of R, p and & are given in fig. 4. The
distribution of p is skewed. Since the value of p lies between
0 and 1, a fit to a beta distribution may be appropriate. There is zero
probability that the whole of GATE area is totally covered with rain.
Obviously, the parameters of the distribution are dependent on the size
of the area. Chiu and Kedem (1986) examined the fractional area for an area
of about 40 by 40 kmZ using the same GATE data. In this instance, there
are times when the smaller area (40 by 40 km2) are fully covered.

There are times when the GATE area is totally rain free for

a cutoff of 1 mm/hr. If a lower cutoff is used, e.g. 0 mm/hr, the

%
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fractional rain free time is accordingly reduced.
We also examined the contribution of variance of p and d to
that of R. If we take the logarithm of the equation
R (mm/r)= p & (mm/hr)
we get
log R = logp + log «
the variance of which is
var(log R) = var (log p) + var (log a ) + 2 cov (log p log a )

(77%) (2%) (21%) GATE 1
(78%) (2%) (20%) GATE 2

The contributions by each term are given in parenthesis for GATE 1 and 2,

It can be seen that the variance of log p dominates the variance in log R.

17
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7. Discussions and Conclusions

It is demonstrated that the mixed distribution model provides a
good estimate of time mean areal average rainfall at least for GATE type
situations., The advantage of this model is its simplicity. Once the
rainrates are sampled, the parameters can readily be estimated.

The mixed distribution approach suggests a retrieval algorithm
for the estimation of monthly rainfall from satellites. If a functional
relation exists between rainfall rates and radiance measurements, such as
that proposed by Wilheit et al (1977), one would then accumulate the
radiance measurements and compute histograms of radiance for the month.
The histogram in radiance is then transformed into rainfall rates by the
radiance-rainfall rate relation. The parameters of the lognormal distribution
of the resultant rainfall rate histogram is then estimated to get the
mean and variance. Consideration must be given to other factors such as
beam filling and the variation of pixel size as a function of beam position,

To mimic satellite and rain gauge network sampling, various sampling
designs have been devised. The sampling errors are about 10% for sampling
by a polar orbiting satellite ((48,1,1) design). The sampling errors
are reduced to about 5% for a satellite observation at low inclination
((40,1,1) design). McConnell & North (1987, this issue) examine sampling
errors for four rainrate categories which contribute about equally to the
total rainfall for sampling every 68D minutes of the same data. They
found that the sampling errors in each of the rainrate categories are about
10%. If the categories are independent, the error in the total is reduced |

by ¥ 4, which is consistent with the 5% error found in this study.

(€
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We found a very strong correlation between the average rainfall
rate and the fractional rain area in the GATE area. Chiu & Kedem (1986)
had examined the usefulness of the fractional area with rainrates in excess
of 20 mm/hr to estimate total rain volume. The high cutoff mimics the cloud
index of Arkin (1979) to delineate fractional high cloud area. They
found that the fractional light rain (rainrates greater than 1 mm/hr)
area gives a better model than that whicc uses the fractional heavy rain area
(rainrates greater than 20 mm/hr) alone. But when the two variables are
used together, a much better model is obtained.

Jackson (1986) found that the monthly total rainfall in some tropical
stations is strongly related to the number of raindays but bears little
little relation to the average daily intensity. A fair amount of skill
has been achieved in the prediction of rain amount by the rain area as
depicted in satellite visible and infrared imageries (Lovejoy & Austin
1979). Radar meteorologists have also found that the so called “"Area
Time Integral" (ATI) is a useful indicator of rain volume (Lopez 1982,
Doneaud et al. 1982a). Doneaud et al (1982b) have applied the idea to
rain gauge measurements., They also found that the percent of time when
it rains is significantly related to the total rainfall. These are
consistent with our findings of the importance of the parameter
p. If we consider a design which samples all pixels in time and space,
the estimated p is equivalent to the ATI. The improvement over the ATI
technique by the mixed distribution would be derived from a knowledge of

the distribution of the rainrates a conditional on rain. It provides
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an estimate of the average rainrate intensity which replaces the
climatological average often used in rain total estimates.

The importance of the fractional rain area in rainfall estimation
has strong implications on satellite rainfall monitoring. Because of the
absorption properties of raindrops, microwave sensors can clearly
distinguish between rainy and non rainy areas. This special feature
points to the need of microwave sensors, either active or passive, in the
remote sensing of rain. These measurements, when used in conjunction
with measurements from geostationary satellites such as GOES, can provide
accurate month]y'mean rainfall measurements.

Perhaps the most important conclusion that we can draw from this
work is that, to the extent that the GATE data are representative of
oceanic rainfall in the tropics,'revisiting an area of roughly the GATE
dimension (350 by 350 kmZ) at a repetition rate of about once every 10
to 12 hours provides an excellent estimate (of the order of 5 to 10% sampling
error) for the area average three week mean rainrate for the region.

This is within the capability of a single space platform with scanning
sensors in a low inclination (tropical) orbit. This result is in good
agreement with the work of Laughlin (1981) who used a rather different

(Markov process) approach but based also upon the same GATE data.
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Appendix: Remarks on the use gj_x? for dependent data

There is ample evidence that the rainrate is lognormally
distributed as illustrated by the small values in x2 and the excellent
fit. When the x2 value is large (even though the estimated parameters
obtained from the minimum chi square estiamtion are very similar) it is
usually associated with sampling designs that sample the rainrate at
points in time or space that are close to each other. This may not mean
that the fit to the lognormal distribution is not good, but may suggest
dependence in the sample. This can be understood as follows.

Let pj=oi/N, with i=1,...,9, and Jet pi= E(pj)=ej/N, where E(x) is
the expected value of x. Define the vectors p=(p1,...,P8)", Eé(ﬁl,...,ﬁg)’
and 1=(1,...,1)"' and put
A= diag(1/p1,...,1/pg) + 1 1' 1/pg
then we have

2').".

=t iflog-e)?/e =N (R -D'A(R-B) ()

Assuming that the rainrates satifies some dependence condition (e.qg.
finite-dependenceas discussed by Anderson 1971, p427) so that for large

N, 7N(p -p) converges to a normal distribution,

then for sufficiently large N
2= ) -f gz
where the z? are independent x2(1) variables, If the sampled rainrates
are independent, A;=1 for all i and x2 is distributed as a chi-
square variable with 8 degrees of freedom. But if the sampled rainrates

are dependent, A2 # 1 and (*) can be inflated or deflated since its
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asymptotic expected value is )i=? ;. The practical outcome emerging
from this discussion is that large values of (*) may indicate dependence
despite a possible perfect fit. As the rainrates are sampled further
apart in time and space, they become reasonably independent and the
distribution of (*) is close to a chi square distribution with 8 degrees
of freedom adjusted for the number of unknown parameters. See also
Kedem and Slud (1981) who discuss a similar quadratic form whose values

are inflated due to dependence of the data.
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Table 1. Results for (8,8,8) sampling

class 04 ej
1-2 453 450
2-4 590 598
4-6 325 324
6-8 207 188
8-10 116 116
10-12 60 76
12-16 82 88
16-20 52 46
>20 80 79
total 1965 1965  y2=6.74

o= 1.14, ¢2=1.047

a =5.28, g2=51.5

17
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Table 2: Estimated means, minimum XZ and fraction of rain for different

designs,
GATE 1
n, (k,1) (4,4) (6,6) (8,8) (10,10)
2 .44 .44 .45 46
(11.1) 8.3 (15.3) 8.2 (4.2) 8.2 (2.4) 8.7
4 .44 .44 .45 .46
(3.7) 8.3 (13.9) 8.1 (3.8) 8.4 (9.4) 8.4
6 .45 .43 .45 A6
(7.9) 8.3 (2.9) 8.1 (3.8) 8.2 (2.1) 8.9
8 .44 .44 .44 .44
(2.7) 8.3 (4.9) 8.0 (6.7) 8.3 (7.9) 8.3
10 .45 .45 .45 .43
(4,3) 8.3 (4.5) 8.2 (5.2) 8.3 (3.4) 8.1
GATE 2
2 .37 .36 .37 .36
(59.9) 6.8 (19.8) 6.8 (36.9) 6.9 (10.3) 6.9
4 .37 .36 .36 .35
(50.4) 6.9 (8.4) 6.9 (23.8) 7.1 (9.7) 7.0
6 .38 .37 .39 <36
(27.6) 7.0 (12.1) 6.9 (16.9) 7.1 (18.1) 7.0
8 .36 .34 .35 .37
(23.8) 6.8 (4.9) 6.9 (17.4) 7.0 (9.3) 7.2
10 38 37 39 .37

(19.3) 7.1  (8.5) 7.0 (7.7) 7.2 (5.4) 7.2

Estimated rainrate in mm/hr on top line. Minimum chi square value in
parentheses. The estimated rain probability, p, appeared in the lower
right hand corner, in percent.
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Table 3. Comparison between gamma and lognormal distribution fit to various
designs
lognormal Gamma
design n* u o2 X 2 a by X
(30,10,10) 333 1.00 1.16 6.04 0.29 0.12 5.57
(20,10,10) 456 1.10 1.07  7.76 0.37 0.13 12.14
(10,10,10) 972 1.09 1.18  3.39 0.30 0.10 13.73
( 5,10,10) 1976 1.06 1.21 6.80 0.34 0.10 32.46
(10, 5, 5) 3936 1.12 1.12 8,77 0.35 0.12 44.24
( 5,5, 5) 78389 1.11 1.13 16.83 0.35 0.12 85.87
(10,20,20) 219 1.32 1.00 4,98 0.49 0.12 12.39
( 5,30,30) 263 1.09 1.41 6,53 0.26 0.09 4.09
( 5,20,20) 461 1.19 1.07 .0.80 0.41 0.12 7.21

n* is the number of raining pixels

29
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Table 4, Comparisons of Estimates from sampling

GATE 1

design n* p

(24,1,1) 42237 .083
(48,1,1) 22976 .088
(72,1,1) 14533 ,086
(96,1,1) 11622 .089

n* number of raining

<R> st.err

.448 .0079
514 ,0119
.457 .0135
572 .,0187

pixels

30

X
27.4

48.1
20.9
22.5

2

30111
14156
8826
6409
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designs for GATE 1 and 2.

GATE II
p <> st.err y 2
.069 .364 .,0083 148.1
066 .317 .0107 77.4
061 316 .0141 77.2
.058 .282 .0151 46.7



Figures

Histogram of rainfall rate sampled from GATE by the design (8,8,8).
The curve is a lognormal fit to the histogram with parameters

u =1.14 and o2=1.05 which are estimated by the method of minimum

chi square.

Histograms of the estimated means from sampling designs of (48,1,1),
(40,1,1) and (1,10,10) (left, middle and right column respectively) for
GATE 1 (upper) and GATE 2 (lower). The total number of samples

are 48,40 and 100 for the three designs. The means and standard
deviations are included in the upper right hand corners,

Scatter diagram of the logarithm of the average rainfall rate (R)

and fractioanl rain area in the GATE area for GATE 1 (upper) and
GATE 2 (lower). A cutoff value of 1 mm/hr is used to distinguish between
rainy and dry pixels. The correlation coefficients are indicated on
the upper left hand corners.

Scatter diagram of the logarithm of average intensity of the rainy pixels
( « ) and fractional rain area (p) for GATE 1 (upper) and GATE 2 (lower).

The correlation coéfficients are indicated on the upper left hand corners.
Histograms of the average rainfall rate (R), fractional area (p) over the
GATE area and average intensity of the rainy pixels ( a ) (left,
middle and right columns) for GATE 1 (upper) and GATE 2 (lower).

The means and standard deviations are indicated on the upper right hand
corners. The numbers below the means and standard deviations on the
histograms of R indicate there are 1622 (1419) observations out of

1716 (1512) with p # 0 in GATE 1 (2).



B-34

0.3

)
N

DENSITY

PREB.

0.0

JQbQH“HMMmmrMZAmkaVﬂ

!

/
N
\.. //r
10 20 30
RATNRATE (MM/HR)

Kq i



B-35

)
“wig

o

NUMBER @t CR

15.

NUMBER @F CASES

GATE 1 (48,1.1)

MEAN=(0.44 A
n S.D.=0.05
L —
S ]
— — !
M g
oo
i |
| i
| ]
-3 C 3
S.0D. FRPAM MEARN
GATE 2 (48,1,1)

o

wun

j S.D.=0.04

m
w

V
|

MEAN=0.37

[

|
T;J
|
M

A
| |

d] 3

S.0. FRAVM MEAN

CRSES

NUMBER @F

NUMBER @F CASES

GATE 1 (40,1,1)

GATE 1 (1,10,10)

£9

10. ——— 30.
— MEAN=0.45 MEAN=0.45
: S.D.=0.03 SD.=0.01
L | | |
w %No. L ;
| g |
— s T
4 &
— | ] 1o
‘ Z. F
| = ]
| ]
0 -3 0 3 o.-w 0 3
S.0. FR@M MEAN S.D. FR@M MERN
o GATE 2 (40,1,1) . __GATE 2 (1,10,10) -
MEAN=0.37 | MEAN=(0.37
SD.=0.01 S.D.=0.01
-— [@p]
i 4
a
ﬁll O
> ] 18 ]
Qs
i o -
] 1o,
, ‘ |
{
0 W ﬁ \g - .I\_ 0 R _JIJ m
- 0 3 '-3 ”

ORIGINAL PAGE IS

OE POOR QUALITY,



0.5

NRATE

-, LBG RAT

' LBG RAINRRTE

~nN

~n

—
.

LOG R VS

R=0.99

B-36

LOG P GATE 1

|

-3.

=2.

-1. 0.

L@G FRACTIBONAL AREA

LOG R VS LOG P GATE 2

R=0.99

-3.

I.BG FRACTIBNAL

~2.

AREAR

913




LBG RAINRATE

LBPG RAINRATE

—
-

o

LOG o/ VS LOG P GATE 1

R=0.63

1 L 1 : 1 1

-3, -2. -1,
L@G FRACTIANAL ARER

LOG & VS LOG P GATE 2

R=0.51

-3. -2. -1,
LPG FRACTIBNAL ARERA



(HH/ WA 3188 19N THS gy NIy _qzshguqmu (HH/WW) 415y tibanigs
o)
Mgy 2l

rel ool —_— 1;M;.ﬁ @4 ~ w ] oo.o S0 vuw o wo Jnﬁu‘wmmuw1ﬂlw_w o.o g w w
al ,‘Lf_gﬁhuun_w“mmu_w i : {_
! SeERENRinE i}
| Sine
: ﬁi , ;
L Lj ; 1 ﬁdmw i m
D 3
ﬁ W L 4 EM L i
S g 1
L | 4 2035 - i
L1 N
L 3
] ZISL/BLYL
€6°L ‘'S 29°G NVAN - 60 'd’'S 650’ NVaW o . S_..o .,o.m mmwo m_<mz_ e
(2 ALVD) v 40 WYHDOLSIH €0 (2 ALVD) d A0 WVHDHOLSIH (2 ALVD) ¥ +0 WVIDOILSIH
(MH/WW) F188 1IN gY H4¥d N1ud "TUONDIT 1384 (MH/WW) JiBy TI1gaNIdy
3 -zl 6 g £ g . % ve €0 zo vo 0. s b 3 z 1 0,
rﬁé*— T T T +-—— 0°0 T T JlrEuuhﬁ T T ™ -~ — P
‘ e P>
=
; ﬁ 11703 R 2
— 't —
LY D R =
rl ] W s ﬁM e . dmm L s
_ ; [y NWmW - ]
g m mu.w P m
4 2°0— [e A —
_ﬁ G o g
| e | 9121/2291 i
m | - . o~ 0N
00z @S sz's Nvaw | ﬁ 620 ‘'S 9.0° NVIW | 090 °0’S 9¥°0 NVaW o
e e —— €0 R S S R ‘02 s i _ ) L J
(1 ALVD) Y 10 WYHDOLSIH (1 ALVY) d 40 WVIHOLSIH (1 4LVD) 4 O WVYDOLSIH

LINM JATIHT3Y

LINM IAT1ET3Y



Attachment C: A Rainfield Simulation Model

A. Simulati f Rain Field hot

In the absence of real rainrate data, it is useful to generate
artificial data by stochastic models which preserve certain specified
statistics. Also, such a model 1is very helpful in assessing the
outcomes of controlled experiments. We have developed such a model
and intend to use it in the next phase. A source FORTRAN program is
attached.

A.1 A stochastic Rain Field Model

In what follows, we describe a simulation model which generates
artificial "radar" snapshots of a rain field.

Our model is made of three parts, one of which is fixed while the
others move in relation to the fixed part. The three parts are (See
figure Al.):

(a) Spatial random rainfield (moving);

(b) Cloud field (fixed); and

(c) Moving window (moving).

This 1is a very flexible model which can accommodate any kind of cloud
and rain fields.

Figure Al

<:>//,* ///“_9 Moving Sampling Window

W ,///////// Fixed Cloud Field
<« —_ ing Ran OW ]
IO N soving rangen

A.2 Random Rain Field

This field consists of a spatial moving average with specified
distribution for its rainrate (in this case lognormal) and specified
spatial correlation. This is the bottom part and should be thought of
as an Jinfinite random field which is being constantly shifted. For
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example, we can use a field of the form

R(i, j) = exply(i, j) + 1.140]
where
Y(i, j) = E(i, j) + 0.1084[E(i - 1, j) + E(i + 1, j)
+ E(i, j - 1) + E(i, J +1)], i, j =0, 1, %2, . . .,
where E(i, j) 1is white Gaussian noise. 1In this case, R(i, j) has a

lognormal distribution
A(MR., O2R)

with parameters
ug = 1.14

and
o2g = 1.047

The coefficient 0.1084 is needed for stationarity requirements. We
can easily change this model to suit any correlation requirement.

A.3 Cloud Field

The cloud field covers a certain large area (e.g., GATE area) and
consists of clouds whose areas are very close to being lognormally
distributed. It is a fixed field located above the rainfield. The
"clouds" are to be thought of as "holes" or "windows" through which we
see rain. At a given time constant, what we see through a given cloud

is precisely its content. This content keeps changing since the
rainfield is moving.

Here 1is how a cloud is generated in a field of area 104 pixels.
consider, for example, an interval at length 100 from which a point is
selected at random. From that point, we measure a random length whose
distribution is lognormal with parameters yu, 02, Let X be the part of
this length which overlays with the interval (0, 100). Then, by
properly conditioning X, we have

1l
[100 exp(M + - 02) - exp(2u + 202)1/200
2

E(X)

The square of this quantity (by independence) can be thought of
as the average size of a "random cloud." Let

M = number of clouds
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Then the fractional rainy area over a field of area 104 is given by

M x E2(X)

Thus, we can control the probability of rain by u, 02, and M.
The table below illustrates this fact.

" o2 EX M Probability of Rain
1 1 4,208 50 0.088

1 1l 4.208 40 0.071

1 0.5 3.3899 70 0.08

1l 2 5.3719 | 2; 0.08

The probability of rain is fixed over the <cloud field but can
obviously change for subfields.

The truncation at, say, 100 is needed for the rainy area under
study in real 1life is wusually an arbitrary area taken from a much
larger area by truncation.

A.4 The Sampling Window

The third part is a moving window which moves at random over the
cloud field. Each time the context of the window is observed, we call
it a snapshot.

Figure A2 shows a typical snapshot with a sampling window of 20 x
20 pixels. The zeroes denote the no rain areas, and the rainrate are
given in mm/hr.

A.5 Comparison with Laughlin's Results

To estimate the error in satellite sampling, Laughlin (1982)
computed the temporal autocorrelation function as a function of
average areas using the GATE data. Since our model parameters are
constrained by the GATE observations, a calculation similar to
Laughlin was carried out and the results presented on figure A3. The
results are very similar to those of Laughlin, as anticipated.
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Fig. A2. A snapshot generated from the simulation model with p = 1.14

and 062 = 1.047. These values are derived from GATE rainfall
measurements.
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Program listing to generate Rain fields from the Simulation Model

THIS ORCGRAN CALCULATNS RAINFALL FIZLDS FRCM BEN KEDEM'S TIME-
DEPTADENT RAINFALL RATE MIDEL AND WRITES THEM TC TAFE FOR FURTHER
ANALYSIS,

INPUT @ DSEFDU — ARRAY CF SEEDS FCR THE RAKNCCV RNUMZBER C(ENERATCR FCPR
CALCULAYTING RAIN FIELD S
NELTAT - TIVE IN HOURS N2F SACH TIME STEF (USEFUL RANGE . 2€
TO z4&.)
NCAYS - NUMEER CF NDAYS <0G WHICHE RAIN FIELDS ARE TO 8E
CALCLLATED
NSTEPS - NUMEER OF TIMSE STEPS FCR WHICH RAIN FIELDS ARZ

TC EE CALCULATED
MCALLS — NUMEEP J3F CALL TC BE MADE TC THE RAINFALL CALCULATING
EFC CFAM
N - NUVEBER CF DPCINTS TN SACH DINFASICN CF THE RAINFALL AFRRAY
QFESIZE - €122 OF THFE SIDES JF DIXELS IN KM
GEHASE — CATE FHASE OF THF SIMULATICN INDUT PARAMETERS
AVAREA - AVERACE AREA OF CCNTISLOLS RAIN PATCHES
AVFTR - AVEFAGCE FCACTION CF A REALIZATICN THAT HAS RAIN

INTERNAL : I — LCCP £NC ARRAY INDEX
SEELC - AFRAY QF SESEDS FCR RANCCM NUNBER GENERATORS T3 PBF
DASSED TO SUBROUTINES IN CRDER TO LEAVE THE DSEEDO
ARRAYS UNCKFANGEC
TIME - CUNULATIVE TIME OF THE REALIZATICN

CUTDUT ¢ RR — TwO-DINEANSTONAL ARRAY OF RAINFALL RATES

SUPRCUTINES ¢ EKRAIN - CALCULATES RAINFALL RATE ARRAYS AND WRITES
THEM TO TAPE

REAL*4 PR{12€,128)+RESIZE JRINC

REAL *4 TIME ,DELTAT, AVAREA,AVFTR,GPHA SE

RELL *8 DSEELCO(E)LSEEC(4)

INTEGER %4 NLNSTERPS,NDAYSyNCALL S, IDAY
INTECER*®4a [ ,114J,1L1 .

DATA NDAYS/Z2/N/1Z28/NSTFRPS/24/

DATA AVETR/ ,03/.CELTAT/1.00/

DATA AVATR FAIQSO-/.RESIZE/4.0/.RINC/S.O/

DATA DSEFCO0/3141562.00+23212159.D0+92Z1415.00+5G23141.D0,
C1SC2214,00,41%6221,00,1415923.00,1341592.0C/

INITIALIZE VAR IABLES
I0AY=D
TIME=0.0

NCALLS=NTINT ((FLCAT(NCAYS)/2,2)+0.4)
ARITE (€,S) NCALLS
9 FCRMAT(* Y, 'NCALLS= Y,173)
2C 11 J=1.4
SFED(J)=CSEECO(J)
11 CONTINUFE
LCCP OVER CALLS TC RAINFALL MODEL
DC 20 I1=1,ACALLS
CALL PKRAIN(N.FESIZE GPHASE DAY TIME JAVAREALAVFTR,,SEZD,DRLTAT,
CRELICAY L 1CS)
IF (ICS NE. )
WRITE (64G65)
Q9 FCRMAT(* *,*'I/C ERROR')

0 TC 10¢C e
Enp Ir C . ORIGINAL PAGE IS

20 CCNT INUE OE POOR QUALITY
CALL LEVPTC(N'FINCyRR) :
100 s10P
END

THEN

SUSROUTINE EKRATIN(NUMN,RESIZS,GFHASE, LAY ,TINE,AVAREA,AVF TR, SEEC,
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CDELTAT.RR,ICAY,ICS) OF POOR QUALITY]

C
C BEN KEDEM, UNIVERSITY CF MD
C AUG. 20, 1GFO6
C
C THI3 PRCGFRAM GENFRATES RAINFALL FIELDS WwWITH CGATE-LIKE STATIST ICAL
C PROPERTY IES.
C
REAL %4 LGNl(500);LGN2(500)¢U1(SOO)-U?(SOO).Y(300'300)sE(3OC'
REAL X4 FESI2E-FP(128.1:*)'G”HASE'DAYgTIMEoAVﬁRFAoAVFTP.DELTA
RFEAL %4 XN’SIGJA-SIGSC-U(9OOOO)
REAL *3 D?loES?.CSEoCSQ'SEEQ(1:*)
INTEGOF ¥4 1V(ZCO'E‘O)oN'IIoJJ.W'V““o@'hIqNTNJ-VAXY'V\XJqI1‘Jl
INTECER ¥4 IlIoJJJgNSNP,NDAYSoICSsNUM9IDAY
CHARACTEP%®7 FILELE(20)
C
C CHAPACTER CCNSTANTS FOR FILF PARAMEITER IN CPEN AND €D STATEMENTS
NATA FILFLQ/'F'llFOI'"FT11502'.'FTI1?03'.'=111FO&'.'FT11FC5'-
C'FT\\FO“.'FTllFO?'o':Tllﬁoa"'FTIIFCQ's'FTl1:10'1'FT11F1l"
C'FTllFl?'o'FYIIFIE'o'FTllFIQ'g'FTllqu'.'FTllFlé'v'FT11=l7'.
C'FT11¢19'o'FT1\Flc'o'chlF20"':TIIFEI'.'F?llpz?'.‘FT11F23'o
C'FT11524"'FT11F25'g‘:TllFZE's'FTllFE?'g'FTIIFZB"'FTllFZG's
CYFT11F320*/
¢ SPECIFY FARAVETEERS ANT T6'S,(DSEFEDS)
C DATA DSl/a257/oDSE/501/0053/ QNT74/+s05S4/7419/
DS1=SEFD(1)
DE2=SFEN(2)
DS3A=SEEC(3)
NS4=SFEC (4)
XM:IQO
SIGSC=0.5
MMM=NIRT((NLM*NUM*REQIZC*R SIZE®XAVFTR)/ZAVARE A)
WRITE (€4.G) MM
G FCRMAT(' ', '4 CF CSAIN PATCHES ', 15)
SIGMA=SGR RT{SIGSQ)
N=500
DC 5 I=1.20C
OC 6 J=1,200
IV(I.J)=0
& COCNT INUE
S CCNTINUE
CALL GGUPS(CS1,NsL1)
CALL GGUBS(CS2.NsL2)
caLL GGNLG(CSE.N,)M-SYGMA,LGNl)
CALL GGhLG(CSQ;N.XN.SIGMA.LuNZ)
¢ GENERATE CLCUD FIELD (VER 50 EY S0 AREA
DC 777 M=1,VMNY
MINI=SINT(2D0%UL (M))
MINJ=INT(20C*U2(V))
MAXI= =MINI+INT(LGANLI(N))
MAXJ= =MINJ+INTILGNZ{M))
I1IF (MIN] LFe 1) MINI=]
IF(MINJ +JLE. 1) VMINS=1
IF(MAX] «CGE . 200) MAXI=200
ITF(MAXI +CGE 200) NVAXJI=200
DC 11 I=MINI,MAXI
nDC 12 J= NINJ'VAXJ
Iv(l,.Ji)=1

11 CCNTINUE
777 CCNTINUE
C DISTCPFT FECTABGLLAR FeIN CLDUTS
pC S1 1¢6

ugwu

ne
IF
IF
co
CPNTYNUF

CIFY EACKCROUNC RAIN

CALL GCNOM({LS3IWMNCRLU)

p
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DR 232 1=2,2¢S

DOC 24 J=2,2¢9

XP—E(IoJ)*.lO ¥(E(I-1eJVHE(T+1 3 II4E(T,J—-1)4E(T,J+1))
Y(1.J)=EXP(XP+1,140)

24 CONTINUE
23 CONTINUE

GET SNAPSHCTS BY MCVINRG THE 128 BY 128 WINDCW CF CLOUDS OVER TH%
MOVINC RAINFIELC., THE ADVECTION IS ACCONPLISHED BY INCREMENTING II
AND JJo. THE RAIN RATE AT THE 3CUNDARIES CF THE CLOUDS CHANGES yia
THIS JCINT DYRANMIC.s WRITE EACH SMADSHOT TC TAFE AFTER 1T IS
CGENZRATEC.
11=0
JJ=0
I1=1
Ji=1
DC 65 NDAYS=1,2
ICAY=ICAVY+)
OPEN(UNTT=11,E00=205,STATUS= 'NEW!,FILE=FILELE(ICAY),
CACCESS='SEQUENTIAL',FCORM= 'UNFORMATTECY, TASTAT=1INS)
DC A% NSNAP=1,24
II=11+1
I11=11+127
JJ=JJ+1
JJJd=JJ+127
DT 70 I=1,128f
DC 71 J=1.,1:2€
PPLToJ)SY(IT+I+11,JJ4J+J1)1%IV(IT+143J4T)
71 CCNTINUE
70 CCNTINUE
T1=11+1
J1=J1+1
TIME=TIME+DELTAT
WRITE (UNIT=11) GFHASE,DAY,TIME,RESY 2E,AVAREA,AVFTR,XM,SIGNA,
CO(RR(I,J)s I=1,12€)s I=1, 123)
66 CCNTINUE
CLOSE(UNIT=11,ERR=3200, STATUS='KEEP', IOSTAT=1CS)
55 CCNTINUS
100 SEED(1)=DS1
SEED(2)=0S2
SEEN(3)=DS3
SEED (4)=DSa
200 1IF (ICS WNE, 0) THEN
WRITE (€,25¢)
299 FCRIVAT (! *,01/C ERGOR CN DPEN')
GC_TO 4a0¢
END IS
300 IF (ICS WNE, 0) TEEN U
0 WRITE g&,zgg) ) CriGinAaL PAGE 29
399 FCRYAT(' *,'1/C FRROR CN CLOSE!
5C_TC a0cC OE POOR QUALITY
ENDG TF
400 RETUFRN
AN

SUBRCUTIMNE LEVETCINL.FING,T)

Re Le MARTIN AREC £ (S*C
NCT, 21,1GE"

THIS SUBFCUTINE TAKES A 2 DIMFNSICNAL ARRAY CF VALUSS, UD TO 128 8Y
1283 AND BINS THEM IN 1C TQUALLY SPACED FINS SINC IN SI123, PLUS A 2°R
LEV=L . VALUES CUTSINE THV PANZE ARE SET =GUAL TD O 0P 193, TreE LEWVE
ARE THEN FRINTEZ CUT AS CHARACTEDPS TLC REPRESSNT THE CONTOUR LEVELS O

o

T-Z ARDAY,

ITNPUT ¢ M —~ SIZ2E CF THE SQUARFE ARRAY, R.
RINC — SIZE CF RINS TO PLACE THE CATA [N
R - 2 CIMENSICNAL ARRAY 2F DATA VALUES

INTERENAL @ I - L7TCP INCEX

J = LACP INCFEX

LP - ARPRAY CF JNTEGFR VALUES TC REFRESENT TH=E BINNED CATA
P =~ ARRAY (OF CHAPRPACTERS TG RFPRESENT THE BINNED NDATA

FETURNS ¢ NTTHING
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ABSTRACT

A stochastic regression model is used in modeling rainrate.
Under some conditions on the model parameters, it is shown that
rainrate is asymptotically lognormal. An application of the model
to the GATE data shows a remarkable agreement between the assumed
and estimated model parameters for rainrate averaged over suffi-

ciently large area and a sampling interval of 15 minutes.

1. INTRODUCTION

There is ample evidence based on observations that rain
characteristics tend to be approximately lognormally distributed.
This observation is shared by quite a few research workers who
considered different data sets. These pertain to the duration of
rainfall and amount, and to horizontal and vertical cloud extent
in tropical and extratropical regions under a wide variety of
convective conditions (Biondini 1976, Lopez 1977, Houze and Cheng
1977, Chiu et al. 1986). The question is then what makes the
lognormal distribution so prevalent when it comes to rain systems
and whether there is any theoretical basis for these observational
findings. On practical grounds, we may ask whether at all it
even makes sense to fit a lognormal distribution to rain
characteristics and under what conditions. This is the subject of

the present note. We will focus on the lognormality of rainrate.

Many authors believe that the lognormal distribution is a
natural outcome of the so called law of proportionate effect
(Aitchison and Brown 1963, p. 22). Accordingly, {xj) satis-

fies the law of proportionate effect if
X3 = %3-1 = £3%5

where the ej's are mutually independent and are also independent

of the Xj's. While the law of proportionate effect is ¢of funda-



mental importance in motivating the lognormal distribution, the
independence assumption on the €5 is guite restrictive and can

in fact be relaxed. It is sufficient that the cj's obey con-
ditions which guarantee the asymptotic normality of sums in terms

of these variates. For this to hold, they need not be independent

and may even be dependent on the xj's.

In the present note, we discuss a certain type of dynamic
regression model which togefher with less restrictive conditions,
vields the lognormality of rainrate asymptotically. The model has
a strong intuitive appeal and is quite flexible in that it re-
guires only a few parameters which can be easily estimated from
data. Using a novel estimation procedure, the model is fitted to
the GATE (GARP-Global Atmoshperic Research Program-Atlantic
Tropical Experiment) data. It is shown that some regquirements for
asymptotic lognormality are satisfied by the data. Furthermore
realizations produced by the mcdel appear to be very similar to

those produced by real rainrate data.

It should be emphasized that our result is model based and
that by itself does not constitute a "proof" that rainrate is
precisely lognormally distributed. We merely provide reasonable
conditions which lead to lognormality, and indeed some of our
conditions are well supported by the GATE data. It seems to us
that the present approach is an improvement over the approach

which solely relies on the law of proportionate effect.

2. A STOCHASTIC MODEL FOR RAINRATE

To unravel the lognormal mystery, we begin with a rather
naive notion of a rain element. Conditional on rain, we conceive
of a rain elemenf as a small volume in space containing small
droplets of water which have the following dynamics. Let time be

discrete. At the n-1 time step, some droplets give rise to a



new generation of droplets through a complicated physical process,
some droplets leave the volume while new ones, called immigrants,
arrive to join the folks of the new generation. It is really a
process of replacement and immigration where the replacement
refers to droplets already in the volume. The droplets are being
replaced by a non-negative number of droﬁlets where zero'could
mean complete departure or emigration. Thus at time n, the
number of droplets in the volume in space is the sum of the
replacement droplets and the immigrants. Let X _, stand for the
(random) number of droplets in the volume at time n-1 and sup-

pose the ith droplet there is replaced by Y fresh droplets

n,j
while I, denotes the number of immigrants. Then at time n,

the rain element contains
Xp-1
xn = .21 Yn,i + In' n=1,2... (1)
1:

droplets with the convention that 22 = 0. For (1) to cover dry

periods and shifts from dry (wet) to wet (dry) periods the follow-
ing interpretation is adopted. Most of the time when it is not

raining, the rain element is dry and both Xg and I vanish.

n
The rain element becomes active as soon as I, admits a positive
value. This sets the Xn' and hence the Yn i in motion until

the Xn vanish. The process restarts when I, admits again a
positive value, I, can be thought of as the part of the process
responsible for the occurrence of rain storms whilc 3 Yn,y per-

tains to the duration and amount of rain.

The most important parameters associated with the dynamic
model (1) are

EYn'i=ml EIn=xl nli=1l2"‘

No further assumption is needed for the present use of the model

except for Al and A2 below.



D-5

When the occurrences of rain are not too frequent, we expect
A to be small and close to zero. When it does rain, it usually
persists for a while before it stops. This means that m should
be close to 1 but still strictly less than 1. If m is greater
than or equal to 1, the duration and amount can be explosive.
Thus an indication of goodness of fit of (1) to rainrate data is

small A, and m close to but smaller than unity. It is

interesting to apply the model to real data to see if these

conditions are met.

When {Yn,i}' {In} are families of mutually independent non-
negative integer valued random variables, the process (Xn} is
called a Galton-Watson Process with Immigration (Athreya and Ney
1972, p.263). This type of process was introduced as early as
1915 by Smoluchowski whose work is reported by Chandrasekhar
(1943, chapter 3). Smoluchowski used the model to study the fluc-
tuations in the number of particles contained in a small volume
which exhibit random motion. However, we do not necessarily

require the Y's and 1I's to be independent.

There is a well known device which transforms (1) into a more
convenient regression equation which takes into account past
values of Xn (Heyde and Seneta 1972, Winnicki 1986). Let 7
be the o-field generated by the random variables

(xo’xl""'xn)' and note that

E(XnITn_l) =m X, 4 +2

Define ¢, by the difference

n Xn - E(XplFpoq)

(3]
]

and write (1) as

X =mxn__1+l+€n (2)
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Then {Xn) is seen to be a stochastic difference egquation where €n

is a martingale difference (Lai and Wei 1982); i.e., ¢, is

7n—measureab1e and E(cnlfn_l) = 0 for every n. An important
example is the case of independent ¢, with mean O which is not
required here. Other than its formal importance as expressed in
(2), martigale differences follows the Central Limit Theorem

under quite general conditions.

Since X, refers to ihe density of droplets in the rain ele-
ment, it is related to the rainrate. But multiplication of (2) by
a constant leaves the model intact and we can actually think of
X, as representing rainrate. We therefore model rainrate
dynamics by (2) where X, admits only non-negative values.

3. CONTINUITY ASSUMPTION

In its present form, equation (2) is a fairly general model
which could represent a wide range of physical and statistical
processes. In order to ensure the lognormality of X, some more

assumptions are needed.

Let {Xn} n=20,1,..., be the stochasfic process (2) which
stands for the rainrate process at a given rain element. Assume
that the XO'Xl'X2"“' are readings at time O, T, 2T,...,
where the sampling interval T is small. The main assumption we
shall adhere to is that of continuity: when the sampling interval
T is sufficiently smali we require that, conditional on rain, Xn
and X,_, be close to each other as is the case with many contin-

uous phenomena in nature. This implies that the ¢ the "errors'",

nl
are themselves small. For normality we also require the sum of
squares of the ¢, to explode. More precisely, conditional on

rain (i.e., positive Xn's) we assume
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Al: Xy = Xy_q) « X34
n

A2:  (1/n) 3 El(e4/X;_,)%|F3_ 41 — c®0, n — o
i=1

Since E(ci/xi_llfi_l) = 0, and since by Al ei/xi_1 is
essentially bounded as m — 1

and A — 0, it follows that
(McLeish 1974,

Basawa and Prakasa Rao 1980, p.388)

n

(1/vA ) S e3/%y & N©,c®, n — o.
i=1

4. ASYMPTOTIC LOGNORMALITY OF RAINRATE

Let x[A] be the indicator of the event A, and define an
by

&p = (Xn-xn-l)//[xn-l + x[Xp_q = O])

Then (2) can be written as
Xqa = (146,)X,, 4 + Iy x[X,_, = 0]

n D n

j oa j=k (1+8j)1k—1 X[Xk_2=0] + In t[xn_1=o] (3)

Thus, conditional on rain, it follows that

X, = (1+5n)(1+5n_1)...(1+51) Xo (4)

from which we obtain by Al that
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n
log(X,/Xy) = 3 &4 (5)
i=1
or
n .. n
i=1 i=1

Therefore for m sufficiently close to 1 and A close to 0O, Al

and A2 imply that for large n

X.)1/vA n %
[x%] [1+(1—m) -1 3 ,1{: ~ A(0,c?) (7)

i=1

where A(O,Cz) denotes the lognormal distriubtion with parameters

2

0 and c (Aitchinson and Brown 1963). When m — 1 and A — O,

we obtain the useful approximation
X.)1/vn
[nJ ~ a(0,c?) (8)

o

The O parameter is expected if we assume that X, for large n is
independent of X5 and that the two are identically distributed.
Under these conditions both Xi/n and Xé/n are asymptotically

(¢, 1/2c®) for some u.

5. STATISTICAL ESTIMATION OF m and A

A great deal of the foregoing discussion depends on m being
close to but strictly smaller than 1, and 1 positive but close
to 0. To verify these conditions, the parameters should be
estimated as precisely as possible. Fortunately, this estimation
problem is a special case of a general problem investigated in

detail by Lai and Wei (1982) who give conditions under which the




least squares estimates converge almost surely (that is, with
probability one. This is abbreviated a.s.) to the respective

parameters. Winnicki (1986) has suggested that m and A should
be estimated from the weighted model

X X

I =m—DR21 4, 1 4 .* (8)
+ + ¥ n
n-1 n-1 n-1
*
where En = £, /'/Xn_1+I + by minimizing the sum of sqguares of

the eg. The estimates obtained in this way are called weighted
least sqguares and are shown, under some conditions, to be superior
to the ordinary least squares when m is close to 1. Now, the
Lai and Wei (1982) theory can be applied to the stochastic regres-~
sion model (8) since a* in (8) is still a martingale difference.

n
This is done next.

-

Denote the weighted least squares estimators by m, » and

the design matrix by xn' Then

n

1
/ X1+I
—31
'2+
1
vt

f )
Siis [SERTN] [ T3 I 1)
+ + +

Define a 2x2 matrix & by, &= b &N ¥, and let Amin(n) and
kmax(n) be, respectively, the smaller and larger eigenvalues of

4. Then the relevant result of Lai and Wei (1982) can be stated

as follows, assuming model (8). Assume

*a
(a) sgp E[]sn] lyn-l] <® a.s. for some a > 2,

and that




(b) Apin(P) — ® such that as n — o
log lmax(n) = o[lmin(n)] a.s.

Then
(i,i) — (m,7) a.s.

Thus, when (a) and (b) are satisfied, the result guarantees a
strong sense of convergence of the weighted least squares

estimates. The estimates themselves are given in Winnicki (1986)

as

n n ) n X.

X, -n 1

P e R o L
m = i=1 i=1 i=1 (9)

< ( ] 2 1 2

2 |Xi-1*1] 3 g -n

i=1 j=1 171

n n Xy n n Xy,

1—

2 Ry 2 oxpoFr 2 Xy 3 ox Al

T = d=1 i=3 1 i=1 i=1 3

(10)

where n is the series size.

Since observed rainrate is finite, condition (a) is auto-
matically satisfied. To verify condition (b) analytically is
difficult in general but it can be verified from data. The rain-
rate data we have in mind are described in the next section. For
rainrate averages obtained from squares of 32 by 32 km? at 15 minute
intervals, the results from two different time series are given in
Table 1. The series size ranges from n=100 to n=1700, and it
is seen that conaition (b) is satisfied sihce lmin(n) tends to
infinity faster than log(lmax(n)). Similar results were obtained
for other time series and so, for all practical purposes, the door

is now open to the actual estimation of m,. wusing these data.

- 10 ~-



Table 1.

100
200
400
600
800
1000
1200
1500
1700

100
200
400
600
800
1000
1200
1500
1700

Two cases for which condition (b) is satisfied. The
rainrate series are sampled every 15 minutes over a

square of 32x32 km?

A

min(®)

6.368
53.972
108.249
142.7783
151.526
421.242
438.366
475.9817
514.737

66.853
117.430
224.335
322.439
389.040
526.569
576.146
706.008
729.100

Apax (D)

FIRST TIME SERIES

97.212
185.318
351.806
533.428
722.7730
901.590

1084.106
1359.853
1540.269

SECOND TIME SERIES

132.213
212.229
474.801
600.600
732.568
945.093
1094.382
1363.871
1537.641
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(1og Apay(n)1/Agspn(n)

0.719
0.097
0.054
0.044
0.043
0.016
0.016
0.015
0.014

0.073
0.046
0.027
0.020
0.017
0.013
0.012
0.010
0.010



6. APPLICATION TO GATE DATA

We applied the model to rainfall data collected during GATE.
GATE was conducted in the Summer of 1974. During roughly three
tri-weekly periods, detailed rainfall measurements from rain
gauges and radars on an array of research vessels were made over
an area called the B-Scale. The B-Scale encompasses an area of
about 400 kms in diameter. Arkell and Hudlow (1977) composited
the radar ship data and presented 15 minutes radar reflectivity
scan data. Patterson et al. (1979) converted the radar reflec-
tivity data to rainrates which are binned into 4 by 4 km? pixels.
This data set is probably as yet one of the most extensive rain-

fall measurements made over the oceans.

Time series of rainrate for individual pixels (4 by 4 km?
resolution) and for area averages (10 by 10 pixels or 40 by 40
kmz) have been extracted from the first tri-weekly period in GATE
(called Phase 1). The parameters of the model are estimated by
the method of weighted least squares described above. Tables 2-5
give the estimated m and X for 10 by 10 pixel arrays and for

individual pixels situated at the center of the GATE area.

The results for large area averages of 10 by 10 pixels are
shown in table 2 and 3. For each 10 by 10 pixel array throughout
the GATE area a time series was obtained from which m and 2
are estimated using (9) and (10). The estimated m are very
close to but less than 1 except for some boundary points where
there are missing data. At the four corners, there are no data at
all in the 10 by 10 pixel array. The A field in table 3 shows
small values except at the boundaries where again the problem of
missing data is encountered. We see that for large area averages
sampled (really Visited!) at T = 15 minute intervals the results

are very satisfactory and so a lognormal fit makes good sense.
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For individual pixels (4 by 4 kmz) m is still fairly large
although not as close to 1 as in the 10 by 10 pixel array case,
but Ao is large as seen in tables 4 and 5 respectively. The
reason for this can be attributed to the sampling interval of 15
minutes: for smaller pixels we need to sample more often than 15
minutes to achieve similar results. Thié'suggests that the model
apprcocaches the lognormal limit for large aggregates at the 15
minute sampling rate, and more generally, that there exists a time
scale which corresponds to a spatial scale. This dependence of
the model parameters on the averaging area can be seen very
clearly from Figures 1 and 2 where i and i are given as a
function of the pixel size (i.e. the averaging area) while the
sampling interval is fixed at T = 15 minutes. The pixel sizes
examined are 4x4, 8x8, 16x16, 24x24, 32x32, 40x40 and 352x352 km?.
We therefore conclude that lognormality of rainrate can already be
observed fairly closely by averaging over pixels whose area is
roughly as small as 40x40 km? where the sampling freguency is 15
minutes. This finding is enhanced by a histogram plot in Figure 3
derived from about 60000 40x40 km? GATE pixels. The figure dis-
plays the distribution of the rainrate areal average on a log-
arithmic scale. The distribution appears to be fairly symmetric

in support of the above discussion.
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Table 2.

Table 3.

ESTIMATED m FOR
Each number represents estimates for a 10 by 10 pixel
The total area covers the whole of the GATE
The four corners contains no data.

average.
area.

—-—- .40
.55 .96
.94 .95
.94 .95
.94 .97
.96 .97
.95 .97
.91 .97
.18 .97
-—= .87

.69
.98
.96
.96
.98
.97
.98
.98
.98
.98

10 BY 10 PIXEL AVERAGES

.89 .88
.97 .97
.98 .97
.98 .99
.98 .99
.98 .98
.98 .98
.98 .99
.99 .98
.98 .99

.92
<94
.92
.98
.99
.99
.99
.99
.98
.99

.86
.93
.97
.98
.99
.99
.99
.99
.99
.99

.85
.96
.96
.98
.99
.99
.99
.98
.98
.99

ESTIMATED LAMBDA FOR 10 BY 10 PIXEL AVERAGES

Each number represents estimates for a 10 by 10 pixel
The area covers the whole of
Data are missing in the four corners of GATE.

area average.
areaq.

.050
.031
.041
.072
.086
.134
.109
.817

.0717
.024
.025
.073
.094
. 099
.092
.106
.125
1.124

.029
.015
.045
.081
.098
. 096
.101
.086
.113
.212

.019 .019
.028 .029
.047 .047
.071 .048
.080 .057
.082 .079
.079 .071
.098 .078
+109 .114
.143 .123
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.019
.033
.089
.0565
.059
.056
.061
.083
.106
114

.028
.049
.053
.075
.065
.076
. 069
.100
.108
.164

.049
.038
.068
.084
.074
.073
.086
.124
.140
1671

.62
.96
.87
.98
.99
.99
.99
.98
.98
099

the GATE

.233
.074
.066
.080
.076
.076
.083
.111
.1451
.502

.70
.95
.91
.98
.98
.97
.96
.81

.506
.086
.089
.094
.115
157
«170
.350



Table 4. ESTIMATED m FOR INDIVIDUAL PIXELS.
Each number represents the estimates for a 4 km by 4 km
area average. The total area is 40 kms by 40 kms situ-
ated at the center of the GATE area.

.91 .93 .82 .93 .90 .92 .87 .88 .88 .92

.87 .91 .90 .91 .93 .91 .92 .87 .89 .88
.89 .91 .92 .93 .94 .94 .93 .90 .85 .89
.91 .90 .86 .85 .91 .93 .94 .94 .92 .91
.90 .86 .83 .88 .92 .95 .94 .90 .94 .90
.93 .90 .83 .88 .89 .94 .91 .92 .92 .94
.82 .80 .82 .87 .88 .90 .87 .92 .92 .93
.88 .83 .82 .89 .90 .85 .87 .92 .91 .90
.89 .83 .82 .89 .91 .92 .87 .89 .88 .92
.90 .86 .91 .91 .93 .89 .86 .86 .91 .91

Table 5. ESTIMATED LAMBDA FOR INDIVIDUAL PIXELS.
Each number represents the estimate for an individual
pixel. The total area covers an area of 4o kms by 40 kms
situated at the center of the GATE areaq.

.86 .40 .57 .49 .66 .53 .81 .68 .72 .40
.50 .38 .57 .52 .43 .57 .48 .88 .75 .60
.44 .41 .37 .40 .38 .41 .50 .68 1.05 .60
.84 .39 .53 .51 .40 .37 .38 .42 .56 .54
.86 .52 .62 .34 .32 .22 .34 .61 .50 .18

.28 .39 .57 .38 .39 .21 .37 .50 .53 .45
.65 .67 .61 .41 .38 .36 .57 .40 .54 .45

.81 .50 47 .37 .33 .57 .53 .36 .50 .61
.26 .45 .65 .45 .42 .33 .49 .40 .52 .40
.24 .52 .39 .47 .37 .46 .60 .56 .41 .45
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7. SIMULATION

We end this note with a short graphical comparison between
time series from (1) and a typical time series from the GATE data.
It should be noted that in the foregoing discussion we made no
restrictions on the Y's and I's in (1) except for the requirements
that they be non-negative integers. 1In fact (2) is a more general
model since even this last restriction is removed. Thus, if (1)
is capable of producing realizations which resemble real rainrate
data, this shows all the more the adequacy of (2) which is the

model we used all along in the foregoing discussion.

Now, there are many ways to simulate (1). One simple and
fast way is to take the Y's and I's as independent Poisson random
variables with parameters m and A respectively. By this
process we generated the time series in Figure 5. Figure 4 shows
a typical time series from GATE which constitutes 100 hours. The
sudden bursts of rain storms, duration, intensity, decay and inter
arrival times between storms in the real and simulated

realizations are guite intriguingly similar.

- 18 -
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Figure 3. A histogram obtained from a large number of 40x40 km?
GATE pixels. The observations are log-areal averages.
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Figure 4. 400 observations from a typical GATE time series taken

every 15 minutes. The pixel size is 32 km?.

- 19 -

~N

-

r



20

D-20

SIMULATED RAINM FRATE

M=.99,LAMEDA=.04

) \i | }HH[“&GB
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[ |

SIMULRTED RrRIH RATE

M=.%22,LAMEDRA= .92

Figure 5. Realizations from (1). {Yn,i)' (In} are independent
Poisson random variables with parameters m,A respec-

tively.
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SUMMARY

The puzzling experimental fact that rainrate tends to follow
a lognormal distribution was explained with the aid of a model.
Accordingly, under some conditions, as a rain storm develops,
rainrate tends to follow a lognormal distribution. The conditiqns
on the model parameters are shown to be satisfied fairly closely
by the GATE data for time series which consist of rainrate
averages over sufficiently large pixels observed every 15 minutes.
A variant special case of the model is capable of producing reali-
zations which appear to be very similar to real rainrate time
series. Another fact is that the eigenvalue conditions necessary
for the almost sure convergence of the weighted least sguares
estimates are well satisfied by the GATE data. 1In light of all
these 5onsistencies it is hoped that the model (2) can serve in

settling other intriguing facts about rain.
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