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Abstract 

The paper presents the 
verification of a new method for 
computing sensitivity derivatives of a 
coupled system. The method deals with a 
system whose analysis can be partitioned 
into subsets that correspond to 
disciplines and/or physical subsystems 
that exchange input-output data with each 
other. The method uses the partial 
sensitivity derivatives of the output 
with respect to input obtained for each 
subset separately to assemble a set of 
linear, simultaneous, algebraic equations 
that are solved for the derivatives of 
the coupled system response. This 
sensitivity analysis is verified using an 
example of a cantilever beam augmented 
with an active control system to limit 
the beam's dynamic displacements under an 
excitation force. The verification shows 
good agreement of the method with 
reference data obtained by a finite 
difference technique involving entire 
system analysis. The paper also 
demonstrates the usefulness of a new 
system sensitivity method in optimization 
applications by employing a piecewise- 
linear approach to the same numerical 
example. The new method's principal 
merits are its intrinsically superior 
accuracy in comparison with the finite 
difference technique, and its 
compatibility with the traditional 
division of work in complex engineering 
tasks among specialty groups. 

u s t  of Svmbols 

Ai vector of functions 
b beam rectangular cross-section 

C 
width 
damping constant - design variable 
vector for the controls subsystem: 
and, controls subsystem subscript 

f functional relationship 
F(t) dynamic forcing function 
G gain matrix 
h beam rectangular cross-section 

depth 
I identity matrix 
J (x, y) Jacobian matrix of a x/a y 
n mass (inertia) matrix 
m mass 
N number of the function vectors Ai 
ni 
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length of vectors Ai and Yi 
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U 
W 
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Ti 

X 
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w 

Ti 

Ricatti matrix 
vector of time-dependent 
displacements 
structures subsystem subscript 
static transverse load on beam 
control input variable 
vector of static displacements 
state vector 
vector of design variables 
vector of unknowns in the system 
analysis 
generalized coordinate vector 
matrix of natural vibration modes 
user controlled factor in the 
Kreisselmeier-Steinhauser function 
natural vibration frequency 
critical damping €or i-th 
vibration mode 

Other symbols used locally are defined 
!.:!-..?re first introduced. 

Introduction 

The merger of structures and active 
controls in control-augmented structures 
appears to be one of the most promising 
means that have recently become available 
to engineers for making a quantum jump in 
structural efficiency, especially for 
dynamic applications in flight and ground 
vehicles, and in space structures. While 
extending the design freedom, inclusion 
of the active controls confronts 
structures designers with a coupled 
system whose behavior is a resultant of 
the structures-controls interaction 
governed by the design variables 
available in both disciplines. 
complexity of that behavior limits the 
effectiveness of intuition and past 
experience as design guides and suggests 
the use of a formal sensitivity analysis 
to support human judgment and to provide 
a basis for numerical optimization. 

Recognizing the above, ref.1 
presents a method for sensitivity 
analysis of the control-augmented 
structure, and ref.2 reports on the 
numerical optimization results using the 
sensitivity data. The sensitivity 
analysis developed in ref.1 is based on 
the classical, quasi-analytical approach 
of representing the entire system by a 
single set of governing equations that 
incorporates terms pertaining to both 
subsystems - structures and controls. 
These equations are differentiated with 
respect to the design variables to yield 
the sensitivity equations containing 
the derivatives of behavior as unknowns. 
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The purpose of the study reported 
herein is to test a new, alternative 
method of evaluating the structure- 
control system behavior sensitivity 
derivatives using the decomposition 
approach introduced in ref.3, and to show 
an example of the use of the method in 
optimization. In the method of ref.3, , 

the sensitivity equations are assembled 
from building blocks in which each block 
represents the partial sensitivity 
derivatives of each subsystem's output 
with respect to its input and its design 
variables. 
alternative method is that the partial 
sensitivity data are obtained from 
separate subt'asks, self-contained within 
each of the subsystems. This supports 
the division of large engineering 
projects among specialty groups, is 
compatible with the technology of 
distributed computing, and enables one to 
use experimental sensitivity data. 

Structures-Controls System 

The principal merit of this 

It is expedient to use a test case 
to introduce the method. The test case 
structure is a simple, cantilever beam 
shown in Fig.1, subjected to static loads 
and to a dynamic excitation force at the 
tip. The model is controlled by two sets 
of actuators - one for the tip lateral 
displacement and another for the tip 
rotation. The active controllers limit 
the beam's dynamic displacements within 
prescribed bounds. The structure must 
also be sized to limit the static 
stresses below allowable levels. 

The optimization problem to be 
solved for this system calls for the 
minimization of two objectives: the sum 
of the structural weight of the beam and 
the weight of the control system, and the 
control system effort. The control 
system weight component is assumed to be 
a simple analytical function of the 
control effort. Minimization of the 
control system effort is carried out 
within the control subsystem by recourse 
to the classical linear quadratic 
controller synthesis. 

static displacements and stresses, 
dynamic displacements, and natural 
frequencies. The design variables are 
the ratio of critical damping to 
frequency in the control subsystem and 
the beam cross-sectional dimensions 
in the structure subsystem. Additional 
details of the example are available in 
the Appendix. 

In order to perform the 
optimization, it is necessary to 
calculate derivatives of the entire 
system response with respect to the 
design variables; the new method for 
sensitivity analysis is implemented for 
that calculation. 

Constraints are imposed on the 
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Structures Subsystem 

The beam constitutes a structure 
subsystem in the structure-control 
System. It is discretized in the 
span-wise direction into five segments of 
equal length. In the finite element 
displacement method used in the study, 
the finite element model has six nodal 
points, twelve elastic degrees of freedom 
(two per nodal point), and five two- 
dimensional beam finite elements. A 
lumped mass representation is used to 
model the beam inertial characteristics. 

The structural analysis for the beam 
dynamic response is comprised of 
equations for eigenfrequencies and 
eigenmodes 

(X - w2 M)@i = 0 (1) 

and of load-deflection equations for the 
static loads 

K w = T  ( 2 )  

where w is a vector of static 
displacements and T is the load vector. 
TWO different sets of design variables 
are used in the structure subsystem. The 
first set includes the reciprocal of 
the cross-sectional bending moment of 
inertia and the cross-sectional area of 
each segment of the beam. The other 
combination is the width and depth of the 
rectangular beam cross-section for each 
segment. 

Controls Subsvstem 

It is assumed that the actuators are 
part of an optimal control system with a 
linear quadratic regulator, so that the 
control system is described by the 
following equations. The equations of 
motion for the dynamical system are 

[MI(y) + [Cl(i-) + [Kllr)- = 

A modal transformation, that can be 
written as 

[bl(u) + [bl(F) (3) 

( 4 )  

enables one to define a state vector as 

(XI = I-;-} (5) 

in terms of which the state equation 
becomes 

where 



(7) 
Generic Solutioq 

system’s governing equations are 
partitioned, with each partition 
corresponding to a distinct engineering 
discipline, and/or a physically distinct 
subsystem. The following notation 
defines the i-th partition 

Taking the approach from ref.3, the 

Ai~(X? ...? Yj, ...), Yi) = 0 (15) 

where Ai is a vector of functions equated 
to zero, so that they form a set of ni 
equations. The quantities in the inner 
parentheses are the inputs that must be 
given in order to solve eq.15 for Yi. 
These inputs entail the independent 
variables X which include design 
variables and externally prescribed 
constants, and dependent variables Yj, 
j # i. The latter are obtained from 
solutions of the other partitions Aj, 
j # i, and represent couplings of Ai to 
Aj’S. The couplings require that the 
entire set of governing equations 
composed of the partitions such as 
eq.15 must be solved as a set of 
simultaneous equations - an iterative 
solution method is commonly used for 
large? complex, and nonlinear systems. 

the partitions Yi, is obtained for a 
given vector X, the sensitivity 
derivatives of Yi with respect to X are 

When the solution Y, composed of all 

The optimal control problem is one 
in which the following quadratic 
performance index is minimized 

((xITIQ1 (x)+(u)TCR1 (u))dt ( 8 )  .-la 
subject to 

(2) = [Al(x) + [Bl(u) 

where [ Q ]  and [R] are arbitrary weighting 
matrices. The solution of the above 
linear quadratic regulator problem 
results in the nonlinear algebraic 
Riccati equation. 

The solution of this equation yields the 
symmetric positive definite matrix 
referred to as the Riccati matrix, which 
is then used to obtain the gain matrix 
from the relationship 

[GI = IRl’l[BIT[pl (10) 

The control input vector, computed front 
the system response using the gain 
matrix, can now be written as 

(UI = - [GI (XI (11) 

and substituted into the state equation 
so that the controlled system response 
may be obtained from 

( G I  = [Al(x) + [BI(F) 

[AI = [AI - [BI[GI 

(12) 

where 

(13) 

Once the state vector has been found from 
integration of eq.12, the dynamic 
displacement vector may be obtained from 
eq. 4. 

system is the damping constant, c, 
defined as 

The design variable in the control 

for the i-th eigenmode. In the above 
analysis, this variable affects the state 
solution via the matrix [A]. 

gvstem Sensitivitv Analvsis 

Solution to the structure-control 
system is based on the algorithm 
introduced in ref.3. The essence of the 
referenced approach is stated first, 
followed by its adaptation to the problem 
at hand. 

computed as a 
simultaneous, 

I . . 
I 

Jji 

solution of a set 
linear, algebraic 

Jij . . 
e *  

. . I  

of 
equations 

(16) 

In these equations, the matrix of 
coefficients has unities on the 
diagonal and its off-diagonal submatrices 
are the Jacobian matrices of the partial 
derivatives of output with respect to 
input for the coupled Ai’s. Specifically, 
expressing Yi as an implicit function of 
the inputs to Ai 

Yi = fi(X, ..., Yj ,... ) ,  j =: i (17) 

the Jacobian Jij is 

It consists of the partial sensitivity 
information, obtainable locally for each 
Yi by treating it as a function of given 
arguments according to eq.17. 
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The right hand side vector in eq.16 
contains the partial derivatives of 
Yi with respect to a particular Xk, one 
at a time, also computable locally from 
eq. 17. 

on to Numerical ExamDlg 

Applying the approach described in 
ref.3 to the example case, we define the 
structure-control system by a schematic 
representation shown in Fig.2, where S 
represents the structures subsystem and C 
represents the controls subsystem. The 
vector Y includes interaction of one 
subsystem with the other. The physical 
influence of the controls subsystem on 
the structures subsystem is through the 
actuator forces. However, the system 
equations of motion (eq.3) and evaluation 
of the dynamic displacement constraints 
have been included in the analysis of the 
Control Subsystem. Consequently, in the 
partitioned mathematical model of the 
system, the controls-to-structures data 
channel needs to transmit only the 
control system mass data that has to be 
accounted for in the vibration analysis 
in order to compute natural vibration 
frequencies and modes. 

The other data channel represents 
the structurels influence on the control 
system through the vibration frequency 
and mode shapes. In addition to the data 
coupling the two subsystems, there is 
data output to the outside representing 
response of the entire system. This data 
is the output from each subsystem as 
f 01 lows : 

Structures: weight, natural 
frequencies and the values 
of the static stress and 
displacement constraints. 

Controls : weights and the values of 
the dynamic displacement 
constraints. 

Table 1 summarizes the coupling data and 
the design variables for both subsystems, 
and additional numerical details are 
given in the Appendix. 

The generic governing equations may 
be written, in this particular case, as 
partitioned into the structural analysis 
S and control analysis C, and coupled by 
the presence of the output of one in the 
input of the other: 

C( (XCIYS) IYC) = 0 (20) 

These equations correspond to the groups 
of equations 1-2 and 3 through 13, 
respectively. 

and 20 yield the interactions, Y, as 
implicit functions of the design 
variables Xs and Xc as 

When taken separately, equations 19 

ys = fS(XSIYC) I yc = fC(X,lYS) (21) 

When solved simultaneously, equations 19 
and 20 produce the Y unknowns as 
functions of the variables xs and xc. 

sensitivities of eq.16 take on the 
following form: 

Accounting for eq. 21, the generic 

where the character I * '  may be 
substituted by either Xs or Xc. 
The sensitivity solution, dY/dX, is 
obtained for one design variable at a 
time . 

The partial derivative data that 
make up eq.22 is obtainable 
separately within each of the 
participating "black boxesI1 of 
structures and control by any technique 
available, e.g., analytically, by finite 
differences, or could even be produced 
experimentally. A simple, one-step- 
forward finite difference technique is 
used in this study in both the structures 
and controls subsystems. 

Verification of the System Sensitivity 
Analysis and Results 

To verify the system sensitivity 
method represented by eq.22, the 
following stepwise procedure was 
implemented: 

1. The structure-control system is 
analyzed by solving eq. 19, 20 
for Y's for assumed values of X. 

2. Partial sensitivity derivatives with 
respect to X's and Yls are computed by 
finite difference for structures and 
controls separately, using, as 
reference values, the X's and Y's 
satisfying equations 19 and 20. 

3. The partial sensitivity derivatives 
obtained above are input to the system 
sensitivity eq.22, which are then 
solved for the sensitivity derivatives 
with respect to the XIS. 

4. The system sensitivity derivatives of 
Y with respect to X were calculated 
again by a finite difference 
technique, this time involving the 
coupled system analysis, i.e., eq.19, 
20 and using the same Y and X 
reference values as in step 2. 

obtained in steps 3 and 4 are 
compared. 

5. The system sensitivity derivatives 
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This comparison is illustrated by 
typical data samples in Tables 2, 3, and 
4 that display sensitivity derivatives 
obtained for the following data: 

Beam length 500 in 
Beam Moment of Inertia 144 in4 
Beam cross-sectional Area 48 in2 . 
Damping constant, c 0.01 
material properties for Al-alloy 

The constant parameters (gain 
levels) are set to achieve very low 
(almost negligible), moderate, and high 
levels of the control presence in the 
structural dynamics by changing the 
weighting matrices in the controls 
performance index. The results are shown 
in Tables 2, 3, and 4, respectively. 

All three tables pertain to the 
controls design variable and the columns 
in each table are, from the left: results 
from Step 4, results from Step 3, and 
relative error of the results from step 3 
with respect to the results from Step 4. 

The sample shows that the agreement 
of the results produced by the method 
proposed in ref.3, represented herein by 
eq.22, agree very well with the finite 
difference verification. The only 
discrepancies correspond to the 
relatively small derivative values, and 
are attributed not to error in the method 
being tested, but to a loss of accuracy 
of the finite difference technique caused 
by the limited word length in the 
computer. The sample shows also that the 
errors relative to the finite difference 
results are greater for the case of 
moderate level of control (Table 3). 
This is so because the effect of the 
small finite difference step gets 
submerged in the numerical error of 
the simultaneous solution of eq.19, 20 - 
a confirmation of the effect predicted in 
ref.3. The comparisons for other design 
variables of the problem were found to be 
qualitatively the same. 

$vstem Sensitivitv Derivatives 
Used in ODtimizatiQn 

System sensitivity derivatives 
quantify "what if" questions that are an 
intrinsic part of the design process. 
They can also be used to guide a formal 
optimization algorithm. To demonstrate 
their usefulness in the latter, the 
structure-controls system was optimized 
by a piecewise-linear optimization 
method, using the system sensitivity 
derivatives calculated via eq.22 at each 
linear stage. 

optimization problem is given in the 
Appexdix, and the optimization procedure 
follows a sequence in which the system is 
initialized and a solution of this 
initial system (eq.19, 20) is obtained. 
The partial sensitivity derivatives for 
the structure and control subsystems 
are computed separately (see step 2 in 

The mathematical statement of the 

the procedure listed in the previous 
section), followed by a solution of eq. 
22 for derivatives of the system response 
with respect to the design variables. 
The system is then optimized by 
approximating the objective function and 
constraints by linear extrapolation with 
respect to design variables, using the 
derivatives obtained above (see the 
Appendix for details of the formulation), 
and restricting the change of design 
variables by prescribing lower and upper 
bounds. The results from this design are 
used as the new set of variables for 
which the sensitivities must be obtained. 
This procedure is repeated until 
constraints are satisfied and there is no 
appreciable change in the objective 
function for three cycles of design. 

The optimization procedure performed 
as expected. Fig. 3 and 4 illustrate 
typical histograms of the objective 
function of weight vs. iteration number 
for a feasible and infeasible initial 
design point, respectively. The usable- 
feasible directions algorithm (ref.4) is 
used for searching the design space in 
Step 5. The overshoot peak of the 
histogram for optimization started from 
an infeasible point (Fig.4) is typical 
for the usable-feasible directions 
algorithm. Although the problem is highly 
nonlinear, the procedure converged to 
essentially the same final design (see 
Appendix) confirming the system 
sensitivity analysis formulated in ref.3 
as useful in optimization. 

Conclusions 

A method proposed in ref.3 for 
computing sensitivity derivatives of an 
internally coupled system to design 
variables was tested by application to a 
simple, control-augmented structure. The 
method yields the system sensitivity from 
the solution of linear, algebraic 
equations built from the partial 
sensitivity information obtained 
independently for each of the subsystems. 

Comparison of the results with the 
reference results produced by a finite 
difference technique applied to the 
solution of the entire system confirmed 
good performance of the method of ref.3. 
Also, it demonstrated that the finite 
difference technique when applied to an 
internally coupled system may lose 
accuracy due to the system solution noise 
overwhelming the effect of the small 
finite difference step. 

derivatives obtained in a manner 
presented in the paper was demonstrated 
by a successful application in the formal 
optimization of a control-augmented 
structure. The principal benefits of the 
system sensitivity analysis implemented 
in this paper are an improved accuracy in 
comparison to the finite difference 
method involving the entire system 

The usefulness of the sensitivity 
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analysis, and further, the decomposition The following extrapolations are made in 
of the system sensitivity analysis into 
partial sensitivity analyses performed 
separately in each discipline and 
subsystem. 
workfront of people and computers in 

specialized sensitivity analysis methods , dXS 

approximate analysis coupled to an 
optimization program: 

This should support a broad 
d(Ws + WC)i 

design organization and allow use of wti+l = uti + AX8 + 
unique to each discipline. 

1. 

2 .  

3. 

4. 

5 .  

6 .  
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ADDendiX 

Definition of the EXamDle 

The optimization problem is stated 

minimize 

W t W  = WS(X) + WC(X) (A1 1 

(A2 1 
subject to 

g(X) = f(static tip displacements) 
g (X) = f (natural frequencies) 
g(X) = f(static stresses) 
g(X) = f (dynamic displacements) 

XL I x 5 xu 

Move limits ranging from 2.5 % to 10 % 
are included in eq. A3. The constraints 
represented in eq. A2 are as follows: 

dl 

dla 

dr 

d ra 

91 = - - 1 5 0  

92 = - - 1 5 0  

W 1  

Wla 
9 3 = - -  + 1 5 0  

02 

W2a 
g 4 = - -  + 1 ( 0  

L7 

9 5 = - -  1 5 0  
L7a 

ddl 
1 5 0  - -  

g6 = ddla 

ddr 
1 1 0  - -  

97 = ddr, 

where the limits are set as: 
(A7 1 

dl static lateral 

dr static rotational 

w 1  first natural 

w 2  second natural 

ddl dynamic lateral 

ddr dynamic rotational 

displacement 50.0 in 

displacement 0.2 rad 

frequency 1.0 Hz 

frequency 1.25 Hz 

displacement 50.0 in 

displacement 0.15 rad 

U static stress 30,000 psi 

The stress constraint 45 is formulated as 
a single cumulative constraint 
representing static stress in all the 
elements of the beam due to static loads 
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TI, T2, T3. The cumulative constraint 
is taken in form of the Kreisselmeier- 
Steinhauser function (KS function) 
introduced in ref.5. The KS is a 
continuous, differentiable envelope of a 
family of functions, SO that for 
constraint functions gj: 

The KS function has the property of 

The effectiveness of that function in 
structural optimization has been reported 
many times, for example, in ref.6. In 
this application the KS-based cumulative 
constraints are also used in eq.A6 for 
constraints 96 and 97 to represent 
dynamic displacements due to dynamic 
force F at several discrete time 
intervals. 

The design variable and behavior 
variable vectors for the structure and 
control subsystems are: 

2 ri xc = ( c ) = - 
W i  

yc ( mc, wc, 96, 97 I T  (A131 

where the control subsystem weight is 
approximated as a function of the control 
effort by an analytical expression: 

9 

i=l 
W, J c K, 1 ui 1112 (A141 

The numerical data for the example is: 

E I 10.5 * 106 psi (A151 
- - 0.1 slug/in3 

0.3 
500 in 
1000 lb 
5000 lb 
1000 lb 

- P S  
U - 
L - - - - 

- - T1 
T2 
T3 - - 

The excitation force is given as a ramp 
function of time such that 

F(t) = k * t (A161 

where k = 1000 lb/sec. and the time, t, 
varies from o to 2 sec. The entire 
optimization problem is limited to the 
two second time period for the dynamic 
response. 

QQ- u s  

Case 1: Feasible Initial Desisn. 

Initial design data: (A17 1 
Xs = 10 in. for all b and h values 

in each finite element 

X s ~  = 3.0 in. Xsu = 36.0 in. 

Wt = 5064.17 lb 

x, = 0.01 

XCL = 0.01 XCU 0.06 

Optimal design data: (A18 1 

XS XC 

3.1519 
14.177 
3.1133 
12.394 
3.0000 
10.141 
3.0000 
6.9576 
3.0000 
3.3719 

0.06 

Wt = 1509.17 lb* 

*(4% violation of static stress 
constraint) 

Case 2: Infeasible Initial Desisn. 

(A191 

Xs = 5 in. for all b and h values in 

xc = 0.01 
(Lower and upper bounds are same as 
in Case 1) 

Initial design data: 

each finite element 

(A2 0 1 Optimal design data: 

XS XC 

3.1480 
14.255 
3.0123 
12.451 
3.0430 
10.115 
3.0000 
6.9571 
3.0000 
3.3197 

Wt = 1502.48 lb 

0.06 
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TABLE 1 Structures - Controls coupling Data and Design Variables. 
Structures Subsystem 

(Equations: 1,2) 

Ys - output from Structures input to Controls: 

Q, - matrix of natural vibration modes. 
0 - array of the natural vibration frequencies. .......................................................................... 

Y, - output from Structures to outside: 

Ws - structures weight 
41-95 - values of constraints on static stress, static 

displacements and natural frequencies .......................................................................... 
Xs - design variables directly influencing structure: 

w,h - width and height of the beam rectangular cross-section .......................................................................... 
Controls Subsystem 

(Equations: 3 through 13) 

Yc - output from Controls input to Structures: 

beam vibration 
mC - control subsystem mass participating in the 

.......................................................................... 
Yc - output from Controls to outside: 

WC - control subsystem weight 
9(jrg7 - values of dynamic displacement constraints ........................................................................... 

Xc - design variables directly influencing Controls: 

c - ratio of critical damping factor to frequency 

TABLE 2 Control Level: Low 
Finite GSE z 

Difference Difference 

DYs/DXc 

0.63960E+01 0.638873+01 0.11 
0.20304E+03 0.2018 4E+03 0.59 
0.58682E-02 0.85049E-02 0.74 
0.26325E-01 0.26024E-01 1.14 
0.15871E-03 0.15833E-03 0.24 
0.32208E-03 0.32118E-03 0.28 
0.293553-01 0.29358E-01 0.01 
0.31789E-01 0.31317E-01 1.49 
0.24835E-03 0.24771E-03 0.26 
-.31898E-03 -.321323-03 0.73 
0.563263-01 0.56031E-01 0.52 
-.42717E-01 -.42761E-01 0.10 
0.27978E-03 0.27713E-03 0.95 
-.11067E-02 -. 10984E-02 0.76 
0.84043E-01 0.834 59E-01 0.69 
-.16504E+00 -.16436E+00 0.41 
0.26853E-03 0.26734E-03 0.45 
-.11968E-02 -.11940E-02 0.23 
0.11007E+00 0.10937E+00 0.64 
-.26683E+00 -.26588E+00 0.36 
0.25456E-03 0.25362E-03 0.37 
-.88010E-O3 -.87980E-03 0.03 
0.00000E+00 0.00000E+00 0.00 
0.00000E+00 O.OOOOOE+OO 0.00 
0.00000E+00 0.00000E+00 0.00 -. 31988E-01 -.31760E-01 0.71 -. 12755E+OO -. 12707E+00 0.38 
0.00000E+00 0.00000E+00 0.00 

DYCIDXC 

-. 54166E+OO -. 54149E+00 0.03 
-.209073+03 -.20905E+03 0.01 
0.88215E-01 0.89733E-01 1.69 
0.13431E+00 O.l3612E+OO 1.33 

TABLE 3 Control Level: Moderate 

Difference Difference 
Finite GSE z 

D Y s / D X c  

0.99818E+00 
0.34587E+02 
0.62088E-03 
-.56674E-01 
0.82849E-04 
0.51425E-02 
0.46690E-02 
0.31988E-01 
-.38805E-06 
-.33497E-02 
0.83447E-02 
-.24339E-01 
0.69073E-04 
0.21389E-02 
0.12318E-01 
-.23010E-01 
0.15522E-04 -. 20629E-02 
0.15895E-01 
-.19669E-01 
0.519996-04 
0.12511E-02 
0.00000E+00 
0.00000E+00 
0.00000E+00 
-.49671E-02 
-.21060E-01 
0.00000Et00 

0.10989E+00 
0.38611E+00 
0.1433OE-02 
0.50202E-02 
0.266143-04 
0.620563-04 
0.49235E-02 
0.60925E-02 
0.41292E-04 
-.60622E-04 
0.93419E-02 
-.78102E-O2 
0.45602E-04 -. 20424E-03 
0.138241-01 
-.29951E-01 
0.43346E-04 
-.21153E-03 
0.17997E-01 
-.47254E-01 
0.40773E-04 
-.14467E-O3 
0.00000E+00 
0.00000E+00 
O.OOOOOE+OO 
-.52758E-O2 
-.23602E-O1 
0.00000E+00 

9.17 
10.42 
56.67 

108.86 
67.88 
98.79 
5.17 
80.95 
100.94 
98.19 
10.67 
67.91 
33.98 
109.55 
10.89 
23.18 
64.19 
89.75 
11.68 
58.38 
21.59 
111.56 
0.00 
0.00 
0.00 
5.80 
10.77 
0.00 

DY C /  DXC 

-.77337E-01 -.81238E-01 4.80 -. 29844E+02 -.31440E+02 5.08 
0.66012E-01 0.875623-01 24.61 
0.790263-01 0.11993E+00 34.11 
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TABLE 4 Control Level: High 
Finite GSE * 

Difference Difference 

0.78328E+01 
0.29663E+03 
0.10070E-01 
0.3899lE-01 
0.187043-03 
0.44703E-03 
0.34322E-01 
0.46889E-01 
0.286383-03 
-.43656E-03 
0.649693-01 
-.58313E-01 
0.31665E-03 -. 155143-01 
0.96162E-01 
-.22199E+00 
0.298023-03 
-.15196E-02 
O.l2438E+OO 
-.34272E+00 
0.28095E-03 
-.98255E-O3 
0.00000E+00 
0.00000E+00 
0.00000E+00 
-.36558E-01 
-.17767E+00 
0.00000E+00 

0.782763+01 
0.29595E+03 
0.10081E-01 
0.38653E-01 
0.18706E-03 
0.47787E-03 
0.34486E-01 
0.47030E-01 
0.28819E-03 
-.46235E-O3 
0.65184E-01 
-.58194E-01 
0.315163-03 
-.15342E-O2 
0.960323-01 
-.22184E+00 
0.29639E-03 
-.15293E-02 
0.12448E+00 
-.34279E+OO 
0.27663E-03 
-.97852E-O3 
0.00000E+00 
0.00000E+00 
0.00000E+00 
-.36709E-01 
-.17709E+OO 
0.00000E+00 

0.07 
0.23 
0.11 
0.87 
0.01 
6.45 
0.48 
0.30 
0.63 
5.58 
0.33 
0.20 
0.47 
1.11 
0.13 
0.07 
0.55 
0.64 
0.08 
0.02 
1.54 
0.41 
0.00 
0.00 
0.00 
0.41 
0.33 
0.00 

DYc/DXc 

-.52992E+OO -.52977E+00 0.03 -. 20453E+03 -.20448E+03 0.03 
-.84192E-01 -.78970E-01 6.20 
-.16570E+00 -.16844E+00 1.63 

Actuators for: 

t A -displacement. 
0 -rotation. 

Figure 1 .- Can t i l eve r  beam w i t h  actuators .  

4 X S  fC 
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YS 

Figure 2.- Coupled, s t ruc tu re -con t ro l  system. 
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F igure 3 . -  Histogram o f  o p t i m i z a t i o n  s t a r t e d  
from a f e a s i b l e  design. 
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Figure 4.- Histogram o f  o p t i m i z a t i o n  s t a r t e d  
from i n f e a s i b l e  design. 
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