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The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one

of the candidates for Space Station prime power application. In the low earth

orbit of the Space Station approximately 34 minutes of the 94-minute orbital

period is spend in eclipse with no solar energy input to the power system. For

this period the SDPS will use thermal energy storage (TES) material to provide

a constant power output. Sundstrand Corporation is developing a ORC-SDPS

candidate for the Space Station that uses toluene as the organic fluid and

U OH as the TES material. 0) An integrated heat-pipe thermal storage re-

ceiver system is being developed as part of the ORC-SDPS solar receiver. (2,3)

This system incorporates potassium heat pipe elements to absorb and transfer

the solar energy within the receiver cavity (Fig. 1). The heat pipes contain

the TES canisters within the potassium vapor space with the toluene heater

tube used as the condenser region of the heat pipe. During the insolation

period of the earth orbit, solar energy is delivered to the heat pipe in the
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Fig. 1. Rankine cycle receiver.

ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux

incident in the heat pipe surface within the receiver cavity to Ian essentially

uniform flux at the potassium vapor condensation interface in the heat pipe.

During solar insolation, part of the thermal energy is delivered to the heater

tube and the balance is stored in the TES units. During the eclipse period of

the orbit, the balance stored in the TES units is transferred by the potassium

vapor to the toluene heater tube.

The solar receiver heat pipes are similar to conventional alkali metal

heat pipes but they are unique in operational characteristics. The solar
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radial flux is delivered to a semicylindrical surface section of the heat pipe,

and it varies in power density from end to end with a peak flux of about

7.5 w/cm2 approximately 50 cm from one end. The operational temperature is

limited to 775 K in the potassium vapor space under the maximum heat input to

each pipe of 5.7 M During eclipse the heat pipe is required to continue to

function in a transfer mode, using the latent heat of the 00H as the heat

source to provide the necessary heat to the toluene heater. The resulting

heat pipe design, shown'in Fig. 2, has been developed to meet these require-

ments.

EEN (Typ)

`/RTES

SCREEN (Typ) BOILER TUBE

Fig. 2. Axial heat pipe with thermal storage units.

A developmental performance verification heat pipe was constructed from

stainless steel tubing 190 cm in length with an outside diameter of 12.7 cm.

The wick structure designed to provide liquid return for the varied heat

transfer performance requirement consisted of three layers of 100 mesh screen

placed against the inner wall for circumferential distribution of the potassium

fluid. Similar layers of screen were placed around the TES units and heater

tube to provide a fluid path for the condensate during operation. Axial fluid

distribution was provided by six arteries, two between each of the TES units
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and two between the heater tube and the circumferential distribution wick.

Potassium was vacuum-distilled into the heat pipe and the heat pipe wet-in at

775 K to fill the screen wick and arteries. The heat pipe was tested in a

vacuum chamber, Fig. 3, with simulated solar heat input being provided by a

variable zoned rf induction coil (Fig. 4). This coil was separated into four

distinct zones, each providing a different semi-cylindrical radial heat input

flux into the heat pipe. Heat loss on the back half of the pipe was kept to

minimum with radiation shielding. Thermocouples were used to monitor the

temperature profile circumferentially and axially (Fig. 5).

SHIELDS	 PIPE

Fig. 3. Heat pipe element test setup.

Tests were conducted to satisfy the conditions of 4.8 kW throughput for

normal operation and 5.7 kW heat throughput for an upper limit. Heat through-

puts were measured using a calorimetric flow system that simulated the toluene

flow system, as shown in Fig. 6. Thermal charge and discharge of the internal

thermal storage canisters was conducted to simulate an earth orbit cycle. The

heat pipe was operated with a constant input orbit cycle. The heat pipe was

operated with a constant input of 5.2 kW during the simulated insolation period.

At 753 K, a power level of 3 kW was removed through the heater tube and the

balance of the input power was stored in the TES canisters. When the tempera-

ture of the heat pipe reached 775 K the eclips% cycle was started. The average
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r /
61 cm

30'	 TYP
/

r
TCs 9 -12	

3.8 cmr
\	 '	 TCs 13-16

TCs 1-4	 r

TCs 17 AND 18	 TCs 5-8
TCs 19 AND 20

Fig. 5. Thermocouple locations.
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Fig. 6. Calorimetry setup.

power throughput remained approximately 3.0 kW during the test cycles (Fig, 7).

The temperature swing was ± 25 K.

A test was conducted with the input flux varied axially to demonstrate the

design-peak-heat flux capability of 15 watts/cmZ . An rf coil was fabricated

to provide greater than 5 kW heat input to the heat pipe over the area that

received 15 watts/cm2 or more in normal operation. The heat pipe was

isothermal within 5 K at a temperature of 733 K with no hot spots or other

abnormalities.

Heat pipe transient performance tests were conducted to determine the

operating characteristics and power input limits of the heat pipe/thermal

storage elements under conditions corresponding to reacquisition of the sun

during emergence from the eclipse conditions and to initial start-up of the

solar dynamic power system. During start-up of the system from the frozen

state, the working fluid in the heat pipe must be melted and must be made

available to the internal phase change cycle at a rate higher than that at

which vapor from the evaporator is lost to the frozen regions of the heat

pipe. Determination of the start-up limits was established by a series of

tests conducted with decreasing times to full input power level for the heat

pipe, The most rapid start-up time was 10 seconds. These tests were completed
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without any evidence of malfunction of the heat pipe assembly. The temperature

distribution through the heat pipe was symmetric and uniform through the start-

up even in the minimum time start (Fig. 8).

An integrated heat pipe/thermal storage element has been designed and

developed that meets the functional requirements of (1) absorbing the solar

energy in the receiver, (2) transporting the energy to the organic Rankine

heater, (3) providing thermal storage for the eclipse phase, (4) allowing

uniform discharge from the thermal storage to the heater. The heat pipe

assembly has been operated at design input powers of 4.8 kW and 5.7 M

Thermal cycle tests to simulate the insulation and eclipse periods have

demonstrated the successful charge and discharge of the TES canisters. Axial

flux levels to 15 watts/cm 2 have been demonstrated and transient tests have

demonstrated that the heat pipe will successfully startup from the frozen

condition with full power at the on,Gt,
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Fig. 7. TES canister fully charged 	 Fig. 8. Temperature versus time of one
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