
I
ministère des PTT

I

Ei
iECsvLD tSY

ESA - SDS
DATE:

DCAF NO. 1Lz110
PROCESSED BY

0 NASA Sit FAcurv
fj ESA - SOS L AiAA

ENSI - 870004

Using CS-PN Software for Protocol
Specification, Validation and Evaluation

Alexandre ZENIE, Jean-Pierre LUGUERN
Département Informatique

1987

I

'EN T87CO(tL4) USING COLORED STOCHASIIC
PE TRI NET (CS-PH) SOFTWARE FOR PROTOCOL
SPECIFICATION, VALIDATION, AND EVALUATION
(Ecole Nationale Superieure des

4	
)	

1	 p

ECOLE NATIONALE SUPERIEURE DES TELECOMMUNICATIONS

N88-2258a

linda S

1 1722

ENST - 87C0014

USING CS-PN SOFTWARE FOR PROTOCOL

SPECIFICATION, VALIDATION AND EVALUATION

ALEXANDRE ZENIE, JEAN-PIERRE LUGUERN

1JPARTEMENT INFOFkMATIQUE

1987

USING CS-PN SOFTWARE FOR PROTOCOL
SPECIFICATION, VALIDATION AND EVALUATION

I. Alexandre ZENIE
	

J. Pierre LUGUERN

1987

-ENST-MAS[- BULL -

RESUME

II est important d'analyser le parallélisme entre les différentes actions d'un protocole d'une

part, et de valider le fonctionnement et d'évaluer les performances de protocoles d'auire part.

Le logiciel CS-PN, dans sa version actuelle [20], permet de specifier les protocoles utilisés en

systèmes répartis, de valider le comportement qualitatif et d'évaluer ensuite les performances

des protocoles de façon modulaire et analytique en s'appuyant sur l'outil formel des réseaux de
Petri stochastiques colorés [19].

Nous décrivons d'une part la specification au moyen du langage C 1DEOL [7], et d'autre part la
verification, la validation et ensuite l'évaluation qui constituent les différentes étapes du logiciel
CS-PN [20].

Nous appliquons ce logiciel au protocole Blesse/Attend [12], développé a 1'ENST, qui gère la

prevention dynamique d'interblocage entre transactions concurrentes dans un système de

gestion de bases de données réparties (Système R*).

Cet article fait pam des actes du congrès "4th International Workshop on Software, Specification and Design"
sponsorisd par IEEE Computer Society, ACM SIGSOFT, LCRST (Japon), Alvey Directorate (Grande
Bretagne), par l'Agence de linformarique et par IAFCET (France).

Ce congrès a eu lieu les 3-4 Avril 1987 a Monterey en Califomie.

USING CS-PN SOFTWARE FOR PROTOCOL
SPECIFICATION, VALIDATION AND EVALUATION

I. Alexandre ZENIE &
*	

J. Pierre LUGLIERN & #

& EIe Nationale Superieure des Télecemmunications, DOpartement Informatique, 46, rue Barrault, 75634 PARIS Cedex 13,
FRANCE

Université Pierre et Marie Curie, Laboratoire MASI (CNRS/UA 818), 4, place Jussieu, 75230 PARIS Cedex 5, FRANCE
BULL, Département DEDLJ DIr, 94, avenue Gambetta, 75020 PARIS, FRANCE

RESUME
It is important to analyze the paralellism

between a protocol's different actions, on the one
hand, and to validate protocol function and
evaluate performances, on the other.
The CS-PN software enables one to specify the
protocols used in distributed systems, to validate
qualitative behavior, and then, by relying on the
CS-PN formal tool, to validate protocol
performances by modular and analytic means [19].

We intend to describe the specification,
verification, validation, and afterwards, evaluation,
which make up the different steps of the CS-PN
software.
We will apply this software to a Wound/ Wait
protocol [12] which manages the dynamic
prevention between concurrent transactions in a
distributed data management system (system R*).

-_INTRODUCTION
The SPN tool [6,14,15] permits the modeling,

analysis and evaluation of computer systems'
performances [16].
Several software rely on this tool, we cite in
particular GSPN (TORINO University) [1,2], ROPS
(CERCl-CNAM-CIMSA) [5], ESPN (DUKE
University) [4], and SAN (MICHIGAN University)
[13].

The colored stochastic Petri nets tool is a
natural extension of the preceding tool, adapted to
distributed systems and protocols, because the
color conveniently takes into account the numerous
sites, transactions, granules and messages [18].
By relying on this tool, and thanks to the
collaboration of the CIMSA-SINTRA
(Velizy,FRANCE), MASI (P.M. CURIE University,
FRANCE) and AARHUS University (DENMARK)
laboratories, the CS-PN software developed at
ENST allows the specification (with the aid of the
C-DEOL language) [7], verification (by a syntactic
analysis of invariants) [3,8,11], validation (by a
semantic analysis of the colored states graph)
[9,10], and performance evaluation (by a
quantitative analysis of the colored Markovian
chain isomorph to the graph of colored states) [17]
of protocols used in the distributed systems.

The CS-PN software is applied to a Wound/ Wait
protocol decomposable into two principal modules:
request or couple (transaction, granule) treatment
module and wound treatment module.
Each module is specified, verified, validated, and
then evaluated separately, to eventually deduce a
verification, validation and evaluation of the
complete protocol.

II - THE CS-PN SOFTWARE
The CS-PN software is developed on a VAX

780-11 machine under VMS4.3 in Pascal
language.
This consists in specifying a protocol with the aid of
a C-DEOL language (a Colored Dependability
Evaluation Oriented Language) in a predefined file
named <file_name> .DEO, by using a classic
VAX-VMS editor (EDIT,EVE). The file
<file_name>.DEO is compiled in order to verify,
validate and then evaluate.

1. SPECIFICATION
While relying on the colored stochastic Petri

nets, the specification in C-DEOL uses an editor to
create a specification file to be compiled.

1 . 1 0 The C-DEOL Language
Specification in C-DEOL breaks down into four

parts:
-The declaration of different objects intervening in
the specification. These are primarily the places
and transitions and, with the introduction of colors,
the types or the color sets associated with places,
transitions, variables, and functions.
-Topological specification, in other words, the
static specification of the preconditions and
postconditions relative to each of the transitions.
-The initial dynamic specification, in other words,
the specification of the initial marking of each of
the places concerned.
-The timed specification, which is to say, the
specification of the firing rates of each transition.
The firing rates are associated with the firing
instances of transitions, which are exponentially
distributed aleatory functions.

The general structure of a specification in C-DEOL
is:

STUDY study_name;
rDeclarations*/
TYPE type_name [color 1, ... ,color C]

P L A C E place _name	 1,
place— name n [:
type_name]
TRANS trans—name 1,..., trans—name m
[:type_name];
V A R	 variable—name	 1,
variable _name v : type_name;
FUNCTION function _name (type_name
1) -> type _name 2 	 -	 -
f instruction 1;

f instruction	 k;
1	 An I instruction expresses itself in the
following manner:
color name	 1 ---> color name	 2,
color name c
where	 color name	 1	 must belong to
type_name 1, and color name 2,...,

color— name	 c	 must	 belong to
type—name 2 *1
EF
rStatic Specification*/

IF precondition THEN postcondition;
/*A precondition expresses itself in the
following manner:
term 1 AND term 2AND ... AND term n
where term is of the form:
place— name [(color)] (valuation] *1
/A postcondition expresses itself in the
following manner:
trans _name [(color)]: term 1 AND term
2AND ... AND term n
rSpecification of the Initial Marking'/ -

INITIAL
place _name [(color)] := mark—number;
END
rSpecification of Transition Firing Rates*/
RATES

trans_name [(color)] :	 . (a . m

(place _namel)[(color)] +	 . m
(place_name2) ((color)]];
END
END

The type declaration TYPE, permits the definition
of a color set. This set will be associated with one or
several places, transitions, and variables.
type_name and color are the identifiers. The
color identifier is implicitly defined as being one
color.
Declaration PLACE (respectively TRANS) allows
the definition of one or several places (respectively
transitions).
place _name (respectively trans_name) and
type_name are the identifiers. The name—type
identifier must obligatorily have been defined in a
type declaration. The mention type_name is
optional. It serves to associate a set of colors, if one

exists, with one or several places (respectively
transitions).
The VAR declaration, allows the definition of one or
several variables by specifying their colors set
variable _name and type_name are identifiers.
The type _name identifier, must obligatorily have
been defined in a type declaration.
The declaration of a function FUNCTION, enables
one to define a correspondence between each of
the colors of two sets. A color from the starting set
can have several colors of the arrival set for an
image.
In static specification, term, represents a part of the
precondition respectively of the postcondition: a
place-marking condition.
Two optional arguments are possible for specifying
this condition:

- color enables one to specify the place's color
marks used by the precondition respectively
postconditiori.
This optional argument also serves to specify the
color of a fireable transition. The possible color
argument forms are:

EMPTY
color name
• variable—name
• EVERY variable—name

function_name (color name)
• function_name (variable—name)

- valuation permits one to assign a coefficient to
the arc etiquette inputting the transition
respectively outputting the transition. It can have
three forms:

- = k: test if the marking of the place in input is
superior or equal to k. during transition
firing, the marks will be removed from the
marking.

= 0 : test if the marking of the place in input is
null.

+ = k : increments the marking of the place in
output by k marks.

By default the valuation is equal to - = 1
respectively + = 1.

In the specification of the initial marking of a place:
place _name and color are the identifiers,
mark— number is an unsigned natural number.
The color optional argument allows one to specify.
the color of the initial marks.
In the specification of the transition firing rates:
trans_name, place_name and color are

identifiers, X, a, 0 are the reals, and m designates
the place marking.
The transition firing-rate depends on the optional
color argument, and expresses itself either by
means of a real constant, or with the aid of a linear
function of the marking of one or several places.
If the real constant is be infinite, the corresponding
transition is then immediate.

1.20 Editor
Any editor from the VAX-VMS, EDIT or EVE,

for example, allows the specification of one or

several modules in a file by means of the C-DEOL
language, predefined <file name>.DEO with the
aid of command language DCLThe modules can
have one or several places in common, which
makes the specification modular.
A module must begin with the key word STUDY
and terminate with the key word END. The key
words TYPE, VAR, FUNCTION, INITIAL, and
RATES are optional. Commentaries are placed
between two particular symbols: " / for the
beginning of the commentary, and "1" for the end
of the commentary.

1.3 0 Compiler
The different modules can be compiled either

separately or with a link. The three principle
compiler functions are:

The recognition of the C-DEOL language, error
handling, and the generation of a file codification
<file_name> .<study_name>.DEO: -

-Codification	 of	 declarations
< file _name> . <study_name> . IMP for the
edition	 of	 the	 identifier	 table,
< file _name> . cstudy_name>.IDE for the
table of identifications,
<file_name> . <study_name>.DES for the
study description).
-Codification of the static specification
<

file
_name>.<study_name>.NET).

-Codification of the initial marking specification
(<flle_name>.<study_name>.INI).
-Codification of the transition firing-rate
specification
< file _name>.<study_name>.RAT).

If the compiler detects the slightest error it
generates	 the	 file
< file j7ame>.<studyname>. IER containing the
generic of each error.
If the detected error is not serious (warning of level
1 and 2) all the files are created, otherwise only the

• IER "file will be created.
The compiler can break itself down into four
packages:

- Lexical analysis
-Syntactic analysis (parser) and the generation
of information structures in internal format.
- identifier handling.
- error handling.

The lexical analyzer acts as an interface between
the file source " .DEO" and the syntactical analyzer:
It reads the file source character by character, and
recognizes the lexical units (tokens) in order to.
send the syntactical analyzer:

The chain of characters containing the lexical
unit. It is a global variable, implanted in the
syntactical analyzer and,

The lexical unit code.
As soon as the syntactical analyzer ends the
treatment of a lexical unit, it calls the lexical
analyzer to obtain another lexical unit. The call to
the lexical analyzer is thus cyclic.
When the syntactical analyzer meets an identifier (a
particular lexical unit), it calls the identifier handler,

which entrusts itself with either filing this identifier or
searching for it.
Filing takes place by attributing an identifying
number, and an address in the identifier tables.
The search for an identifier takes place through a
test of the table of identifiers.
When the syntactical analyzer detects an error, it
calls the error handler, which takes over editing the
corresponding error message.
The syntactical analyzer is thus the kernel of the
compiler, it verifies that the C-DEOL language's
syntax is well. obeyed and then generates the
different files containing the codification of the
specification.

2. VERIFICATION
The principle of verification is based on the

resolution of a linear equation of the form vt W =
0, for linear invariants v at the places, and of a
linear equation of the form W • w = 0 for the linear
invariants w on the transitions. W being the
incidence matrix built from postconditions and
preconditions. - ---------
The v (respectively w) obtained syntactic
invariants with minimal supports, express the
conservation relations of marks in the places
(respectively of repetition of transition firing) and
thus enable one to verify that specification realizes
the properties required of the protocol (the property
of mutual exclusion, the absence of certain
deadlocks, the repetition of certain actions without
modifying the rest of the protocol).
If verification does not achieve the hoped-for
results, it is then possible to start the specification
once again.

3. VALIDATION
The dynamics of specified protocol are

characterized by the accessible markings graph,
from the specified initial marking.
The construction of this graph consists in
determining whether an obtained marking is truly
accessible from the initial marking, and if it is
equivalent to an already extant marking.
The applied equivalence relation allows one to
regroup several markings in a single c-marking
(color marking). Thus, a color set is associated with
each c-marking of the graph of accessible
markings, and another color set, is associated with
each arc linking two c-markings and characterizing
the firing of a transition.
The principle of the equivalency relation is based
on the permutation of the different colors belonging
to each color set.
The advantage of such a construction is the
optimization of the number of c-markings and the
structuring of the different states of the specified
protocol.
This validation principle allows one to deduce the
boundedness properties (which express the fact
that a limited number of sites, transactions,
granules, and messages are enough for

specification) of vivacity (which signifies the
absence of deadlock) and of reinitializability (which
validates the possibility of restarting the specific
protocol from the initial marking, and the necessity
of reinitializing the protocol for any repetition) for
each module of the " •DEO N file and for the
complete protocol in particular.
In any case, the protocol's validation can be
deduced from the validations of a protocol's
different modules, hence the advantage of this
principle's modularity.
This method of validation allows one to validate the
good functioning of a protocol's different modules,
the functioning of the protocol itself, and the
operation of the service which each module and
protocol must render.
If validation does not reach the protocol's
wished-for properties, then one or several
specification modules are restarted.

4. PERFORMANCE EVALUATION
Once the protocol is validated, it becomes

possible to evaluate the performance of each of the
specification's modules.
The evaluation principle is based on the
isomorphism between the accessible c-markings
graph, constructed during the previous step, and
the Markov chain, obtained by replacing the names
of transitions linking the c-markings with rates of
associated firings.
The evaluation thus consists in building the matrix
A of transitions expressing the probability of the
passage of one c-marking to another, and
resolving a linear equation of the form	 • A =
such that the vector P norm is equal to 1. Vector P
designates the probabilities of the different
c-markings in a steady state.
To resolve such an equation, one uses the same
Farkas algorithm used to find the invariants in
verification.
The c-markings probability vector, thus obtained,
enables one to deduce the performance criteria
associated with each module and protocol, such as
the mean number of marks in a place, the mean
firing frequency of a transition, and the mean mark
sojourn time in a place, relative to a color or for any
color.
Several	 file	 codifications
< file _name> .< study_name>.RAT are generated
with the aid of separated compilation, and
evaluation is applied to each codification, in order
to deduce the performance criteria associated with
several specifications of the transition firing-rate of
the same static specification.

Ill - APPLICATION TO DS
The distributed data base is made up of a set of

granules distributed uniquely between
geographically situated network sites.
Each granule is unique and local to a site (system
R). The conflictual access to one granule by

several sites requires a serializable coherence
control protocol.

1. THE WOUND! WAIT PROTOCOL
This protocol's principal is. based on the

timestamp of transactions which allow conflicts to
be managed from the only local state of the granule
in question.
It is also based on two-phase locking, where each
transaction locks the granule in the compatible
mode, before carrying out an operation, and
unlocks it, after the end of the operation by not
accepting any new locking requests following the
first unlocking.
The Wound/ Wait protocol introduces a
transaction's wound and an FWAIT queue with
priority to the oldest transactions.
If there is conflict between a Tr transaction, which
asks to lock granule g while it is already locked in
an incompatible mode by transaction TI, the
Wound/ Wait protocol will use the following
principle:

IF Tr is older than TI THEN TI is wounded
ELSE Tr waits;

as well as the two following rules:
i) a healthy transaction can only be placed on
queue from the end or abort of another
transaction, one either older than it, or a
wounded transaction.
ii) a wounded transaction, is only authorized to
await the unlocking of a granule if it is older
than the lock transactions, and if no
transaction older than it asks for g to be
unlocked in an incompatible mode.

The Wound/ Wait protocol can be broken down into
two principal modules:

1.10 The Reauest Treatment Module
Either a transaction Tr asking to lock granule g in
mode m (shared or exclusive).
• If g is free, there is no conflict and Tr is authorized

to lock g.
• If is locked:

• Either Tr is older than all the FWAIT transactions
or FWAIT is empty, Tr is then allowed to try to lock
g for itself.

- If the present lock is compatible with Trs
request, Tr is authorized to lock g for itself.
- Otherwise there is conflict. Let TI be the set of
transactions having locked the granule:

• If no transaction TI is older than Tr, Tr is
placed on queue at the ending or roll back
of TI transactions. All TI transactions are
then wounded (rule i).

• Otherwise:
If Tr is wounded, it is rolled back (rule ii).
If Tr is not wounded, it is authorized to

wait. All TI transactions younger than Tr
are then wounded (rule i).

• Otherwise Tr is never allowed to try and wound
transactions having locked g.

- If Tr is not wounded it is authorized to queue.
- Otherwise:

• If Tr's wait respects rule ii, it is authorized
to queue.

• Otherwise Tr is rolled back.
In every case, if Tr has been placed in queue or
authorized to lock g, the wound transactions in
queue, which no longer respect rule ii, must be
rolled back.

1.2° The Wound Treatment Module
The Wound/ Wait protocol's delicate point, is

situated at the level of treatment for a transaction
wound.
When a transaction Ta wounds transaction Iv, it
only wounds one of its agents. However, this agent
can no longer be active, on this site. The wound has
conflict handling for a goal; knowing whether the
transaction must be rolled back or not (rule ii). It is
only of interest to the active agents and must thus
send them the message. When a site must send a
wound, the following principle is applied to each
granule which the transaction has already locked:

- If the local agent is terminated, the message
is transmitted to the invoking agent.
- If the local agent awaits the termination of an
agent, the message is sent to the last agent
which it initialized.

'Optimization' is sending a message from a site. If
locally, the transaction has not been wounded. In
any case, this does not prevent several emissions
for the same transaction. This is due simply to
transmission delays and to site desynchronization.
When a site receives a wound message:

- If the local agent is already wounded locally,
there is no treatment to undertake.
- Otherwise the local agent passes into the
wounded state.

If the local agent is in unlock queue of
another granule:

• If it does not respect rule ii, it is rolled
back.

• Otherwise its queue pursual is
authorized.

2. SPECIFICATION
The specification of the Wound! Wait protocol
breaks down into four modules:

2.1° Reauest Treatment Module
STUDY Request _Treatment _Module
TYPE TRANSACTIONS = [t]; GRANULES = [g 1;

SITES =[s]; REQUESTS = [tg]; AGENTS =[ts];
TRANSCONFLICT = [tgt']; EVENTS = [t die,t
term];

PLACE GT : TRANSACTIONS; RG : GRANULES;
TR, LOCK, CF, NEXT, FWAIT, TWAIT, TLOCK:
REQUESTS; WOUND, 1W : AGENTS; WK
TRANSCONFLICT; UNLOCK: EVENTS;

TRANS a 1 : TRANSACTIONS; a3 , a, a8 , a9:

REQUESTS;	 a2,a4,a6,a7,a10.

TRANSCONFLICT;
FUNCTION INIT (TRANSACTIONS) --->

REQUESTS;
t -->tg;

EF;
FUNCTION S (GRANULES) ---> SITES;
g --> s;

EF;
FUNCTION V (TRANSACTIONS) --->

TRANSACTIONS;

tlr.(EjERyt>t;
EF;
1* EVERY1 designates the projection onto the first

component of the function EVERY, EVERY1IC

designates the projection onto the first
component, verifying condition c of function
EVERY /

IF GT(t) THEN a1 : TR(INIT(t));

IF RG(g) AND TR(tg) AND LOCK(EVERY 1 t'g)

THEN a2 : CF(tg) AND LOCK(t'g);

IF RG(g) AND TR(tg) AND LOCK(EVERY 1 t'g)=O

THEN a3 : RG(g) AND NEXT(tg) AND LOCK(tg);

IF FWAIT(V(t')g) A N D CF(tg) A N D

FWAIT (EVERY iI .< . t"g)=O THEN a4(t'<t)

FWAIT(t'g) AND TWAIT(tg);
I F FWAIT(V(t')g) A N D CF(tg) A N D

FWAIT (EVERY 1It < t. t"g)=O THEN

WK(tgt');

IF CF(tg) AND FWAIT(EVERY 1 t'g)=O THEN a5:

TLOCK(tg);

IF WK(tgt') AND WOUND(t'S(g))=O THEN a6:

TLOCK(tg) AND FWAIT(t'g);

IF WK(tgt') AND WOUND(t'S(g)) THEN a7:

TLOCK(tg) AND UNLOCK(t die);

IF TWAIT(tg) AND WOUND(tS(g)) THEN a8

RG(g) AND UNLOCK(t die);

IF TWAIT(tg) AND WOUND(tS(g))=O THEN a9:

RG(g) AND FWAIT(tg);

IF TLOCK(tg) AND LOCK(t'g) THEN a10(t'<t)

TWAIT(tg);

IF TLOCK(tg) AND LOCK(t'g) THEN a10(t<t')

RG(g) AND FWAIT(tg) AND TW(t'S(g));
INITIAL

GT(EVERY t) := 1;
RG(E VERY g) =1;

END
END

2.20 Wound Treatment Module
STUDY Wound—Treatment—Module
TYPE TRANSACTIONS = [t]; GRANULES = [g];

SITES =[s]; REQUESTS =[tgj; AGENTS =[ts];
EVENTS =[tdie, tterm]; CUPTREE = [tss'];

PLACE RG : GRANULES; FWAIT, OW, LOCK
REQUESTS; 1W, NW, WOUND, EW : AGENTS;
UNLOCK: EVENTS; PT: CUPTREE;

TRANS	 , 08 : REQUESTS; 1' 2' 3' 6

AGENTS; P.: CUPTREE;

FUNCTION S (GRANULES) ---> SITES;
g --> s;

EF;
/* EVERY1 (respectively EVERYjIC) designates the

projection onto the 1 th component (respectively
verifying condition C) of the function EVERY *1

IF TW(ts) AND WOUND(ts)=O THEN : NW(ts)

AND WOUND(ts);
IF TW(ts) AND WOUND(ts) THEN 132:;

IF NW(ts) AND FWAIT(EVERY2IS(9) tg)=O THEN

133 . EW(ts);

IF RG(g) AND NW (EVERY2IS(9) .,, S ts) AND

FWAIT(tg) THEN 134 : DW(tg);

IF PT(tss') AND EW(ts) THEN 05 : TW(ts');

IF EW(ts) AND PT(EVERY3 tss') THEN 135:;

IF DW(tg) AND LOCK(EVERY1I.> t'g) AND

FWAIT (EVERY 11 r<t t'g)=O THEN 137 : RG(g) AND

FWAIT(tg);

IF DW(tg) AND FWAIT(EVERY1It< t'g) THEN 138:

FRG(g) AND UNLOCK(t die);

IF DW(tg) AND LOCK(EVERY1Ir<t t'g) THEN J3:

RG(g) AND UNLOCK(t die);
END

2.30 Passaae from one Recuest to the Next Module
STU DYPassage_to_the_Next _Request _Module;
TYPE GRANULES = [g]; SITES = [s];

REQUESTS =[tg]; AGENTS= [ts]; EVENTS=
die, t term]; CUPTREE = [tss']; GRAREQ = [tgg;

PLACE NEXT, TR : REQUESTS; WOUND
AGENTS; UNLOCK : EVENTS; PT: CUPTREE;
AW, PW : GRAREQ;

TRANS	 2 : EVENTS; 93, 4 4 , 45'96'97

GRAREQ;
FUNCTION FIN (REQUESTS) ---> EVENTS;
tg --->t term;

EF;
1 EVERY2IC designates the projection onto the

second component, verifying condition c of the
function EVERY */

IF NEXT(tg) THEN p.1 (FIN(tg)) : UNLOCK(t term);

IF NIEXT(tg) THEN 92(FIN(tg)) : AW(tgg') AND

TR(EVERY2ls(9)(9 tg');

IF AW(tgg') AND WOUND(tS(g))=O THEN

PW(tgg');
IF AW(tgg') AND WOUND(tS(g)) AND

WOUND(tS(g'))=O THEN J.L 4 . TR(tg') AND

WOUND(tS(g'));
IF AW(tgg') AND WOUND(tS(g)) AND

WOUND(tS(g')) THEN g.: TR(tg');

IF PW(tgg') AND PT(tS(g)sN) THEN 96 : TR(tg')

AND PT(tS(g)S(g'));

IF PW(tgg') AND PT(tS(g)S(g'))=O THEN

TR(tg') AND PT(tS(g)S(g'));
END

2.40 Unlock Module
STUDY Unlock_Module;
TYPE TRANSACTIONS = [t]; GRANULES = [g];

REQUESTS =[tg]; AGENTS = [ts]; EVENTS =[
die, t term]; CUPTREE = [tss']; MESSAGES =

die, term]; GRATRAME = [t die g, t term g];
PLACE RG, LG : GRANULES; LOCK, TA, FWAIT,

NEXT : REQUESTS; WOUND, 1W, NW, EW
AGENTS; UNLOCK : EVENTS; PT: CUPTREE;
ACK: MESSAGES;

TRANS : TRANSACTIONS; 32: GRANULES; 3

REQUESTS; : AGENTS; y : EVENTS;;:

CUPTREE; y2: GRATRAME;

VAR mes : MESSAGES;
FUNCTION INIT (TRANSACTIONS) --->

REQUESTS);
t --->tg;

EF;
1* EVERY2 (respectively EVERY23) designates the

projection onto the second component
(respectively second and third components) of the
function EVERY 'I

IF UNLOCK(t mes) AND LOCK(EVERY2 tg)=O

THEN y, : ACK(mes);

IF RG(g) AND UNLOCK(t mes) AND LOCK(tg)

THEN y: LG(g) AND UNLOCK(t mes);

IF WOUND(ts) AND ACK(mes) THEN 73

ACK(mes);

IF PT(tss') AND ACK(mes) THEN; : ACK(mes);

IF ACK(die) AND TW(EVERY2 ts) AND

NW(EVERY 2 ts) AND EW(EVERY2 ts) AND

PT(EVERY23 tss) THEN 'Y5: TR(INIT(t));

IF LG(g) AND FWAIT(tg) THEN 61 : RG(g) AND

NEXT(tg) AND LOCK(tg);

IF LG(g) THEN 62 : RG(g);

END

IV - CONCLUSION
The CS-PN software, like the RDPS and GSPN

software, is especially suited to the qualitative and
quantitative analysis of systems. Unlike the RDPS
and GSPN software, however, and with its C-DEOL
specification language, coupled with advantages in
conciseness, simplicity, and simplification, the
CS-PN software is better adapted to site distribution
and to protocol specification, verification, validation,
and performance evaluation.
Furthermore, its specification, verification,
validation, and evaluation procedures are more
fully structured and modular, while the exploitation
of results remains in the traditional mold.

[1] M. AJMONE MARSAN, G. CHIOLA.
On Petri Nets with Deterministic and Exponential
transition tiring times.
7th European Workshop on Application and
Theory of Petri Nets, pp. 151-165, Oxford,
ENGLAND, July 1986.

[2] G.BALBO, M. AJMONE MARSAN, A. BOBBIO,
C. CHIOLA, G. CONTE, A. CUMANI.
On Petri Nets with Stochastic Timing.
lt International Workshop on Timed Petri
Nets, pp. 80-87, Torino, ITALY, July 1985.

[3] A.BOURGUET.
A Petri Net Tool for Service Validation in Protocol.
6 th International Workshop on Protocol
Specification, Testing and Verification, IFIP,
pp. 8-17-8-28, Montreal, CANADA, ,Juno 1986.

[4] J.B. DUGAN, K.S. TRIVEDI, R.M. GEIST, V.F.
NICOLA.
Extended Stochastic Petri Nets: Application and Analysis.
10 th International Symposium on Computer
Performance, pp. 507-519, Paris, FRANCE,
December 1984.

[5] G. FLORIN, S. NATKIN.
Les Réseaux de Petri Stochastiques.
TSI, vol 4, n 1, Dunod, pp. 143-160, Paris,
FRANCE, January-February 1985.

[6] G. FLORIN.
Reseaux de Petri Stochastiques: Théorie et Techniques
de Caicul.
These d'etat, UniversitO P.M. Curie, Paris VI,
FRANCE, March 1985.

[7] J. GAUTIER.
Analyse des Réseaux de Petri Colorés.
Mdmoire d'lngdnieur lIE! CNAM, CIMSA/
SINTRA, Velizy, FRANCE, June 1986.	 -

[8] S. HADDAD, C. GIRAULT.
Algebraic Structure of Flows of a Regular Coloured Net.
7th European Workshop on Application and
Theory of Petri Nets, pp. 101-114, Oxford,
ENGLAND, July 1986.

[9] P. HUBER, A.M. JENSEN, L.O. JEPSEN, K.
JENSEN.
Towards Reachability Trees for High-Level Petri Nets.
DA IMI P8-174, Aarhus University, DENMARK,
May 1985.

[11] K. LAUTENBACH, A. PAGNONI.
Invariance and Duality in Predicate! Transition Net and in
Coloured Nets.
A1rbeitspapiere der GMD, n 132, Bonn,
GERMANY, February 1985.

[12] J.P. LUGUERN.
Protocole de Controls de Coherence dans un SGBD
Reparti.
Sup TOlOcom, RI 861-1003, ENST, Paris,
FRANCE, June 1986.

[13] J.F. MEYER, A. MOVAGHAR, W.H. SANDERS.
Stochastic Activity Networks: Structure, Behavior, and

- Application.
t International Workshop on Timed Petri

Nets, pp. 106-115, Torino, ITALY, July 1985.

[14] M.K. MOLLOY.
On the Integration of Delay and Throughput Measures in
Distributed Processing Models.
Ph.D. Dissertation, University of California, Los
Angeles, USA, September 1981.

[15] S. NATKIN.
Réseaux de Petri Stochastiques: Théorie et Applications.
ThOse d'etat, Université P.M. Curie, Paris VI,
FRANCE, March 1985.

[16] M.K. VERNON, M.A. HOLLIDAY.
Performance Analysis of Multiprocessor Cache
Consistency Protocols using Generalized Timed Petri
Nets.
Performance Evaluation Review, Special Issue,
vol 14, n 1, pp. 9-17, May 1986.

[17] A. ZENIE.
Colored Stochastic Petri Nets.
1st International Workshop on Timed Petri
Nets, pp. 262-271, Torino, ITALY, July 1985.

[18] A. ZENIE.
Validation Qalitative et Quantitative d'un modèle SGBDR a
'aide de RdPSC.
1st IMACS-IPAC Symposium on Modelling and
Simulation for Control Lumped and Distributed
Parameter Systems, pp. 467-472, Lille,
FRANCE, June 1986.

[19] I.A. ZENIE.
Les Réseaux de Petri Stochastiques ColorOs: Application
A rAnatyse des Systemes ROpartis en Tens Reel.
ThOse de Doctorat, Universitd P.M. Curie . E.N.S. T.
87E017, Paris, FRANCE, June1987.

[1101K. JENSEN, P. HUBER, N.N. LARSEN, lb.M. MARTINSEN.	
:	 [201 A. ZENIE.

Petri Net Package Users Manual. 	 The CS.PN Software: Application to the Validation and
DAIMI MD-46, Version 3.2, Aarhus University, 	 the Performance Evaluation of Distributed Systems.
DENMARK, March 1985. 	 E.N.S.T. 87D005, Paris, FRANCE, September 1987.

Dépôt legal	 3eme trimestre 1987

Imprixné a 1'ENST - PARIS
ISSN : 0751-1337

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13

