NASA
Scientific and Technical
Publications

A Catalog of
Special Publications,
Reference Publications,
Conference Publications, and
Technical Papers

1987

(NASA-SP-7063(02)) NASA SCIENTIFIC AND
technical publications: a catalog of special
publications, reference publications,
conference publications, and technical
papers, 1987 (NASA) 69 p

Unclas

CSCL 05B G1/82 0141579
This document is available from the National Technical Information Service (NTIS), Springfield, Virginia 22161 as PR 828.
The pursuit of human knowledge through scientific research and technical endeavor has vastly expanded understanding of our world and the universe we live in. The contributions of NASA through scientific and technical research and development affect not only our understanding and use of aeronautics and space but also touch our daily lives. Geologists, oceanographers, meteorologists, archeologists, aircraft engineers, aerospace decision makers, land-use planners, historians, and rescue teams all make use of the results of NASA's research. The findings of this research and development are published in NASA's scientific and technical report series as a part of NASA's mandate to disseminate the results of the agency's far-reaching work.

This catalog provides a list of NASA publications from four report series entered into the NASA scientific and technical information database during accession year 1987. Records of Achievement, NASA SP-470 (accession number N83-33792) and NASA Scientific and Technical Publications: A Catalog of Special Publications, Reference Publications, Conference Publications, and Technical Papers, 1977-1986, NASA SP-7063(01) (accession number N87-30218) list previous NASA publications not covered by this catalog. Two semimonthly abstract journals cover all aspects of aeronautics and space research, NASA and non-NASA, nationally and worldwide: STAR (Scientific and Technical Aerospace Reports), which focuses on scientific and technical reports, and IAA (International Aerospace Abstracts), which covers the open literature. These are available by subscription from, respectively, the U.S. Government Printing Office and the American Institute of Aeronautics and Astronautics, Inc., (see below).

This catalog includes publicly available reports from four NASA report series: Special Publications (SPs), Reference Publications (RPs), Conference Publications (CPs), and Technical Papers (TPs). The scope of each series is defined as follows:

Special Publications are often concerned with subjects of substantial public interest. They report scientific and technical information derived from NASA programs for audiences of diverse technical backgrounds.

Reference Publications contain compilations of scientific and technical data of continuing reference value.

Conference Publications record the proceedings of scientific and technical symposia and other professional meetings sponsored or cosponsored by NASA.

Technical Papers present the results of significant research conducted by NASA scientists and engineers.

Presented here are citations for reports from each of these series. An explanation of the elements in a typical citation follows. Accession numbers (N numbers) at the end of a citation are separate citations to articles within the report. Please use STAR to locate these citations. Also note that some bibliographies in the NASA SP-7000 series are issued periodically. This catalog lists only the last accessioned report in each bibliography series. The periodicity of each bibliography is as follows:

- NASA SP-7011: Aerospace Medicine and Biology: A Continuing Bibliography with Indexes - Monthly plus annual cumulative index
- NASA SP-7037: Aeronautical Engineering: A Continuing Bibliography with Indexes - Monthly plus annual cumulative index
- NASA SP-7041: Earth Resources: A Continuing Bibliography with Indexes - Quarterly
Please note that the reports cited in this catalog are available for purchase from the U.S. Government Printing Office for a limited time after publication, depending on public demand, and from the National Technical Information Service (NTIS) with no time limit. They are also available at any Federal Regional Depository Library. Additional availability information follows, including current NTIS price schedules, which are keyed to the price code in the citation.
The hardware and software characteristics of a time division multiplex system are described. The system is used to sample analog and digital data. The data is merged with synchronization information to produce a serial pulse coded modulation (PCM) bit stream. Information presented herein is required by users to design compatible interfaces and assure effective utilization of this encoder system. GSFC/Wallops Flight Facility has flown approximately 50 of these systems through 1984 on sounding rockets with no inflight failures. Aydin Vector manufactures all of the components for these systems.

Author
SOURCES OF NASA PUBLICATIONS

The source from which a publication is available to the public is given on the last line of the citation. Addresses for these organizations are given below.

U.S. Government Printing Office
Superintendent of Documents
U.S. Government Printing Office
Washington, DC 20402
(202) 783-3238 Price and order information
Publications are available from GPO in hardcopy for a limited time after publication and initial distribution. The price and order number are given following the availability line.

National Technical Information Service
National Technical Information Service
5285 Port Royal Rd.
Springfield, VA 22161
(703) 487-4780 Information or document accession number
(703) 487-4650 Sales desk, price information
(703) 487-4630 Subscription information for subscription bibliographies (in the SP-7000 series)
Prices for hardcopy and microfiche are indicated by a price code preceded by the letters HC or MF in the citation. Current values for the price codes are given in the NTIS Price Schedules. Publications available on microfiche are identified by a # symbol following the accession number. Note: The # symbol is used without regard to the quality or source of the microfiche.

Public Collections of NASA Documents
Federal Depository Library Program: In order to provide the general public with greater access to U.S. Government publications, Congress established the Federal Depository Library Program under the Government Printing Office (GPO), with 50 regional depositories responsible for permanent retention of material, inter-library loan, and reference services. At least one copy of nearly every NASA publication, either in printed or microfiche format, is received and retained by the 50 regional depositories. A list of the regional GPO libraries, arranged alphabetically by state, follows. These libraries are not sales outlets. A local library can contact a Regional Depository to help locate specific reports, or direct contact may be made by an individual.
Other Domestic: NASA publications are also available to the public for reference purposes at the library maintained by the American Institute of Aeronautics and Astronautics, Technical Information Service, 555 West 57th Street, 12th Floor, New York, NY 10019, (212) 247-6500.
European: An extensive collection of NASA publications is maintained by the British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England for public access. European requesters may purchase facsimile copy or microfiche of NASA documents, those identified by both the symbols # and *, from ESA, Information Retrieval Service, European Space Agency, 8-10 rue Mario-Nikis, 75738 Paris CEDEX 15, France.

NASA Scientific and Technical Information Facility
NASA publications are available to NASA personnel, NASA contractors, other Government agencies and their contractors, and universities through local technical libraries. The NASA Scientific and Technical Information Facility also makes these publications available to registered users, but not to the general public.
For registration information contact:
NASA STI Facility
P.O. Box 8757
BWI Airport, MD 21240
(301) 621-0153 Registration information
NTIS PRICE SCHEDULES
(Effective January 1, 1988)

Schedule A
STANDARD PRICE DOCUMENTS AND MICROFICHE

<table>
<thead>
<tr>
<th>PRICE CODE</th>
<th>NORTH AMERICAN PRICE</th>
<th>FOREIGN PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>$ 6.95</td>
<td>$13.90</td>
</tr>
<tr>
<td>A02</td>
<td>9.95</td>
<td>19.90</td>
</tr>
<tr>
<td>A03</td>
<td>12.95</td>
<td>25.90</td>
</tr>
<tr>
<td>A04-A05</td>
<td>14.95</td>
<td>29.90</td>
</tr>
<tr>
<td>A06-A09</td>
<td>19.95</td>
<td>39.90</td>
</tr>
<tr>
<td>A10-A13</td>
<td>25.95</td>
<td>51.90</td>
</tr>
<tr>
<td>A14-A17</td>
<td>32.95</td>
<td>65.90</td>
</tr>
<tr>
<td>A18-A24</td>
<td>38.95</td>
<td>77.90</td>
</tr>
<tr>
<td>A22-A25</td>
<td>44.95</td>
<td>89.90</td>
</tr>
<tr>
<td>A99</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>NO1</td>
<td>49.50</td>
<td>89.90</td>
</tr>
<tr>
<td>NO2</td>
<td>48.00</td>
<td>80.00</td>
</tr>
</tbody>
</table>

Schedule E
EXCEPTION PRICE DOCUMENTS AND MICROFICHE

<table>
<thead>
<tr>
<th>PRICE CODE</th>
<th>NORTH AMERICAN PRICE</th>
<th>FOREIGN PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>E01</td>
<td>$ 8.50</td>
<td>17.00</td>
</tr>
<tr>
<td>E02</td>
<td>11.00</td>
<td>22.00</td>
</tr>
<tr>
<td>E03</td>
<td>12.00</td>
<td>24.00</td>
</tr>
<tr>
<td>E04</td>
<td>14.50</td>
<td>29.00</td>
</tr>
<tr>
<td>E05</td>
<td>16.50</td>
<td>33.00</td>
</tr>
<tr>
<td>E06</td>
<td>19.00</td>
<td>38.00</td>
</tr>
<tr>
<td>E07</td>
<td>21.50</td>
<td>43.00</td>
</tr>
<tr>
<td>E08</td>
<td>24.00</td>
<td>48.00</td>
</tr>
<tr>
<td>E09</td>
<td>26.50</td>
<td>53.00</td>
</tr>
<tr>
<td>E10</td>
<td>29.00</td>
<td>56.00</td>
</tr>
<tr>
<td>E11</td>
<td>31.50</td>
<td>63.00</td>
</tr>
<tr>
<td>E12</td>
<td>34.00</td>
<td>68.00</td>
</tr>
<tr>
<td>E13</td>
<td>36.50</td>
<td>73.00</td>
</tr>
<tr>
<td>E14</td>
<td>39.50</td>
<td>79.00</td>
</tr>
<tr>
<td>E15</td>
<td>43.00</td>
<td>86.00</td>
</tr>
<tr>
<td>E16</td>
<td>47.00</td>
<td>94.00</td>
</tr>
<tr>
<td>E17</td>
<td>51.00</td>
<td>102.00</td>
</tr>
<tr>
<td>E18</td>
<td>55.00</td>
<td>110.00</td>
</tr>
<tr>
<td>E19</td>
<td>61.00</td>
<td>122.00</td>
</tr>
<tr>
<td>E20</td>
<td>71.00</td>
<td>142.00</td>
</tr>
<tr>
<td>E99</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

* Contact NTIS for price quote.

IMPORTANT NOTICE
NTIS Shipping and Handling Charges
U.S., Canada, Mexico — ADD $3.00 per TOTAL ORDER
All Other Countries — ADD $4.00 per TOTAL ORDER

Exceptions — Does NOT apply to:
ORDERS REQUESTING NTIS RUSH HANDLING
ORDERS FOR SUBSCRIPTION OR STANDING ORDER PRODUCTS ONLY

NOTE: Each additional delivery address on an order requires a separate shipping and handling charge.
<table>
<thead>
<tr>
<th>STATE</th>
<th>LIBRARY</th>
<th>ADDRESS</th>
<th>PHONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALABAMA</td>
<td>AUBURN UNIV. AT MONTGOMERY LIBRARY</td>
<td>Documents Department
Montgomery, AL 36193
(205) 271-9650</td>
<td></td>
</tr>
<tr>
<td>ARIZONA</td>
<td>DEPT. OF LIBRARY, ARCHIVES AND PUBLIC RECORDS</td>
<td>Third Floor—State Cap.
1700 West Washington Phoenix, AZ 85007
(602) 255-4121</td>
<td></td>
</tr>
<tr>
<td>COLORADO</td>
<td>UNIV. OF COLORADO LIB.</td>
<td>Government Publications Section
P.O. Box 2037
Sacramento, CA 95809
(916) 324-4863</td>
<td></td>
</tr>
<tr>
<td>CONNECTICUT</td>
<td>UNIV. OF CONNECTICUT LIBRARY</td>
<td>Govt. Publications Unit
One Capitol Mall
Little Rock, AR 72201
(501) 371-2326</td>
<td></td>
</tr>
<tr>
<td>FLORIDA</td>
<td>UNIV. OF FLORIDA LIBRARIES</td>
<td>Library West
Documents Department
Gainesville, FL 32611
(904) 392-0367</td>
<td></td>
</tr>
<tr>
<td>GEORGIA</td>
<td>UNIV. OF GEORGIA LIBRARIES</td>
<td>Government Reference Dept.
Athens, GA 30602
(404) 542-8949</td>
<td></td>
</tr>
<tr>
<td>IDAHO</td>
<td>UNIV. OF IDAHO LIBRARY</td>
<td>Documents Section
Boise, ID 83725
(208) 885-5344</td>
<td></td>
</tr>
<tr>
<td>ILLINOIS</td>
<td>ILLINOIS STATE LIBRARY</td>
<td>Information Services Branch
Centennial Building
Springfield, IL 62756
(217) 782-5185</td>
<td></td>
</tr>
<tr>
<td>INDIANA</td>
<td>INDIANA STATE LIBRARY</td>
<td>Serials Documents Section
140 North Senate Avenue
Indianapolis, IN 46204
(317) 232-3686</td>
<td></td>
</tr>
<tr>
<td>IOWA</td>
<td>UNIV. OF IOWA LIBRARIES</td>
<td>Govt. Documents Department
Iowa City, IA 52242
(319) 353-3318</td>
<td></td>
</tr>
<tr>
<td>KANSAS</td>
<td>UNIVERSITY OF KANSAS</td>
<td>Doc. Collect—Spencer Lib.
Lawrence, KS 66045-2800
(913) 864-4662</td>
<td></td>
</tr>
<tr>
<td>KENTUCKY</td>
<td>UNIV. OF KENTUCKY LIBRARIES</td>
<td>Govt. Pub. Department
Lexington, KY 40506-0003
(606) 257-3159</td>
<td></td>
</tr>
<tr>
<td>LOUISIANA</td>
<td>LOUISIANA STATE UNIVERSITY</td>
<td>Middleton Library
Govt. Docs. Dept.
Baton Rouge, LA 70803
(504) 388-2570</td>
<td></td>
</tr>
<tr>
<td>LOUISIANA</td>
<td>LOUISIANA TECHNICAL UNIV. LIBRARY</td>
<td>Documents Department
Ruston, LA 71272-0046
(318) 257-4962</td>
<td></td>
</tr>
<tr>
<td>MAINE</td>
<td>UNIVERSITY OF MAINE</td>
<td>Raymond H. Fogler Library
Tri-State Regional Documents Depository
Orono, ME 04469
(207) 581-1680</td>
<td></td>
</tr>
<tr>
<td>MARYLAND</td>
<td>UNIVERSITY OF MARYLAND</td>
<td>McKeldin Lib.—Doc. Div.
College Park, MD 20742
(301) 454-3034</td>
<td></td>
</tr>
<tr>
<td>MASSACHUSETTS</td>
<td>BOSTON PUBLIC LIBRARY</td>
<td>Government Docs. Dept.
Boston, MA 02117
(617) 536-6000 ext.226</td>
<td></td>
</tr>
<tr>
<td>MICHIGAN</td>
<td>DETROIT PUBLIC LIBRARY</td>
<td>Sociology Department
5201 Woodward Avenue
Detroit, MI 48202-4003
(313) 833-1409</td>
<td></td>
</tr>
<tr>
<td>MICHIGAN</td>
<td>MICHIGAN STATE LIBRARY</td>
<td>P.O. Box 30007
Lansing, MI 48909
(517) 373-1593</td>
<td></td>
</tr>
<tr>
<td>MINNESOTA</td>
<td>UNIVERSITY OF MINNESOTA</td>
<td>Government Publications
409 Wilson Library
Minneapolis, MN 55455
(612) 373-7870</td>
<td></td>
</tr>
<tr>
<td>MISSISSIPPI</td>
<td>UNIV. OF MISSISSIPPI LIB.</td>
<td>Documents Department
University, MS 38677
(601) 232-5857</td>
<td></td>
</tr>
<tr>
<td>MONTANA</td>
<td>UNIV. OF MONTANA</td>
<td>Mansfield Library
Documents Division
Missoula, MT 59812
(406) 243-6700</td>
<td></td>
</tr>
<tr>
<td>NEBRASKA</td>
<td>UNIVERSITY OF NEBRASKA - LINCOLN</td>
<td>Govt. Documents Department
Lincoln, NE 68588-0410
(402) 472-2582</td>
<td></td>
</tr>
<tr>
<td>NEVADA</td>
<td>UNIVERSITY OF NEVADA LIB.</td>
<td>Govt. Pub. Department
Reno, NV 89557-0044
(702) 789-6579</td>
<td></td>
</tr>
<tr>
<td>NEW JERSEY</td>
<td>NEW JERSEY STATE LIBRARY</td>
<td>5 Washington Street
Newark, NJ 07101-0030
(201) 733-7812</td>
<td></td>
</tr>
<tr>
<td>NEW MEXICO</td>
<td>UNIVERSITY OF NEW MEXICO</td>
<td>Zimmerman Library
Govt. Pub. Dept.
Albuquerque, NM 87131
(505) 277-5441</td>
<td></td>
</tr>
<tr>
<td>NEW YORK</td>
<td>NEW YORK STATE LIBRARY</td>
<td>Empire State Plaza
Albany, NY 12230
(518) 474-5563</td>
<td></td>
</tr>
<tr>
<td>NORTH CAROLINA</td>
<td>UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL</td>
<td>Davis Library
BATS Documents Division
Chapel Hill, NC 27515
(919) 962-1151</td>
<td></td>
</tr>
<tr>
<td>NORTH DAKOTA</td>
<td>UNIVERSITY OF NORTH DAKOTA</td>
<td>University of North Dakota
401 Engineering Department
BF-160
Fargo, ND 58102
(701) 777-4200</td>
<td></td>
</tr>
<tr>
<td>OKLAHOMA</td>
<td>OKLAHOMA STATE LIB.</td>
<td>Govt. Documents Department
Oklahoma City, OK 73007
(405) 223-5020</td>
<td></td>
</tr>
<tr>
<td>OREGON</td>
<td>OREGON STATE LIB.</td>
<td>Govt. Documents Department
P.O. Box 1501
Salem, OR 97309
(503) 378-6000</td>
<td></td>
</tr>
<tr>
<td>PENNSYLVANIA</td>
<td>STATE LIBRARY OF PENN.</td>
<td>Government Publications Division
P.O. Box 1601
Harrisburg, PA 17105
(717) 787-3752</td>
<td></td>
</tr>
<tr>
<td>TEXAS</td>
<td>TEXAS STATE LIBRARY</td>
<td>Public Services Department
P.O. Box 12927—Cap. Sta.
Austin, TX 78711
(512) 475-2996</td>
<td></td>
</tr>
<tr>
<td>UTAH</td>
<td>UTAH STATE UNIVERSITY</td>
<td>Merrill Library, UMC 30
Logan, UT 84322
(801) 750-2682</td>
<td></td>
</tr>
<tr>
<td>VIRGINIA</td>
<td>UNIVERSITY OF VIRGINIA</td>
<td>Alderman Lib.—Public Doc.
Charlottesville, VA 22903
(434) 924-3313</td>
<td></td>
</tr>
<tr>
<td>WASHINGTON</td>
<td>WASHINGTON STATE LIBRARY</td>
<td>Documents Section
Olympia, WA 98504
(206) 573-4027</td>
<td></td>
</tr>
<tr>
<td>WEST VIRGINIA</td>
<td>WEST VIRGINIA LIB.</td>
<td>Govt. Documents Department
Morgantown, WV 26506-6059
(304) 293-3640</td>
<td></td>
</tr>
<tr>
<td>WISCONSIN</td>
<td>MILWAUKEE PUBLIC LIBRARY</td>
<td>814 West Wisconsin Avenue
Milwaukee, WI 53203
(414) 278-3065</td>
<td></td>
</tr>
<tr>
<td>WYOMING</td>
<td>WYOMING STATE LIBRARY</td>
<td>Supreme Ct. & Library Bld.
Cheyenne, WY 82002
(307) 777-5919</td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

AERONAUTICS
Includes aeronautics (general); aerodynamics; air transportation and safety; aircraft communications and navigation; aircraft design, testing and performance; aircraft instrumentation; aircraft propulsion and power; aircraft stability and control; and research and support facilities (air).
For related information see also Astronautics.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 AERONAUTICS (GENERAL)</td>
<td>1</td>
</tr>
<tr>
<td>02 AERODYNAMICS</td>
<td>1</td>
</tr>
<tr>
<td>03 AIR TRANSPORTATION AND SAFETY</td>
<td>5</td>
</tr>
<tr>
<td>04 AIRCRAFT COMMUNICATIONS AND NAVIGATION</td>
<td>N.A.</td>
</tr>
<tr>
<td>05 AIRCRAFT DESIGN, TESTING AND PERFORMANCE</td>
<td>5</td>
</tr>
<tr>
<td>06 AIRCRAFT INSTRUMENTATION</td>
<td>7</td>
</tr>
<tr>
<td>07 AIRCRAFT PROPULSION AND POWER</td>
<td>7</td>
</tr>
<tr>
<td>08 AIRCRAFT STABILITY AND CONTROL</td>
<td>8</td>
</tr>
<tr>
<td>09 RESEARCH AND SUPPORT FACILITIES (AIR)</td>
<td>8</td>
</tr>
</tbody>
</table>

ASTRONAUTICS
Includes astronautics (general); astrodynamics; ground support systems and facilities (space); launch vehicles and space vehicles; space transportation; space communications, spacecraft communications, command and tracking; spacecraft design, testing and performance; spacecraft instrumentation; and spacecraft propulsion and power.
For related information see also 14 Ground Support Systems and Facilities (Space).

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 ASTRONAUTICS (GENERAL)</td>
<td>9</td>
</tr>
<tr>
<td>11 ASTRODYNAMICS</td>
<td>N.A.</td>
</tr>
<tr>
<td>12 GROUND SUPPORT SYSTEMS AND FACILITIES (SPACE)</td>
<td>N.A.</td>
</tr>
<tr>
<td>13 LAUNCH VEHICLES AND SPACE VEHICLES</td>
<td>9</td>
</tr>
<tr>
<td>14 SPACE TRANSPORTATION</td>
<td>10</td>
</tr>
<tr>
<td>15 SPACE COMMUNICATIONS, SPACECRAFT COMMUNICATIONS, COMMAND AND TRACKING</td>
<td>N.A.</td>
</tr>
<tr>
<td>16 SPACE TRANSPORTATION</td>
<td>10</td>
</tr>
<tr>
<td>17 SPACE COMMUNICATIONS, SPACECRAFT COMMUNICATIONS, COMMAND AND TRACKING</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

For extraterrestrial exploration see 91 Lunar and Planetary Exploration.
18 SPACECRAFT DESIGN, TESTING AND PERFORMANCE 10
Includes satellites; space platforms; space stations; spacecraft systems and components such as thermal and environmental controls; and attitude controls.
For life support systems see 54 Man/System Technology and Life Support. For related information see also 05 Aircraft Design, Testing and Performance, 39 Structural Mechanics, and 16 Space Transportation.

19 SPACECRAFT INSTRUMENTATION N.A.
For related information see also 06 Aircraft Instrumentation and 35 Instrumentation and Photography.

20 SPACECRAFT PROPULSION AND POWER 10
Includes main propulsion systems and components, e.g. rocket engines; and spacecraft auxiliary power sources.
For related information see also 07 Aircraft Propulsion and Power, 28 Propellants and Fuels, 44 Energy Production and Conversion, and 15 Launch Vehicles and Space Vehicles.

CHEMISTRY AND MATERIALS
Includes chemistry and materials (general); composite materials; inorganic and physical chemistry; metallic materials; nonmetallic materials; propellants and fuels; and materials processing.

23 CHEMISTRY AND MATERIALS (GENERAL) 11

24 COMPOSITE MATERIALS 11
Includes physical, chemical, and mechanical properties of laminates and other composite materials.
For ceramic materials see 27 Nonmetallic Materials.

25 INORGANIC AND PHYSICAL CHEMISTRY 12
Includes chemical analysis, e.g., chromatography; combustion theory; electrochemistry; and photochemistry.
For related information see also 77 Thermodynamics and Statistical Physics.

26 METALLIC MATERIALS 12
Includes physical, chemical, and mechanical properties of metals, e.g., corrosion; and metallurgy.

27 NONMETALLIC MATERIALS 12
Includes physical, chemical, and mechanical properties of plastics, elastomers, lubricants, polymers, textiles, adhesives, and ceramic materials.
For composite materials see 24 Composite Materials.

28 PROPELLANTS AND FUELS N.A.
Includes rocket propellants, igniters and oxidizers; their storage and handling procedures; and aircraft fuels.
For related information see also 07 Aircraft Propulsion and Power, 20 Spacecraft Propulsion and Power, and 44 Energy Production and Conversion.

29 MATERIALS PROCESSING 13
Includes space-based development of products and processes for commercial application.
For biological materials see 55 Space Biology.

ENGINEERING
Includes engineering (general); communications and radar; electronics and electrical engineering; fluid mechanics and heat transfer; instrumentation and photography; lasers and masers; mechanical engineering; quality assurance and reliability; and structural mechanics.
For related information see also Physics.

31 ENGINEERING (GENERAL) 13
Includes vacuum technology; control engineering; display engineering; cryogenics; and fire prevention.

32 COMMUNICATIONS AND RADAR 13
Includes radar; land and global communications; communications theory; and optical communications.
For related information see also 04 Aircraft Communications and Navigation and 17 Space Communications, Spacecraft Communications, Command and Tracking. For search and rescue see 03 Air Transportation and Safety, and 16 Space Transportation.

33 ELECTRONICS AND ELECTRICAL ENGINEERING 14
Includes test equipment and maintainability; components, e.g., tunnel diodes and transistors; microminiaturization; and integrated circuitry.
For related information see also 60 Computer Operations and Hardware and 76 Solid-State Physics.

34 FLUID MECHANICS AND HEAT TRANSFER 14
Includes boundary layers; hydrodynamics; fluidics; mass transfer and ablation cooling.
For related information see also 02 Aerodynamics and 77 Thermodynamics and Statistical Physics.

35 INSTRUMENTATION AND PHOTOGRAPHY 16
Includes remote sensors; measuring instruments and gages; detectors; cameras and photographic supplies; and holography.
For aerial photography see 43 Earth Resources and Remote Sensing. For related information see also 06 Aircraft Instrumentation and 19 Spacecraft Instrumentation.

36 LASERS AND MASERS 16
Includes parametric amplifiers.
For related information see also 76 Solid-State Physics.

37 MECHANICAL ENGINEERING 16
Includes auxiliary systems (nonpower); machine elements and processes; and mechanical equipment.

38 QUALITY ASSURANCE AND RELIABILITY 17
Includes product sampling procedures and techniques; and quality control.

39 STRUCTURAL MECHANICS 17
Includes structural element design and weight analysis; fatigue; and thermal stress.
GEOSCIENCES
Includes geosciences (general); earth resources and remote sensing; energy production and conversion; environment pollution; geophysics; meteorology and climatology; and oceanography.
For related information see also Space Sciences.

42 GEOSCIENCES (GENERAL) 18

43 EARTH RESOURCES AND REMOTE SENSING 18
Includes remote sensing of earth resources by aircraft and spacecraft; photogrammetry; and aerial photography.
For instrumentation see 35 Instrumentation and Photography.

44 ENERGY PRODUCTION AND CONVERSION 19
Includes specific energy conversion systems, e.g., fuel cells; global sources of energy; geophysical conversion; and windpower.
For related information see also 07 Aircraft Propulsion and Power, 20 Spacecraft Propulsion and Power, and 28 Propellants and Fuels.

45 ENVIRONMENT POLLUTION N.A.
Includes atmospheric, noise, thermal, and water pollution.

46 GEOPHYSICS 19
Includes aeronomy; upper and lower atmosphere studies; ionospheric and magnetospheric physics; and geomagnetism.
For space radiation see 93 Space Radiation.

47 METEOROLOGY AND CLIMATOLOGY 20
Includes weather forecasting and modification.

48 OCEANOGRAPHY 21
Includes biological, dynamic, and physical oceanography; and marine resources.
For related information see also 43 Earth Resources and Remote Sensing.

LIFE SCIENCES
Includes life sciences (general); aerospace medicine; behavioral sciences; man/system technology and life support; and space biology.

51 LIFE SCIENCES (GENERAL) 21

52 AEROSPACE MEDICINE 21
Includes physiological factors; biological effects of radiation; and effects of weightlessness on man and animals.

53 BEHAVIORAL SCIENCES N.A.
Includes psychological factors; individual and group behavior; crew training and evaluation; and psychiatric research.

54 MAN/SYSTEM TECHNOLOGY AND LIFE SUPPORT N.A.
Includes human engineering; biotechnology; and space suits and protective clothing.
For related information see also 16 Space Transportation.

55 SPACE BIOLOGY N.A.
Includes exobiology; planetary biology; and extraterrestrial life.

MATHEMATICAL AND COMPUTER SCIENCES
Includes mathematical and computer sciences (general); computer operations and hardware; computer programming and software; computer systems; cybernetics; numerical analysis; statistics and probability; systems analysis; and theoretical mathematics.

59 MATHEMATICAL AND COMPUTER SCIENCES (GENERAL) N.A.

60 COMPUTER OPERATIONS AND HARDWARE N.A.
Includes hardware for computer graphics, firmware, and data processing.
For components see 33 Electronics and Electrical Engineering.

61 COMPUTER PROGRAMMING AND SOFTWARE 22
Includes computer programs, routines, algorithms, and specific applications, e.g., CAD/CAM.

62 COMPUTER SYSTEMS 22
Includes computer networks and special application computer systems.

63 CYBERNETICS N.A.
Includes feedback and control theory, artificial intelligence, robotics and expert systems.
For related information see also 54 Man/System Technology and Life Support.

64 NUMERICAL ANALYSIS 22
Includes iteration, difference equations, and numerical approximation.

65 STATISTICS AND PROBABILITY 23
Includes data sampling and smoothing; Monte Carlo method; and stochastic processes.

66 SYSTEMS ANALYSIS N.A.
Includes mathematical modeling; network analysis; and operations research.

67 THEORETICAL MATHEMATICS N.A.
Includes topology and number theory.

PHYSICS
Includes physics (general); acoustics; atomic and molecular physics; nuclear and high-energy physics; optics; plasma physics; solid-state physics; and thermodynamics and statistical physics.
For related information see also Engineering.

70 PHYSICS (GENERAL) N.A.
For precision time and time interval (PTTI) see 35 Instrumentation and Photography; for geophysics, astrophysics or solar physics see 46 Geophysics, 90 Astrophysics, or 92 Solar Physics.
71 ACOUSTICS 23
Includes sound generation, transmission, and attenuation.
For noise pollution see 45 Environment Pollution.

72 ATOMIC AND MOLECULAR PHYSICS N.A.
Includes atomic structure, electron properties, and molecular spectra.

73 NUCLEAR AND HIGH-ENERGY PHYSICS 24
Includes elementary and nuclear particles; and reactor theory.
For space radiation see 93 Space Radiation.

74 OPTICS 24
Includes light phenomena and optical devices.
For lasers see 36 Lasers and Masers.

75 PLASMA PHYSICS 24
Includes magnetohydrodynamics and plasma fusion.
For ionospheric plasmas see 46 Geophysics. For space plasmas see 90 Astrophysics.

76 SOLID-STATE PHYSICS N.A.
Includes superconductivity.
For related information see also 33 Electronics and Electrical Engineering and 36 Lasers and Masers.

77 THERMODYNAMICS AND STATISTICAL PHYSICS N.A.
Includes quantum mechanics; theoretical physics; and Bose and Fermi statistics.
For related information see also 25 Inorganic and Physical Chemistry and 34 Fluid Mechanics and Heat Transfer.

SOCIAL SCIENCES
Includes social sciences (general); administration and management; documentation and information science; economics and cost analysis; law, political science, and space policy; and urban technology and transportation.

80 SOCIAL SCIENCES (GENERAL) N.A.
Includes educational matters.

81 ADMINISTRATION AND MANAGEMENT 24
Includes management planning and research.

82 DOCUMENTATION AND INFORMATION SCIENCE 24
Includes information management; information storage and retrieval technology; technical writing; graphic arts; and micrography.
For computer documentation see 61 Computer Programming and Software.

83 ECONOMICS AND COST ANALYSIS N.A.
Includes cost effectiveness studies.

84 LAW, POLITICAL SCIENCE AND SPACE POLICY N.A.
Includes NASA appropriation hearings; aviation law; space law and policy; international law; international cooperation; and patent policy.

85 URBAN TECHNOLOGY AND TRANSPORTATION 25
Includes applications of space technology to urban problems; technology transfer; technology assessment; and surface and mass transportation.
For related information see 03 Air Transportation and Safety, 16 Space Transportation, and 44 Energy Production and Conversion.

SPACE SCIENCES
Includes space sciences (general); astronomy; astrophysics; lunar and planetary exploration; solar physics; and space radiation.
For related information see also Geosciences.

88 SPACE SCIENCES (GENERAL) 25

89 ASTRONOMY 25
Includes radio, gamma-ray, and infrared astronomy; and astrometry.

90 ASTROPHYSICS 26
Includes cosmology; celestial mechanics; space plasmas; and interstellar and interplanetary gases and dust.
For related information see also 75 Plasma Physics.

91 LUNAR AND PLANETARY EXPLORATION 26
Includes planetology; and manned and unmanned flights.
For spacecraft design or space stations see 18 Spacecraft Design, Testing and Performance.

92 SOLAR PHYSICS 26
Includes solar activity, solar flares, solar radiation and sunspots.
For related information see 93 Space Radiation.

93 SPACE RADIATION 27
Includes cosmic radiation; and inner and outer earth's radiation belts.
For biological effects of radiation see 52 Aerospace Medicine. For theory see 73 Nuclear and High-Energy Physics.

GENERAL
Includes aeronautical, astronautical, and space science related histories, biographies, and pertinent reports too broad for categorization; histories or broad overviews of NASA programs.

99 GENERAL 27

Note: N.A. means that no abstracts were assigned to this category for this issue.

SUBJECT INDEX ... A-1
PERSONAL AUTHOR INDEX .. B-1
REPORT NUMBER INDEX ... C-1
AERONAUTICS (GENERAL)

N87-18520' # National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
JOINT UNIVERSITY PROGRAM FOR AIR TRANSPORTATION RESEARCH, 1983
(NASA-CP-2451; L-16254; NAS 1.55:2451) Avail: NTIS HC A05/MF A01 CSCL 01B
AIR NAVIGATION, AIR TRANSPORTATION, AIRCRAFT GUIDANCE, AVIONICS, CONFERENCES, FLIGHT CONTROL

N87-22604' # National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
JOINT UNIVERSITY PROGRAM FOR AIR TRANSPORTATION RESEARCH, 1984
FREDERICK R. MORRELL, comp. May 1987 165 p Meeting held in Hampton, Va., 18 Jan. 1985
(NASA-CP-2452; L-16255; NAS 1.55:2452) Avail: NTIS HC A08/MF A01 CSCL 01B
AIR TRANSPORTATION, AIRCRAFT CONTROL, AIRCRAFT GUIDANCE, AVIONICS, CONTROL THEORY, SURFACE NAVIGATION

N87-25267' # National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
WIND SHEAR/TURBULENCE INPUTS TO FLIGHT SIMULATION AND SYSTEMS CERTIFICATION
(NASA-CP-2474; L-16329; NAS 1.55:2474) Avail: NTIS HC A12/MF A01 CSCL 01B
AIRCRAFT PERFORMANCE, AVIONICS, FLIGHT SAFETY, FLIGHT SIMULATION, PILOT PERFORMANCE, WIND SHEAR

N87-27596' # National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
JOINT UNIVERSITY PROGRAM FOR AIR TRANSPORTATION RESEARCH, 1985
(NAS 1.55:2453; NASA-CP-2453) Avail: NTIS HC A05/MF A01 CSCL 01B
AIR TRAFFIC CONTROL, AIR TRANSPORTATION, CONFERENCES, FAULT TOLERANCE, FLIGHT CONTROL, GLOBAL POSITIONING SYSTEM, INERTIAL NAVIGATION

N87-27613' # National Aeronautics and Space Administration. Washington, D.C.
AERONAUTICAL ENGINEERING: A CONTINUING BIBLIOGRAPHY WITH INDEXES (SUPPLEMENT 217)
Sep. 1987 134 p (NASA-SP-7037(217); NASA 1.21:7037(217)) Avail: NTIS HC A07 CSCL 01B
This bibliography lists 450 reports, articles, and other documents introduced into the NASA scientific and technical information system in August, 1987.

02

AERODYNAMICS

Includes aerodynamics of bodies, combinations, wings, rotors, and control surfaces; and internal flow in ducts and turbomachinery.

N87-10039' # National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
WIND-TUNNEL INVESTIGATION OF THE FLIGHT CHARACTERISTICS OF A CANARD GENERAL-AVIATION AIRPLANE CONFIGURATION
D. R. SATRAN Oct. 1986 60 p (NASA-TP-2623; L-15929; NAS 1.60:2623) Avail: NTIS HC A04/MF A01 CSCL 01A
CANARD CONFIGURATIONS, FLIGHT CHARACTERISTICS, GENERAL AVIATION AIRCRAFT, WIND TUNNEL TESTS

N87-10042' # National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
SUPERSONIC, NONLINEAR, ATTACHED-FLOW WING DESIGN FOR HIGH LIFT WITH EXPERIMENTAL VALIDATION
CAMBERED WINGS, REATTACHED FLOW, SUPERCRITICAL FLOW, SUPERSONIC AIRFOILS, SUPERSONIC FLOW

N87-10838' # National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
EFFECTS OF TAIL SPAN AND EMPENNAGE ARRANGEMENT ON DRAG OF A TYPICAL SINGLE-ENGINE FIGHTER AFT END
J. R. BURLEY, II and B. L. BERRIER Sep. 1984 136 p (NASA-TP-2352; L-15742; NAS 1.60:2352) Avail: NTIS HC A07/MF A01 CSCL 01A
AERODYNAMIC DRAG, AIRCRAFT CONFIGURATIONS, SKIN FRICTION, TAIL ASSEMBLIES, TRANSONIC SPEED
THREE-DIMENSIONAL, UNSTEADY, FULL-POTENTIAL CALCULATION
INTERNAL PERFORMANCE OF SINGLE-EXPANSION-RAMP NOZZLES WITH THRUST-VECTORIZATION CAPABILITY UP TO 60 DEG
B. L. BERRIER and L. D. LEAVITT Oct. 1984 144 p
(NASA-TP-2364; L-15766; NAS 1.60:2364) Avail: NTIS HC A07/MF A01 CSCL 01A
AXISYMMETRIC BODIES, NOZZLE FLOW, THRUST VECTOR CONTROL

N87-10841*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.
TRANSonic FLOW ANALYSIS FOR Rotors. PART 2: THREE-DIMENSIONAL, UNSTEADY, FULL-POTENTIAL CALCULATION
I. C. CHANG Jan. 1985 27 p
(NASA-TP-2375-PT-2; A-9682; NAS 1.60:2375-PT-2) Avail: NTIS HC A03/MF A01 CSCL 01A
AERODYNAMIC STABILITY, HELICOPTER PERFORMANCE, Rotors, Tip Vanes, TRANSonic FLOW

N87-10843*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
PILOTED SIMULATION STUDY OF THE EFFECTS OF AN AUTOMATED TRIM SYSTEM ON FLIGHT CHARACTERISTICS OF A LIGHT TWIN-ENGINE AIRPLANE WITH ONE ENGINE INOPERATIVE
(NASA-TP-2633; L-16147; NAS 1.60:2633) Avail: NTIS HC A03/MF A01 CSCL 01A
AERODYNAMIC BALANCE, AUTOMATIC FLIGHT CONTROL, ENGINE FAILURE, LIGHT AIRCRAFT

N87-11702*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
FORWARD-SWEPT WING CONFIGURATION DESIGNED FOR HIGH MANEUVERABILITY BY USE OF A TRANSonic COMPUTATIONAL METHOD
M. J. MANN and C. E. MERCER Nov. 1986 185 p
(NASA-TP-2628; L-16120; NAS 1.60:2628) Avail: NTIS HC A09/MF A01 CSCL 01A
AERODYNAMIC CONFIGURATIONS, HIGHLY MANEUVERABLE AIRCRAFT, Swopt FORWARD WINGS, TRANSonic SPEED

N87-12541*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
EFFECT OF PORT CORNER GEOMETRY ON THE INTERNAL PERFORMANCE OF A ROTATING-VANE-TYPE THRUST REVERSER
B. L. BERRIER and F. J. CAPONE Dec. 1986 51 p
(NASA-TP-2624; L-16135; NAS 1.60:2624) Avail: NTIS HC A04/MF A01 CSCL 01A
CORNER FLOW, NOZZLE GEOMETRY, PORTS (OPENINGS), ROTATING BODIES, THRUST REVERSAL, VANES, WIND TUNNEL TESTS

N87-14284*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
PROPAGATION OF SOUND WAVES IN TUBES OF NONCIRCULAR CROSS SECTION
W. B. RICHARDS (Oberlin Coll., Ohio) Aug. 1986 33 p
(NASA-TP-2601; E-2690; NAS 1.60:2601) Avail: NTIS HC A03/MF A01 CSCL 01A
ELLIPSOIDAL CYLINDERS, PIPES (TUBES), SOUND WAVES, WAVE PROPAGATION

N87-15174*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
APPLICABILITY OF LINEARIZED-THEORY ATTACHED-FLOW METHODS TO DESIGN AND ANALYSIS OF FLAP SYSTEMS AT LOW SPEEDS FOR THIN SWEPT WINGS WITH SHARP LEADING EDGES
HARRY W. CARLSON and CHRISTINE M. DARDEN Jan. 1987 54 p
(NASA-TP-2653; L-16151; NAS 1.60:2653) Avail: NTIS HC A04/MF A01 CSCL 01A
DESIGN ANALYSIS, FLAPS (CONTROL SURFACES), LINEARITY, LOW SPEED, SHARP LEADING EDGES, SWEPT WINGS, THIN WINGS, VORTEX FLAPS

N87-15183*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
EFFICIENT SOLUTIONS TO THE EULER EQUATIONS FOR SUPersonic FLOW WITH EMBEDDED SUBsonic REGIONS
ROBERT W. WALTERS and DOUGLAS L. DWOYER Jan. 1987 18 p
(NASA-TP-2523; L-15975; NAS 1.60:2523) Avail: NTIS HC A02/MF A01 CSCL 01A
EMBEDDING, EULER EQUATIONS OF MOTION, PROBLEM SOLVING, SUBsonic FLOW, SUPersonic FLOW

N87-15184*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
SUBsonic MANEUVER AND ANALYSIS OF A SUPersonic CRUISE Fighter WING CONCEPT
GREGORY D. RIEBE and CHARLES H. FOX, JR. Jan. 1987 74 p
(NASA-TP-2642; L-16097; NAS 1.60:2642) Avail: NTIS HC A04/MF A01 CSCL 01A
FIGHTER AIRCRAFT, MANEUVERS, SUBsonic SPEED, SUPersonic CRUISE AIRCRAFT RESEARCH, WINGS

N87-17665*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
PRELIMINARY DESIGN OF TURBOPUMPS AND RELATED MACHINERY
GEORGE F. WISLICENUS Oct. 1986 397 p
(NAS3-13475)
(NASA-RP-1170; E-7389; NAS 1.61:1170) Avail: NTIS HC A17/MF A01 CSCL 01A
Pumps used in large liquid-fuel rocket engines are examined. The term preliminary design denotes the initial, creative phases of design, where the general shape and characteristics of the machine are determined. This compendium is intended to provide the design engineer responsible for these initial phases with a physical understanding and background knowledge of the numerous special fields involved in the design process. Primary attention is directed to the pumping part of the turbopump and hence is concerned with essentially incompressible fluids. However, compressible flow principles are developed. As much as possible, the simplicity and reliability of incompressible flow considerations are retained by treating the mechanics of compressible fluids as a departure from the theory of incompressible fluids. Five areas are discussed: a survey of the field of turbomachinery in dimensionless form; the theoretical principles of the hydrodynamic design of turbomachinery; the hydrodynamic and gas dynamic design of axial flow turbomachinery; the hydrodynamic and gas dynamic design of radial and mixed flow turbomachinery; and some mechanical design considerations of turbomachinery. Theoretical considerations are presented with a relatively elementary mathematical treatment.

Author
N87-17668* # National Aeronautics and Space Administration. Langley Research Center, Hampton, Va. WIND-TUNNEL INVESTIGATION AT SUPERSONIC SPEEDS OF A REMOTE-CONTROLLED CANARD MISSILE WITH A FREE-ROLLING-TAIL BRAKE TORQUE SYSTEM A. B. BLAIR, JR. Mar. 1985 38 p (NASA-TP-2401; L-15862; NAS 1.60:2401) Avail: NTIS HC A03/MF A01 CSCL 01A BRAKING, CANARD CONFIGURATIONS, FINS, MISSILE CONFIGURATIONS, REMOTE CONTROL, ROLLING MOMENTS, SUPERSONIC SPEED, TAIL ASSEMBLIES, TORQUE, WIND TUNNEL TESTS

N87-17669* # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. COMBINED AERODYNAMIC AND STRUCTURAL DYNAMIC PROBLEM EMULATING ROUTINES (CASPER): THEORY AND IMPLEMENTATION WILLIAM H. JONES Feb. 1985 75 p (NASA-TP-2418; E-2278; NAS 1.60:2418) Avail: NTIS HC A04/MF A01 CSCL 01A AERODYNAMIC COEFFICIENTS, COMPUTATIONAL FLUID DYNAMICS, COMPUTERIZED SIMULATION, DYNAMIC STRUCTURAL ANALYSIS

N87-19351* # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. NUMERICAL SIMULATION OF CHANNEL FLOW TRANSITION, RESOLUTION REQUIREMENTS AND STRUCTURE OF THE HAIRPIN VORTEX STEVEN E. KRIST (Joint Inst. for Advancement of Flight Sciences, Hampton, Va.) and THOMAS A. ZANG Apr. 1987 134 p (NASA-TP-2704; L-16227; NAS 1.60:2704) Avail: NTIS HC A07/MF A01 CSCL 01A AERODYNAMICS, COMPUTERIZED SIMULATION, DESIGN ANALYSIS, NUMERICAL ANALYSIS, PRESSURE DISTRIBUTION

N87-21855* # National Aeronautics and Space Administration. Langley Research Center, Hampton, Va. WIND-TUNNEL FREE-FLIGHT INVESTIGATION OF A 0.15-SCALE MODEL OF THE F-106B AIRPLANE WITH VORTEX FLAPS LONG P. YIP May 1987 46 p (NASA-TP-2700; L-16202; NAS 1.60:2700) Avail: NTIS HC A04/MF A01 CSCL 01A ELECTRODYNAMICS, F-106 AIRCRAFT, FLIGHT TESTS, LIGHTNING, RESEARCH AIRCRAFT

N87-22262* # National Aeronautics and Space Administration. Langley Research Center, Hampton, Va. EXPERIMENTAL CAVITY PRESSURE DISTRIBUTIONS AT SUPERSONIC SPEEDS ROBERT L. STALLINGS, JR. and FLOYD J. WILCOX, JR. Jun. 1987 79 p (NASA-TP-2683; L-16215; NAS 1.60:2683) Avail: NTIS HC A05/MF A01 CSCL 01A CAVITIES, FLUID FLOW, PRESSURE DISTRIBUTION, SUPERSONIC SPEED

N87-23586# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va. ON MINIMIZING THE NUMBER OF CALCULATIONS IN DESIGN-BY-ANALYSIS CODES RAYMOND L. BARGER and ANUTOSH MOitra Jun. 1987 16 p (NASA-TP-2706; L-16226; NAS 1.60:2706) Avail: NTIS HC A02/MF A01 CSCL 01A AERODYNAMIC CONFIGURATIONS, APPROXIMATION, DESIGN ANALYSIS, NUMERICAL ANALYSIS, PRESSURE DISTRIBUTION

02 AERODYNAMICS
02 AERODYNAMICS

N87-23592 National Aeronautics and Space Administration. Langley Research Center, Hampton, Va. MACH 6 EXPERIMENTAL AND THEORETICAL STABILITY AND PERFORMANCE OF A CRUCIFORM MISSILE AT ANGLES OF ATTACK UP TO 65 DEGREES

Edward R. Hartman (Arnold Engineering Development Center, Arnold Air Force Station, Tenn.) and Patrick J. Johnston

Jul. 1987 41 p

(NASA-TP-2733; L-16267; NAS 1.60:2733) Avail: NTIS HC A03/MF A01 CSCL 01A

ANGLE OF ATTACK, CRUCIFORM WINGS, EXPERIMENTATION, HYPERSONIC SPEED, MACH NUMBER, MISSELS

N87-23593 National Aeronautics and Space Administration. Langley Research Center, Hampton, Va. EFFECT OF A TRADE BETWEEN BOATTAIL ANGLE AND WEDGE SIZE ON THE PERFORMANCE OF A NONAXISYMMETRIC WEDGE NOZZLE

George T. Carson, Jr., E. Ann Bare, and James R. Burley, II

Jul. 1987 67 p

(NASA-TP-2717; L-16248; NAS 1.60:2717) Avail: NTIS HC A04/MF A01 CSCL 01A

AXISYMMETRIC BODIES, BOATTAILS, NOZZLE GEOMETRY, PERFORMANCE TESTS, TRADEOFFS, WEDGES

N87-23597 National Aeronautics and Space Administration. Langley Research Center, Hampton, Va. STUDY OF LEE-SIDE FLOWS OVER CONICALLY CAMBERED DELTA WINGS AT SUPERSONIC SPEEDS, PART 1

Richard M. Wood and Carolyn B. Watson

Jul. 1987 212 p

(NASA-TP-2660-PT-1; L-16192; NAS 1.60:2660-PT-1) Avail: NTIS HC A10/MF A01 CSCL 01A

CONICAL CAMBER, DELTA WINGS, FLOW DISTRIBUTION, LEE WAVES, STRUCTURAL DESIGN, SUPERSONIC FLOW, VORTICES

N87-24410 National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif. PROCEEDINGS OF THE 1985 NASA AMES RESEARCH CENTER'S GROUND-EFFECTS WORKSHOP

Kerry Mitchell, Ed.

(NASA-CP-2462; A-86391; NAS 1.55:2462) Avail: NTIS HC A19/MF A01 CSCL 01A

GROUND EFFECT, INGESTION (ENGINES), POWERED LIFT AIRCRAFT, V/STOL AIRCRAFT, VERTICAL LANDING

N87-24432 National Aeronautics and Space Administration. Langley Research Center, Hampton, Va. STATIC INTERNAL PERFORMANCE OF A TWO-DIMENSIONAL CONVERGENT-DIVERGENT NOZZLE WITH THRUST VECTORING

E. Ann Bare and David E. Reubush

Jul. 1987 115 p

(NASA-TP-2721; L-16240; NAS 1.60:2721) Avail: NTIS HC A06/MF A01 CSCL 01A

CONVERGENT-DIVERGENT NOZZLES, STATIC TESTS, THRUST VECTOR CONTROL, TWO DIMENSIONAL FLOW

N87-24433 National Aeronautics and Space Administration. Langley Research Center, Hampton, Va. MULTIAxis CONTROL POWER FROM THRUST VECTORING FOR A SUPERSONIC FIGHTER AIRCRAFT MODEL AT MACH 0.20 TO 2.47

Francis J. Capone and E. Ann Bare

Jul. 1987 264 p

(NASA-TP-2712; L-16213; NAS 1.60:2712) Avail: NTIS HC A12/MF A01 CSCL 01A

FIGHTER AIRCRAFT, MACH NUMBER, SUPERSONIC CRUISE AIRCRAFT RESEARCH, THRUST VECTOR CONTROL

N87-25301 National Aeronautics and Space Administration. Langley Research Center, Hampton, Va. STUDY OF LEE-SIDE FLOWS OVER CONICALLY CAMBERED DELTA WINGS AT SUPERSONIC SPEEDS, PART 2

Richard M. Wood and Carolyn B. Watson

Jul. 1987 404 p

(NASA-TP-2660-PT-2; L-16192; NAS 1.60:2660-PT-2) Avail: NTIS HC A18/MF A01 CSCL 01A

CONICAL CAMBER, DELTA WINGS, FLOW DISTRIBUTION, FLOW VISUALIZATION, SUPERSONIC FLOW, WING LOADING

N87-25998 National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif. SUPERCOMPUTING IN AEROSPACE

Paul Kutler and Helen Yee

(NASA-CP-2454; A-87082; NAS 1.55:2454) Avail: NTIS HC A13/MF A01 CSCL 01A

COMPUTATIONAL ASTROPHYSICS, COMPUTATIONAL CHEMISTRY, COMPUTATIONAL FLUID DYNAMICS, COMPUTATIONAL GRID, COMPUTERIZED SIMULATION, CONFERENCES, INTERACTIONAL AERODYNAMICS, NAVIER-STOKES EQUATION, SUPERCOMPUTERS

N87-26031 National Aeronautics and Space Administration. Langley Research Center, Hampton, Va. EFFECT OF REYNOLDS NUMBER VARIATION ON AERODYNAMICS OF A HYDROGEN-FUELED TRANSPORT CONCEPT AT MACH 6

Jim A. Penland and Sonson C. Marcum, Jr.

Aug. 1987 28 p

(NASA-TP-2728; L-16286; NAS 1.60:2728) Avail: NTIS HC A03/MF A01 CSCL 01A

AERODYNAMIC CONFIGURATIONS, HYDROGEN FUELS, HYPERSONIC AIRCRAFT, MACH NUMBER, REYNOLDS NUMBER, TRANSPORT AIRCRAFT

N87-26032 National Aeronautics and Space Administration. Langley Research Center, Hampton, Va. STEADY AND UNSTEADY AERODYNAMIC FORCES FROM THE SOUSSA SURFACE-PANEL METHOD FOR A FIGHTER WING WITH TIP MISSILE AND COMPARISON WITH EXPERIMENT AND PanAir

Herbert J. Cunningham

Aug. 1987 29 p

(NASA-TP-2736; L-16262; NAS 1.60:2736) Avail: NTIS HC A03/MF A01 CSCL 01A

AERODYNAMIC FORCES, FIGHTER AIRCRAFT, PANEL METHOD (FLUID DYNAMICS), UNSTEADY FLOW, WINGS

N87-26674 National Aeronautics and Space Administration. Langley Research Center, Hampton, Va. SUBSONIC LONGITUDINAL AND LATERAL-DIRECTIONAL CHARACTERISTICS OF A FORWARD-SWEEP-WING FIGHTER CONFIGURATION AT ANGLES OF ATTACK UP TO 47 DEG

Michael J. Mann, Jarrett K. Huffman, and Charles H. Fox, Jr.

Sep. 1987 103 p

(NASA-TP-2727; L-16206; NAS 1.60:2727) Avail: NTIS HC A06/MF A01 CSCL 01A

AERODYNAMIC CONFIGURATIONS, ANGLE OF ATTACK, FIGHTER AIRCRAFT, LATERAL CONTROL, LATERAL STABILITY, SUBSONIC AIRCRAFT, SWEPT FORWARD WINGS

N87-26683 National Aeronautics and Space Administration. Langley Research Center, Hampton, Va. AN EXPERIMENTAL INVESTIGATION OF AN ADVANCED TURBOPROP INSTALLATION ON A SWEPT WING AT SUBSONIC AND TRANSONIC SPEEDS

John R. Carlson and Odis C. Pendergraft, Jr.

Sep. 1987 242 p

(NASA-TP-2729; L-16043; NAS 1.60:2729) Avail: NTIS HC A11/MF A01 CSCL 01A

AERODYNAMICS, ENGINE AIRFRAME INTEGRATION, SUBSONIC SPEED, SWEEP WINGS, TRANSONIC SPEED, TURBOPROP ENGINES
05 AIRCRAFT DESIGN, TESTING AND PERFORMANCE

N87-20990# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif. SUMMARY OF STUDIES TO REDUCE WING-MOUNTED PROPFAN INSTALLATION DRAG ON AN M = 0.8 TRANSPORT RONALD C. SMITH, ALAN D. LEVIN, and RICHARD D. WOOD May 1987 29 p (NASA-TP-2678; A-86242; NAS 1.60:2678) Avail: NTIS HC A03/MF A01 CSCL 01C DRAG REDUCTION, HIGH SPEED, PROPFAN TECHNOLOGY, TRANSPORT AIRCRAFT, WIND TUNNEL TESTS

N87-24458# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va. MEASUREMENTS OF FLOW RATE AND TRAJECTORY OF AIRCRAFT TIRE-GENERATED WATER SPRAY ROBERT H. DAUGHERTY and SANDY M. STUBBS Jul. 1987 18 p (NASA-TP-2718; L-16195; NAS 1.60:2718) Avail: NTIS HC A06/MF A01 CSCL 01C AIRCRAFT TIRES, ENGINE INLETS, FLOW VELOCITY, INGESTION (ENGINES), SPLASHING, SPRAYING

N87-26041# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va. EVALUATION OF INSTALLED PERFORMANCE OF A WING-TIP-MOUNTED PUSHER TURBOPROP ON A SEMISPAN WING JAMES C. PATTERSON, JR. and GLYNN R. BARTLETT Aug. 1987 30 p (NASA-TP-2739; L-16252; NAS 1.60:2739) Avail: NTIS HC A03/MF A01 CSCL 01C INSTALLING, PROPELLERS, SEMISPAN MODELS, TURBOFAN ENGINES, TURBOPROP ENGINES, WING TIP VORICES

The practical application of parameter estimation methodology to the problem of estimating aircraft stability and control derivatives from flight test data is examined. The primary purpose of the
document is to present a comprehensive and unified picture of the entire parameter estimation process and its integration into a flight test program. The document concentrates on the output-error method to provide a focus for detailed examination and to allow us to give specific examples of situations that have arisen. The document first derives the aircraft equations of motion in a form suitable for application to estimation of stability and control derivatives. It then discusses the issues that arise in adapting the equations to the limitations of analysis programs, using a specific example. The roles and issues relating to mass distribution data, preflight predictions, maneuver design, flight scheduling, instrumentation sensors, data acquisition systems, and data processing are then addressed. Finally, the document discusses evaluation and the use of the analysis results. Author

06 AIRCRAFT INSTRUMENTATION

Includes cockpit and cabin display devices; and flight instruments.

N87-10864*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
GROUND-BASED TIME-GUIDANCE ALGORITHM FOR CONTROL OF AIRPLANES IN A TIME-METERED AIR TRAFFIC CONTROL ENVIRONMENT: A PILOTED SIMULATION STUDY
AIR TRAFFIC CONTROL, ENERGY CONSERVATION, FLIGHT MANAGEMENT SYSTEMS, FLIGHT SIMULATION, FUEL CONSUMPTION, PILOTS (PERSONNEL), TIMING DEVICES

N87-13438*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
DEVELOPMENT AND EVALUATION OF AN AIRPLANE ELECTRONIC DISPLAY FORMAT ALIGNED WITH THE INERTIAL VELOCITY VECTOR
G. G. STEINMETZ Dec. 1986 23 p (NASA-TP-2648; L-16168; NAS 1.60:2648) Avail: NTIS HC A02/MF A01 CSCL 01D
ALIGNMENT, DIRECTIONAL CONTROL, DISPLAY DEVICES, ELECTRONIC EQUIPMENT, FLIGHT TESTS, INERTIAL NAVIGATION, PERFORMANCE TESTS, VELOCITY

N87-19393*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
A SIMULATION EVALUATION OF A PILOT INTERFACE WITH AN AUTOMATIC TERMINAL APPROACH SYSTEM
DAVID A. HINTON Apr. 1987 21 p (NASA-TP-2699; L-16222; NAS 1.60:2699) Avail: NTIS HC A02/MF A01 CSCL 17G
APPROACH CONTROL, AUTOMATIC CONTROL, AUTOMATIC PILOTS, GENERAL AVIATION AIRCRAFT, MAN MACHINE SYSTEMS

N87-29533*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.
ANALOG SIGNAL CONDITIONING FOR FLIGHT-TEST INSTRUMENTATION
The application of analog signal conditioning to flight-tests data acquisition systems is discussed. Emphasis is placed on practical applications of signal conditioning for the most common flight-test data-acquisition systems. A limited amount of theoretical discussion is included to assist the reader in a more complete understanding of the subject matter. Nonspecific signal conditioning, such as amplification, filtering, and multiplexing, is discussed. Signal conditioning for various specific transducers and data terminal devices is also discussed to illustrate signal conditioning that is unique to particular types of transducers. The purpose is to delineate for the reader the various signal-conditioning technique options, together with tradeoff considerations, for commonly encountered flight-test situations. Author

07 AIRCRAFT PROPULSION AND POWER

Includes prime propulsion systems and systems components, e.g., gas turbine engines and compressors; and onboard auxiliary power plants for aircraft.

N87-17699*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
DESIGN OF 9.271-PRESSURE-RATIO 5-STAGE CORE COMPRESSOR AND OVERALL PERFORMANCE FOR FIRST 3 STAGES
RONALD J. STEINKE May 1986 35 p (NASA-TP-2597; E-2589; NAS 1.60:2597) Avail: NTIS HC A03/MF A01 CSCL 21E
COMPRESSORS, DESIGN ANALYSIS, FLOW DISTRIBUTION, PERFORMANCE TESTS, ROTOR BLADES (TURBOMACHINERY)

N87-20267*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
NASA-CHINESE AERONAUTICAL ESTABLISHMENT (CAE) SYMPOSIUM
COMBUSTION, FLUID DYNAMICS, THERMODYNAMICS

N87-24481*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
LOW-COST FM OSCILLATOR FOR CAPACITANCE TYPE BLADE TIP CLEARANCE MEASUREMENT SYSTEM
JOHN P. BARRANGER Jul. 1987 16 p (NASA-TP-2746; E-3455; NAS 1.60:2746) Avail: NTIS HC A02/MF A01 CSCL 21E
BLADE TIPS, ERROR ANALYSIS, FREQUENCY MODULATION, NONDESTRUCTIVE TESTS, OSCILLATORS, ROTOR BLADES (TURBOMACHINERY)
AERIAL STABILITY AND CONTROL

Includes aircraft handling qualities; piloting; flight controls; and autopilots.

N87-10870** National Aeronautics and Space Administration. Langley Research Center, Hampton, Va. INTERFERENCE EFFECTS OF THRUST REVERSING ON HORIZONTAL TAIL EFFECTIVENESS OF TWIN-ENGINE FIGHTER AIRCRAFT AT MACH NUMBERS FROM 0.15 TO 0.90 F. J. CAPONE and M. L. MASON Oct. 1984 104 p (NASA-TP-2350; L-15811; NAS 1.60:2350) Avail: NTIS HC A06/MF A01 CSCL 01C AERODYNAMIC INTERFERENCE, FIGHTER AIRCRAFT, TAIL ASSEMBLIES, THRUST REVERSAL, WIND TUNNEL TESTS

AEROELASTIC CHARACTERISTICS OF AN OBLIQUE-WING RESEARCH AIRPLANE

IN-FLIGHT TOTAL FORCES, MOMENTS AND STATIC AEROELASTIC CHARACTERISTICS OF AN OBLIQUE-WING RESEARCH AIRPLANE

FLIGHT CHARACTERISTICS OF THE AD-1 OBLIQUE-WING RESEARCH AIRCRAFT

ALEX G. SIM and ROBERT E. CURRY Mar. 1985 29 p (NASA-TP-2223; H-1180; NAS 1.60:2223) Avail: NTIS HC A03/MF A01 CSCL 01C AERODYNAMIC CONFIGURATIONS, FLIGHT CHARACTERISTICS, LOW SPEED, OBLIQUE WINGS, RESEARCH AIRCRAFT

RESEARCH AND SUPPORT FACILITIES (AIR)

Includes airports, hangars and runways; aircraft repair and overhaul facilities; wind tunnels; shock tubes; and aircraft engine test stands.

N87-26922* National Aeronautics and Space Administration. Langley Research Center, Hampton, Va. PILOTED-SIMULATION STUDY OF EFFECTS OF VORTEX FLAPS ON LOW-SPEED HANDLING QUALITIES OF A DELTA-WING AIRPLANE JAY M. BRANDON, PHILIP W. BROWN, and ALFRED J. WUNSCHEL Sep. 1987 38 p (NASA-TP-2747; L-16307; NAS 1.60:2747) Avail: NTIS HC A03/MF A01 CSCL 01C CONTROLLABILITY, DELTA WINGS, FLIGHT SIMULATION, LOW SPEED, PILOTS (PERSONNEL), VORTEX FLAPS

N87-17717* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. EXPERIMENTAL EVALUATION OF WALL MACH NUMBER DISTRIBUTIONS OF THE OCTAGONAL TEST SECTION PROPOSED FOR NASA LEWIS RESEARCH CENTER'S ALTITUDE WIND TUNNEL DOUGLAS E. HARRINGTON, RICHARD R. BURLEY, and ROBERT R. CORBAN Nov. 1986 35 p (NASA-TP-2666; E-3145; NAS 1.60:2666) Avail: NTIS HC A03/MF A01 CSCL 14B FLOW VELOCITY, MACH NUMBER, WIND TUNNEL APPARATUS, WIND TUNNEL WALLS

N87-18575* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. EXPERIMENTAL EVALUATION OF TWO TURNING VANE DESIGNS FOR FAN DRIVE CORNER OF 0.1-SCALE MODEL OF NASA LEWIS RESEARCH CENTER'S PROPOSED ALTITUDE WIND TUNNEL DONALD R. BOLDMAN, ROYCE D. MOORE, and RICKEY J. SHYNE Mar. 1987 148 p (NASA-TP-2646; E-3175; NAS 1.60:2646) Avail: NTIS HC A07/MF A01 CSCL 14B CORNER FLOW, VANES, WIND TUNNEL APPARATUS, WIND TUNNEL DRIVES
15 LAUNCH VEHICLES AND SPACE VEHICLES

12 ASTRONAUTICS (GENERAL)

N87-20302*# National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, Md.
THE 1986 GET AWAY SPECIAL EXPERIMENTER'S SYMPOSIUM
CONFERENCES, GETAWAY SPECIALS (STS), GOVERNMENT/INDUSTRY RELATIONS, SPACE SHUTTLE PAYLOADS, UNIVERSITIES

N87-29576*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
TECHNOLOGY FOR LARGE SPACE SYSTEMS. A BIBLIOGRAPHY WITH INDEXES (SUPPLEMENT 17)
Oct. 1987 140 p (NASA-SP-7046(17); NAS 1.21:7046(17)) Avail: NTIS HC A07 CSCL 228
This bibliography lists 512 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1987 and June 30, 1987. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems. Author

15 LAUNCH VEHICLES AND SPACE VEHICLES

Includes boosters; operating problems of launch/space vehicle systems; and reusable vehicles.

SOLAR ARRAY FLIGHT DYNAMIC EXPERIMENT
R. W. SCHOCK Washington May 1986 27 p (NASA-TP-2598; NAS 1.60:2598) Avail: NTIS HC A03/MF A01 CSCL 10A
LARGE SPACE STRUCTURES, LASER APPLICATIONS, SOLAR ARRAYS, SPACE SHUTTLE PAYLOADS, TRACKING (POSITION)

N87-18588*# National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, Ala.
SYSTEM STUDY OF THE CARBON DIOXIDE OBSERVATIONAL PLATFORM SYSTEM (CO-OPS): PROJECT OVERVIEW
ATMOSPHERIC COMPOSITION, CARBON DIOXIDE, REMOTE SENSING, SPACE PLATFORMS
15 LAUNCH VEHICLES AND SPACE VEHICLES

STRUCTURAL DYNAMICS AND CONTROL INTERACTION OF FLEXIBLE STRUCTURES
(NASA-CP-2467-PT-1; M-554-PT-1; NAS 1.55:2467-PT-1) Avail: NTIS HC A99/MF E03 CSCL 22B
CONTROL SYSTEMS DESIGN, DYNAMIC STRUCTURAL ANALYSIS, FLEXIBLE BODIES, LARGE SPACE STRUCTURES, SPACECRAFT CONTROL

N87-22729*# National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, Ala.
STRUCTURAL DYNAMICS AND CONTROL INTERACTION OF FLEXIBLE STRUCTURES
(NASA-CP-2467-PT-2; M-554-PT-2; NAS 1.55:2467-PT-2) Avail: NTIS HC A14/MF E03 CSCL 22B
CONFERENCES, DESIGN ANALYSIS, DYNAMIC STRUCTURAL ANALYSIS, FLEXIBLE BODIES, JOINTS (JUNCTIONS), LARGE SPACE STRUCTURES, ORBITAL SPACE STATIONS

16 SPACE TRANSPORTATION
Includes passenger and cargo space transportation, e.g., shuttle operations; and space rescue techniques.

DEVELOPMENT TESTING OF LARGE VOLUME WATER SPRAYS FOR WARM FOG DISPERSAL
(NASA-TP-2607; NAS 1.60:2607) Avail: NTIS HC A06/MAA01 CSCL 14B
COALESING, FOG DISPERSAL, SPACE SHUTTLES, SPACECRAFT LAUNCHING, SPRAY NOZZLES, WATER

18 SPACECRAFT DESIGN, TESTING AND PERFORMANCE
Includes satellites; space platforms; space stations; spacecraft systems and components such as thermal and environmental controls; and attitude controls.

N87-16014*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
NAVY/DO-D CONTROL/STRUCTURES INTERACTION TECHNOLOGY, 1986
ROBERT L. WRIGHT, comp. Nov. 1986 549 p Conference held in Norfolk, Va., 12-18 Nov. 1986; sponsored by NASA Langley Research Center and AFWAL
(NASA-CP-2447-PT-1; L-15242-PT-1; NAS 1.55:2447-PT-1) Avail: NTIS HC A23/MAF A01 CSCL 22B
ANTENNAS, CONFERENCES, FLEXIBLE SPACECRAFT, LARGE SPACE STRUCTURES, SPACE STATIONS, SPACECRAFT CONTROL, SPACECRAFT DESIGN, SYSTEMS ENGINEERING, TRUSSES, VIBRATION DAMPING

N87-24495*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
NAVY/DO-D CONTROL/STRUCTURES INTERACTION TECHNOLOGY, 1986
(NASA-CP-2447-PT-2; L-15242-PT-2; NAS 1.55:2447-PT-2) Avail: NTIS HC A14/MAF A01 CSCL 22B
CONTROL STABILITY, CONTROL SYSTEMS DESIGN, INTERACTIVE CONTROL, ORBITAL SPACE STATIONS, SPACECRAFT CONTROL, VIBRATION DAMPING

N87-26075* National Aeronautics and Space Administration, Washington, D.C.
SPACE STATION SYSTEMS: A BIBLIOGRAPHY WITH INDEXES (SUPPLEMENT 4)
May 1987 220 p
(NASA-SP-7056(04); NAS 1.21:7056(04)) Avail: NTIS HC A10 CSCL 22B
This bibliography lists 832 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1986 and December 31, 1986. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, and structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems. The coverage includes documents that define major systems and subsystems, servicing and support requirements, procedures and operations, and missions for the current and future space station.

20 SPACECRAFT PROPULSION AND POWER
Includes main propulsion systems and components, e.g., rocket engines; and spacecraft auxiliary power sources.

N87-20380*# National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, Ala.
SOLAR ARRAY FLIGHT EXPERIMENT/DYNAMIC AUGMENTATION EXPERIMENT
LEIGHTON E. YOUNG and HOMER C. PACK, JR. Feb. 1987 72 p
(NASA-TP-2690; NAS 1.60:2690) Avail: NTIS HC A04/AA01 CSCL 10A
LARGE SPACE STRUCTURES, SOLAR ARRAYS, SOLAR DYNAMIC POWER SYSTEMS, SPACE ERECTABLE STRUCTURES, SPACE SHUTTLE PAYLOADS

N87-20381*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
EXPERIMENTAL THRUST PERFORMANCE OF A HIGH-AREA-RATIO ROCKET NOZZLE
(NASA-TP-2720; E-3236-1; NAS 1.60:2720) Avail: NTIS HC A02/MAF A01 CSCL 21H
AREA, NOZZLE GEOMETRY, ROCKET NOZZLES, ROCKET THRUST
24 COMPOSITE MATERIALS

N87-18611*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
SPECTROSCOPIC COMPARISON OF EFFECTS OF ELECTRON RADIATION ON MECHANICAL PROPERTIES OF TWO POLYIMIDES
EDWARD R. LONG, JR. and SHEILA ANN T. LONG Apr. 1987 21 p
(NASA-TP-2663; L-16200; NAS 1.60:2663) Avail: NTIS HC A02/MF A01 CSCL 11C
DURABILITY, ELECTRON RADIATION, KAPTON (TRADE-MARK), RADIATION DAMAGE, TENSILE PROPERTIES

24 COMPOSITE MATERIALS

Includes physical, chemical, and mechanical properties of laminates and other composite materials.

N87-10184*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
EFFECTS OF THERMAL CYCLING ON GRAPHITE-FIBER-REINFORCED 6061 ALUMINUM
(NASA-TP-2612; L-16139; NAS 1.60:2612) Avail: NTIS HC A03/MF A01 CSCL 11D
ALUMINUM GRAPHITE COMPOSITES, CARBON FIBERS, METAL MATRIX COMPOSITES, REINFORCING FIBERS, SPACECRAFT STRUCTURES, THERMAL CYCLING TESTS

N87-29612*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
THE ACEE PROGRAM AND BASIC COMPOSITES RESEARCH AT LANGLEY RESEARCH CENTER (1975 TO 1986): SUMMARY AND BIBLIOGRAPHY
MARVIN B. DOW Oct. 1987 147 p
(NASA-RP-1177; L-16290; NAS 1.61:1177) Avail: NTIS HC A07/MF A01 CSCL 11D
Composites research conducted at the Langley Research Center during the period from 1975 to 1986 is described, and an annotated bibliography of over 600 documents (with their abstracts) is presented. The research includes Langley basic technology and the composite primary structures element of the NASA Aircraft Energy Efficiency (ACEE) Program. The basic technology documents cited in the bibliography are grouped according to the research activity such as design and analysis, fatigue and fracture, and damage tolerance. The ACEE documents cover development of composite structures for transport aircraft.
25 INORGANIC AND PHYSICAL CHEMISTRY

INORGANIC AND PHYSICAL CHEMISTRY

Includes chemical analysis, e.g., chromatography; combustion theory; electrochemistry; and photochemistry.

N87-18629* National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
ELECTRON STIMULATED DESORPTION OF ATOMIC OXYGEN FROM SILVER
R. A. OUTLAW, W. K. PEREGOY, GAR B. HOFLUND (Florida Univ., Gainesville), and GREGORY R. CORALLO Apr. 1987 25 p
(NASA-TP-2668; L-16225; NAS 1.60:2668) Avail: NTIS HC A02/MF A01 CSCL 07D
ATOMIC BEAMS, DESORPTION, ELECTRON EMISSION, OXYGEN, SILVER, STIMULATED EMISSION

N87-20407* National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
EFFECT OF LID (REGISTERED) PROCESSING ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF TI-6AL-4V AND TI-6AL-2SN-4ZR-2MO TITANIUM FOIL-GAUGE MATERIALS
LINDA B. BALCKBURN Apr. 1987 27 p
(NASA-TP-2677; L-16098; NAS 1.60:2677) Avail: NTIS HC A03/MF A01 CSCL 11F
BONDING, DIFFUSION, INTERFACES, LIQUIDS, MECHANICAL PROPERTIES, MICROSTRUCTURE, PROTECTIVE COATINGS, TITANIUM ALLOYS

THE CORROSION MECHANISMS FOR PRIMER COATED 2219-T87 ALUMINUM
MERLIN D. DANFORD and WARD W. KNOCKEMUS (Huntingdon Coll., Montgomery, Ala.) Jul. 1987 19 p
(NASA-TP-2715; M-556; NAS 1.60:2715) Avail: NTIS HC A02/MF A01 CSCL 11F
ALUMINUM ALLOYS, CORROSION RESISTANCE, PRIMERS (COATINGS), PROTECTIVE COATINGS

HYDROGEN TRAPPING AND THE INTERACTION OF HYDROGEN WITH METALS
MERLIN D. DANFORD Jul. 1987 36 p
(NASA-TP-2744; NAS 1.60:2744) Avail: NTIS HC A03/MF A01 CSCL 11F
CRYSTAL LATTICES, GAS-METAL INTERACTIONS, HYDROGEN TRAPPING
MICROGRAVITY CRYSTALLIZATION OF MACROMOLECULES: AN INTERIM REPORT AND PROPOSAL FOR CONTINUED RESEARCH
CSCL 268
MOLECULES, POLYMER CHEMISTRY, RECRYSTALLIZATION, REDUCED GRAVITY

29
MATERIALS PROCESSING
Includes space-based development of products and processes for commercial applications.

N87-21141* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
MANAGEMENT, WEIGHTLESSNESS

31
ENGINEERING (GENERAL)
Includes vacuum technology; control engineering; display engineering; cryogenics; and fire prevention.

CONTROL SYSTEMS DESIGN, DIGITAL FILTERS, DIGITAL SYSTEMS, STATE VECTORS, SYSTEMS ENGINEERING

A NEW APPROACH TO STATE ESTIMATION IN DETERMINISTIC DIGITAL CONTROL SYSTEMS MICHAEL E. POLITES Jul. 1987 16 p (NASA-TP-2745; NAS 1.60:2745) Avail: NTIS HC A02/MF A01 CSCL 09B
CONTROL SYSTEMS DESIGN, DIGITAL FILTERS, DIGITAL SYSTEMS, STATE ESTIMATION

N87-27067* National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, Ala.
EXACT STATE RECONSTRUCTION IN DETERMINISTIC DIGITAL CONTROL SYSTEMS MICHAEL E. POLITES Aug. 1987 19 p (NASA-TP-2757; NAS 1.60:2757) Avail: NTIS HC A02/MF A01 CSCL 13H
DIGITAL COMMAND SYSTEMS, STATE ESTIMATION, STATE VECTORS

N87-20448* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
UNIQUE BIT-ERROR-RATE MEASUREMENT SYSTEM FOR SATELLITE COMMUNICATION SYSTEMS MARY JO WINDMILLER Mar. 1987 13 p (NASA-TP-2699; E-3322; NAS 1.60:2699) Avail: NTIS HC A02/MF A01 CSCL 17B
BIT ERROR RATE, COMMUNICATION NETWORKS, SATELLITE COMMUNICATION, SYSTEMS ANALYSIS

32 COMMUNICATIONS AND RADAR
Includes radar; land and global communications; communications theory; and optical communications.

The hardware and software characteristics of a time division multiplex system are described. The system is used to sample analog and digital data. The data is merged with synchronization information to produce a serial pulse coded modulation (PCM) bit stream. Information presented herein is required by users to design compatible interfaces and assure effective utilization of this encoder system. GSFC/Wallops Flight Facility has flown approximately 50 of these systems through 1984 on sounding rockets with no inflight failures. Aydin Vector manufactures all of the components for these systems. Author

PULSE CODE MODULATION (PCM) DATA STORAGE AND ANALYSIS USING A MICROCOMPUTER D. E. MASSEY Aug. 1986 8 p (NASA-TP-2629; REPT-822.3; NAS 1.60:2629) Avail: NTIS HC A02/MF A01 CSCL 17B
DATA PROCESSING, DATA REDUCTION, DATA STORAGE, MICROCOMPUTERS, PULSE CODE MODULATION

BIT-ERROR-RATE TESTING OF HIGH-POWER 30-GHZ TRAVELING WAVE TUBES FOR GROUND-TERMINAL APPLICATIONS KURT A. SHALKHAUSER and GENE FUJIKAWA Oct. 1986 16 p (NASA-TP-2635; E-2996; NAS 1.60:2635) Avail: NTIS HC A02/MF A01 CSCL 17B
BIT ERROR RATE, PERFORMANCE TESTS, TRANSMISSION EFFICIENCY, TRAVELING WAVE TUBES

A SYNCHRONOUS DATA ANALYZER FOR THE MINIMUM DELAY DATA FORMAT (MDDF) AND LAUNCH TRAJECTORY ACQUISITION SYSTEM (LTAS) ANDREW J. GREEN Jul. 1987 10 p (NASA-TP-2743; REPT-822.1; NAS 1.60:2743) Avail: NTIS HC A02/MF A01 CSCL 17B
DATA REDUCTION, LAUNCHING, SAMPLING, SYNCHRONISM, TRAJECTORY ANALYSIS
ELECTRONICS AND ELECTRICAL ENGINEERING

Includes test equipment and maintainability; components, e.g., tunnel diodes and transistors; microminiaturization; and integrated circuitry.

N87-11072*# National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, Md.
THE 1985 GODDARD SPACE FLIGHT CENTER BATTERY WORKSHOP
ACCUMULATORS, CURRENT DENSITY, ELECTRODES, ELECTRON EMISSION, TRAVELING WAVE TUBES

N87-17990*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
PERFORMANCE OF TEXTURED CARBON ON COPPER ELECTRODE MULTISTAGE DEPRESSED COLLECTORS WITH MEDIUM-POWER TRAVELING WAVE TUBES
PETER RAMINS and ARTHUR N. CURREN Nov. 1986 12 p (NASA-TP-2665; E-3143; NAS 1.60:2665) Avail: NTIS HC A02/MF A01 CSCL 09A
ACCUMULATORS, CURRENT DENSITY, ELECTRODES, ELECTRON EMISSION, TRAVELING WAVE TUBES

N87-17991*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
CALCULATION OF SECONDARY ELECTRON TRAJECTORIES IN MULTISTAGE DEPRESSED COLLECTORS FOR MICROWAVE AMPLIFIERS
DALE A. FORCE Nov. 1986 7 p (NASA-TP-2664; E-3196; NAS 1.60:2664) Avail: NTIS HC A02/MF A01 CSCL 09A
ACCUMULATORS, ELECTRON EMISSION, MICROWAVE AMPLIFIERS, PARTICLE TRAJECTORIES, TRAVELING WAVE TUBES

N87-20474*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
DESIGN, FABRICATION AND PERFORMANCE OF SMALL GRAPHITE ELECTRODE, MULTISTAGE DEPRESSED COLLECTORS WITH 200-W, CW, 8-TO 18-GHZ TRAVELING-WAVE TUBES
BEN T. EBIHARA and PETER RAMINS Feb. 1987 22 p (NASA-TP-2693; E-3099; NAS 1.60:2693) Avail: NTIS HC A02/MF A01 CSCL 09A
ACCUMULATORS, DESIGN ANALYSIS, ELECTRODES, FABRICATION, PYROLYTIC GRAPHITE, TRAVELING WAVE TUBES

N87-21239*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
TRAVELING-WAVE-TUBE EFFICIENCY IMPROVEMENT BY A LOW-COST TECHNIQUE FOR DEPOSITION OF CARBON ON MULTISTAGE DEPRESSED COLLECTOR
BEN T. EBIHARA, PETER RAMINS, and SHELLY PEET May 1987 14 p (NASA-TP-2719; E-3416; NAS 1.60:2719) Avail: NTIS HC A02/MF A01 CSCL 09A
CARBON, COPPER, DEPOSITION, ELECTRODES, THIN FILMS, TRAVELING WAVE TUBES

N87-22923*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
REVISED NASA AXIALLY SYMMETRIC RING MODEL FOR COUPLED-CAVITY TRAVELING-WAVE TUBES
JEFFREY D. WILSON Jan. 1987 17 p (NASA-TP-2675; E-3220; NAS 1.60:2675) Avail: NTIS HC A02/MF A01 CSCL 09A
AXISYMMETRIC BODIES, CAVITIES, COUPLED MODES, MODELS, RINGS, TRAVELING WAVE TUBES

N87-25532*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
ANALYTICAL AND EXPERIMENTAL PERFORMANCE OF A DUAL-MODE TRAVELING WAVE TUBE AND MULTISTAGE DEPRESSED COLLECTOR
PETER RAMINS, DALE A. FORCE, and HENRY G. KOSMAHL Aug. 1987 29 p (NASA-TP-2752; E-3470; NAS 1.60:2752) Avail: NTIS HC A03/MF A01 CSCL 09A
ACCUMULATORS, ELECTRON BEAMS, TRAVELING WAVE TUBES

FLUID MECHANICS AND HEAT TRANSFER

Includes boundary layers; hydrodynamics; fluids; mass transfer; and ablation cooling.

N87-11963*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
ON THE MAXWELLIAN DISTRIBUTION, SYMMETRIC FORM, AND ENTROPY CONSERVATION FOR THE EULER EQUATIONS
S. M. DESHPANDE Nov. 1986 30 p (NASA-TP-2583; L-16036; NAS 1.60:2583) Avail: NTIS HC A03/MF A01 CSCL 20D
BOLTZMANN DENSITY FUNCTION, ENTROPY, EULER EQUATIONS OF MOTION, MAXWELL-BOLTZMANN DENSITY FUNCTION

N87-13664*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
AEROETHERMAL TESTS OF SPHERICAL DOME PROTUBERANCES ON A FLAT PLATE AT A MACH NUMBER OF 6.5.
AEROTHERMODYNAMICS, HYPERSONIC VEHICLES, LAMINAR BOUNDARY LAYER, PREDICTION ANALYSIS TECHNIQUES, PROTUBERANCES, THERMAL PROTECTION, TILES, TURBULENT BOUNDARY LAYER

N87-17000*# National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, Ala.
SPACE SHUTTLE MAIN ENGINE HIGH PRESSURE FUEL PUMP AFT PLATFORM SEAL CAVITY FLOW ANALYSIS
CAVITIES, FUEL PUMPS, HIGH PRESSURE, SEALS (STOPPERS), SPACE SHUTTLE MAIN ENGINE, TURBINE PUMPS
34 FLUID MECHANICS AND HEAT TRANSFER

N87-18034# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. JET MODEL FOR SLOT FILM COOLING WITH EFFECT OF FREE-STREAM AND COOLANT TURBULENCE FREDERICK F. SIMON Oct. 1986 21 p (NASA-TP-2655; E-2961; NAS 1.60:2955) Avail: NTIS HC A02/MF A01 CSCL 20D FILM COOLING, FLOW VELOCITY, JET ENGINES, NUMERICAL ANALYSIS, TURBULENCE EFFECTS, WALL JETS

N87-18035# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. VELOCITY PROFILES IN LAMINAR DIFFUSION FLAMES VALERIE J. LYONS and JANICE M. MARGLE (Pennsylvania State Univ., Abington) May 1986 13 p Presented at the Combustion Inst. Meeting, Cleveland, Ohio, 5-8 May 1986 (NASA-TP-2596; E-2879; NAS 1.60:2596) Avail: NTIS HC A02/MF A01 CSCL 20D CYCLOHEXANE, DIFFUSION FLAMES, ETHYL ALCOHOL, HEPTANES, LAMINAR FLOW, OCTANES, TEMPERATURE PROFILES, VELOCITY MEASUREMENT

N87-18782# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va. AERO THERMAL EVALUATION OF A SPHERICALLY BLUNTED BODY WITH A TRAPEZOIDAL CROSS SECTION IN THE LANGLEY 8-FOOT HIGH-TEMPERATURE TUNNEL CINDY W. ALBERTSON Apr. 1987 83 p (NASA-TP-2641; L-16096; NAS 1.60:2641) Avail: NTIS HC A05/MF A01 CSCL 20D BOUNDARY LAYERS, FLOW DISTRIBUTION, HEAT TRANSFER, PREDICTIONS, PRESSURE MEASUREMENT, THERMAL PROTECTION

N87-18783# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va. A SECOND-ORDER ACCURATE KINETIC-THEORY-BASED METHOD FOR IN VISCID COMPRESSIBLE FLOWS SURESH M. DESHPANDE Dec. 1986 42 p (NASA-TP-2613; L-16050; NAS 1.60:2613) Avail: NTIS HC A03/MF A01 CSCL 20D BOLTZMANN TRANSPORT EQUATION, EULER EQUATIONS OF MOTION, KINETIC THEORY, NUMERICAL ANALYSIS, SHOCK WAVE PROPAGATION

N87-23921# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. THREE-STEP LABYRINTH SEAL FOR HIGH-PERFORMANCE TURBOMACHINES ROBERT C. HENDRICKS Jun. 1987 75 p (NASA-TP-1848; E-3186; NAS 1.60:1848) Avail: NTIS HC A04/MF A01 CSCL 20D FUEL PUMPS, LABYRINTH SEALS, SPACE SHUTTLE MAIN ENGINE, STATIC TESTS, TURBOMACHINERY

N87-23936# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. STRAIGHT CYLINDRICAL SEAL FOR HIGH-PERFORMANCE TURBOMACHINES ROBERT C. HENDRICKS Jun. 1987 76 p (NASA-TP-1850; E-3185; NAS 1.60:1850) Avail: NTIS HC A05/MF A01 CSCL 20D CYLINDRICAL BODIES, FUEL PUMPS, SEALS (STOPPERS), SPACE SHUTTLE MAIN ENGINE, TURBINE PUMPS, TURBOMACHINERY

N87-24639# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. THREE-STEP CYLINDRICAL SEAL FOR HIGH-PERFORMANCE TURBOMACHINES ROBERT C. HENDRICKS Jun. 1987 79 p (NASA-TP-1849; E-3185; NAS 1.60:1849) Avail: NTIS HC A05/MF A01 CSCL 20D DYNAMIC STABILITY, FUEL PUMPS, LEAKAGE, PUMP SEALS, SPACE SHUTTLE MAIN ENGINE, TURBINE PUMPS

N87-26309# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va. SIMPLIFIED CURVE FITS FOR THE THERMODYNAMIC PROPERTIES OF EQUILIBRIUM AIR S. SRINIVASAN, J. C. TANNEHILL (Iowa State Univ. of Science and Technology, Ames.), and K. J. WEILMUENSTER Aug. 1987 48 p (NAG1-3131) (NASA-TP-2758; E-3418; NAS 1.60:2758) Avail: NTIS HC A03/MF A01 CSCL 20D New, improved curve fits for the thermodynamic properties of equilibrium air have been developed. The curve fits are for pressure, speed of sound, temperature, entropy, enthalpy, density, and internal energy. These curve fits can be readily incorporated into new or existing computational fluid dynamics codes if real gas effects are desired. The curve fits are constructed from Grabau-type transition functions to model the thermodynamic surfaces in a piecewise manner. The accuracies and continuity of these curve fits are substantially improved over those of previous curve fits. These improvements are due to the incorporation of a small number of additional terms in the approximating polynomials and careful choices of the transition functions. The ranges of validity of the new curve fits are temperatures up to 25 000 K and densities from 10 to the -7 to 10 to the 3d power amagats. Author

N87-27161# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. APPLICATION OF TURBULENCE MODELING TO PREDICT SURFACE HEAT TRANSFER IN STAGNATION FLOW REGION OF CIRCULAR CYLINDER CHI R. WANG and FREDDIE C. YEH Sep. 1987 25 p (NASA-TP-2758; E-3418; NAS 1.60:2758) Avail: NTIS HC A02/MF A01 CSCL 20D CIRCULAR CYLINDERS, HEAT TRANSFER, MODELS, STAGNATION FLOW, SURFACE PROPERTIES, TURBULENCE
INSTRUMENTATION AND PHOTOGRAPHY

Includes remote sensors; measuring instruments and gages; detectors; cameras and photographic supplies; and holography.

MECHANICAL ENGINEERING

Includes auxiliary systems (nonpower); machine elements and processes; and mechanical equipment.

LASERS AND MASERS

Includes parametric amplifiers.

MECHANICAL ENGINEERING

Includes auxiliary systems (nonpower); machine elements and processes; and mechanical equipment.
VIBRATION CHARACTERISTICS OF OH-58A HELICOPTER MAIN ROTOR TRANSMISSION
DAVID G. LEWICKI and JOHN J. COY Apr. 1987 18 p (NASA-TP-2705; E-3368; NAS 1.60:2705; AVSCOM-TR-86-C-42; AD-A180364) Avail: NTIS HC A01/MF A01 CSCL 01C
HELICOPTERS, ROTOR AERODYNAMICS, TRANSMISSIONS (MACHINE ELEMENTS), VIBRATION MEASUREMENT

ROTOR DYNAMIC INSTABILITY PROBLEMS IN HIGH-PERFORMANCE TURBOMACHINERY, 1986

QUALITY ASSURANCE AND RELIABILITY
Includes product sampling procedures and techniques; and quality control.

A TECHNIQUE FOR EVALUATING THE APPLICATION OF THE PIN-LEVEL STUCK-AT FAULT MODEL TO VLSI CIRCUITS
DANIEL L. PALUMBO and GEORGE B. FINELLI Sep. 1987 45 p (NASA-TP-2738; L-16268; NAS 1.60:2738) Avail: NTIS HC A03/MF A01 CSCL 14D
COMPUTERS, ERROR ANALYSIS, EVALUATION, FAULT TOLERANCE, INTEGRATED CIRCUITS, VERY LARGE SCALE INTEGRATION

Sensitivity Analysis in Engineering
DYNAMIC STRUCTURAL ANALYSIS, EIGENVALUES, MODAL RESPONSE, OPTIMIZATION, SENSITIVITY
N87-20566*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
SHOT PEENING FOR Ti-6AL-4V ALLOY COMPRESSOR BLADES
GERALD A. CAREK Apr. 1987 9 p (NASA-TP-2711; E-3430; NAS 1.60:2711) Avail: NTIS HC A01/MF A01 CSLCL 20K
- ALUMINUM, COMPRESSOR BLADES, SHOT PEENING, TITANIUM ALLOYS, VANADIUM

N87-20567*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
MODELING OF JOINTS FOR THE DYNAMIC ANALYSIS OF TRUSS STRUCTURES
W. KEITH BELVIN May 1987 43 p (NASA-TP-2661; L-16163; NAS 1.60:2661) Avail: NTIS HC A03/MF A01 CSLCL 20K
- DYNAMIC STRUCTURAL ANALYSIS, JOINTS (JUNCTIONS), LARGE SPACE STRUCTURES, MODELS, TRUSSES

N87-20568*# National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, Ala.
SPACE STATION STRUCTURES AND DYNAMICS TEST PROGRAM
- DYNAMIC STRUCTURAL ANALYSIS, DYNAMIC TESTS, LARGE SPACE STRUCTURES, SPACE STATION STRUCTURES, SPACE STATIONS, SYSTEMS ANALYSIS

N87-27321*# Computer Software Management and Information Center, Athens, Ga.
FIFTEENTH NASTRAN USERS' COLLOQUIUM
- COMPUTER AIDED DESIGN, COMPUTER TECHNIQUES, CONFERENCES, FINITE ELEMENT METHOD, NASTRAN, STRUCTURAL ANALYSIS, STRUCTURAL VIBRATION

N87-29856*# National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, Tex.
THE 21ST AEROSPACE MECHANISMS SYMPOSIUM
- ACTUATORS, DEPLOYMENT, LARGE SPACE STRUCTURES, MANIPULATORS, ROBOTICS, SPACE ERECTABLE STRUCTURES

N87-18139*# National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, Md.
GEOMORPHOLOGY FROM SPACE: A GLOBAL OVERVIEW OF REGIONAL LANDFORMS
NICHOLAS M. SHORT, ed. and ROBERT W. BLAIR, JR., ed. (Fort Lewis A&M Coll., Durango, Colo.) 1986 737 p Original contains color illustrations (NASA-SP-486; NAS 1.21:486; LC-86-17974) Avail: SOD HC $41.00 as 033-000-00994-1; NTIS MF E03 CSLCL 08E
This book, Geomorphology from Space: A Global Overview of Regional Landforms, was published by NASA STIF as a successor to the two earlier works on the same subject: Mission to Earth: LANDSAT views the Earth, and ERTS-1: A New Window on Our Planet. The purpose of the book is threefold: first, to serve as a stimulant in rekindling interest in descriptive geomorphology and landforms analysis at the regional scale; second, to introduce the community of geologists, geographers, and others who analyze the Earth's surficial forms to the practical value of space-acquired remotely sensed data in carrying out their research and applications; and third, to foster more scientific collaboration between geomorphologists who are studying the Earth's landforms and astrogeologists who analyze landforms on other planets and moons in the solar system, thereby strengthening the growing field of comparative planetology.

N87-22281*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
SURFACE BIDIRECTIONAL REFLECTANCE PROPERTIES OF TWO SOUTHWESTERN ARIZONA DESERTS FOR WAVELENGTHS BETWEEN 0.4 AND 2.2 MICROMETERS
- ALBEDO, BIDIRECTIONAL REFLECTANCE, DESERTS, DIRECTIVITY, SOLAR POSITION, ZENITH

N87-27315*# National Aeronautics and Space Administration, Washington, D.C.
EARTH RESOURCES AND REMOTE SENSING
Includes remote sensing of earth resources by aircraft and spacecraft; photogrammetry; and aerial photography.

N87-22281*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
SURFACE BIDIRECTIONAL REFLECTANCE PROPERTIES OF TWO SOUTHWESTERN ARIZONA DESERTS FOR WAVELENGTHS BETWEEN 0.4 AND 2.2 MICROMETERS
- ALBEDO, BIDIRECTIONAL REFLECTANCE, DESERTS, DIRECTIVITY, SOLAR POSITION, ZENITH

N87-27315*# National Aeronautics and Space Administration, Washington, D.C.
EARTH RESOURCES: A CONTINUING BIBLIOGRAPHY WITH INDEXES (ISSUE 54)
Apr. 1987 164 p (NASA-SP-7041(54); NAS 1.21:7041(54)) Avail: NTIS HC A08 CSLCL 05B
This bibliography lists 562 reports, articles, and other documents introduced into the NASA scientific and technical information system between April 1 and June 30, 1987. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution
systems, instrumentation and sensors, and economic analysis.

Author

N87-28162* # National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

EFFECTS OF AEROSOLS AND SURFACE SHADOWING ON BIDIRECTIONAL REFLECTANCE MEASUREMENTS OF DESERTS

DAVID E. BOWKER and RICHARD E. DAVIS

Sep. 1987 26 p
(NASA-TP-2756; L-16327; NAS 1.60:2756) Avail: NTIS HC A03/MF A01 CSCL 04A

AEROSOLS, BIDIRECTIONAL REFLECTANCE, DESERTS, DUST, REMOTE SENSING, SHADOWS, SURFACE PROPERTIES

BIDIRECTIONAL REFLECTANCE MEASUREMENTS OF systems, instrumentation and sensors, and economic analysis.

DESERTS

N87-28955* # National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

ATLAS OF ABSORPTION LINES FROM 0 TO 17900 CM (SUP)-1

J. H. PARK, L. S. ROTHMAN, C. P. RINSLAND, H. M. PICKETT, DAVID E. BOWKER and RICHARD E. DAVIS

Sep. 1987 26 p
(NASA-TP-1188; L-16330; NAS 1.61:1188) Avail: NTIS HC A09/MF A01 CSCL 04A

Plots of logarithm (base 10) of absorption line strength versus wavenumber from 0 to 17900/cm(sup)-1 are shown for the 28 atmospheric gases (H2O, CO2, N2O, CO, CH4, O3, NO, SO2, NO2, NH3, HNO3, OH, HF, HCl, HBr, HI, OCS, H2CO, HOCI, N2, HCN, CH3CI, CH3CH3, C2H4, C2H6, PH3), which appear in the 1986 Air Force Geophysics Laboratory high-resolution transmission molecular absorption data base (HIITRAN) compilation, and for O(P-3), O-18 isotopic ozone, and NO2 from the 1984 JPL compilation in the 0- to 200/cm(sup)-1 region, and infrared solar CO lines at 4500 K. Also shown are plots of logarithm (base 10) of approximate infrared absorption cross sections of 11 heavy molecules versus wavenumber. The cross-section data cover 700 to 2000/cm(sup)-1 and are included as a separate data file in the 1986 HITRAN database.

44

ENERGY PRODUCTION AND CONVERSION

Includes specific energy conversion systems, e.g., fuel cells; global sources of energy; geophysical conversion; and windpower.

N87-26413* # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

SPACE PHOTOVOLTAIC RESEARCH AND TECHNOLOGY 1986.

HIGH EFFICIENCY, SPACE ENVIRONMENT, AND ARRAY TECHNOLOGY

Jun. 1987 375 p
Conference held in Cleveland, Ohio, 7-9 Oct. 1986
(NASA-CP-2475; E-3450; NAS 1.55:2475) Avail: NTIS HC A16/MF A01 CSCL 10B

CONFERENCES, ENERGY CONVERSION EFFICIENCY, PHOTOVOLTAIC CONVERSION, SOLAR CELLS, SPACECRAFT POWER SUPPLIES

N87-29914* # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

SPACE ELECTROCHEMICAL RESEARCH AND TECHNOLOGY (SERT)

Sep. 1987 364 p
Conference held in Cleveland, Ohio, 14-16 Apr. 1987
(NASA-CP-2484; E-3506; NAS 1.55:2484) Avail: NTIS HC A16/MF A01 CSCL 10C

ELECTRIC BATTERIES, ELECTROCATALYSTS, ELECTROCHEMISTRY, MATHEMATICAL MODELS, REGENERATIVE FUEL CELLS

46

GEOPHYSICS

Includes aeronomy; upper and lower atmosphere studies; ionospheric and magnetospheric physics; and geomagnetism.

N87-11358* # National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

AIRBORNE LIDAR MEASUREMENTS OF EL CHICHON STRATOSPHERIC AEROSOLS, MAY 1983

M. P. MCCORMICK and M. T. OSBORN (SASC Technologies, Inc., Hampton, Va.)
Oct. 1986 91 p
(NASA-CP-1172; L-16176; NAS 1.61:1172) Avail: NTIS HC A05/MF A01

An experimental survey flight to determine the spatial distribution and aerosol characteristics of the El Chichon-produced stratospheric aerosol was conducted in May 1983. The mission included several different sensors flown aboard the NASA Convair 990 at latitudes between 72 deg. and 56 deg. S. This report presents the lidar data from that flight mission. Representative profiles of lidar backscatter ratio, plots of integrated backscattering function versus latitude, and contours of backscatter mixing ratio versus latitude and altitude are given. In addition, tables containing numerical values of the backscatter ratio and backscattering function versus altitude are supplied for each profile. By May 1983, material produced by the El Chichon eruptions of late March-early April 1982 had spread throughout the latitudes covered by this mission. However, the most massive portion of the material resided north of 33 deg. N and was concentrated below 21 km. In this latitude region (33 deg. N to 72 deg. N), peak backscatter ratios at a wavelength of 0.5943 microns varied between 3.5 and 4.5, and the peak integrated backscattering function was about 18 X 10 to the -4 power/sr, corresponding to a peak optical depth calculated to be approximately 0.08. This report presents the results of this mission in a ready-to-use format for atmospheric and climatic studies.

Author

N87-13022* # National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

DESCRIPTION OF DATA ON THE NIMBUS 7 LIMS MAP ARCHIVE TAPE: OZONE AND NITRIC ACID

E. E. REMSBERG, R. J. KURZEJA, K. V. HAGGARD, J. M. RUSSELL, Ill, and L. L. GORDLEY
Dec. 1986 73 p
(NASA-TP-2625; L-16136; NAS 1.60:2625) Avail: NTIS HC A04/MF A01 CSCL 04A

INFRARED DETECTORS, KALMAN FILTERS, NIMBUS 7 SATELLITE, NITRIC ACID, OZONE, STRATOSPHERE

N87-15528* # National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

FUTURE DIRECTIONS FOR H SUB X O SUB Y DETECTION

Conference held in Menlo Park, Calif., 12-15 Aug. 1985
(NASA-CP-2448; L-16216; NAS 1.55:2448) Avail: NTIS HC A04/MF A01 CSCL 04A

ATMOSPHERIC COMPOSITION, HYDROGEN PEROXIDE, HYDROXYL RADICALS, TROPOSPHERE, WATER

N87-17417* # National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

SAGE AEROSOL MEASUREMENTS. VOLUME 3: JANUARY 1, 1981 TO NOVEMBER 18, 1981

M. PATRICK MCCORMICK
Feb. 1987 274 p
(NASA-CP-1173; L-16177; NAS 1.61:1173) Avail: NTIS HC A12/MF A01 CSCL 04A

The Stratospheric Aerosol and Gas Experiment (SAGE) satellite system, launched February 18, 1979, obtained profiles of aerosol extinction at 1.00 micron and 0.45 micron ozone concentration, and nitrogen dioxide concentration. Data taken during sunset events are presented in the form of zonal and seasonal averages of

19
aerosol extinction of 1.00 micron and 0.45 micron, ratios of aerosol extinction to molecular extinction at 1.00 micron and ratios of aerosol extinction at 0.45 micron to aerosol extinction at 1.00 micron. Averages for 1981 are shown in tables, and in profile and contour plots (as a function of altitude and latitude). In addition, temperature data provided by NOAA for the time and location of each SAGE measurement are averaged and shown in a similar format. The stratospheric aerosol distribution for 1981 shows effects of volcanically injected material from eruptions of Llawaun, Alaid, and Pagan. Peak values of aerosol extinction at 0.45 micron and 1.00 micron were 2 to 4 times higher than typical peak values observed during near background conditions. Stratospheric aerosol optical depth values at 1.00 microns increased by a factor of about 2 from near background levels in regions of volcanic activity. During the year, these values ranged from between 0.001 and 0.006. The largest were near the location of a recent eruption. The distribution of the ratio of aerosol to molecular extinction at 1.00 microns also showed that maximum values are found in the vicinity of an eruption. These maximums varied in altitude, but remained below a height of about 25 km. No attempt has been made to give detailed explanations or interpretations of these data. This report is intended to provide, in a ready-to-use visual format, representative zonal and seasonal averages of aerosol extinction data for the third calendar year of the SAGE data set to facilitate atmospheric and climatic studies.

Author

47

METEOROLOGY AND CLIMATOLOGY

Includes weather forecasting and modification.

46 GEOPHYSICS

N87-18245* # National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

SPACE OPPORTUNITIES FOR TROPOSPHERIC CHEMISTRY RESEARCH

AEROSOLS, AIR POLLUTION, ATMOSPHERIC CHEMISTRY, ATMOSPHERIC COMPOSITION, CONFERENCES, GASES, REMOTE SENSING, TROPOSPHERE

N87-20663* # National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

AIRBORNE LIDAR MEASUREMENTS OF EL CHICHON STRATOSPHERIC AEROSOLS, JANUARY 1984

A lidar-equipped NASA Electra aircraft was flown in January 1984 between the latitude of 38 and 90 deg N. One of the primary purposes of this mission was to determine the spatial distribution and aerosol characteristics of El Chichon produced stratospheric material. Lidar data from that portion of the flight mission between 38 deg N and 77 deg N is presented. Representative profiles of lidar backscatter ratio, a plot of the integral backscattering function versus latitude, and contours of backscatter mixing ratio versus altitude and latitude are given. In addition, tables containing numerical values of the backscatter ratio and backscattering function versus altitude are applied for each profile. These data clearly show that material produced by the El Chichon eruptions of late March-early April 1982 had spread throughout the latitudes covered by this mission, and that the most massive portion of the material resided north of 55 deg N and was concentrated below 17 km in a layer that peaked at 13 to 15 km. In this latitude region, peak backscatter ratios at a wavelength of 0.6943 microns were approximately 3 and the peak integrated backscattering function was about 15 X 10 to the -4/hr corresponding to a peak optical depth of approximately 0.07. This report presents the results of this mission in a ready-to-use format for atmospheric and climatic studies.

Author

N87-20665* # National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, Ala.

UPPER AND MIDDLE ATMOSPHERIC DENSITY MODELING REQUIREMENTS FOR SPACECRAFT DESIGN AND OPERATIONS

AEROSPACE ENVIRONMENTS, ATMOSPHERIC DENSITY, ATMOSPHERIC MODELS, SPACECRAFT DESIGN, THERMOSPHERE

N87-13043* # National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, Ala.

NASA/MSFC FY-85 ATMOSPHERIC PROCESSES RESEARCH REVIEW

ATMOSPHERIC ELECTRICITY, ATMOSPHERIC SOUNDING, DATA PROCESSING, DOPPLER RADAR, GEOPHYSICS, MESOSCALE PHENOMENA, OPTICAL RADAR, SATELLITE IMAGERY, THUNDERSTORMS, WIND (METEOROLOGY)

N87-20701* # National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, Md.

ON REQUIREMENTS FOR A SATELLITE MISSION TO MEASURE TROPICAL RAINFALL

Tropical rainfall data are crucial in determining the role of tropical latent heating in driving the circulation of the global atmosphere. Also, the data are particularly important for testing the realism of climate models, and their ability to simulate and predict climate accurately on the seasonal time scale. Other scientific issues such as the effects of El Nino on climate could be addressed with a reliable, extended time series of tropical rainfall observations. A passive microwave sensor is planned to provide information on the integrated column precipitation content, its areal distribution, and its intensity. An active microwave sensor (radar) will define the layer depth of the precipitation and provide information about the intensity of rain reaching the surface, the key to determining the latent heat input to the atmosphere. A visible/infrared sensor will provide very high resolution information on cloud coverage, type, and top temperatures and also serve as the link between these data and the long and virtually continuous coverage by the geosynchronous meteorological satellites. The unique combination of sensor wavelengths, coverages, and resolving capabilities
together with the low-altitude, non-Sun synchronous orbit provide
a sampling capability that should yield monthly precipitation
amounts to a reasonable accuracy over a 500- by 500-km grid.

Author

N87-22341*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
ATMOSPHERIC TURBULENCE RELATIVE TO AVIATION, MISSILE, AND SPACE PROGRAMS
AIRCRAFT SAFETY, ATMOSPHERIC MODELS, ATMOSPHERIC TURBULENCE, CONFERENCES, MISSILES, SPACE PROGRAMS, WEATHER FORECASTING

N87-26489*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
ATLAS OF WIDE-FIELD-OF-VIEW OUTGOING LONGWAVE RADIATION DERIVED FROM NIMBUS 6 EARTH RADIATION BUDGET DATA SET, JULY 1975 TO JUNE 1978
An atlas of monthly mean outgoing longwave radiation global contour maps and associated spherical harmonic coefficients is presented. The atlas contains 36 months of continuous data from July 1975 to June 1978. The data were derived from the first Earth radiation budget experiment, which was flown on the Nimbus-6 Sun-synchronous satellite in 1975. Only the wide-field-of-view longwave measurements are cataloged in this atlas. The contour maps along with the associated sets of spherical harmonic coefficients form a valuable data set for studying different aspects of our changing climate over monthly, annual, and interannual scales in the time domain, and over regional, zonal, and global scales in the spatial domain. Author

N87-26491*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
CALIBRATION OF THE SPIN-SCAN OZONE IMAGER ABOARD THE DYNAMICS EXPLORER 1 SATELLITE
ALGORITHMS, CALIBRATING, DYNAMICS EXPLORER 1 SATELLITE, OZONE, REGRESSION ANALYSIS, ULTRAVIOLET SPECTROMETERS

N87-29996*# National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, Md.
FIVE YEAR GLOBAL DATASET: NMC OPERATIONAL ANALYSES (1978 TO 1982)
DAVID STRAUS and JOSEPH ARDIZZONE Sep. 1987 50 p Prepared in cooperation with Sigma Data Services Corp., Rockville, Md. (NASA-CP-1194; REPT-87B0273; NAS 1.61:1194) Avail: NTIS HC A02/MF A01 CSCL 04B
This document describes procedures used in assembling a five year dataset (1978 to 1982) using NMC Operational Analysis data. These procedures entailed replacing missing and unacceptable data in order to arrive at a complete dataset that is continuous in time. In addition, a subjective assessment on the integrity of all data (both preliminary and final) is presented. Documentation on tapes comprising the Five Year Global Dataset is also included. Author

N87-24870* National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, Md.
ARCTIC SEA ICE, 1973-1976: SATELLITE PASSIVE-MICROWAVE OBSERVATIONS
The Arctic region plays a key role in the climate of the earth. The sea ice cover affects the radiative balance of the earth and radically changes the fluxes of heat between the atmosphere and the ocean. The observations of the Arctic made by the Electrically Scanning Microwave Radiometer (ESMR) on board the Nimbus 5 research satellite are summarized for the period 1973 through 1976. B.G.

51 LIFE SCIENCES (GENERAL)

N87-20727*# National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, Ala.
LIQUID DROP STABILITY FOR PROTEIN CRYSTAL GROWTH IN MICROGRAVITY
ROBERT B. OWEN, BETH H. BROOM, ROBERT S. SNYDER, and RON DANIEL Apr. 1987 17 p (NASA-TP-2724; NAS 1.60:2724) Avail: NTIS HC A02/MF A01 CSCL 06B
CRYSTAL GROWTH, DROPS (LIQUIDS), MICROGRAVITY APPLICATIONS, PROTEIN SYNTHESIS, STABILITY

52 AEROSPACE MEDICINE

Includes biological, dynamic, and physical oceanography; and marine resources.

N87-18976* National Aeronautics and Space Administration, Washington, D.C.
AEROSPACE MEDICINE AND BIOLOGY: A CUMULATIVE INDEX TO THE 1986 ISSUES (SUPPLEMENT 293)
Jan. 1987 251 p (NASA-SP-7011(293); NAS 1.21:7011(293)) Avail: NTIS HC A12 CSCL 06E
This publication is a cumulative index to the abstracts contained in the Supplements 261 through 292 of Aerospace Medicine and Biology: A Continuing Bibliography. It includes seven indexes - subject, personal author, corporate source, foreign technology, contract number, report number, and accession number. Author
52 AEROSPACE MEDICINE

N87-30041* National Aeronautics and Space Administration, Washington, D.C.
AEROSPACE MEDICINE AND BIOLOGY: A CONTINUING BIBLIOGRAPHY WITH INDEXES (SUPPLEMENT 302)
Oct. 1987 55 p
(NASA-SP-7011(302); NAS 1.21:7011(302)) Avail: HC A04
CSCL 096

This bibliography lists 131 reports, articles, and other documents introduced into the NASA scientific and technical information system in September, 1987.

61

COMPUTER PROGRAMMING AND SOFTWARE

Includes computer programs, routines, and algorithms, and specific applications, e.g., CAD/CAM.

N87-10720* National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, Md.
PROCEEDINGS OF THE 5TH ANNUAL USERS’ CONFERENCE
M. SZCZUR, ed. and E. HARRIS, ed. 1985 400 p Conference held at Greenbelt, Md., 4-6 Jun. 1985
(NASA-CP-2399; NAS 1.55:2399) Avail: NTIS HC A17/MF A01
CSCL 09B

ACCESS CONTROL, COMPUTER NETWORKS, FORMAT, IMAGE PROCESSING, ORBITAL SPACE STATIONS, SOFTWARE ENGINEERING, SOFTWARE TOOLS

N87-19931* National Aeronautics and Space Administration, Washington, D.C.
COMPUTER SCIENCES AND DATA SYSTEMS, VOLUME 1
(NASA-CP-2459-VOL-1; NAS 1.55:2459-VOL-1) Avail: NTIS HC A16/MF A01
CSCL 09B

ARCHITECTURE (COMPUTERS), CONCURRENT PROCESSING, CONFERENCES, DATA MANAGEMENT, DISTRIBUTED PROCESSING, EXPERT SYSTEMS, SOFTWARE ENGINEERING

N87-19932* National Aeronautics and Space Administration, Washington, D.C.
COMPUTER SCIENCES AND DATA SYSTEMS, VOLUME 2
(NASA-CP-2459-VOL-2; NAS 1.55:2459-VOL-2) Avail: NTIS HC A15/MF A01
CSCL 09B

CONFERENCES, DATA STORAGE, DISTRIBUTED PROCESSING, FIBER OPTICS, OPTICAL DATA PROCESSING, PARALLEL PROCESSING (COMPUTERS), VHSC (CIRCUITS)

N87-23156* National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, Md.
SIXTH ANNUAL USERS’ CONFERENCE
MARTHA SZCZUR, ed. and ELFRIDA HARRIS, ed. (Science Applications Research, Lanham, Md.) Oct. 1986 228 p Conference held in Pasadena, Calif., 8-10 Oct. 1986; sponsored by JPL and NASA. Goddard Space Flight Center
(NASA-CP-2463; REPT-87B0176; NAS 1.55:2463) Avail: NTIS
HC A11/MF A01
CSCL 09B

APPLICATIONS PROGRAMS (COMPUTERS), COMPUTER SYSTEMS PROGRAMS, CONFERENCES, IMAGE PROCESSING, INFORMATION SYSTEMS, MAN-COMPUTER INTERFACE, OPERATING SYSTEMS (COMPUTERS)

N87-25531* National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, Md.
FRONTIERS OF MASSIVELY PARALLEL SCIENTIFIC COMPUTATION
(NASA-CP-2478; REPT-87B0976; NAS 1.55:2478) Avail: NTIS
HC A13/MF A01
CSCL 09B

ALGORITHMS, COMPUTER GRAPHICS, COMPUTER SYSTEMS PERFORMANCE, COMPUTERIZED SIMULATION, PARALLEL COMPUTERS, PARALLEL PROCESSING (COMPUTERS)

62

COMPUTER SYSTEMS

Includes computer networks and special application computer systems.

N87-23202* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
APPLICATIONS AND REQUIREMENTS FOR REAL-TIME SIMULATORS IN GROUND-TEST FACILITIES
DALE J. ARPASI and RICHARD A. BLECH Dec. 1986 26 p
(NASA-TP-2672; E-3189; NAS 1.60:2672) Avail: NTIS
HC A03/MF A01
CSCL 09B

GROUND TESTS, REAL TIME OPERATION, SIMULATORS, TEST FACILITIES

64

NUMERICAL ANALYSIS

Includes iteration, difference equations, and numerical approximation.

N87-14054* National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.
SOME PATH-FOLLOWING TECHNIQUES FOR SOLUTION OF NONLINEAR EQUATIONS AND COMPARISON WITH PARAMETRIC DIFFERENTIATION
(NASA-TP-2654; L-16199; NAS 1.60:2654) Avail: NTIS
HC A02/MF A01
CSCL 12A

COMPUTER PROGRAMMING, CRITICAL PATH METHOD, DIFFERENTIAL EQUATIONS, NONLINEAR EQUATIONS, PARAMETER IDENTIFICATION

N87-14918* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
SOLUTION OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS BY FAST POISSON SOLVERS USING A LOCAL RELAXATION FACTOR: 2: TWO-STEP METHOD
S. C. CHANG May 1986 17 p
(NASA-TP-2530; E-2528-1; NAS 1.60:2530) Avail: NTIS
HC A02/MF A01
CSCL 12A

ELLIPITC DIFFERENTIAL EQUATIONS, ELLIPTIC FUNCTIONS, PARTIAL DIFFERENTIAL EQUATIONS, PROBLEM SOLVING
N87-22441* National Aeronautics and Space Administration.
Langley Research Center, Hampton, Va.
QUANTITATIVE ANALYSIS OF THE RECONSTRUCTION PERFORMANCE OF INTERPOLANTS
DONALD L. LANSING and STEPHEN K. PARK (College of William and Mary, Williamsburg, Va.) May 1987 35 p
(NASA-TP-2688; L-16164; NAS 1.60:2688) Avail: NTIS HC
A03/MF A01 CSCL 12A
INTERPOLATION, QUANTITATIVE ANALYSIS, RECONSTRUCTION

N87-22447* National Aeronautics and Space Administration.
Langley Research Center, Hampton, Va.
AN ALGORITHM FOR SURFACE SMOOTHING WITH RATIONAL SPLINES
JAMES R. SCHIESS Jun. 1987 17 p
(NASA-TP-2708; L-16272; NAS 1.60:2708) Avail: NTIS HC
A02/MF A01 CSCL 12A
ALGORITHMS, RATIONAL FUNCTIONS, SMOOTHING,
SPLINE FUNCTIONS, SURFACE ROUGHNESS

N87-28357* National Aeronautics and Space Administration.
Langley Research Center, Hampton, Va.
EXPERIMENTS IN ENCODING MULTILEVEL IMAGES AS QUADTREES
DONALD L. LANSING Sep. 1987 60 p
(NASA-TP-2722; L-16292; NAS 1.60:2722) Avail: NTIS HC
A04/MF A01 CSCL 12A
CODING, DATA COMPRESSION, DATA STORAGE, GRAY SCALE, IMAGE PROCESSING

65
STATISTICS AND PROBABILITY
Includes data sampling and smoothing; Monte Carlo method; and stochastic processes.

N87-23244* National Aeronautics and Space Administration.
Langley Research Center, Hampton, Va.
DEVELOPMENT OF CONFIDENCE LIMITS BY PIVOTAL FUNCTIONS FOR ESTIMATING SOFTWARE RELIABILITY
KELLY J. DOTSON Jun. 1987 12 p
(NASA-TP-2709; L-16264; NAS 1.60:2709) Avail: NTIS HC
A02/MF A01 CSCL 12A
CONFIDENCE LIMITS, FAILURE ANALYSIS, PREDICTIONS, RELIABILITY ANALYSIS, SOFTWARE ENGINEERING

N87-27474* National Aeronautics and Space Administration.
Marshall Space Flight Center, Huntsville, Ala.
PROBABLISTIC RISK ANALYSIS OF FLYING THE SPACE SHUTTLE WITH AND WITHOUT FUEL TURBINE DISCHARGE TEMPERATURE REDLINE PROTECTION
LEONARD HOWELL Aug. 1987 22 p
(NASA-TP-2759; NAS 1.60:2759) Avail: NTIS HC A02/ MF A01 CSCL 12A
ENGINE FAILURE, MATHEMATICAL MODELS, SPACE SHUTTLE MAIN ENGINE, SPACECRAFT RELIABILITY,
STOCHASTIC PROCESSES, TEMPERATURE SENSORS
73 NUCLEAR AND HIGH-ENERGY PHYSICS

NUCLEAR AND HIGH-ENERGY PHYSICS

Includes elementary and nuclear particles; and reactor theory.

N87-17487*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

DOUBLY DIFFERENTIAL CROSS SECTIONS FOR GALACTIC HEAVY-ION FRAGMENTATION

FRANCIS A. CUCINOTTA (Old Dominion Univ., Norfolk, Va.), JOHN W. NORBURY, GOVIND S. KHANDELWAL, and LAWRENCE W. TOWNSEND Feb. 1987 23 p

(NASA-TP-2659; L-16187; NAS 1.60:2659) Avail: NTIS HC A02/MF A01 CSCL 20H

COLLISION PARAMETERS, GALAXIES, HEAVY IONS, PARTICLE COLLISIONS, SCATTERING CROSS SECTIONS

N87-24977*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

NUCLEI AND ANTINUCLEI

(NASA-TP-2741; L-16275; NAS 1.60:2741) Avail: NTIS HC A03/MF A01 CSCL 20H

ANTIMATTER, ANTIPARTICLES, GALACTIC COSMIC RAYS, HEAVY IONS, NUCLEI (NUCLEAR PHYSICS)

74 OPTICS

Includes light phenomena; and optical devices.

N87-13264*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

THEORY FOR COMPUTING THE FIELD SCATTERED FROM A SMOOTH INFLECTED SURFACE

R. L. BARGER and A. K. DOMINEK 1986 23 p

(NASA-TP-2632; L-16157; NAS 1.60:2632) Avail: NTIS HC A01/MF A01 CSCL 20F

BODIES OF REVOLUTION, ELECTROMAGNETIC RADIATION, MICROWAVES, REFLECTANCE, SURFACE PROPERTIES, WAVE SCATTERING

75 PLASMA PHYSICS

Includes magnetohydrodynamics and plasma fusion.

N87-16976*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

LASER-POWERED MHD GENERATORS FOR SPACE APPLICATION

N. W. JALUFKA Oct. 1986 15 p

(NASA-TP-2621; NAS 1.60:2621) Avail: NTIS HC A02/MF A01 CSCL 20I

ENERGY CONVERSION EFFICIENCY, LASER PLASMA INTERACTIONS, MAGNETOHYDRODYNAMIC GENERATORS

N87-14998*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

ASYMPTOTIC ANALYSIS OF CORONA DISCHARGE FROM THIN ELECTRODES

P. A. DURBIN Sep. 1986 7 p

(NASA-TP-2645; E-3151; NAS 1.60:2645) Avail: NTIS HC A02/MF A01 CSCL 20I

ASYMPTOTIC METHODS, ELECTRIC CORONA, ELECTRIC DISCHARGES, ELECTRODES

81 ADMINISTRATION AND MANAGEMENT

Includes management planning and research.

N87-20833* National Aeronautics and Space Administration, Washington, D.C.

MANAGEMENT: A BIBLIOGRAPHY FOR NASA MANAGERS (SUPPLEMENT 21) Apr. 1987 70 p

(NASA-SP-7500(21); NAS 1.21:7500(21)) Avail: NTIS HC A04 CSCL 05A

This bibliography lists 664 reports, articles and other documents introduced into the NASA scientific and technical information system in 1986. Items are selected and grouped according to their usefulness to the manager as manager. Citations are grouped into ten subject categories: human factors and personnel issues; management theory and techniques; industrial management and manufacturing; robotics and expert systems; computers and information management; research and development; economics, costs, and markets; logistics and operations management; reliability and quality control; and legality, legislation, and policy. Author

82 DOCUMENTATION AND INFORMATION SCIENCE

Includes information management; information storage and retrieval technology; technical writing; graphic arts; and micrography.

N87-25023* National Aeronautics and Space Administration, Washington, D.C.

(NASA-SP-7039(31); NAS 1.21:7039(31)) Avail: NTIS HC A03 NTIS standing order as PB86-911100, $11.50 domestic, $23.00 foreign CSCL 05B

Abstracts are provided for 85 patents and patent applications entered into the NASA scientific and technical information system during the period January 1987 through June 1987. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application. Author

N87-26689* National Aeronautics and Space Administration, Washington, D.C.

(NASA-SP-7039(31)-SECT-2; NAS 1.21:7039(31)-SECT-2) Avail: NTIS HC A21 CSCL 05B

A subject index is provided for over 4600 patents and patent applications for the period May 1969 through June 1987. Additional indexes list personal authors, corporate authors, contract numbers, NASA case numbers, U.S. patent class numbers, and NASA accession numbers. Author
89 ASTRONOMY

N87-24247*# National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, Md.
ESSAYS IN SPACE SCIENCE
ASTROPHYSICS, CONFERENCES, COSMIC RAYS, GAMMA RAY ASTRONOMY, INFRARED ASTRONOMY, X RAY ASTRONOMY

85 URBAN TECHNOLOGY AND TRANSPORTATION

Includes applications of space technology to urban problems; technology transfer; technology assessment; and surface and mass transportation.

N87-70425* National Aeronautics and Space Administration, Washington, D.C.
SIGNIFICANT NASA INVENTIONS. AVAILABLE FOR LICENSING IN FOREIGN COUNTRIES 1977-1986 103 p (NASA-SP-7038(04); NAS 1.21:7038(04)) Avail: SOD HC $5.00 as 003-000-00966-1; NTIS MF A01

SPACE SCIENCES (GENERAL)

DOUBLE LAYERS IN ASTROPHYSICS
CONFERENCES, ELECTRIC FIELDS, ENERGY TRANSFER, MATHEMATICAL MODELS, PLASMA LAYERS, PLASMA PHYSICS, SPACE PLASMAS

N87-22573*# National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, Md.
INFRARED SOURCE CROSS-INDEX, FIRST EDITION
MARIAN SCHMITZ (Computer Sciences Corp., Beltsville, Md.), JAYLEE M. MEAD, and DANIEL Y. GEZARI Apr. 1987 323 p (NASA-RP-1182; REPT-87B0058; NAS 1.61:1182) Avail: NTIS HC A14/MF A01 CSCL 03A
The Infrared Source Cross-Index is a listing of correlated infrared source names (and positions) for astronomical objects observed at 1-1000 microns. The source names have been obtained from the database of the first edition of the Catalog of Infrared Observations (CIO: NASA RP 1118), covering observations published through 1982. Additional identifications were located by correlating these names with identifications contained in other machine-readable astronomical catalogs in the NASA National Space Science Data Center (NSSDC). There are some 80,000 different source names in the Cross-Index, corresponding to over 27,000 unique infrared sources. Author
91 LUNAR AND PLANETARY EXPLORATION

Includes planetoLOGY; and manned and unmanned flights.

92 SOLAR PHYSICS

Includes solar activity, solar flares, solar radiation and sunspots.
ATMOSPHERE, SOLAR CORONA, SOLAR MAGNETIC FIELD, SOLAR PHYSICS, SOLAR PROMINENCES, SUN

N87-20947** National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, Ala.

STATISTICAL ASPECTS OF SOLAR FLARES
ROBERT M. WILSON Apr. 1987 41 p (NASA-TP-2714; NAS 1.60:2714) Avail: NTIS HC A03/MF A01 CSCL 03B

SOLAR FLARES, SOLAR PROMINENCES, STATISTICAL ANALYSIS

N87-21785** National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, Md.

RAPID FLUCTUATIONS IN SOLAR FLARES

CONFERENCES, MICROWAVES, OSCILLATIONS, PLASMA PHYSICS, RADIO WAVES, SOLAR FLARES, X RAYS

93

SPACE RADIATION

Includes cosmic radiation; and inner and outer earth's radiation belts.

N87-25984** National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, Md.

COSMIC RAY HEAVY ION LET MAPPING FOR ALUMINUM, SILICON, AND TISSUE TARGETS

Linear energy transfer (LET) values in aluminum, silicon, and tissue targets have been calculated for 31 galactic cosmic ray ion species in eight different units. The values are described for single event upset (SEU) effect assessments or radiobiological evaluations. The data are presented in graphical and tabular form.

Author

99

GENERAL

N87-24390** National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

ENGINEER IN CHARGE: A HISTORY OF THE LANGLEY AERONAUTICAL LABORATORY, 1917-1958
JAMES R. HANSEN (Maine Univ., Orono.) Washington, D.C. 1986 643 p NASA History Series (NASW-3502) (NASA-SP-4305; NAS 1.21:4305) Avail: SOD HC $30.00 as 039-000-00999-2; NTIS MF A01 CSCL 05B

A history is presented by using the most technologically significant research programs associated with the Langley Aeronautical Laboratory from 1917 to 1958 and those programs that, after preliminary research, seemed best to illustrate how the laboratory was organized, how it works, and how it cooperated with industry and the military.

B.G.
SUBJECT INDEX

A

ACOUSTICS
Helicopter blade-vortex interaction locations: Scale-model acoustic and free-wake analysis results [NASA-TP-26589] p 3 N87-18537

ACTUATORS

AERODYNAMIC BALANCE
Pilot's simulation study of the effects of an automated trim system on flight characteristics of a light twin-engine airplane with one engine inoperative [NASA-TP-2633] p 2 N87-10843

AERODYNAMIC CHARACTERISTICS
Effects of engine-out location on aerodynamic characteristics of a twin-engine afterbody model with nonaxisymmetric nozzles [NASA-TP-2649] p 6 N87-17693
Low-speed aerodynamic characteristics of a twin-engine general aviation configuration with aft-fuselage-mounted pusher propulsion [NASA-TP-2673] p 5 N87-29402

AERODYNAMIC COEFFICIENTS
Flight-determined aerodynamic derivatives of the AD-1 oblique-wing research airplane [NASA-TP-2222] p 8 N87-10871

AERODYNAMIC CONFIGURATIONS
Forward-swept wing design configured for high maneuverability by use of a transonic computational method [NASA-TP-2626] p 3 N87-17102
Effects of winglet on transonic flutter characteristics of a cantilevered twin-engine transport wing model [NASA-TP-2627] p 17 N87-13789
Flight investigation of the effect of tail configuration on stall, spin, and recovery characteristics of a low-wing general aviation research airplane [NASA-TP-2644] p 6 N87-16815
Flight characteristics of the AD-1 oblique-wing research aircraft [NASA-TP-2223] p 8 N87-15670
On minimizing the number of calculations in design-by-analysis codes [NASA-TP-23586] p 3 N87-23586
Effect of Reynolds number variation on aerodynamics of a hydrogen-fueled transport concept at Mach 6 [NASA-TP-2706] p 3 N87-26031
Subsonic longitudinal and lateral-directional characteristics of a forward-swept-wing fighter configuration at angles of attack up to 47 deg [NASA-TP-2727] p 4 N87-26974

AERODYNAMIC DRAG
Effects of high speed and engine arrangement on drag of a typical single-engine fighter at alt [NASA-TP-2352] p 8 N87-10838
Effects of engine exchange location on aerodynamic characteristics of a twin-engine afterbody model with nonaxisymmetric nozzles [NASA-TP-2328] p 6 N87-17693
Drag measurements of blunt spheres tangentally mounted on a flat plate at supersonic speeds [NASA-TP-2742] p 5 N87-27626

AERODYNAMIC FORCES
Steady and unsteady aerodynamic forces from the SOUSA surface-panel method for a fighter wing with tip-mounted engines: comparison with experiment and FANAIR code [NASA-TP-2736] p 4 N87-26032

AERODYNAMIC HEATING
First-element near-surface transfer analysis of space shuttle Orbiter [NASA-TP-2657] p 16 N87-29795

AERODYNAMIC INTERFERENCE
Interference effects of thrust reversing on horizontal tail effectiveness of twin-engine fighter aircraft at Mach numbers from 0.15 to 0.90 [NASA-TP-2350] p 8 N87-10870

AERODYNAMIC STABILITY

AERODYNAMIC STALLING
Investigation of the effect of tail configuration on stall, spin, and recovery characteristics of a low-wing general aviation research airplane [NASA-TP-2644] p 6 N87-16815
Flight investigation of the effects of an outboard wingtip modification on stall/spin characteristics of a low-wing, single-engine, T-tail light airplane [NASA-TP-2691] p 6 N87-23614

AERODYNAMICS
An experimental investigation of an advanced turboprop installation on a swept wing at subsonic and transonic speeds [NASA-TP-2729] p 4 N87-26863
Aeronautical engineering: A continuing bibliography with indexes (supplement 217) [NASA-SP-7037(217)] p 1 N87-27613

AEROELASTIC RESEARCH WINGS
In-flight total forces, moments and static aeroelastic characteristics of an oblique-wing research airplane [NASA-TP-2722] p 8 N87-10103

AERONAUTICAL ENGINEERING
Aeronautical engineering: A continuing bibliography with indexes (supplement 217) [NASA-SP-7037(217)] p 1 N87-27613

AEROSOLS
Effects of aerosols and surface shadowing on bidirectional reflectance measurements of deserts [NASA-TP-2756] p 19 N87-28152

AEROSPACE ENVIRONMENTS
Upper and Middle Atmospheric Density Modeling Requirements for spacecraft Design and Operations [NASA-CP-2450] p 20 N87-20665

AEROSPACE INDUSTRY
Material characterization of superplastically formed titanium (Ti-6Al-2Sn-4Zr-2Mo) sheet [NASA-TP-2674] p 12 N87-20407

AEROSPACE MEDICINE
Aerospace medicine and biodynamics: A cumulative index to the 1966 issues (supplement 253) [NASA-SP-7011(302)] p 21 N87-18796
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 302) [NASA-SP-7011(302)] p 22 N87-30041

AEROSPACE SCIENCES

AEROTHERMODYNAMICS
Aerothermal testing of spherical dome protubercules on a flat plate at a Mach number of 6.5 [NASA-TP-2631] p 14 N87-13664
Structural Integrity and Durability of Reusable Space Propulsion Systems [NASA-CP-2471] p 11 N87-22796
ATMOSPHERIC DENSITY

ATMOSPHERIC ELECTRICITY

ATMOSPHERIC MODELS
Atmospheric Turbulence Relative to Aviation, Missile, and Space Programs [NASA-CP-2466] p 21 N87-22341

ATMOSPHERIC SOUNDING

ATOMIC BEAMS
Electron stimulated desorption of atomic oxygen from silver [NASA-TP-2568] p 12 N87-18629

AUTOMATIC CONTROL
A simulation of a pilot interface with an automatic terminal approach system [NASA-TP-2669] p 7 N87-19393

AUXILIARY LIGHT-GOFT
Preliminary simulation study of the effects of an automated trim system on flight characteristics of a light twin-engine airplane [NASA-TP-2633] p 2 N87-10843

AUTOMATIC PILOTS
A simulation evaluation of a pilot interface with an automatic terminal approach system [NASA-TP-2669] p 7 N87-19393

AVIONICS
Joint University Program for Air Transportation Research, 1983 [NASA-CP-2451] p 1 N87-18520
Joint University Program for Air Transportation Research, 1984 [NASA-CP-2452] p 1 N87-22964
Wind/Show/Turbulence Inputs to Flight Simulation and Systems Certification [NASA-CP-2474] p 1 N87-25267

ASYMMETRIC BODIES
Static internal performance of single-expansion-ramp nozzles with thrust-vectoring capability up to 60 deg [NASA-TP-2364] p 7 N87-10839
Effects of empenrance surface location on aerodynamic characteristics of a twin-engine afterbody model with nonaxisymmetric nozzles [NASA-TP-2392] p 6 N87-17893
Effects of trade between boattail angle and wedge size on the performance of a nonaxisymmetric wedge nozzle [NASA-TP-2717] p 4 N87-23593

AXI-SYMMETRIC FLOW
Effects of afterbody boattail design and empenrance arrangement on aeropropulsive characteristics of a two-engine fighter model at transonic speeds [NASA-TP-2704] p 3 N87-21873

BACKGROUND NOISE
Effects of background noise on total noise annoyance [NASA-TP-2556] p 23 N87-14120

BIBLIOGRAPHIES
Aerospace medicine and biology: A cumulative index to the 1986 NASA Bibliographies [NASA-SP-7011(263)] p 21 N87-18976
Management: A bibliography for NASA managers [San Francisco] [NASA-SP-7500(21)] p 24 N87-20833
NASA patent abstracts bibliography: A continuing bibliography, Section 1: Abstracts (supplement 31) [NASA-SP-7038(31)] p 24 N87-25023
Space station systems: A bibliography with indexes (supplement 4) [NASA-SP-7056(64)] p 10 N87-26073
Earth resources: A continuing bibliography with indexes (issue 5A) [NASA-SP-7041(5A)] p 18 N87-27315

AERONAUTICAL ENGINEERING
A continuing bibliography with indexes (supplement 217) [NASA-SP-7037(217)] p 1 N87-28713
Technology for Large Space Systems. A bibliography with indexes (supplement 17) [NASA-SP-7049(17)] p 9 N87-29576
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 302) [NASA-SP-7101(302)] p 22 N87-30041

BIDIRECTIONAL REFLECTANCE
Surface bidirectional reflectance properties of two southwestern Arizona deserts for wavelengths between 0.4 and 2.2 micrometers [NASA-TP-2643] p 18 N87-22281
Effects of aerosols and surface shadowing on bidirectional reflectance measurements of deserts [NASA-TP-2756] p 19 N87-28162

BIOLICAL EFFECTS
Aerospace medicine and biology: A cumulative index to the 1986 issues (supplement 293) [NASA-SP-7091(293)] p 21 N87-19576
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 302) [NASA-SP-7101(302)] p 22 N87-30041

BIT ERROR RATE
Binary-error-rate testing of high-power 30-GHz traveling wave tubes for ground-terminal applications [NASA-TP-2635] p 7 N87-19717
Unique bit-error-rate measurement system for satellite communication systems [NASA-TP-2699] p 13 N87-20448

BLADE SLAP NOISE
Correlation of helicopter impulsive noise from blade-vortex interaction with rotor mean inflow [NASA-TP-2650] p 23 N87-18399

BLADE TIPS
Low-cost FM oscillation of a helicopter blade tip clearance measurement system [NASA-TP-2746] p 7 N87-24481

BLADE-VORTEX INTERACTION
Correlation of helicopter impulsive noise from blade-vortex interaction with rotor mean inflow [NASA-TP-2650] p 23 N87-18399
Helicopter blade-vortex interaction locations: Scale-model acoustic and free-wake analysis results [NASA-TP-2658] p 3 N87-18537

BLADES
Preliminary structural design of composite main rotor blades for minimum weight [NASA-TP-2730] p 11 N87-25435

BLUNT BODIES
Drag measurements of blunt store cans tangentially mounted on a flat plate at supersonic speeds [NASA-TP-2742] p 5 N87-27626

BOATTAILS
Effects of afterbody boattail design and empenrance arrangement on aeropropulsive characteristics of a two-engine fighter model at transonic speeds [NASA-TP-2704] p 3 N87-21873
Effects of a trade between boattail angle and wedge size on the performance of a nonaxisymmetric wedge nozzle [NASA-TP-2717] p 4 N87-23593

BRAINING
Wind-tunnel investigation at supersonic speeds of a remote-controlled canard missile with a free-rolling-tail brake torque system [NASA-TP-2301] p 3 N87-17668

CALIBRATING
Calibration of the spin-scan ozone imager aboard the dynamics Explorer 1 satellite [NASA-TP-2720] p 21 N87-26491
Description and calibration of the Langley Hypersonic CF4 tunnel: A facility for simulating low gamma flow as occurs for a real gas [NASA-TP-2384] p 16 N87-29778

CAMBER
Pressure measurements on a thick cambered and twisted 56 deg delta wing at high subsonic speeds [NASA-TP-2711] p 5 N87-27643

CARBON DIOXIDE
Supersonic, nonlinear, attached-flow wing design for high lift with experimental validation [NASA-TP-2395] p 1 N87-10042

CANARD CONFIGURATIONS
Wind-tunnel investigation of the flight characteristics of an aft-fuselage swept canard airplane configuration [NASA-TP-2632] p 1 N87-10039
Wind-tunnel investigation at supersonic speeds of a remotely controlled canard missile with a free-rolling-tail brake torque system [NASA-TP-2401] p 3 N87-17668

CATION
Traveling-wave-tube efficiency improvement by a low-cost technique for deposition of carbon on multiassemble cavity models [NASA-TP-2719] p 14 N87-21239

CARBON DIOXIDE
System study of the carbon dioxide observational platform system (CO-OPS): Project overview [NASA-TP-2696] p 9 N87-18588

CARBON DIOXIDE LASERS
Closed-Cycle, Frequency-Stable CO2 Laser [NASA-CP-2456] p 16 N87-20522

CARBON FIBERS
Effects of thermal cycling on graphite-fiber-reinforced 6051 aluminum [NASA-TP-2512] p 11 N87-10184

CARBON TETRAFLUORIDE
Description and calibration of the Langley Hypersonic CF4 tunnel: A facility for simulating low gamma flow as occurs for a real gas [NASA-TP-2384] p 16 N87-29778

CATALOGS (PUBLICATIONS)

CAVITIES
Space shuttle main engine high pressure fuel pump aft platform seal cavity flow analysis [NASA-TP-2685] p 14 N7-17000
Experimental cavity pressure distributions at supersonic speeds [NASA-TP-2683] p 3 N87-22863
Revived NASA axially symmetric ring model for coupled-cavity traveling-wave tubes [NASA-TP-2675] p 14 N87-22923

CELESTIAL MECHANICS

CETRANTAL ANALYSIS
Power cepstrum technique with application to model helicopter acoustic data [NASA-TP-2596] p 23 N87-17479

CHANNEL FLOW
Numerical simulation of channel flow transition, resolution requirements and structure of the hairpin vortex [NASA-TP-2667] p 3 N87-19351

CHEMILUMINESCENCE
Ester oxidation on an aluminum surface using chemiluminescence [NASA-TP-2511] p 12 N87-18666

CINEMATOGRAPHY
Evaluation of diffuse-illumination holographic cinematography in a flutter cascade [NASA-TP-2593] p 16 N87-13731
FLAPS (CONTROL SURFACES)
Applicability of linereased, automated-flap attachments to design and analysis of flap systems at low speeds for thin wing sections with sharp leading edges.
[NA-194-2753] p 2 N87-15174

FLAT PLATES
Drag measurements of flat plates mounted transversely on a flat plate at supersonic speeds.
[NA-194-2742] p 5 N87-27062

FLEXIBLE STRUCTURES
Structural Dynamics and Control Interaction of Flexible Structures
[NA-194-2467-PT-1] p 10 N87-22072
Structural Dynamics and Control Interaction of Flexible Structures
[NA-194-2467-PT-2] p 10 N87-22729

FLEXIBLE SPACECRAFT
NASA/DOD Control/Structures Interaction Technology, 1986
[NA-194-2447-PT-1] p 10 N87-16014

The 20th Aerospace Mechanics Symposium
[NA-194-2435] p 17 N87-16321

FLIGHT CHARACTERISTICS
Wind-tunnel investigation of the flight characteristics of a canard general-aviation airplane configuration.
[NA-194-2628] p 1 N87-10039

Piloted simulator study of allowable time delays in large-airplane response.
[NA-194-2652] p 8 N87-18649

Flight characteristics of the AD-1 oblique-wing research aircraft.
[NA-194-2223] p 8 N87-16570

FLIGHT CONTROL
Joint University Program for Air Transportation Research, 1983
[NA-194-2455] p 1 N87-18520

Joint University Program for Air Transportation Research, 1985
[NA-194-2455] p 1 N87-18520

FLIGHT CREWS
Cockpit Resource Management Training
[NA-194-2455] p 5 N87-22634

FLIGHT MANAGEMENT SYSTEMS
Ground-based time-motion guidance algorithm for control of airplanes in a time-metered air traffic control environment:
A piloted simulation study.
[NA-194-2218] p 7 N87-10986

Wind Shear/Turbulence inputs to Flight Simulation and Systems Certification
[NA-194-2218] p 1 N87-25267

FLIGHT SIMULATION
Ground-based time-motion guidance algorithm for control of airplanes in a time-metered air traffic control environment:
A piloted simulation study.
[NA-194-2218] p 7 N87-10986

Cockpit Resource Management Training
[NA-194-2455] p 5 N87-22634

Wind Shear/Turbulence inputs to Flight Simulation and Systems Certification
[NA-194-2474] p 1 N87-25267

Piloted simulation study of effects of vortex flows on low-speed handling qualities of a Delta-wing airplane.
[NA-194-2747] p 8 N87-26622

FLIGHT SIMULATORS
Aeronautical facilities assessment.
[NA-194-2990] p 6 N87-10978

Piloted simulator study of allowable time delays in large-airplane response.
[NA-194-2990] p 8 N87-16849

FLIGHT TESTS
In-flight total forces, moments and static aeroelastic characteristics of an oblique-wing research airplane.
[NA-194-2224] p 8 N87-10103

Development and evaluation of an airplane electronic display format signed with the inertial velocity vector.
[NA-194-2648] p 7 N87-13498

New methods and results for quantification of lightning-aircraft electrostatics.
[NA-194-2737] p 3 N87-21871

Flight investigation of the effects of an outboard wing-leading-edge modification on stall/sid characteristics of a low-wing, single-engine, T-tail light airplane.
[NA-194-2691] p 6 N87-22614

Application of parameter estimation to aircraft stability and control: The output-error approach.
[NA-194-2616] p 8 N87-24999

Analogue signal conditioning for flight-test instrumentation.
[NA-194-2659] p 7 N87-29533

Piloted simulation study of effects of vortex flows on low-speed handling qualities of a Delta-wing airplane.
[NA-194-2747] p 8 N87-26622

FLIGHT TRAINING
Cockpit Resource Management Training
[NA-194-2455] p 5 N87-22634

FLOW DISTRIBUTION
Design of 9.21-pressure-ratio 5-stage core compressor and overall performance for first 3 stages.
[NA-194-2707] p 3 N87-17699

Aerothermal evaluation of a spherically blunted body with a trapezoidal cross section in the Langley 8 foot high temperature tunnel.
[NA-194-2641] p 15 N87-18762

Detailed flow surveys of turning vanes designed for a 0.1-scale model of NASA Lewis Research Center's proposed altitude wind tunnel.
[NA-194-2600] p 9 N87-20295

Study of lee-side flows over conically cambered delta wings at supersonic speeds, part 1.
[NA-194-2660-PT-1] p 4 N87-23597

Study of lee-side flows over conically cambered Delta wings at supersonic speeds, part 2.
[NA-194-2660-PT-2] p 4 N87-25301

Qualitative evaluation of a flush air data system at transonic speeds and high angles of attack.
[NA-194-2716] p 6 N87-29497

FLOW VELOCITY
Experimental evaluation of wall Mach number distributions of the octagonal test section proposed for NASA Lewis Research Center's altitude wind tunnel.
[NA-194-2660] p 6 N87-17171

Jet model for slot film cooling with effect of free-stream and coolant turbulence.
[NA-194-2660] p 15 N87-19034

Measurements of flow rate and trajectory of aircraft tire-generated water spray.
[NA-194-2660] p 6 N87-24458

FLOW VISUALIZATION
Evaluation of diffuse illumination holography: cinematography in a flutter cascade.
[NA-194-2660] p 16 N87-13731

In-flight surface oil-flow photographs with comparisons to pressure distribution and boundary-layer data.
[NA-194-2660] p 9 N87-20966

Study of lee-side flows over conically cambered Delta wings at supersonic speeds, part 2.
[NA-194-2660-PT-2] p 4 N87-25301

FLUID DYNAMICS
NASA-Chinese Aeronautical Establishment (CAE) Symposium.
[NA-194-2433] p 7 N87-20267

FLUID FLOW
Experimental cavity pressure distributions at supersonic speeds.
[NA-194-2663] p 3 N87-22526

FLUID MANAGEMENT
Microgravity Fluid Management Symposium.
[NA-194-2465] p 13 N87-21141

FLOQUET
Effects of winglet on transonic flutter characteristics of a cantilevered twin-engine transport wing model.
[NA-194-2665] p 17 N87-13789

FOG DISPERSAL
Development testing of large volume water sprays for use in fog dispersal.
[NA-194-2667] p 10 N87-25945

FORMAT
Proceedings of the 5th Annual Users' Conference.
[NA-194-2399] p 22 N87-10720

FRACURE MECHANICS
Structural Integrity and Durability of Reusable Space Propulsion Systems.
[NA-194-2661] p 11 N87-22766

FREE FIGHT
Wind-tunnel free-flight investigation of a 0.15-scale model of the F-106B airplane with vortex flaps.
[NA-194-2707] p 3 N87-21855

FREE FLOW
Helicopter blade-vortex interaction locations: Scale-model acoustics and free-flight analysis results.
[NA-194-2735] p 3 N87-18537

FREQUENCIES
Frequency domain laser velocimeter signal processor: A new signal processing scheme.
[NA-194-2735] p 16 N87-27994

FREQUENCY MODULATION
Low-cost controller for capacitance type of blade tip clearance measurement system.
[NA-194-2746] p 7 N87-24481

FREQUENCY STABILITY
Closed-Cycle, Frequency-Stable CO2 Laser Technology.
[NA-194-2465] p 16 N87-20522

FUEL CONSUMPTION
Ground-based time-motion guidance algorithm for control of airplanes in a time-metered air traffic control environment: A piloted simulation study.
[NA-194-2663] p 7 N87-10864
INTERACTIVE CONTROL
Nasa/ncr Control Structures Interaction Technology. 1986
[NASA-CP-2447-Pt2] p 10 N87-24495

INTERFACES
Effect of LID (Registered) processing on the microstructure and mechanical properties of Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo titanium foil-gauge sheets [NASA-TP-2677]
12 N87-18644

INTERPOLATION
Quantitative analysis of the reconstruction performance of interpolants [NASA-TP-2698] 23 N87-22441

INVENTIONS

INVERIONS
Lewis inverse design code (LINDES): Users manual [NASA-TP-2676] p 3 N87-20238

INVESTIGATION
Investigation of the effects of cobalt ions on epoxy properties [NASA-TP-2639]
12 N87-12680

Flight investigation of the effects of an outward wing-leading-edge modification on stall/spin characteristics of a low-wing, single-engine, T-tail light airplane [NASA-TP-2691] 23 N87-26314

INVISICD FLOW
Calculation of viscous effects on transonic flow for oscillating airfoils and comparisons with experiment [NASA-TP-2731] p 5 N87-27622

IONS
Investigation of the effects of cobalt ions on epoxy properties [NASA-TP-2639]
12 N87-12680

Cosmic ray heavy on LET mapping for aluminum, silicon, and tissue targets [NASA-TP-1190] 27 N87-25984

J
JET AIRCRAFT
Jet transport flight operations using cockpit display of traffic information during instrument meteorological conditions: Simulation evaluation [NASA-TP-2567] p 5 N87-29469

JET ENGINES

JET EXHAUST
Multiscale turbulence effects in supersonic jets exhausting into still air [NASA-TP-2707] 15 N87-24572

JOINTS (JUNCTIONS)

Modeling of joints for structural analysis of transonic structures [NASA-TP-2661] 18 N87-20567

LASER APPLICATIONS

LASER DOPPLER VELOCIMETERS

LASER OUTPUTS
Evaluation of diffuse-illumination holographic cinematography in a flutter cascade [NASA-TP-2955] p 16 N87-13731

LASER PLASMA INTERACTIONS
Laser-powered MHD generators for space application [NASA-TP-2821] p 24 N87-10764

LASERS

LATERAL CONTROL
Subsonic and supersonic longitudinal and lateral-directional characteristics of a forward-swept-wing fighter configuration at angles of attack up to 47 deg [NASA-TP-2727] p 4 N87-20874

LATERAL STABILITY
Subsonic and supersonic longitudinal and lateral-directional characteristics of a forward-swept-wing fighter configuration at angles of attack up to 47 deg [NASA-TP-2727] p 4 N87-26874

LAUNCHING
A synchronous data analyzer for the Minimum Delay Data Format (MDDF) and Launch Trajectory Acquisition System (LTAS) [NASA-TP-2743] p 13 N87-24590

LEADING EDGE FLAPS
Investigation of leading-edge flap performance on delta and double-delta wings at supersonic speeds [NASA-TP-2668] p 3 N87-20233

LEADING EDGES
Flight investigation of the effects of an outward wing-leading-edge modification on stall/spin characteristics of a low-wing, single-engine, T-tail light airplane [NASA-TP-2691] p 6 N87-29041

LEAKAGE

LEE WAVES
Study of lee-side flows over conically cambered delta wings at supersonic speeds, part 1 [NASA-TP-2960-Pt1] p 4 N87-23597

LICENSING

LIFE (DURABILITY)
LIFT AUGMENTATION

- Predicted effect of dynamic load on pitting fatigue life for low-contact-ratio spur gears [NASA-TP-2589]

MACH NUMBER

- Experimental evaluation of wall Mach number distributions on the octagonal test section proposed for NASA Lewis Research Center's altitude wind tunnel [NASA-TP-2666]

LIGHT AIRCRAFT

- Piloted simulation study of the effects of an automated trim system on flight characteristics of a twin-engine airplane with one engine inoperative [NASA-TP-2623]

LIFESTRA"A

- Atlas of absorption lines from 0 to 17900 cm (sup-1) [NASA-RI-1188]

LINEARITY

- Effect of Reynolds number variation on aerodynamics of a hydrogen-fueled transport concept at Mach 6 [NASA-TP-2726]
- Description and calibration of the Langley Hypersonic CF4 tunnel: A facility for simulating low gamma flow as occurs for a real aircraft [NASA-TP-2584]

MAGNETIC FIELD CONFIGURATIONS

- Coronal and Prominence Plasmas [NASA-CP-2442]

MAGNETOHYDRODYNAMIC GENERATORS

- Laser powered MHD generators for space application [NASA-TP-2621]

MAGNETOHYDRODYNAMIC STABILITY

MAGNETOSTATICS

- Coronal and Prominence Plasmas [NASA-CP-2442]

MAN MACHINE SYSTEMS

- A simulation evaluation of a pilot interface with an automatic terminal approach system [NASA-TP-2666]

MAN-COMPUTER INTERFACE

- Sixth Annual Users' Conference — Transportable Applications Executive (TAE) [NASA-CP-2463]

MANAGEMENT

- Management: A bibliography for NASA managers [NASA-SP-5500(21)]
- Management: A bibliography for NASA managers (supplement 21) [NASA-SP-7000(21)]
- Management Planning: Management: A bibliography for NASA managers (supplement 21) [NASA-SP-7000(21)]

MANEUVERS

- Subsonic maneuver capability of a supersonic cruise fighter wing concept [NASA-TP-2642]

MAPPER

LOW SPEED

- Applicability of linearized-theory attached-flow methods to design and analysis of flight systems at low speeds for thin swept wings with sharp leading edges [NASA-TP-2653]
- Pitch of aerofoil study of allowable time delays in large-airplane response [NASA-TP-2652]
- Flight characteristics of the AD-1 oblique-wing research aircraft [NASA-TP-2223]
- Pilot-simulation study of effects of vortex flaps on low-speed handling qualities of a Delta-wing airplane [NASA-TP-2479]

LUNAR BASES

- Status and future of lunar geoscience [NASA-SP-364]

SUBJECT INDEX

- Metal matrix composites in the 26th Acta Astronautica "Rapid Fluctuations in Solar Flares" conference [NASA-CP-2468]
- Rapid Fluctuations in Solar Flares [NASA-CP-2469]
- Subsonic maneuver capability of a supersonic cruise fighter wing concept [NASA-TP-2642]
- Management Planning: Management: A bibliography for NASA managers (supplement 21) [NASA-SP-7000(21)]
- Mapping [NASA-TP-2650]
- Effect of Reynolds number variation on aerodynamics of a hydrogen-fueled transport concept at Mach 6 [NASA-TP-2726]
- Description and calibration of the Langley Hypersonic CF4 tunnel: A facility for simulating low gamma flow as occurs for a real aircraft [NASA-TP-2584]
- Magnetic field configurations [NASA-CR-2442]
- Magnetohydrodynamic generators [NASA-TP-2621]
- Magnetohydrodynamic stability [NASA-CP-2439]
- Magnetostatics [NASA-CR-2442]
- MAN machine systems [NASA-TP-2666]
- Man-computer interface [NASA-CP-2463]
- Management [NASA-SP-5500(21)]
- Management methods [NASA-SP-7000(21)]
- Management planning [NASA-SP-7000(21)]
- Maneuvers [NASA-TP-2642]
- Mapping [NASA-SP-364]
- Low speed [NASA-TP-2653]
- Light aircraft [NASA-TP-2623]
- Lunar bases [NASA-SP-364]
- Mach number [NASA-TP-2586]
- Metal matrix composites [NASA-TP-2626]
- Metal surfaces [NASA-TP-2711]
- Meteorological parameters [NASA-TP-2651]
- Meteorological satellites [NASA-TP-2651]
- Microbursts [NASA-TP-2651]
- Microcomputers [NASA-TP-2651]
- Microelectronics [NASA-TP-2651]
- Microwave amplifiers [NASA-TP-2651]
- Microwave [NASA-TP-2651]
- Mission configurations [NASA-TP-2651]
- Mission planning [NASA-TP-2651]
- Modal response [NASA-TP-2651]
- Models [NASA-TP-2651]
- Molecules [NASA-TP-2651]
- Molecular clouds [NASA-TP-2651]
- Moles [NASA-TP-2651]
- Moons [NASA-TP-2651]
- Molten [NASA-TP-2651]
- Mole [NASA-TP-2651]
- Molar [NASA-TP-2651]
SUBJECT INDEX

MOLECULES
Microcrystalline crystalization of macromolecules: An interim report and proposal for continued research
[NASA-TP-2571] p 13 N87-20423

MOON
Status and future of lunar geoscience
[NASA-SP-484] p 26 N87-19322
Fifty years of solar eclipses: 1966 - 2026

MOUNTING
Drag measurements of blunt stores tangentially mounted on a flat plate at supersonic speeds
[NASA-TP-2742] p 5 N87-27626

NASA PROGRAMS
Management of: A bibliography for NASA managers
(Supplement 21)
[NASA-SP-7500(21)] p 24 N87-20803
NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 31)
[NASA-SP-7039(31)] p 24 N87-25023
NASA patent abstracts bibliography: A continuing bibliography. Section 2: Indexes (supplement 31)
[NASA-SP-7039(31)-SECT-2] p 24 N87-26689
NASA-SP-7035 supplement (Supplement 33) p 25 N87-27557

NASAN
Fifteenth NASAN Users’ Colloquium
[NASA-CP-2481] p 18 N87-27231

NATURAL GAS
A simplified method for determining heat of combustion of natural gas
[NASA-TP-2682] p 16 N87-20514

NEVILLE-PEAKS EQUATION
Multiscale turbulence effects in supersonic jets exhausting into still air
[NASA-TP-2613] p 15 N87-18783
Supercomputing in Aerospace
[NASA-CP-2454] p 4 N87-25998

NEPTUNE ATMOSPHERE
The Jovian Atmospheres
[NASA-SP-26] p 26 N87-17508

NICKEL CADMIUM BATTERIES
The 1985 Goddard Space Flight Center Battery Workshop
[NASA-CP-2434] p 14 N87-11072

NICKEL HYDROGEN BATTERIES
The 1985 Goddard Space Flight Center Battery Workshop
[NASA-CP-2434] p 14 N87-11072

NIMBUS SATELLITE
[NASA-SP-1185] p 21 N87-26489

NIMBUS 7 SATELLITE
Description of data on the Nimbus 7 LMS map archive tape: Ozone and nitric acid
[NASA-TP-2625] p 19 N87-13022

NITRIC ACID
Description of data on the Nimbus 7 LMS map archive tape: Ozone and nitric acid
[NASA-TP-2625] p 19 N87-13022

NOISE INTENSITY
Effects of background noise on total noise annoyance
[NASA-TP-2630] p 23 N87-14120
NOISE POLLUTION
Effects of background noise on total noise annoyance
[NASA-TP-2630] p 23 N87-14120

NOISE TOLERANCE
Effects of background noise on total noise annoyance
[NASA-TP-2630] p 23 N87-14120

NONDESTRUCTIVE TESTS
Low-cost FM oscillator for capacitance type of blade tip clearance measurement system
[NASA-TP-2746] p 7 N87-24481
Electromagnetic and stability measurement technology
[NASA-CP-2472] p 17 N87-27204

NONLINEAR EQUATIONS
Some path-following techniques for solution of nonlinear equations and comparison with parametric differentiation
[NASA-TP-2654] p 22 N87-14054

NOZZLE FLOWS
Static internal performance of single-expansion-ramp nozzles with thrust-vectoring capacity up to 60 deg
[NASA-TP-2222] p 8 N87-10871
Experimental evaluation of heat transfer on a 10001 area ratio rocket nozzle
[NASA-CP-2721] p 11 N87-25242

NOZZLE GEOMETRY
Effects of port corner geometry on the internal performance of rotating-vane-type thrust reverser
[NASA-TP-2624] p 2 N87-12541

OBLIQUE WINGS
In-flight total forces, moments and static aeroelastic characteristics of an oblique-wing research airplane
[NASA-TP-2224] p 8 N87-10193
Flight-determined aerodynamic derivatives of the AD-1 oblique-wing research airplane
[NASA-TP-2222] p 11 N87-10871
Flight characteristics of the AD-1 oblique-wing research aircraft
[NASA-TP-2223] p 8 N87-18570

OCEANOGRAPHIC PARAMETERS
Arctic Sea Ice, 1973–1976: Satellite passive-microwave observations
[NASA-SP-469] p 21 N87-24470

OCTANES
Velocity profiles in laminar diffusion flames
[NASA-TP-2596] p 15 N87-18005

OILS
In-flight surface oil-photograph with comparisons to pressure distribution and boundary-layer data
[NASA-TP-2395] p 3 N87-20966

OPERATING SYSTEMS (COMPUTERS)
Sixth Annual Users’ Conference: Transportable Applications Executive (TAE)
[NASA-CP-2463] p 22 N87-23156

OPTICAL DATA PROCESSING
Computer Sciences and Data Systems, volume 2

OPTICAL RADAR
Thirteenth International Laser Radar Conference
[NASA-CP-4231] p 16 N87-10263
Airborne lidar measurements of El Chichon stratospheric aerosols, May 1983
[NASA-IP-1172] p 19 N87-11598
NASA/MSFC FY-85 Atmospheric Processes Research Review
[NASA-CP-4042] p 20 N87-13043
Airborne lidar measurements of El Chichon stratospheric aerosols, January 1984
[NASA-IP-1175] p 20 N87-20663

OPTIMIZATION
Recent experiences in Multidisciplinary Analysis and Optimization, part 1
[NASA-CP-2327-PT-1] p 5 N87-11177
Recent experiences in Multidisciplinary Analysis and Optimization, part 2
[NASA-CP-2327-PT-2] p 6 N87-11750

SENSITIVITY ANALYSIS
Sensitivity Analysis in Engineering
[NASA-CP-2457] p 17 N87-18855

ORBITAL SPACE STATIONS
Proceedings of the 5th Annual Users’ Conference
[NASA-CP-2399] p 22 N87-10720

ORTHORADAR
Structural Dynamics and Control Interaction of Flexible Structures
[NASA-CP-2467-PT-2] p 10 N87-22279
NASA/DOD Control/Structures Interaction Technology, 1988
[NASA-CP-2467-PT-2] p 10 N87-24485

ORFICE FLOW
Qualitative evaluation of a flush air data system at transonic speeds and high angles of attack
[NASA-TP-2716] p 6 N87-26947

OSCILLATIONS
Rapid Fluctuations in Solar Flares
[NASA-CP-2449] p 27 N87-21785
Calculation of viscous effects on transonic flow for oscillating airfoils and partial differential equations
[NASA-TP-2731] p 5 N87-26722

OSCULATING
Low-cost FM oscilator for capacitance type of blade tip clearance measurement system
[NASA-TP-2746] p 7 N87-24481

OXYGEN
Estimator oxidation on an aluminum surface using chemiluminescence
[NASA-TP-2811] p 12 N87-18666

OXYGEN SUPPLY EQUIPMENT
A design method for determining heat of combustion of natural gas
[NASA-TP-2682] p 16 N87-20514
Calibration of the spin-scan ozone imager aboard the dynamics Explorer 1 satellite
[NASA-TP-2723] p 21 N87-26491

PARAMETRIC IDENTIFICATION
Some path-following techniques for solution of nonlinear equations and comparison with parametric differentiation
[NASA-TP-2654] p 22 N87-14054
Application of parameter estimation to aircraft stability and control: The output-error approach
[NASA-TP-1188] p 6 N87-29499

PARTIAL DIFFERENTIAL EQUATIONS
Solution of elliptic partial differential equations by fast Poisson solvers using a local relaxation factor: 2-Step method
[NASA-TP-2750] p 22 N87-14918

PARTICLE COLLISIONS
Doubly differential cross sections for galactic heavy-ion fragmentation
[NASA-TP-2659] p 24 N87-17487

PARTICLE SIZE DISTRIBUTION
Automated Reduction of Data from Images and Histograms
[NASA-CP-2477] p 5 N87-29432

PARTICLE TRAJECTORIES
Calculation of secondary electron trajectories in multistage depressed collectors for microwave amplifiers
[NASA-TP-2664] p 14 N87-17991

PATENT POLICY
NASA patent abstracts bibliography: A continuing bibliography, Section 1: Abstracts (supplement 31)
[NASA-SP-7039(31)] p 24 N87-25023
NASA patent abstracts bibliography: A continuing bibliography, Section 2: Indexes (supplement 31)
[NASA-SP-7039(31)-SECT-2] p 24 N87-26689

PATTERN IDENTIFICATION
Significant NASA inventions. Available for licensing in foreign countries
[NASA-SP-7039(04)] p 25 N87-70425

PERFORMANCE TESTS
Development and evaluation of an airborne electronic display system - format aligned with the inertial velocity vector
[NASA-TP-2648] p 7 N87-13438
Design of 3.71-mm pressure-5 stage core compressor and overall performance for first 3 stages
[NASA-TP-2597] p 7 N87-17689
Filter-rate-rate testing of high-power 30-GHz traveling wave tubes for ground terminal applications
[NASA-TP-2635] p 13 N87-17971
WEDGES
Effect of a trade between boattail angle and wedge size on the performance of a nonaxisymmetric wedge nozzle [NASA-TP-2717] p 4 N87-2395

WEIGHT REDUCTION
Preliminary structural design of composite main rotor blades for minimum weight [NASA-TP-2790] p 11 N87-25435

WEIGHTLESSNESS

WIND (METEOROLOGY)

WIND SHEAR
Doppler Radar Detection of Wind Shear [NASA-CP-2435] p 5 N87-10054

WIND TUNNEL APPARATUS
Experimental evaluation of a 0.15-scale model of NASA Lewis Research Center's proposed altitude wind tunnel [NASA-TP-2666] p 9 N87-20295

WIND TUNNEL CALIBRATION
Experimental evaluation of honeycomb/screen configurations and short contraction sections for NASA Lewis Research Center's altitude wind tunnel [NASA-TP-2692] p 9 N87-23262

WIND TUNNEL DRIVES
Experimental evaluation of two turning vane designs for fan drive character of 0.1-scale model of NASA Lewis Research Center's proposed altitude wind tunnel [NASA-TP-2646] p 9 N87-21856

WIND TUNNEL MODELS
Wind-tunnel free-flight investigation of a 0.15-scale model of the F-106B airplane with vortex flaps [NASA-TP-2700] p 7 N87-21855

WIND TUNNEL TESTS
Wind-tunnel investigation of the flight characteristics of a canard general aviation airplane configuration [NASA-TP-2623] p 1 N87-10059

X
X RAY ASTRONOMY

X RAYS

Z
ZEITH
Surface bidirectional reflectance properties of two southwestern Arizona deserts for wavelengths between 0.4 and 2.5 micrometers [NASA-TP-2643] p 18 N87-22281

WIND TUNNEL WALLS
Experimental evaluation of wall Mach number distributions of the octagonal test section proposed for NASA Lewis Research Center's altitude wind tunnel [NASA-TP-2666] p 8 N87-17717

WIND TUNNELS

WING LOADING
Study of lee-side flows over conically cambered Delta wings at supersonic speeds, part 2 [NASA-TP-2660-PT-2] p 4 N87-25301

WING TIP VORTEXES
Evaluation of installed performance of a wing-tip-mounted pusher turboprop on a semispan wing [NASA-TP-2739] p 6 N87-26041

WINGLETS
Effects of winglet on transonic flutter characteristics of a cantilevered twin-engine-transport wing model [NASA-TP-2627] p 17 N87-13789

WINGS
Effects of winglet on transonic flutter characteristics of a cantilevered twin-engine-transport wing model [NASA-TP-2627] p 17 N87-13789

Subsonic maneuver capability of a supersonic cruise fighter wing concept [NASA-TP-2642] p 2 N87-15184

Flight investigation of the effects of an outboard wing-leading-edge modification on stall/spin characteristics of a low-wing, single-engine, T-tail light airplane [NASA-TP-2691] p 6 N87-23614

X
X RAY ASTRONOMY

X RAYS

Z
ZEITH
Surface bidirectional reflectance properties of two southwestern Arizona deserts for wavelengths between 0.4 and 2.5 micrometers [NASA-TP-2643] p 18 N87-22281
BURNS, R. A.

Experimental evaluation of honeycomb/screen configuration and short contraction section for NASA Lewis Research Center's altitude wind tunnel [NASA-TP-2692] p 9 N87-20662

BURNS, R.

Development testing of large volume water sprays for warm fog dispersal [NASA-TP-2607] p 10 N87-12585

C

CAMP, DENNIS W.

Turbulence characteristics Relative to Aviation, Missile, and Space Programs [NASA-CP-2468] p 21 N87-22341

CAMPBELL, WILLIAM J.

CAPEONE, F. J.

Interference effects of thrust reversing on horizontal tail effectiveness of twin-engine fighter aircraft at Mach numbers from 0.15 to 0.90 [NASA-TP-2350] p 8 N87-10870

Effect of port corner geometry on the internal performance of a rotating-vane-type thrust reverser [NASA-TP-2624] p 2 N87-12541

CAPONE, FRANCIS J.

Effect of suction surface location on aerodynamic characteristics of a twin-engine afterbody model with nonaxisymmetric nozzles [NASA-TP-2392] p 6 N87-17962

Multiaxis control power from thrust vectoring for a supersonic fighter aircraft model at Mach 0.20 to 2.47 [NASA-TP-2712] p 4 N87-24243

CAREK, GERALD A.

Shot peening for Ti6Al-4V alloy compressor blades [NASA-TP-2711] p 10 N87-20566

CARLSON, HARRY W.

Applicability of linearized-theory-aflow-methods to design and analysis of flap systems at low speeds for twin swept wings with sharp leading edges [NASA-TP-2653] p 2 N87-15174

CARLSON, JOHN R.

An experimental investigation of an advanced turborollup installation on a swept wing at subsonic and transonic speeds [NASA-TP-2729] p 4 N87-26683

CARNON, GEORGE T., JR.

Effects of empennage surface location on aerodynamic characteristics of a twin-engine afterbody model with nonaxisymmetric nozzles [NASA-TP-2392] p 6 N87-17963

Effects of a square, an elliptical, and a circular arc nozzle on the performance of a supersonic wedge nozzle [NASA-TP-2717] p 4 N87-23593

CAVALLERI, DONALD J.

CHANG, I. C.

CHANG, S. C.

CHEGNI, HOSHANG

A simplified method for determining heat of combustion of a mixture of gases [NASA-TP-2392] p 6 N87-17963

CHELPO, JULIO

Pressure measurements on a thick cambered and twisted 50 deg delta wing at high subsonic speeds [NASA-TP-2713] p 5 N87-27643

CLEMMONS, JAMES J., JR.

CLINE, THOMAS L.

COE, H. H.

COMISO, JOSEFINO C.

CONNOR, ANDREW B.

Correlation of helicopter impulse noise from blade-vortex interaction with rotor mean inflow [NASA-TP-2650] p 23 N87-18599

CORALLO, GINO C.

Electron stimulated desorption of atomic oxygen from silver [NASA-TP-2668] p 12 N87-18629

CORBAN, ROBERT R.

Experimental evaluation of wall Mach number distributions of the octagonal test section proposed for NASA Lewis Research Center's altitude wind tunnel [NASA-TP-2666] p 8 N87-17717

COVELL, PETER F.

Investigation of leading-edge flap performance on delta and double-delta wings at supersonic speeds [NASA-TP-2659] p 3 N87-20233

COY, JOHN L.

Vibration characteristics of OH-58A helicopter main rotor transmission [NASA-TP-2705] p 17 N87-20555

CROSLEY, DAVID R.

Future directions for H sub x O sub x y y detection [NASA-CP-2448] p 19 N87-15528

CUCINOTTA, FRANCIS A.

Doubly differential cross sections for galactic heavy-iron fragmentation [NASA-TP-2659] p 24 N87-17487

CUNNINGHAM, HERBERT J.

Steady and unsteady aerodynamic forces from the SOUSSA surface-panel method for a fighter wing with tip missile and comparison with experimental data [NASA-TP-2732] p 4 N87-26032

CURRAN, ARTHUR N.

Performance of textured carbon on copper electrode multistage diaphragmed collectors with medium-power traveling wave tubes [NASA-TP-2665] p 14 N87-17990

CURRIER, S. F.

CURRY, R. E.

In-flight total forces, moments and static aerelastic characteristics of an oblique-wing research airplane [NASA-TP-2224] p 8 N87-10010

CURRY, ROBERT E.

Fluid field analysis of the performance of a nonaxisymmetric wedge nozzle for a twin-engine afterbody model with nonaxisymmetric nozzles [NASA-TP-2392] p 6 N87-17963

DANFORD, MERLIN D.

The corrosion mechanisms for primer coated 2219-T87 aluminum [NASA-TP-2715] p 12 N87-21076

Hydrogen trapping and the interaction of hydrogen with metals [NASA-TP-2744] p 12 N87-25483

DANIEL, RON

Liquid drop stability for protein crystal growth in microgravity [NASA-TP-2724] p 21 N87-20727

DARDEN, CHRISTINE M.

Applicability of linearized-theory-aflow-methods to design and analysis of flap systems at low speeds for twin swept wings with sharp leading edges [NASA-TP-2303] p 2 N87-15174

DAUGHTERY, ROBERT H.

Flow of rate and trajectory of aircraft fire-generated water spray [NASA-TP-2718] p 6 N87-24458

DAVIS, M. H.

Effects of thermal cycling on graphite-fiber-reinforced 6061 aluminum [NASA-TP-2615] p 11 N87-10184

DUNHAM, DANA MORRIS

Low-speed aerodynamic characteristics of a twin-engine general aviation configuration with anti-fuseg-mounted propeller pushers [NASA-TP-2763] p 5 N87-29462

DURBIN, R. A.

Asymptotic analysis of corona discharge from thin electrodes [NASA-CP-2465] p 24 N87-14998

DWOYER, DOUGLAS L

Efficient solutions to the Euler equations for supersonic flow with embedded subsonic regions [NASA-TP-2523] p 2 N87-15183

E

EBHARA, BEN T.

Traveling-wave-tube efficiency improvement by a low-cost technique for deposition of carbon on multistage depressed collector [NASA-TP-2719] p 14 N87-21239

EHRBERGER, L. J.

Qualitative evaluation of a flush air data system at transonic speeds and high angles of attack [NASA-TP-2716] p 6 N87-29497

ENGHLAR, J.

Large-scale static investigation of circulation-control-wing concepts applied to upper surface-hollow aircraft [NASA-SP-2684] p 6 N87-15959

EPPEL, J. C.

Large-scale static investigation of circulation-control-wing concepts applied to upper surface-hollow aircraft [NASA-SP-2684] p 6 N87-15959

ESPENAK, F.

ESPENAK, FRED

F

FICHTL, GEORGE H.

PERSONAL AUTHOR INDEX
LEVIN, JOEL S.
Space Opportunities for Tropospheric Chemistry Research
[NASA-TP-2450] p 20 N87-18248

LEWICKI, DAVID G.
Predicted effect of dynamic load on pitting fatigue life for anisotropic spur gears
[NASA-TP-2610] p 16 N87-18095

LORD, EDWARD R.,JR.
Spectroscopic comparison of effects of electron radiation on mechanical properties of two polymides
[NASA-TP-2705] p 17 N87-20555

LOWRY, R. A.
Space shuttle main engine high pressure fuel pump aft platform seal cavity flow analysis
[NASA-TP-2596] p 14 N87-17000

LUERS, J. K.
Preliminary estimates of radiosonde thermometer errors
[NASA-TP-2634] p 20 N87-12986

LYONS, VALERIE J.
Velocity profiles in laminar diffusion flames
[NASA-TP-2526] p 4 N87-18035

MAINE, RICHARD E.
Application of parameter estimation to aircraft stability and control: The output-error approach
[NASA-RP-1186] p 6 N87-29499

MALL, GERALD H.
A simplified method for determining heat of combustion of natural gas
[NASA-TP-2662] p 18 N87-20514

MANN, M/J.
Forward-sweep wing configuration for high maneuverability by use of a transonic computational method
[NASA-TP-2628] p 2 N87-11702

MANZ, MICHAEL J.
Subsonic longitudinal and lateral-directional characteristics of a forward-sweep wing fighter configuration at angles of attack up to 47 deg
[NASA-TP-2577] p 4 N87-26674

MARTIN, R. M.
Power cepstrum technique with application to model helicopter acoustic data
[NASA-TP-2568] p 23 N87-17479

MASSIE, B. D.
In-flight surface oil-flow photographs with comparisons to ground-data predictions
[NASA-TP-2610] p 11 N87-18666

MEAD, JAY LEE M.
Infrared source cross-index, first edition
[NASA-TP-1162] p 25 N87-22573

MEADOR, MICHAEL A.
Ester oxidation on an aluminum surface using chemiluminescence
[NASA-TP-2611] p 12 N87-18666

MERCER, C. E.
Forward-sweep wing configuration designed for high maneuverability by use of a transonic computational method
[NASA-TP-2762] p 2 N87-11702

MERRILL, WALTER C.
Advanced detection, isolation and accommodation of sensor failure real-time evaluation
[NASA-TP-2740] p 8 N87-25331

MEYER, M. B.
Development testing of large volume water sprays for warm fog dispersal
[NASA-TP-2607] p 10 N87-12585

MEYERS, JAMES F.
Frequency domain laser velocimeter signal processor: A new signal processing scheme
[NASA-TP-2735] p 16 N87-27984

MIDEN, RAYMOND E.
Description and calibration of the Langley Hypersonic CF4 tunnel: A facility for simulating low gamma flow as occurs for a real gas
[NASA-TP-2384] p 16 N87-29778

MILLER, CHARLES G., III
Description and calibration of the Langley Hypersonic CF4 tunnel: A facility for simulating low gamma flow as occurs for a real gas
[NASA-TP-2384] p 16 N87-29778

MILLER, D. S.
Supersonic, nonlinear, attached-flow wing design for high lift with experimental validation
[NASA-TP-2336] p 1 N87-10042

MILLER, DAVID S.
Investigation of leading-edge flap performance on delta and double-delta wings at supersonic speeds
[NASA-TP-2336] p 3 N87-20233

MILLER, IRVIN M.
Closed-Cycle, Frequency-Stable CO2 Laser Technology
[NASA-CP-2456] p 16 N87-25252

MITCHELL, A. M.
Testing of UH-60A helicopter transmission in NASA Lewis 2240-KW (3000-hp) facility
[NASA-TP-2626] p 16 N87-10531

MITCHELL, KERRY B.
Proceedings of the 1985 Ames Research Center’s Ground-Effects Workshop
[NASA-CP-2462] p 4 N87-24410

MITTRA, ANUTHOSH
On minimizing the number of calculations in design-by-analysis codes
[NASA-TP-2706] p 3 N87-23586

MOORE, CARLETON J.
Space station structures and dynamics test program
[NASA-TP-2710] p 18 N87-20588

MOORE, ROYCE D.
Experimental evaluation of two turning vane designs for fan driving corner of 0.1-scale model of NASA Lewis Research Center’s proposed altitude wind tunnel
[NASA-TP-2607] p 8 N87-18576

MORRILL, FREDERICK R.
Joint University Program for Air Transportation Research
[NASA-TP-2451] p 25 N87-18520

MORRIS, J. K.
Airborne lidar measurements of El Chichon stratospheric aerosols, January 1984
[NASA-TP-1175] p 20 N87-20663

MOSER, WILLFRED A.
Ester oxidation on an aluminum surface using chemiluminescence
[NASA-TP-2611] p 12 N87-18666

MORRELL, REBECCA W.
Joint University Program for Air Transportation Research
[NASA-TP-2452] p 1 N87-22604
SCHIESS, JAMES R.
SHYNE, RICKEY J.
SHORT, IICOFIELD, HAROLD N.
SCHYITZ, MARION
SCHYWN,
SATRAN. D. R.
SANZ JOSE Y.
RYAN, ROBERT S
RUSSELL, J. Y., 111
ROYSTER, DICK M.

An algorithm for surface smoothing with rational

Characteristics

Flight determination of aerodynamic derivatives of the AD1

Geomorphic from space: A global

Wind-tunnel investigation of

 shocks

*Rocket

Large scale study of the carbon dioxide observational

System study of the carbon dioxide observational

Cosmic ray heavy ion LET mapping for aluminum, silicon, and

Experiment on short period pressure variations at upper

Cloud microphysical properties

Experimental investigation of the effects of an outboard

Flight investigation of the effects of the oblong wing

Investigation of the effects of oblong wing leading edge

Five year global dataset: NMC operational analyses

Measurement of flow rate and trajectory of aircraft

tire-generated water spray

Sixth Annual Users' Conference

Spacelab 3 Mission Science Review

System study of the carbon dioxide observational

Possible complementary cosmic-ray systems: Nuclei

The 1986 Get Away Special

Exploring synergies in the modeling and analysis of tires

NASA-TP-2649

NASA-TP-2691

NASA-TP-2652

NASA-TP-2625

NASA-TP-2674

NASA-TP-2633

NASA-TP-2622

NASA-CP-2467-PT-1

NASA-TP-2598

NASA-TP-2597

NASA-TP-2648

NASA-TP-2644

NASA-TP-2627

NASA-TP-2652

NASA-TP-2673

NASA-TP-2626

NASA-TP-2649

NASA-TP-2651

NASA-TP-2679

NASA-TP-2716

NASA-TP-2222

NASA-TP-2223

NASA-TP-2655

NASA-TP-2225

NASA-TP-2226

NASA-TP-2227

NASA-TP-2635
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Page</th>
<th>NASA-ID</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>WALTERS, R. W.</td>
<td>Some path-following techniques for solution of nonlinear equations and comparison with parametric differentiation</td>
<td>22</td>
<td>NPR-14054</td>
<td>1987</td>
</tr>
<tr>
<td>WALTERS, ROBERT W.</td>
<td>Efficient solutions to the Euler equations for supersonic flow with embedded subsonic regions</td>
<td>2</td>
<td>NPR-15183</td>
<td>1987</td>
</tr>
<tr>
<td>WANG, CHI R.</td>
<td>Application of turbulence modeling to predict surface heat transfer in stagnation flow region of circular cylinder</td>
<td>15</td>
<td>NPR-27161</td>
<td>1987</td>
</tr>
<tr>
<td>WATSON, CAROLYN B.</td>
<td>Study of lee-side flows over concically cambered delta wings at supersonic speeds, part 1</td>
<td>4</td>
<td>NPR-23537</td>
<td>1987</td>
</tr>
<tr>
<td>WATSON, WILLIE R.</td>
<td>Experimental evaluation of a two-dimensional shear-flow model for determining acoustic impedance</td>
<td>23</td>
<td>NPR-20798</td>
<td>1987</td>
</tr>
<tr>
<td>WEAVER, WILLIAM L.</td>
<td>Calculation and accuracy of ERBE scanner measurement locations</td>
<td>25</td>
<td>NPR-28471</td>
<td>1987</td>
</tr>
<tr>
<td>WEILMuenSTER, K. J.</td>
<td>Simplified curve fits for the thermodynamic properties of equilibrium air</td>
<td>15</td>
<td>NPR-26009</td>
<td>1987</td>
</tr>
<tr>
<td>WELLS, DOUGLAS C.</td>
<td>Jet transport flight operations using cockpit display of traffic information during instrument meteorological conditions: Simulation evaluation</td>
<td>5</td>
<td>NPR-29469</td>
<td>1987</td>
</tr>
<tr>
<td>WILDCOX, FLOYD J., JR.</td>
<td>Experimental cavity pressure distributions at supersonic speeds</td>
<td>3</td>
<td>NPR-29626</td>
<td>1987</td>
</tr>
<tr>
<td>WILLETT, DAVID V.</td>
<td>Closed-Cycle, Frequency-Stable CO2 Laser Technology</td>
<td>16</td>
<td>NPR-20522</td>
<td>1987</td>
</tr>
<tr>
<td>WILLIAMS, ALTON C.</td>
<td>Double Layers in Astrophysics</td>
<td>25</td>
<td>NPR-23313</td>
<td>1987</td>
</tr>
<tr>
<td>WILLIAMS, DAVID H.</td>
<td>Jet transport flight operations using cockpit display of traffic information during instrument meteorological conditions: Simulation evaluation</td>
<td>3</td>
<td>NPR-29469</td>
<td>1987</td>
</tr>
<tr>
<td>WILLSHIRE, K. F.</td>
<td>Effects of background noise on total noise ennoyance</td>
<td>23</td>
<td>NPR-14120</td>
<td>1987</td>
</tr>
<tr>
<td>WILMUTH, RICHARD G.</td>
<td>Multiscale turbulence effects in supersonic jets exhausting into still air</td>
<td>15</td>
<td>NPR-24872</td>
<td>1987</td>
</tr>
<tr>
<td>WILSON, JEFFREY D.</td>
<td>Revised NASA axially symmetric ring model for coupled-cavity traveling-wave tubes</td>
<td>14</td>
<td>NPR-22923</td>
<td>1987</td>
</tr>
<tr>
<td>WILSON, ROBERT M.</td>
<td>Possible complementary cosmic-ray systems: Nuclear and antinuclear</td>
<td>24</td>
<td>NPR-24977</td>
<td>1987</td>
</tr>
<tr>
<td>WOOD, RICHARD D.</td>
<td>Summary of studies to reduce wing-mounted proplfan installation drag on an M = 0.8 transport</td>
<td>6</td>
<td>NPR-20990</td>
<td>1987</td>
</tr>
<tr>
<td>WOOD, RICHARD M.</td>
<td>Investigation of leading-edge flap performance on delta and double-delta wings at supersonic speeds</td>
<td>3</td>
<td>NPR-20233</td>
<td>1987</td>
</tr>
<tr>
<td>WOODGATE, BRUCE</td>
<td>Energetic Phenomena on the Sun: The Solar Maximum Mission Flare Workshop</td>
<td>26</td>
<td>NPR-19328</td>
<td>1987</td>
</tr>
<tr>
<td>WOOD, RICHARD D.</td>
<td>Study of lee-side flows over concically cambered Delta wings at supersonic speeds, part 1</td>
<td>4</td>
<td>NPR-23537</td>
<td>1987</td>
</tr>
<tr>
<td>YEE, HELEN</td>
<td>Supercomputing in Aerospace</td>
<td>4</td>
<td>NPR-25998</td>
<td>1987</td>
</tr>
<tr>
<td>YEH, FREDERICK C.</td>
<td>Application of turbulence modeling to predict surface heat transfer in stagnation flow region of circular cylinder</td>
<td>15</td>
<td>NPR-27161</td>
<td>1987</td>
</tr>
<tr>
<td>YENNI, K. R.</td>
<td>Pilot simulation study of the effects of an automated trim system on flight characteristics of a light twin-engine airplane with one engine inoperative</td>
<td>10</td>
<td>NPR-10843</td>
<td>1987</td>
</tr>
<tr>
<td>YIP, LONG P.</td>
<td>Wind-tunnel free-flight investigation of a 0.15-scale model of the F-1065 airplane with vortex flaps</td>
<td>10</td>
<td>NPR-21855</td>
<td>1987</td>
</tr>
<tr>
<td>YOUNG, DAVID F.</td>
<td>Calibration of the spin-scan ozone imager aboard the dynamics Explorer 1 satellite</td>
<td>21</td>
<td>NPR-26491</td>
<td>1987</td>
</tr>
<tr>
<td>YOUNG, LESTON E.</td>
<td>Solar array flight experiment/dynamic augmentation experiment</td>
<td>10</td>
<td>NPR-20380</td>
<td>1987</td>
</tr>
<tr>
<td>YU, Y. H.</td>
<td>Automated Reduction of Data from images and Holograms</td>
<td>5</td>
<td>NPR-29342</td>
<td>1987</td>
</tr>
<tr>
<td>ZANG, THOMAS A.</td>
<td>Numerical simulation of channel flow transition, resolution requirements and structure of the harpin vortex</td>
<td>3</td>
<td>NPR-19351</td>
<td>1987</td>
</tr>
<tr>
<td>ZURAWSKI, ROBERT L.</td>
<td>Analysis of quasi-hybrid solid rocket booster concepts for advanced earth-to-orbit vehicles</td>
<td>11</td>
<td>NPR-25425</td>
<td>1987</td>
</tr>
</tbody>
</table>
REPORT NUMBER INDEX

NASA Scientific and Technical Publications 1987

<table>
<thead>
<tr>
<th>REPORT NUMBER</th>
<th>PAGE NUMBER</th>
<th>ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA-CP-2327-PT-1</td>
<td>p 5</td>
<td>N87-11717</td>
</tr>
<tr>
<td>NASA-CP-2327-PT-2</td>
<td>p 6</td>
<td>N87-11750</td>
</tr>
<tr>
<td>NASA-CP-2339</td>
<td>p 17</td>
<td>N87-11800</td>
</tr>
<tr>
<td>NASA-CP-2399</td>
<td>p 22</td>
<td>N87-10720</td>
</tr>
<tr>
<td>NASA-CP-2402</td>
<td>p 20</td>
<td>N87-13043</td>
</tr>
<tr>
<td>NASA-CP-2402-REV</td>
<td>p 19</td>
<td>N87-16221</td>
</tr>
<tr>
<td>NASA-CP-2429</td>
<td>p 15</td>
<td>N87-22103</td>
</tr>
<tr>
<td>NASA-CP-2431</td>
<td>p 16</td>
<td>N87-10263</td>
</tr>
<tr>
<td>NASA-CP-2433</td>
<td>p 7</td>
<td>N87-20567</td>
</tr>
<tr>
<td>NASA-CP-2434</td>
<td>p 14</td>
<td>N87-11072</td>
</tr>
<tr>
<td>NASA-CP-2435</td>
<td>p 5</td>
<td>N87-10054</td>
</tr>
<tr>
<td>NASA-CP-2438</td>
<td>p 9</td>
<td>N87-20302</td>
</tr>
<tr>
<td>NASA-CP-2439</td>
<td>p 26</td>
<td>N87-18328</td>
</tr>
<tr>
<td>NASA-CP-2441</td>
<td>p 26</td>
<td>N87-17598</td>
</tr>
<tr>
<td>NASA-CP-2442</td>
<td>p 26</td>
<td>N87-20871</td>
</tr>
<tr>
<td>NASA-CP-2443</td>
<td>p 17</td>
<td>N87-22199</td>
</tr>
<tr>
<td>NASA-CP-2444-PT-1</td>
<td>p 19</td>
<td>N87-18014</td>
</tr>
<tr>
<td>NASA-CP-2444-PT-2</td>
<td>p 10</td>
<td>N87-24835</td>
</tr>
<tr>
<td>NASA-CP-2448</td>
<td>p 18</td>
<td>N87-15528</td>
</tr>
<tr>
<td>NASA-CP-2449</td>
<td>p 17</td>
<td>N87-21785</td>
</tr>
<tr>
<td>NASA-CP-2450</td>
<td>p 20</td>
<td>N87-18248</td>
</tr>
<tr>
<td>NASA-CP-2452</td>
<td>p 1</td>
<td>N87-18520</td>
</tr>
<tr>
<td>NASA-CP-2453</td>
<td>p 1</td>
<td>N87-22904</td>
</tr>
<tr>
<td>NASA-CP-2455</td>
<td>p 1</td>
<td>N87-27596</td>
</tr>
<tr>
<td>NASA-CP-2456</td>
<td>p 4</td>
<td>N87-25908</td>
</tr>
<tr>
<td>NASA-CP-2459</td>
<td>p 5</td>
<td>N87-22634</td>
</tr>
<tr>
<td>NASA-CP-2460</td>
<td>p 16</td>
<td>N87-20522</td>
</tr>
<tr>
<td>NASA-CP-2467</td>
<td>p 17</td>
<td>N87-18655</td>
</tr>
<tr>
<td>NASA-CP-2468</td>
<td>p 17</td>
<td>N87-18641</td>
</tr>
<tr>
<td>NASA-CP-2459-VOL-1</td>
<td>p 22</td>
<td>N87-19631</td>
</tr>
<tr>
<td>NASA-CP-2459-VOL-2</td>
<td>p 22</td>
<td>N87-19632</td>
</tr>
<tr>
<td>NASA-CP-2460</td>
<td>p 20</td>
<td>N87-20965</td>
</tr>
<tr>
<td>NASA-CP-2462</td>
<td>p 4</td>
<td>N87-24410</td>
</tr>
<tr>
<td>NASA-CP-2463</td>
<td>p 22</td>
<td>N87-23156</td>
</tr>
<tr>
<td>NASA-CP-2506</td>
<td>p 25</td>
<td>N87-24547</td>
</tr>
<tr>
<td>NASA-CP-2464</td>
<td>p 13</td>
<td>N87-21141</td>
</tr>
<tr>
<td>NASA-CP-2467-PT-1</td>
<td>p 10</td>
<td>N87-27702</td>
</tr>
<tr>
<td>NASA-CP-2467-PT-2</td>
<td>p 10</td>
<td>N87-27702</td>
</tr>
<tr>
<td>NASA-CP-2471</td>
<td>p 11</td>
<td>N87-23796</td>
</tr>
<tr>
<td>NASA-CP-2471</td>
<td>p 11</td>
<td>N87-23796</td>
</tr>
<tr>
<td>NASA-CP-2471</td>
<td>p 11</td>
<td>N87-23796</td>
</tr>
<tr>
<td>NASA-CP-2472</td>
<td>p 17</td>
<td>N87-27720</td>
</tr>
<tr>
<td>NASA-CP-2473</td>
<td>p 1</td>
<td>N87-25267</td>
</tr>
<tr>
<td>NASA-CP-2475</td>
<td>p 1</td>
<td>N87-26413</td>
</tr>
<tr>
<td>NASA-CP-2477</td>
<td>p 5</td>
<td>N87-29452</td>
</tr>
<tr>
<td>NASA-CP-2478</td>
<td>p 22</td>
<td>N87-26531</td>
</tr>
<tr>
<td>NASA-CP-2481</td>
<td>p 18</td>
<td>N87-27221</td>
</tr>
<tr>
<td>NASA-CP-2484</td>
<td>p 19</td>
<td>N87-29614</td>
</tr>
<tr>
<td>NASA-TP-1146</td>
<td>p 8</td>
<td>N87-10878</td>
</tr>
<tr>
<td>NASA-TP-1159</td>
<td>p 7</td>
<td>N87-29553</td>
</tr>
<tr>
<td>NASA-TP-1168</td>
<td>p 6</td>
<td>N87-29499</td>
</tr>
<tr>
<td>NASA-TP-1170</td>
<td>p 2</td>
<td>N87-17865</td>
</tr>
</tbody>
</table>

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Typical Report Number Index Listing

Listings in this index are arranged alphabetically by report number. The page number indicates the page on which the citation is located. The accession number denotes the number by which the citation is identified.
<table>
<thead>
<tr>
<th>Report Number</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA-TP-2736</td>
<td>p 4</td>
</tr>
<tr>
<td>NASA-TP-2737</td>
<td>p 3</td>
</tr>
<tr>
<td>NASA-TP-2738</td>
<td>p 17</td>
</tr>
<tr>
<td>NASA-TP-2739</td>
<td>p 6</td>
</tr>
<tr>
<td>NASA-TP-2740</td>
<td>p 8</td>
</tr>
<tr>
<td>NASA-TP-2741</td>
<td>p 24</td>
</tr>
<tr>
<td>NASA-TP-2742</td>
<td>p 5</td>
</tr>
<tr>
<td>NASA-TP-2743</td>
<td>p 13</td>
</tr>
<tr>
<td>NASA-TP-2744</td>
<td>p 12</td>
</tr>
<tr>
<td>NASA-TP-2745</td>
<td>p 13</td>
</tr>
<tr>
<td>NASA-TP-2746</td>
<td>p 7</td>
</tr>
<tr>
<td>NASA-TP-2747</td>
<td>p 8</td>
</tr>
<tr>
<td>NASA-TP-2749</td>
<td>p 9</td>
</tr>
<tr>
<td>NASA-TP-2751</td>
<td>p 11</td>
</tr>
<tr>
<td>NASA-TP-2752</td>
<td>p 14</td>
</tr>
<tr>
<td>NASA-TP-2755</td>
<td>p 12</td>
</tr>
<tr>
<td>NASA-TP-2756</td>
<td>p 19</td>
</tr>
<tr>
<td>NASA-TP-2757</td>
<td>p 13</td>
</tr>
<tr>
<td>NASA-TP-2758</td>
<td>p 15</td>
</tr>
<tr>
<td>NASA-TP-2759</td>
<td>p 23</td>
</tr>
<tr>
<td>NASA-TP-2763</td>
<td>p 5</td>
</tr>
</tbody>
</table>

Report Number Index:

- NASA-TP-2736
- NASA-TP-2737
- NASA-TP-2738
- NASA-TP-2739
- NASA-TP-2740
- NASA-TP-2741
- NASA-TP-2742
- NASA-TP-2743
- NASA-TP-2744
- NASA-TP-2745
- NASA-TP-2746
- NASA-TP-2747
- NASA-TP-2749
- NASA-TP-2751
- NASA-TP-2752
- NASA-TP-2755
- NASA-TP-2756
- NASA-TP-2757
- NASA-TP-2758
- NASA-TP-2759
- NASA-TP-2763
NASA SP-7063(02)

2. Government Accession No.

3. Recipient's Catalog No.

4. Title and Subtitle

5. Report Date
March, 1988

6. Performing Organization Code

7. Author(s)

9. Performing Organization Name and Address
Office of Management
Scientific and Technical Information Division
National Aeronautics and Space Administration
Washington, DC 20546

10. Work Unit No.

11. Contract or Grant No.

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Washington, DC 20546

13. Type of Report and Period Covered

15. Supplementary Notes

16. Abstract
This catalog lists 239 citations of all NASA Special Publications, NASA Reference Publications, NASA Conference Publications, and NASA Technical Papers that were entered into the NASA scientific and technical information database during accession year 1987. The entries are grouped by subject category. Indexes of subject terms, personal authors, and NASA report numbers are provided.

17. Key Words (Suggested by Authors(s))
Catalogs (Publications)

18. Distribution Statement
Unclassified - Unlimited
Subject Category 82

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages
70

22. Price *
Free