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. EXACT IMAGE THEORY FOR THE PROBLEM OF
DIELECTRIC/MAGNETIC SLAB
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"JABSTRACT o o . :

“sExact image method, recently introduced for the exact solution of electroinagnetic field
problems involving homogeneous half spaces and microstrip-like geometries, isideveloped . .
here for the problem of homogenedus slab of diclectric and/or magnetic material-in-free , |
space. Expressions for image sources, creating the exact reflected and transmitted fields,
are given and their numerical evaluation is demonstrated. Nonradiating modes, guided by~
the slab and responsible for the Joss of convergence of the omage functions, are considered

_and extracted. The theory allows; for example; an analysis of finite giound planes in
microstrip antenna structures,. .. . L :
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INTRODUCTION

Exact image theory, originally introduced for the Sommerfeld half-space problem ‘IL,
120 was later generalized to the microstrip geometry (3], [4] consisting of a dielectric sla
plus a perfectly conducting ground plane, To account for the niore realizable case of finite
ground plane, it is necessary to further extend the theory to the diclectric slab geometry,
becanse the currents in the ground plane can then be solved through integral equation
formulation, This problem was recently worked upon by Mosig [5] by using a numerical
method to evaluate the ill-hehaved Sommerfeld integrals, Because such integrals could be
avoided in earlier applications of the exact image theory, the same principle suggests itself
also for the present geometry, :

The present paper is a continuation to the previous microstrip paper [4] with a minimal
change in notation. The medium in the present case| hiowever, is assumed to be more
general, with both electric and magnetic susceptibility, and alse the image giving the exact
field transmitied through the slab will be developed. Because of this, the expressions have
grown in extension and complexity in comparison to those of }4] The complexity in image 5
expressions is not, however, a major problem in the field calculation, because the image .
functions need only be calculated once for storage in the computer memory, after which - =~
their repetitive use in solving integral equations in the presence of the slab is possible with
the present method. :

o

BASIC THEORY &

“*““I'he solution of the dielectric slab problem can be obtained by decomposing the original
source into symmetric and antisymmetric parts, which correspond to problems involving
microstrip-type geometry. In fact, because of the symmetries of the corresponding fields, a {
plane of perfect conductor or magnetic conductor can be placed at the plane of symmetry -
in the middle of the slab and thus the problem is split up in two parts, one with the
microstrip geometry and the other with the magnetic conductor microstrip geometry,

1t is, however, preferable to make a fresh start for the slab geometry, because it is
no more:complicatetl than the study of magnetic conductor microstrip problem. Also, we
are going to study the general dipole source above a slab with both electric and magnetic
discontinuity and not just a transverse dipole at a dielectric interface as was .done in [4].
However. the start with Fourier transforms similar to that in [1, part 111}, [4] will not
be repeated here, The notation will be compatible with that in (4], with minor obvious

7

changes. ; i :

¥

The reflection 'dyadic for the electric field transverse to the = direction can be easily
written from the partial wave reflection geometry, Fig. 1, from the knowledge that TE

and T'M -polarizations are its 'éigenvedtors\:

L EEui )7 T R S ST
® = RTE ——7\—’2-3‘— FRTMES = (1- T IPE . (J, - FPeiPitd)=l ")
: i - ‘ i ‘ s oo oL
« with Ty = 7 — i, the two-dimensional unit dyadic and 7 is the jnterface reflection dyadic.
“e. i - The'inverse dyadic must be understood-as a two-dimensional inverse [8]. We can further
L : write , RN : S
ST : RTETM _ TETM | Z k(‘,rTE',TM jnctl _‘(TTE,T‘M )2n—1),e_jﬂ14ri_d

=]
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wa -+ gy’ €3 + By

Here, K is the two-dimensional Fourier variable on the plane transverse to the @ vector
and 8 = VAT~ K2,8, = /uek? — K2 are the propagation coefficients of the Fourier
transformed wave in = coordinate (direcfion 7). Note that the thickness of the slab is
denoted by 2d to be compatible with the gnicrqstﬁp substrate thickness d of [4]. :

Alzo, the field transmitted through the slab ¢an be calculated fromn the knowledge of
the total transmission dyadic, which is of the form

= KK KK
T=1T0 i+ 1M 2, (5)
, 0 3 .
7TETM _ Z <(7,TE‘,TM )2n (,,'I'E,,TM )2n+2) =3B (2n+1)2d (6)
n=0

From { 28, (6) there results a relation between the reflection and transmission coeffi-

cients, and-{5)-can be given different dyadic forms:

Nl

where ﬁm, _ﬁe are the reflection dyadics of the microstrip geometry with magnetic and
electric conductor ground planes, respectively. As a check we see that for 7= 0, or = Iy,

wé have respectively from (7); T = Te=9812d or = 0, which correspond to the cases of

-perfertly transparent and perfectly reflecting slab,
// g

Theé reflected and transmitted transverse electric fields can be written in the form given
in [1, p.1028] for the general electric dipole J(7) = BIL&(7 — ith) as follows:

. e dP(2+R) ‘ : )
for >0 (8)

E(I\,:) = —-(('i + ]ﬂb) . R__2]7ﬁ_,
_ _ —eIB(s—h+2d)
&K,z) = ~(a+j88) T~ forz<—-2d. (9)
28
with .
& =jk"n(kTy - KE) - o1L, b=k"InRIL(a-5) (e

_To calculate the image for @’ transversal source, the reflection dyadic can be split up
into two parts as was made in [4]: : TR S ' "

= = , = _ = - . -1 = =
= (T~ R-R)e P12 = il 2T, 72) (T, - o004 7 = YR - ), (7)

(1)
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where we have

2 , . — I Ad TETM ~3p14d
Ry BT o BTy = e e, (12)
e (1~ (,.Th).(-s;;i,‘idm - (,TM )20'—]/.9144)
with {1, p. 102" i
3 » p ”
. aM _ By A e gy Ao M
IU .I\"( ) ﬂ(}l."()(r 4 ) ((C"ﬂ)(r + )7 (13)
€—1 o M= 1
E-—2+1, xu—-’l‘{‘]. (14)

To be able to construct image functions, the reflection coefficents are ﬁrst expressed in
terms of the reflection variable r, (which equals 77F for y1 = 1 and ~rTM for ¢ = 1):

B - By

r= AT : | | (15)
Thus, we have B
"}‘\4
: = : <1+1Mr“1.:13r)‘ (18)

The reﬂechon coeﬂicxents RTE RTM were given as power series of 7T £, »7M i (2),
For Ry the following series can be written from (12):

RO =(1- c"‘jﬁ],‘id)ro Z Z ]‘—mn(rTE )m(rTM ‘)ncwjﬂl(m+n)2d’ (19)
m=0n=0

‘where Ky equals 1 when both m and n are even or odd, and = 0 otherwise, or explicitly,

Ky = {1 = (=1)"*"72, Another form, less symmetric than (19). but better suited to
successive computation of ter ms, is the following:

Ro=ro L Z( fE_)Qe*t( TM)i ( —iBrqdd _ ,3’-1'.31(11“)44) X (19a)
g=0i=0 [» - ‘

Whichever form of (19), (194) i is used (16) and (17) can be substltuted to obtain repre-
sentations in terms of powers of the reﬂectlon variable r.

Like in the previous papers [1] - 4], the Teflection coefficients will be presented as

integral transforms of Laplace type to obtain image source functions. To this end, the
following integral identity, invoked from [4], will be applied:.

rfe~2ﬁ.'°=/ [Fr(e,t) + 6mob(t ~ )] e™Pat. -~ (20)
i . 0 : ‘

-,
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Here and henceforth, the delta function &(x, also denoted b4(x) in {13, is defined to he
zero for i < 0 so that [ é(x)dx = 1. Fyle,t) is the following function:

2

Foleyt) = g;:(lfl(r)ll(l = )y (21)
9 . mo
Funleyt) = = 3=((1 = )lamss (1) = (¢ amoa(r) (15 ) U1 ) =

__B 2m-+1T2m 1(7) 2m—112m-1(7)
= —-E [(B(f - C))'m _;'12'-’-;;._;‘_1—. - (B(t - C)) m IK;LZHT’ U(f Lnd C), m > 0, (22)

with

B =kype—1, T = BV1? — ¢, (23)

1/(t) is the Heaviside unit step function makmg each function satisfy Fr{c,t) = 0fort < ¢,
and Iy(7) denotes the modified Bessel function. For ¢ = 0 (21), (22) reduce to

Fo(0,) 20,  Fn(0,1) = —-——Izm(Bf)U (24)

Further, we need the following expansions [4]

TM ) = Z C . . (‘25)
k=0
(rTEY = (~1)" Z CpM )k, B (26)
k=0

where the coefficient function is defined by

J, bt = 1) ,
it ”Z( e e : LR 20

Cfs) = bopy GR(e) = (2",
Cile) = (=aft*! - (=27, Cf(e) = nl(2)™*! = (—2)" 7],

Here, n|k denotes the smaller of
be computed by reﬂectmn

g numbers n and k. Values for the function can also

c-"(.r,) -—Ck(z), k>0, o (28)
and using the recursive fofmula ‘ v : |
Ciz) = ——C,; (29)
p_.()

S

£
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(29) is more rapid than (27) if many values of (') are to be caleulated in computer
memory for successive values of & and n with the same value of the argument. z (constant.
t or yt). The cocflicient function C'f(x) can also be defined through the expansion

o
tanh™(0 + @) = 2 ('if(lanh())Mnllkdr
k=20 =

+ i

it

VED REFLECTION IMAGE

Let us first construct the image due to the vertical dipole J(7) = alLé(p)6(z ~ h),
which lies at the distance : = h from the slab, The transversal electric field in Fourier
space is obtained from (8) when # = u:

b ~308(z+h)
SR 2) e B T TMe ”3( + ' I8
éK,z) = ~jBk™ nKILR 5 (30)
If the reflection coefficient: is written in the integral form ;
M = / - fTM(t)e P gy, (31)
t . 0
the field can be easily seen to arise from the equivalent image source (1]
Ii{1) = ILfT™M (1), L (32)

To find the image function My, thé--ékp:_msions (2), (17), (20) and (25) must be applied:

-] 00 00 . ;
BV =Y eyt + 3 % (CBmH(B) - FmY(B)) rtemiimd, (33
k=0 m==1 k=0 ’

whence the following expression for the image function is obtained:

M) = CyENB() + Y (€3 (B) - CimN(B)) §(1 ~ amd)

m-ﬂ‘]. s e

+ 3 BN+ Y. Y (GmI(E) - ")) Ftamdyt). (34
k=l : JERNES I e S SR S

m=1 k%:O i -

Thus, the image function consists of a series of d‘eltar functions, corresponding to dipoles
with interspaces 4d, which is double the slab thickness, and a ¢ontinuous source function.
The function dc{:en‘ds on both ¢ and u through the variable B in the functions Fi(z,1),
and on ¢ through the functions C‘}(E). It is seen that the dipole images depend only on
¢. Taking € = 1, or what is equivalent, E = 0, all the delta terms in (34) vanish because
of the following limit of the ﬁ;/lctiou Ci(z)asz—0: - S

) o =(-174 @)

A 6
;{/'
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The vanishing of delta terms is also scen if (34) is written in the form

[Ty e 55 15(,) 4 g”: (" . )'.!m 6(t - 4md) (34a)
A e '-’ . ) * hel L
€+1 ¢ ]1llzl‘t+1

& ‘“':,,1 d IQk,u‘")l: i O'S‘ o= '(;'.’.mckl F (;'.!mv-»l F Foldmd.
= rp) R L L( B g~ P Y ,)) w(dmd, 1),
kel m=l k=0
To obtain this, (24) has been applied, For ¢ = 1, all coefficients of the delta functions are
seen 1o vanish, T remaining image function can be written as
R o6
¢
it
‘ m=

This expression can be compared with that given in {4] for the TE image with p=1 ,i,x'ij
the microstrip problem. g

~VED TRANSMISSION IMAGE

The correspondinf transmission image function can be obtained from the expressions
(6}, (20), (25) for TTM, Thus, writing

0
TT™ _ /w pT™ (1) eIt gy = Z ((TTM )2n _ (rTM )2n+2) e~ (2n+1)2d
0

n=0
20, 00
=Y. ¥ (c(B) - CFrAE)) rhemPiani11, (37)
n=0 k=0
we have ‘
o0 0o :
MMuy=3%"%" ((,'A?"(E) = Gf’”‘z(E‘)»)u [Fu((2n - 1)2d, 1) + 8pob(t — (2n + 1)2d)]

nz=0 k=0 | e L

= (—;ﬁf_{)— STEMS(t - (2n+1)2d)+ Y Y (6’3”(E) - c'f"f?(‘ﬁ)) Fi((2n +1)2d,1).
- n=0 o o a=0k=0 e :

Similarly to the case for the reflection imagé fu;xction, if ¢ = 1 the delta function
(dipole) image terms vanish except for the ‘first one, which corresponds to the original
dipole source. The resulting function for¢= 1 (E = 0) is of the form '

WM (1) = 6(t ~ 2d) + Y [Fan((2n +1)2d,1) — Fapy2((2n + 1)2d,1)]. (39)

n=0

M)y = ~Fy(0,0) ~ Y (Foar(4md, 1) ~ Fapy_y(4md,1)). (36) |

g
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The transverse component of the TM electric field transmitted into the region =« = 2d
can be writteu from (9)
ldﬂ(;»h) (;O)

T AN W T e e A Y i) .
(N, z) = jak~ IgKILT 57

When 7TV g expressed as in (37), (40) can be interpreted as the field avising from the

image currept
Ii(t) = 1LATM (1), . (41)

where HTM(1) is of the form (38). Obviously, the trunsmission image has no counterpart
in the microsivip problem, : .

HED REFLECTION IMAGE

-

The image current due to a horizontal ( transverse) electric dipole J(7) = 5/ L§(p)é(z ~
h) cun be divided into a horizontal and a vertical part [1], [4]. The horizontal part is

obtained from the function fT% (t) defined through

RTE - fo * fTE(t)c"jﬂ'dt.‘ (42)

§

Again, the reflection coeflicient will be written as a power series of r;

o oC 00
RTE = 37 UMt — 37 3 (CBmH(M) - ¢Em=1ag)) rhemiiimd,(g3)
k=0 m=1 k=0

This leads to the following expression for the image function

o0
ST = ~alng() ~ (cEmY M) - c3m=Y(m ) 8(1 ~ 4md)
m=}

- Y clonno,n- Y Y (G’f,'"“(M) ~¢‘=§"'"‘(1v1)) Fi(4md,1),  (44)

(2= m=1 k=0

—

or, what is equivalent,

-1 4 s —1\%m | o
,fT”(f)=;j+]5(f)_,L2ﬂ1 (Z+1) 5(f ~ dmd)  (44a)

m=1

. 8u — & (...ﬂ.::..l)k I‘u]‘(Bt)U(i)" i i ((!2"”'],(M) - tfzm—l(M))‘ Fi(4md,1).
‘”2 -1 k=) gl B m::i’ k=0 ke | ¢ 7 v § ,‘

8
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This is very similar 1o the function f7M (1) given above in (34), In fact, changing ¢ and

s, and the sign of the funetion (1), the funetion _[Y'A’(I) is obtained, and viqt- versa,
Thus, the same procedure of caleulation can be used for both functions, which simplifies
the use of the method, For ji 1 with (35), the expression (44) reduces to

Er &

STEW - R+ Y

=
ma:l

which is in concord with that givep in'[4] for the microstrip geometry, In fuct, a comparison
shows us that. ( 452 containg every second term of the microstrip image function, namely
those with odd indices in the functions Fj(c,t). For a microstrip with magnetic conductor
round plane, the sign of every second term (the even-indexed function terms) in the image

unction series is opposite to that of the normal microstrip. Thus, (45) is the average of
the coyresponding functions of the two microstrip problems., The microstrip image delta

Foysq{dmd by « Pogy yAmd. 17, (4h)

" term due to the ground plane is absent in the slab geometry, because it is cancelled by the

magnetic conductor term.

For the vertical part of the image current, a more complicated function fo(?) is needed:

[s v} o
Ro= [~ e at (6)
Applying (20) in (19) with (25), (26) inserted and defning
Di(z) = 2C}(x) + C}H(z), Df(z) =0, (47)

the following expressipn for the reflection coefficient Ry is obtained:

oo O

N R o & L ER -1 , 2 -1 ‘ ;
Ro=3 3 3 3 (-1)"Kun (ﬁ«———-—_‘ DR (M)CPE) + o= ,)(Gi-"(M)D:"(ﬂ)
m=0n=0k:=0 =0 Mp=e ol
sk (ga‘ﬂ.(nﬂ-n)?d ~ ¢miP{mint2ad) (48)

- The symmetric double sums can be calculated more practically in the following way:

Ry=Y" (C~Jf31 wd ik (‘H‘UM) Yo

9=0 =0
% i i’:(,_l)i (_&LLDW—.:’(M)C‘,{(EH_ ﬁ;lﬂ(!?qmi(ﬂj)l)((E)) . i
Gmvimo  Hep—e T ! (e —p) */ j) ) a

Thus, the partial image function fo(2) can be writte‘n in the form

o 00 0G0 00 2 <2
S W Wl N 1ymoge =1 o m € =1 SN AN D FY Y
!o(t)wgorggg(, 1)™Kmn (7-—..«—*(#_6)0,c (M)g, (E)+ o i(;l!)l), (g))

% [Frpt((m + n)2d,t) — Fypy((m + n +2)2d,1)], ‘ (49)
or, corresponding to (48a), in the form : ’ :

1r
5
i
#




v

9

L

o0 QG
folt)= Y 3" (Filqddyt) - Fal(g = 1)4d,1)]
q=0 820
2

ety _L’.:)_:._],. =i 1 2L i picE )
. V\ (/l(ll - ()DU“j (M)C5(E) e(f—-h)(“"‘i (M)D;(E) ) . (49a)

© The complicated appearance of the function fo(?) is counterbalanced by the fact that the

functions Fy(c,1) are zero for t < ¢, whence only a few terms must be actually calculated
for low t values and, in many cases, the calculation can be stopped before the number of
terms grows very large. =

For the special case y =1, or ;M,' = 0 the above {u“hction is simplified to

i

It K
S et ] e e ® il o - o
fot) === 3" 3 X Kun DP(E) [Frnsal(m + n)2d,t) = Fupa((m + 1+ 2)24,1)]
- m=0n=01=0_. RN : ;
‘ 00 00 o 2 _"""”"
=S t ]' SB 2(:)[{",(94@ t) - Fa((g +1)4d,t)] SB D,y 24(E). (50)
q= ,’= 3=

In (50), only terms with s +i — 2¢ > 0 contribute. This expression is in accord with the
corresponding result (function g(t)) for the microstrip geometry given in (4], #
The HED image current expression can be obtained from the combination of the hor-

izontal and vertical partial image current functions fTE(t), fo(t), from a comparison of

the resulting transverse electric field,

Kk o-i+h)

I R YT S ~2 i 5
e(l\,.)t.-gkn(z,—k KR): Ry~ 31 L—52g—, (51)

with the corres;_)fmding'f;ee-@spacé expression. This was done in |1, p.1029] for the Som-

merfeld probleii and in [4] for-the microstrip problem and the resulting expressions for
the image current source are essentially the same as here, with a difference in the choice

of integration variable in (1] and notations for the image functions. Thus, we can write for -
the jmage of nay transverse source satisfy/g i - J(7) = 0,
SR "

) TR = STEW)IF) - k2O - Te(F), ()
with L :

It is segﬁ that the effective function in the vertibal current component is not fo(t), but its
derivative f}(t), which is in accord with the results of (1], [4]. SEa

W ) . . g R 1

J(FV=C-J(@C-7), C=T; - 200 C o (53)
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HED TRANSMISSION IMAGE

The expressions for the transmission nnagc for the transverse, or horizontal, source can
be obtained much in the same way as above by seekiny the horizontal and verfical partial
images separately. The transmission dyadic is of the form

oo Te=1TE »-To" K- (54)

Expressing the first transmission coefficient as

TTE - /"" h‘]‘"p( t‘)‘e“ 3Bt gy — i ((TTE ym (r.TE)zn}z‘) e~iB1(2n+1)2d

n=0

fpesiing

o

=3 % (e - 02"+2(M))r'eﬂﬂl(“"“)” s
n=0 k=0 B

- we can Write for the hqnzonta( partial. transmxssxon image funchon,

IRy
)

hm( ) (n + '“1)2 Z Mz"*‘ t~(2n+ 1)2d) i
- + Z Z (C"” 02n+2(M)) Fk((zﬂ« + )2d t) - (56) ' -
o n=0k=0 e

This is the same function as hTM$f) lf the change € e p is made, as is seen from (38). For
# = 1 the form of the expression (39) is seen to result.

" The vertical part of the HED transmission image is obtamed from the transmisaion
coefficient Ty:

oc , n
To = / ho(t)e"'fp‘dt‘
0 . .
(r TE')" (rfI'M )2
1 — (rTE) 2e-dih 4d)(1 - (,T)ll),€~3ﬁ, 4d) ‘

i “I,f“; (cmibrd _ cimoa)

= —79 E Z ((TTM)271 TE )2m+1 TM )2n+l(rTE)2m)

n=0m=0

x(eemltznwmu}zd,—'fﬁx‘(2n+2m+s)zd) Rty (57)

Hence, the i nnage functlon can be’ wr:tten in the followmg two forms

ey

' 1'1’ :




g

Lk

X Fial(2m + 20+ l)éd, - FM,((z;n + 2n + 3)2d,1)], (58)

- s
ho(t) = = Z}:[r. zq+1)2d 1) ~ Fy((29 + 3)2d,1)]

P gm0a=0 a

, P B

Ay [ ’(47i)+l NCHEE) - DI Apy@iv
x,..of\:‘;[u(u—e ( = ‘,k,.(,M)C’ (B) = Doy (MEG (E))

J-n

f___’:__l___ (02(‘1‘—':)+1(M)D2.i(E> + (,'z(q—“)(M)Dz"H(E)) ] (58a)

IEY ) 83

Te(e—p)

The result has a bit more comﬁhcated appearance than the correspondmg reflection

image function fy(t) in (49), (49a). The difference arises fromithedifference in the partial
wave structure, Fig.1. For the special case p -\1 (58a) reduces to

Y (<2q+1>2d :)—F.«2q+s>2d,t)12w2'+‘w _ D(E)L. (59)
q—Os—O : c-—O

ho(1)

‘ -
GENERAL IMAGES

To obtain the reflection and transmxssxon images of ihe general dipole, previous results

can be combined, In short, for the general thrce dnmensxonal source function J(7) the
reflection image is

Jir, 1) = (47M () + fTE(t)Ti) Jci';);ak“zf{,(t)v, To(F). (60)

The reflection field can be obtamed everywhere in the half space > >:0) through an mte-

gration of the fr ‘re-space Green dvad:c multlphed by the image: - -

[
- E(F) = —jky / / G(r -+ + ui AL i)dth" (61)
i

i .

-If the original source ia dxpolc ot a planar current source of the form. J(r)I = -J,(p)&(z—-h), ‘

the integration variable ¢ can be disposed of, because in the field integral (61) any function
of the form G(7 - 7 Hat)p(1)6( '+h) can be replaced by the function =G(7~7 )p(—(z' +h))

" leaving out the t integration and takmp the 2 mtegrdtnon from “h to —oco, The image
of the dipole consists of a set of dxpoles and part:ally ‘overlapping line sources along the _

negative real = axis, which start at the points —(h + mdd), m = 0,1,2,.
For the general transmission image we have, correspondmgly,

Ti(F,t) = (TM(i)uu-i-hTEli) () - ak—2h, (t)v, J(r) ,‘ (62) :

, 'whlch produces: the field in the half space z —-‘7d The ﬁeld can he obtamed from the sl
-free-space mtegral , '
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(r) = MJM’/ / (:’(r - 7 (it~ 2d)) J( l)didl" (63) (

Again, for a dipole source, the i lmage current f\mchon can be wutten w:lhouQ the I vari-
able, hecanse of thie special 6(z' « Ir) depeudenre of the original current: sourcé, Hence,
to caleulate_the field, instead of both # and =" integrations we nec-d onlv! make ilw hin-
tegration taking ¢(z/ + 2d - h) instead of @(1) and integrating : " from h ~ 2d 1o +oc.
From the transimission image functions we LJBH see that the ﬁnal image consists of dlpoles
and partmllv “overlapping line sources akpng the positive = axis, each starting at the points
h +(2m+1)2d.. Thus, the transmission image current starts at the height h +2d ~2d = h,
or from the original source point.

The images corresponding to magnetic sources can be obtained easily from the duality
transform / — Im, € — p. Note that ¢ and p are relative quantities so that minus signs do
not occur m th:s simple duahty transform

I -
ASYMPTOTIC TESTS

To igain confidence in the above expressions, some of which have rather complicated
gpearance, it is necessary to perform asymptotic tests to see|that correct limit cases are
tained. In fact, we should check that the image solution corresponds to

(A)yfore=1 'and # = 1, the free-space problem :

(B) for € — o, the perfect conductor plane problem

(C) for p — oo the perfect magnetic conductor plane problem

(D) for d — 0, the free-space problen -

(E)} for d — o0, the Sommerfeld half-space problem o
The case (A) is easily seen to be satisfied, because B’ = /fie — 1, = 0, whence the arguments
of all Bessel functions in the definitions (21) (22) are zero; making the F;; functions vanish,
Thus, from (36), (39), (45), (50), (56) and (58) we see that all the other images vanish
except the delta function §(¢~2d)in the transmission image expressions, which corresponds
to the original current as a transmission source and tlere is no reflection sources. »

The cases (B) and (C') are more ccmphrat.ed In case (B), E = 1 and from (27) we can. j

derive the limit funchon needed here,

(1) = (~1)"6r0- ST ()

Corisidering the VED source and inserting (64) in (34), it is seen that the sur expressxons‘

all vanish, because Fy(0, ) = 0 and the terms in brackets cancel. Thus only the ﬁrst delta

term survives giving fTM(1 ) = —&(1), which together with the mirror operahpn, cin (59),

leaves-us with the positive image of the vertical dipole. This corresponds to the mirror:."-
-image due to a conducting plane, Also, it is readily seen from (38) that the transmission -

unagr' of a' VED vanishes. For the HED, the-outcome.is not so simply seen, because the

‘image functions do not explicitly_ depend on e. The functions Fi(e,t), however, depend

on the parameter; "B = y/ue — 1, which becomes large. Considering the image function
expressions,; we see that they canbe wntten in. the form B f(Bi), and denotmg T = Bi

- the field integral i is of the form

e Bt)dz j o B)f(r)dz ckco)* /jfmaxg o)

B
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as B — . This means that the image can be 1eplaced bv a point source at 1 = 0, or
2 = ~h, /What the point soutce is, is seen after the integral is developed, It is not dlfﬁculf
to evaluite these mtegral‘snf the identity (20) is invoked. In fact, writing for 3 = 0, ) =

we have

[ % Fulest) + mob(t ~ )t = (-1ciBe, (66)

JQ

and taking a vanishingly small ncgutlve phase angle for B, the right-hand side vanishes,
whence the integral of Fm(c,t) for m > 0 is seen to vanish and for m = 0 give the value

~1. With this, checking all the components, we are able to show that for ¢ — oo, the

image current source can be replaced by

|

‘{\_‘ J,(r r)_,&(t)/ J,(r,f)dt-—-é(t).lc(r) ( ’,
I [

This i lb th¢ murop nnage due to. the yerfectly conductmg plane at z =0, In the é;;ﬁe

manner,th¢ transmission image can be seen to vanish in this-limit, Case ‘( C) follows from . .

(B) through the duality transformation -
In case (D). the functions Fk(n2d t) can be replaced by Fi.(0; t),_whence in allj jmage

functions in the summations over. the in n most of the terms-are cancelled. This makes
Py, 17

the reflection image functions .f 1), fo(t) vanish together with the transmission
image function hq(t), leavmg pn]y th(t) =hTM(t) = §(1 - 2¢l wluc* corresponds to the

_primary source of the free -space problem. o
Finally, in case (E), we should end up in the image of the Sommqrfeld problem given
“in [1]. To conform with the notation in (1], a change of the variable from ¢ to P= jBt

must: be made. Then, writing from (24), we have ‘

Fn(0,0) = 2 L (BOU(Y) = 381" T Do )0 ), (68)

which gives us the following relation of the present notationand the function fo(p) of (1]:

Z C?F E(0.1) = ~3BSlp) ' (69)

In fact..the Sommerfeld image functlons can be seen to result for the reflection image in
fhc first interval from ¢ = 0 to 1 = =4d for any value of d. For d — v, obviously other
images are pushed to infinity and have no effect and the whole problem is reduced {o the
Sommerfeld problem; C’oncentrahng on the interval ¢ = 0.., — 4d, functions of the type
&(t — md) and Fk(md f} with m > 0 can be discarded, since they are zero up to ¢ = md

and only terms with é(t) and Fi(0,¢) survive. Thus, we can write in this interval from;

(34), (69): | T | S
fT”(t)%—jB("f' (p)),__ )
fTE(t)—JB(‘:—l‘ﬁ(P) ) P

2 2 =1 : . ,’ R
fo(t)~—13< e)fn(P) *(“—75 (P))=*JB{I(P)' (72)

Because fo ( jB)* g'(p), we have from the general i image of (60)

14

|
[ i : . ' Fami]

{61)

b
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'These equa.hons can also be wrmen as’ X L ' : S

14

| Ji(#,t) = §BI{7,p), or Ji(¥,t)dt = Ji(7,p)dp, S (1)

where the left- hand sides refer to the present theory and the right-hand sides to thcu:or-

espcmdmg function of the Sommerfeld problem as given in (1, p:1030]. Thus, the image™

function in the slab problem in the interval 1 = 0.., - 4d is onlv dépendent on the first

_interface. corresponding to the first reflected partial ray in Fig. 1.

As an encoge, weibriefly show how the delta function terms in image functions can be

obtained directly fron the reflection coefficient expressions as a limit when 8 — oc. This

corresponds to the simpler analysis of the delta function part of the VED image given in
(1, Part 11). Studying (2) for this limit, whence 3; — 3, we see that because r7¥ — —E,
from the limit expression of R M -y-eqn. (2), denoted by RTM , we have the e_q_atnon

(1 -E" —49Bd)pTM PE(l e 40Py,

This can be reudllje; I;aplace transformed to a dlﬁ'erence equation for the correspondmg

image function f; T

(') £ fo -
M) - B2 M@ JM)U(: ~ 4d) =\~ Eb(1) + E6(1 — 4d). (75)
The solution of this is obtamcd qmte strmgh!forwardly

n=1

740) = ~E8(1) + Z’((—EV"“ - <~E)?"—') Bt — 4nd), (76)

which is exactly the delta-function part of (34).

' 'GUIDED MODES

It was seen in the analysis of the microstrip geometry (3], [4] that some e of the i image -

functions would not, converge along the real : axis and the reason was found to be in
the nonradiating guided modes. After extracling the exponenhallv diverging image terms
corresponding to these modes, the remaining image was convergent. The number of nonra-

diating modes was dependem on the frequency and medium parameters, but there was at

that there exist at least two such modes (TE and T'M) in tlle slab. After extraction of
these modes, the image fiinctions are convergent.

The modes can be classified in four groups in terms of TE/’I‘M polarization and prop- -
ectric field. Antisymmetric..-

erties of symmetrv/a.ntlsymmetry of the transverse modal ele
modes correspond to those existing in the microstrip structure, whereas the symmetric
ones exist in the microstrip with magnetic conducting ground plarne.

The modes are obtained from the poles of the reflection coefficients, all of which appear
in the expression (12). The poles B = Bp, By = ﬂlp are obtmned as roots of the four
equations - ' :

2TE TM(ﬂ ﬂl)e“Jﬂl 2d t :

K

S (77)

‘least. one such mode (T'M mode) for the mxcrosir:;ﬁ The same applies for the slab except "
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pTM=ibid _ oy j—’—jlnn(ﬂ,d): —:’Z-;, (77a)

PTM =it . 1, op [—-]cot(ﬁld)] ;’é—:-;, '(77b)

TE -jBr.zd =1 or S’ uﬂan ﬂ d)= »-—75-9, . ; _;(‘7.70)

o o "‘ ~Jﬂl2“ = -1, or Z" [~jcot(Byd)) ~-‘3/£3‘-‘1. (17d)

The nght -hand equations of ( 77a), (77¢) correspond to transverse impedance interpretation
of the problem with-a conducting plane i1i-the middle of the slab and those of (77b), (77d)
the same with a magnetlcally conducting plane. Thus, the problem is reduced to ﬁndm

the modes in microstrip and magnetic microstrip structures, Each root of (77a) - (7 4d%
corresponds to a guided mode in the slab. For sufficiently low values of Bd = Ve~ Tkd,
only one TE and one TM mode have field dependencies that are decaying in-the z dn‘ectlon
(imaginary 3) and can be considered as nonradiating waveguide modes in the slab. These

modes correspond to lowest solutions of ( 77a) and (77d), which can be obtained with the .

method described in [4]. Defining ¢ = B1pd, we have for both the TM and T-E-wave

~ values of Bd can easnly be obtained, starting from gg = Bd in the neratlon formula [4]

Int1 = Bd\/l - (qnfa"Qn/7Bd)2 . (79)
after which 3p is obtained from (77a)-(77d). For real Bd, the graphical solutlon of Fig.2

can also be applied. In Fig.3, values of apd = jfpd for dlﬂ'etent Bd and € or p values are

given, }orrcspondmg to the respg:ctwe cases of TM and TE waveguide modes.

Because the guided mode is nonradiating, the corresponding pole satisfies I m(Bp] < 0,
which corresponds to an exponentially diverging reflection image current. This must be
extracted from the image function to obtain a converging source. For this purpose, residue
of the reflection coefficient at the pole must be calculated. We can write.the TE and TM
reflection coeflicients in the same form . i

: . I

‘R= R’ 80
R (80)
wuih ,l3p = —]ap, the. basnc pole and Ap, the correspondmg residue o
A=t 5 Brp = \/ﬂ2-+ B2 81
I,_le ! ; __ Jﬂpd('yzﬁp ﬂlp)’ p . ( )

For the TE: wave,\tlle upperslgn and T=p musi be taken, while for the TM wave, lower
slgn and 4 = ¢ applies.
In the limit Bd — 0, the lowest root is g = Ppd = Bd whence Bpd .= -Japd =

R (—J/Blpd/7)tanﬂ]pd ~x ——J(Bd)2/7 In this case, the residue (81) reduces to Ap ~ +fp =

: :Fszd/‘y The nondiverging part of the xmage functlon is f(t) = JApe-’ﬂP‘ ~ fi) F

(B2 )exp(B* /)

16
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‘where 4 = ¢ for the TM wave and v = for the T.E wave. The lowest solution for small.,
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The function jA,,cjﬁP' y subtracted from the image function, diveiges for real ! and
must be moved into another position on the complex t plane, as described in [3] and [4].

I
\

CALCULATION OF IMA\&M'UNCTIONS L B

: ey
i i |

Fihally, let us study numerical properties of the (_!iﬁereﬁti iinnge functions. The function
Fy(c,t) was defined in (21), (22) in terms of modified Bessel functions. For small argument
valulcs, t{h]e following power series, based on Taylor expansion of Bessel functions, can be
applied {4]: ’ oz ‘

'

i

B & gkt |
Fy(e,t) = — LE%WU(? — )

B &gk [ gkl amkel

|

B(t +¢) B(1.~c)
7 & 2 y Y 2 , :
Another method suitable for microcomputer use is to apply polynomial approximations
for the modified Besse] functions Ig(z), J;(z) and to compute functions with other indices
from the recursive formula [7), after which (21), (22) can be applied. )

- Examples of the nornialized function %Fn(c,t) are depicted in Fig.4 for different val-
ues of n and Be, Because the modified Bessel functions In(z) diverge asymptotically as

B

e*/v/2nz for all n, the Fy, functions diverge for t — oo as

Be Bt
——— T,
v2r B3

It was seen in [4] for the microstrip geometry that, in spite of the divergence of the indi-

Fale,t) — (83)

_ vidual Fy terms in the image function series expression, the whole function may be well
- * . ) . . , :
convergent within the limit of computer accuracy,

The functions Fyu(c,?) can be grouped for better convergence, For example, denoting

Tm = B/1? — (4md)?, the special TM function of (36) can be written as

25 = - (Il(m)vu) ~B(t- 4d)4£—l’ﬂc{<n>) |

+ (Iswf)v(t) ~(B(t~ 4d))=f.3_i?ltf(,, >)‘

- (“’(,‘“ )P0 - (31 - _Sd»b’igﬂwrz))

+ ((B(_t - 4,1);7!?7";.11:;’(7,)_;'(3(, - s’«i)>’"~’¥’%2~)vtrz)) e (88)

A7
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For values of Bd satisfying Bd < 7/2 there only exists one nonradiating guided TM
mode, whose parameters can be obiained from (78). For small values of Bd, we can
write the two-term approximation of the function (84) with the pole term removed in the
following simple form:

L]

2 (™) - japei®!) =

3 [g‘,“, ~ 4d) +% (g) (1 - 4d)3(t + Sd)] ()t ~‘--'v’4d)] + §(2Bd)3U(i ). (85)

This shows us clearly how the image function tends to a simple triangular pulse within the

interval (0,4d) and is small elsewhere,

Wy

PC using simple routines for the modified Bessel functions [9]. Results are given in Figs,
5 and 6. 'The convergence is seen to correspond to the expression (85) for the dashed’

function despite the rapid divergence (83) of the Fy, functions, Thus, electrically thin slabs
can be analyzed extremely easily using the present theory.

Slightly more effort is needed for the evaluation of the general image functions like
(84). We calculated values for the image function fTM(t) for € = 2 for two normalized
thicknesses of the slab, 4Bd = 1 and 4Bd = 2, Figs. 7,8. Here again, in spite of the inherent
divergence of the modified Bessel functions, the image function without the guided mode
term (dashed lines) was seen to converge for values of ¢ small enough where the Bessel
funiction routines were accurate. . ' '

" In addition to the delta function ierms, there are also step discontinuities at the-values
t = 4md of the argument. It is not difficult to find exact expressions for these step
discontinuities of the i‘im,age funct‘ion, in fact|, from the k = 0 terms of (34) we obtain

%_4 fTM (1) = 211 - B Bomd sl 1= 4md. (86)
There are obviously no step discontinuities W‘he!n e=1 (Figs. 5, 6) or ¢ = oo, The largest
step will occur at m = (¢ + 1)2/45. The first step is largest for ¢ < 5.8, With the présent

PC and simple Bessel function routines, the applicability of the expressions.seems to end -

at about € &~ 4 with moderate thicknesses of the slab (only first i modes propagating). Thus,

the method seems to be best suited at the moment for micrastrip antenna structures, where -

low ¢ is desired, |

The function fTE(1) is of L]lé”’s’éll]efforén as the ('OI'I‘CS])OJIdiI}g ™ (1) function and -
can bé obtained from it after the interchange ¢ < p and change of sign. Evaluation of
the more complicated: fo(#) function and the corresponding transmission image functions

must be left to a future work. It is hoped that an easier analytic form for the image
functions could be found with the modified Bessel.functions replaced by functions with
intrinsic convergence properties:: Since the exact expressionshave been already derived,
it:seems to be a question of finding suitable analytic transformations for these functions.
The residue series method applied in [3] is, of course, one such possibility, leading to a
series of exponential functions, but it has the inconvenience of requiring a determination
of a set of polés from solutions of a transcendental equation and, thus, does not yield the
luxury of an explicit expression, R ; :

18

Values fr‘oi_llf('S"i) both with and without the guided mode term were calculated with a- -
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CONCLUSION | |

The exact image method has been extended to problems involving a. slab with ¢ and/or
pt different fn}m those of the surrounding space, Both reflection and transmission image
expressions huve been derived and their validity studied with asymptotic tests. Numerical,
convergence has been demonstrated with calculations, With [the present experience, using
a PC and simple routines for the modified Bessel functions, the method appears to work
for values of ¢ < 3 and moderate thicknesses of the slaly and, thus. be of interest. for the
analysis of microstrip antennas. Further eflort shouid be directed to transforming the
present exact expressions into other forms for the extension of their numerical range of
validity in microcomputer calculations,

R
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" FIGURE CAPTIONS
Figure 1, Schematic representation of the partial waves in the slab problem showing
the multiple reflections and transinissions resulting in the total reflection and transmission
coeflicients for u plane wave (Fourier space component) arising from the original source.
The ravs, actually parallel to thie = axis, are drawn at an angle for clarity.

Figure 2. Graphical method for the construction of roots corresponding to the lowest
TE and TM guided modes in the slab of thickness 2d,

Figure 3. Values of the atteniuation factor of a guided wave in the slab, apd for different
values of the parameters Bd and 4. Both TE (with v = u) and TM (with 4 = ¢€) cases
are-covered by the same diagram. o

Figure 4. Normalized function Fy(c,t) for different values of n and Be,

Figure 5. Normali’zed image function fTM (1) (solid line), as calculated from (84), and
the same with the residue (guided mode) image term extracted (dashed line) in the case
€="1,p5%1, 4Bd = 1. The corresponding function STE() forp=1, ¢#£1, 4Bd =11is
obtained by merely changing the sign.

DS
Figure 6. The same as Fig, by with 4Bd = 2. -
-Figure 7, N()x"mal‘ized imﬁgé:funjcﬁon ™ (1), without the delta function terms, calcu-
lated from (34a) (solid line) and the same with the residue (guided mode) term extracted
(dashed line) for ¢ = 2, 4Bd = 1. The corresponding function fTE(t) for p=2,4Bd =1
is obtained hy merely changing the sign. .

Figure 8. The same as Fig. 7, with 4Bd = 2,

20
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