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DIELECTRIC/MAGNETIC SLAB

{
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i

I A13STRACT
'^, Exact image method, recently introduced for the exact sol4ution of electromagnetic field

^' problems involving 1g homogeneous half spaces and microstrip-like geometries, is ! developed
roFlhere for the	 errt of homogeneous slab of dielectric and/or magnetic material in free,p

space. Expressions for image sources, creating the exact• reflected and transmitted fields,,
j are given and their numerical evaluation is demonst rated. Nonradiating modes, guided by n

_._ the slab and responsible'for the loss of convergence of the outage functions, are considered
E 1 and extracted.	 The theory allows, for example, an analysis of finite g?6uird planes in

F I microstrip antenna structures ; A
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t° INTRODUCTION

Exact image theory,originally introduced for the Sommerfeld half-space problem (1t,
`^. was later generalized to the inicrost.ri ► geometry 3 r 4 consisting f a dielectric s: abb

plus n perfectly conducting ground plane, To accou n t for tl a more realizable case of finite	 t
ground plane, it is necessary to further "tend the theory to the dielectric slab geometry,
bee 'lu5" the currents ill the ground plane can then be solved t.hrotrgh ,integral equation 	 .
formulalion. This problem was recently worked upon by Mosit 151 by using a numerical
method to evaluate the ill-behaved Socnn ►erfeld integrals. Because such integrals could be 	 }
avoided in earlier applications of the exact image theory, the same principle suggests itself 	 !
also for the present geometry.

The present, paper is a continuation to the previous microstrip paper (4] with a minimal
change in notation. The medium in the present case ,, however, is assumed to be more

' general, with both electric and magnetic susceptibility, and also the image giving the exact
field transmitted through the slab will be developed. Because of this, the expressions have
grown in extension and complexity in comparison to those of ((4J, The complexity in image
expressions is not, however, ` a major problem in the field calculation, because the image
functions need only be calculated once for storage in the computer memory, after which
t heir repet i tive use in solving integral equations in the presence of the slab is possible with
the present. method, 	 1

i

BASIC THEORY

'The solution of the dielectric slab problem can be obtained by decomposing, the, original
source into symmetric and antisymmetric parts, which correspond to problems involving
nitcrostrip - l.ype geometry. In fact, because of the symmetries of the corresponding fields, a 	 -_.j

r	 plane of perfect conductor or magnetic conductor can be placed at the plane of symmetry
'

	

	 in the middle of the slab and thus the problem is split up in two parts, one with the
microst . rip geometry and the other with the magnetic conductor microstr ► p geometry.

It is, however, preferable to make a fresh start for the slab geometry, because it is
no more conrplicstntl than the study of magnetic conductor microstrip problem. Also, we
arc going Go stuay die general dipole source above a slab with both electric and magnetic

E	 discrnrtinuity and not just• a transverse dipole at. a. dielectric interface as was done in (4).^	 cHowever. the start with Fourier transforms similar to that. in 11, part 1II), (4j will not
be repeated here, The notation will be compatible with that in (4^, with minor obvious
changes.

t t The reflection `dvadic for the electric field transverse to the z direction can be easily
written from the p"arth,d wave reflection geometry, Fig. 1, from the knowledge that TE
and Tilt polar;zatrons are its eigenvectors:

_..
i	 — RTE 

h li wu 
+ 

RTM h ^^ 1= ^1 _-7Ar 4d^T . (I^ rte-iP► 4)—i
K2	 K	 ( 7

with It _ 1-- iii-t. the two-dimensional' unit dyadic and r is the interface reflection dyadic.
-	 The inverse dyadic'must be understood as a two-dimensional inverse [$J. We can further
write_ ,.
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I _	 )d1 4d r1TC.T11
Y (	 )	 (2)

^TEJkk1ritu T Al K1'

	

., +	 ,	 (3)

Ca	 !E	 liti -1	 7'hl	 etl - 6lt
•,	 (4)_	 µG+0 1

° 	 (13+ 131

Here, k is the two-dimensional Fourier variable oil 	 plane transverse to the 4 vector 	 j
and 3	 ^' ^ K , Jlt	 µeke - X? are: the propagation coefficients of the Fourier
transformed wave in - coordinatd (direction ^r). Note that the thickness of the slab is
denoted by 2d to be compatible with the tnicrost` •ip substrate thickness d of [4). , 	 a

Alco, the field transmittedthrough the slab can be calculated from the knowledge ofr	 the total transmission dyadic, which is of the'form

T -TTF
h:/t'Xv u TTMkR	

E	 7

	

+	
(5)	 i2

	

K	 h2`'
1

TTETM =`^ 
\\
/ (TTE,TM )2n _ (,,TE,TM)2n+2) e"jQ1(2n+1)2d 	

(6)	 i	 S

n=O 	 J
From (2), (6) there results a relation between the reflection and transmission coA,

dents, and: 5) call 	 given different dyadic forms:

T (lt - R	 2d = r-ipt2d(It T2 ) -(.It _ r2 e-j'314d)` = 2'A. 7 X), (7)

where Wm, Re are the reflection dyadics of the microstrip geometry with magnetic and
electric conductor ground planes, respectively.As a check we see that for r 0, or = It,

r

	

	 w^ hay.- respectively from (7), Y Ite-7Al2d , or = 0, which correspond to the cases of
perfectly transparent and perfectly reflecting slab.

Th(t reflected and transmitted transverse electric fields can be written in the form given
in [l, p.1028) for the general electric dipole J(T) = T,[Lfi(F - ?e.h.) as follows:

e-jP(=+h)
-(a + j,06)R 27Q , for > 0	 (8)

s
e)P(--h+2d)

e(1► , ) - (d f ?(fb)'T-2^(j .. ; for z <-2d	 (9)

with

[	 &=j1 '
r7(k2lt - h'K) irlL, i b ^ /.' t 7jIiIL(v •T,). 	 (10)

	

To calculate the image for of transversal source, 'the reflection dyadic can be split up 	 i
( into two parts as was made in 14]: _ 	 ts£

KK
F	 •,

R - R It + R(, k2

I	 3	 v .^

7 '77-

'	 , ^^	 -sx"="	 It	 x s+ s ^'^	 a	 ^n.	
_ ^	 7,	 ^^^ x	 ^^

[	 t	
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where we linvt•	 a

	

RO 	
A?^ ( `n^	 r )	 (	(,-,ffti 4d )(1 +rTEI,TAfc-A4d)

	

R	 R	 N	 TF;	 4d	 T111 1	 4A r	
1.,	 (12)

I1 `	 (]	 (p	 )'1€ 'Jf^l )(1	 (p	 )` e-'N3 1	 ) 0f 

TV	1 t /r` TE	 t " F` TAI

i i
t

	

E+ 1' 
	 (14)

To be able to construct image functions, the reflection coefficents are first: expressed in
terms of the reflection variable r, (which equals-r TE for' - 1 and —rTM for e = 1):

	

r _ 
Q ~ ^1	

{15)	
1

Qp1
t	

1i	
Thus, we have

TE _ M r
r	

-"1{Mr'	
16

TM _ B+t-r	 (17)e

rO	
µ 9 c 1 -i-1A1'r	 1 + Er) '	

(1$)
,

I	 The reflection coefficients ^TE, RTM were given as power series of rTE ' rTM in (2),
r	 For RO the following series can be written from (12):,

`	
RO - (1 — c •-i^3^4d )rO 	 Kmn(rTE)m{rTM)n^— J^3n(+n fn)2d^ 	

(19)

m=0 n= 0

where li111 ,) equals 1 whet ► both in and n are even or odd, and = 0 otherwise, or explicitly,
h„,„ = it (-1)"'1n•/2, Another form, less symmetric than (19), but better suited to
successive computation of terms, is the following:

29'	 o	

RO rq	 (rTE)29—+(rTM)i e-713j94d —e"J,3n(9+1)4d 	 (19a)	 (	 r'

^-	 Cv=o<e_o

Whichever form of (19), (19) is used, (16) and (17) can be substituted to obtain repre-

	

,	 t
^	 sentat^ons ^n terms of powers of the reflection variable r 	 _

	

Like in the previous papers [1] - ^4), the >eflecf.ion caeffiicients will be presented as 	 j
w.	 integral transforms of Laplace type Ito obtain image source functions. To this end, the

'r	 following integral identity, invoked from (4), will be applied;

arme=j(3ic	 (FM(c,t) +6niob(1 — e)] e `3,3'd1.	 (20)
0
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Here and henceforth, the delta function 6(x), also denoted 6+(:l') in 11;, is defined to be
zero for ;c	 0 so that, J0	 6(:r)dr - 1, r,&,1) is the following function,

l	 ^
,

1 
B 

2

.110(c,1)= — 11( r ) II ( t	 c), (21) j
T

u	
B '2	 fry c 	 to

Fin (c, 	 —2r ^(t " c)^2,.+)(T) " (1 `+ 012m—a(T)^	 G'(^	 c)
+c

s
i
+ _ _ 

B

2 [(B(' 

_ c ))2m^-1 I2m" I(T ) – (B(t – C ) )2m-1 I2m	 1 (T)^
r2m+1+1	 T21 i-1 U(1 — c),	 m > O, (22)

a

'. with

I B = k T;	 I,	 T = B02 -- c2 , (23)

GI (t) is the Heaviside unit step function making each function satisfy Fm(c, t) = 0 for t < c a
E and In(r) denotes the mod ified Bessel funct ion.':For c= 0 (21), (22) seduce t0

P0( O ,0 4F- 0 r	 Fm( O r t) = 212Yn( Bt.)U(/) . (24)

` Further, we need the following expansions (4)

(TTM )n =	 G'k^E}r, . (25)
k =0

( r7E)" = (-1)n 	 Ck(M)rk ^ (26)

i k_o

r
where the coefficient. function is defined by

C,ft(.r)	 ^` (-1)^n(^^ 1 k–j `'1)!(i–)n}k-2^ 	 n > 0–= L. (27)

I	 i
+	 n	 k(	 J	 •9 (	 1)

7-0	 !

i CO(x) = bOk+	 LO 
(x) i.(–x)n,

CI (X) _ (7^'-}k ^ ]	(–x)1c-1,	 C (x) =	 1(–,)n+l

4

Here, n1k denotes the smaller of the numbers n and k. Values for the function can also
be computed by reflection:

A

^	 71 P

and using the recursive foimula_

k
 

x2
Cn x	

1 Gr	 x	
1 n– 1

( )=–	 C )–
	

^(' )	 p	 ( )
k 2 9(29)(	 )

l x
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(20) is more rapid than (27) if many values of (""(x) are to he calculated in computer k
memory for successive valises of k and n with the sane value of the,- argument x. (constant a
f, or p). The coefficient function CAP(x) can also be defined through the expansion )

shah"(0)	 ^, C'j^(la»hA)tattfe"1'^iz

i

}

l
l
l ^.

VED REFLECTION IMAGE l	 ^	 l

Lei us first construct, the image due to the vertical dipole J(r) = ulLb(p)b(z -»h
y
a

which lies at the distance	 h. from the slab. The transversal electric field in Fourier
space is obtained from (8) when f 	 u`: ;	 1

^(K ,	 -9,lfk- ► >1hl bRT	 (30)`
2j#

If the reflection coefficient, is written in the integral form
i"•

00

R7M —f 	 fTM( t)e-3Rtdt, 	 (31)
t►

.9

the field call be easily seen to arise froth the equivalent image source (l}
3

It(1) _= IL f
TN (t).
	

(32)

To find the image function fTM (t), the expansions (2), (17), (20) and (25) must be applied:.
00	 QO

Ir7AI	 ' G%(E)r t' +	 1(E) _ ,̂km-I
^E) 1 

rk e -iR1gt►►d ,	 (33)lCkmi 4'=0	 m=1 k_o

whence the following expression for t:he image function is obtained;
r

f TAI (t)= 
C'o(E)a ( 1 )	

(^,^2ne^1(E) _ G'0m- 1 (E) ) b(1 - 4rnd)

)

' h	 C'k(E) FA. ( 0 , 1) C
km k]

(E) -'^in-1(E)) Fk( I4md,t).	 (34) l
r k=j	 to=1 k-0

Thus, the image function consists of a series of delta functions, corresponding to dipoles
witl ► interspaces 4d, which is double the slab thickness, and a c-ntinuous source function.

' The function depends on both t and µ through the variable B" 'in the functions Fk(x,1),
and on c through the functions t'.'k(E). It is seen that the dipole images depend only on
c. Taking t = 1, or what. is equivalent, E = 0, all the delta terms in (34) vanish because

`	 I of the following limit of the f lc loll Ck (^)as x =r 0
i

^	 Gk (0) _ (-1 )" bk" .	(35), 
f	 B

` 	 rr	 r	 ' l "0

^	
4	

1	

i 	 ^'i 1A97 -•	 .Y	 t^	 A

"w
AI
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The vanishing of delta terms is also seen if (34) is writtvii in tbe form

lop

+	 b(f - 4rnd)	 (34a)
( 2	 -4-

2	 1 ( j^,	
'(E)) FA^(4md.k	

Oat

(2
Pio=1 k=0

To obtain this, (24) has been applied. For c = 1, all coefficients of the delta functions are

seen to vanish, T- 1,", ',remaiiiing image function can be written as

00

F1 (0, 1) -	 (F2t,4+j(4ntd, 1) - F2rj_ I (4md, 1)) .	 (36)

This expression can he compared with that givem 
in 

[4] for the TE image with 	 I in'

the microstrio problem.

VED TRANSM.I$$ION IMAGE

The corresponding transmission image function can be obtained from the expressions

(6), (20), (2-5) for TTM . Thus, writing

	

00	 00	
TM )2n	 TM )2n+2 _jO, (2nr+ 1)2dTTM 

fo 
hTM(t)c-jP'dt E ((r	 - (r	

C

?1=0

00 00

	

(
On(E) ('2n+2(E) rk e-jPj (2n+ 1)2d	 (37)
k	 I

'0 k=0

we have

00 00
TM	 (c2o;(E) Ci!n+2	 (2n + 1)2d))h	 (E)) jFk((2n + 1)2d, 1,) + ^koi(l'k

	n=O k=Q	 Ilk

00
4	 (c2n(E) Co2n+ 12(g!)) Fk. ((2n + 1)2d,t).

	

E'nb(f - (2v^ + 1)2d) +	 k	 k+ I)- 
n=O	 n=O k=0

(38)
Siinilarly to the case for the reflection image function, if e I the delta function

(dipole) image terms vanish except for the'first one, which corresponds to the original
dipole source. The resulting function for t= 1, (E = 0) is of the form

hTM (1) b(i - 2d) +	 ((2n. + 1)2d, t) - F2n+2(( 2n + 1)2d, 1)).	 (39)

n=O

7
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	4	 The transti'et^ a compont+ntof IheTM i,leclrle field Ir ►nsruitteckinto the region 	 2r1call be writtell from (U)

	

c(h +^) = llk ` t ith'ILT7',tI 1j13
	 (Ib)

!Whell	 Is expressed as hi (37 1. (40) can he Interpreted as file field arisilIg fl ,ol tj eimage cIll.rel ► )

	

I,(f) w IUT11t
(t),	 (ql)

where h "'(1) is of the form (38). Obviously, the transmission image has no counterpart
in flo microstrip problem,

Y

HED REFLECTION IMAGE

The image current due to a horizontal ( transverse) electric dipole J(P) » 'vlGb(p)6(rh) can be divided into a horizontal and a vertical part (I), [9). The horizontal part is
obtained frolll the function P'E(t) defined through

RTts
fo

fTE(
(

 q2)

:Again, file reflection coefficient will be written as a Bower series of r;

00 00
RI's	 (!k( )T R	 (G,12m+1(M) G'i'n-1(AI)) r k e 00md .	 (43)

k Wit)	 m=l k=0

This leads to the following expression for the image function
sx^

frltt) —cl(mg(t)- '^ (G,pnx+1(111)— C^am_ 1	 b(1- 9md)
__ \

	

m 1 	 ,

x	 x oc

^C'^(JI^ > '^^ ( °, t)-	 ^-k	 (M)	 M)Fk(9md,t),	 (44)
k= 1 	 m=1 k'=O

or, what is equivalent, 	 I
i

	o^ 	 Zm
tT E(+) ^;z 

b
( t ) - z i	 +	 a(t _ Mend)	 (44a)	 ((.

	

nl- I	 fs

00 00

<<^ -7	
k

^ .. N +I	 t	 U(t).	 ^^,A^►,+1( ) c;^m- 1 (M)) Ft,(4md,I),
mil k=o

Y

I	 1	 ^
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This is very similar to the fmictioti fT 'tt (/) give_n inbove it) (34). In fact. cltant;ing t and
11, and the sign of fire function f"'(1), the fiulrtictn 	 is obtained, and vier versa.,f"'(t)
Thus, the sante procedure of calculaljo i call Itr ttsctl far bosh functions, rvbicll silliplifies

a the ust, of the method. F'or 11 - 1 wit-h (35), the expression (44) rc(lilces to

,,f7^ (1)	 .	 Ft {0,t) a	 1 ^ 1'2	 41(4md,t)	 11'3rn	 f(4'»ulJi,	 (9ti)
t

l Mich is in concord with that ,given itl'(4] for the microstrip geonletry, In filet, a comparison
shows us that, (45) contains every second terns of the microstrip image function, namely
those with odd indices to the functions Fk(c, t), For a microstnp with magnetic conductor a

j gground plane, the sign of every second term (the evert-indexed function terms) in the image
isfunction series	 opposite to that of the normal nucrostrip, Thus, (4,5) is the average of

i the corresponding functions of the two ulicrostrip problems, The microstrip image delta
term due to the ground plank is absent in t .}ie slab treoiriet•r_y, because it is t ancelled by the
magnetic conductor term.

For the vertical part of the image current, a more complicated function jo(t) is needed:

RO =	 .fo(t)c`j#tdt	
(40)

t Applying (20) in (19) with (25), (26) inserted and defining

DA ( x ) = xCA (x) + C' "' t ( ),	 Dp (x)	 0,	 (47)

the following expression for tho reflection coefficient RO is obtained: r:

W 
``
00 oa M	 2	 2_	 r

RO	 L	 (11^)C't (F,) +}	 (E)1- 	 E D- 1)mKmn
m=0n=0k=01=0	

\F (N " c)Dk
	 e(c ^'t) Ck"(M)Dt

xrk+^ Ce'^jAt (m+n)2d — c—j,31(rn+n+2)241 ,	 (48)`	 J

The symmetric double sums can he calculated more practically in the following way:

RO "	
^C—jt3t q4d 	 t —j /31(9+ 1 )4d )	 ^,s

J a

r
q=O	

B-0
7

. _..
2q	 8

i (E) + 
c' —1	

2y—i(A )U ' (E)	 (48a.)X	 (`l )1	
p+ "̀"1 D.2 	`(M)C7	 C,	 l ,

i-0 j=0	
V(f

i 	 e
E)	 -7	 E(^ 	 7

Thus, the partial image function fo(t) can be written in the form

2

)

or,	 or,	 oc	 z	 2 _

('M)C^ (E) +	
(E))`:^p.fp( t ) " (-1)mhmn 

^lt (fc - e)Uk	 E(E 
—N)C''(AI).D^

m=0 n=0 k-0 I=0

x IFk+t((m +n)2d,1) — FA.+I(("m { n + 2)2d,t)j ,	 (49) i

or, corresponding to (48a), in the farm ' k

f	

L

'^	 9 y	 v

p ,A	 J

t

,

-I4



6

0-.1

.^

c	
-r

kp

y	 ,

y

Y	 0 00r"

fOM 	 &(g4d,1) — F. ((q 1 )4d, 1)]	 .
q_A 8=0	 r

^^
(/^ ^ ^)U8,?^'(Af)C^(E) i e(c _,f) C'4^ (111)Dj (1 )) .	 (90e)

\	 ^r

The complicated appearance of the function fo(t) is counterbalanced by the fact that the y
E	 functions F,(c,#) are zero for I { c, whence only a few terms must be actually calculated
r

	

	 for low t values and, in many cases, the calculation can be stopped before the number of^ .
terms grows very large.

For the special case 's - 1, or A4 = 0 the above function is simplified to

ham-
c1 00 00 W

fo( t) = E	 KnenDl (E) [Fm+l((m + n)2d,t) — Fm+I((Yn + n+2)2d ' t)]	 .
m=o n=0 ho ._

e+l	 ^
a o0	 2q

4	 [	 -	 E E[Fa(g4d, t) — F,((g + 1)4d, t)) ,L 17;+i-2q(E).	 (50)
E q=0 e.0	 i_0	

r,.,

y

In (50), only terms. with s + i — 2q ^> 0 contribute. This expression is in accord with the
corresponding result ( function q (t)) for the microstrip geometry given in [4),

The H ) D image current expression can be obtained from the combination of the lior-
izontal and vertical partial image current functions fTE(t), fo( t), from a comparison of
the resulting transverse electric field,	 '.(

4

jA
[	

E(h a z )  -jkq(It — k-21i K) • Rp ^2
	

C: 
2j/3 '	 (51)

with the corresponding 'free-space expression. This was done in [1, p.]029} for the Som-
merfeld problem and in 141 for the microstrip problem and the resulting expressions for
the image current source are essentially the same as here, with a difference in the choice
of integration variable in ` 1 and notations for the image functions. Thus, we can write for
the,ivage of nay transverse source satisfypg v • J(r) = 0,

[	 ^^ j&. t) = fTE (t)a^(r) — ẑk-2 fof t )o ' fit(*)^	 (52)ai
with

r	
Jc(T ) C • J(C • T), G It' — 2uu.	 (53)

It is seen that the effective function in the vertical current component is not f0(t), but its

t	 , derivative fo(t), which is in accord with the results of [1), [4].fi

L=a 3
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HED TRANSMISSION IMAGE

The expressions for the transmission image for the transverse, or horizontal, source can
'	 \	 be obtained much in the same way as above by seeking the horizontal and vertical partial 	 j

images separately. The transmission dyadic is of the form

T =T	 i t	 'To -n-,	 (,q)

"	 Expressing the first transmission coefficient as

R	

TTE -
fo

^hTE(I}e`jptdf=E((rTE)m _^ rTE)2n+21 e —jQi(2n+1)2d jJ ` 
n-0

00 
`̀

or,	

I
(G,kn(M) 	

Ckn+Z^ M)} rk e_1A1 (2n+ 1)2d	 )

n-O il._ll	
r	 55

we can write for the #a .4rizontal partial transmission image function, 	 )

h TE(t) -	 M2n6(t -='(2n+ 1')2d)	
fJ	

f	 .

i

VA

:.(l^) 112 
n=U	 ^I

00	 00
(Gk (M
	 Gk	 ( M)) Fk(( 2n + 1 )2d.+ t ) •	

(56)	 ..

n=tl

(	 This is ' the same function as Olf t) if the change F +-a p is made, as is seen from (38). For
}

µ=1 the form oftlie expression ^39) isseen to result. 
The vertical part of the HED transmission image is obtained from the transmis6 1 n 

coefficient 270:

i	 To= f	 ho(t)e-^ j#1 di
0

h^ 
\ e

-jQ12d _ ejPi6d1	
(r7 E)2 _ ( rTJN )2

_i
k-	 f (1 ;(rTE)2e-jj3j4d)(1-(TTM)2f-fflj4d)

00	 00
- _ r0 ^ [^ ( (rTM)2n ( TTE )2?n+1 +(rTM)2n+1(rTE)2ml

n-0 m=0
,.	

—jPi(2n+2m+1)2d _	 -jPj(2n+2m+3)2dX 
(e	

e	 (57)1^
Hence, the image function can be ivr `itten in the following two forms

JE

ho(t) ^	 E E El
l
 E [ 'Up
	

1 (Dk
m+1(M)G,^ n (E, ) _ DkM(M)q n+1 (E))

^,'	
n-0 M=O k=O1=tl	 µ( 	 — E )	 ^s

e -1	 C2m+1 	 2n ' E + G+2m 111 DZn+1 Et	 k 	 ( M )DI . 	 (	 )	 k	 (	 )	 t	 (	 )^^

F	 hi

""*'	 -- t	 ^.,	 ^..._,.y..--......_	 .„..^..-,...,^..	
totFj 	 Y	 tik

F



m	 `	 i	 sj'..	 '^`	 _	 E ?^ °	 39n3u T n
I 	 ,.».^+.Iv.^+ e.+r++re+++.w...,.....E.^,w»r ., . .,< ,. _ 	 ^,.....r.,-	 .. «_.....--'"^'----tea raru"4a,....•".F.w: 	 `,iP

i'

11	 : 	 ^	 4
^	 3	 dr

i

[ j+1((2n) + 2n+ 1)24, 1) —Ft+!((2nt• +2n +3)2d,1)],	 (5$)

C	
(	

00
	 1

ho( 1 )= , —	[I's((^q+l)2d,f)—FB((2q+3)2d,t))
9=0 8=0	 o	 a'

 
q

X	

r
^^ ({{^` . 

1	
9.1	 ^r1r E ^ D-I9—^) 161 E' '^i^t-i F

1	
2 —	

11_ E EC 1 (pb ('. i)+1(M)Dj`(E) + C	 `) (M)D^ i+t (E)^ J .	 (5$a)
( — u) ` 

I	 The result has abit more complicated appearance than the' corresponding reflection 	 `}
C	 image function fp^f) in (49), (49a j. The difference arises from "the -difference in the partial

wave structure ) Fig.l. For the special case µ =-' 1 '  (58a) reduces to	 m
u	 ^.

r	 Q	 -,

ho( 1 ) _ f 1
	 [F. ((2q + 1)2d, t) Fs((29 + 3)2d,1)J L[D2i+1( E) - Di(E)]r ( 59)' t .t,4

q=0 a=0	 i=0 ,	 s
,

i

GENERAL IMAGES'' 	 I i

E ' To obtain the reflection and trransmission images of the general dipole, previous results
can be combined, In short, for the general three-dimensional source function J(r) the
reflection image is

r	 Ji(T,0_ (fTM ( t )uju +fTE (t)1 ^' JG(Tj- uk-2fo(t)^{.j^(;1.	 (so)

The reflection field can be obtained everywhere in the , half space ><<0 through an inte-

	

'	 gra.lion` of the free-space Green dyadic ultiplied by the image:

	

_t	

I

.._.._. 
E{r) _ 

—jtL Y

r
fr G(T - T` -{-^ 'ut) 'Ji(r,t)dtdV{i. 	 (61)

o

If the original source is a dipoleora planar current source of the forn1:J(T)^ = Ja(p)b(.z—h),
i.	 the integration variable t can be disposed of, because in the field integral (61) any function

of the form G(r	 +h) can be replaced by the function =G(r—r^)^(—(z{`+h)),
	leaving out. the f integration and talon' the z" integration from =h to —oo, The image	 1

	

f	 of the dipole consists of a set of dipoles and partially overlapping line sources along the	 (a
'	 negative real z axis, which start at the points - (h + m4d), m. = 0, 1, 2,...

For the general transmission image we have ) correspondingly,	 t; A

TM	 TE=	 2 {
F;	 J07 t) _ (h. (1041 + h It J(r) — uk — hp(1)^t J(T),	 (62)

	which produces the field in the half space z < —2d. The field can) he obtained from the 	 "
• I	 free-space integral

12	 y ^ ^^,,

y,.	 a

rx^

Fx ', y^h ^& ^y u h ^
rf.

sue. ^.	 t	 ^ • 	 n	 r^	 ^^

T.,.g wza.asz ^.^'^..	 ...a rv^.-m`s^x.a.ra,. u.ti;.^^'s+•'..^,m.,wa2...... ^rtw&a,.".'^'^^.I' 	r3;	 z	 ,^,5^``c, r^^	 ^^ ^^,^_ ^̂'4•.
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yy
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W	 X
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.F

12

^. V

,
q	 4	 .tj

Y
I ay

•-j61 f	 6(1	 2d))' 3i(1> :t)dtdl	 (6r3)

' Again, for a dipole source, the nnage current function can be written without. the 1 vari- z' Ti

able, because of thesjecisi b(n^ -	 h)-dependence of the original current source,. Hence, A
^. to calrt^late_1_1	 .4ielsl, instead of bot-h. I and , 	' inlet t'atio^is the ^MePtl loll] 11 snake the =- iii-

tegration taking; 4,(: 1 -h 2d -•' h) instead of	 l) and integrating - 0 from It 	 2d to -wog, 
the transmissin the

and l^partially -overlapping line sourcesurc. sale n	 the Seositive
	

az s, each starting at. the points
h• +(2r4 + it 	 Thusi the transmission iinage current starts at the height h + 2d - 2d = Ic,
or from the original source	 oust.

The images corresponding to magnetic sources call be obtained easily from the duality
•	 '	 ;

' transform I —+ Im, a .-+ µ. Note that E and µ ;are relative quantities so that minus signs do>
not occur in this simple duality transform:

r1	 y fi	 .'r

F

, ASYMPTOTIC TESTS

To gain confidence in the above expressions, some of which have rather complicated.
appearance, it is necessary to perform asymptotic tests to seeithat correct"limit cases are
obtained. In fact, we should check that the image solution corresponds to

-;
't

( A) for e = 1 and µ = 1,, the free-space problem
(B) for a -= oo, the perfect conductor plane problem
(C). for N —r oo, the perfect. magnetic conductor plane problem

t (D) for d —: 0, the free-space problem
(E) for d -+ m, the Sommerfeld half-space problem.

r i The case (A) is easily seen to be satisfied, because B =	 -L - 1 = 04. whence the arguments
{ of all Besse] functions in the definitions (21), (22) are zero, snaking the F„i functions vanish.
5 Thus, front (36), (39), (45), (50), (56) and (58) we see that all the other images vanish

except the deltafunction b(1-2d) in the transmission imageexpressions, which corresponds
' to the original current: as a transmission source and there is no reflection sources.

r The cases (B) and (C) are more complicated._ In case (B), E = 1 and from (27) we can
derive tGe Limit. function -needed here;

^!
I	 I

':
Considering the VED source and inserting (64) in ( 34), it is seen that. t.he,sui: i expressions
all vanish, because Fp(0, t) = 0 and the terms in brackets cancel. Thus, only the first . 'delta

' ry term survives giving fTM (t) = —b(i), which together with the mirror opezation, c in,(59),
leaves us with the positive image of the vertical dipole. This corresponds to the mirror
image due to a conducting plane, Also, it is readily seen from ( 38) that. the transmission

- image of a VED vanishes. For the HED, the outcome is not so simply seen, because the
_ image functions do not explicitly depend on e. The functions F„m(c,t), however, depend

on the parameter B - 	 µe - 1, which becomes large. Considering the image function
' expressions, we see that they can be written in the form B f (Bt ), and denoting x = Bt, .

the field integral is of the form

^G(t)Bf(Bt)dt =f^G(B)f(a)dx ^G(0)Jo^'f(x)da, 	 (65)

4
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as B	 9t•. This means that. the. image can be i eplaced by a point source at 1 - 0, or
I : -	 b^^What the point source is, is seen after the integral is developed. It is not difficult +

to c^al' ' uititc these integrals  if f ile identity (20) is invoked. In fact, writing for /3 = 0, /3 1 = B,
we have

and taking a vanishingly small negativephrase angle for B, the right-hand side vanishes,
Ywhence the integral of F,,,(c,t) for m > 0 is seen to vanish and for m = 0 give the value

-1. With this, checking all the components, we are able to show that for E -r oo, the
I; image current source can be replaced by

.. . -.	 I^	 ,i.	 J1(T, }) =/ is(t ) . J	 Ji(T, f,)dt ,- -b(#)j,:Q).-	 ^ 	 (67):

Th is

	
id the

	

at '=
to vanishth	 iii muss ogeimaee q»^be seen 	 innthisllamt

	
Case

0. In the same
It g ;(C) follows from

(B) through file duality transformation..
In case (D), tl}e functions Ft,(nU,t) can be replaced by Ft.(O tt); whence in ap"image

functions v 	 t^^e jn	 i- most of 	 terms -ate cancelled. This makes
 eu	 aact^onsthe reflection image fu	 vanish

	

with the transmission
g	

f	
( 7^E	 O, f O 

	 togetherr

image function ho(t), leaving only h	 (t.) - h.	 (t) = b(t - 2^), which corresponds to
.
 the

F !	 primary source of the f_ree'-space problem.
f	 Finally, in case (E')',-we should end 4p in the image of the Sommerfel l problem given

in (1]. To conform with the notation.-in (1], a change of the variable from t to,p = jBt
must: be made. 'Then, writing from (24), we have

Fin(0,1) = 2-m 12m(Bt )U( i ) = jB(-	 )m	 J2m(P)U('P),	 (68) "	 t
` which gives us the following relation of the present notation and the function MP) of (11: 0^5

00	 __

d-(E)Fk (O, I ) _ -jBf,(P) • 	 (69)
k=o

In fact.-the Sontmerfeld ` image functions can be seen to result for the reflection image in
the first interval frow t	 0 t,o t	 for	 d. For d -=	 = }-4d	 any value of	 oo, obviously othery
images are pushed to infinity and have no effect and the whole problem is reduced to the
Sonimerfel(1 problem. Concentrating on the interval t = 0.., - 4d, functions of the type

s b(t - md) and Fk. (ntd, t)' wit•h'M > 0 can be discarded, since they are zero up to t = md,

and only term, with b(t) and FA.(O,t) survive. Thus, we can write in this interval from, )
"	 (	 ' (34), (69).

fTM(t)	 —.7B	 -1- MP))	 (70)
\.E+1b(P)

I
µ	

1
f"(

t ) = JB	 b (p) t fp(P)	 a	 (71)
f-1

t	 f	 (

2_

MO _ -jB	 1 AU (P) -1- E^ -1 A(P)) _ -7B9(P)•	 (72)

Because fo(t) _ (J'B)2gl(p), we have from the general image of (60)

14
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Ji(f,1) = 9Bj# p),	 or	 J4("r,l)dl — ar(f',p)(ip,	 (73)
where the left- hand side refer to the present theory and the right-hand sides to the- -cor-

'givenresponding function Of the Sontnlerfeld problem as 	 in 11, p-1030). Thus, the image "
function 1n the slab' 	 ab problem in the interval f = 0... — 4d is only dependent on the first
interface. corresponding to the first reflected partial ray it) rig. 1.

As	 e ^	 4	 we briefly show how flie delta function terms in image functions can be :-4
obtalned' directly front- the reflection coefficient expressions as a limit. when 13 —, ou. This
corresNonds to the simpler analysis of the delta function part., of the VED image-given in
[1, Part 11]. Studying (2) for this limit, whence 13 1 —.l3, we see that because rTM —s —E,

expression of RTM
	 TMfrom the limit ex p	 , eqn. (2), denoted by Rb 	, we have the equation

r (1 - E`e-9jpd)RT M =	 E(1 — e' 4jPd) 	 (74)

This can be readily Laplace transformed to a difference equation for the corresponding_ image function f6T1V1(1..):
t .,

j6 M(I)U(j) - E2 fo'	 (1. - V)U(l - 4d) =`,-Efi(f) + Eb(1 - 4d.).	 (75) 1
' The solution of this is obtained quite straightforwardly:

.a

_ rJ

TM	 2n F1 — —	 2n-1f6	 (f) - -Eb(f} +	 ((-E)	 (	 E)	 ) b(1 - 4nd),	 (76)

-

' n-1

which is exactly the delta-function part of (34);

A

t

` GUIDED MODES

> It was seen in the analysis of the microstrip geometry (3], [4] that some of the image
functions would not., converge along the real z axis and the reason was found to be in

i the nonradiating, guide() modes. After extracting the exponentially diverging image terms lcorresponding to these modes, the remaining image was convergent. The number of nonra-
diating triodeswas dependent on the frequency and medium parameters, but there was at
least one such mode (TAI mode) for the microstrip. The same applies for the slab except

( that there exist at least, two such modes (TE and` TH) in the slab. After extraction of
these modes, the image f actions are convergent..

- The modes can be classified in four groups in terms of TE^TM polarization and prop-
erties of symmetry/antisymmetry of the transverse modal electric field. 	 Antisymmetric--'
modes correspond to those existing in the microstrip structure, whereas the symmetric
ones exist in the microstrip with magnetic conducting ground plane.

The triodes are obtained from the poles of the reflection coefficients, all of which appear
` in the expression (12). 	 The poles ,(3 = 3p, 01 _ gip are obtained as roots of the four

f	 r_

i	 U equations

rTE,TM(,131)e-7Al2d = f 1.	 (77)

These equations can also be written as

jl
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j.	 15

TAI ^-j;h'.d /31	
3	

-	
ri

	

r`	 ► 	 c	 = 1, or 
J!' 

jfort td) ` —^^	 (77a)

TM -jl^t 2d	 #1'°	 /3	 e,	

^A

r e 	
°r weEoC-dcot(Old)) _ wEo,	 (?7b)

TE -'Ct '2d 	 WµNU	 Wl(°
r	 c	 j	 1, or	

^l	
31d)	 (7Tc}	 tt

r e	 1 0	
-

TE jAt zd _ _	 r 
W Ql 0^_^cnt(/3ld)] - -°	 (77d)	 r.

The right - hand equations of (77a), (77c) correspond to transverse impedance interpretation

	

r	 of the problem wit-h-a conducting plane iit=the middle of the slab and those of (77b), (77d)

	

r	 the same with a magnetically conducting plane. Thus, the problem is reduced to finding
t,

	

	 the modes in microstrip and magnetic microstrip structures, Each root of (77a) - ( '77d)
corresponds to a_guided mode in the slab. For sufficiently low values of Bd = µ^kd,
tma ue T	 and can be con

 mode--have

	

 
as d dependencies that are decaying in the z direction	 ;.only one TE and one TM mode have fiel d

( imaginary )	 d nonradiating waveguideanodes in the slab. These
modes correspond to lowest, solutions of ( 77a) and ( 77d), which can be obtained with the

i	 me#hod described in [4]. Defining q =131pd, we, have for both the TM and TE--wave

41anq = 70 d)2 - ^2 ,	 (78)

-

	

	 where Y = E for the TM wave and y = N: for the TE wave. The lowest solution for small
values of Bd can easily be obtained, starting from qO = Bd in the iteration formula [4]

	

k	 qn+l = Bd V1 - (gnl¢ngn /yBd) 	 (79)	
1

after which, Sp is obtained from (77a)-(77d). For real ',Bd, the graphical solution of Fig.2
can also be applied. In Fig.3, values of apd = jppd for different Bd and a or µ values are
given, Corresponding to the respective cases of TM and TE waveguide modes.

Because the guided mode is nottradiating, the corresponding pole satisfies Im[Op] < 0,
	which corresponds to an exponentially diverging reflection image current. This must be	 A

extracted from the image function to obtain a converging source. For this purpose, residue

	

of the reflection coefficient at the pole must. be  calculated. We can write the TE and TM	 i
reflection coefficients in the same form

R R'+ 
O A gyp'	

(80)

i
i	 with /3p = -jap, the basic _pole and AP , Abei corresponding residue

	

r	
y p

PPlp	 !	
2	 2	

(

-P , = f	 ('	
, 01P /3 +B	 81) 

7B2 - j,ppd( - 1 2/3p - Q p) 	 P,

	

`	 For the TE wave, ithe uppersign and -y = u must betaken, while for the TM wave, lower
sign and 7 ='e applies.	 :.

In the limit Bd` -i 0, the lowest root is q = Q1P d	 Bd, whence #pd , -japd =	 ^^,'n.

(-j/3 pd./-y)tan./3 1pd -j(Bd) 2 1ry. In this case, the residue ( 81) reduces to Ap	 ±'3p	 F"f
:FjB2d/y. The nondiverging part. of the image function is f(f) - jApej#P'	 f(t) 4:
(B2d1j)cxp(B2dl1'r).
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d

The function jApe^', subtracted t"rout the image function, diverges for real f and
must he moved into another position oil 	 complex t :plane, as described in (3) and 141,

f

tCALC'•1, LATION OF IMAGE-' tUNC!TIONS

_ Finally	 properties, , let us study numerical p	 p erties of the di fferent image functions. The function
Fn(c, f) was defined in (21), (22) in terms of modified Bessel functions: For small argument
values, the following power series, based on Taylor expansion of Bessel functions, can be
applied (4Jt

2	 k

Fo(c,t) ^ B—	
oo	 k

rc	 x y	 U(^ –^)a
2 '	ki(k + 1)!k^ _

– p
B oo xk 	 p2n+k+I	 y2n+k-1

&(c, t) - –
t	 t	 U(t	 c), ' n ? 0	 (82)l J,2	 k! 2n + k + 1	 2n. + 1	 1

t=p	 (	 (	 Y

with
=	 ,

B(i + c)	 B(t – c)
X =	 2
	 Y==	 2

Another method suitable for microcomputer use is to apply polynomial approximations
for the modified. Besse] functions 10(x), II (x) and to compute functions with other indices
from the recursive formula 17), after which (21), (22) call 	 applied.

!. Examples of the normalized function 2 Fn(c, i) are depicted in F g.4 for different val-
ues of n. and Bc, Because the modified Bessel functions In(x) diverge-'asymptotically as

ez / 	 •hrx for all n, the Fn functions diverge for t –: oo as

Fn(c, t) –+	
^Bt a	

(83)

It was seen in (4) for the microstrip geometry that., ill spite of the divergence of the -indi-
vidual Fn: terms in the image function series expression, the whole function may be well

6 convergent within the limit of computer accuracy.
The functions F..(c,I) call 	 grouped for better convergence. For example, denoting

rn, = B	 t2 – (4md);', the special TM function of (36) call be written as

BfTM ( t ) _ —	 I(M)U(f) -B(t — 4d) 11 ^ 11(rl)^
1

s

- +	 I3(B1)1I(t) – (B(t – 4d))3 331) U( TI )

I

— (B(t — 4d))5I5T51) l7(rl) — (B(t — 8d))b lb(b2)
072)

1

+	 (B(t – 4d))7I7 	11(rl,) – (B(f – 8d))7 ' 7( 72) C^(r2 )	 –	 (84)l	 ,...
zt	 r2

17
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t	 hor values of Bit satisfying Bit < tr/2 there only exists one nonradiating guided TM
(	 triode, whose parameters can be obtained fron ► ( 78). For small values of Ed, we can	 r Y

	

write the two•terin approximation of the function ( 84) with the pole term removed in the	 F
following simple form;

B (fTM ( l ) `" jillic

	

I (-

t 	 •^ 	 s	 ,

^•

	

[!!(I ` 4d) +	 2 s (f - 4d) 2 (f + 8d.)] IV(()-U(I - 4d)] + 3(2Bd)3 iI(t).	 (85)

ra	
1

This shows us clearly how the image function tends to a simple triangular pulse within the
interval (0, d) 'and is small elsewhere.

Values fron (84) both with and without the guided mode term were calculated with a
PC using simple routines for the modified Bessel functions [9]. Results are given in Figs.
5 and 6, ' The convergence is seen to correspond to the expression (85) for the dashed--«s
function despite the rapid divergence ( 83) of the Fn functions. Thus, electrically thin slabs
can' be analyzed extremely easily using the present theory.

Slightly more effort is needed for the evaluation of the general image functions like

	

(34). We calculated values for the image function fTM (t) for e = 2 for two normalized	 ak.	 tthicknesses of the slab, 4Bd = 1 and 4Bd = 2 1 Figs. 7,8. Here again, in spite of the inherent
` divergence of the modified Bessel functions, the image function without the guided mode

term ( dashed lines) was seen to converge for values of t small enough where the Bessel
function routines were accurate.

s, there are also step discontinuities at the-values
f ^ t4mdaof the argument.u It is not difficult to find exact expressions for these step
disconti nuities of th image function; in fact, from the k, = . O terms of (34) we obtain

BQf. (t) 

E	
^(1 ^ E2)B4m.d, - at f = 4'md.	 (86)T,	

2m 11

There are obviously o step discontinuities whene 1 (Figs, 5 6 or t. _= oo. The largest

	

_y	 p 	 ( g	 ^ )	 B
step will occur at m = (c + 1 )2 /4e, The first step is largest for e < 5.8. With the present
PC` and simple Besse) function routines, the applicability of the expressions. -seems to end
at about c r : 4 with moderate thicknesses of the slab (only first modes propagating). Thus,

x,	 the method seems to be best suited at the moment for microst.ri^ antenna structures, where
low r• is desired.

The function ITE (1)'is of the same form as the correSpo^iding fTM (f) function and
can be obtained from it afteF the interchange e p and change of,sign. Evaluation of
the more complicated fo(f) function and the corresponding transmission image functions

i must be left to a future work. 'It is hoped that an easier analytic form for the image
functions could be found with the modified Bessel-functions "replaced by functions-smith
intrinsic convergence properties-.; Since the exact expressions-100 been already derived,
W seems to be a question of finding suitable analytic transformations for these functions.
The residue series method applied in [3] is, of courser one such possibility, leading to a
series of exponential functions, but it has the inconvenience of requiringg a determination
of ,a set of poles from solutions of a transcendental equation end', thus, does not yield the
luxury of an explicit expression.

,
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— CONCLUSION "',I

The exact image method has been extendedextended to problems involving a. slab with r. and/or
It different, frC ip those of the surrounding space. Both rcfle^tion and transmission image

sexpress ions h^vc been derived	 validity
	

with
s 	

i, 1	 x

ctnlverp,ence 1 ► as been demonstrated' with
	

With 	 present experience, u	
ng

Nsing
a. PC' and simple routines for the modified Besse) functions. the ntet.bodppcars to work
for values of r < 3 and moderate thicknesses of the slab and, thus. be of interest for the ,.	 .anatvs ► s of mcrostrtp antennas.	 Further effort should be directed to transforming the
present exact. expressions into other forms for the extension of their numerical range of

I validity in microcomputer calculations. '°p.
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FIGURE CAPTIONS

r Figure 1. .Schematic representat ion of the partial waves in the slab problem showing
Ole multiple reflections and t .raosmissions resulting in the total reflection and transmission
c( ►etlicients for a plans wav^r ( Nourier space component.) arising from the original source.  ,
The rats. artually parallel to the ; axi§, are drawn at. an angle for clarity.

I ' Figure 2. Graplikal melhot) foil the construction of roots corresponding to the lowest
TE and TNI guided anodes in the slab of thickness 2d.

Figure 3, Values of the attenuation factor of a guided wave in the slaw, apd.for different
values of the parameters Bd and y. Both TE (with -1 = p) and TM (with ry = e) cases

• are covered by the same diagram.

Figure 4. Normalized function Fn(c,t) for 'different values of n and Be,

Figure 5. Normalized image function fT^"(t) (solid line), as calculated from (84), and
r	 the same with the residue (guided mode) image term extracted (dashed line) in the case
j	 f ='1, y. 0 1, 4Bd = 1. The corresponding function fTE(t) for 	 = 1, c # 1, 4Bd = 1 is
i	 obtained by merely changing the sign. j

Figure 6. The same as Fig, 5, -with 4Bd = 2.

1	 - Figure 7. Normalized i mage function f^m (t), without thdelta function  terms calcu- {
}	 ^'(	 lated from 34a	 solid. line and the same with the residue (guided mode term extracted

(dashed line), for e = 2, 4Bd'= 1. The corresponding function fTE(t) for u = 2, 4Bd =1
is obtained hy,merely changing the sign.

Figure 8. The same as Fig. 7, with 4Bd = 2.
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