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Stochastic estimation of conditional
eddies in turbulent channel flow

By R. J. ADRIAN 1, P. MOIN 2,3 AND R. D. MOSER 2

1. Background

In two recent studies, stochastic estimation algorithms were applied to numerical

simulation data bases (Adrian & Moin 1987, Moin, Adrian & Kim 1987). The best

(in the mean-square sense) estimate of the flow field in the vicinity of a point or

points where certain data are given is the conditional average, {u(x') [ E(x)), where

E(x) denotes the data at point x. In stochastic estimation one approximates the

conditional averages by a restricted form, again determined so as to minimize mean

square error. Linear stochastic estimation takes a form that is linear in the given

data, E(x). In Adrian & Moin (1987), the homogeneous shear flow data base was

used, and E(x) included the complete kinematic state at a point, consisting of the

velocity field and the deformation tensor. In the study of Moin, et al. (1987), a

turbulent channel flow data base was used, and E included only the velocity vector.

In this latter study, the estimated eddy was obtained in cross-stream (y, z) planes.

In both studies the probability density functions were used to specify the data, E.

2. Multi-point stochastic estimation

The present studies contain two new elements: three- dimensional structure of

inhomogeneous turbulence, and estimation using two-point events. The complete

two-point correlation tensor, Rij(y, yW,rz,vz) was recently computed by Moin &

Moser (1987) from the channel-flow data base and was utilized in the present study.

111 addition, the stochastic estimation fornmlation was extended to include data at

any number of points.

Consider any array of points (x j, x2,..., x,_ ). The conditional averages of interest

are conditional eddies defined by

(u(x') I u(xl), U(XN))

or, more briefly

(u' [ E)

where

E = [vl __<ul < vl + dr1 and.., and VN < UN < VN + dvN]
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is the N-point vector event consisting of 3N components. We wish to estimate

(u' I E) as a linear function of the data E. Nonlinear estimation usually results in a

small correction {Adrian 1979, Adrian et al. 1987), so attention has been restricted
to the linear estimate. Let us order the data vector as

E = [ull,u12, u13,u21,...,UN3] = [E1,E2,...E3N]

Tile linear stochastic estimate of (u' [ E) is

= LijE . (1)

Unless otherwise indicated, the summation convention is implied for repeated in-

dices. Minimizing the mean square error results in the following system of equations
for the estimation coefficients

(EjEk) Lij = (u_iEk), j,k = 1,2,...,3N,
(2)

i = 1,2,3.

In the above equation, Lij = Lij(x', xl, x2,... XN) and

(u_Ek) = R/j(x',xo) a = 1 + INT(k/3), j = k - 3a + 1. (3)

3. Objective

This investigation offered the opportunity to address, for the first time, several

long-standing issues regarding linear estimation and coherent structures, and to

answer more completely some questions that have been addressed partially, but

never with the benefit of full, three-dimensional information. The objectives were:

a. Determine how well linear estimates approximate the field obtained by true con-

ditional averaging, using events such as those in quadrant analysis.

b. Determine the extent to which the three-dimensional linearly estimated fields

correspond to coherent structures, and the degree and manner in which they

differ. When is it appropriate to interpret a linear estimate as a fluid entity, and

when it nmst be considered to be only as a smoothed mathematical entity?

c. Evaluate the type and nature of the structural information gained by employing

several different types of events.

d. Learn more about the 3-D structure of important coherent motions that occur in
wall turbulence.

4. Results of the investigation

The validity of the linear stochastic estimation approximation of the conditional

averages has been investigated previously for different types of conditional averages

by comparison of experimentally measured conditional averages with their linear

estimates. While experimental comparisons have been extensive (see Adrian et al.

1987), they have been limited to low dimensional results. In this investigation, a full
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FIGURE 2. Linear stochastic estimate of (w'_(x') I Q2) using Kim and Moin's

(1986) Q2 event at y+ = 99.

three-dimensional conditional field, determined using Kim &Moin's (1986) quad-

rant 2 conditional average, Figure 1, was compared to its linear estimate computed

for the velocity vector u(x) conditional oil the same quadrant 2 event in Figure 2.

The former quantity (u' I Q2) is approximated in terms of the linear estimate by

the following steps:

(u'_ I Q2) -/o2 Lij(x'x')uJ(x)P{u(x))du=Lij{x'x')iQ2 ujP(u(x))du,
(4)

where the integral extends over the range of u where the event Q2 = {ul(x) <

0, _2(x) < 0, and uv(x) < 10_i_(x)} is satisfied.

Comparison of Figures 1 and 2 shows surprisingly close agreement between the

linear estimate and the conditional average. Figure 3 shows contours of the u-

component velocity in channel flow conditionally averaged, given Kim & Moth's

(1986) Q2 event, and comparison with the linear estimate in Figure 4, again, shows

good agreement. These results, coupled with the aforementioned experimental in-

vestigation, lead us to conclude that linear estimate is a reliable approximation of

the conditional average.

To study the structure of channel-flow turbulence, the first step was to identify a

structure that was judged to recur frequently and to be dynamically significant. To

this end, the cube of velocity data available in a velocity field was scanned to locate

the positions of maximum instantaneous Reynolds stress,uv. The velocity field in

the vicinity of the maximum Reynolds shear stress was surveyed by examining many
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FIGURE 3. Contours of (u' I Q2) in the x-z plane passing through x (y+ = 99).
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Contours of the linear estinaate of (u' [ Q2). Same plane as in Figure 3.

different quantities in many different planes, and a reasonably complete picture of

the physical structure of the flow in this region was obtained.

The structure of the flow is illustrated in Figures 5 through 10. Figures 5 and

6 show the Reynolds stress in the x-z and x-y planes. They reveal two maxima

occurring at x_ = (30,25,20) and x2 = (35,25,20), where the numbers in the

parentheses refer to grid indices. The velocities at these maxima are denoted by ul

and u2. The right-most maximum is associated with the outflow of low-momentum

fluid, and the left-most maximum is associated with the inflow of high-momentum

fluid. This pair of Q2/Q4 events is associated with a region of organized transverse

vorticity, Figure 7. The velocity field in the x-y plane in the neighborhood of this

point is shown in Figure 8. The vorticity w_ is associated with a shear layer that

forms between the Q2 and Q4 events. This shear layer is visible in the velocity

profile of Figure 8. A cross-section of the flow in the x-z plane passing through the

Q4 event is shown in Figure 9. In the y-z plane, it is clear that xl is located on the

down-wash side of a streamwise vortex. The v-component of velocity in the vicinity

of the Q2/Q4 event is shown in Figure 10.
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FIGURE 5. Instantaneous Reynolds shear stress contours in the x-z plane.
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FIGURE 6. Instantaneous Reynolds shear stress contours in the x-y plane.
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FIGURE 7. Contours of instantaneous wz in the x-y plane passing through xl.

The degree to which the linear stochastic estimate is able to represent an in-

stantaneous structure was evaluated by picking the velocity vectors at two points,

xl and x2 centered on the Q2 and Q4 events, respectively. Using these vectors as

input to the two-point linear stochastic estimator, the fluctuating velocity profile

was calculated from equations (1) and (2).

Figure 11 shows contours of the linearly estinmted fluctuating wz. There is consid-

erable similarity between these contours and the contours of the random realization

in Figure 7. A notable difference is that, in the instantaneous realization, the vor-

ticity changes sign twice below the shear layer (see dimenez et al. in this volume).

Comparison of the contours of the v-component of velocity plotted in Figure 12
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FIGURE 9. Instantaneous velocity vectors in the y-z plane passing through xl.
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FIGURE 10. Contours of the instantaneous v-component in the x-z plane passing

through x_ at y+ = 30.
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FIGURE 11. Linear estimate of the _o_ in the x-y plane through xl given the Q4

event at xl and the Q2 event at x2.
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FIGURE ] 2. Linear estimate of v-component in the z-y plane passing through xl

given the Q4 event at xl and the Q2 event at x2.

with tile corresponding instantaneous contours plotted in Figure 10 is revealing.

Tile instantaneous realizations are, of course, highly deformed, but they do reveal

a region of large positive velocity surrounded by two regions of negative v-velocity

in the downstream direction, and in the upstream direction an oppositely signed

triplet, exactly as shown in the linear estimate. The velocity vectors in the y-z plane

through xl, Figure 13, show a strong impingement flow with a streamwise vortex

present. Note that the vortical pattern reverses sign in a plane passing through x2,

resulting in flow away from the wall, in Figure 14.

A simplified sketch of the coherent region under investigation is shown in Figure

15. It consists of two pairs of streamwise vortices, one rotating so as to produce

a Q2 event, i.e. low monlentum fluid being pumped upwards, and the other pair

lying farther upstream rotating so as to produce a Q4 event with high-momentum

fluid being pumped downwards toward the wall. In the region between these pairs

of vortices, the opposing flows of the Q2 and Q4 event.s generate a stagnation-point

flow and an associated shear-layer tongue which has a narrow extent. This may be

the origin of the region of large w_ shown in Figures 7 and 11. It is also revealed

in Figure 16, which shows (u,w) vectors in the x-z plane. It should be noted that

the sketch in Figure 15 is composed of two pairs of symmetric vortices; however,
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FIGURE 13. Linear estimate of (v,w) in the y-z plane passing through xl given

the Q4 event at xl and the Q2 event at x2.
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FIGURE 14. Linear estimate of (v,w) in the y-z plane passing through x2 given

the Q4 event at x_ and the Q2 event at x2.

the instantaneous as well as the estimated flow patterns show a pronounced single

vortex followed by a pair. The sketch should be viewed as a simplified average

portrait of the flow.

The question arises as to the effect upon the linear stochastic estimate of selecting

different points and different combinations of velocity vectors at those points. In the
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SHEAR LAYER

FIGURE 15. Sketch of the three-dimensional structure associated with the Q4/Q2
event.

preceding Q4/Q2 event, the events were far apart (6Ax), and they were characteris-

tic of sweep and ejection events lying some distance away from the shear layer that

they appeared to cause. Alternatively, one could concentrate on the shear layer.

We chose to specify two points lying very close to the shear layer on either side of

it: xl = (32, 26, 20) and x_ = (33, 24, 20). We input the velocity vectors ul and u2

taken from the instantaneous field at those points. The net effect was to specify

approximately the average velocity between the points and the velocity derivatives

(Oui/Oxj), since (ui2 -uil)/Axj is approximately the deformation tensor for small

Axj.

Figure 17 shows contours of the linearly estimated v-component velocity that

result from the specification of the shear event. Figure 10 shows the contours of the

realization (points are marked as xl, x_). The comparison is good, but the strong

lobe to the side of xl is not captured.

Figure 18 shows the estimated z component of vorticity in the x-y plane. It

compares well with Figure 11 for the Q4/Q2 event. In Figure 19, the velocity
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FIGURE 16. Linearly estimated (u, w) vectors in the z-z plane passing through x_

given the Q4 event at x_ and the Q2 event at x2.
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FIGURE 17. Contours of linearly estimated v-components in an z-z plane, five

grid points below x_ (y+ = 21) given the shear layer event.

vectors of the estimated eddy in the y-z plane passing through x_ reveal a weak

pair ov counter-rotating streamwise vortices near the wall, with a single strong

vortex above them.

Finally, the foregoing results each utilized information at two points in the flow.

The loss of velocity information incurred when velocity at only one point was speci-

fied was also investigated. Figures 20 and 21 show that the linear estimate based on

the single-point Q2 event at x_ = (35, 25, 20) reveals only a single pair of streamwise

vortices. This result suggests that two-point events provide the information needed

to study the interaction between two characteristic structures.

5. Conclusion

The results of this investigation indicate that linear stochastic estimation can be

used effectively in the study of numerical data bases consisting of three-dimensional

vector fields, both velocity and vorticity. It is expected that pressure fields could
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FIGURE 18. Linearly estimated w, in the z-y plane through xl given the shear

layer event.
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FIGURE 19.

layer event.
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Linear estimate (v, w) in the y-z plane through x_ given the shear

be studied with equal facility, although this avenue has not been explored. Linear

stochastic estimation is surprisingly good at approximating conditional averages, at

least to the extent that the size scales and the shapes of three-dimensional structures

are revealed with relatively little distortion. The linear stochastic estimate is also

surprisingly good at representing instantaneous realizations of flow in the turbulent

wall layer. In part, this may be a consequence of the low Reynolds number of the

flow investigated, and the fact that there are strong characteristic structures in the

flow. Less energetic structures may not be represented with such fidelity.

Two-point stochastic estimation yields more structural information and more

detail than single-point estimation. Interestingly, the locations of the two points are

not too critical, provided velocity vectors input to the stochastic estimate are those

that occur within the structure. This is indicated by the fact that the stochastic

estimates using distant points (Q4/Q2 event) and neighboring points (shear event)
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FIGURE 21. Linear estimate of v-contours in the x-z plane through x2 given the

single-point event us(x2).

were very sinfilar. Finally, the second point adds structural information which

appears to represent interactions of flow structures in certain circumstances.

The structures we observed occurred repeatedly within the flow, but we cannot

say much about their dominance or the probability of their occurrence without fur-

ther systematic studies of their frequency. However, the combined Q4/Q2 event

does appear to be associated with two pairs of streamwise vortices whose up-flows

and down-flows create a stagnation point following an associated three-dimensional

shear-layer tongue. Such flows can also occur as single events, i.e., Q2 or Q4 in iso-

lation, and significant asymmetries may occur due to cross flows in the z-directions.

Further work is needed to establish the three-dimensional structure of these systems.

Acknowledgments

The first author (RJA) wishes to acknowledge the generous support of the

NASA/Ames-Stanford Center for Turbulence Research. Portions of this research

were also supported by Grant NSF ATM 86-00509.



Stochastic estimation of conditional eddies 19

REFERENCES

ADRIAN, R.J. 1979 Conditional Eddies in Isotropic Turbulence. Phys. Fluids. 22,
2O65-2070.

ADRIAN, R.J., CHUNG, M.K., HASSAN, Y., JONES, B.G., NITHIANANDAN, C.K.,

& TUNG, A.T. 1987 Experimental Study of Stochastic Estimation of Turbu-

lent Conditional Averages. 6 th Turbulent Shear Flow Symposium, Toulouse,

France. Sept. 7-9, 1987, 6.1.1-6.1.7.

ADRIAN, R.J., & MOIN, P. 1987 Stochastic Estimation of Organized Turbulence

Structure: Homogeneous Shear Flow. to appear in J. Fluid Mech.

MOIN, P., ADRIAN, R.J. & KIM, J. 1987 Stochastic Estimation of Organized

Structures in Turbulent Channel Flow. 6 th Turbulent Shear Flow Symposium,

Toulouse, France. Sept. 7-9, 1987.

MOSER, R. & MOIN, P. 1987 Characteristic eddy decomposition of turbulence in

a channel, to be published.

KIM, J. & MOIN, P. 1986 The Structure of the Vorticity Field in Turbulent Chan-

nel Flow. Part 2. Study of Ensemble-Averaged Fields. J. Fluid Mech. 162,
339-363.


