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1. Introduction

As experience with the one-point closure models for turbulence in current use

has not been completely satisfactory, people have begun to search for other ways

to predict turbulent flows. One alternative that has been suggested is large eddy

simulation (LES) which, together with its more exact relative, direct numerical sim-

ulation (DNS), has had considerable success in the prediction of turbulent flows.

These methods are beginning to serve as partial substitutes for turbulence experi-
ments.

It is perhaps natural that people should regard these new methods as panaceas.

More careful consideration will lead one to be more cautious. DNS and LES have

been applied only to the simplest low Reynolds number turbulent flows. The

prospects for a large increase in the range of applicability of DNS in the near future

are very small. For LES, the prospects are somewhat brighter.

The range of flows that has been treated with LES to date is only a little broader

than that treated by DNS. The Reynolds numbers are somewhat higher but the ge-

ometries are almost as restricted. Three items pace the growth of LES applications.

The first is computational resources: speed, memory (both fast and archival), and

number of processors available. The second is numerical methods; there is, and

perhaps always will be, a need for faster algorithms applicable to a wide range of

geometries. Finally, there are the subgrid models required by LES; this is the focus

of the present work.

In simulations done to date, the Reynolds numbers were such that most of the

turbulence energy resided in the resolved scales. Under these circumstances, the

results are relatively insensitive to the quality of the model used for the subgrid

scale (SGS) component of the turbulence. As one pushes LES to higher Reynolds

numbers or more complex flows, the model quality becomes a more important issue.

It is safe to say that, if the models in current use are applied to these more difficult

flows, the results will be of reduced quality. Thus the development of improved SGS

models must be of highest priority if LES is to become an engineering tool.

SGS models in current use are, for the most part, based on the same ideas as one-

point closure models. To obtain significant improvements, new ideas will probably

be needed. It is here that turbulence theories may have a role to play.
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2. Turbulence theories

There is a wide range of turbulence theories. The modern ones deal with the

distribution of the turbulence in Fourier or wavenumber space. Use of Fourier

transforms implies that their applicability is limited to homogeneous turbulence;

however, their importance lies in the fact that they contain information about the

length scales of turbulence, something notably lacking in one-point closure models.

Extensions to inhomogeneous flows may be possible, but it is unlikely that these

theories will ever be applied directly to the complex engineering flows. Nonetheless,

they may be of use in the development of SGS models. In particular, one may

be able to regard the turbulence as locally homogeneous and apply the theory to

the prediction of the SGS turbulence. The objective is to obtain the best of both

worlds: the ability of LES to simulate inhomogeneous flows and that of theory to

provide length scale information.

In selecting a candidate turbulence theory on which to base an SGS turbulence

model, one should be guided by the following principles. The theory should be

successful in predicting homogeneous flows. The computation time should not be

too large. Finally, it should be capable of simplifications that will render it practical

for use as an SGS model.

There is no space to review turbulence theories here. Let it suffice to say that,

of the theories that we considered, the Eddy Damped Quasi-Normal Markovian

(EDQNM) model appears to have the brightest prospects. It meets the criteria

set forth in the preceding paragraph to a higher degree than its competitors. The

EDQNM model is based on simplifications of the moment equations in Fourier

space. The quasi-normal assumption replaces the fourth order moments by their

values for a Gaussian distribution. Eddy damping is introduced to restore some of

the important interactions removed by the quasi-normal hypothesis. Finally, the

Markovian assumption removes history effects that complicate the analysis. The

result is a system of non-linear integral equations for the second moments in Fourier

space. These are also the Fourier transforms of the two-point correlation functions;

hence this is a two-point closure method.

Solving the equations of EDQNM is not trivial. In the absence of further simpli-

fications, it is necessary to solve a coupled system of non-linear integral equations

in three dimensional wave space. This has been done for homogeneous flows with

excellent results. However, when using EDQNM as an SGS model for an inhomoge-

neous flow, it is necessary to solve these equations at each point at every time step.

Although EDQNM has been applied as an SGS model for homogeneous isotropic

turbulence, it is clearly impractical for more complex flows without additional sim-

plifications. Such simplifications have been used. For isotropic turbulence, one can

integrate over angles analytically and reduce the equation to one involving a single

independent variable. In other flows, the symmetries can be used to provide other,

less dramatic, simplifications. In the work reported here, we investigated possi-

ble simplifications in the homogeneous flow of most direct relevance to engineering

applications: homogeneous sheared turbulence.



Angular distribution of turbulence in wave space 73

3. Angular Distributions

One way to simplify EDQNM is to assume that the distributions of the second

moments in wave space can be represented as a sum of a small number of simple

functions. The equations could then be reduced to a set of non-linear algebraic

equations for the parameters. This would greatly reduce the cost of EDQNM and

could render it practical for use as an SGS model for inhomogeneous flows.

It is well-known that, in the inertial subrange, the spectral distribution of the en-

ergy obeys a power law. The viscous range can be represented by using a cutoff, the

details of which should not be important at high Reynolds numbers. Since the full

simulation data we will use as the basis of the current work is at Reynolds numbers

lower than those at which the model is to be applied, and the spectral distributions

are nearly always smooth, it was felt that there is little point in investigating the

distributions in wavenumber. We therefore concentrated on the angular distribu-

tion in wave space; caution is required because the results obtained may not apply

at higher Reynolds numbers.

The data on which our analysis is based represent isotropic turbulence which has

been sheared at a rate S = d_/dy until St = 12; the initial turbulence Reynolds

number based on microscale was approximately 50. The data, originally generated

by Mike Rogers, were supplied to us in the form of the Fourier-transformed velocity
field by Moon J. Lee.

The data were converted from Cartesian to spherical coordinates in wave space.

The ky direction was chosen as the pole of the spherical system while the k_ direction

was chosen as the origin for the azimuthal angle.

The angular distribution of the converted data was examined. At each wavenum-

bet, contours of each of the significant second moments (El 1, E2_, E33, and E12) and

the total energy were plotted as functions of the two spherical angles; only results

at the largest wavenumber for which an entire shell was available will be presented

here. The distribution was found to be smooth enough that it can probably be

represented as a sum of a small number of functions. The energy is concentrated

near the poles, indicating the presence of small scales in the ky direction caused by

shear-thinning of the eddies.

In order to further determine what is needed to fit the angular distribution, we

plotted the energy components on lines on which one of the angles is held fixed.

Figure 1 shows the results as a function of azimuthal angle for fixed polar angle

while figure 2 shows the energy as a function of polar angle for fixed azimuthal

angle. The distribution in polar angle can be fit with the first two terms of a

Fourier series while the distributions in azimuthal angle appear to require three

terms. Thus, approximately six terms should suffice to fit the angular distribution

of each component. If the distribution in wavenumber can be assumed, a total

of eighteen parameters should be the upper limit of what is needed to represent

the subgrid turbulence. With further experience, we may be able to reduce the

number somewhat. We estimate that using an eighteen parameter algebraic SGS

model would approximately double the cost of LES, a not unreasonable price if the

Reynolds numbers can be increased sufficiently.
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FIGURE 1. Distribution of Reynolds stresses over azimuthal angle ¢ at constant

polar angle 0 = 1.1794.

4. Future Work

We intend to continue the work described above. We will attempt to fit the

distribution of the second moments with a few functions as described above and

determine how many parameters are needed more precisely. At some later date,

we will try to perform an EDQNM calculation of homogeneous sheared turbulence

using the parameter set suggested by these fits. The results will be compared to

the original data used in this work and with the results of an EDQNM calculation

carried out in the usual way.
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FIGURE 2. Distribution of Reynolds stresses over polar angle 0 at constant az-

imuthal angle q_ = 1.5708.
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