
Center for Turbulence Research 147
Proceedings of the Summer Program 1987

N88-23101

A statistical investigation of the
single-point pdf of velocity and vorticity

based on direct numerical simulations

By M. MORTAZAVI 1, W. KOLLMANN ] AND K. SQUIRES 2

Vorticity plays a fundamental role in turbulent flows. However, most closure

models presently available do not treat vorticity in an explicit fashion. Hence it is

suggested to investigate the dynamics of vorticity in turbulent flows and the effect

on single-point closure models. The approach is to use direct numerical simulations

of turbulent flows to investigate the pdf of velocity and vorticity.

The pdf of velocity and vorticity is governed by a transport equation, which

contains terms describing the dynamical processes of vortex stretching, viscous

dissipation, and the effect of fluctuating pressure gradients as conditional fluxes

in velocity-vorticity and physical spaces. These fluxes, together with appropriate

boundary conditions, determine the evolution of the pdf from an initial state. Anal-

ysis of these fluxes shows that they cannot be represented in terms of the single-point

pdf only, but require structural information in terms of two-point pdf's or two-point

correlations. A direct way of getting information on the conditional fluxes is the

statistical evaluation of results obtained from direct numerical simulations of tur-

bulent flows, presently possible only at relatively low Reynolds numbers. This was

carried out for a homogeneous shear flow.

Consider a point (x,t) in a turbulent flow field. Let vi(x,t) and wi(x,t) be a

realization of velocity and vorticity at the chosen point. The quantity (Lundgren
1967)

] - _(v(x, t)- v)_(w(x, t)- w) (1)

denotes the fine-grained pdf of velocity and vorticity at (x, t). The expectation of

] is then the pdf at (x, _),

/(v,w;x,t) -< ] >, (2)

where < > denotes an ensemble average. The fine-grained pdf is conserved

0 0 (0,_,,_]) = o,o,1+ (O,v,])+ (3)

where Oi = O/Oxi and Ot = O/Ot. Averaging of (3) and the use of the balances for

an incompressible Newtonian fluid, in the absence of body forces, lead to the pdf

transport equation:
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where.., denotes the condition (v = V,w = W) and Sit =- ½(Oivj + Ojvi) denotes

the rate of strain.

This transport equation contains three dynamically different groups of terms.

The conditional flux of f due to the fluctuations of the pressure gradient

1

F_-< "-0_vlv= V,w = W > (5)
P

acts on f in velocity space only, since the vorticity transport equation does not

contain the pressure in explicit form. This implies that

lim Fif = 0
IVl--*o_

no matter what value W for vorticity is considered. In this preliminary report, we

will focus our attention on Fi.

The conditional fluxes caused by the fluctuating pressure gradient, vortex stretch-

ing and viscous stresses are functions of the point (x,/) and the conditioning vari-

ables (V, W). Hence, they are functions of up to ten independent variables. Conse-

quently, we consider conditional expectations with increasing number of conditions

in order to begin with a manageable number of independent variables. Integration

of equation (5) over vorticity space leads to

f Fi(V,W)f(V,W)dW = fV(v) f Fi(V,W)f(WlV)dW

and thus

where

Fv(V)fv(v) = f Fi(V,W)f(V,W)dW,

F_(V;x,t) = f FdV, W;x,t)f(WlV;x,t)dW
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denotes the conditional flux in velocity space irrespective of vorticity and f(WlV)

the conditional pdf of vorticity given velocity. Then,

=< = V >. (6)
P

Integration over parts of the velocity space leads furthermore to expectations

conditioned with a single variable,

F/(Vj;:,,t) =< a-O,plvj = >.
P

(7)

These quantities are most easily accessible to numerical evaluation and they con-

stitute, therefore, the starting point for the investigation.

The direct simulation of a homogeneous linear shear flow carried out by Rogers

and Moin (1987) and Rogers, Moin and Reynolds (1986) (case C128U12) was the

data base for the evaluation of the pdf's and the conditional fluxes. This was done in

three steps: (1) conditioning with one velocity component; (2) conditioning with one

vorticity component; (3) conditioning with two variables (two velocity components,

one velocity and one vorticity component or two vorticity components).

In the plots that follow, iso-probability contour lines are equally spaced, with

high values near the center. The important aspect is the shape of the contour lines,

and so the flow-dependent levels and coordinate ranges are omitted. Samples are

collected in discrete bins, which produces the rather jagged look to the diagrams.

The plotting package used plots the curves over the full range of velocity fluctuation

values encountered, ranging from the minimum to the maximum. The abscissa and

ordinate range from their mininmm to maximum values so their zeros are not exactly

in the center of the figure. At each extreme there is only one data point, and hence

no conclusion can be drawn on the statistical behavior there. Areas with inadequate

statistical sample, and hence highly uncertain values, are shaded.

The joint pdfs of the pressure-gradient component 01p and one velocity compo-

nent V1,1/'2, or 1/3 are shown in Figures 1-3. The skewed shapes of the iso-probability

contours show that 01p is weakly correlated positively with V1 and more strongly

correlated negatively with V2; the correlation with V3 is zero by symmetry. The

conditional pdfs of Opl are shown in Figures 4-6. They show that the conditioned

probabilities are of the same form at different values of Vi, with a mean value (ex-

pectation) that varies with the conditioning velocity. The conditional expectations

< 01p]vi > are shown in Figure 7. Note that they are linear in the velocity compo-

nents over the range of adequate sample, an observation of importance in modeling.

Figure 8 shows contours of the expectation of 01p conditioned on both 1/'1 and V2.

Note that these contours are straight in the region of adequate sample, consistent

with the linear behavior found in Figure 7, and that the rate of change with respect

to each velocity component is independent of the velocities.

The joint pdfs of pressure-gradient components and single vorticity components

show no discernable correlation between the two. Consequently, the expectation

values of the fluctuation pressure gradient, conditioned on the local fluctuation
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FIGURE 1. Iso-probability lines of f(vl,01p) in a linear shear flow.
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FIGURE 3. Iso-probability lines of/(v3,alp).
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Iso-probability lines of the conditional pdf f(O]p[t'2).
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Iso-probability lines of the conditional pdf/(O_plvs ).
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FIGURE 7. Rescaled conditional expectations < O]pJv_ >.
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vorticity, are essentially zero. For example, Figure 9 shows the contours of the

expectation of the streamwise pressure gradient O]p conditioned on the velocity

component V2 and the streamwise vorticity component 1411. Note that the expecta-

tion is independent of vorticity. Figure 10 shows the expectations of the streamwise

pressure gradient, conditioned on the vorticity components I47] and W2. The varia-

tions at either end are due to inadequate sample, and the flat portion in the middle

is at zero, indicating no dependence on the vorticity.

In summary, this preliminary study of homogeneous shear flow has shown that

the expectation of the fluctuating pressure gradient, conditioned with a velocity

component, is linear in the velocity component, and that the coefficient is indepen-

dent of velocity and vorticity. In addition, the work shows that the expectation of

the pressure gradient, conditioned with a vorticity component, is essentially zero.
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FIGURE 10. Conditional expectations < Ozplw_ >. -- a = 1; .... a = 2.


