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Reynolds Stress Models of
Homogeneous Turbulence

By T. -H. SHIH 1, N. N. MANSOUR _, and J. Y. CHEN 3

Existing and new models for the rapid and the return terms in the Reynolds

stress equations have been tested in two ways. One, by direct comparison of the

models with simulation data. The other, by simulating the flows using the models

and comparing the predicted Reynolds stresses with the data. We find that existing

linear models can be improved and that non-linear models are in better agreement

with the simulation data for a wide variety of flows.

1. Introduction

Homogeneous flows are considered to be basic flows in the study of complex tur-

bulent flows. These flows are the simplest turbulent flows, yet, the pressure-strain

and the dissipation rate terms in the Reynolds stress equations do not vanish in

these flows. These terms need to be modeled for closure of the Reynolds stress

equations, and are usually recombined into a so-called rapid pressure-strain and

a return term. On the other hand, the terms related to turbulence diffusion (for

example, the triple correlation tensor and pressure transport terms, which will com-

plicate the turbulence modeling) do not appear in homogeneous flows, this allows

us to concentrate on two of the important terms to be modeled. There exist several

models developed for these terms, we have for example, for the rapid term, the mod-

els of Naot, Shavit and Wolfshtein (1970), Launder, Reece and Rodi (1975, hereafter

referred to as LRR), Shih and Lumley (1985, hereafter referred to as SL), Reynolds

(1987), and others; for the return term, the models of Rotta (1951), Lumley (1978,

hereafter referred to as Lumley) and a second-order form by Shih, Mansour and

Moin (1987, hereafter referred to as SMM).

The research conducted at the CTR this summer concentrated on testing some

existing and new models developed for the rapid and the return terms. These

models were tested in two ways. First, we compared these models directly with

numerical simulation data, since direct evaluation of these terms is possible using
the full simulation data. Second, we used these models in a finite difference code for

the Reynolds stress equations and compared the solutions of the modeled Reynolds
stress equations with numerical simulation data.
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2. Reynolds stress Closure Models

2.1 Reynolds stress equation

For homogeneous turbulence, the Reynolds stress equations read as follows,

(ltiUj),t _---(UjUk)Ui,k- (Uiuk)Vj, k

q-( (pui,j) + (puj,i) )/p- 2tz(Ui,kUj,k)

where, ( ) stands for ensemble averaging. In this equation, the second line, i.e.

the pressure strain correlation tensor and dissipation tensor must be modeled. The

usual approach is to recombine the terms in the equations as follows:

(uiuj),, = Pij + II_j + II,_ - (2/3)(e),iij

where Pij is the production term,

Pi_ = -((ujuk)ui,_ + (uiu_)uj,k)

and II_j and IIi_j are called the rapid and the return term respectively and are
defined as

ri_j = (<p'_,i,j)+ <p',_j,i))/p

IIi2j = (<p_ui,j) + <p2uj,i) )/p- 2v(ui,kuj,k) + (2/3)(e),iij

where (e) = u(ui,kui,k), the pressures pl and p2 are solutions to the rapid and the

slow Poisson equations (for more details see SL).

2.2 Models

Based on realizability, Shih and Lumley (1985) and Reynolds (1987) proposed

the following model for the rapid term,

II_j =(1/5 + 2as)(qZ)(Ui,j + Uj,i)

-2/3(1 - as)(P_j - 2P_ij/3)

+(2/3 + 16as/3)(Dij - 2P,5i_/3)
(2.1)

+(6/5)bijP + (2/15)(Pij - Dij)

+(2/5)[((UiUk)Uj, q + ('lLjUk)Ui,q)(Uk_q)

-(uiup)(ujuq)(Up,q + Uq,p)]/ (q _)

where,

Dij = -( (ujuk)Uk,i + (uiuk)Uk,j)
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P = Pii/2 is the turbulent kinetic energy production,

as =-(1/10)(1 + 0.8F 1/2) (SL)

as ='(1/10){1 + 3.511-(1 - F)l/4]} (SMM)
/

If we retain in Eq. (2.1) the first three lines and set as = -1.45455, we get the
linear model of LRR.

A general form of the model for the return term is suggested by Lumley (1978),

and Shih (1984):

IIi2j = -(e){(2 + CyF_)b,j + 7[b_/+ (1/3 + 211 )b 0 + 2II _ij/3]} (2.2)

where

(1/9) exp(- 7.77/V_e) {72/x/_e

+80.1 ln[1 + 62.4(-I1 + 2.3111 )]}

-bijbji/2

=bijbjkbki/3

%(1 - F '1)

(q2)2/(9(e)v)

1 + 911 + 27111

O, "to =0, C I= 1

1, "to =0

r1=1/20, 7o=-2

Cf =

II =

III

,7=

Re =

F=

= 17/20,

3. Model Testing

(Rotta, 1951)

(Lumley)

(SMM)

3.1 Direct comparison with simulation data

The data for homogeneous strain of Lee and Reynolds (1985) and for homoge-

neous shear of Rogers, Moin and Reynolds (1986) were used to directly compare

the model expression with the simulation results. For all simulated shear flows, the

non-linear rapid model II_j, Eq. (2.1), and the non-linear return model Hi2, Eq.
(2.2), are in good agreement with the simulation data. The linear rapid model (

launder, Reece and Rodi, 1975) and the linear return model (Lumley, 1978) are

also included for comparison. Here, we present two typical flows: C128Ut(with a
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moderate shear rate S = 28.284) and C128Wt (with a high shear rate S = 56.568).

Fig.1 - Fig.4 show the comparison between the models and the simulation data. We

find that, the non-linear rapid model works well in each component of the Reynolds

stress equations (see Fig. 1 and Fig. 2), while the linear rapid model (LRR) does

not work well for the (uu) and (vv) components. On the other hand, Lumley's lin-

ear return model works very well in all sinmlated shear flows as indicated in Fig. 3

and Fig. 4. But, we find that tim non-linear return model, Eq. (2.2), works at least

as good as Lumley's linear model in all simulated shear flows, in addition, the non-

linear model works better in relaxation from simple strains (typical comparisons are

shown in Figs 5-7). The return to isotropy cases (or relaxation cases), after irrota-

tional strain, of Lee and Reynolds (1985) provide a critical evaluation of the return

model. We find that the return term models work well in all relaxation flows from

axisymmetric contractions, but the agreement between the model expression and

the data deteriorates in some relaxation flows from plane strains and axisymmetric

expansions. Fig.5 shows a typical relaxation from an axisymmetric contraction.

Fig.6 and Fig.7 show relaxations from the plane strain and axisymmetric expansion

respectively. The failure of the return term models in some relaxation flows from

plane strain (Fig. 6.1) and axisymmetric expansion (Fig. 7.1) is due to the inability

of the current models to reflect the effect of the initial condition on the relaxation

process.

3.2 Predictions using the modeled Reynolds stress equations

In this section, we choose the homogeneous shear case (C128W, high shear S =

56.568) of Rogers, Moin and Reynolds (1986) to evaluate the performance of the

rapid and return term models in predicting the Reynolds stresses. However, in

order to integrate the Reynolds stress equations, we need a model equation for the

dissipation rate (e). A standard transport model equation for (e) (Lumley,1978) was

used in conjunction with the models of SL, Lumley, and SMM. The (e) equation of

LRR was used in conjunction with the LRR model.

Figures 8.1 and 8.2 show the Reynolds stresses and dissipation rate as predicted

using the models of SMM (Eqs. 2.1 and 2.2). The model predicts well the shear

stress and the streamwise component of the Reynolds stress but slightly overpredicts

the cross stream components. Similar results were obtained using the models of SL

and lumley for the rapid and return terms (See Fig. 9b). Figure 9a shows the results

using the linear models of LRR. In this case the Reynolds stresses are overpredicted

by a significant amount.

4. Future Work

From this study, we conclude that the models given by Eq.(2.1) and Eq.(2.2) are

appropriate at least for homogenous turbulent shear flows. The linear models are

unable to predict the high shear case, and are expected to have severe limitations

for more general cases. The nonlinear models were developed based on a general

t The name of the flow cases are those of Rogers, Moin and Reynolds (1986)
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realizability conditions, we should be able to use them to model other flows. In

particular, these models should be extended to inhomogeneous flows and should be
evaluated in a similar manner.
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FIGURE 1. Rapid Pressure strain terms for homogeneous shear, S = 28.284 (case
C128U of Rogers, Moin and Reynolds, 1986). Comparison of models with data.
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FIGURE 2. Return Pressure strain terms for homogeneous shear, S = 28.284 (case

C128U of Rogers, Moin and Reynolds, 1986). Comparison of models with data.
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FIGURE 3. Rapid Pressure strain terms for homogeneous shear, S = 56.568 (case

C128U of Rogers, Moin and Reynolds, 1986). Comparison of models with data.
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C128U of Rogers, Moin and Reynolds, 1986). Comparison of models with data.
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FIGURE 7. Return Pressure strain terms for return from axisymmetric expansion

(cases P3R, a), and 03R, b), of Lee and Reynolds, 1985). Comparison of models
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FIGURE 8. Reynolds stresses and dissipation rate for homogeneous shear, S =

56.568 (case C128W of Roger, Moin and Reynolds, 1986). Comparison of prediction

using SMM with data.
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FIGURE 9. Reynolds stresses development for homogeneous shear, S = 56.568

(case C128W of Roger, Moin and Reynolds, 1986).

a) Comparison of prediction using LRR with data.

b) Comparison of prediction using SL with data.


