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NOMENCLATURE 

arc The total surface arc length on either the suction or the pressure 

side of the turbine blade of interest 

A , B Empirical parameters in the proposed modification. See eq. 

(4.6). Correlated as functions of TUe 

Cf Skin friction coefficient 

Cp Specific heat at constant pressure 

C~,CbC2 Constants in the k-e turbulence models. See Table 2.1 

dx Computational step size in the streamwise direction 

D Empirical function introduced in some low-Reynolds-number 

models to modify the dissipation rate variable near the wall. See 

eq. (2.11) and Table 2.2 

E Empirical function introduced in some low-Reynolds-number 

models. See eq. (2.13) and Table 2.2 

f 1 A low-Reynolds-number function used to modify the near wall 

behavior of the production tenn in the £ equation. 

f2 A low-Reynolds-number function used to modify the near wall 

behavior of the destruction tenn in the e equation. 

f~ A low-Reynolds-number function used to modify the near wall 

behavior of the turbulent viscosity. See eq. (2.10) 

h Mean static enthalpy 

h' Fluctuating static enthalpy 

h local heat transfer coefficient 
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h t V t Apparent turbulent heat flux 

H Total or stagnation enthalpy. See eq. (2.4) 

k Turbulent kinetic energy 

K Acceleration parameter. See eq. (1.4) 

I A mixing or a turbulence length scale. See eqs. (1.5) and (1.9) 

L~ A free-stream turbulence length scale. See eq. (1.3) 

Ml The number of computational nodes in the cross-stream direction 

M2 Ml-l 

M3 MI-2 

Nu Nusselt Number 

P Static pressure 

Pk Modelled production term in the k equation 

P r Molecular Prandtl number 

Prt Turbulent Prandtl number 

qw Heat flux at the wall 

R Gas constant in the ideal gas law (eq. (2.6)) or radius of a 

cylinder (eqs. (2.41)-(2.49)) 

Rex Reynolds number based on x 

ReS Reynolds number based on momentum thickness 

ReS,c Momentum thickness Reynolds number below whiCh Pk is set to 

zero in the implementation of the "PTM" model 

Res,S 

ReS,E 

Rt, Ry 

s 

Momentum thickness Reynolds number at the start of transition 

Momentum thickness Reynolds number at the end of transition 

Turbulent Reynolds numbers defined in eqs. (2.14) and (2.15) 

A very small number. s::::: 10-10 See section 2.3.4 



S 

S(A) 

St 

Tu 

U 

ul
, Vi, Wi 

w 
x 

Y 
y+ 

P 
8 

&r 
a 
£ 
A 

£ 

Streamwise distance from the stagnation point around either 

surface of a turbine blade 
twa 

Shear correlation. S(A)::::: JlU 

Stanton number. See eqs. (5.1) and (5.4) 

Turbulence intensity 

Mean velocity in the x direction 

friction velocity. ~ = ~ 'tw/p 

Fluctuating velocities in the x, y, z directions 

Apparent turbulent stress 

Pseudo-vorticity density. See eq. (1.8) 

Streamwise distance from the leading edge 

Cross-stream distance from the wall 

Non-dimensional distance from the wall defmed in eq. (2.16) 

Fluid density 

Boundary layer thickness 

Thermal boundary layer thickness 

Momentum thickness of the boundary layer 

Dissipation rate 

Modified dissipation rate variable. See eq. (2.11) 

Shear stress at the wall 

Molecular viscosity 

Eddy or turbulent viscosity 

Kinematic viscosity, '\) = J.1Ip 

Turbulent kinematic viscosity, 'Ut = Ilt /p 

IX 



x 

Ok' 0e Empirical constants in the turbulence models. See Table 2.1 and 

eqs. (2.12)-(2.13) 

ro Nondimensional stream function. See eq. (2.21) 

'I' Stream function. See eq. (2.22) 

X Grid coordinate used in grid generation method. See eq. (2.23) 

A. Local acceleration parameter based on the momentum thickness 

See eq. (2.31) 

A Local acceleration parameter based on the boundary layer 

thickness a. See eq. (2.32) 

Subscripts 

e 

1 

w 

o 

Special 

min(a,b) 

[a] 
max 

LRN 

PTM 

Denoting free-stream value 

Denoting value at the initial starting location of the calculation 

Denoting value at the wall, ie. y=O 

Denotingvaluem x=O 

Denoting the minimum of the two values a, b 

Denoting the maximum allowable value of a 

Denoting the logarithm to the base e of a 

Denoting the time average of the fluctuating quantity a' 

Short for Low-Reynolds-Number 

Acronym for Production Term Modified. Used to denote the k­

e LRN model modifications developed in this thesis. 



CHAPTER ONE 

INTRODUCTION 

1.1 THE SCOPE AND OBJECTIVES OF THIS THESIS 

1 

As desired operating temperatures and efficiency levels of advanced 

turbine engines continue to increase, the accurate prediction of gas side heat 

transfer on the turbine blades becomes increasingly critical in the 

development and design process. Although methods to accurately solve a 

variety of fluid flow and heat transfer problems have been developed, 

efforts to apply and extend these methods to the calculation of heat transfer 

on turbine blades have so far proved somewhat unsatisfactory. This is due to 

the complex nature of the transitional and turbulent flow inherent in the 

problem and the failure of our mathematical models to consistently simulate 

these phenomena correctly. 

The main goal of this thesis is to describe the development of an 

improved method of predicting transition in boundary-layer flows 

developing under conditions characteristic of gas turbine blades. Knowing 

somewhat the complexities of this problem from the start, certain limitations 

were of necessity made on the scope this work. The first of these was to 

consider only the time averaged two-dimensional aspects of the problem. On 

a turbine blade, where endwall effects can be significant, this translates to 

considering only the nearly two-dimensional midspan region. Furthermore, 

since there are a large number of potential approaches to solving this 

problem, a restriction was made on the framework within which an 
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improved solution method was sought. The work presented here will focus 

on exploring and developing the potential of low-Reynolds-number k-e 

turbulence models for solving this problem. 

A variety of different low-Reynolds-number ( hereafter referred to as 

"LRN") modifications to the standard k -e model have been proposed in the 

literature. These modifications are designed to extend the validity of two 

equation turbulence models through the viscous sublayer to the wall. One 

attractive characteristic of this type of model is the seemingly natural process 

by which boundary layer transition is simulated when the free-stream flow is 

turbulent. However, since these methods are relatively new, there is a lack 

of adequate documentation showing how well the starting location and length 

of transition is predicted by these methods for simple flows. Thus, one 

objective of this thesis is to test and clearly document the predictive 

capabilities of two of these models. Both an empirical correlation and 

specific experimental data sets will be used to provide a broad background 

within which to evaluate and contrast these models. 

The next objective is to use knowledge gained by exploring these 

methods on less complex flo~s, to propose modifications designed to 

improve the transition predictions in more general situations typical of a 

turbine blade. These modifications will then be thoroughly tested against a 

wide range of experimental data. Factors known to influence transition and 

which will be included in these tests include the effects of free-stream 

turbulence, strong favorable pressure gradients, and variable properties. In 

concluding these tests, the predictions of the method will be compared with 

the results from a number of actual turbine blade cascade experiments. 
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1.2 OVERVIEW OF TURBINE BLADE HEAT-TRANSFER 

Although the focus of this thesis is on only one aspect of the. total 

external heat transfer problem (transition), a somewhat broader overview of 

the problem will be given here as a means of setting a proper perspective. 

1.2.1 General description 

The problem of external heat transfer on turbine blades has become 

especially important in recent years as the desired operating combustion 

temperatures have now significantly surpassed the melting temperatures of 

the materials available for constructing the turbine components. In the past, 

most design decisions have been made from the results of very expensive 

experimental work. As numerical models have become more sophisticated, 

and computers have increased in speed, the potential to reduce the number of 

required experiments by using appropriate computer simulation in the design' 

loop has been recognized. And indeed, this has been realized in many areas 

of the design process. However, although much progress has been made, 

agreement between experiment and the numerical predictions for the heat 

transfer on the surface of the turbine blades themselves has still not been 

consistently satisfactory, especially for the region of the blade over which 

transition occurs. 

In a typical turbine engine, large numbers of blades extend radially 

outward from a central shaft, the tips leaving only a very small clearance 

between the blade and the outer endwall. Hot gas from the combustion 
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chamber, at a temperature on the order of 2500 F (1370 C) and at a pressure 

of 20-25 atm. enters the turbine region in a highly agitated, turbulent 

condition. The gas then proceeds through alternating rows of blades 

(moving ) and vanes (fixed) where lateral kinetic energy from the 

combustion gases is converted into rotational kinetic energy. 

A cross-section at midspan of a typical turbine blade is shown in 

Figure 1.1. The underside of the blade is commonly called either the 

"pressure" or "concave" side. The top side of the blade is commonly called 

either the "suction" or the "convex" side. On each blade there exists a 

stagnation point, the place on the blade where a line drawn normal to the 

surface is exactly parallel to the approaching upstream flow. It is from this 

point, and extending around each side of the blade, that a thin viscous region, 

the boundary layer, develops and grows. Outside of this region, although 

the flow may still be complicated, the flow field is essentially inviscid. 

Because of the distinctly different nature of these two regions, most attempts 

to model or simulate the flow field are made by analyzing the two regions 

separately. The larger inviscid region is calculated using methods which 

solve the inviscid Navier Stokes equations, ie. Euler's equations. The thin 

region close to the surface is solved using equations which include the 

important viscous terms, but neglect other terms due to the parabolic nature 

of flow. 

In a real turbine, both the inviscid outer region and the thin boundary 

layer region are three dimensional in character. However, in the midspan 

region, three dimensional effects appear to be of secondary importance. It is 

generally believed that in this region an analysis neglecting these effects 
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should not be seriously in error. Furthennore, it is in this region that the gas 

temperatures are usually highest and thus of greatest concern. This is not to 

say that three dimensional effects are unimportant. For example, the endwall 

region heat transfer problem, strongly three dimensional in nature, is also of 

great importance. That problem, however, can hardly be expected to be 

fully solved unless the flow is first well understood in the neighboring nearly 

two dimensional midspan region. 

The most serious challenge to the validity of the two dimensional 

assumption has been the theory that the observed increase in heat transfer on 

the concave side was caused by three-dimensional streamwise vortices 

similar to the Taylor-Gortler vortices seen in laminar flow. However, Kays 

and Moffat [40] have argued very convincingly that this is not the case and 

conclude that "a two dimensional code should work as well in the concave 

region as in the convex". Thus from here on we will concentrate on those 

factors which can be modeled within the framework of a two dimensional 

boundary layer approach. 

The boundary layer development on a typical gas turbine blade is 

influenced by a great number of complicating factors, many of which are not 

yet fully understood. A list of topics which are important would include the 

following: 

* free-stream turbulence effects, 

* effects of adverse and favorable pressure gradients, 

* laminar-turbulent transition, 

* relaminarization, 
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* near-wall, "low-Reynolds-number" effects, 

* stagnation flow with free-stream turbulence, 

* curvature effects, 

* body force effects (due to spinning), 

* variable property effects, 

* effects of surface roughness. 

This is a formidable list, and most of these continue to be in and of themselves 

topics of continuing extensive research. Nevertheless, in order to accurately 

solve the turbine blade heat transfer problem, we must in some way account 

for all of these effects which prove significant. Furthermore, any major 

synergistic effects, if they occur, must also be appropriately modeled. 

It is not possible within the scope of this introduction to give a 

thorough discussion and literature review for each of these topics 

individually. However, a brief introduction and review of some of the more 

recent literature with respect to four of the most important of these topics 

will be given next. The topics and factors that are generally believed to be of 

greatest importance include transition, free-stream turbulence effects, 

pressure gradient effects, and curvature effects. The reader may also wish to 

consider the excellent overview of many of these factors as they relate to 

turbine blade heat transfer presented by Graham [28]. Other references 

which provide a good source of general information relating to this problem 

include Martin and Brown [49] and the introductory material in Hylton et al 

[34]. 
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1.2.2 Transition 

The process by which a laminar boundary layer changes to a turbulent 

boundary layer is termed transition. Since the flow and heat transfer 

characteristics of these two regimes are so dramatically different, the 

accurate prediction of this process is very important. Unfortunately, in most 

fluid flow problems of interest, transition is also a very difficult process to 

model. It is one of the major stumbling blocks in the prediction of the 

external heat transfer on gas turbine blades [28]. 

Transition is a complex phenomenon and is influenced by a variety of 

factors. Reynolds number, free-stream turbulence, pressure gradient, 

surface roughness, and curvature are just a few of the parameters found to be 

important. The details of the mechanisms by which transition occurs are not 

completely understood despite a vast amount of research. We do know that 

the onset of transition is essentially a stability problem. For example, from 

the mathematics of stability theory, we are able to learn the conditions under 

which small perturbations are amplified instead of damped, a necessary first 

step in the transition process. 

Early research focused primarily on the simple case of transition 

occurring on a flat plate under a relatively quiescent free-stream flow. 

Theory has predicted and experiments now verified that for this case the 

process begins with the formation of two-dimensional Tollmien-Schlichting 

waves moving in the direction of the flow. The process becomes three­

dimensional and non-linear as the waves develop spanwise variations and are 

amplified. From then on there is a cascade of vortex breakdowns which end 
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III fully three dimensional fluctuations of an almost random nature. 

Experimentally one finds that the breakdown of the laminar boundary layer 

does not occur everywhere across the flow at the same stream wise location. 

The breakdown occurs instead at apparently random spots, with bursts so to 

speak of turbulence. These turbulent spots spread laterally downstream until 

the entire boundary layer is engulfed. The final stages of the transition 

process manifest themselves by a relatively sharp increase in the skin friction 

coefficient. In the case of heat transfer, this will also correspond to a sharp 

increase in the Stanton number. Tani [84] is one source of a fairly detailed 

review of this process as it is currently understood. 

Probably the most dominant factor modifying the process of transition 

is the magnitUde of the free-stream turbulence intensity. The major effect of 

this influence is to displace the location of transition upstream, and to shorten 

the length over which it occurs. It also tends to increase the spanwise 

homogeneity of the transition process. This will be discussed in more detail 

next in section 1.2.2. 

Adverse pressure gradients and convex curvature also tend to promote 

the transition process, as both of these factors are destabilizing to the 

boundary layer. Conversely, favorable pressure gradients and concave 

curvature are stabilizing, and thus tend to inhibit the start of transition. 

Unfortunately, research has not yet clearly distinguished the separate effects 

of these parameters in a well quantifiable manner. 
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1.2.3 Free-Stream Turbulence 

Free-stream turbulence has been found to influence every stage in the 

development of the boundary layer. It's importance to the work in this thesis 

is made clear in the following quotation. 

"The major uncertainty in predicting gas side heat transfer rates 

anywhere on the blade is the interaction of the free-stream 

unsteadiness and turbulence with the boundary layers on the blade. 

Such interaction will determine the nature of the boundary layer, 

control the mechanism of transition and in the last analysis, establish 

the levels of heat transfer." 

R. W. Graham, 1979 [28] 

The definition of free-stream turbulence intensity is not always 

consistent within the literature. This variation is caused by the inclusion of 

the turbulent fluctuations in each direction for some cases, but only the 

stream wise direction in others. When a distinction is needed within this 

thesis, the following nomenclature and defmitions will be used. 

(1.1) 

(1.2) 
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The primary effects of free-stream turbulence are the enhancement of skin 

friction and heat transfer, and the displacement upstream of the transition 

region. However, the degree to which this occurs varies depending upon 

both the local nature of the boundary layer over which it occurs, and 

according to other free-stream conditions such as the pressure gradient. 

The effect of free-stream turbulence on stagnation flow heat transfer 

has been studied over the years by Kestin and co-workers [41,43]. They have 

both documented the observed increase in heat transfer for various levels of 

TUe, and presented evidence suggesting a particular mechanism as 

responsible for this increase. 

The effect of free-stream turbulence on a developing laminar 

boundary layer is somewhat more difficult to determine. This is because as 

the free-stream turbulence is increased, the region over which the boundary 

layer remains laminar becomes increasingly short, and measurements 

correspondingly more difficult. It was initially reported by researchers such 

as Junkhan and Serovy [38], and Kestin et al [42], that laminar heat transfer 

rates were not perceptibly increased for zero pressure gradient conditions. 

However, other work presented by Dypan and Epik [24], has reported 

significant increases in heat transfer for the laminar case. 

In the case of fully turbulent flows, the research has been more unified 

and consistent in showing an increase in heat transfer and skin friction. Some 

of the more recent published papers which deal with this include the work of 

Hancock and Bradshaw [31], Meier and Kreplin [53], and Blair [11,12]. The 

results of Blair are representative of the basic characteristics described in all 

of these papers. He reports that higher free-stream turbulence leads to 
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slightly fuller velocity profiles, resulting in higher momentum thicknesses 

and smaller form parameters. This also leads to an increase in skin friction 

and heat transfer. For example, Blair found that for a 6% turbulence 

intensity level, the heat transfer and skin friction are increased by 18% and 

14% respectively. He also reports that the effects of free-stream turbulence 

can be correlated reasonably well with two parameters, TUe (eq. 1.1) and L~, 

a free-stream turbulence length scale defmed as; 

_( 12)3/2 
U U e 

Le = ( ) 
d U'2 e 

Ue d x 

(1.3) 

The effect of Tue on transition has also been extensively studied, and it 

is the results of this research that are of primary concern to the work of this 

thesis. Representative of the many experiments dealing with this topic for 

zero pressure gradient conditions are those of Blair and Werle [8], Rued 

[72,73], Wang et al [90,91], Abu-Ghannam and Shaw [2], and Junkhan and 

Serovy [38]. In each of these studies the previously mentioned upstream 

displacement of transition is clearly exhibited. Furthermore, although there 

is significant scatter in the data, it has been found that these experiments can 

be reasonably correlated to the local momentum and displacement thickness 

Reynolds numbers. Correlations of this type have been presented by Hall and 

Gibbings [30], Van Driest and Blumer [89], and more recently by Abu­

Ghannam and Shaw [2]. 
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Other experiments have attempted to show the combined influence of 

free-stream turbulence and pressure gradients on transition. This is 

discussed in the next section. 

1.2.4 Pressure Gradients 

The other dominant factor influencing boundary layer development, 

transition, and the heat transfer on a turbine blade is the pressure gradient 

influence. The pressure side of a turbine blade is commonly characterized by 

a strong acceleration ("favorable" pressure gradient) along the entire length 

of the blade. In contrast, the suction side is often characterized by an initial 

region of extremely strong acceleration, followed by at least a short region 

of mild deceleration ("adverse" pressure gradient). The effects of pressure 

gradients on laminar and turbulent boundary layers has been a long standing 

topic of research. Much of the past research has been dedicated to the study 

of pressure gradients on either fully turbulent, or fully laminar boundary 

layers, without other complications. An excellent review of the literature 

dealing with this topic can be fOl;lIld in Kays and Moffat [40]. 

Recently, studies have focused more strongly on the combined 

influence of free-stream turbulence and pressure gradient on both fully 

turbulent boundary layers, and on transition. These studies are of even 

greater relevance to the turbine blade heat transfer since they would include 

any synergistic interactions that might occur. Recent studies of particular 

importance to the work in this thesis include those of Blair and Werle[9,lO], 

Rued and Wittig [72,73], Abu-Ghannam and Shaw [2], Junkhan and Serovy 
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[38], and Van Driest and Blumer [89]. The following outline summarizes 

some of the important qualitative aspects of acceleration which are important 

to the work in this thesis. 

Acceleration of the free-stream flow; 

1) causes stretching of the turbulent eddies which results in reduced 

turbulent intensities. 

2) is stabilizing, ie. it tends to prevent or hold off transition, and 

when it does occur the transition length is longer. 

3) can cause relaminarization, a process whereby an originally 

turbulent boundary layer reverts to a quasi-laminar state. 

4) tends to diminish heat transfer rates 

5) is often measured with reference to an acceleration parameter K 

defmedas 

Deceleration of the free-stream flow: 

1) enhances turbulent intensities 

2) increases heat transfer and skin friction 

3) is destabilizing, ie. promotes transition 

4) may lead to separation 

(1.4) 
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1.2.5. Curvature 

It has been known for many years that surface curvature can 

significantly affect both laminar and turbulent boundary layers. These 

effects have been found to occur even for very small radii of curvature 

(B/R=I00). Qualitatively one finds that concave curvature tends to increases 

the skin friction and the heat transfer, whereas convex curvature tends to 

decrease the skin friction and heat transfer. 

The effects of curvature on a boundary layer are different in 

magnitude for turbulent flow as compared to laminar flow, although still 

qualitatively similar. The fractional change in shear stress due to curvature 

in laminar flow is of the same order of magnitude as the ratio of the· shear 

layer thickness to the radius of curvature (BIR). In contrast, turbulent flow 

experiments show changes in shear stress an order of magnitude greater than 

for laminar flows of the same curvature [14]. This would indicate that 

streamline curvature increases the Reynolds stresses in turbulent flow 

roughly ten times as much as it changes the viscous stresses. 

Experiments have shown that convex curvature effects the turbulence 

in the boundary layer such that large scale eddies are destroyed and the 

turbulent length scales reduced. These effects are stronger in the outer 

regions of the boundary layer than in the inner, and tend to be two 

dimensional in nature. These changes result in reduced heat transfer and skin 

friction coefficients [26,27,81]. In contrast, concave curvature tends to 

increase the turbulence intensity and Reynolds shear stress across the middle 

and outer parts of the boundary layer, causing an increase in the heat transfer 
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and skin friction. Furthennore, these effects can be three dimensional in 

nature. In laminar flow these three-dimensional effects manifest themselves 

as the so-called Taylor-Gortler longitudinal vortices. Unfortunately, the 

effects on turbulent boundary layers are still not completely dermed and the 

topic somewhat controversial. Barlow and Johnston [6] have report.ed one of 

the most recent major studies in this area. 

A peculiar characteristic of turbulent boundary layers subjected to a 

curved region and then returned to flat plate conditions, is a surprisingly 

slow recovery to flat plate conditions. Experimental results show that when 

curvature is suddenly removed after a region of convex curvature, that there 

is a quick partial recovery followed by a slow exponential-decay-like return 

to flat plate conditions [3,27]. 

The relative importance of curvature effects on transition have yet to 

be extensively studied We do know that convex curvature is qualitatively 

stabilizing ( ie. suppresses transition) and concave curvature destabilizing (ie. 

promotes transition). The study of Wang and Simon [93,(91)] is a recently 

reported effort to gain a better understanding of these effects. This study was 

done at two different levels of free-stream turbulence and with convex 

curvature. Their results seem to indicate that except for very low free­

stream turbulence levels, the effect of convex curvature on transition is 

minor. This conclusion has important implications to the turbine blade heat 

transfer problem because in general, the free-stream turbulence levels are 

moderate to high over most of the blade. Thus, based on these results 

curvature effects would not be expected to strongly influence the transition 

process on turbine blades 
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1.3 LITERATURE SURVEY 

This literature review will focus on published work directly related to 

the low-Reynolds-number modeling technique developed in this thesis. Also, 

the experimental data with which to test the model will be reviewed. For 

perspective, a brief overview of turbulence modeling in general, and the 

place that two-equation "k-e" models have among the spectrum of techniques 

available will also be given. 

1.3.1 Overview of Turbulence Modeling 

The calculation of transition by necessity requires the capability to 

model fully turbulent flow after the transition process is complete. Thus, all 

transition models must in some manner be coupled to a turbulence model. 

Since a large variety of methods to model turbulent flow have been 

developed over the years, a brief overview will be given here so as to place 

the k-e turbulence model in perspective. 

There are tremendous differences In complexity and range of 

applicability among turbulence models. Usually the cost of increased 

generality is a corresponding increase in complexity and computational 

effort. Furthennore, there are many more models that have been proposed, 

than there are that have been adequately tested against experimental data. 
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Turbulence models may generally be classified according to their 

complexity in the following manner, 

a) mixing-length models (zero order models) 

b) "N" equation models, N=I, 2, .... 

c) Large eddy simulation models (full Navier Stokes equations) 

The oldest, simplest, most well known, and even today, most 

commonly used type of models are variations of Prandtl's original approach 

introduced back in 1925 [63]. This method relates knowledge of a so called 

mixing length "1", to the magnitude of the Reynolds shear stress through the 

concept of a turbulent or eddy viscosity "ut" proposed by Bousinesq [16] in 

1877. This relationship is shown below. 

(1.5) 

One implication of models of this type is the presumed equivalence between 

the "generation" and "destruction" of the turbulence quantities affecting the 

Reynolds shear stress. This is the so called "near-equilibrium" assumption. 

Application of the Prandtl mixing length method requires empirically 

determined knowledge of the mixing length. Fortunately a vast amount of 

experimental data has been gathered for this purpose. This has provided the 

engineer with a very valuable tool for analyzing many commonly 

encountered flows. Furthermore, with todays computer capabilities most 

calculations are quick and inexpensive. However, outside the domain for 
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which an appropriate mixing length has been empirically determined the 

method cannot be applied with confidence. 

To calculate transition within the framework of a mixing-length 

model, additional empirically based sub-models must be introduced in order 

to detennine the start, the length, and the path of transition. The basic idea is 

to algebraically vary the magnitude of Ut from zero to an appropriate fully 

turbulent value during the simulated transition process. An excellent review 

and evaluation of the these types of transition models as applied to convex­

curved transitional boundary layers has been given by Park and Simon [60]. 

In a similar manner, Hylton et al [34] have evaluated, developed and applied 

this type of modeling to a variety of turbine blade data sets. Another study 

of this kind is that of Forest [25]. These studies have helped to establish the 

limits of applicability for models of this type, and also provided motivation 

to continue to explore higher order turbulence models so that the dependence 

on near-equilibrium empiricism can be relaxed. 

The "N" equation model category implies that N additional transport 

equations are solved to detennine local values of N statistical properties of 

the turbulence. These turbulence quantities are then related to appropriate 

effective transport properties in the time-averaged momentum and energy 

equations. The general form of these additional equations can usually be 

written as follows; 

p ~r -div (r~ grad <1» - S~ = 0 (1.6) 
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where <I> is the turbulence quantity, DlDt is the substantial derivative, r <I> is a 

diffusion coefficient, and S<I> is a source tenn(s). 11tis concept in turbulence 

modeling was first introduced by Kolmogorov [44] and Prandtl [64], but it 

was not until computers became available that these approaches could 

effectively be developed. 

Most one equation models choose the turbulent kinetic energy "k", as 

the turbulence property of interest (some work has been done with an 

equation for the shear stress u'v'). Examples of models of this type include 

those of Bradshaw et al [15], Nee and Kovaszney [56], Hassid and Poreh 

[33], and Grundmann and Nehring [29]. To account for the near wall 

damping of turbulence, these models can be modified such that the turbulence 

viscosity includes a functional dependence on a local turbulence Reynolds 

number. Since in this method an appropriate length scale must still be 

prescribed algebraically according to previously determined empirical 

information, the method also suffers from a significant dependence on flow 

dependent empirical information. 

A variation on the one equation approach that is simpler in some 

respects, is the solution of an integrated fonn of eq. (1.6) for the turbulent 

kinetic energy. This introduces additional information into the turbulence 

modeling without the need to solve an additional partial differential equation. 

However, other empirical and theoretical relationships must be used in 

addition to the prescription of the length scale profile in order to compute the 

flow. A model of this type has been developed by McDonald and Camarata 

[51] and was extended to incorporate a transition modeling capability by 

McDonald and Fish [52]. They also provide a way to include the effect of 
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free-stream turbulence and of surface roughness. This method was tested 

against a number of flows and shown to give reasonable results. However, 

when applied by Daniels and Browne [20] to the turbine blade data of Daniels 

[19], the method did not appear to show improvement over simpler mixing 

length models. 

Two-equation turbulence models, like most one equation models, solve 

an equation for k., the turbulent kinetic energy. In addition, they also solve 

an equation for a parameter related to the local turbulence length scale. 

Choices for this parameter have varied, and three of the most common 

are "E", the dissipation rate; "W", a pseudo-vorticity density; and "k*l", 

where I is a turbulence length scale. These quantities are related to each other 

through the following defmitions; 

C k3/2 
1= D 

E 

where CD is a constant. 

(1.7) 

(1.8) 

(1.9) 

Thus, it is possible to transform a set of k-W equations, into sayan 

equivalent set of k-E equations. This can be instructive for it clarifies that the 

real differences between the various models lie in the representation of the 

transport and source terms, and in the constants employed. Since "exact" 
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equations governing both k and e can be derived, the differences between the 

various models are introduced in the process of reducing these exact forms 

into a tractable approximate form suitable for computation. Modelers must 

choose which terms can be considered insignificant and dropped, and how 

best to approximate the higher order correlations that remain. These 

choices, and then the determination of the constants that are introduced, are 

the essence of turbulence modeling in the "N-equation" category. 

Examples of the k-e model that have been proposed are Harlow and 

Nakayama [32], and Jones and Launder [36]. Spalding [83], llegbusi and 

Spalding [35], and Saffman [75] have used the k-W formulation, while Rotta 

[71] and Ng and Spalding [57-59] have developed k-kl models. The reader is 

referred to an excellent monograph by Rodi [70], and a paper by Launder 

and Spaulding [48] for more detailed information. 

It is important now to introduce and explain what a low-Reynolds­

number form of a two-equation turbulence model is. In regions adjacent to 

solid walls, the character of turbulent motions is significantly altered. To 

properly account for this region, additional modifications must be made to 

the turbulent transport equations. This is usually done through the 

introduction of so called low-Reynolds-number functions. Thus any of the 

"high-Reynolds-number" two-equation models mentioned earlier, if further 

modified to account for this effect, can be referred to as a LRN form of that 

particular model. 

This "LRN" type of formulation is central to the work contained in this 

thesis because of an additional characteristic possessed by these models. This 

characteristic is that the model becomes computationally valid in laminar, 
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transitional, and turbulent flow regimes without additional modifications. 

Furthennore, the influence of free-stream turbulence is naturally accounted 

for. 

Since the focus of this thesis is on the use of two-equation models to 

predict transition, a more specific literature review and discussion relative 

to this topic will be given next. Also, in chapter two, a more detailed 

description of this approach from a mathematical and computational point of 

view will be given. Before doing this, a brief comment about even higher 

order turbulence models is in order. 

"Reynolds stress or "stress equation" type models add addition partial 

differential equations which may compute all of the components of the 

turbulent stress tensor. One difficulty in applying this type of model to 

transitional boundary layers is the lack of appropriate low-Reynolds-number 

functions to simulate the near wall conditions. Another problem is the lack of 

infonnation about the turbulence quantities which must be specified at the 

free-stream boundary. For each quantity calculated as part of the method, 

appropriate boundary conditions and starting profiles must be specified. 

Adequate infonnation about these properties within the turbulent gas flow 

exiting the combustion chamber of a gas turbine engine is not currently 

available. 

Finally, methods have been developed which actually compute the 

three-dimensional time dependent large eddy structure of the turbulent flow, 

but use simpler empirical models for the smaller scale turbulence. These 

methods are currently not sufficiently developed, and too computationally 

expensive and time consuming to be used for the problems considered here. 



1.3.2 Predicting Transition with Two-Equation Turbulence 
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It appears that Pridden [65] was the first to explore the use of a two­

equation turbulence model in predicting transition on external boundary 

layer flows. Although Pridden's published work was basically limited to 

showing the potential of the procedure, the results of exploratory 

calculations for the pressure surface side of Turners experimental turbine 

blade data [87] were later published by Launder and Spaulding [48]. These 

results showed fairly good reproduction of the data. Unfortunately, no 

details of the procedure relative to initial conditions. boundary conditions, 

and or the application to simpler flows is given. 

Wilcox [95,96] appears to be the next to use a two equation model to 

predict transition. He used the Saffman-Wilcox two-equation turbulence 

model [76] (a k-W formulation) and developed a method to modify two 

constants in the model with an empirical function of turbulence Reynolds 

number. His comparison with limited experimental data showed good 

agreement for the start of transition, but the predicted length of transition 

was not shown. Daniels and Browne [20] independently applied this method 

to the calculation of the turbine blade data of Daniels [19]. This was part of 

an evaluation of five different computational techniques. Unfortunately, one 

conclusion of this comparison and evaluation was that no significant 

advantages were gained from the use of this (or other) more complex 
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turbulence model over the mixing length type models tested. The major 

difficulty for all of the methods considered was the accurate prediction of the 

transition region. A further refinement [97] uses linear stability analysis to 

derive the empirical model function and the initial turbulence profiles, but 

has not yet been extensively tested to this author's knowledge. 

Dutoya and Mitchard [23] develop a low-Reynolds-number k-E model 

specifically for use in predicting gas-turbine blade heat transfer. In 

formulating the LRN functions, they provided for one constant to be 

calibrated with the onset of transition. For flat plate adiabatic flow they 

report good agreement between their model and the displacement thickness 

Reynolds number data at the onset of transition as predicted by McDonald 

and Fish [52]. They also compare the qualitative predictions of the model 

against the data from a cooled turbine inducer blade , showing correct trends 

on the suction side, but a problem with relaminarization on the pressure side. 

Flat plate calculations were not compared to specific data nor was the 

question of a correct transition length considered. Initial turbulence profiles 

were ·all specified relative to a Blassius velocity profile and calculations were 

started at Rex=103 for the flat plate cases. They reported (but do not 

document) that the transition predictions were insensitive to starting profiles 

for starting locations of Rex< 1 04. This does not agree with the results that 

will be described later in chapter 3. This model was later considered in an 

evaluation of of Low-Reynolds number models presented by Patel et al. [62]. 

They report that compared to the other models tested, this particular 

fonnulation was not as successful as many other models. 
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Arad et al. [4] applied the k-kl turbulence model of Ng [57] modified 

by the LRN functions proposed by Wolfshtein [98], to predict transitional 

flow in axisymmetric boundary layers. No additional modifications were 

made to influence transition. Some limited comparisons between calculated 

Reynolds Numbers at the start of transition showed good agreement with data 

for zero pressure gradient flow. No discussion of transition length is made 

nor is there an indication as to whether or not the calculations are sensitive to 

the starting profiles used or to the starting location. 

Hylton et al.[34], as part of their analytical methods evaluation process, 

attempted to use an implementation of the Jones-Launder two-equation LRN 

model [37] to predict flows over a variety of turbine blade cascade data sets. 

However, they found that their implementation failed to predict transition 

when applied to the turbine blade cascade data conditions. Although they 

indicate the method succeeded for simpler flows with free-stream 

turbulence, that work was not documented. Thus an evaluation of transition 

predictions was not possible. 

Wang, Jen, and Hartel [90] have applied the LRN model of Jones and 

Launder [37] to the calculation of boundary layers on flat plates and to the 

turbine blade cascade data of Hilton et ale [34]. Although results from flat 

plate transition calculations are shown, no attempt to compare either the start 

or the length of transition with experimental data or with a correlation is 

given. Furthermore, the sensitivity of the calculations to the initial starting 

location and proflles is not discussed. For the airfoil predictions, a two-zone 

method near the stagnation region is developed for prescribing the 

turbulence boundary conditions The key parameter is a critical velocity., 
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which was correlated with turbulence level and a leading edge Reynolds 

number such that the data is reasonably reproduced. Also, the pressure side 

and suction side require different correlations. 

Some of the most extensive previous work in this area is that of Rodi 

and Scheuerer [66,67,77]. They use the Low Reynolds Number model of 

Lam and Bremhorst [45], together with an empirically correlated method of 

prescribing the initial profiles for k and E. They are the first to begin to 

focus on the sensitivity of the calculations to the prescribed initial conditions 

and boundary conditions, pointing out the lack of adequate documentation of 

these areas in previously published work. The model was tested and an 

empirical coefficient "al" calibrated against the data of Blair and Werle [8]. 

Also, the turbine blade data of Daniels [19] was calculated. More recently, 

the model was independently applied by Zerkle and Lounsbury [99], once 

again to the data of Blair and Werle [8], and then to vane cascade tests. This 

model was also tested as part of the evaluation section of the work presented 

in this thesis. This evaluation of the method resulted in two criticisms. The 

first, also recognized by Rodi and Scheuerer themselves, is that the length of 

transition is consistently under predicted. The second is that when tested 

against a range of flat plate zero pressure gradient flows with different free­

stream turbulent intensities, the method did not consistently predict the start 

or end of transition in accordance with the correlation of Abu-Ghannam and 

Shaw [2]. The details of this evaluation and some of the computations are 

given in chapter 3. 

In summary, a review of the literature reveals that the potential of 

LRN two-equation turbulence models to predict the qualitative aspects of 



27 

transition for boundary-layer flows with free-stream turbulence has clearly 

been shown by previously published work. However, in assessing this work 

it appears that further research may benefit from a closer evaluation and 

documentation of the prediction of simple flows before the models are 

applied to more complex situations. In particular, the capability to predict 

not only the start of transition, but also the path and the end of transition 

needs to be further clarified. Also, how best to specify, and where to specify 

the initial turbulence profiles needs to be better explored, and the sensitivity 

of the transition predictions to these choices determined. 

1.3.3 Relevant Transition Experiments 

An important relationship in transition modeling is the experimentally 

observed correlation between the momentum thickness Reynolds number and 

turbulence intensity in the free-stream flow. Of those who have proposed a 

functional approximation for this relationship (see 1.1), Abu-Ghannam and 

Shaw [2] appear to have gathered the most comprehensive collection of 

experiments to base this on. It is also the most recent. This correlation is 

shown for zero-pressure gradient flow in Figure 1.2 and will be used both as 

a development tool, and as one method to check the accuracy of our transition 

calculations. 

Although a large number of experiments have been conducted over the 

years investigating transition and free-stream turbulence, only a few of them 

can be used as specific test cases for a two-equation turbulence model. This is 
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because most have not documented a sufficient amount of the free-stream 

turbulence information. Typically, experiments have reported only a mean 

value, or an upstream value of the turbulence intensity. Since TUe can be 

related to ke, this is sufficient for the k equation boundary condition. 

However, since the model requires boundary conditions for both k and E, 

this information alone is inadequate. Since calculations have shown that the 

value of Ee does have a perceptible influence on the location of the computed 

transition region, this cannot be neglected. At a minimum, one must know 

the value of Tile at at least two locations. This is then sufficient to estimate E. 

To the authors knowledge, the only work meeting these requirements are the 

experiments of Blair and Werle [8-9,(10-12)], Rued [72,(73-74)], Wang 

[91,(92-93)], and Abu-Ghannam [1]. 

Blair and Werle have investigated flow over a heated test section 

where the total wall to free-stream temperature differences were about 10K. 

The effect of different levels of free-stream turbulence was found by 

installing four different turbulence generating grids resulting in free-stream 

turbulence intensities ranging from about .5-8%. All three components of 

the normal Reynolds stress were documented over the length of the test 

section. Tests included both zero pressure gradient flow, and flows with 

constant acceleration. 

Rued has conducted an extensive number of tests for both constant and 

accelerating free-stream velocity conditions. Turbulence generating grids 

provided initial turbulence intensity levels from about 0.8 to 11 %, but only 

U'2 and v'2 components were measured (w'2 'was assumed equal to v'2). 

These were reported at various locations along the test section. The free-



29 

stream air was heated and the test section cooled such that wall to gas 

temperature ratios of from 0.55 to 0.84 could be investigated. 

Wang conducted an experimental study of transitional boundary layer 

flow with free-stream turbulence levels of 0.7 % and 2.0% and for a heated 

test section of nearly uniform heat flux. Local heat transfer coefficients, skin 

friction coefficients, profiles of velocity, temperature are reported. The 

streamwise direction turbulence intensity was measured at several locations, 

providing adequate data with which to determine the free-stream dissipation. 

The data of Wang was also used in a recent study of mixing length transition 

models, made by Park and Simon [60] which will provide an opportunity for 

comparison later in this thesis. 

Abu-Ghannam's [1] experiments were somewhat different than the 

others with respect to the measurement technique and the experimental 

results. The experiments were conducted over a smooth aluminum flat plat in 

a wind tunnel of variable speed. The transition data was taken by 

continuously monitoring the velocity at a single fixed point near the wall 

while the tunnel speed was gradually changed. Free-stream turbulence 

intensities ranged from .5 to 5%. Heat transfer measurements were not taken. 

1.4 OUTLINE OF THE THESIS 

This chapter has provided the basic aims and objectives of this thesis 

and tried to place them in their proper perspective relative to the problem of 

predicting external heat transfer on gas turbine blades~ The importance of 
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transition has been described, and the predominant factors influencing this 

phenomenon introduced. An overview of techniques available to model this 

kind of problem has been provided, and a specific literature survey was made 

of previous attempts to use two-equation turbulence models in predicting 

transition. Finally, the data currently available which is sufficiently complete 

to provide an adequate basis for testing these models has been presented. A 

brief description of the remaining chapters in this thesis will now be given as 

a guide to the reader. 

Chapter 2 will describe the mathematical representation of the 

problem and the numerical procedure used to solve the equations. This will 

begin by introducing the time averaged boundary-layer equations and the 

unknown turbulence quantities that must be determined. Next a more 

detailed description of k-e LRN turbulence models will be given with a 

special focus on the Lam-Bremhorst [45] and Jones-Launder [36,37] models. 

Finally, the numerical solution procedure will be described. This will 

include an introduction to the Patankar-Spalding [61] solution procedure, the 

near wall grid refinement strategy used, and the method used to specify the 

initial starting proflles and boundary conditions. 

In chapter 3, the prediction characteristics and capabilities of the Lam­

Bremhorst and Jones-Launder models will be carefully evaluated with 

respect to transition on flat plates under the influence of free-stream 

turbulence. This work will show the importance of both the initial profiles 

specified, and the stream wise location where the calculations are started. 

Also, the effect of different free-stream turbulence conditions will be 

documented and compared with the recently developed correlation of Abu-
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Ghannam and Shaw [2]. Finally, the results of the evaluation will be 

summarized to fonn the basis of improving the models in later work. 

In chapter 4, the major objective of this thesis is addressed, ie. the 

development of an improved approach to simulating transition within the 

framework of k-e LRN turbulence models. As a basis for this, four topics 

are initially considered. First, the method of Rodi and Scheuerer [66,67] is 

evaluated in more detail. This method addresses some of the difficulties 

described in chapter 3 and the results of this section provide motivation to 

continue seeking for better methods. Next, a defect in the Lam-Bremhorst 

model which adversely effects transition predictions for low free-stream 

turbulence conditions will be described and a solution to the problem 

explained. Third, the mechanism by which k-e models simulate transition is 

explored in more detail and the results of chapter 3 clarified in this light. 

Finally, the importance of stability considerations is briefly discussed and 

the current limitations ofk-e LRN models with respect to this explained. 

The next section in chapter 4 is dedicated to describing the 

modification which is proposed to improve the transition predictions. This 

starts with an explanation of the basic characteristics desired, and then 

provides a description of the actual modification chosen. The numerical 

implementation is explained and a method for calibrating the additional 

parameters introduced. The results of calibrating these parameters for the 

Lam-Bremhorst model are then presented. 

In section 4.6, calculations of simple flat plate flows are presented as 

given by the modified LRN model of Lam-Bremhorst. These are compared 

to the results previously presented in chapter 3 and a significant improve-
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ment demonstrated. In section 4.7, the application of the model to the Jones­

Launder LRN model is explained, the calibration of the new parameters 

given, and the calculations also compared. 

In order to clearly document the prediction capabilities of the new 

method, chapter 5 presents a comparison between the new method and the 

results of a large number of different experiments. The first section 

considers experiments in flat plate, zero pressure gradient conditions, but 

with turbulence intensities ranging from 1 % to 9%. Data from three 

completely independent sources is used. Next, experiments that have the 

additional complication of acceleration are used. These experiments cover 

turbulence intensities of from 1-11 %, and provide ca~es with both constant 

and strongly varying acceleration. Finally, the calculations are compared to 

the experimentally determined heat transfer data from two different turbine 

blades. 

Chapter 6 provides closing remarks relative to the contributions made 

by this thesis. Also, some comments about the direction future work might 

best proceed are given. 
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CHAPTER TWO 

THE MATHEMATICAL REPRESENTATION OF THE 

PROBLEM AND THE NUMERICAL SOLUTION PROCEDURE 

2.1 THE BOUNDARY LAYER EQUATIONS 

Since the focus of this thesis is on the thin viscous region near a solid 

wall, the equations used in the analysis can be the simpler "boundary-layer" 

equations. These equations are approximations which describe the 

conservation of mass, momentum, and energy. To describe the turbulence 

effects these equations will be solved in their time-averaged, but steady state 

form. We also will neglect variations in the span-wise direction of the blade 

or test section, and reduce the equations to their two-dimensional form.· 

Since velocities at certain locations around a turbine blade often approach 

and sometimes exceed mach 1, and temperature variations can also be large, 

in general we will not be able 'to invoke incompressible, constant property 

simplifications. Furthermore, the conversion of mechanical energy to 

thermal energy through viscous effects cannot be neglected in the energy 

equation. However, we will assume that Cp is constant in deriving the energy 

equation. This assumption, while having only a very small effect on our 

computed results, allows important simplifications. 
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Since the derivation of the boundary layer equations can be found in 

many standard reference books, it will not be repeated here. A more 

important need is to show them as they are properly expressed in the 

nomenclature and symbols that will be used throughout the remainder of this 

thesis. In Fig. 2.1, a simple sketch of the geometry, x-y coordinate system, 

and basic nomenclature is given. For a two-dimensional rectangular 

coordinate system such as this, the conservation of mass and momentum can 

be written in the following form. 

a a-
~pU)+~pV) =0 (2.1) 

au -au dPa au -
pUai'" + pVay = -dX"+ffy<Jlay + pu'v') (2.2) 

where U and V are the time averaged mean velocities, and u' and v' are the 

instantaneous velocity fluctuations. The overbar" "implies a time -averaged quantity, the prime a fluctuating quantity, and the expression V 

indicates a mass weighted averaging (see Cebeci and Smith [17]) where 

-pV =pV+p'v' (2.3) 

It is convenient for high speed flow to solve the energy equation in 

terms of the "total" or "stagnation" enthalpy H, defined as follows; 

(2.4) 
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Assuming that the specific heat is constant and the gas is ideal, the static 

temperature to static enthalpy relationship, and the state equation are simply; 

h=CpT 

P 
P=RT 

U sing these defmitions, the total enthalpy equation can be written as; 

(2.5) 

(2.6) 

aH ... aH a {J!.. aH - 1 au -} 
pU ax + pV ay = ay Pr ay-- ph'v' + U[(1-p? J.1.(ay~ - pu'v'] (2.7) 

To solve these equations, we must specify the turbulent shear stress 

and heat flux. To do this we define a "turbulent" or "eddy" viscosity, and a 

turbulent Prandtl number such that; 

-" (au) -pu v = Ut ay (2.8) 

- Ut ah 
-pb'v'=-(-) 

Prt ay (2.9) 

For the purposes of this thesis, the turbulent Prandtl number will be assumed 

constant and equal to 0.9. Although this is not in general true, it has been 

found to be a reasonably good approximation for most situations and should 

not detract from our major focus, which is the transition predictions. The 

role of the turbulence model now becomes that of detennining the correct 

value of Ut. 
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2.2 THE TURBULENCE MODELS EMPLOYED 

The purpose of this section is to clearly describe the mathematical 

representation and implementation of the LRN k -£ type turbulence models 

used in this thesis. After providing a generalized description and outline of 

all of the models currently proposed, the details of two relatively popular 

models will be given and differences explained. 

2.2.1 k-£ Low-Reynolds-Number Turbulence Models 

Although many different proposals have been suggested for 

introducing LRN functions into the k-£ turbulence model, Patel et al. [62] 

have shown that it is possible to generalize these variations by writing the 

basic equations in a manner to be described here. The basic relation defming 

the turbulent viscosity is 

(2.10) 

where eJ.L is a constant, fll is one of the LRN functions to be described, and k 

and £ are the turbulent kinetic energy and dissipation rate function 

respectively. The top hat symbol has been placed over £ so that differences 

between the meaning of £ used by the various models can be clarified. The 

" relationship between £ as defmed in eq. (1.7), and £, can be written as 
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A. 

£= £ +D, (2.11 ) 

where in some models the quantity D is assigned to be a function of k. The 

reason for the addition of the function D by these developers, is toprovide a 

means whereby the boundary condition in the £ equation can be specified as 

zero. More will be explained about this later. 

The transport equations for k and £ follow the pattern of equation 

(1.6) and can be written as; 

ak - ak a { f.lt ak} (aU)2 A. 

p U ax + p v ay = ay (~+ 0;) ay + f.lt ay - p (£ + D) (2.12) 

Looking closely, one can see that contained within equations (2.10) to 

(2.13) there are five empirical constants; CIJ.' CI , C2, Ok' at' and five 

empirical functions; fW fI' f2' D, and E. The five constants all pertain to 

conditions far from the wall, and only small differences exist between 

different models. They all have been introduced during the process of 

simplifying more exact forms of these equations (which are derived from the 

Navier-Stokes relations). The values for these constants are found by 

recourse to certain limiting flow conditions where experimental data is 

known, and to numerical optimization ( See for example Rodi [70]). The 

values used in this thesis are those suggested as "standard" by Launder and 

Spaulding [48]. They are given in Table 2.1. 
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TABLE 2.1 The k-e Turbulence Model Constants 

c~ C1 C2 Ok at 

.09 1.44 1.92 1.0 1.3 

Turbulent motions immediately adjacent to solid walls are significantly 

influenced by the presence of the wall. Here the magnitude of the effective 

turbulent viscosity becomes small, and the effects of the molecular viscosity 

become important. Experimental work has shown that in some turbulent flow 

situations there exists a common structure or behavior near the wall. Under 

these conditions both the mean velocities and the measurable turbulence 

quantities exhibit nearly universal behavior. The knowledge of this structure 

has allowed the formulation and use of the so-called wall functions. These 

functions algebraically bridge the near wall region and eliminate the need for 

more expensive and time consuming calculations with a fine grid near the 

wall. 

Unfortunately, there are also many flow situations of interest where 

this near wall similarity breaks down. Large pressure gradients and mass 

transfer at the wall, for example, both result in significant alterations of the 

near wall flow, thus wall functions cannot always be used. To incorporate 

these effects into turbulence models, a variety of different suggestions have 

been made. A well known example of one such modification for mixing 

length type turbulence models is the Van Driest damping function [88]. The 

purpose for the functions fw fl' and f2 is to provide a somewhat similar kind 
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of modifying influence on the k-£ model, thus extending the validity of the 

equations clear through the viscous sub-layer to the wall. To do so, they are 

made functions of one or more "turbulent Reynolds numbers", or the inner 

wall coordinate y+. These are defmed as follows; 

R = -{k Y 
Y \) 

Y u't 
y+=­

\) 

(2.14) 

(2.15) 

(2.16) 

A good discussion of these functions is given by Patel et al [62] and the reader 

is referred there for a discussion of each of these functions individually. 

Here we will press on and consider the specific low-Reynolds-number 

functions incorporated into two of the more popular models. 

2.2.2 The lones-Launder and Lam-Bremhorst Models 

The specific LRN functions of the Jones-Launder model and of the 

Lam-Bremhorst model as used in this thesis are given in Table 2.2. These 

two models were chosen for closer evaluation in this thesis for a number of 

reasons. First, they both have seen application to a variety of different flows 

by a number of independent researchers. Furthermore, both have been 

applied by previous researchers to predicting transitional flows on turbine 

blades [66,67,90]. Second, when compared with other LRN k-£ models, tests 
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have shown both of these to be among the best at predicting the 

characteristics of fully turbulent flow[62]. Third, they represent two 

somewhat different approaches to introducing LRN modifications. 

TABLE 2.2 The Low Reynolds-Number Functions used in the Jones­
Launder and Lam-Bremhorst models 

Jones-Launder Model Lam-Bremhorst Model 

fJ,1 ~ 3.4 ) 2 20 
(l-exp(-.0163Ry ») (1 +R) ex [1 +.02R

t 
]2 t 

f1 1.0 l.+n:SJ 
f2 

2 
1. - O.3exp( -Rt ) 

2 
1. - exp(-Rt ) 

E (dU)2 
2uJ.!t dY 0 

D 2 (iNk] U dY 0 

~ -boundary 0 * at 0 dY-
condition 

* See Patel, Rodi, and Scheuerer [62] 
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The differences between the models stem from two basic choices; 

what dissipation rate variable to use, and how to functionalize fw Exactly at 

the wall, the value of k must go to zero. However, it can be shown that the 

dissipation rate defined in equation (1.7) does not. The correct boundary 

condition for E is 

(2.17) 

For computational reasons, many models have avoided this boundary 

condition by introducing a simple change of variables. By choosing a 

function D (see equation 2.11) such that D I y=o = E I y=o ,the boundary 
"-

condition for the variable E becomes zero. 

The function D shown for the Jones-Launder model in Table 2.2 is one 
"-

possible choice which allows E to be specified as zero at the wall. The Lam-

Bremhorst model on the other hand introduces no such change of variables. 

The original approach of Lam and Bremhorst was simply to apply the 

boundary condition (2.17) directly. However, others have found that due to 

the influence of the other LRN functions chosen, the computations are 

relatively insensitive to this boundary condition, and the simpler condition 

shown in Table 2.2 can be applied without any change in predictions [62]. 

Another significant difference relates to the turbulent Reynolds 

numbers chosen to correlate fll with. In the case of Jones-Launder, a single 

parameter correlation with Rt is introduced. This implies only an indirect 

effect of the wall through the variables k and E. In contrast, the Lam-
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Brernhorst formulation makes fJ.1 a function of both Rt and Ry ' which 

introduces a very direct dependence on the relative proximity of the wall. 

The details of how each of the other functions were chosen can be 

found in the original papers by Lam and Bremhorst [45], and by Jones and 

Launder [37]. It is important to know that although some of the functional 

dependence can by justified directly through empirical or physical 

arguments, other choices were made add-hoc. This freedom to explore 

different approaches coupled with the initial success that came from models 

such as the Jones-Launder model, is one of the main reasons that so many 

different models have been introduced in recent years. 

Although others have explored the effect these differences have on 

fully turbulent predictions, the work in this thesis is the first such attempt 

known by the author to explore the effect these choices have on the transition 

prediction capabilities. 

2.3 THE NUMERICAL SOLUTION PROCEDURE 

A number of excellent computational methods have been developed in 

recent years to efficiently solve sets of two-dimensional parabolic partial­

differential equations. Because the purpose of this thesis is not related to 

developing an improved solution algorithm, any of these methods could have 

been used. However, the correct and consistent application of any method is 

essential for the numerically computed results to be reliable. Thus the 

purpose of this section is to discuss the numerical solution techniques and 

procedures used in this development work. 
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Based on the author's familiarity with the Patankar-Spalding solution 

procedure [61] and it's common use in engineering applications, this method 

was used throughout this thesis work. Since details of this algorithm can be 

found elsewhere, only a summary will be given here by way of introduction. 

Next, the method of near-wall grid refinement and the specification of the 

streamwise direction step size will be discussed. This is important since 

sufficient resolution of all spatial gradients is essential to any numerical 

method in assuring that the solution is truly accurate. In 2.3.3, the approach 

to specifying the boundary conditions and the initial starting profiles will be 

described. And in 2.3.4, a few comments about some practical aspects of 

representing the different LRN functions will be given. 

2.3.1 The Patankar-Spalding Parabolic Solution Method 

The solution method of Patankar and Spalding is based on solving the 

governing equations in the "x, C1) "coordinate system, instead of the more 

traditional "x,y" system. Here (J) is a non-dimensionalized form of the 

stream-function coordinate ~ which von-Mises first suggested (see 

Schlichting [78]). The utility of this transformation is two-fold. First, the 

normal velocity V is elliminated from the equations and continuity is 

identically satisfied. Second, the formulation allows the computational grid 

to vary smoothly and naturally with the growth of the boundary layer. This 

variation is regulated during the computations by appropriate control of the 

entrainment of free-stream fluid into the computational region. 
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As an example, the time averaged stream wise momentum equation can 

be written in this coordinate system as; 

where 

c 
P (Jl+Ut) 

2 
%: 

and co and 'II are defmed as; 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

The subscript "E" refers to the free-stream edge of the computational 

domain, and in~ is the entrained mass flow rate at the edge, which is 

controlled as part of the computational procedure. 

The rmite differencing equations are developed by integrating the 

appropriate transport equations over a small but finite control volume. To 

do this, one assumes that over the extent of the control volume, the profiles 

of the dependent variables behave in a certain linear fashion. The streamwise 

derivatives are "up-winded", thus yielding an implicit set of coupled 

algebraic relations. Since the resulting matrix has coefficients in the center 
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three diagonals only, a very efficient tri-diagonal-matrix algorithm can be 

used to solve these equations. 

Over each forward step, the equations are decoupled from each other. 

For example, when k is required in a source term in the e equation, the old 

"upstream" value at that location is used. This choice requires that the step­

size in the stream-wise direction be kept small, and the sensitivity of the 

results carefully checked to insure the accuracy of the solution. For most of 

the calculations presented here, setting dx=.5*9 was found to be completely 

adequate in satisfying this requiret;n.ent. 

A more detailed description of this entire method can be found in [61]. 

2.3.2 Near Wall Grid Refinement 

In turbulent flow, the important viscous sublayer region is very thin 

relative to the total boundary-layer thickness. It is also a region of large 

velocity gradients. Thus to accurately approximate the solution of equations 

(2.1)-(2.13), a rermed computational grid must be used in this very near wall 

region in order to properly resolve the important physical effects. 

Conversely, in the outer regions of the boundary layer, gradients are 

generally small because the velocity, enthalpy, and turbulence quantities 

asymptotically approach their free-stream values. In this region, a relatively 

coarse computational grid is sufficient. 

In situations such as this, it is advantageous to use a variable grid. How 

this was specified in this thesis will be explained here. 
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In figure 2.2 a sketch of y direction control volumes and node 

locations is shown. Note that for any grid of Ml nodes, there exist Ml-2 

finite control volumes within the computational domain. For the purpose of 

generating a variable grid, it is useful to define a grid coordinate "X", in 

terms of these node locations. At any node location J> 1, X can be defmed as; 

J-1.5 
X= M3 (2.23) 

A common way to specify the actual grid location in terms of the grid 

coordinate is to set 

Y(J) _ b 
Y(Ml) -X (2.24) 

where the exponent b must be greater than 1 to refme the grid near the wall. 

One disadvantage of the simple relationship (2.24), is that when Ml is 

fairly large (say on the order of 100), and b is set greater then 1 (say 3), the 

variation in the widths of neighboring control volumes very near the wall 

becomes quite large. This is detrimental to computational accuracy and 

should be avoided. 

To avoid the difficulty mentioned, and still refme the grid adequately 

in the near-wall region, the following two-region relationship between X and 

Y(J) was adopted. 

-------- -



Y(J) _{mx 
Y(Ml) -

aXb + c 

X<XI 

; X>XI 
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(2.25) 

where at X=XI' the function is continuous through the first derivative, ie.; 

(2.26) 

1 aY(J) b-l 
Y(Ml) ax =m=ab(XI) (2.27) 

This procedure has Y(J) varying linearly with X in the very near wall region 

X < Xl' but proportional to Xb for X > Xl. Figure 2.3 is useful in depicting 

this relationship and also in explaining the practical implementation of this 

procedure. 

To implement this procedure, three quantities must be specified; the 

total computational boundary layer width Y(Ml), the matching point in 

tenns of the grid coordinate X I' and the exponent b. With this infonnation, 

equations (2.26)-(2.27) can be applied to yield; 

X<XI 

X>XI 
(2.28) 

where 

(2.29) 
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Equations (2.25)-(2.29) have all been represented in terms of the 

normal rectangular coordinate y. However, as mentioned in section 2.3.1, 

the Patankar-Spalding solution method uses the 00 coordinate defined in 

equations (2.21) and (2.22). Thus, to implement these relationships using the 

Patankar-Spalding solution method, equation (2.22) must be integrated in 

terms of the initial starting velocity profile to yield the appropriate grid 

distribution in terms of 00. 

For most of the computations presented here, Ml was set equal to 88, 

Xl =.1, and b = 2.5. These settings gave approximately 15 control volumes 

within the viscous region y+<lO of a fully turbulent boundary layer. Tests 

showed that the grid thus specified was sufficiently refined to yield 

essentially grid independent results. 

2.3.3 Specification of Initial Starting Profiles and Boundary 

Conditions 

Since equations (2.1)-(2.13) are not valid at x=O, before they can be 

solved, profiles for U, k, and £ at some appropriate initial starting location 

"xi" must be given. In addition, correct boundary conditions must be 

continuously specified as the computations march forward in the streamwise 

direction. Except for the specification of Xi , the procedures adopted for 

accomplishing this task will be explained here. Further discussion of this 

aspect of the problem will also be given in succeeding chapters. 
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Velocity: 

For the velocity, we specify U=O at y=O, and U=Ue at y=Y(M1). The 

free stream velocity Ue can in general vary with x, and so must be specified 

in tenns of the experimental data. 

To approximate the variation of U with y at X=Xi, a Pohlhausen 

polynomial representation of the velocity profile was used, such Llat; 

(2.30) 

This requires an approximation for the local boundary layer thickness 0, and 

an acceleration parameter A=02CiJU(ax)/u. The following steps illustrate 

how this was accomplished; 

i) Apply the method of Thwaites to determine a at X=Xi. This requires 

integration of the following approximate relationship; 

ii) Calculate the local acceleration parameter A, defmed as 

A, _ a2 au 
- u ax 

(2.31) 

(2.32) 

and fmd the shear correlation SeA,) from the tabulated correlation 

of Thwaites [85] (also found in White [94] pg 316, Table 4-8). 
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iii) Iteratively solve the following two equations for A and 5. Note 

that eq. (2.33) is the functional relation for S derived directly from 

the Pohlhausen Polynomial. 

S(A) = ( 2 + A ) ~ ; (2.33) 

(2.34) 

A simple fortran program to accomplish this task is included in the appendix 

of this thesis. 

kande 

The wall boundary conditions for k and £ have been explained 

previously in Section 2.2.2. In the free-stream, equations (2.12) and (2.13) 

reduce to a set of coupled ordinary differential equations as all cross-stream 

derivatives vanish. They are; 

(2.35) 

(2.36) 
.. 

The specification of lee and £e at any location Xl is sufficient to determine 

what the boundary values are at any other location x by integrating equations 

(2.35) and (2.36). Alternatively, the specification of ke at two locations is 
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also sufficient to allow one to detennine the correct value of Ee at any other 

location. This is may be the situation when comparing with experimental 

data. However, since experiments generally only report turbulence 

intensities, k must be detennined from the following relationship; 

(2.37) 

When ~ is the only component measured, we must assume the turbulence is 

isotropic, and the total turbulence intensity TUe,T appearing in equation 

(2.37) (see eq. (1.2)) is replaced by the streamwise turbulence intensity TUe 
defined in equation (1.1). 

In any case, once ke and Ee are determined at our initial starting 

location, equations (2.35) and (2.36) are simply integrated each step to 

detennine the correct free-stream value at the next stream wise location. 

The specification of the initial profiles for k and E when starting in the 

laminar region is a problem. Very little experimental data exists in the 

literature to guide us in this choice. The only applicable work the author has 

found is that of Dyban, Epik, and Suprun [24]. They report measured ~ 

values through a "pseudo-laminar" boundary layer at Rex= 6.2 x 103, and for 

several different levels of free-stream turbulence. However, the limited 

nature of the data presented makes i~ difficult to justify basing ones 

calculations upon it. Previous workers have had to rely on add-hoc methods 

with little more than the known boundary conditions and intuition to guide 

them. One such practice is that proposed by Rodi and Scheuerer [66,67]. 

They propose to set 
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k=ke(Kr ,n=2 (2.38) 

(2.39) 

where xi is located such that Rea=100, and a l is an empirical function 

correlated to the free-stream turbulence intensity. 

The importance of knowing the correct initial profiles of k and e 

depends entirely upon how sensitive the results are to these values. This is 

one of the items not clearly documented in previous work and which will be 

investigated in this thesis. Leaving the justification for the next chapter, the 

practice adopted here is to apply equations (2.38) and (2.39), but set a l = 1, 

and choose ~ such that Rea < 25. 

Total enthalpy: 

The total enthalpy in the free-stream was assumed to remain constant 

for all cases considered. At the wall, either the experimental wall 

temperature, or experimental wall heat flux was related to the appropriate 

enthalpy or enthalpy flux through equations (2.4)-(2.5) . 

For flat plate flows the starting enthalpy profile was derived from the 

approximate temperature-velocity profile relationship given below. 

(2.40) 



55 

Since each of the experimental data sets with which calculations were 

compared had a small unheated starting length where the wall was assumed 

adiabatic, Tw was set equal to Te for these cases. The total enthalpy profile 

was then simply backed out using equations (2.4) and (2.5). This procedure 

is identical to that of Rodi and Scheuerer [66,67]. 

For the turbine blade calculations, which are started near a stagnation 

point, this procedure was modified to allow the thermal boundary layer~, to 

be different than the velocity boUndary layer. The essence of this is to use a 

simple estimate of the the stagnation point heat transfer coefficient as a means 

of varying the starting value of ~. 

Crawford and Kays [18] suggest that stagnation point heat transfer on a 

two-dimensional cylinder of radius R can be estimated by; 

(2.41) 

where 

(2.42) 

and 

(2.43) 

If we assume that the temperature profile remains similar to equation (2.40), 

but that it is stretched by the ratio fn/lJ, we can rewrite eq. (2.40) as 

(2.44) 
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where the tenn ~ [y/Or] implies that Or has replaced 8 in eq. (2.30). 
e 

At the wall we can now write that 

(2.45) 

and 

(2.46) 

For a Pohlhausen polynomial given by eq (2.30), 

dUI Ue A - =-[2+-] dy y=O 8 6 (2.47) 

thus 

(2.48) 

Applying the definition of NUR given in eq. (2.41) and solving for &r we 

finally arrive at; 

(2.49) 

Equation (2.44) can now be directly applied by letting R be the local radius of 

curvature on the turbine blade at the stagnation point. Since the starting 

location xi is very near the stagnation point, we neglect any change due to this 

initial offset and determine a corresponding total enthalpy profile by use of 

eqs. (2.4) and (2.5). It should be noticed that since the velocities are all 
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relatively low in this near stagnation region and also since this is only an 

approximation, differences between total and static temperature have been 

neglected. 

Equations (2.44) and (2.49) are only simple approximations that were 

developed for convenience of use in this thesis. Because of this they can not 

be recommended as very accurate. However, since the stagnation point heat 

transfer problem is not the focus of this thesis, it was deemed sufficiently 

accurate for the work considered herein. Others have developed more 

accurate, albeit more complicated procedures which can incorporate the 

effects of free-stream turbulence and compressibility on the estimation of the 

stagnation Nusselt number. One such method that is recommended is the 

procedure developed by Hylton et al. [34], which is a modified form of the 

Miyazaki and Sparrow approach [54]. 

2.3.4 Numerically Representing fll and '1 

Near the wall, the LRN functions fll and fl adopted by Lam and 

Bremhorst become very small and very large respectively. In fact, the 

function f 1 is actually singular at y=O. As a result, computational difficulties 

can arise if these functions are not properly represented. A typical result is 

that the calculation will "crash" when numbers either larger or smaller than 

the limits of the computer are encountered in computation. 

To avoid these problems a very small number was introduced at 

appropriate places in the numerical representation of the functions. This 

practice was also followed in the source terms in the k and £ equations which 
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have a k in the denominator. For the computations presented in this thesis, fJl 

and f 1 were represented as follows; 

2 20 
fJ.1={1 - exp(-.0163Rt -s)) (I + R

t 
+s) 

f (.055~ 1=1. + fJ.1+s) 

-10 where s= 10 . 

(2.50) 

(2.51) 
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Figure 2.1 Transitional flow developing on a flat plate with free­
stream turbulence 
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CHAPTER THREE 

EVALUATING THE TRANSITION PREDICTION 

CHARACTERISTICS OF TWO LRN k-£ MODELS 

3.1 OBJECTIVES OF THE EVALUATION 

In this section the results of a sequence of computational tests will be 

presented. The purpose of these tests are to help answer some specific 

questions about the transition prediction characteristics of k-£ LRN 

turbulence models. Those questions and an explanation of each is given here 

by way of introduction. 

1. How important to the transition predictions is the specification of the 

initial profiles of k and £ ? 

Since little is known about the actual behavior of the k and £ profiles in 

the pre-transition "pseudo-laminar" boundary layer developing with free­

stream turbulence, previous developers have had to rely on what are 

essentially "ad-hoc" methods to specify these profiles. The relative 

importance of this aspect of the problem needs to be determined if consistent 

and accurate predictions are to be made. 
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2. How important to the transition predictions is the exact location at 

which the calculations are started? 

In some ways this question is an extension of question 1 with an 

additional factor, the velocity profile, being tossed in. Prior to transition, we 

know the velocity profile behaves at least approximately like the profile in a 

simple laminar boundary layer. It is somewhere in this region that a starting 

point for the computations must be chosen and initial profiles specified. 

Since there has been no consistency among previously published work 

relative to where in this "pseudo-laminar" boundary layer the computations 

are started, the relative importance of this question also needs to be 

determined if consistent and accurate predictions are to be made. 

3. What are the quantitative differences in the transition predictions when 

the free-stream turbulence varies and how do these predictions 

compare with a well known correlation? 

Previous work has clearly established that k -£ LRN turbulence models 

simulate the correct qualitative trends , ie. a continuous transition from 

laminar to turbulent flow, the onset of which moves upstream with 

increasing free-stream Tu. However, a systematic documentation over a 

broad range of Tu, and a quantified comparison of these predictions with 

known correlations has not previously been performed. Furthermore, a 

specific comparison of two different LRN models with respect to these 

predictions has not been available. This information is essential in 



64 

detennining the reliability of the models as they now stand, and in guiding 

future modeling efforts aimed at improving the calculations. 

In each of the following sections a description of, and the results from 

a number of computational tests designed to help answer these questions are 

given. In each case, both the Jones-Launder model and the Lam-Bremhorst 

model are considered. 

3.2 SENSITIVITY TO STARTING PROFILES OF k AND E 

Equations (2.38) and (2.39) describe the initial profile specification of 

k and E as suggested by Rodi and Scheuerer. The nature of these equations is 

such that they also provide a convenient way to vary the initial profiles of k 

and E. For example, choosing n large, reduces the k profile, while setting at 

large, increases the magnitude of the E profile. Since increasing E tends to 

decrease k, the combination of specifying both n and at as large yields a 

starting profile with essentially no turbulent kinetic energy except at the free­

stream edge. 

To evaluate the sensitivity of the calculations to the specification of 

these profiles, calculations were perfonned for the following conditions but 

with two distinctly different starting profiles and at two different starting 

locations. 

* TUe = constant = 3.00 % (Ee was set very small) 

* dP/dx = 0 (Constant Velocity) 

* Flat Plate (No Curvature ) 
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The two profiles considered correspond to n=2, al=.375 (the recommended 

values of Rodi and Scheuerer at this Tlle), and n=8, al=2.0. The two starting 

locations were Rex = 2.27 x 104 and Rex = 1.0 x 1 ()3. The value of Rex = 2.27 

x 104 was chosen because it corresponds to Rea =100, which is the starting 

location recommended by Rodi and Scheuerer. When using the Jones-
A 

Launder model, which uses the modified dissipation variable £, eq. (2.39) 
A 

was slightly modified by removing the restriction £ > £e' This allowed £ to 

decrease to zero at the wall. 

To represent the calculated transition process, the coefficient of 

friction ( Cr) is plotted vrs. Reynolds number based on x. This was done 

because excellent correlations of Cr are available for both the laminar and the 

fully turbulent regimes, which when compared to, offer a clear reference 

with which to appraise the transition predictions. 

Figures 3.1-a and 3.1-b are plots of the calculated variation in Cr vrs. 

Rex for the four test cases described and using both LRN models. 

Examination of these figures leads to the following general conclusions valid 

for both models; 

* At any given starting location, minimizing the starting kinetic 

energy profiles results in the onset of transition beginning at the 

farthest downstream location. 

* The sensitivity of the transition predictions to the initial profiles of k 

and £ decreases as the starting location moves upstream, eventually 

becoming independent of these profiles. 
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Taken together, these observations yield another important conclusion about 

these tests. 

* Appropriate specification of initial profiles at Rex =2.27 x 104 

(where A and B were started) would yield transition predictions 

identical to either of those which were started at Rex =1.0 x 103 (C 

and D). However, it is not possible to specify any profiles which, 

when starting the calculations at Rex = 1.0 x 103, would yield 

transition predictions identical to either of those which were started 

at Rex =2.27 x lQ4. 

This last conclusion is quite significant in light of comparisons with 

experimental data that will be presented later. It stems from the transition 

process (as simulated in these models) being strongly controlled by the 

transport of k into the boundary layer. By moving the starting location 

upstream, you effectively increase the area over which k will have been 

diffused and convected into the boundary layer before reaching any 

particular downstream location. The next set of tests will further clarify this 

point. 

Although the above mentioned conclusions can be applied to both 

models, obvious differences between the transition predictions also exist. 

Because the differences between £ and r. mean that the starting profiles as 

applied to the two models are not exactly the same, some care must be used in 

comparing the two results directly. However, it is quite clear that the Jones­

Launder model tends to predict transition further downstream than the Lam-
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Bremhorst model. Tests to be presented in the succeeding sections will be 

beneficial in clarifying these differences also. 

3.3 SENSITIVITY TO THE STARTING LOCATION 

To further explore the sensitivity of the predictions to the initial 

starting location, a set of calculations were made with identical initial 

profiles (scaled on B) but at different starting locations. The basic conditions 

were the same as the calculations presented previously in section 3.2, ie. 

Tue=3%, dp/dx=O, flat plate. The initial profiles for k and e were specified 

using equations (2.38) and (2.39) but with n=8, a1 =2. These are the same 

specifications used in runs "B" and "0" in Figure 3.1. Recall that this will 

yield transition at the farthest downstream location possible. 

Figures 3.2-a and 3.2-b show the results of these calculations. The 

results shown further illustrate how strongly the transition predictions are 

dependent on the initial starting location. For the Lam-Bremhorst model at 

this free-stream turbulence level, the location of transition is strongly 

dependent on starting location for Rex,i > 1 03 , but basically independent for 

Rex,i < 103. In contrast, the Jones-Launder model calculations show 

differences until the starting location is reduced to about Rex,i = 102 , and 

even then a close inspection reveals a very slight down-stream shift when 

compared to Rex i = 101. Since the figures are plotted using a logarithmic , 

scale, the actual distance between these starting locations is of the same 

magnitude as this small shift. 

The difference between the models in this respect is apparently due to 

the direct influence of the wall introduced in the Lam-Bremhorst model by 
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using Ry as well as Rt in the fJ..l. function. To justify this assertion, consider 

the following. 

A well known exact solution to the laminar boundary layer equations 

with constant free-stream flow is the Blassius solution. This solution is 

expressed in terms of a similarity variable 11 defmed as; 

(3.1) 

The inner wall coordinate y+ defined in eq. (2.16) can be expressed in terms 

of 11 by substitution of eq. (3.1) to eliminate y. Further rearrangement 

allows y+ to now be expressed as 

y+ = .57611 (Rex>l/4 (3.2) 

Alternately, if we remember that for a Blassius profile, 9 =.664 '" uX/U e ' 

we can write; 

y+ = 11 ~.5 Rea (3.3) 

The turbulent Reynolds number Rey defmed in eq. (2.15), can be written in 

terms of y+ as 

Rey = y+-{k+ (3.4) 

where 

(3.5) 

It is now possible to see how for a Blassius boundary layer, the Lam­

Bremhorst formulation for fJ..l. can be written in the following ways; 
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( ) 2 ( 20.0) fll ::: 1 - exp[ -.0163 k+ Tl ,,-/.5 Rea ] 1 + n-
~et 

(3.6) 

(3.7) 

Thus in the laminar region when a Blassius profile is a reasonable approxi­

mation, the magnitude of fll at any similar location is a function of the 

Reynolds number. For low Reynolds numbers fll is reduced, limiting both 

the production and diffusion of k in the boundary layer. This is why the 

transition predictions of the Lam-Bremhorst model become insensitive to the 

starting location as Rex,i becomes small. In contrast, the Jones-Launder 

formulation introduces no such direct dependence. 

3.4 SENSITIVITY TO FREE-STREAM TURBULENCE 

The next set of computational tests consider the effect that different 

levels of TUe have on the transition predictions. The conditions considered 

are once again flat plat, zero pressure gradient flow, and the computations 

are all started at Rex,i= 1 03. The initial profiles are specified as per equations 

(2.38) and (2.39) with n=8, and at = 2.0. Calculations were done for free­

steam turbulence intensity levels ranging from 1.0 % to 6.0%. Free-stream 

dissipation rates were specified low enough for the decay in TUe to be 

negligible. Figures 3.3-a and 3.3-b show the results of these calculations. 
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The first thing to be noted is that a calculation with Tue= 1 % is not 

shown for the Lam-Bremhorst model. This is because transition to a 

turbulent state was not predicted by this model for Tue=l %. This failure was 

also mentioned by Rodi and Scheuerer [67], although they imply that the 

result seems physically plausible. It is clear from these tests that the reason is 

related to the LRN formulation chosen by Lam and Bremhorst since the 

Jones-Launder model does predict transition under these conditions. 

In general terms the qualitative characteristics of the variation of Cf 

during transition seem reasonable for both models with the onset of 

transition moving progressively upstream with increasing TUe as it should. 

However, significant differences between the predictions of the two models 

occur at higher TUe where the Lam-Bremhorst model shows a much 

smoother and more gradual transition region than the Jones-Launder model. 

The previously noted tendency of the Lam-Bremhorst model to predict 

transition earlier than the Jones-Launder model is also quite apparent. 

In figures 3.4-a and 3.4-b the momentum-thickness Reynolds number 

at the start (Ree,s) and the end (Rea,~ of transition are plotted and compared 

with the correlation of Abu-Ghannam and Shaw [2]. Here, the beginning and 

end are defined as the point of minimum and maximum Cf respectively. 

From figure 3.4-a, we can once again see that both models predict the correct 

qualitative trends. but the onset of transition is predicted too early for both 

models. At Tue=5%, both models are predicting transition occurring at 

Rea,S < 150. However, the lones-Launder model clearly does better than the 

Lam-Bremhorst model. 
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The results shown in figure 3.4-b begin to quantify an important 

deficiency apparent in all of the tests. The region over which transition is 

predicted to occur is always very short. As a result, both models consistently 

predict a Rea,E of less than 50% of the correlation. 

3.5 SUMMARY 

A series of numerical experiments have been performed to evaluate 

the transition prediction characteristics of the Lam-Bremhorst and the Jones­

Launder LRN k-E turbulence models. Both models showed, as expected, the 

ability to correctly model the basic qualitative aspects of transition, ie. the 

continuous transition from laminar to turbulent flow, the onset of which 

moves upstream with increasing Tue. The answers to three specific questions 

have also been sought through the completion of these tests. The results 

indicate the following conclusions as answers to these questions. 

1. The predicted location of transition is moderately sensitive to the 

initial profiles specified for k and E. Lower k and higher E profiles 

yield transition occurring somewhat farther downstream. This 

sensitivity decreases with decreasing Rex,i ,especially for the Lam­

Bremhorst model. 

2. The prediction of transition is very sensitive to the location at which 

the calculations are started. The reason for this is attributed to the 

basic process which must occur for the models to simulate transition, 

ie the transport of k into the boundary layer. The extent to which this 

can occur is largely a function of the distance over which the 
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calculations have proceeded. However, this sensitivity does appear to 

decrease with decreasing Rex,i ,especially for the Lam-Bremhorst 

model. The differences in this aspect are clearly related to the LRN 

functions employed. 

3. For calculations started at low Rex i (where the sensitivity to the initial , 

profiles for k and £ is small), transition is predicted at unrealistically 

early locations. Also, both models predict transition lengths 

significantly shorter than experiment. 
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CHAPTER FOUR 

DEVELOPMENT OF AN IMPROVED APPROACH TO 

SIMULATE TRANSITION WITHIN THE FRAMEWORK OF 

THE k-£ LRN TURBULENCE MODELS 

77 

The results presented in chapter 3 reveal significant problems in directly 

applying k-£ LRN models to predict transitional boundary layer flows. 

However, the potential of this approach is also apparent, and it clearly seems 

wise to pursue ways to eliminate these problems without abandoning the basic 

technique. One way of seeking improvement is to examine the LRN 

functions themselves, looking for alternative ways to specify these functions 

which will yield both the desired fully-turbulent near-wall behavior and also 

improved transition predictions. Another way is to seek simple 

modifications or empirical constraints that would provide a means of 

eliminating the deficiencies, without changing the basic LRN models 

themselves. This is the way that improvements are sought in the work to be 

presented in this chapter. Although less elegant or general than a new 

formulation of LRN functions might be, it is nonetheless quite practical, and 

excellent improvement will be shown by -the modifications developed. 

In working to improve the transition predictions, we are somewhat 

hampered by ignorance about certain aspects of the problem's physics. This 

difficulty, mentioned earlier, centers around the lack of experimental data 

for k and £ profiles at locations upstream of transition. Although our k-£ 
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models require this as input, insufficient knowledge is currently known about 

the values of these turbulent quantities within the quasi-laminar region prior 

to the start of transition. Thus, in searching for ways to improve on the 

current models, it seems we must be content (for the present) with 

"reasonable" profiles in this region, and try to minimize the sensitivity of the 

predictions to small variations in them. 

We will initially work with the Lam Bremhorst model. This model was 

chosen for basically three reasons; first, the favorable results of the study by 

Patel et al. [62], second, the previous use of this model by Rodi and Scheuerer 

[66,67] in working on this same problem, and third, the simpler form of the 

source terms present in the k and £ equations (a result of the dissipation rate 

variable used in this model). Once an approach has been developed, the 

application to the Jones-Launder model will be described and tested. 

4.1 PRELIMINARY COMMENTS 

Before proceeding it is valuable to review in more detail the method 

for predicting transitional flows developed by Rodi and Scheuerer [66,67]. 

This work has been mentioned numerous times in this thesis, and has been a 

rich source of valuable information on this problem. With that method as 

additional background, we will then outline the desired characteristics to be 

sought in a new approach to improving the predictions. 
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4.1.1 Method of Rodi and Scheuerer 

Rodi and Scheuerer [66,67,77]. have proposed a procedure to predict 

transition using the Lam-Bremhorst LRN model. They apparently 

recognized some of the problems which have been discussed in Chapter 3 and 

in essence, recommend a- particular procedure to deal with them. In 

developing their method they chose to begin all calculations at a starting 

location corresponding to Rea=l00. To detennine where this location is in 

the streamwise direction, they use the method of Thwaites ( see eq. (2.31)). 

They also proposed particular fonns for the k and e profiles - eqs. (2.38) and 

(2.39) - which seemed reasonable, and which gave them a simple empirical 

parameter "a 1" with which to tune their results. The coefficient a 1 was 

correlated with free-stream turbulence intensity and it's value varies from 

about 0.1 to 2.0 [77]. 

This method effectively addresses two of the problems which were 

discussed in chapter 3, ie. the sensitivity to starting profiles and to starting 

location. However, the importance of the starting location remaining 

consistent was apparently not recognized because some of their later 

computations against experimental data were not started at Rea=l00. Also, 

the problem of transition length is not addressed in this procedure. 

Figure 4.1 shows results obtained by this author when following this 

procedure for a range of TUe of 1.5 to 6%. The conditions are identical to 

those considered in section 3.4, ie. constant velocity flat plat flow. Since the 

Lam-Bremhorst LRN model is employed, we can compare these calculations 

to Fig. 3.3-b. The major benefit is the downstream shift in the predicted start 
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of transition for the higher turbulence intensities. This yields values of Rea,S 

which are in better agreement with the correlation of Abu-Ghannam and 

Shaw. Unfortunately, the transition length is actually somewhat shortened, 

causing that aspect of the prediction to deteriorate. Note that by examining 

Fig. 3.2-a, this characteristic appears to be related to the starting location 

being relatively far down-stream. This downstream starting location is also 

the reason why varying the initial profiles yields improved predictions. 

For turbine blade calculations, where the transition length can 

sometimes extend over most of the blade surface, the failure to predict the 

transition length is very significant. In addition, it may not always be 

possible to accurately specify the exact location where say, the momentum 

thickness is equal to 100. Thus, the result of the evaluation illustrated here, 

was to conclude that improved methods should still be sought. 

4.1.2 Desired Characteristics 

The results presented earlier provide evidence that the models tested 

need considerable improvement before quantitatively correct predictions of 

transition can be made using LRN k-£ models. In seeking to improve the 

prediction capabilities, we should consider the specific characteristics that 

we desire in our model. Based on our previous evaluation, we will seek the 

following two characteristics as a minimum standard to be achieved for flat­

plate zero pressure gradient flow. 

1) Transition starting and ending in good agreement with the correlation 

of Abu-Ghannam and Shaw. 

------------ - --
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2) The freedom to start the calculations at any location within some 

reasonable area without affecting the transition predictions. 

4.2 A SIMPLE IMPROVEMENT TO THE LAM-BREMHORST 
f~ FUNCTION 

4.2.1 The Problem and it's Cause: 

In section 3.4 it was pointed out that the Lam-Bremhorst model did not 

predict transition when TUe was reduced to 1 %, although the Jones-Launder 

model did. Since experimental evidence clearly shows that the location of 

transition is sensitive to free-stream turbulence levels significantly lower 

than 1 %, a correction for this is needed. 

To determine the cause, a series of computations were made at 

progressively lower turbulence intensities. During each of these runs, the 

calculated profiles for k, £ and other related turbulence quantities were 

printed out at regular intervals. Analysis of these profiles revealed a simple 

explanation for the deficiency; the value for f~ was being unrealistically over 

predicted (»1) under certain conditions that could develop as the computed 

boundary layer moved toward transition. Furthermore, these conditions 

only occurred when TUe was low. To explain, we need to consider more 

closely the two parameter Lam-Bremhorst formulation for fW 

The function f~ is introduced in k-e LRN models as a means of directly 

reducing the turbulent viscosity in the near-wall region (see eq. (2.10)). 

Outside of this region, it's value should be unity as near-wall effects are not 
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present. Thus in no situation is it intended to have a value outside of the 

range ° to 1. Under fully turbulent conditions, this is always the case for the 

Lam-Bremhorst model, as well as all other proposed formulations. 

However, in the Lam-Bremhorst fonnulation, if the behavior of k and e does 

not follow the near-wall pattern, as may be the case during transition, it is 

possible for fJ.L to become very large. To illustrate this, we re-consider the 

equation for fJ.L given below. 

fJ.L = (1 - exp(-.0163Ry ))2 (1 + iO) 
t 

(4.1) 

Under normal conditions near a wall, Ret and Rey have the following 

approximate relationship for y+ > 30 [62], 

(4.2) 

If Ret is say 150, then Rey ::: 60 and the value for fJ.L would be approximately 

0.44. However, if a situation develops such that say Ret=l, and Rey = 60, 

then fJ.L would be equal to 8.2. In analyzing the results of the tests mentioned, 

values for fJ.L as high as 300-400 were found! 

To arrive at this situation, a local imbalance between k and e must 

occur where e is higher relative to k than normal. The high fJ.L then adds to 

the problem by unrealistically changing the various source tenns in the k and 

e equations. Numerically, this leads to an extreme imbalance in the e 

equation source terms where the production of e is much greater than the 
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destruction. This effectively destroys any turbulent kinetic energy that would 

otherwise have been transported further into the boundary layer. 

In summary, although the problem appears to have both numerical and 

mathematical aspects, the root cause is the unrealistic f~ predictions, and this 

can been handled in a simple way to be explained next. 

4.2.2 A Solution 

To eliminate the problem, all one must do is prevent f~ from becoming 

too large. The simplest solution is to set 

f~ = min ( f~.LB' 1.0) (4.3) 

where f~,LB refers to eq. (4.1). However, when testing this at TUe =.5%, 

although transition was predicted, the predictions were still being affected, 

preventing the proper correlation of a transition modification which will be 

introduced later. A stronger limitation was therefore introduced in the 

following manner; 

f~ = min(f~.LB , 1.0, .5 + .OO25*Rt) (4.4) 

A plot of f~ vrs. Ret for a fully turbulent flow, as shown in fig. 4.2, shows 

that this simply places a more stringent limitation on how large f~ can get 

extremely close to the wall. Since any restriction which remains above the 

fully turbulent behavior will not affect the fully turbulent calculations, the 
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particular form chosen is somewhat arbitrary. Equation (4.4) was chosen 

because it was simple, and because it was sufficient to allow proper 

correlation of the transition model to be introduced. It must be remembered 

however, that this choice does not affect the fully turbulent predictions, and 

thus lies entirely within the realm of a modification to improve transition. 

Furthennore, it turns out that this change has no effect at all on the transition 

predictions for TUe > 2%, and is only really significant for TUe <1.5%. 

The modified fJ.1 function of eq. (4.4) is used for all subsequent Lam­

Bremhorst calculations in this thesis unless otherwise specified. 

4.3 THE MECHANISM BY WHICH THE MODEL SIMULATES 
TRANSITION 

Before starting to consider ways to improve the transition prediction 

characteristics of the model, it is important to consider carefully how the 

process occurs in the model as it stands. 

Figure 4.3 shows the typical development of the turbulent kinetic 

energy profiles as the simulated flow proceeds from a laminar to a turbulent 

state using the Lam-Bremhorst model. Initially, the kinetic energy profile is 

monotonic, increasing slowly from zero at the wall, to ke at the boundary. 

As the calculations march downstream, turbulent kinetic energy from the 

free-stream is convected and diffused into the boundary layer. As this 

continues, the production term in the model, Pk=J.lt(dU/dy)2, starts to 

become significant. This in tum increases the local value of k, and thus J.1t . 

This process feeds on itself, causing the rapid increase in k shown. Note that 

a large overshoot initially occurs, which then slowly decays until the 
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parameters achieve a relatively stable state due to the low-Reynolds-number 

functions and the wall boundary conditions. 

This process is initially controlled by the transport of k into the 

boundary-layer from the free-stream. This is why these models are not 

useful in predicting transition when the free-stream is perfectly quiescent. It 

also explains to a large extent why the predictions are so sensitive to the 

initial starting location. The further upstream you begin your calculation, 

the larger the area over which k is diffused and convected, and thus the 

quicker transition is initiated. However, the simple transport of k into the 

boundary layer is only the necessary first step, for it is the interaction of this 

influx of k with the non-linear source terms in the k and £ equations that 

provide the real driving force. 

The key source term in the transition simulation is the modeled 

production term in the turbulent kinetic energy equation. (Note that the use 

of the words "production term" has been used rather loosely here to refer 

only to the quantity in the model, not a term in the exact form of the k 

equation.) Only as this term becomes larger than the dissipation can local 

values of k increase and exceed the free-stream value. This is the process 

which, in the model, simulates the amplification of free-stream disturbances 

and the resulting eventual transition to a turbulent state. It seems logical 

therefore to examine ways to modify the behavior of this term during the 

simulated transition process in order to improve the predictions. 
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4.4 STABILITY CONSIDERATIONS 

The actual physical process by which an initially laminar boundary 

layer undergoes transition to a fully turbulent state is very complex, but it's 

onset is inseparably tied to stability considerations. Fundamental to the 

process is the response of the flow to the introduction of small disturbances, 

from whatever source. Under some conditions, a disturbance will decay, its 

small energy being absorbed into the mean flow. Under other conditions, a 

disturbance will be amplified, and energy with be extracted from the mean 

flow to feed this growth. It is only under these "unstable" conditions that the 

onset of transition can occur. 

Linear stability theory gives some insight into the conditions under 

which a boundary layer becomes unstable. Solutions to the well known Orr­

Sommerfield equation for a Blassius velocity profile yield a critical 

momentum thickness Reynolds number below which infinitesimal 

disturbances will not be amplified (commonly quoted as 163 due to an 

approximate solutions, more accurate solutions have shown it to be equal to 

201, see [78] pg. 469). 

Numerous experiments have shown that under the influence of high 

free-stream turbulence, transition can occur at Rea, even less than this 

stability limit [2]. This is presumably due the nonlinear behavior which the 

high TUe introduces. However, after analyzing the data available to them, 

Abu-Ghannam and Shaw felt justified in presuming a lower limit, as their 

data seems to flatten out as the TUe level increases (Although this has been 

disputed by Rued and Whittig [73]). 
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The LRN functions chosen by various researchers have all been 

modeled after data taken from fully turbulent conditions. As a result, 

stability considerations are not directly a part of k-£ LRN turbulence models. 

The k and £ equations are simple advection diffusion equations with a 

particular set of nonlinear source tenus. However, in a sort of indirect way, 

when applied to boundary layer flows they can mimic some aspects of 

stability. This comes through the nature of the near wall effects on the source 

terms. 

An analogy that is useful to think in tenus of here is the following. 

Consider the well known near wall behavior of a turbulent boundary layer. 

Descriptions of it's structure generally refer to at least three regions; the 

viscous sublayer immediately adjacent to the wall, the outer turbulent "law 

of the wall" region, and the so called buffer region in between. Transposing 

in our minds the streamwise x coordinate with the cross-stream y coordinate, 

we see the following correspondence. 

developing laminar boundary layer <=> viscous sublayer 

transitional region <=> buffer layer 

turbulent boundary layer <=> turbulent "law of the wall" region 

When the boundary layer thickness is very thin, such as is the case at low­

Reynolds numbers, the outer edge only extends out to a relatively small y+. 

Thus the LRN functions designed to simulate the proper viscous sublayer in a 

turbulent boundary layer, also damp out any turbulent production which 
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might otherwise occur in the laminar low-Reynolds-number boundary layer 

(due to the influx of turbulent energy from the free-stream). 

This correspondence between two different phenomenon is the basic 

reason why all LRN models are able to mimic the correct qualitative aspects 

of boundary-layer transition with free-stream turbulence as described in 

chapter 3. However, because of the important time dependent nature of the 

stability aspects of boundary-layer transition - for which there is no analogy 

in a steady-state turbulent boundary near a wall - it is not particularly 

surprising that deficiencies exist. 

4.5 A MODIFICATION TO THE PRODUCTION TERM 

After exploring a number of different alternatives to improve the 

model, one method was found to be fairly successful. The method focuses on 

two ideas developed earlier in this thesis. The first is that some means of 

incorporating stability considerations into the calculational procedure must 

be provided. The second, related to the first, is that the process by which the 

model simulates transition, once started, must proceed at a finite rate and in 

accord with experiment. When translated to practical implementation within 

a LRN turbulence model, this implies the following; 

(l) Since the production term "Pk" is the term in the model which 

simulates the amplification of perturbations, below some critical 

momentum thickness Reynolds number (Reo,C>, The production term 

in the k equation should always be insignificant. 



89 

(2) The rate at which Pk can change must be assumed to have some finite 

limit. 

The purpose of this section is to describe the development of these 

ideas into a practical engineering modeL 

As a sidelight, it may be interesting for the reader to consider the 

harmony between the approach to be developed here and the basic idea 

suggested by Maslow when he writes " .. , a successful predictive scheme (for 

transition) would require, as a minimum, not only a critical value of the 

Reynolds number, but also some nonlinear dependence on an amplitude 

parameter ... " [50, italics added]. 

4.5.1 Applying a Stability Criteria 

As a first step in developing these ideas, a number of calculations were 

made with the following stipulation. If the calculated momentum thickness 

was less than 162, the production term in the k equation is arbitrarily set 

equal to zero. The value of 162 was chosen as this is the lower limit which 

Abu-Ghannam and Shaw use in their correlation. This effectively prevents 

the magnitude of the turbulent kinetic energy from ever exceeding the free­

stream value when Ree<162. However, it does not prevent the transport ofk 

into the boundary layer, which by itself will influence the flow to some 

extent. 
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Figure 4.4 plots the stream wise development of Cf for four different 

free-stream turbulence conditions as calculated both with and without this 

modification. (These conditions were modeled after the experiments of 

Blair[ll], but the experimental results will not be compared at this point.) A 

number of very interesting things are illustrated in this figure. First, the 

location of transition in each case has been shifted downstream such that the 

computed values of Rea at the start of transition are now all fairly close to the 

predicted value using the correlation of Abu-Ghannam and Shaw. This is 

also illustrated in figure 4.5. Second, for the higher turbulence cases, it is 

clear that despite setting Pk=O, the effect of high free-stream turbulence does 

influence the boundary-layer prior to transition. Third, The length of 

transition is as short or even shorter than the unmodified calculations. 

It may be recalled that, excluding the effect of high free-stream 

turbulence on the laminar boundary layer. shown here, tests of the method of 

Rodi and Scheuerer showed very similar results. However, there is one 

important difference which is illustrated in figure 4.6. In contrast to the 

method they propose, which is limited to starting at a very specific location, 

this procedure has yielded results virtually independent of the initial starting 

location for Rex,i < 2.3 x 104 . This also implies that the results are 

independent of the k and e starting profiles in this region. 

4.5.2 Limiting the Growth Rate of the Production Term 

The turbulent kinetic energy equation used in our' numerical 

calculations (eq. (2.12)) is derived through various modeling assumptions 

from a more exact form. For fully turbulent flow where the boundary-layer 
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assumptions are valid, the production term in the model corresponds to the 

production term in the "exact" equation as follows. 

(4.5) 

The success of k-e modeling has clearly verified that this approximation is 

quite good in many situations of interest. However, in a "pseudo laminar", 

developing transitional boundary layer - where experiments show a complex, 

three-dimensional development characterized by increasingly frequent 

"bursts" of local turbulence production - there is no justification to assume 

that the "exact" term above (the term on the left) together with the dissipation 

E, are the only source terms that are significant. Thus from a modeling 

standpoint, there is no compelling reason precluding us from introducing 

modifications in our numerically represented production term in order to 

improve transition predictions, as long as the fully turbulent form is not 

changed. Furthermore, the process by which small disturbances are­

amplified in an unstable boundary layer is time dependent, where as our 

equations are in a steady state form. 

With these things in mind, it seems reasonable to consider improving 

our predictions by introducing a modification to limit the growth ~ of the 

production term. This would allow us to leave the fully turbulent form of the 

equations undisturbed , and yet introduce a time dependent modification to 

slow down the transition simulation. The time scale would simply be related 

to the local velocity. 
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Preliminary tests with a number of fonnulations showed that a simple 

but flexible representation that worked quite well was the following; 

(4.6) 

where A and B are empirical parameters. The dependence of the linear tenn 

on Pk itself is arbitrary, being suggested in analogy with reaction rate theory, 

but was found to work quite well. The need for two independent parameters 

however, stems directly from wanting to predict both the start and the end of 

transition at the correct location. 

Figure 4.7 illustrates the benefits that introducing each of these ideas 

has had on the transition predictions. The heat transfer data being compared 

is from the tests of Blair[ll]. Note that the unmodified prediction yields 

transition too far upstream, introducing the stability criteria shifts it 

downstream but doesn't effect the error in the transition length, but addition 

of the growth rate limitation provides a very excellent representation of the 

data. However, this calculation is only preliminary, and it still remains to be 

shown whether the empirical parameters can be properly correlated to yield 

consistently accurate predictions over a wide range of free-stream turbulence 

conditions. 

4.5.3 Numerical Implementation 

At this point, a brief explanation as to the numerical implementation of 

eq. (4.6) may be beneficial. We first defme the following; 



x: The streamwise location at the current point in the calculation 

dx: The step size in the streamwise direction 
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PKG,x): The computed positive source term in the k equation for the jth 

control volume and at streamwise location x 

Ur The local streamwise velocity at the jth control volume 

To compute the value of "PKG , x+dx)" to be used over the next step in 

the solution; we implement the following (written in pseudo fortran) 

If Rea < Rea,e then 

PKG,x+dx) =0 

else 

PKG,x+dx) = PKG,x) + min[ ~t( ~~)2 - PKG,x), Mlk,max] 

endif 

where 

Mk max= (A *PKG,x) + B) -U~ , J 

For convenience, this modification will be referred to by the acronym 

"PTM" (for Production Term Modification). 

(4.7) 
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4.5.4 Determining the Transition Parameters A and B 

Method of Calibration 

A series of numerical tests must be performed to determine the 

appropriate values of A and B. Initially it was not known if they could be 

held constant, or if they must become dependent on the free-stream 

turbulence intensity. However, preliminary tests showed that for good 

results, they must be made functions of T\le. The conditions for the tests are 

the same as considered in chapter 3; ie. flat plate, zero pressure gradient flow 

with variable free-stream turbulent intensity. For calibration purposes, the 

free-stream dissipation was kept low so that TUe remained essentially 

constant (free-stream length scale effects will be discussed in the next 

section). The start and end of transition was taken to be where Cf was at it's 

minimum and maximum respectively. Computations were started a very low 

Rex,i to assure that the calculations were independent of the initially specified 

profiles of k and E. 

Starting at one specific free-stream turbulence level, a series of 

computations were made. Mter an initial guess, A and B were appropriately 

adjusted after each run, so that each succeeding calculation agreed more 

closely with the correlation of Abu-Ghannam and Shaw. After a number of 

iterations it was then possible to fmd the "correct" values so as to achieve the 

start and end of transition exactly in accord with the correlation. For clarity, 

that correlation is repeated here; 

Rea,s = 163 + exp(6.91 - lOO*Tue) (4.8) 
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Rea,E = 2.667 * Rea,S (4.9) 

Once A and B were found at one free-stream turbulence intensity, the level 

was changed, and the process was repeated. 

In Section 4.5.1 and 4.5.2, two distinct ideas for controlling the 

production term were explored, but their combined use was not discussed. 

For computing flows at high T\le, where transition should occur very near to 

Rea= 163, there is not sufficient time for the production term to grow if Pk is 

maintained at zero up until Rea=162, as was done in 4.2.1. However, a few 

computational tests showed that choosing a value of about 125 would be 

sufficiently low. This value will hereafter be referred to as Rea,c. Initially, 

Rea,c= 125 was adopted as a constant for all of the calculations with the Lam­

Bremhorst model. This may seem somewhat arbitrary, but it was actually 

constrained by the following two factors; 

(1) If Rea,C is too high, the correct start and end of transition could not 

be obtained through the use of eq. (4.6) for any values of A and B . 

(2) The lower Rea,C becomes, the smaller the region near the leading 

edge within which starting profiles of k and E are not significant to the 

calculations. 

Since insensitivity to the initial profiles of k and E is a desired characteristic, 

their seemed no reason to consider reducing Rea,c further, and the 

calibration tests for A and B were performed with this value. Afterward, 

tests were made to determine just how dependent or sensitive the 
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computations were to this value. It was found that reducing Rea,C did 

somewhat shorten the acceptable starting region as explained above, although 

it did not require the values of A and B to be changed. At high turbulence 

intensities, although the Rea-transition relationship remained unchanged, the 

actual location where transition occurred was slightly shifted upstream. 

However, for low Tue, there was no significant effect at all. This will be 

illustrated in the next section where results will be shown for both Rea,c= 

125, and for Rea,C= O. 

Calculated Values of A and B for the L.B. Model 

Calculations to determine the transition model parameters A and B 

were made for a range of turbulence intensities of from 0.5 to 10.0 %. The 

results of these calculations are presented in figures 4.8 and 4.9. Note that 

both A and B have been non-dimensionalized with respect to local free­

stream conditions as follows; 

2 
- B J.le 
B = 3 6 

PeUe 

(4.10) 

(4.11) 

After these computational experiments were completed, curve fits were 

made to the data, which are also shown in the figures. It was found that the 
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variation in A and B could be represented very well as follows; 

0.0<4>< .07 

0.0 < <I> < .02 

.02 < <t>< .081 

.081< <I> 

10~(:8) = -5.4549 + 389.2806*<1> - 7556.0334*<1>2 

+ (7.278*104)*<1>3 - (2.85036*105)*<1>4 

10~(:8) = 1.8625 + 14.6786*<1> 
(4.12) 

A = 6.8475 - 367.00*<1> + 9200.0*<1>2 

A = -6.4711 + 1177.586*<1> - 45930.0*<1>2 

+ (6.152*105)*<1>3 - (2.767*106)*<1>4 

A =-4.6011 
(4.13) 

It should be noted that the calibra~ion tests showed the predicted location of 

transition to be more strongly influen~ed by the value of B , than it was by A. 

The linear term within which A is found has only a secondary role, but was 

necessary to control the length of transition properly. 

Figure 4.10 is a duplication of Figure 3.4 with the results of these new 

calculations added. It simply indicates that A and B were properly found so 

as to match the correlation. 
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In Figure 4.11, typical turbulent kinetic energy profiles produced 

during transition are plotted. When compared with Figure 4.3 we see very 

clearly the effect of controlling the production term. The overshoot so 

visible before is almost completely removed and the profiles vary smoothly 

from the laminar to turbulent state in a physically plausible manner. (It is 

interesting to consider the similarities with the data of Dyban, Epik, and 

Suprun [24].) 

4.5.6 The Effects of High Free-stream Dissipation Rate 

Almost all of the calculations presented up to this point have been done 

on flow conditions where the free-stream turbulence intensity was assumed 

to be essentially constant. This was accomplished computationally by simply 

setting the starting value of £e equal to a very small number. However, in 

real situations this is not normally encountered, especially in flows of high 

Tue, where invariably the dissipation rate is also high. Thus the question 

naturally arises as to how to properly account for a free-stream turbulence 

intensity that is changing significantly before transition occurs. 

One of the advantages of using a k -£ approach is that the effects of this 

type of variation are naturally included as part of the model. As far as the 

transition parameters are concerned, we simply base them on the local free­

stream conditions. Computationally, since the step size is usually quite small 

relative to the rate at which k and £ decay, it is usually quite sufficient to only 

update A and B after every 10 or 20 steps. 
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Since the relationship between lee and TUe involves the free-stream 

velocity, acceleration can also have dramatic effects on the free-stream 

turbulence intensity. If the flow accelerates, TUe goes down, even though lee 
may have remained relatively constant. Deceleration has just the opposite 

effect, yielding an increase in Tue. This does not present any additional 

difficulty for the model, and as before, we simply continue to base our 

calculations on the local free-stream conditions. 

4.6 TRANSITION CALCULATIONS WITH THE PTM 
VERSION OF THE LAM-BREMHORST MODEL 

Results from a number of calculations are presented here to show the 

location and characteristics of transition as predicted by the modified Lam­

Bremhorst model. Calculations for seven free-stream turbulence conditions 

covering a range of 1.0 to 8.0% were made. As before, the conditions 

considered were simple flat plate, zero pressure gradient flows with the free­

stream turbulence being the only variable parameter. The results are 

represented through three different plots. In Figure 4.12, the variation in Cf 

with Rex is shown. This can be compared with Figures 3.3-a, 3.3-b, and 4.1, 

which show the calculations made with the unmodified Lam-Bremhorst, 

unmodified Jones-Launder, and method of Rodi and Scheuerer respectively. 

Figure 4.13 replots Cf as a function of momentum thickness Reynolds 

number. This will be helpful when comparing the effect that changing Rea,e 

has on the predictions. Finally, Figure 4.14 shows the calculated variation in 

the shape-factor ( the ratio of displacement to momentum thickness) with 

Reynolds number. 
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In addition to the transition aspects that these figures show, it is 

interesting to note the predicted effect that high free-stream turbulence has 

on both the "pseudo" laminar region prior to transition, and on the fully 

turbulent conditions. This is manifest in an increase in Cf , and a decrease in 

shape factor, and can be easily observed far before Cf reaches it's minimum. 

This carries through to the turbulent region where Cf shows a 15-20 % 

increase over the value for the 1 % case. Both of these trends are consistent 

with experiment and will be discussed again later. 

Figures 4.15 through 4.17 show the effect of removing the restriction 

that sets Pk=O for Rea,C<125. Except for this difference the calculations 

were identical. The results are compared at Tue=2% and 6% as 

representative of the effects in general. The following three items should be 

mentioned relative to this comparison. 

(1) The most significant differences occur at higher turbulence 

intensities. 

(2) When Rea,c=O, the boundary layer is more strongly affected in the 

upstream "pseudo laminar" region than before. This is due to 

allowing Pk to begin to grow sooner. However, as can be seen in 

Figure 4.16, although the magnitude of Cf has changed, the location 

with respect to Rea where a minimum is reached is not changed. 

Thus the agreement of these calculations with the correlation of 

Abu-Ghannam and Shaw has not been significantly altered. 

(3) When Rea,c---Q, the change in shape factor over the transition region 

takes a less abrupt and smoother path from its fully laminar value of 

2.6 down to the turbulent conditions. 



101 

The only other difference relates to the sensitivity of the calculations to the 

initial starting location. This will be shown in section 4.8. 

4.7 APPLICATION OF THE MODIFICATION TO THE JONES­
LAUNDER MODEL 

The previous sections of this chapter have explained the application of 

the PTM modifications almost entirely in terms of the Lam-Bremhorst 

model. However, in principle, the only difference in using another model 

should be with respect to the calibration of the parameters A and B. To 

assure that this was indeed the case, The Jones-Launder model was modified 

in exact analogy to the Lam-Bremhorst model, and the parameters A and B 

determined. It may be recalled that the Jones-Launder model differs from the 

Lam-Bremhorst model in it's dissipation rate variable and in the introduction 

of some additional source terms. However, on applying the transition 

modifications only the production term in the modeled k equation 

(Pk=J.1t(dU/dy)2) was controlled. 

The only real question that needed to be answered was whether or not 

to apply a critical momentum thickness criteria (as explained in section 4.5.1) 

in addition to limiting the growth rate (recall that the Lam-Bremhorst model 

was applied both with and without this modification). To answer this 

question A and B were first found at a relatively high turbulence intensity. 

Then a number a experiments were made to determine the highest value of 

Rea,C that could be used and still match the correlation of Abu-Ghannam and 
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Shaw. It was found that in contrast to the Lam-Bremhorst model, The 

highest value of Rea,e that could be used was only about 75. This can be 

attributed to the additional source terms in the J ones-Launder model, all of 

which act to suppress the turbulent kinetic energy in the developing region. 

Since this was so small the application of a critical momentum thickness 

parameter in addition to growth rate limitation was neglected (ie. Rea,e=O). 

Figures 4.18 and 4.19 show the behavior of A and B as found through 

a series of numerical experiments. Also shown for comparison is the 

previously determined variation of A and B for the Lam-Bremhorst model. 

A curve fit representing the data is given as follows in eqs. (4.14) and (4.15). 

0.0 < <I> < 2.0 

2.0 < <I> < 6.0 

6.0 < <I> 

0.0 < <I> < 6.0 

6.0 < <I> 

10~CB) = -5.8084 + 2.995*<1> 

B = 18.738 - 26.8085*<1> + 12.7536*<1>2 

- 2.1152*<1>3 + 0.1218*<1>4 

10~CB) = 1.950 + 0.1573*<1> 
(4.14) 

A. = 12.2266 - 1.7904 *<1> - 2.4229*<1>2 

+ 0.57595*<1>3 - 0.0365*<1>4 

A. = -7.5 - 0.19*<1> 

( 4.15) 



103 

It is interesting to note that they are qualitatively quite similar to the the Lam­

Bremhorst parameters except for the small dip in the "B " parameter curve at 

about Tue=2%. This dip is directly associated with the problem in the Lam­

Bremhorst fJl function that was explained in section 4.2. 

After A and B were found, the same seven flow conditions considered 

in section 4.6 where calculated and the transition predictions plotted. These 

are shown in figures 4.20 to 4.22. They are very similar to the results using 

the Lam-Bremhorst model, as can be more clearly seen in figures 4.23-4.25. 

In these figures, calculations at Tue=2% and 6% are compared with both 

Lam-Bremhorst model calculations ( ie. Ree,C=125 and Ree,c=O). It may 

be noted that in each of these cases the Jones-Launder model predicts a 

slightly lower Cf in the fully turbulent region than the Lam-Bremhorst 

model. This is due to the particular choice of constants used in the LRN 

function equations (some variation exists in the literature) and is not a result 

of the transition modifications made. Of greater interest is that results of 

the PTM Jones-Launder model, which are for Ree,c=O, compare very well 

with the results of the PTM Larn-Bremhorst models for Ree,c=125. 

One problem occurred in applying the modifications to the J ones­

Launder model. When calculating transition at Tue=1 %, the simulation 

proceeded smoothly until transition was about 20% complete. At that point 

there was an abrupt decay of the predicted results back to a laminar-like state. 

If computations were allowed to continue, this process would repeat itself. 

Investigation revealed that the problem was related to the fJl function 

decaying to values less than one in the outer regions of the boundary layer. It 
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was apparently due to the production term in the fully turbulent region near 

the boundary layer edge naturally growing faster than the transition 

prediction modification would allow (At low Tue, the parameter B becomes 

quite small). Note that near the boundary layer edge we normally do not 

desire any near-wall LRN effects. As a result, this would cause a small decay 

in the ratio of k to £ in that region, reducing the turbulent Reynolds number 

"Ret", which then yields a smaller f)J.' When fll begins to drop, the 

production term is directly diminished, and the imbalance between k and £ 

then starts to become significant. This cycle quickly grows and causes the 

behavior mentioned. 

Although the root of the problem appears to be the undesired effect of 

the transition modification in the fully turbulent region, without the decrease 

in fll' the effect would be negligible because the unstable cycle mentioned 

would be broken. For example, since the Lam-Bremhorst model fll is also a 

function of Rey, a similar problem is precluded. Thus, for practical 

purposes, the problem can be overcome by requiring fll to behave 

monotonically with y. This is accomplished by simply preventing fll from 

decreasing (with respect to the y coordinate) once it has reached it's 

maximum value of one. This is what was done for the 1 % calculation shown. 

Of course, this is admittedly only a symptomatic treatment of the problem. A 

more general solution would require that the production term growth 

limitation be restricted to local areas where the turbulent Reynolds number is 

not large, ie. the introduction of an additional LRN function. Considering 

that the problem occurs only for TUe<l %, this additional complexity did not 

seem justified at this time. 
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In summary, it has been shown in this section that the PTM modifi­

cations can be applied with equal success to other k-e LRN turbulence 

models. To do so simply requires the determination of the parameters A and 

B as explained. However, it also may require a simple additional restraint 

on the behavior fJ.1 to avoid a problem at low Tue. 

4.8 STARTING CONDITIONS AND THE "PTM" MODELS 

To assure consistent repeatable predictions it is important that the 

sensitivity of the method to the initial starting location be clearly identified. 

As this was done for the unmodified models in Chapter 3, it is now important 

to determine this for the PTM form of the models. To do so, tests were made 

for flows with Tlle=3%, and at Tlle=8%. The initial starting location was 

then varied from Rex,i = l.x 102, to Rex,i = 2.27 x 104, and the results 

compared. Some plots of these results can be seen in Figures 4.26, 4.27, and 

4.28, which correspond to using the Lam-Bremhorst model with 

Ree,C=125, the Lam-Bremhorst model with Ree,C=O, and the Jones­

Launder model respectively. 

The important aspects of this comparison can be listed as follows; 

(1) As compared to the 3% calculations presented in chapter 3, the Lam­

Bremhorst model with Rea,c=125 shows a greatly reduced 

sensitivity to starting location. However, the free-stream turbulence 

effects in the region prior to transition are also diminished. In 
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contrast, the Lam-Bremhorst model with Ree,C=O, together with the 

Jones Launder model show only a limited decreases in sensitivity. 

(2) For the Lam-Bremhorst model, the importance of the starting 

location seems to increase as TUe goes up. This does not appear to be 

the case for the Jones-Launder model. 

(3) For the Lam-Bremhorst model, the actual location in x where the 

minimum in Cf occurs is not very sensitive to the starting location 

Instead, it tends to affect the magnitude of Cf at which this minimum 

occurs. For the Jones-Launder model, this is not the case. 

(4) For each of the models and for both of the conditions tested, starting 

the calculation at a Rex,i less than 103 is sufficiently low to reduce 

the starting location effects to insignificance. Note that this implies 

that the calculations are also insensitive to the starting profiles of k 

and e under these conditions. 
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Figure 4.16 Plot of Cf vrs Rea comparing results for Reate = 125 with 

Reate =0. ("PTM" Lam-Bremhorst model) 
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Figure 4.19 Variation of "B "with free-stream turbulence intensity 

for the lones-Launder model 
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Figure 4.24 Plot of Cf vrs Rea comparing the J ones-Launder PTM 

version with the Lam-Bremhorst model calculations 
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CHAPTER FIVE 

COMPARISON OF THE PROPOSED MODEL WITH 

EXPERIMENTAL DATA 

Up to this point, direct comparison with experiment has been deferred 

in favor of developing the models as guided by empirical and semi-empirical 

correlations. This was deliberately done to avoid the potential bias that might 

occur if the method were "tuned" so to speak to only one or two experimental 

data sets. However, in order to truly evaluate the effectiveness of the model, 

careful comparison with a wide range of experiments is crucial. 

In this chapter, the calculations will be compared with the results of 34 

separate experiments taken from six different sources. Table 5.1 

summerizes some of the important conditions of interest for each of these 

experiments. The flow conditions most thoroughly considered are flat plate 

flow both with and without favorable pressure gradients, but the calculations 

will also be compared to turbine blade cascade data. All of these experiments 

involve transition occurring under the influence of free-stream turbulence. 

The model used in all of these calculations is the PTM fonn of the 

Lam-Bremhorst model with Ree,c=125. 
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TABLE 5.1 Experimental Conditions for the Selected Data Sets 

Reference Identifier Tu % Acceleration Thermal Boundarv TwiTe Te Us 
at x.O Condition (approx.) I (total (at x.o) 

1 Warm_Land SimonI flat alate test 2.3 /II:) Ow.160 W/lm·m) 1.03 298 K 13.5 m/s 
2 Rued (and Willie) Nr. 2. no erid 1.6 /II:) Tw.302 K (29 C) 0.8 378 K 47 m/s 
3 Rued Land Willial Nr.2. Grid 1 2.3 /II:) Tw.302 K (29 CI 0.8 378 K 47 m/s 
4 Rued (and Willie I Nr.2. Grid 2 3.8 /II:) Tw.302 K (29 C) 0.8 378 K 47 m/s 
5 Rued land Willia) Nr.2. Grid 3 6.5 /II:) Tw-302 K (29 CI 0.8 378 K 47 m/s 
6 Rued (and Willie) Nr.2. Grid 4 8.6 /II:) Tw.302 K (29 C) 0.8 378 K 47 m/s 
7 Blair and Werle Grid 1 1.4 /II:) Ow-8S0 W!1m·m) 1.03 295 K 30.5 m/s 
8 Blair and Werle Grid 2 2.8 /II:) Ow.850 W/(m·m 1.03 295 K 30.5 m/s 
9 Blair and Werle Grid 3 6.2 /II:) Ow.850 W/(m·m) 1.03 295 K 30.5 m/s 

10 Blair and Werte Low K Grid 1 1.0 K •. 20·10e·6 Ow-850 W/(m·m 1.03 297 K 15.9 m/s 
11 Blair and Werle Low K Grid 2 2.1 K •. 20·10e-6 Ow-850 W/(m·ml 1.03 297 K 15.9 m/s 
12 Blair and Werle Low K Grid 3 5.2 K •. 20·10e-6 Ow.850 W/(m·m) 1.03 297 K 15.9 m/s 
13 Blair and Werle High K Grid 2 2.2 K •. 75·1 Oe-6 Ow-850 W/(m·m 1.03 297 K 9.93 m/s 
14 Blair and Werte Hiah K Grid 3 5'.2 K •. 75·1 Oe·6 Ow.850 W/(m·m 1.03 297 K 9.93 m/s 
15 Rued (and Willie) Nr. 6. Grid 1 2.4 Kmax.l.2·10e·6 Tw-298 K (25 C ) 0.64 466 K 49 m/s 
16 Rued (and Willial Nr.8. Grid 2 3.9 Kmax.l.2·10e-6 Tw-298 K (25 C I 0.64 466 K 49 m/s 
17 Rued (and Willill) Nr.6. Grid 3 7.7 Kmax.l.2·10e-6 Tw-298 K L25 C I 0.64 466 K 49 m/s 
18 Rued land Willial Nr. 6. Grid 4 11.1 Kmax.l.2·10e-6 Tw-298 K 125 C ) 0.64 466 K 49 m/s 
19 Rued (and Willie) Nr. 10 Grid 1 2.6 Kmax.3. 2·1 Oe-6 Tw-296 K ~23 C) 0.64 463 K 48 m/s 
20 Rued land Willial Nr. 10 Grid 2 3.6 Kmax.3.2·10e-6 Tw_296 K (23 C I 0.64 463 K 48 m/s 
21 Rued (and Willie) Nr. 10 Grid 3 7.0 Kmax.3.2·10e-6 Tw_296 K 123 C ) 0.64 463 K 48 mls 
22 Rued land Willia) Nr. 10 Grid 4 10.1 Kmax-3.2·10e-6 Tw-296 K (23 C ) 0.64 463 K 48 m/s 
23 Rued Uind Willial Nr. 12 Grid 1 2.6 Kmax.S. 7·1 Oe-6 Tw-299 K 126 C I 0.64 467 K 27 m/s 
24 Rued land Williel Nr. 12 Grid 2 3.6 Kmax.S.7·10e-6 Tw_299 K (26 C ) 0.64 467 K 27 mls 
25 Rued (and Willie) Nr. 12 Grid 3 7.0 Kmax.S. 7·1 Oe-6 Tw_299 K 126 C I 0.64 467 K 27 m/s 
26 Rued land Willial Nr. 12 Grid 4 10.1 Kmax-5. 7·1 Oe-6 Tw-299 K (26 C ) 0.64 467 K 27 m/s 

27 Daniels Land Browne ReD suction · 4.0 Turbine Blade Tw.289 K {16 C } 0.67 432 K Vinl.146 m/s 
28 Daniels land Browne ReD Dressure · 4.0 Turbine Blade Tw.289 K 116 C I 0.67 432 K Vinl.146 m/s 
29 Daniels (lind Browne Rs. suction · 4.0 Turbine Blade Tw.289 K (16 C ) 0.67 432 K Vinl.135 m/s 
30 Daniels land Browne Re. pressure · 4.0 Turbine Blade Tw_289 K L16 C I 0.67 432 K Vinf_135 m/s 
31 Hvlton et al. Run 145 - S · 6.5 Turbine Blade w-650 K (377 C 0.81 792 K Vinf-90 m/s 
32 Hvlton et al. Run 145 - P · 6.5 Turbine Blade w_~K 377 C 0.81 792 K Vinl.90 m/s 
33 Hylton et al. Run 149 - S · 6.5 Turbine Blade w-650 K (377 C 0.81 795 K Vinl.90 m/s 
34 Hvlton et al. Run 149 • P · 6.5 Turbine Blade w_650 K 1377 C 0.81 795 K Vinl.gO m/s 

• ups tream value 
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5.1 SIMPLE FLAT PLATE FLOW WITH FREE-STREAM 
TURBULENCE 

This section will consider experimental data from transitional flows 

occuring under the influence of free-stream turbulence, but without pressure 

gradients or curvature. A comparison will be made between results of 

calculations made with the PTM Lam-Bremhorst model and the experiments 

of Wang [91,92], Rued[72-74], and Blair and Werle[8]. These are listed as 

the first nine entries in Table 5.1. Taken together these experiments span a 

range of total free-stream turbulence intensity levels from less than 1 % to 

nearly 9%. In each experiment, the effects of transition are given in terms of 

heat transfer, thus the evaluation will be restricted to comparing local 

Stanton numbers. This is dermed in a standard way as 

(5.1) 

5.1.1 Data of Wang 

This experiment was conducted in a low speed wind tunnel (Ue=13.5 

mls) under ambient atmospheric pressure with air. The test section was 

heated with a uniform heat flux of about 160 W 1m2. Suction was applied at 

the leading edge such that the growth of the boundary layer simulated a 

classical sharp-leading edge. A square grid was placed upstream of the test 

section such that the turbulence intensity was about 2% over the test section. 
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The streamwise component of the free-stream turbulence was measured at a 

number of different locations using hot wire anemometry. In Fig 5.1, these 

experimentally reported values are shown together with the approximated 

conditions applied in the computations. Since only the streamwise 

componant of the free-stream turbulence was reported, the turbulence was 

assumed to be isotropic for the purpose of setting the turbulent kinetic energy 

boundary conditions. For a velocity of 13.5 mis, this translates to ke=.15 

m2/s2 and Ee= .70 m2/s3 at the location x=O. 

In Fig. 5.2 the heat transfer results for calculations using the PTM form 

of the Lam-Bremhorst model are compared with this experiment. Also shown 

is a calculation by Park and Simon [60] using standard mixing length type 

transition modeling as per Abu-Ghannam and Shaw [2] and Dhawan and 

Narasimha [22]. Their evaluation of a number of different models showed 

this combination to be the best. The agreement is excellent, and an improved 

simulation of the transition path is compared to mixing length type models is 

indicated. It is interesting to note that although the PTM model was also tuned 

to the correlation of Abu-Ghannam and Shaw, transition begins somewhat 

earlier because the momentum thickness itself is altered through the turbulent 

transport. Furthermore, the overshoot predicted by the mixing length type of 

models is avoided. Thus for this experiment the path of transition is more 

realistically simulated as a gradual process that actually begins far upstream of 

the point where the heat transfer shows a sharp increase. (It should be noted 

that in this case both methods used the experimentally determined turbulent 

Prandtl number in the turbulent heat transfer calculations. This however has 

no real bearing on the transition predictions.) 
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5.1.2 The Use of the Streamwise vrs. Total Turbulence 
Intensity 

At lower turbulence intensities and at distances relatively far 

downstream from grids, the turbulence in wind tunnels is quite isotropic. As 

a result, the experiment of Wang is not unusual in reporting only the 

streamwise component of the turbulence intensity. However, to generate test 

conditions with high turbulence intensities, experimentalists are required to 

install relatively coarse grids at locations fairly close to the test section. 

Because grid generated turbulence is not isotropic (generally characterized 

by u'2> v' 2> w' 2), a different turbulence intensity can be defined and 

measured for each of the three spatial directions. Unfortunately, transition 

experiments conducted in the past have usually neglected this and reported 

only the streamwise component. Only recently have transition experiments 

appeared in the literature where a more complete description of the 

turbulence is given. The experiments of Rued, and Blair and Werle, which 

will be considered next, are examples of this. 

In eqs. 1.1 and 1.2, the distinction between the streamwise turbulent 

intensity "Tue", and the total turbulence intensity "Tue,T" is defined. Since 

the turbulent kinetic energy is the sum of the fluctuating energy in each 

direction, this difference affects k-e models through the specification of ke as 

a boundary condition, ie; 

(5.2) 

If only u'2 is known, and TUe replaces TUe,T in eq. (5.2), then ke would 
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obviously be in error if the turbulence is not isotropic. For a fully turbulent 

boundary layer this difference would probably be insignificant. However, 

since the effect (if any) of non-isotropic free-stream turbulence on transition 

is unknown, a question arises concerning the PTM model. Many of the 

experiments used in developing the correlation of Abu-Ghannam and Shaw 

are based on TUe only. Thus, even if V'2 and W'2 are known, is it better to 

base ke on TUe in the PTM model? 

As a result of questions like this, as well as the added benefit of 

examining how sensitive the predictions are to small changes in the boundary 

conditions, the results to be presented next will be calculated both ways, ie. 

using eq. (5.2) as is, or replacing TUe,T with Tue. Afterwards, the relative 

importance of this issue can more adequately be discussed. 

5.1.3 D.ata of Rued 

Rued[72-74] has conducted a large number of experiments dedicated to 

examining the influence of free-stream turbulence, pressure gradient, and 

large temperature variations on transition. In this section we will consider 

only those tests conducted without pressure gradients. In contrast to the 

experiments of Wang, Rued's test facility provided for the incoming air to be 

heated while the test section surface was cooled and kept at a constant 

temperature. Turbulence measurements were made using laser-doppler­

anemometry, and turbulence grids were installed to provide total turbulence 

intensities of from 1.6 to 8.7 % at the leading edge. The free-stream velocity 

was constant and equal to 47 mls. Two components of the turbulence, U'2 
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and v'2 were measured and reported at different locations along the test 

section. Since w'2 was not measured, it was assumed to be equal to v·2 in 

the definition of TUe,T. Figures 5.3 and 5.4 show the streamwise distribution 

of both TUe,T and TUe for each of the turbulence grids. Comparing these two 

figures one can observe the higher values of TUe relative to TUe,T. Also 

shown is the streamwise variation of the turbulence intensity as approximated 

in the computations. Note that the excellent agreement between the computa­

tionally specified distributions and the data from each grid verifies the 

accuracy of the reduced equations for ke and Ee given in equations (2.35) and 

(2.36). Table 5.2 provides the exact values of ke' Ee and Tu at the start of the 

test section as used in the computations. 

TABLE 5.2 Free-Stream Turbulence Conditions Specified in Computing the 
Zero-Pressure Gradient Flows of Rued [72] 

Parameter No grid Grid 1 Grid 2 Grid 3 Grid 4 

Tlle,T atx=O 1.6% 2.3% 3.75% 6.5% 8.6% 
ke (m2/s2) " .848 1.75 4.66 14.0 24.5 
Ee (m2/s3) " 55.0 365.0 1589 8214 14,905 

TUe,T at x=.4 m 1.28% 1.36% 1.85% 2.55% 3.32% 
-------------------- .----------- ----------- ------------ ------------ -----------
Tlle atx=O 1.71% 2.8% 4.65% 7.4% 10.8% 
ke (m2/s2) " .969 2.60 7.16 18.14 38.6 
Ee (m2/s3) " 62.3 480 1600 9530 24,000 

Tlle at x=.4 m 1.37% 1.72% 2.68% 3.05% 4.13% 
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In Figure 5.5, the experimental Stanton numbers are compared with 

the computations which used the total turbulence intensity. In general, very 

good agreement is shown except with grid 2, where the calculation predicts 

transition somewhat downstream of the data. Although not as much as the 

grid 2 case, it is interesting to note that the calculations for grid 1 and the no­

grid case also are slightly downstream of the data. 

In Figure 5.6 the experimental Stanton numbers are compared with the 

computations which used the streamwise turbulence intensity. Since TUe is 

larger than TUe,T' the calculations show a general upstream shift in the 

predicted transition locations. This improves the agreement for the grid 2 

case, leaves the overall agreement about the same for the no grid and grid 3 

cases, but reduces the agreement for grids 1 and 4. This behavior will be 

discussed further after considering the results of calculating the experiments 

of Blair and Werle. 

5.1.4 Data of Blair and Werle 

Similar to Wang, these experiments were conducted in a low speed 

wind tunnel (Ue=30.5 rn/s) under ambient atmospheric pressure with air. 

After a short unheated starting length, the test section was heated with a 

unifonn heat flux of about 800 W 1m2. Suction was applied at the leading 

edge such that the growth of the boundary layer simulated a classical sharp­

leading edge. Three different turbulence generating grids were placed 

upstream of the test section to provide total free-stream turbulence levels of 

1.4%, 2.8%, and 6.2% respectively at the leading edge. (Data from a fourth 

grid was also taken but will not be considered here because transition 
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occurred before the heated test section.) Hot wire anemometry was used to 

detennine all three components of the turbulence (U'2, V'2, and W'2) at a 

number of different locations. As a result of a contraction in the wind tunnel 

upstream of the test section, the U'2 component was reduced to a value less 

than V'2 and W'2. However, evaluation of the data showed that the 

streamwise variation of TUe,T could still be accurately represented in the 

following theoretical form (see Baines and Peterson [5]); 

TUe,T = 0.78 (x + ~32 ysn (5.3) 

where x is in cm. and b=.48, 1.27, and 3.81 for grids 1,2 and 3 respectively. 

This is shown as the dashed lines in Figure 5.7. Also shown in Fig. 5.7 is the 

reported variation in TUe and the corresponding approximate variation used 

in the calculations. Table 5.3 gives the exact values of ke, £e and Tu that are 

used in the computations at x=O . 

Figure 5.8 compares the calculations using Tue, T with the 

experimental data. Good agreement is shown for grid one, but transition is 

predicted significantly upstream for the grid two case. For grid 3, transition 

is just ending as the flow passes the end of the unheated starting length, thus 

the only quantitative information that can be gained is that the model does not 

predict transition too late. 

When the calculations are made using the Tue data, the result is to shift 

the location of transition downstream. These calculations are shown in Fig. 

5.9. (Recall that this is opposite of Rued's case because for Blair's data, ull 

is less than v'2 and w'2) This appears to reduce the accuracy of the grid one 
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TABLE 5.3 Free-Stream Turbulence Conditions Specified in Computing the 
Zero-Pressure Gradient Flows of Blair and Werle [8] 

Parameter Grid 1 Grid 2 Grid 3 

Tue,T atx=O 1.41% 2.82% 6.20% 
lee (m2/s2) " .277 1.12 5.36 
Ee (m2/s3) " 11.8 47.5 228 

T\le,T at x=I.6 m 0.80% 1.60% 3.52% 
---------------------- --------------- --------------- ---------------
Tlle atx=O 1.12% 2.33% 5.75% 
lee (m2/s2) " .175 .757 4.60 
Ee (m2/s3) " 2.75 19.5 150 

Tlle at x=1.6 m 0.82% 1.50% 3.44% 

prediction, but improves the agreement with grid 2 and grid 3. In 

considering this contrast it should be noted that Blair and Werle report that 

when doing experiments withput a grid (the data is not shown here), the 

transition location was clearly shifted upstream due to wall effects 

propagating into the boundary layer. Since grid one is still at a relatively low 

free-stream turbulence level, it is possible that this case was slightly affected 

also. If so, the tendency of the u'2 based calculation to be somewhat closer 

to the data would be a consistent trend for all three cases. 
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5.1.5 Discussion and Summary 

Since a point was made earlier in this section to make a distinction 

between TUe,T and Tue, a further discussion of this is now warranted. 

When using TUe,T in the calculations, the only significant difference 

with experiment occurred in the mid turbulence intensity range. However, 

when comparing the calculations of Rued's cases with Blair and Werle's 

cases, the direction of the error was opposite. For Rued's data, grid 2, the 

predicted transition was a little late, whereas for Blair's data grid 2, the 

predicted location of transition comes too early. 

When comparing the two experiments, the one quantifiable 

dissimilarity likely to be significant is the difference in anisotropy. This 

hypothesis is supported by the calculations where, in almost every case, the 

direction of the error correlates with the variance between the U'2 

component of turbulence relative to the mean. When U'2 was high, using 

TUe,T tended to yield predictions somewhat downstream of the data. When 

u '2 was low, using TUe,T tended to yield predictions somewhat upstream of 

the data. This leads to the conclusion that one or both of the following may 

be true; (1) the model as currently correlated is somewhat biased to the u' 

component of turbulence, and/or (2) the transition process itself is 

significantly influenced by the anisotropy. 

In light of these observations, it is also interesting to recall something 

about the origin of the production term ( u'v' iJU/iJY ) that appears in the 

exact fonn of the k equation. One way to derive this equation is to start with 

a transport equation for each of it's components, ie. U'2, ;;2 and W'2. The 

k equation is then found by appropriate addition of each of these equations. 
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Upon examination of these equations individually, one sees that the 

production term comes entirely from the U'2 equation. Since this term is 

clearly important in the transition process, this tends to support the 

possibility of a connection between the anisotropy and transition as observed 

here. 

In summary, the predictions of the PTM form of the Lam Bremhorst 

model have proved excellent at reproducing both the start, the end, and the 

path of transition as manefest in the heat transfer. Although some differences 

between the data and the calculations exist, they are not large, and there 

appear to be rational explanations to justify most of the discrepancies. 

Considering the amount of scatter in the data used as a basis for the 

correlation of the Abu-Ghannam and Shaw [2] - which correlation is the 

basis for finding the parameters A and B - the results have been very 

encouraging. 

5.2 TRANSITIONAL FLOWS WITH ACCELERATION 

In this section the calculations will be compared against pressure 

gradient experiments reported by Blair arJ Werle [9], and by Rued [72]. 

Taken together, these experiments provide an excellent range of different 

accelerating flow conditions with which to test the calculational procedure. 

No additional modifications will be introduced into the model at this point. 

This is possible because the LRN fonn of the k-e model is also inherently 

responsive (at least qualitatively) to the effects of acceleration. In fact, it was 

the early demonstration of the ability of the LRN k-e model of Jones and 
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Launder to simulate relaminarization[37] that helped attract further research 

into models of this type. 

In characterizing acceleration, it is useful to define an acceleration 

parameter K. Previously defined in equation (1.4), it is repeated here; 

(1.4) 

For the experiments of Blair, two sets of data are presented. Each set 

corresponds to a different level of constant K being maintained over the 

entire test section, but provides data at a number of different free-stream 

turbulence conditions. In contrast, the experiments of Rued are such that the 

value of K is changing dramatically over the length of the test section. Three 

representative sets of this data will be used. 

5.2.1 Some Limitations Inherent in the 2-Equation Approach 

Under strong acceleration such as is caused by a test section 

contraction, each of the components of the Reynolds stress tensor are 

affected differently. For example, if x is the stream-wise direction, a 

contraction in the test section along the y direction, will yield a stratification 

from an initially isotropic state such that V'2 > w' 2 > U ' 2 • This in fact is 

the effect which caused the significantly different nature of the anisotopy in 

Blair's experiments as compared to Rued's. However, more than a simple 

redistribution of energy within the different components can occur. In 
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addition to this, energy can be extracted from the flow to cause a net increase 

in the total turbulent kinetic energy. Figure 5.10 is presented as an 

illustration of this. Here the experimentally reported turbulence intensities 

for one of the data sets of Rued have been converted to turbulent kinetic 

energy and then nonnalized with respect to the conditions at x=O. Although 

qualitative differences occur, the data all show the same trend; ie. a rapid 

decrease in k followed by a period of significant increase, which finally 

begins to decrease again. The solid curve shown is simply a polynomial 

curve fit to all of the data in order to represent the trends clearly. 

From a mathematical standpoint, this behavior can be explained 

through examination of the various nonlinear tenns that appear in the set of 

transport equations describing each component of the Reynolds stress tensor. 

These form the basis of the so called Reynolds-Stress-Equation turbulence 

models. Together with certain closure assumptions, these equations can be 

solved to yield a fairly accurate prediction of these effects, at least for simple 

geometries. However, this behavior is beyond the capabilities of the k-e 

model to simulate, at least in the standard fonn used here. This is clearly 

seen by recalling that in the free-stream, the reduced set of equations given 

by eq.( 2.35) and (2.36) are assumed valid. Examination shows that since e is 

an always positive variable, these equations preclude the possibility of k 

increasing in the streamwise direction. 

Because of this limitation, under some of the conditions for which 

Rued carried out experiments, the calculational procedure will only allow an 

approximation to the correct boundary conditions for k and e. This will be 
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documented in the presentation of the results in order to evaluate it's 

significance. 

5.2.2 Data of Blair and Werle 

The pressure gradient experiments of Blair and Werle[10] were 

conducted at the same basic facility as those reported in Blair and Werle[8] 

for zero pressure gradient conditions. However, the side opposite of the test 

section in the wind tunnel was modified so as to produce a flow of almost 

constant acceleration. The two values of K obtained were K=.20 x 10-6 and 

K=.75 x 10-6. The corresponding free-stream velocity distribution for each 

of these cases is shown in Fig. 5.11. 

Figures 5.12 and 5.13 document the approximated free-stream 

turbulence conditions used in the calculations as compared to the 

experimental data. As was done in section 5.1, calculations were made using 

both Tue, T and Tue. In Fig. 5.12 a curve for grid 3 is shown but no data is 

indicated. Blair reports heat transfer results for this condition but did not 

document the free-stream turbulence. However, since the actual grid was the 

same as used for the data shown in Fig. 5.13, it was possible to estimate the 

actual variation in Tu with a high degree of confidence. The exact values of 

ke' €e and Tu used the calculations are given in Table 5.4. 

Figure 5.14 presents the calculated heat transfer results for the lowest 

acceleration cases. Excellent agreement is obtained, and once again; the small 

variation that does exist is shown to correlate to the anisotropy as previously 

explained. In the fully turbulent region, the data tends to be higher than the 
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TABLE 5.4 Free-Stream Turbulence Conditions Specified in Computing the 
Pressure Gradient Flows of Blair and Werle [9] 

K=O.2 x 10-6 K=O.75 x 10-6 
------------------------------------ -------------------------

Parameter Grid 1 Grid 2 Grid 3 Grid 2 Grid 3 

Tlle,T atx=O 1.03% 2.1% - 2.24% 5.3% 
lee (m2/s2) " .0402 .1672 .0742 .415 -
Ee (m2/s3) " .07 1.20 .14 2.70 -
TUe,T at x=1.6 m 0.64% 1.10% - 0.45% 0.91% 
--------------------- ------------ ~----------- ------------ ----------- ----------~-

Tlle atx=O 0.94% 1.86% 4.80% 1.90% 4.77% 
lee (m2/s2) " .0335 .1312 .341 .0534 .336 
£e (m2/s3) " .01 1.0 20.0 .14 3.20 
TUe at x=1.6 m 0.62% 0.97% 1.89% .37% .75% 

predictions. This apparently is due to the acceleration since the calculations 

with zero pressure gradient do not show this difference. In any case, the 

issue is a separate one from the transition predictions. 

Figure 5.15 compares the results of the higher acceleration tests. Here 

both experiments show transition displaced further downstream than the 

calculations predict, although the effect is small for the higher turbulence 

case. Furthermore, this cannot be correlated with the the anisotropy. 

However, by comparing the calculations with those at K=0.2 x 10-6, it is 

clear that the calculations have responded to the acceleration in the right 

direction (ie. the predicted transition location has moved downstream). 

Also, it will be noted that once again, in the fully turbulent region the Lam­

Bremhorst model under predicts the heat transfer. 
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Also documented in Blair and Werle's report are the displacement 

thickness 0*, the momentum thickness 9, and the shape factor 0*/9. These 

was measured at various locations along the test section, allowing an 

alternative comparison between experiment and predictions during 

transition. Examples of this for grids 1 and 2 at K=0.2 x 10-6 are shown in 

Fig. 5.16, where 0* and 9 are compared with experiment, and in Fig. 5.17, 

where the variation in shape factor is compared. For the higher turbulence 

case of grid 2, only small differences are apparent in both figures, the most 

pronounced being the quicker change in the shape factor. However, a larger 

difference is seen for grid 1 where the free-stream turbulence effects do not 

dominate. In this case, the shape factor found computationally begins to 

change earlier and also undergoes a more gradual change than the data. This 

difference is somewhat surprising considering the close agreement in the heat 

transfer results for this case. Unfortunately, no explanation of this result can 

be given at this time. 

5.2.3 Data of Rued 

This data was taken in the same basic facility as described in section 

5.1.2. To introduce acceleration, the channel boundary opposite the test 

section was modified by installing two different and specially contoured 

walls. Flow conditions were then varied to achieve a variety of different 

acceleration conditions over the test section. As representative of these 

results, three of the data sets were chosen for use in this eveluation. These 

correspond in Rued's specification to Nr 6, Nr 10, and Nr 12. Figure 5.18 

shows the experimentally measured variation in the acceleration parameter K 
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for each of these conditions. Also shown are the smoothed continuous repre­

sentations used in the calculations. Nr 6 is seen to be similar to the higher 

acceleration conditions of Blair since the variation in K is not very great over 

the test section. Conditions of this type are similar in many respects to typical 

behavior on the pressure side of a turbine blade. However, Nr 10 and 12 are 

very different, producing a very strong region of acceleration over the first 

two-thirds of the test section followed by a rapid relaxation to a region of 

very small negative acceleration. These conditions are designed to provide a 

closer approximation to the acceleration characteristics on the suction side of 

a typical blade. The maximum K produced in Nr. 12 is eight times as great as 

the acceleration in Blair's strongest case. The corresponding velocity 

distribution for each of these cases, together with the approximations used in 

the calculations is shown in Fig. 5.19. 

Figures 5.20 and 5.21 show the experimentally measured total 

turbulence intensity distributions over the test section produced by the grids 

for these conditions. The estimated uncertainties in the measurements are 

also shown to illustrate how the uncertainty increased significantly for the 

larger the turbulence intensity conditions. Note that separate figures for the 

stream-wise turbulence intensity are not shown as was done before. This is 

because Rued did not document the individual components for experiments 

with acceleration. Only the net TUe,T was reported. 

As was discussed in section 5.2.1, a k-e model is not able to reproduce 

these conditions exactly. The solid curves shown indicate the decay as 

calculated using equations 2.35 and 2.36 and which were used in the 

calculations. In each case, the initial turbulent kinetic energy was chosen so 
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as to correspond to TUe,T at the upper bound of the uncertainty for that grid. 

However, the dashed line in Fig 5.20 for the grid 4 conditions illustrates that 

after a short region, this choice makes little difference. In all cases the major 

error in free-stream turbulence intensity occurs in the region centered about 

x=.1 meter. Table 5.5 lists the actual starting conditions for ke' Ee and Tu 

which correspond to the calculations shown. 

TABLE 5.5 Free-Stream Turbulence Conditions Specified in Computing 
the Pressure Gradient Flows of Rued [72] 

at x=O at x=.4 m 
------------------------------------------ --------------

Experiment TUe,T ke (m2/s2) Ee (m2/s3) TUe,T 

Nr 6, Grid I 2.63% 2.481 320 0.75% 
Nr 6, Grid 2 4.30% 6.632 2290 0.92% 
Nr 6, Grid 3 8.33% 24.89 26600 1.12% 
Nr 6, Grid 4 12.1 % 52.51 39500 1.91% 
----------------- ~------------- ------------- -------------- -------------
Nr 10, Grid 1 2.88% 2.810 720 0.63% 
Nr 10, Grid 2 3.95% 5.280 1200 0.89% 
Nr 10, Grid 3 7.73% 20.22 5040 1.68% 
Nr 10, Grid 4 11.13% 41.92 24000 1.87% 
----------------- ------------- ------------_. -------------- -------------
Nr 12, Grid 1 2.88% 0.874 126 0.63% 

Nr 12, Grid 2 3.95% 1.644 210 0.89% 
Nr 12, Grid 3 7.73% 6.294 882 1.70% 

Nr 12, Grid 4 11.13% 13.05 4200 1.87% 
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Figure 5.22 compares the calculations with the data for each of the 

four grids in Nr 6. Because of the complexity of the flow, it is not as easy to 

clearly distinguish laminar, turbulent, and transitional regions in the data. 

Grid I, shows the clearest identifiable transition region, which extends over 

almost the entire length of the plate. This is very accurately reproduced by 

the model. The only real discrepancy occurs in the region immediately 

subsequent to the start of the cooled section. This under-prediction over the 

first 15-20% of the cooled test section was characteristic of all the 

calculations made of Rued's acceleration data. Careful examination of the 

grid 2-4 data from x=.05 to .1 m, shows that although only small differences 

occur in the data, a transitional effect is manifest. However, the overall 

magnitude of the heat transfer in the region is more characteristic of a near 

turbulent boundary-layer becoming fully turbulent, than a laminar 

boundary-layer becoming turbulent. The calculations do not reproduce this, 

and show a clear transition from very laminar-like state up to the turbulent 

level in this region. This seems to indicate a deficiency in predicting the 

character of the "pseudo-laminar" boundary layer more than a deficiency in 

the correct location and extent of transition. 

The comparison between the calculations and the data from Nr 10 is 

given in Fig. 5.23. Here the characteristic initial under-prediction is also 

indicated. However, the introduction of strong acceleration followed by a 

rapid relaxation (see figure 5.18) provides some very interesting additional 

insight into the response of the model. When TUe is high, as for grids 3 and 

4, the model quite accurately represents the somewhat modified but still 
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turbulent region during the high acceleration. After the acceleration,is 

relaxed, although there is a slight increase, the data is still reproduced quite 

well. However, as the turbulence intensity decreases, the model shows a 

higher sensitivity the the acceleration than the experiment, and a 
/ 

relaminarization is shown for the grid 2 cases which is not reflected in the 

data. Once the acceleration is removed, the calculation moves quickly back 

in line with the data. At the lowest turbulence intensity, the model once 

again correctly reproduces the acceleration effects, but when the acceleration 

is removed, a too rapid rise back to the turbulent state is predicted. This 

figure illustrates the complex interaction between the competing effects of 

high free-stream turbulence and rapidly changing but large negative pressure 

gradients that are so difficult to predict. The relative success of the model at 

predicting most of these trends correctly without any additional 

modifications is very encouraging. 

In Figure 5.24, the calculations are compared to the data from Nr 12. 

Recall that this test has the highest acceleration of all. Interestingly, it is also 

the most well predicted by the model. Except for the under-prediction in the 

initial region (which however is not as pronounced as before), the model 

predicts the data for each turbulence level very accurately. Note that both the 

start, the path, and the length of transition is well reproduced. The faithful 

reproduction of this set of data is one of the most outstanding successes of the 

model. 
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With respect to the overall predictive capabilities of the model, the 

following items can serve as a summary of what the compansons made in this 

section seem to indicate. 

1. Transition under the combined influence of both free-stream 

turbulence and low constant favorable pressure gradients (K=.2 x 106) is 

predicted very well by the model. This includes not only the location but also 

the extent over which it occurs. 

2. For flows with moderate constant acceleration, comparison with 

experiments indicates that the model tends to under predict the length over 

which transition occurs, but not severely. The location of the start also tends 

to be predicted somewhat early. These are qualitative errors only, as the 

quantitative trends are very well reproduced. 

3. A consistent under prediction of the heat transfer near the leading 

edge of the boundary layer was observed in all of the experiments where both 

high increasing acceleration and high free-stream turbulence intensity were 

present. However, as the ratio of acceleration to free-stream turbulence 

increases, this difference tends to d~inish. Examination of the data seems to 

indicate transition beginning with the boundary layer already in a nearly 

turbulent state. This contrasts with the model which allows only a limited 

variation from the laminar state prior to transition. 

4. Apart from the initial region mentioned in 3., the competing effects 

of both strong acceleration and free-stream turbulence on transition were 
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accurately predicted for all but two cases, both at moderate to low turbulence 

intensity. In one case the model predicted a partial relaminarization, while 

the data did not. In the other case, the length of the transition region was 

under predicted. 

5.3 Turbine Blade Cascade Data 

The major motivation for the work presented in this thesis is the need 

for a reliable engineering tool for predicting the effect of transition on heat 

transfer on gas turbine blades. Thus to complete the examination of the 

transition model developed here, it is appropriate that calculations be 

perfonned for a number of turbine blade cascade data sets. However, before 

doing so we must recognize that only two of the major factors affecting 

transition on a turbine blade have so far been considered in the development 

of the model. These two, free-stream turbulence and pressure gradients, are 

usually the most dominant, but significant effects with respect to other 

factors must be neglected at this point in order to perform a calculation. Two 

of the most notable of these are the effects of curvature, and the proper 

calculation of the flow in a stagnation region. 

The data to be considered here is the data of Daniels [19], and the data 

of Hylton et al [34] for the blade they designated as IC3X". Two flow 

conditions over each blade will be considered, both on the suction side and 

the pressure side. This yields eight separate runs with which to compare our 

numerical model. Before introducing the details of these, we will first 
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consider some of the additional complexities and problems associated with 

these calculations. 

5.3.1 Preliminary Comments about the Calculations 

Compressibility and High Mach Number Effects: 

In all of the flat plate cases discussed previously, the velocity has been 

sufficiently low that compressibility effects were small. However, this is not 

the case for typical turbine blades where inlet mach numbers may be low, but 

exit mach numbers frequently exceed one. To account for this, a state 

equation must be included in the calculations to provide for the proper 

description of the gas under different temperatures and pressures. For the 

data to be considered here, the working gas was essentially air, and the ideal 

gas law is used in the calculations. Also, viscous dissipation terms must be 

included in the energy equation to account for the conversion of mechanical 

energy to thermal energy which will occur in areas of high shear. The 

resulting form of the energy equation expressed in terms of the total 

enthalpy H was previously given in Chapter 2, eq. (2.7). 

An appropriate Stanton number to be used in presenting the results for 

high speed flow is defmed in terms of the total enthalpy as follows; 

(5.4) 
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Property Variations: 

In addition to large pressure changes that occur in the streamwise 

direction, large temperature gradients will occur across the boundary layer. 

For the data of Daniels, the total wall to free-stream temperature ratio was 

0.67. For the Hilton et al's C3X blade conditions that we will consider, it was 

about .8. Thus the physical properties of air must be continuously varied on 

a local basis to properly account for this. 

For computational purposes, simple temperature dependent equations 

were applied to calculate various properties of interest. These are given in 

the appendix together with plots showing how well they compare to 

experiment. 

Blade Geomegy and velocity Profiles: 

The geometry of each blade together with the operating conditions 

determine the free-stream velocity around each surface. In the work 

reported by Hylton et aI., a two dimensional invisid numerical method 

developed by Delaney [21] was used to predict the free-stream flow field. 

This was then compared with the experimental data to confirm the results. 

Since the results of this calculation for the C3X blade were made available in 

the appendix of their report, these free-stream velocities were used for the 

purposes of the calculations made here. For Daniel's blade, the experimental 

velocity data reported was functionally approximated by a series of 
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polynomials to produce a smooth continuous representation of the data. The 

match points were required to be continuous through the first derivative. 

The velocity profiles for both of these blades are shown for the suction side 

in Fig 5.25, and the pressure side in Fig. 5.26. 

In the calculations that will be presented, curvature effects will not be 

introduced. This implies that although the calculations proceed over a 

streamwise distance which corresponds to traveling around the curved 

surface of the blade, they do not include additional terms or corrections to 

otherwise account for the curvature. When the ratio of the boundary-layer 

thickness to the radius of curvature is small, and the local free-stream 

velocity is accurately specified, this approximation is fairly good. However, 

this is not always the case, and it is the opinion of this author that the 

appropriate incorporation of these effects will need to be addressed in the 

future. For now, this must be reserved for later consideration. 

In the figures, the streamwise coordinate around the blade will be 

represented with the letter S. 

5.3.2 Comparison with the Data of Daniels 

Two different flow conditions are selected from the data of Daniels [ 19] 

for evaluation here. Following Daniels and Browne [20], these are designated 

with respect to the design operating conditions as Reo ( design Reynolds 

number) and Re+, (ie. a higher flow rate yielding a Reynolds number greater 

than the design condition). The free stream turbulence intensity measured 

upstream of the blade was 4.2%. At the actual location of the blade, Rodi and 



158 

Scheuerer estimated this to have decayed to about 3% based on empirical 

decay rates given in Townsend [86]. However, Daniels and Browne appear 

to have applied the value of 4% in their numerical calculations presented in 

[20]. For comparison, calculations will be presented here assuming free­

stream turbulence levels of both 3% and 3.5%. 

In Figures 5.27 and 5.28, the calculations are compared to the actual 

experimental data. As can be seen, the location and extent of transition as 

represented in the heat transfer is very well predicted for these cases. Also, 

the only place the 3% vrs 3.5% TUe difference matters is for the design 

Reynolds number case, and here the two calculations bracket the 

experimental data. The only significant variation between the data and the 

computation occurs at the higher Reynolds number in regions downstream 

of transition. This occurs on both the suction and the pressure side. 

5.3.3 Comparison with the C3X blade of Hylton et al. 

In Figures 5.29 and 5.30, comparisons with the data of Hylton et al.[34] 

are shown. The conditions considered correspond to runs 145 and 149 in 

their designation. These calculations show trends similar to those pointed out 

on the Daniels and Browne data, i.e., an excellent prediction of the lower 

Reynolds number data, but some discrepancies with the higher Reynolds 

number data. In particular, after transition begins on the suction surface of 

run 145, the calculations show a very large overshoot as compared to the 

data. Since this degree of error was observed in any of the previous runs, an 

effort was made to try and determine the source of the problem. One 
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explanation that initially seemed reasonable, has to do with the response of 

the k-e model to adverse pressure gradient conditions. On the suction side 

starting at a point just after transition has started for run 145, the flow 

experiences a region of adverse pressure gradient. Previous research has 

documented the failure of 2-eq. LRN models such as that of Lam-Bremhorst 

to correctly calculate the near wall turbulence length scale in adverse 

pressure gradient flows, resulting in an over prediction of the skin friction 

and heat transfer (see [ 68]). Thus, for comparison, a computation is shown 

where the dissipation equation was modified in line with a suggestion of 

Launder [46] in the following manner. 

Cl=1.44*max( 1, L/Lmax) 

where 

Lmax=2.7y ( 5.5) 

The effect of this modification is to prevent the model from producing a near 

wall length scale more than a few percent over that observed experimentally. 

As shown in the figure, the results of this additional modification show an 

improved prediction of the heat transfer on the suction side without 

influencing the transition predictions. Unfortunately, when more general 

testing of the modification was made, it also affected ( this time adversely) 

the fully turbulent results for calculations without pressure gradients, albeit 

to a lesser degree. Thus, at best, the adverse pressure gradient problem is 

only a partial answer. 
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The results of the modified calculation are presented despite their limited 

validity to help distinguish between the error due to the fully turbulent 

model, and that due to the transition predictions. In the case of run 145, even 

if the fully turbulent calculations were corrected as shown, there still remains 

a significant overshoot as compared to the data. At this point a clearly 

justifiable explanation of this is not known to the author. However, one 

plausible possibility is that these effects are due to a somewhat delayed 

curvature influence similar to what occurs in the so-called recovery region 

after the release of curvature in a fully turbulent boundary layer. This was 

briefly mentioned in section 1.2.5 of chapter 1. Since on the C3X blade the 

radius of curvature is small until about Slarc =.2, which is just as transition is 

beginning, it seems possible that the transition is being influenced by this 

effect. 

5.3.3 Brief Summary of the Turbine Blade Data Predictions 

Although this comparison has been somewhat limited, two important 

comments can be made in summary. 

(1) With respect to the stream wise location, of the 8 specific runs 

compared, in 7 of them the correct start and length of transition was 

predicted. For the one case where this was not true, although the length was 

in significant error, the starting location was only slightly different than the 

experiments. ( Note that we are not considering differences in the fully 

turbulent region here) 
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(2) For both blades, the accuracy of the heat transfer predictions in the 

fully turbulent region diminished as the blade Reynolds number was 

increased. This was manifest in an over prediction of the heat transfer. 

However, all aspects of the four lower Reynolds number cases were 

predicted with good accuracy. 
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Figure 5.29 Comparison of the predicted and experimental heat transfer 

around the suction side of Hylton etal.'s C3X blade 
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CHAPTER SIX 

CONCLUDING REMARKS 

6.1 CONTRIBUTIONS OF THIS WORK 

In concluding this thesis, it is important to review the work completed 

and summarize the important things learned and accomplished. In the 

estimation of the author, the following items are the most significant 

contributions of this work. 

(1) The first thorough evaluation of two contrasting LRN k-e turbulence 

models relative to predicting transition has been made and 

documented. In doing so, the importance of initial starting profiles 

and the initial starting location has been quantified. Also, the 

shortcomings of these models in predicting both the correct start and 

length of transition have been clearly pointed out and quantified for 

free-stream turbulence intensities of from less than 1 % to 6%. 

(2) The mechanism by which transition is simulated in these models has 

been delineated and related to the results of the evaluation just 

mentioned. In doing so, some of the differences between the model's 

predictions have been traced to specific differences in the low­

Reynolds number functions adopted. 
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(3) A defect in the Lam-Bremhorst fJ! formulation was shown to be 

responsible for the failure of the Lam-Bremhorst model to predict 

transition at low free-stream turbulence intensities. This has led to a 

simple modification to eliminate this problem which does not affect the 

predictions for fully turbulent flow. 

(4) A simple modification limiting the production term in the k equation 

has been developed and tested to improve the transition predictions. 

This modification was shown to be sufficiently general to be applicable 

to any k-£ LRN model. After calibration of the two empirical 

parameters, the "PTM" forms of the both the Lam-Bremhorst and 

Jones-Launder models were shown to yield transition predictions in 

accord with the correlation of Abu-Ghannam and Shaw for both the 

start and the end of transition. Also, after the addition of this 

modification the sensitivity of the calculations to the initial starting 

location was reduced. This was especially so for the Lam-Bremhorst 

model implementation. 

(5) The PTM form of the Lam-Bremhorst model has been thoroughly 

tested against a large number of test cases in order to clearly document 

it's prediction capabilities both in terms of accuracy and reliability. 

These included flows both with and without pressure gradients, 

including a number turbine blade experiments. The results of these 

tests showed excellent agreement in terms of heat transfer predictions 

with most of these experiments. Furthermore, the wide range of the 

comparison is hoped to be sufficient to provide two additional benefits; 
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i) Instill confidence in the ability of k-£ LRN modeling to reliably 

and consistently predict transition as well and in many cases better 

than the more traditionally used mixing length type of models. 

ii) Provide clear guidance for further improvements. 

6.2 LIMITATIONS OF THE APPROACH DEVELOPED 

The approach developed in this thesis should be viewed as a practical 

engineering tool, for it clearly is not a rigorous mathematical model of the 

physics of transition. However, because a greater degree of meaningful 

physical phenomenology is naturally accounted for by working within the k­

£ approach, the author believes that this type of model is certainly more 

general then say, the mixing length approach. An example of this is the 

relative success of this model in predicting transition in the accelerating flow 

cases without any additional changes. 

The following limitations that are inherent in this approach should be 

kept in mind. 

(1) The method has only been demonstrated for use in wall bounded shear 

flows. 

(2) The method can only be as accurate as the correlation upon which the 

parameters A and B are calibrated. 

(3) The transition model has no salutary effect on fully turbulent con­

ditions where the k-£ model has previously demonstrated deficiencies. 

(4) Since the model is driven by the free-stream turbulence intensity, 

limitations on the ability of the k -£ model to accurately predict this - as 
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was shown to occur under high acceleration - also effect the transition 

predictions to some extent. 

6.3 THOUGHTS ABOUT FURTHER RESEARCH 

The comparisons made with experiment pointed out a number of areas 

that could be investigated and which would probably lead to improvements in 

the approach developed here. In particular, the transition predictions for a 

moderate constant acceleration showed the tendency to under predict the 

length of transition. This might be improved by introducing a small pressure 

gradient effect into the A parameter. Also, the correlation of Abu-Ghannam 

and Shaw could be justifiably evaluated and updated in terms of the more 

extensive data that is now available, especially at higher turbulence 

intensities. Any improvement there would of course lead to an improved 

calibration of the transition parameters. This may also shed light on the 

failure of the model to adequately reproduce the heat transfer data reported 

by Rued near the leading edge of his pressure gradient tests. Finally, it is 

important that the effects of curvature on transition be clearly determined 

and appropriately incorporated into the models. 

In addition to what some might consider the somewhat external 

approach or path taken in this thesis, a more fundamental look at developing 

better LRN functions themselves may provide even greater improvement and 

a more general method than has been demonstrated here. One motivation for 

this lies in the close analogy that exists between the processes observed in 

near wall behavior, and those observed in transitional boundary layers. 
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Since a number of aspects of near wall behavior are still not predicted well by 

current two-equation models( see for example Bernard [7]), improvements 

in these areas may also have a salutary effect on the transition prediction 

capabilities of these models. 
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The computer code used to perform the calculations in this work is 

documented here. This will begin with a brief description of the code and of 

the major FORTRAN variables and arrays. Next, a complete FORTRAN 

listing of each of the routines which make up the code will be given. Finally, 

a number of representative input decks will be listed. 

A Brief Description of the Code 

The computer code used has two major divisions. The first part, called 

program MAIN, serves as the driver for the solution procedure. It also 

contains that portion of the code which is not dependent upon the specifics of 

the problem at hand, but rather is dictated by the general nature of the 

parabolic equations themselves. This part of the program was not developed 

by the author. It was simply adapted with minor changes from the general 

purpose parabolic computer code made available to students at the University 

of Minnesota who take Professor Suhas Patankar's course ME 8353. It is a 

FORTRAN implementation of the basic solution techniques explained in [61]. 

Since excellent documentation of this portion of the code is readily available 

through professor Patankar, a detailed description will not be given here. 

However, a listing is provided here following all of the other subroutines. 

Note that the utility routines UYGRID and PROFIL are located within MAIN 

as entry statements. 

The remaining portion of the code contains problem specific coding 

(written of course within the framework required by part one). It is this part 
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of the code which was written by the author, and this is where the 

computational models developed in this thesis are implemented. A major 

portion of this is contained within an umbrella subroutine called USER. 

Although technically only one subroutine, numerous other subroutines are 

effectively contained within this one large routine by appropriate use of 

entry statements. This technique facilitates a shared set of common blocks 

and variable information without eliminating the advantages of modular code 

design and development. 

Although the code itself is documented reasonably well, a brief 

description of each of the subroutines and functions written for use in this 

thesis will be given as follows. Note that for the purpose of this explanation, 

calls to entry statements contained within subroutine USER, will be treated as 

if they are separate subroutines themselves. 

BOUND 

DENSE 

Five important things are accomplished in this subroutine. 

(1) The transition model parameters A (TCn and B 
(DPKDTM) are calculated for the next step. 

(2) Turbulent Reynolds numbers and the associated functions 
and source terms in the k and e equations are calculated 
for use during the next time step. 

(3) The appropriate entrainment at the boundary is 
calculated. 

(4) Boundary conditions for U ,H, k, and e are calculated. 

(5) The pressure gradient and the step size are computed. 

First, the temperature field is calculated from the associated 
enthalpy values. Then, if constant properties are not being 
assumed (ie.,LCSOL=.FALSE.), all material properties 
(including the density) are calculated here as functions of 
temperature. The functional approximations used are given in 
appendix A2 
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ENTRAIN This subroutine (called from BOUND) calculates an appro­
priate entrainment value based on either the velocity and/or 
the enthalpy profiles. Note that the purpose of this is to expand 
the computational domain in response to the growth of the 
boundary layers. 

GAMSOR The diffusion coefficients and source tenns for each of the 
transport equations are calculated here. 

OUTPUT This subroutine provides the means of writing out to data files 
the important calculated quantities of interest. These include 
the heat transfer and skin friction coefficients, profile data, 
and integral parameters such as the momentum thickness. 

PROFIL Simple utility routine to output the profiles of the calculated 
quantities of interest. Located as an entry statement routine 
within MAIN. 

RCURVE Subroutine provided to calculate and return the local radius of 
curvature. This was not used in the work. presented in this 
thesis since curvature effects were neglected. 

RUNGA Uses a simple fourth order Runga-Kutta scheme to integrate 
ordinary differential equations. This FORTRAN coding was 
taken directly from reference [94]. It is used to fmd the 
upstream boundary conditions for k and E as the solution 
procedure advances ( See eqs. (2.35) and (2.36) ). 

START Sets the initial starting profiles and boundary conditions for k, 
E, and H. Also gives starting v'llues to a number of 
miscellaneous parameters. 

TRANS Calculates the nondimensional values of the transition 
parameters A (TCn and B (DPK) as a function of the local 
free-stream turbulence intensity 

USER Sets the values to constants, reads the input data (which will 
control the computation) from a data file, specifies the 
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computational grid, and calculates the starting velocity 
profile. 

UYGRID Utility routine to set the appropriate stream function values 
between control volumes once the velocity profile has been set. 
It is located as an entry statement routine within MAIN. 

VELPROF Calculates the appropriate values for velocity at each control 
volume in accordance with a Pohlhausen velocity profile. This 
is used to generate a starting velocity profile 

FMU (function) Returns the value of the LRN function fm 

FI (function) Returns the value of the LRN function fl 

F2 (function) Returns the value of the LRN function f2 

UMI (function) Returns the value of the free-stream velocity as a function 
of streamwise distance. This of course is completely 
problem dependent and must be written uniquely for each 
problem solved. 

Definitions of FORTRAN variables and arrays 

Al 

AGRID 

AH(J) 

AHTC 

Am(NF) 

AK(J) 

AMU(J) 

The parameter at in equation (2.39) used in specifying the 
initial starting £ profile. 

11 as defmed in eq. (2.29) 

Total enthalpy at location J 

Local Heat Transfer Coefficient h 

The calculated total flux at the wall boundary for the 
dependent variable F(J,NF). Note NF=I corresponds to the 
momentum flux (wall shear stress), and NF=4 corresponds 
to the wall enthalpy (heat) flux 

Turbulent kinetic energy at location J 

The molecular viscosity at location J 



AMUO 

AMUT(J) 

AP(J) 

ASN 

BO, Bl. .. 

Cl 

C2 

CC 

CF 

CGRIO 

COMMENT 

CON(J) 

CP(J) 

CPAVG 

CPO,CPl, ... 

CRVM 

CU 

D99 

DEL 

DELT 

Average viscosity of the starting profile 

Turbulent viscosity at location J 
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In subroutine GAMSOR, it is set equal to the negative part 
of the source tenn - of whichever variable's equation is 
currently being solved - divided by the current local value 
of that variable. (See section on source tenn linearization in 
[61]) It is further modified in MAIN. 

A Small Number. Set equal to l.e-20 

Constants in a polynomial approximation of the thennal 
conductivity 

The turbulence model constant C 1 

The turbulence model constant C2 

Input parameter that is not currently used 

Coefficient of friction 

The grid generation quantity 11(b-l)(X1)b. See eq. (2.28) 

General purpose character variable used mainly for input 

The positive part of the source tenn of whichever equation 
is currently being solved 

The specific heat at location J 

.5*(CP(Ml) + CP(l)) 

Constants in a polynomial approximation of the specific heat 

Input parameter that is not currently used 

The turbulence model constant CJ.1 

99% boundary layer thickness (based on velocity) 

The boundary layer thickness specified in the input file at 

the starting location 

The thennal boundary layer thickness specified in the input 

file at the starting location 
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DELTAT 

DEN 

DEN! 

DGRID 

DLI 

DL2 

DLS 

DPDSC 

DPK 

DPKDTM 

DPKDTMO 

DUI(J) 

DUDS 

DUDSP 

DX 

DXFC 

DYM 

DYP 

E(J) 

EIN 

Temperature difference across the boundary layer 

Average density of the starting profile 

DYP + R2*DYM , Used in calculating DUI(J) 

Grid generation quantity (b-I)(X1)b. See eq. (2.29) 

Displacement thickness 

Momentum thickness 

A Dissipation Length Scale. See line 306 

UMIO*DUDSP 

The maximum increase in Pk allowed over the next forward 
step. This is found through the transition model. See lines 
438-439 and eqs. (4.6) and (4.7) 

Dimensional value of the transition model parameter B. It is 
calculated in line 393 from DPKDTMO 

Nondimensional value of the transition model parameter B. 
It is calculated by TRANS as a function of Tu and shown in 
Figure 4.9 

Velocity gradient dU/dY at location J 

Free-stream velocity gradient in the stream-wise direction 

RHO(MI)*DUDS 

Computational step size in the streamwise direction 

The step size in the streamwise direction is calculated as 
DX=DXFC*DL2 (DL2=momentum thickness) 

Y(J) - Y(J-I) 

Y(J+I) - Y(J) 

Dissipation rate at location J 

Input value of the free-stream dissipation at the starting 
location 



EKI 

ENEXP 

F(J,NF) 

FILNAME 

FKE(N) 

FRAC 

FSCON 

GEXP 

GGRID 

GXl 

lITC 

IPP 

ISTEP 
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The exponent "n" in equation (2.38) used in specifying the 
initial starting k profile. 

An exponent used in the entrainment calculation. Called 
POWER in subroutine ENTRAIN, it affects how strongly 
the calculation responds to changes in the near free-stream 
profile 

The general dependent variable matrix. Note that NF=l-ll 
have been equivalenced to other arrays 

Input character array containing the names of input and 
output files used in the calculation 

For N=l, dkefdx. For N=2, dE.Jdx 

An entrainment parameter used in specifying the desired 
fractional difference between the last few nodes at the outer 
edge of the boundary layer. See subroutine ENTRAIN 

IfRE2<RE2C, FSCON=O, else FSCON=1. Multiplying 
the positive source tenn in the k equation, it implements part 
of the transition model developed. 

The exponent "bit associated with the grid generation. See 
Chapter two, equations (2.25) through(2.29) 

The grid generation quantity 11 [b (X1)b-l]. See eq. (2.28) 

The matching point X1(in terms of the grid coordinate X) 
used in the grid generation. See chapter two, equations 
(2.25) through(2.29) 

An input parameter that is not currently used 

ISTEP must be greater than IPP before PROFIL can be 

called 

Integer counter keeping track of the number of forward 

steps taken 
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ITBFLG 

ITM 

IWTBC 

JUMPl 

JUMP2 

JUMPT 

KBCI(NF) 

KCM 

KCRM 

KENT 

KEX 

KIN 

LASTEP 

Integer flag set equal to 1 once the transition model requires 
infonnation from subroutine TRANS. This occurs when 
RE2 exceeds RE2C. 

Input parameter which if set equal to 0, prevents transition 
to turbulence by setting DPKDTM=O and skipping the calls 
to subroutine TRANS 

Specifies the type of Wall Thennal Boundary Condition. If 
IWTBC= l, a specified wall temperature is assumed. Else, a 
specified wall heat flux is assumed. 

Every JUMPl forward steps, subroutine PROFIL is called 

Every JUMP2 forward steps, a small number of specified 
quantities are printed out to monitor the calculation 

Every JUMPT forward steps, the transition parameters are 
updated by calling subroutine TRANS. Only implemented 
ifITBFLG=1 

Boundary condition index for the inner boundary required 
by MAIN. =1 for a given value, =2 for a given flux, =3 
for the total flux expressed in the fonn (a-hq,l) 

Input parameter which is not currently used 

Curvature flag not used in this version of the code 

Integer value fIXing the profile(s) used in the entrainment 
calculation. If KENT=I, the velocity profile is used. If 
KENT=4, the enthalpy profile is used. Any other value and 
both profiles are used. 

Outer boundary condition index used by MAIN. It is set 
equal to 2 indicating the outer edge is a free boundary 

Inner boundary condition index used by MAIN. It is set 
equal to 1 indicating the inner boundary is a wall 

The largest allowable number of forward steps allowed 
before stopping the calculation 



LCPSOL 

LPRINT(NF) 

LSOLVE(NF) 

LSTOP 

Ml 

NDPTS 

NP2 

O~GA 

PR(J) 

PRO 
PRDR 
PRESS 

PRT 

PRT 

R2 

RC 

RCON 

RE2 
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Logical input parameter. If .TRUE., material properties 
are considered constant and set equal to their respective 
values at T=TAVG. If .FALSE., material properties are 
calculated as functions of temperature in subroutine DENSE 

Logical input array. When .TRUE., the profile of F(J,NF) 
is printed out whenever subroutine PROFIL is called 

Logical input array. When .TRUE., the differential 
equation for F(J ,NF) is solved. 

Logical variable which if set equal to .TRUE. will terminate 
the calculation in MAIN. 

The total number of grid points in the cross stream direction 

Integer counter keeping track of how many times certain 
data has been written out to a fue. See lines 309-310 

Integer counter associated with RE2P. See lines 295-298 

The acceleration parameter A=o2U'/V used in calculating 
the initial starting profile for the velocity. It must be 
specified in the input. See Chapter Two, section 2.3.3 

The Prandtl number at location J 

Average Prandtl number of the starting profile 

PRESS/RCON 

The local pressure. Must be specified in the input file at the 
starting location 

The turbulent Prandtl number 

The turbulent Prandtl number 

(DYPIDYM) * *2 

Radius of curvature. Not used in this version of the code 

Gas constant in the ideal gas law 

Momentum thickness Reynolds number 
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RE2C 

RE2F 

RE2P(N) 

REP 

REPFC 

REP I 

REX 

RFILE 

RHO(J) 

RME 

SCE(J) 

SCEMF 

SCK(J) 

SCONB 

SCONS 

SCU 

The critical momentum thickness Reynolds number below 
which the modeled production term is set equal to zero. 

If Rea exceeds RE2F, the calculation will stop 

Input array containing the specified values of the momen­
tum thickness Reynolds numbers at which all calculated 
quantities and profIles are to be written out to a file 

When Rex=REP, computed boundary layer properties and 
parameters are writing out. REP is then increased to the 
next desired value (See REPFC) 

REP is incremented such that over every 1 cycle logarithmic 
increase in Rex, boundary layer properties are printed out 
REPFC times. See line 308 of the subroutine USER listing 

The first value assigned to REP. Given in the input fIle 

Reynolds number based on x 

Character variable read in the input fIle which is not used in 
this version of the code. 

Density at location J 

Free-stream boundary entrainment rate. This is what is 
controlled through subroutine ENTRAIN 

Positive source term(s) in the £ equation at location J 

Set equal to m~(1.,ULmax), see eq. (5.5). However, this 
effect is suppressed by setting AKAPI extremely small in 
line 178 (in eq. (5.5) it is 2.7), thus SCEMF is always equal 
to one in this version of the code 

Positive source term(s) in the k equation at location J 

Constant in the viscosity approximation 

Constant in the viscosity approximation 

Local variable used in GAMSOR. If DPDSC < 0, SCU=O, 
else SCU=DPDSC 



SE 

SI(1) 

SK 

SKI 

SKC 

SPE(J) 

SPK(1) 

SPU 

STAN 

T(J) 

TAVG 

TCI 

TCIO 

TCOND 

TINF 

TITLE (NF) 

TK 

TRE(J) 

TU 

TUINF 

TW 
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The turbulence model constant o£ 

Used in calculating the source term in the enthalpy equation 

The turbulence model constant Ok 

Temporarily holds the local value of Ilt ( ~U)2 . See line 
436 y 

FSCON*SKI 

Negative source term(s) in the £ equation at location J 

Negative source term(s) in the k equation at location J 

Local variable used in GAMSOR. If DPDSC < 0, 
SPU=DUDSP, else SPU=O 

Stanton Number 

The temperature at location J 

(TW+ TINF)/2 

Dimensional value of the transition model parameter A. It is 
calculated in line 394 from TCIO 

Nondimensional value of the transition model parameter A. 
It is calculated by TRANS as a function of Tu and shown in 
Figure 4.8 

Thermal conductivity 

The free-stream value of the temperature 

Character input array containing the specified titles of each 
F(J,NF) profile. Used in PROFIL when printing 

Temperature in deg K 

The turbulent Reynolds number Ret at location J 

Input value of the free-stream turbulence intensity at the 
starting location 

Free-stream Turbulence intensity 

The temperature at the wall 
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V(J) 

VFRIC 

UHSL 

VINF 

VJ 

VID 

VMIO 

VPLS(J) 

UUI 

VINF 

wrOHF 

xu 
XVF 
XUI 

XUNEW 

Y(J) 

YCVM(J) 

YCVP(J) 

YKE(N) 

YPLS(J) 

YPLSCAL 

YRE(J) 

Streamwise velocity at location J 

Friction velocity 

Unheated or uncooled starting length. 

Free-Stream Velocity 

U(J) /U(MI) 

UJ * RHO(J) / RHO(Ml). Used in calculating DLI 

Free-stream velocity of the previous step 

u+ at location J 

The coordinate X used in generating the grid. See eq. (2.23) 

An input variable which is not used in this version of the 
code 

Either the specified wall temperature (IWTBC= I) or heat 
flux (lWTBC;tI). 

Streamwise location x 

Input final or maximum value of the streamwise location x 

Input starting value of the streamwise location x 

Streamwise location x at the next step 

The cross-stream distance y at location J 

Distance between the grid point J and the lower edge of the 
control volume J. Referred to in documentation for 
subroutine MAIN as ~y-

Distance between the grid point J and the upper edge of the 
control volume J. Referred to in documentation for 
subroutine MAIN as ~y+ 

The free-stream value of k (N=I) or dissipation rate (N=2) 

y + at location J 

Variable used in calculating YPLS(J). See lines 282,288 

The turbulent Reynolds number Rey at location J 



217 

A Listing of the Subroutines and Functions 

1 C*************************************************************** 
2 SUBROUTINE USER 
3 C 
4 LOGICAL LSTOP,LPR,LGPG,LTIME,LSOLVE,LPRINT,LCPSOL 
5 CHARACTER TITLE(13)*7,COMMENT*60,FILNAME(4)*25,RFILE*40 
6 COMMON F(99,11),RHO(99),GAM(99),CON(99), 
7 1 AP(99),AN(99),AS(99),PT(99),QT(99),RT(99), 
8 2 OM(99),OMF(99),OMF1(99),OMCV(99),Y(99), 
9 3 YF(99),YCVR(99),YCVP(99),YCVM(99),R(99), 
10 4 RF(99),FLO(99) 
11 COMMON /INDX/ NF,NFMAX,NU,NRHO,NGAM,Ml,M2,KIN,KEX,DPDX, 
12 1 ISTEP,LASTEP,MODE,ITMX,LGPG,LTIME,XU,DX,XLAST, 
13 2 PEI,PSII,PSIE,PSIT,YMl,POWER,CSALFA,RMI,RME,ARI,ARE 
14 CCM-1ON /VAFJ3/ LSOLVE (11) , LPRINT (13), 
15 1 AJTI(ll),AJTE(ll),AFXI(ll),BFXI(ll), 
16 2 AFXE(ll),BFXE(ll),KBCI(ll),KBCE(ll) 
17 COMMON /CHAR/ TITLE 
18 COMMON /CNTL/ LSTOP 
19 COMMON /COEF/ FLOW,DIFF,ACOF 
20 DIMENSION SPK(99),SCK(99),SPE(99),SCE(99),SI(99) 
21 DIMENSION YPLS(99),U(99),UPLS(99),AK(99),E(99),AH(99) 
22 DIMENSION AMUT(99),DU1(99),TRE(99),YRE(99),T(99),AMU(99) 
23 DIMENSION PR(99),CP(99),YKE(2),FKE(2),RE2P(10) 
24 EQUIVALENCE (F(l,l) ,U(l», (F(1,2) ,AK(l», (F(1,3) ,E(l» 
25 EQUIVALENCE (F (1, 4),AH (1», (F (1, 5), T (1) ), (F (1, 6), TRE (1» 
26 EQUIVALENCE (F (1, 7), YRE (1», (F (1, 8) ,AMUT (1) ), (F (1,9), YPLS (1) ) 
27 EQUIVALENCE (F(1,10),UPLS(1», (F(l,ll),DU1(l» 
28 C ...........•...••....•.••........................•....•.••..... 
29 C 
30 C 1.00 -- SUBROUTINE "USER" OF A PROGRAM TO CALCULATE LAMINAR, 
31 C TRANSITIONAL, AND TURBULENT BOUNDARY LAYER FLOWS UNDER THE 
32 C INFLUENCE OF PRESSURE-GRADIENTS AND FREE-STREAM TURBULENCE. A 
33 C SLIGHTLY MODIFIED FORM OF THE LAM-BREMHORST LOW-REYNOLDS-NUMBER 
34 C K-e TURBULENCE MODEL IS EMPLOYED TOGETHER WITH THE ADDITIONAL 
35 C MODIFICATIONS FOR TRANSITION DEVELOPED BY SCHMIDT AND PATANKAR 
36 C THIS VERSION IS SET UP FOR VARIABLE PROPERTIES OF AIR. 
37 C ................... VERSION AS OF AUGUST, 1987 ................. . 
38 C ................... WRITTEN BY RODNEY C. SCHMIDT .............. . 
39 C .......•••.........•.......•...............••.......•.......... 
40 C 
41 C 1.10 CONSTANTS IN POLYNOMIAL APPROXIMATIONS OF THE THERMAL 
42 C CONDUCTIVITY AND SPECIFIC HEAT. ALSO "SUTHERLAND" VISCO-
43 C SITY APPROXIMATION CONSTANTS AND THE GAS CONSTANT FOR AIR 
44 C 
45 DATA BO,B1,B2/2.41916E-2,7.3851E-5,-3.203E-8/ 
46 DATA B3,CPO,CP1/1.82ge-11,1003.6,.01155/ 
47 DATA CP2,CP3,SCONB/5.453E-4,-4.2422E-7,1.465E-6/ 
48 DATA SCONS,RCON/110.4,287.0/ 
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49 C 
50 C 1. 20 -- ASK FOR THE INPUT FILE NAME AND THEN READ THE RUN 
51 C PARAMETERS FROM THE INPUT FILE 
52 C 
53 PRINT*, 'INPUT THE NAME OF THE INPUT FILE' 
54 READ * , Ca.1MENT 
55 OPEN (UNIT=l, FILE=COMMENT) 
56 READ (1,*) COMMENT 
57 READ(l,*) (FILNAME(I),I=1,4) 
58 READ (1, *) COMMENT 
59 READ(l,*) (LSOLVE(I),I=1,4) 
60 READ (1, *) COMMENT 
61 READ (1, *) (LPRINT (1),1=1,11) 
62 READ (1, *) COMMENT 
63 READ (1, *) (TITLE (1),1=1,11) 
64 READ (1, *) COMMENT 
65 READ (1, *) (RE2P (1),1=1,10) 
66 READ (1, *) COMMENT . 
67 READ (1,*) LASTEP,JUMP1,JUMP2,IPP,JUMPT 
68 READ (1, *) COMMENT 
69 READ(l,*) KENT, HTC, ITM, LCPSOL 
70 READ (1, *) COMMENT 
71 READ(l,*) TU,EIN,XUI,XUF,RE2F,RE2C 
72 READ (1, *) COMMENT 
73 READ (1, *) PRESS, VINF 
74 READ (1, *) COMMENT 
75 READ(l,*) IWTBC,PRT,TINF,TW,UHSL,WTOHF 
76 READ (1, *) COMMENT 
77 READ(l,*) Ml,DEL,DELT,GEXP,GX1,EKI,Al,DXFC,REPI,REPFC 
78 READ (1, *) COMMENT 
79 READ (1,*) CU,C1,C2,SK,SE,CC,CRVM 
80 READ (1, *) COMMENT 
81 READ (1, *) OMEGA, FRAC, ENEXP, RC, KCRC, KCM, RFILE 
82 CLOSE (UNIT=l) 
83 C 
84 PRINT*, 'LCM REYNOLDS NUMBER FUNCTIONS OF LAM AND BREMHORST' 
85 C 
86 C 1.30 -- CALCULATE INITIAL DENSITY AND VISCOSITY 
87 C 
88 PRDR=PRESS/RCON 
89 TAVG= (TW+TINF) /2. 
90 TK=TAVG+273.15 
91 DEN=PRDR/TK 
92 AMUO=SCONB*TK**1.5 / (SCONS+TK) 
93 TCOND=BO+B1 *TAVG+B2 * TAVG* TAVG+B 3 * TAVG * TAVG*TAVG 
94 CP(Ml)=CPO+CP1*TAVG+CP2*TAVG*TAVG+CP3*TAVG**3 
95 PRO=AMUO*CP(Ml)/TCOND 
96 DO 100 J=l,Ml 
97 RHO (J)=DEN 
98 AMU(J)=AMUO 
99 PR(J)=PRO 
100 CP (J)=CP (Ml) 
101 100 CONTINUE 
102 C 
103 C 1. 40 -- SPECIFY THE GRID AND THE INITIAL VELOCITY PROFILE 
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156 
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158 

C 

C 

XU=XUI 
UINF=UMl. (XU) 
REX=XU*RHO(Ml)*UINF/AMU(Ml) 
Y(Ml)=DELT 
Y(l)=O. 
DGRID=(GEXP-1.)*GX1**GEXP 
AGRID=l./(l.+DGRID) 
GGRID=AGRID*GEXP*GX1**(GEXP-1) 
CGRID=AGRID*DGRID 
DO 110 J=2,Ml-1 

UU1=(FLOAT(J-1)-.5)/(FLOAT(Ml-2» 
Y(J)=UU1*GGRID*Y(Ml) 
IF (UU1.GT.GX1) Y(J)=(AGRID*UU1**GEXP+CGRID)*Y(Ml) 

110 CONTINUE 

U(l)=O. 
CALL VELPROF(DEL,OMEGA,UINF,Ml,U,Y) 
CALL UYGRID 
RETURN 
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C*************************************************************** 
C 2.00 ENTRY POINT FOR SUBROUTINE I START I • 

C*************************************************************** 

C 

ENTRY START 
OPEN(UNIT=3,FILE=FILNAME(3» 
OPEN(UNIT=4,FILE=FILNAME(4» 

C 2.10 -- CALCULATE INITIAL BOUNDARY CONDITIONS FOR K AND E 
C 

C 

AK(Ml)=1.5*(U(Ml)*TU)**2 
E(Ml)=EIN 
TRE (Ml) =AK (Ml) **2*RHO (Ml) / (AMU (Ml) *E (Ml) ) 

C 2.20 --SPECIFY INITIAL PROFILES FOR K, E, & RELATED QUANTITIES 
C 

DO 210 J=2,Ml-1 
DYP=Y(J+1)-Y(J) 
DYM=Y(J)-Y(J-1) 
R2=(DYP/DYM) **2 
DEN1=DYP+R2*DYM 
DU1(J)=(U(J+1)-(1-R2)*U(J)-R2*U(J-1»/DEN1 
AK(J)=AK(Ml) * (U(J)/UINF)**EKI 
E(J)=A1*AK(J)*DU1(J) 
IF(E(J).LT.E(Ml» E(J)=E(Ml) 
TRE(J)=AK(J)**2*RHO(J)/(AMU(J)*E(J» 
YRE(J)=SQRT(AK(J»*Y(J)*RHO(J)/AMU(J) 
AMUT(J)=AMU(J)*CU*FMU(TRE(J),YRE(J»*TRE(J) 

210 CONTINUE 
AK(l)=O. 
E(1)=E(2) 
AMUT(l)=O. 
YPLS(l)=O. 
UPLS(l)=O. 
TRE(l)=O. 
DU1(Ml)=0. 
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C 
C 2.30 -- SET INITIAL TEMPERATURE AND ENTHALPY PROFILES 
C 

C 

T (l)=TW 
IF (.NOT.LCPSOL) CP(1)=CPO+CP1*TW+CP2*TW*TW+CP3*TW**3 
AH(l)=CP(l)*TW 
DO 215 J=2,Ml 

YY=Y(J)/DELT 
T(J)=TW+(TINF-TW) * (2.*YY-2.*YY**3+YY**4+OMEGA/6.*YY 

1 *(1.-YY)**3) 
SAH=CP (J) *T (J) 
IF (.NOT.LCPSOL) THEN 

CP (J)=CPO+CP1*T(J) +CP2*T(J) **2+CP3*T(J) **3 
SAH=AH(1)+.5*(CP(J)+CP(1»*(T(J)-T(1» 

ENDIF 
215 AH(J)=SAH+. 5*U(J) *U(J) 

C 2.40 -- SET OTHER MSC. PARAMETERS AND VALUES 
C 

AKAPI=1.E10 
C PRINT*, 'INPUT CHOICE FOR AKAPI' 
C READ*,AKAPI 

C 
C 
C 
C 
C 

KIN=l 
KEX=2 
ASN=1.E-20 
REP=REPI 
RME=-.05*PEI 
TUINF=SQRT(AK(Ml)/1.5)/U(Ml) 
DPKDTM=O. 
IF(ITM.EQ.O) DPKDTM=1.E20 
TCI=l. 
FSCON=O. 
ITBFLG=O 
DX=Y(Ml)/20. 
STAN=O. 
YCVP(l)=O. 
YCVM (Ml ) =0 . 
NDPTS=O 
NP2=1 

RETURN 
C*************************************************************** 
C 3.00 -- ENTRY POINT TO SUBROUTINE 'DENSE'. 
C*************************************************************** 

ENTRY DENSE 
C 
C 3. 10 -- CALCULATE TEMPERATURE FROM THE ENTHALPY 
C 

IF (LCPSOL) THEN 
T(l)=TW 
DO 280 J=2,Ml 
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214 280 T(J)=(AH(J)-.5*U(J)**2)/CP(J) 
215 RETURN 
216 END IF 
217 T(l)=TW 
218 CP(1)=CPO+CP1*TW+CP2*TW*TW+CP3*TW**3 
219 DO 285 J=2,Ml 
220 T(J)=T(1)+2.*(AH(J)-.5*U(J)**2-AH(1»/(CP(1)+CP(J-1» 
221 CP(J)=CPO+CP1*T(J)+CP2*T(J) **2+CP3*T(J) **3 
222 285 T(J)=T(1)+2.*(AH(J)-.5*U(J)**2-AH(1»/(CP(1)+CP(J» 
223 C 
224 C 3.20 -- CALCULATE DENSITY FROM IDEAL GAS LAW, THERMAL CONDUCT I 
225 C VITY FROM A POLYNOMIAL APPROXIMATION, VISCOSITY FROM 
226 C THE SUTHERLAND VISCOSITY LAW, AND PRANDTL NUMBER. 
227 C 
228 DO 290 J=l,Ml 
229 TK=T(J)+273.15 
230 RHO(J)=PRDR/TK 
231 TCOND=BO+B1*T(J)+B2*T(J)*T(J)+B3*T(J)*T(J)*T(J) 
232 AMU(J)=SCONB*TK**1.5 / (SCONS+TK) 
233 PR(J)=AMU(J) *CP (J)/TCOND 
234 290 CONTINUE 
235 RETURN 
236 C*************************************************************** 
237 C 4.00 -- ENTRY POINT FOR SUBROUTINE 'OUTPUT'. BEGIN BY CHECKING 
238 C IF TIME TO STOP COMPUTATION (IE. IS X > XFINAL). 
239 C*************************************************************** 
240 ENTRY OUTPUT 
241 IF (XU.GT.XUF) LSTOP=.T. 
242 C 
243 C 4.10 --CALCULATE THE MOMENTUM THICKNESS AND MOMENTUM THICKNESS 
244 C REYNOLDS NUMBER. STOP IF RE2 IS GREATER THAN RE2-FINAL. 
245 C 
246 DL2=0. 
247 DO 300 J=2,M2 
248 UJ=U(J)/U(Ml) 
249 300 DL2=DL2 + RHO(J)*UJ*(l.-UJ)*YCVR(J) 
250 DL2=DL2/RHO(Ml) 
251 RE2=RHO (Ml) *U (Ml) *DL2/AMU (Ml) 
252 IF (RE2.GT.RE2F) LSTOP=.T. 
253 C 
254 C 4.20 -- CHECK IF TIME FOR OUTPUT OF ANY KIND. IF NOT, RETURN 
255 C 
256 IF(RE2.GT.RE2P(NP2» GO TO 310 
257 IF (REX.GT.REP) GO TO 310 
258 IF (MOD (ISTEP,JUMP1) .EQ.O) GO TO 310 
259 IF(MOD(ISTEP,JUMP2).EQ.0) GO TO 310 
260 IF (. NOT. LSTOP) RETIrnN 
261 310 CONTINUE 
262 C 
263 C 4.30 -- CALCULATE COEFICIENTS OF FRICTION AND HEAT TRANSFER 
264 C NOTE THAT ALL PROPERTIES USED IN THE NONDIMENSIONAL-
265 C IZATION ARE EVALUATED AT THE FREE-STREAM CONDITIONS. 
266 C 
267 CF=-AJTI(1)*2./(RHO(Ml)*U(Ml)**2) 
268 CPAVG=.5*(CP(1)+CP(Ml» 
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269 DELTAT=(AH(l)-AH(Ml»/CPAVG 
270 IF (XU.GT.UHSL) STAN=AJTI(4)/(RHO(Ml)*U(Ml) 
271 1 *CPAVG*DELTAT+ASN) 
272 AHTC=AJTI(4)/(DELTAT+ASN) 
273 C 
274 C 
275 C 4.40 -- CALCULATE THE DISPLACEMENT THICKNESS AND THE 99% BOUND 
276 C ARY LAYER THICKNESS. ALSO COMPUTE Y+ AND U+ USING FREE-
277 C STREAM FLUID PROPERTIES TO NONDIMENSIONALIZE. 
278 C 
279 D99=0. 
280 DLl=O. 
281 UFRIC=SQRT(-AJTI(l)/RHO(Ml» 
282 YPLSCAL=SQRT(-RHO(Ml)*AJTI(I»/AMU(Ml) 
283 DO 320 J=2,M2 
284 UJ=U(J)/U(Ml) 
285 UJD=UJ*RHO(J)/RHO(Ml) 
286 IF(U(J+1)/U(Ml).GT .. 99.AND.UJ.LT .. 99) D99= 
287 1 (.99-UJ)/(U(J+l)/U(Ml)-UJ)*(Y(J+1)-Y(J»+Y(J) 
288 YPLS(J)=Y(J)*YFLSCAL 
289 UPLS(J)=U(J)/(UFRIC+ASN) 
290 320 DLl=DLl+ (1.-UJD) *YCVR(J) 
291 C 
292 C 4.50 -- IF AT DESIRED MOMENTUM THICKNESS REYNOLDS NUMBER, 
293 C WRITE OUT COMPLETE PROFILE INFORMATION TO A FILE. 
294 C 
295 IF(RE2.GT.RE2P(NP2» THEN 
296 WRITE (4, 305) Ml,XU,REX,RE2,D99,DL1,DL2 
297 WRITE (4, 306) (Y (J), (F (J, I), I=l, 11), J=l,Ml) 
298 NP2=NP2+1 
299 END IF 
300 C 
301 C 4.60 IF AT DESIRED REX, WRITE OUT COMPUTED BOUNDARY LAYER 
302 C PROPERTIES AND PARAMETERS. 
303 C 
304 C 
305 TUINF=SQRT(AK(Ml)/1.5)/U(Ml) 
306 DLS=AK(Ml)*U(Ml)*U(Ml)*RHO(Ml)/(AMU(Ml)*E(Ml» 
307 IF (REX.GT.REP) THEN 
308 REP=10.**(ALOG(REP)/ALOG(10.)+I./REPFC) 
309 NDPTS=NDPTS+l 
310 WRITE (3, 303) NDPTS,XU,REX,D99,DLl,DL2,RE2,CF,STAN,AHTC, 
311 1 U(Ml),DUDS,PRESS,DLS,TUINF 
312 END IF 
313 C 
314 C 4.70 -- AT INl'ERVALS OF 'JUMPl', WRITEOUT DESIRED QUANTITIES 
315 C BY CALLING SUBROUTINE 'PROFIL' 
316 C 
317 IF(LSTOP.OR.MOD(ISTEP,JUMPl).EQ.O) THEN 
318 E(1)=E(2) 
319 IF (ISTEP.GT.IPP) CALL PROFIL 
320 WRITE (6, 301) 
321 ENDIF 
322 C 
323 C 4.80 -- AT INTERVALS OF 'JUMP2', WRITEOUT SPECIFIED PARAMETERS 
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C 
C 

TO MONITOR THE COMPUTATIONS. 

IF (LSTOP.OR.MOD (ISTEP,JUMP2) .EQ.O) THEN 
WRITE (6, 302) XU,RE2,CF,STAN,AHTC,TUINF,DLS,U(Ml) 

END IF 
C 
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C 4.90 -- IF AT END OF COMPUTATION, CLOSE FILES AND DUMP OUTPUT 
C FOR FUTURE RESTART. IF NOT DONE, RETURN. 
C 

C 

IF ( . NOT. LSTOP) RETURN 
CLOSE (UNIT=3) 
CLOSE (UNIT=4) 
RETURN 

C 4.99 -- FORMATS USED IN SUBROUTINE OUTPUT 
301 FORMAT(4X,'XU',7X,'RE2',7X,' CF',7X,'STN',7X, 

1 'HTC',6X,'TUINF',5X,'DLS',7X,'UM1') 
302 FORMAT(lP3E10.3,1P1E9.2,1P4E10.3) 
303 FORMAT(' ',I3,1P12E10.3,lP2E9.2) 
304 FORMAT (' REX=',lP1E10.3,/,' RE1=',1P1E10.3,/, 

1 ' RE2=',lP1E10.3) 
305 FORMAT(I4,lP6E10.3) 
306 FORMAT(1P12E10.3) 

C*************************************************************** 
C 5.00 -- ENTRY POINT FOR SUBROUTINE 'BOUND' 
C*************************************************************** 

ENTRY BOUND 
C 
C 5.10 -- CALCULATE ENTRAINMENT. THIS CAN BE BASED ON EITHER 
C THE VELOCITY OR THE ENTHALPY PROFILES. 
C 

C 

IF (KENT.EQ.4) THEN 
CALL ENTRAIN (RME,AH (1) ,AH(M2-1) ,AH(Ml) , FRAC,ENEXP) 

ELSEIF(KENT.EQ.1) THEN 
CALL ENTRAIN(RME,O.,U(M2-1),U(Ml),FRAC,ENEXP) 

ELSE 
RMEH=RME 
RMEM=RME 
CALL ENTRAIN(RMEH,AH(1),AH(M2-1),AH(1),FRAC,ENEXP) 
CALL ENTRAIN(RMEM,O.,U(M2-1),U(Ml),FRAC,ENEXP) 
RME--AMAX1 (-RMEH, -RMEM) 

ENDIF 
RME=AMIN1(RME,-.05*PEI) 

C 5.20 -- AT SPECIFIED MOMENTUM THICKNESS, IMPLEMENT TRANSITION 
C t«>DEL AND COMPUTE DPKD'IM AND TCI. 
C 

IF (RE2.GT.RE2C) THEN 
FSCON=l. 
PRINT* , 'CRITICAL MJMENTUM THICKNESS RE2 REACHED AT' 
PRINT* , 'REX=' , REX 
PRINT*,'RE2=',RE2 
PRINT* " TU=', TUINF 
DLS=AK (Ml) *U (Ml) *U (Ml ) *RHO (Ml) / (AMU (Ml) *E (Ml) ) 
PRINT*,'DLS=',DLS 
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379 IF(ITM.EQ.O) GO TO 390 
380 TUINF=SQRT(AK(Ml)/1.5)/U(Ml) 
381 CALL TRANS (TUINF , DPKDTMO, TCI 0 ) 
382 PRINT*, 'SUB TRANS GIVES' 
383 PRINT*, 'DPKDTM=' , DPKDTMO 
384 PRINT*,'TCI=',TCIO 
385 ITBFLG=l 
386 390 RE2C=1.E20 
387 END IF 
388 IF (ITBFLG.EQ.1) THEN 
389 IF (MOD (ISTEP,JUMPT) .EQ.O) THEN 
390 TUINF=SQRT(AK(Ml)/1.5)/U(Ml) 
391 CALL TRANS(TUINF,DPKDTMO,TCIO) 
392 ENDIF 
393 DPKDTM=DPKDTMO* (RHO (Ml) *u (Ml) /AMJ (Ml) ) **2 *RHO (Ml) *u (Ml) **4 
394 TCI=TCIO*RHO(Ml)*U(Ml)*U(Ml)/AMJ(Ml) 
395 END IF 
396 C 
397 C 5.30 -- COMPUTE THE NEXT STEP SIZE, FREE STREAM VELOCITY, 
398 C REYNOLDS NUMBER BASED ON X, AND THE MEAN VELOCITY 
399 C AND PRESSURE GRADIENTS OVER THE NEXT STEP. 
400 C 
401 DX=DL2*DXFC 
402 UMlO=U(Ml) 
403 XUNEW=XU+DX 
404 U(Ml)=UMl(XUNEW) 
405 UINF=.5*(U(Ml)+UMlO) 
406 DUDS=(U(Ml)-UMlO)/DX 
407 DUDSP=RHO (Ml) *DUDS 
408 DPDSC=RHO(Ml)*UMlO*DUDS 
409 PRESS=PRESS-DPDSC*DX 
410 PRDR=PRESS/RCON 
411 REX=REX+RHO(Ml)*UINF*DX/AMJ(Ml) 
412 C 
413 C 5.40 -- CALC THE TURBULENT REYNOLDS NUMBERS AND OTHER RELATED 
414 C PARAMETERS, SUCH AS THE SOURCE TERMS IN THE K AND E EQS. 
415 C 
416 C CALL RCURV(XU,RC,KCRC,RFILE) 
417 C RCI=l. /RC 
418 C 
419 C 
420 C 
421 C 
422 C 
423 C 
424 C 
425 TRE(2)=AK(2)*AK(2)*RHO(2)/(AMJ(2)*E(2» 
426 DO 400 J=2,M2 
427 TRE(J+1)=AK(J+1)*AK(J+1)*RHO(J+1)/(AMJ(J+1)*E(J+1» 
428 YRE(J)=SQRT(AK(J»*Y(J)*RHO(J)/AMJ(J) 
429 DYP=Y(J+1)-Y(J) 
430 DYM=Y(J)-Y(J-1) 
431 R2=(DYP/DYM) **2 
432 DEN1=DYP+R2*DYM 
433 DU1(J)=(U(J+1)-(1-R2)*U(J)-R2*U(J-1»/DEN1 
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C 

IF(J.EQ.M2) DU1 (J)=DU1 (J-1)/2. 
AMUT(J)=AMU(J)*CU*FMU(TRE(J),YRE(J»*TRE(J) 
SK1=AMUT(J)*DU1(J)*DU1(J) 
SKC=FSCON*SK1 
DPK=(DPKDTM+TCI*SCK(J»*DX/U(J) 
SCK(J)=SCK(J)+AMIN1(DPK,SKC-SCK(J» 
SPK(J)=RHO(J)*E(J) 
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C-- C1 MODIFICATION WAS INSERTED HERE AS PER EQ. (5.5) IN THESIS. 
C-- SUPPRESSED BECAUSE AKAPI=1.E10 INSTEAD OF 2.7 (SEE LINE 178) 
C 

C 

C 

SCEMF=AMAX1(1.,AK(J)**1.5/(E(J)*AKAPI*Y(J») 

SCE(J)=SK1*SCEMF*C1*F1(FMU(TRE(J),YRE(J») 
1 *E(J)/(AK(J)+ASN) 

SPE(J)=C2*F2(TRE(J»*RHO(J)*E(J)*E(J)/(AK(J)+ASN) 
400 CONTINUE 

YRE(Ml)=SQRT(AK(Ml»*Y(Ml)*RHO(J)/AMU(J) 
AMUT(Ml)=AMU(J)*CU*FMU(TRE(Ml),YRE(Ml»*TRE(Ml) 

C 5.50 -- CALCULATE THE BOUNDARY VALUES FOR K AND E 
C 
C 

C 

YKE (1) =AK (Ml) 
YKE (2)=E (Ml) 
M=O 
XUB=XU 

6 CALL RUNGA(2,YKE,FKE,XUB,DX,M,K) 
GO TO (10,20),K 

10 FKE(1)=-YKE(2)/UINF 
FKE(2)=-C2*YKE(2)*YKE(2)/YKE(1)/UINF 
GO TO 6 

20 AK (Ml) =YKE (1) 
E(Ml)=YKE(2) 

C 5. 60 CALCULATE THE BOUNDARY VALUES FOR THE TOTAL ENTHALPY 
C 

IF (XU.LT.UHSL) RETURN 
KBCI(4)=IWTBC 
IF (KBCI (4) .EQ.1) THEN 

TW=WTOHF 
AH(l)=CP(l)*TW 

ELSE 
AFXI ( 4) =WTOHF 

END IF 
RETURN 

C*************************************************************** 
C 6.00 ENTRY POINT FOR SUBROUTINE 'GAMSOR'. 
C*************************************************************** 

C 
C 

ENTRY GAMSOR 

C 6.10 1-- CALCULATE THE MOM. EQUATION GAMMA AND SOURCE TERMS 

C ~F(NF.EQ.1) THEN 
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489 IF(DPDSC.LT.O.) THEN 
490 SPU=DUDSP 
491 SCU=O. 
492 ELSE 
493 SPU=O. 
494 SCU=DPDSC 
495 ENDIF 
496 DO 520 J=2,M2 
497 GAM(J)=AMU(J)+AMUT(J) 
498 AP(J)=SPU 
499 520 CON(J)=SCU 
500 GAM(l)=AMU(l) 
501 GAM(Ml)=AMU(Ml)+AMUT(Ml) 
502 ENDIF 
503 C 
504 C 6.20 -- CALCULATE KINETIC ENERGY EQ. GAMMA AND SOURCE TERMS 
505 C 
506 IF(NF.EQ.2) THEN 
507 DO 500 J=2,M2 
508 CON(J)=SCK(J)*FSCON 
509 AP(J)=-SPK(J)/(AK(J)+ASN) 
510 500 GAM(J)=AMU(J)+AMUT(J)/SK 
511 GAM(l)=AMU(l) 
512 GAM(Ml)=AMU(Ml)+AMUT(Ml)/SK 
513 ENDIF 
514 C 
515 C 6.30 -- CALCULATE THE E EQUATION GAMMA AND SOURCE TERMS 
516 C 
517 IF(NF.EQ.3) THEN 
518 DO 510 J=2,M2 
519 CON(J)=SCE(J) 
520 AP(J)=-SPE(J)/(E(J)+ASN) 
521 510 GAM(J)=AMU(J)+AMUT(J)/SE 
522 GAM(l)=O. 
523 GAM(Ml)=AMU(Ml)+AMUT(Ml)/SE 
524 END IF 
525 C 
526 C 6.40 --CALCULATE TOTAL ENTHALPY EQUATION GAMMA AND SOURCE TERMS 
527 C 
528 IF(NF.EQ.4) THEN 
529 DO 515 J=2,Ml 
530 GAM(J)=AMU(J)/PR(J)+AMUT(J)/PRT 
531 515 SI(J)=(AMU(J)+AMUT(J)-GAM(J»*U(J)*DU1(J) 
532 SI(l)=O. 
533 GAM(1)=AMU(1)/PR(1) 
534 DO 516 J=2,M2 
535 DYP=Y(J+1)-Y(J) 
536 DYM=Y(J)-Y(J-1) 
537 R2=(DYP/DYM) **2 
538 DEN1=DYP+R2*DYM 
539 SC=(SI(J+1)-(1-R2)*SI(J)-R2*SI(J-1»/DEN1 
540 516 CON(J) =CON(J) +SC 
541 ENDIF 
542 RETURN 
543 END 
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1 SUBROUTINE VELPROF(DELTA,OMEGA,UINF,Ml,U,Y) 
2 DIMENSION U(99),Y(99) 
3 C 
4 C THIS SUBROUTINE GENERATES A VELOCITY PROFILE USING A 
5 C POHLHOUSEN POLYNOMIAL TO FIT THE GIVEN GRID VALUES OF Y (J) 
6 C 
7 YOLD=O. 
8 DO 10 J=2,Ml 
9 IF(J.LT.Ml) YNEW=.5*(Y(J)+Y(J+1» 
10 IF (J.EQ.Ml) YNEW=Y (Ml) 
11 YY=.5*(YNEW+YOLD)/DELTA 
12 U(J)=UINF*YY*(2.-2.*YY**2+YY**3 + OMEGA/6.*(1.-YY)**3) 
13 IF(YY.GT.1) U(J)=UINF 
14 YOLD=YNEW 
15 10 CONTINUE 
16 RETURN 
17 END 

19 SUBROUTINE RUNGA(N,Y,F,X,H,M,K) 
20 C 
21 C THIS ROUTINE PERFORMS A RUNGE-KUTTA INTEGRATION PROCEDURE 
22 C BY GILLS METHOD 
23 C 
24 DIMENSION Y(2),F(2),Q(2) 
25 MFM+1 
26 GO TO (1,4,5,3,7),M 
27 1 DO 2 I=l,N 
28 2 Q(I)=O. 
29 A=.5 
30 GO TO 9 
31 3 A=1.70710678118655 
32 4 X=X+.5*H 
33 5 DO 6 I=l,N 
34 Y(I)=Y(I)+A*(F(I)*H-Q(I» 
35 6 Q(I)=2.*A*H*F(I)+(1.-3.*A)*Q(I) 
36 A=.292832188134525 
37 GO TO 9 
38 7 DO 8 I=l,N 
39 8 Y(I)=Y(I)+H*F(I)/6.-Q(I)/3. 
40 M=O 
41 K=2 
42 GO TO 10 
43 9 K=l 
44 10 RETURN 
45 END 
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47 
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63 
64 
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66 
67 
68 
69 
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C 

c 

c 

SUBROUTINE TRANS (TU,DPK,TCI) 

DATA A1,A2,A3/-5.4549,389.2806,-7556.0334/ 
DATA A4,A5,B1,B2/7.278E4,-2.85036E5,1.8625,14.6786/ 
DATA C1,C2,C3,01/6.8475,-367.,9200.,-6.4711/ 
DATA 02,03,04,05/1177.586,-45930.,615200.,-2767000./ 

IF(TU.LT .. 07) THEN 
Y=A1+A2*TU+A3*TU*TU+A4*TU**3+A5*TU**4 

ELSE 
Y=Bl+B2*TU 

ENDIF 
OPK=EXP(Y)*1.E-12 

IF(TU.LT .. 02) THEN 
Y=C1+C2*TU+C3*TU*TU 

ELSEIF(TU.GT .. 081) THEN 
Y=-4.6011 

ELSE 
Y=01+02*TU+03*TU*TU+04*TU**3+05*TU**4 

ENDIF 
TCI=Y*1.E-6 
RETURN 
END 

98 SUBROUTINE RCURV(XU,RC,KCRC,RFILE) 
99 c 
100 C THIS SUBROUTINE RETURNS THE LOCAL RADIUS OF CURVATURE UNLESS 
101 C KCRC IS EQUAL TO 1 (INDICATING A SPECIFIED CONSTANT RADIUS OF 
102 C CURVATURE) IT MUST READ IN DATA STORED IN A FILE WHICH LISTS 
103 C RADIUS OF CURVATURE VRS. ARC LENGTH COORDINATE X. IT THEN 
104 C INTERPOLATES TO RETURN THE DESIRED VALUE. 
105 C 
106 DIMENSION X(50),R(SO) 
107 CHARACTER RFILE*40 
108 LOGICAL LWARN 
109 DATA KREAD,KRCB/1,2/ 
110 C 
111 IF (KCRC.EQ.1) RETURN 
112 IF (KREAD.EQ.1) THEN 
113 OPEN (UNIT=2, FILE=RFILE) 
114 READ (2,*) ND 
115 DO 10 I=l,ND 
116 10 READ (2,*) X(I),R(I) 
117 CLOSE (UNIT=2) 
118 KREAD=O 
119 LWARN=.TRUE. 
120 ENDIF 
121 C 
122 DO 20 I=KRCB,ND 



123 IF(XU.LT.X(I» THEN 
124 ETA=(XU-X(I-l»/(X(I)-X(I-l» 
125 RC=R(I-l)+ETA*(R(I)-R(I-l» 
126 KRCB=I 
127 RETURN 
128 END IF 
129 20 CONTINUE 
130 IF (LWARN) THEN 
131 PRINT*,'WARNING! RADIUS OF CURVATURE NOT FOUND FOR' 
132 PRINT*, 'GIVEN XU. SETTING RC=I.E20' 
133 PRINT*, 'XU=' ,XU 
134 LWARN=.FALSE. 
135 ENDIF 
136 RC=I.E20 
137 RETURN 
138 END 

140 
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C 
SUBROUTINE ENTRAIN(RME,Fl,FM3,FMl,FRAC,POWER) 

IF (FMl . EO. F1) RETURN 
ADIF=ABS«FMl-FM3)/(FMl-Fl» 
FE=«ADIF+l.E-30)/FRAC)**POWER 
FE=AMINl(FE,I.5) 
FE=AMAXl(FE,.25) 
RME=FE*RME 
RETURN 
END 

FUNCTION FMU(X,Y) 
A=(I.-EXP(-.0163*y-l.E-10»**2 
FMULB=A*(I.+20./(X+l.E-10» 
FM=. 5+. 0025*X . 
FMU=AMINl(l.O,FM,FMULB) 

RETURN 
END 

FUNCTION F2(X) 
F2=1.-EXP(-X*X-l.E-10) 

RETURN 
END 

FUNCTION Fl(X) 
Fl=1.+(.055/(X+l.E-10»**3 

RETURN 
END 
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The UMI functions used 

Because the function UMI (which returns the local free-stream velocity) 

is problem dependent, a number of different repre-sentations had to be 

written. These are listed here. 

1 FUNCTION UM1(X) 
2 C 
3 C - FREE-STREAM VELOCITY DISTRIBUTION FOR WANG'S ZERO PRESSURE 
4 C GRADIENT WIND TUNNEL TESTS ( K=O. 0, UNITS IN MIS) 
5 C 
6 UM1=13.50 
7 RETURN 
8 END 

1 FUNCTION UM1(X) 
2 C 
3 C -FREE-STREAM VELOCITY DISTRIBUTION FOR RUED, WITTIG'S DATA RN-2 
4 C (UINF=CONSTANT=47 MIS) 
5 C 
6 UM1=47. 
7 RETURN 
8 END 

1 FUNCTION UM1(X) 
2 c 
3 C - FREE-STREAM VELOCITY DISTRIBUTION FOR BLAIR'S ZERO PRESSURE 
4 C GRADIENT WIND TUNNEL TESTS (NO WEDGE, K=O.O, UNITS IN MIS) 
5 c 
6 IF(X.GT.-100.) UMl=30.48 
7 UMl=30.48 
8 RETURN 
9 END 

1 FUNCTION UMl(X) 
2 C 
3 C - FREE-STREAM VELOCITY DISTRIBUTION FOR BLAIR'S LOWER 
4 C ACCELERATION TESTS (WEDGE 1, K=.20E-6) 
5 C 
6 DATA A1,A2,A3/89.914435,5.08,1.0661 
7 C 
8 UMl=A11 (A2-X) **A3 
9 RETURN 
10 END 
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1 FUNCTION UMI(X) 
2 C 
3 C - FREE-STREAM VELOCITY DISTRIBUTION FOR BLAIR'S HIGHER 
4 C ACCELERATION TESTS (WEDGE 2, K=.75E-6) 
5 C 
6 DATA A1,A2,A3/22.2178,2.11582,1.075/ 
7 C 
8 UMl=A1/(A2-X)**A3 
9 RETURN 
10 END 

1 FUNCTION UMI(X) 
2 C 
3 C -FREE-STREAM VELOCITY DISTRIBUTION FOR RUED'S DATA NR-6 
4 C 
5 DATA X1,X2/.20,.35/ 
6 DATA A1,A2,A3,A4,A5/48.4,.50,-50.,25.,343.4/ 
7 DATA B1,B2/5200.,3.5/ 
8 DATA C1,C2,C3,C4/106.0136,423.9787,1665.05,-23333./ 
9 C 
10 IF(X.LE.X2) THEN 
11 UMl=A1+A2*EXP(A3*X)+A4*X+A5*X*X 
12 IF(X.GT.X1) UMl=UMl+B1*(X-Xl)**B2 
13 RETURN 
14 ELSE 
15 Y=X-X2 
16 UMl=C1+C2*Y+C3*Y*Y+C4*Y*Y*Y 
17 END IF 
18 RETURN 
19 END 

1 FUNCTION UMl(X) 
2 C 
3 C -FREE-STREAM VELOCITY DISTRIBUTION FOR RUED'S DATA NR-10 
4 C 
5 DATA X1,X2/.179,.30/ 
6 DATA A1,A2,A3,A4,A5/47.5,10.81,1483.37,-5563.333,31826.75/ 
7 DATA A6,A7/387450.,-1742667/ 
8 DATA B1,B2,B3,B4/111.606856, 804.61431, -60173.417, 

1 248650.49/ 
9 DATA C1,C2/155.66475,-76.384701/ 
10 C 
11 IF (X.LE.X1) THEN 
12 UMl=A1+A2*X+A3*X*X+A4*X*X*X+A5*X**4+A6*X**5+A7*X**6 
13 RETURN 
14 ELSEIF(X.GT.X2) THEN 
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15 y=x-X2 
16 UMl=C1+C2*Y 
17 RETURN 
18 ELSE 
19 Y=X-X1 
20 UMl=B1+B2*Y+B3*Y*Y*Y+B4*Y*Y*Y*Y 
21 ENDIF 
22 RETURN 
23 END 

1 FUNCTION UMl(X) 
2 C 
3 C -FREE-STREAM VELOCITY DISTRIBUTION FOR RUED'S DATA NR-12 
4 C 
5 DATA X1/.20/ 
6 DATA A1,A2,A3,A4/26.5, 2319., -28680, 347100./ 
7 DATA A5,A6/-647300., -2100000./ 
8 DATA B1,B2,B3,B4/71.4128, 385.72, -1654.85, -149700./ 
9 DATA B5,B6,B7/2.095E6, -1.026E7, 1.731E7/ 
10 C 
11 C 
12 IF(X.LE.X1) THEN 
13 UMl=A1 + A2/2.*X*X + A3/3.*X*X*X + A4/4.*X**4 

14 
15 
16 
17 

18 
19 
20 

C 
1 + A5/5*X**5 + A6/6.*X**6 

ELSE 
Y=X-X1 
UMl=B1 + B2*Y + B3/2.*Y*Y + B4/3.*Y*Y*Y 

1 + B5/4.*Y**4 + B6/5.*Y**5 + B7/6.*Y**6 
END IF 
RETURN 
END 

1 FUNCTION UMl(XU) 
2 C 
3 C -FREE-STREAM VELOCITY DISTRIBUTION FOR THE DANIALS AND BROWN 
4 C -BLADE (RED CONDITIONS) FOR THE PRESSURE SIDE OF THE BLADE 
5 C DIMENSIONS ARE IN METERS, AND METERS/SEC RESPECTIVELY. 
6 C 
7 DATA S,U1/.05044,146./ 
8 DATA A1,A2,A3,A4/.9561,6.2799,-12.0039,7.7947/ 
9 C 
10 X=XU/S 
11 U=A1*X + A2*X**2 + A3*X**3 + A4*X**4 
12 UM1=U*U1 
13 RETURN 
14 END 
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1 FUNCTION UMl(XU) 
2 C 
3 C -FREE-STREAM VELOCITY DISTRIBUTION FOR THE DANIALS AND BROWN 
4 C -DATA DESIGNATED AS RED CONDITIONS FOR THE SUCTION SIDE OF THE 
5 C BLADE. DIMENSIONS ARE IN METERS, AND METERS/ SEC RESPECTIVELY. 
6 C 
7 DIMENSION X(55),V(55) 
8 DATA JREAD,JX/0,2/ 
9 C 
10 IF (JREAD.EQ.O) THEN 
11 C OPEN(UNIT=l,FILE='DBRDSVD') 
12 OPEN(UNIT-1,FlLE-'RWVEL/DBRDSVD') 
13 READ (1, *) ND 
14 DO 5 J-1, ND 
15 5 READ (1,*) X(J),V(J) 
16 CLOSE (UNIT=l) 
17 JREAD-l 
18 ENDIF 
19 C 
20 DO 10 J=JX, ND 
21 IF(XU.LT.X(J» THEN 
22 F-(XU-X(J-1»/(X(J)-X(J-1» 
23 UMl=V(J-1)+F*(V(J)-V(J-1» 
24 JX-J 
25 RETURN 
26 END IF 
27 10 CONTINUE 
28 UMl-=V(ND) 
29 RETURN 
30 END 

Data file "DBRDsvd". (See line 12 above) 

1 54 
2 O.OOOOOE+OO O.OOOOOE+OO 
3 4. 42430E-04 6.57394E+01 
4 9.05600E-04 1.23798E+02 
5 1.48717E-03 1.77565E+02 
6 2.09038E-03 2.17336E+02 
7 2. 75392E-03 2.47149E+02 
8 3. 73226E-03 2.72699E+02 
9 4. 39781E-03 2. 88058E+02 
10 5. 57312E-03 3.09082E+02 
11 6. 63185E-03 3.21288E+02 
12 8.14303E-03 3. 31245E+02 
13 9.43884E-03 3. 33303E+02 
14 1.04406E-02 3.33084E+02 
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15 1.15795E-02 3.32194E+02 
16 1. 26599E-02 3.30398E+02 
17 1.36814E-02 3.28150E+02 
18 1.48601E-02 3.26368E+02 
19 1.60974E-02 3.26383E+02 
20 1. 71 768E-02 3.29621E+02 
21 1.83153E-02 3. 33911E+02 
22 1. 94340E-02 3.39551E+02 
23 2.08075E-02 3.47517E+02 
24 2.19853E-02 3. 54113E+02 
25 2.32216E-02 3.60789E+02 
26 2.47913E-02 3.68480E+02 
27 2.64205E-02 3.75975E+02 
28 2.79513E-02 3.82251E+02 
29 2.96396E-02 3.88666E+02 
30 3.13475E-02 3.93619E+02 
31 3.29575E-02 3. 97161E+02 
32 3. 41358E-02 3.98081E+02 
33 3.51567E-02 3.97862E+02 
34 3. 63355E-02 3. 95614E+02 
35 3.74749E-02 3. 91570E+02 
36 3.88312E-02 3.86144E+02 
37 4.04423E-02 3.79861E+02 
38 4.20927E-02 3.76890E+02 
39 4.34087E-02 3.75782E+02 
40 4.46258E-02 3.76587E+02 
41 4. 61576E-02 3.79574E+02 
42 4. 71387E-02 3.82714E+02 
43 4. 85914E-02 3.88524E+02 
44 4. 98670E-02 3. 93818E+02 
45 5.12622E-02 3. 99838E+02 
46 5.26140E-02 4.05921E+02 
47 5.40666E-02 4.12312E+02 
48 5. 56202E-02 4.18527E+02 
49 5.72091E-02 4.24088E+02 
50 5.84650E-02 4.26411E+02 
51 5. 95041E-02 4.26931E+02 
52 6.07449E-02 4.22092E+02 
53 6.19252E-02 4.13288E+02 
54 6. 34182E-02 3. 97505E+02 
55 6.41446E-02 3.90964E+02 
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A Listin~ of pro~ram MAIN 

A listing of the main driver program "MAIN", together with it's associated 
subroutines is given here. 

1 PROGRAM MAIN (OUTPUT, TAPE6=OUTPUT) 
2 C 
3 LOGICAL LSTOP 
4 COMMON/CNTL/LSTOP 
5 CALL USER 
6 CALL SETUP 
7 CALL START 
8 10 CALL DENSE 
9 CALL SETUP2 
10 CALL OUTPUT 
11 IF (LSTOP) STOP 
12 CALL BOUND 
13 CALL SETUP3 
14 GO TO 10 
15 END 
16 C************************************************************** 
17 SUBROUTINE DIFLOW 
18 C 
19 COMMON/COEFiFLOW,DIFF,ACOF 
20 ACOF=DIFF+1.E-30 
21 IF(FLOW.EQ.O.) RETURN 
22 TEMP=DIFF-ABS (FLOW) *0.1 
23 ACOF=1.E-30 
24 IF (TEMP. LE. 0.) RETURN 
25 TEMP=TEMP/DIFF 
26 ACOF=DIFF*TEMP**5 
27 RETURN 
28 END 
29 C************************************************************** 
30 SUBROUTINE SETUP 
31 C 
32 LOGICAL LSTOP,LPR,LGPG,LTIME,LSOLVE,LPRINT 
33 character title(13) *7 
34 COMMON F(99,11),RHO(99),GAM(99),CON(99), 
35 1 AP(99),AN(99),AS(99),PT(99),QT(99),RT(99), 
36 2 OM(99),OMF(99),OMF1(99),OMCV(99),Y(99), 
37 3 YF(99),YCVR(99),YCVP(99),YCVM(99),R(99), 
38 4 RF(99),FLO(99) 
39 COMMON /INDX/ NF ,NFMAX,NU, NRHO,NGAM,Ml,M2, KIN, KEX, DPDX, 
40 1 ISTEP,LASTEP,MODE,ITMX,LGPG,LTIME,XU,DX,XLAST, 
41 2 PEI,PSII,PSIE,PSIT,YMl,POWER,CSALFA,RMI,RME,ARI,ARE 
42 COMMON /VARB/ LSOLVE(11),LPRINT(13), 
43 1 AJTI(ll),AJTE(ll),AFXI(ll),BFXI(ll), 
44 2 AFXE(ll),BFXE(ll),KBCI(ll),KBCE(ll) 
45 common /char/ title 
46 COMMON /CNTL/ LSTOP 
47 COMMON /COEF/ FLOW,DIFF,ACOF 
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48 DIMENSION U(99) 
49 EQUIVALENCE (F(1,1),U(1;) 
50 C**************************************************************** 
51 DATA NFMAX,NU,NRHO,NGAM,nsolv/11,1,11,11,4/ 
52 DATA LSTOP,LGPG,LTlME,LSOLVE,LPRINT/.F., .T.,25*.F./ 
53 DATA ISTEP,LASTEP,XU,XLAST/O,1000,0.,1.E10/ 
54 DATA CSALFA,PSII,MODE,ITMX,POWER,RMI,RME/1.,0.,1,10,1.,0.,0./ 
55 DATA AFXI,BFXI,AFXE,BFXE,KBCI,KBCE/44*0.,22*1/ 
56 DATA AJTI,AJTE/22*0./ 
57 C ................................................................. . 
58 C 
59 M2~-1 
60 OMF(2)=0. 
61 OMF(Ml)=1. 
62 OM(1)=0. 
63 DO 1 J=2,M2 
64 AP(J)=O. 
65 CON(J)=O. 
66 OM(J)=0.5*(OMF(J)+OMF(J+1» 
67 OMCV(J)-oMF (J+1)-OMF (J) 
68 1 OMF1(J)=1.-OMF(J) 
69 OM(Ml)=1. 
70 OMF1 (Ml) =0. 
71 Y(1)=0. 
72 YF(2)=0. 
73 DO 3 J=1,Ml 
74 R(J)=1. 
75 3 RF(J)=1. 
76 GAM(1)=0. 
77 GAM(Ml) =0. 
78 C 
79 WRITE (6, 9) 
80 IF (MODE.EQ.1) WRITE (6,2) 
81 IF (MODE.NE. 1) WRITE (6, 4) 
82 IF (.NOT.LGPG) WRITE (6, 4) 
83 IF (MODE.NE.1) STOP 
84 IF (. NOT. LGPG) STOP 
85 WRITE (6, 9) 
86 2 FORMAT(5X,*PLANE GEOMETRY*) 
87 4 FORMAT (2X, *MAIN PROGRAM NOT SET UP FOR MODE> 1 OR LGPG=F*) 
88 9 FORMAT(lX) 
89 RETURN 
90 C ...........•....•............................•................ 
91 ENTRY SETUP2 
92 C 
93 PSIE=PSII+PEI 
94 C 
95 CALCULATION OF Y AND R VALUES 
96 DO 21 J=2,M2 
97 IF(U(J) .LT.O.) GO TO 51 
98 YCVR(J)=PEI*OMCV(J)/(RHO(J)*U(J» 
99 YF(J+1)=YF(J)+YCVR(J) 
100 21 Y(J)=YF(J)+0.5*YCVR(J) 
101 Y(Ml)=YF(Ml) 
102 DO 40 J=2,M2 
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YCVP(J)=YF(J+1)-Y(J) 
40 YCVM(J)=Y(J)-YF(J) 

GO TO 55 
51 WRITE(6,52) 

237 

52 FORMAT(5(lH*),*AT LEAST ONE VELOCITY HAS BECOME NEGATIVE*, 
1 5(lH*)) 

LSTOP=.T. 
55 CONTINUE 

RETURN 
C •••••••••••••••••.•••••.••••••••••••••••••••••••••••••••••••••. 

C 

C 

ENTRY SETUP3 

IF (KIN.EQ.3) RMI=O. 
IF (KEX.EQ.3) RME=O. 
ARI=RF(2)*DX 
ARE=RF(Ml)*DX 
DO 60 J=2,Ml 

60 FLO (J) = (RMI*OMF1 (J)+RME*OMF(J))*DX 

DO 100 NF1=1,nso1v 
NF=NF1 

C IF (.NOT.LSOLVE(NF) ) GO TO 100 
LPR=.FALSE. 

C 
CALL GAMSOR 

C 
COEFFICIENT CALCULATION •...•......... 

C 

DIFF=ARI*GAM(1)/YCVM(2) 
IF (KIN.NE.l) DIFF=O. 
FLOW=FLO(2) 
CALL DIFLOW 
AS (2)=ACOF+AMAX1 (O.,FLOW) 
AN(1)=AS(2)-FLOW 
DO 101 J=2,M2 
IF (J.EQ.M2) GO TO 102 
DIFF=RF(J+1)*DX/(YCVP(J)/(GAM(J)+1.E-30)+ 

1 YCVM(J+l)/(GAM(J+1)+1.E-30)) 
GO TO 103 

102 DIFF=ARE*GAM(Ml)/YCVP(M2) 
IF (KEX.NE.1) DIFF=O. 

103 FLOW=FLO(J+1) 
CALL DIFLOW 
AS (J+1)=ACOF+AMAX1 (O.,FLOW) 
AN (J) =AS (J+1)-FLOW 
FLUP=PEI*OMCV(J) 
VOL=YCVR(J)*DX 
AP (J)=AS (J) +AN(J) +FLUP-AP (J) *VOL 

101 CON(J)=FLUP*F(J,NF)+CON(J)*VOL 

COEFFICIENTS MODIFIED FOR THE I BOUNDARY 
AP(1)=AS(2) 
IF(KIN.NE.1.0R.KBCI(NF).EQ.1) GO TO 105 
FACI=l. 
IF(KBCI(NF).EQ.3) FACI=l.+BFXI(NF)*ARI/AP(l) 
CON(l)=AFXI(NF)*ARI 
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158 AP(2)=AP(2)-AN(1)/FACI 
159 CON(2)=CON(2)+CON(1)/FACI 
160 AS(2)=0. 
161 C 
162 COEFFICIENTS MODIFIED FOR THE E BOUNDARY 
163 105 AP(Ml)=AN(M2) 
164 IF(KEX.NE.1.0R.KBCE(NF) .EQ.1) GO TO 110 
165 FACE=l. 
166 IF(KBCE(NF) .EQ.3) FACE=l.+BFXE(NF) *ARE/AP (Ml) 
167 CON (Ml) =AFXE (NF)*ARE 
168 AP(M2)=AP(M2)-AS(Ml)/FACE 
169 CON(M2)=CON(M2)+CON(Ml)/FACE 
170 AN(M2)=O. 
171 110 CONTINUE 
172 C 
173 C 
174 CALCULATION OF THE NEW VALUES OF F (J, NF) BY TDMA 
175 PT(l)=O. 
176 QT(l)=F(l,NF) 
177 DO 120 J=2,M2 
178 DENOM=AP (J)-PT(J-1)*AS (J) 
179 PT(J)=AN(J)/DENOM 
180 QT(J)=(CON(J)+AS(J)*QT(J-1»/DENOM 
181 120 IF(LPR) RT(J)=(RT(J)+AS(J)*RT(J-1»/DENOM 
182 DO 121 JJ=2,M2 
183 J=Ml-JJ+1 
184 121 F(J,NF)=F(J+1,NF)*PT(J)+QT(J) 
185 C 
186 CALCULATION THE UNKNOWN BOUNDARY VALUES OR FLUXES 
187 C. . . . . . . . . . FOR THE I BOUNDARY 
188 IF(KIN.EQ.2) GO TO 140 
189 IF (KIN.EQ.1) GO TO 131 
190 F(l,NF)=F(2,NF) 
191 GO TO 140 
192 131 IF (KBCI(NF) .EQ.1) GO TO 132 
193 F(l,NF)=(AN(1)*F(2,NF)+CON(1»/(AP(1)*FACI) 
194 AJTI (NF)=AFXI (NF) 
195 IF (KBCI(NF) .EQ.3) AJTI (NF)=AJTI (NF)-BFXI (NF) *F(l,NF) 
196 GO TO 140 
197 132 AJTI(NF)=(AP(1)*F(l,NF)-AN(1)*F(2,NF»/ARI 
198 C .............. FOR THE E BOUNDARY 
199 140 IF(KEX.EQ.2) GO TO 150 
200 IF (KEX.EQ.1) GO TO 141 
201 F(Ml,NF)=F(M2,NF) 
202 GO TO 150 
203 141 IF(KBCE(NF).EQ.1) GO TO 142 
204 F(Ml,NF)=(AS(Ml)*F(M2,NF)+CON(Ml»/(AP(Ml)*FACE) 
205 AJTE (NF) =AFXE (NF) 
206 IF (KBCE(NF) .EQ.3) AJTE (NF)=AJTE (NF)-BFXE (NF) *F (Ml,NF) 
207 GO TO 150 
208 142 AJTE (NF) = (AP (Ml) *F (Ml, NF) -AS (Ml) *F (M2, NF» /ARE 
209 150 CONTINUE 
210 C 
211 CON AND AP ARE RESET TO ZERO 
212 DO 180 J=2,M2 
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213 AP(J)=O. 
214 180 CON(J)=O. 
215 C 
216 100 CONTINUE 
217 C 
218 ISTEP=ISTEP+1 
219 XU=XU+DX 
220 PEI=PEI+ (RMI-RME) *DX 
221 PSII=PSII-RMI*DX 
222 IF (ISTEP.GE.LASTEP) LSTOP=.TRUE. 
223 IF (XU.GE.XLAST) LSTOP=.TRUE. 
224 RETURN 
225 C ...............•..•.......................................... 
226 ENTRY PROFIL 
227 C 
228 201 FORMAT(lX) 
229 202 FORMAT(2X,*J*,4X,8(2X,I4,3X» 
230 203 FORMAT(2X,*Y*,4X,lP8E9.2) 
231 204 FORMAT(A6,lX,lP8E9.2) 
232 C 
233 JEND=O 
234 210 JBEG=JEND+1 
235 JROD=JEND+8 
236 JEND=MINO (JROD, Ml) 
237 WRITE (6, 201) 
238 WRITE (6,202) (J,J=JBEG,JEND) 
239 WRITE (6,203) (Y(J),J=JBEG,JEND) 
240 DO 225 NF1=1, NFMAX 
241 IF (.NOT.LPRINT(NF1) ) GO TO 225 
242 WRITE (6,204) TITLE(NF1), (F(J,NF1),J=JBEG,JEND) 
243 225 CONTINUE 
244 IF (JEND.LT.Ml) GO TO 210 
245 WRITE (6,201) 
246 RETURN 
247 C .....•..•.•.....•....•..•..........•.....•.................. 
248 ENTRY UYGRID 
249 C 
250 M2~-1 
251 YF(2)=0. 
252 DO 251 J=3,M2 
253 251 YF(J)=0.5*(Y(J)+Y(J-1» 
254 YF(Ml)=Y(Ml) 
255 OMF(2)=0. 
256 DO 252 J=2,M2 
257 RDY=YF (J+1)-YF (J) 
258 252 OMF(J+1)=OMF(J)+RHO(J)*U(J)*RDY 
259 PEI=OMF(Ml) 
260 DO 253 J=2,Ml 
261 253 OMF(J)=OMF(J)/PEI 
262 RETURN 
263 END 
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Sample Input Files 

Listing of file "wangin". This is the input data file for calculating Wang's 
flat plate experiment. 

1 ,---- FILNAME(l) - FILNAME(4) ____ I 
2 'BLDATIN', 'BLDAT01','BLDAT02','BLDAT03' 
3 ,---- LSOLVE(l) - LSOLVE(4) ____ I 
4 .T. .T. .T. .T. 
5 ,---- LPRINT(l) - LPRINT(ll) ____ I 
6 .T .. T .. T .. T .. T .. T .. T .. T .. T .. T .. T. 
7 ,---- TITLE(l) - TITLE(ll) ____ I 
8 'U' 'K' 'E' 'H' 'T' 'TRE' 'YRE' 'AMUT' 'YPLS' 'UPLS' 'DU1' 
9 ,---- RE2P(1) - RE2P(10) ____ I 
10 200.0,300.0,400.0,500.0,750.0,1000.,1200.,1500.,2000.,1.E9 
11 '---LASTEP,JUMP1,JUMP2,IPP,JUMPT ___ I 
12 5000, 5000, 100, 5001, 10 
13 '--- KENT, HTC, ITM, LCPSOL ___ I 
14 1 1 1 .T. 
15 '--- TU, EIN, XUI, XUF, RE2F, RE2C ___ I 
16 .0235,0.70, .0001,1.01, 5000.,125. 
17 ,--- PRESS, VINF ___ I 
18 1.019E+5, 13.50 
19 '--- IWTBC, PRT, TINF, TW, UHSL, WTOHF ___ I 
20 2, .90, 22., 22., .01000, 850. 
21 '--- Ml, DEL,DELT, GEXP, GX1, EKI, A1, DXFC, REPI, REPFC ___ I 
22 88, 5.39E-4, 5.39E-4, 2.30, .1, 2.0, 1.0, 1.00, 8.0E4, 30. 
23 '---CU, C1, C2, SK, SE, CC, CVRM ___ I 
24 .09, 1.44, 1.92, 1., 1.3, 0.00, O. 
25 '---OMEGA, FRAC, ENEXP, RC, KCRC, KCM, RFILE ___ I 
26 0.0, .0007, 1.00, 1.E20, 1, 1, 'NOFILE' 

Listing of file "rw22in". This is the input data file for calculating Rued's 
flat plate experiment using grid 2. 

1 ,---- FILNAME(l) - FILNAME(4) ____ I 
2 'BLDATIN','BLDAT01','BLDAT02','BLDAT03' 
3 ,---- LSOLVE(l) - LSOLVE(4) ____ I 
4 .T. .T. .T. .T. 
5 ,---- LPRINT(l) - LPRINT(ll) ____ I 
6 .T .. T .. T .. T .. T .. T .. T .. T .. T .. T .. T. 
7 ,---- TITLE(l) - TITLE(ll) ____ I 
8 'U' 'K' 'E' 'H' 'T' 'TRE' 'YRE' 'AMUT' 'YPLS' 'UPLS' 'DU1' 
9 ,---- RE2P(1) - RE2P(10) ____ I 
10 200.0,300.0,400.0,500.0,750.0,1000.,1200.,1500.,2000.,1.E9 



241 

11 '---LASTEP,JUMP1,JUMP2,IPP,JUMPT ___ I 
12 5000, 5000, 100, 5001, 20 
13 '--- KENT, HTC, ITM, LCPSOL ___ I 
14 1 1 1 .T. 
15 '--- TU, EIN, XUI, XUF, RE2F, RE2C ___ I 
16 .0465, 1600., .0005, .30, 5000., 125. 
17 ,--- PRESS, VINF ___ I 
18 1.01325E+5, 47.0 
19 '--- IWTBC, PRT, TINF, TW, UHSL, WTOHF ___ I 
20 1, .90, 105., 105., .0150, 29.2 
21 ,--- Ml, DEL,DELT, GEXP, GX1, EKI, A1, DXFC, REPI, REPFC ___ I 
22 88, 1.00E-4, 1.00E-4, 2.30, .1, 2.0, 1.0, 0.75, 5.0E4, 30. 
23 '---CU, C1, C2, SK, SE, CC, CVRM ___ I 
24 .09, 1.44, 1.92, 1., 1.3, 0.00, O. 
25 '---OMEGA, FRAC, ENEXP, RC, KCRC, KCM, RFILE ---' 
26 0.0, .0007, 1.00, 1.E20, 1, 1, 'NOFILE' 

Listing of file "bI02in". This is the input data file for calculating Blair 
and Werle's flat plate experiment using grid 2. 

1 ,---- FILNAME(l) - FILNAME(4) ____ I 
2 'BLDATIN','BLDAT01','BLDAT02','BLDAT03' 
3 ,---- LSOLVE(l) - LSOLVE(4) ____ I 
4 .T. .T. .T. .T. 
5 ,---- LPRINT(l) - LPRINT(ll) ____ I 
6 .T. .T. .T. .T. .T .. T. .T .. T. .T. .T. .T. 
7 ,---- TITLE(l) - TITLE(11) ____ I 
8 ' U ' , K' , E ' , H ' , T' , TRE ' , YRE ' , AMUT ' , YPLS ' , UPLS ' , DU1 ' 
9 ,---- RE2P(1) - RE2P(10) ____ I 
10 200.0,300.0,400.0,500.0,750.0,1000.,1200.,1500.,2000.,1.E9 
11 '---LASTEP,JUMP1,JUMP2,IPP,JUMPT ___ I 
12 5000, 5000, 100, 5001, 10 
13 ,--- KENT, HTC, ITM, LCPSOL ___ I 
14 1 1 1 .T. 
15 ,--- TU, EIN, XUI, XUF, RE2F, RE2C ___ I 
16 .0233, 19.5, .0005, 1.50, 5000., 125. 
17 ,--- PRESS, VINF ___ I 
18 1.019E+5, 30.48 
19 ,--- IWTBC, PRT, TINF, TW, UHSL, WTOHF ___ I 
20 2, .90, 22., 22., .0425, 850. 
21 ,--- MI, DEL,DELT, GEXP, GX1, EKI, A1, DXFC, REPI, REPFC ___ I 
22 88, 0.94E-4, 0.94E-4, 2.30, .1, 2.0, 1.0, 1.00, 8.0E4, 30. 
23 '---CU, C1, C2, SK, SE, CC, CVRM ___ I 
24 .09, 1.44, 1.92, 1., 1.3, 0.00, O. 
25 '---OMEGA, FRAC, ENEXP, RC, KCRC, KCM, RFILE ---' 
26 0.0, .0007, 1.00, 1.E20, 1, 1, 'NOFILE' 
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Listing of file "b112in", This is the input data file for Blair and Werle's 
lower acceleration case with TUe,T equal to 2.1 %. 

1 ,---- FILNAME(l) - FILNAME(4) ----, 
2 'BLDATIN', 'BLDAT01', 'BLDAT02', 'BLDAT03' 
3 ,---- LSOLVE(l) - LSOLVE(4) ----, 
4 .T. .T. .T. .T. 
5 ,---- LPRINT(l) - LPRINT(ll) ----, 
6 .T .. T .. T .. T .. T .. T .. T .. T .. T .. T .. T. 
7 ,---- TITLE(l) - TITLE(ll) ----, 
8 'U' 'K' 'E ' , H ' , T' , TRE ' , YRE ' , AMUT ' , YPLS ' , UPLS ' 'DU1' 
9 ,---- RE2P(1) - RE2P(10) ----, 
10 200.0,300.0,400.0,500.0,750.0,1000.,1200.,1500.,2000.,1.E9 
11 '---LASTEP,JUMP1,JUMP2,IPP,JUMPT ---' 
12 5000, 5000, 100, 5001, 10 
13 '--- KENT, HTC, ITM, LCPSOL ---' 
14 1 1 1 .T. 
15 '--- TU, EIN, XUI, XUF, RE2F, RE2C ---, 
16 .0210, 1.20, .0010, 1.50, 5000., 125. 
17 '--- PRESS, VINF ---' 
18 1.019E+5, 30.48 
19 ,--- IWTBC, PRT, TINF, TW, UHSL, WTOHF ---' 
20 2, .90, 22., 22., .0430, 850. 
21 '--- Ml, DEL,DELT, GEXP, GX1, EKI, AI, DXFC, REPI, REPFC ---, 
22 88, 1.80E-4, 1.80E-4, 2.30, .1, 2.0, 1.0, 1.00, 8.0E4, 30. 
23 '---CU, C1, C2, SK, SE, CC, CVRM ---' 
24 .09, 1.44, 1.92, 1., 1.3, 0.00, O. 
25 '---OMEGA, FRAC, ENEXP, RC, KCRC, KCM, RFILE ---, 
26 0.0, .0007,1.00, 1.E20, 1, 1, 'NOFILE' 

Listing of file "rw123in". This is the input data file for calculating 
Rued's pressure gradient experiment set 12 using grid 3. 

1 ,---- FILNAME(l) - FILNAME(4) ----, 
2 'BLDATIN','BLDAT01','BLDAT02', 'BLDAT03' 
3 ,---- LSOLVE(l) - LSOLVE(4) ----, 
4 .T .. T .. T .. T. 
5 ,---- LPRINT(l) - LPRINT(ll) ----, 
6 .T .. T .. T .. T .. T .. T .. T .. T .. T .. T .. T. 
7 ,---- TITLE(l) - TITLE(ll) ----, 
8 'U' 'K' 'E' 'H' 'T' 'TRE' 'YRE' 'AMUT' 'YPLS' 'UPLS' 'DU1' 
9 ,---- RE2P(1) - RE2P(10) ----, 
10 200.0,300.0,400.0,500.0,750.0,1000.,1200.,1500.,2000.,1.E9 
11 '---LASTEP,JUMP1,JUMP2,IPP,JUMPT ---, 
12 5000, 5000, 100, 5001, 20 
13 '--- KENT, HTC, ITM, LCPSOL ---' 
14 1 1 1 .F. 
15 '--- TU, EIN, XUI, XUF, RE2F, RE2C ---, 
16 .0773, 882., .0010, .40, 5000., 125. 
17 '--- PRESS, VINF ---, 
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18 1.01325E+5, 26.50 
19 '--- IWTBC, PRT, TINF, TW, UHSL, WTOHF ---' 
20 1, .90, 194., 194., .0150, 26.0 
21 '--- Mrr, DEL,DELT, GEXP, GX1, EKI, A1, DXFC, REPI, REPFC ---' 
22 88, 2.18E-4, 2.18E-4, 2.30, .1, 2.0, 1.0, 0.75, 2.0E4, 30. 
23 '---CU, C1, C2, SK, SE, CC, CVRM ---, 
24 .09, 1.44, 1.92, 1., 1.3, 0.00, O. 
25 '---OMEGA, FRAC, ENEXP, RC, KCRC, KCM, RFILE ---' 
26 0.003, .0007, 1.00, 1.E20, 1, 1, 'NOFILE' 

Listing of file "dbrdsin". This is the input data file for calculating 
Daniel's blade on the suction side. (ReD conditions) 

1 ,---- FILNAME(l) - FILNAME(4) ----, 
2 'BLDATIN','BLDAT01','BLDAT02','BLDAT03' 
3 ,---- LSOLVE(l) - LSOLVE(4) ----, 
4 .T. .T. .T. .T. 
5 ,---- LPRINT(l) - LPRINT(ll) ----, 
6 .T .. T .. T .. T .. T .. T .. T .. T .. T .. T .. T. 
7 ,---- TITLE(l) - TITLE(ll) ----, 
8 'U' 'K' 'E' 'H' 'T' 'TRE' 'YRE' 'AMUT' 'YPLS' 'UPLS' 'DU1' 
9 ,---- RE2P(1) - RE2P(10) ----, 
10 200.0,300.0,400.0,500.0,750.0,1000.,1200.,1500.,2000.,1.E9 
11 '---LASTEP,JUMP1,JUMP2,IPP,JUMPT ---, 
12 8000, 8000, 200, 9001, 20 
13 ,--- KENT, HTC, ITM, LCPSOL ---' 
14 1 1 1 .F. 
15 ,--- TU, EIN, XUI, XUF, RE2F, RE2C ---' 
16 .0860, 10., .0004, .060, 50000., 125. 
17 '--- PRESS, VINF ---, 
18 2.920E5, 146 
19 ,--- IWTBC, PRT, TINF, TW, UHSL, WTOHF ---' 
20 1, .90, 150., 16., .00001, 16. 
21 '--- Mrr, DEL,DELT, GEXP, GX1, EKI, A1, DXFC, REPI, REPFC ---' 
22 88, 1. 89E-5, 3.9E-5, 2.3, .1, 2., 1.0, 1.00, 4.E4, 25. 
23 '---CU, C1, C2, SK, SE, CC, CVRM ---, 
24 .09, 1.44, 1.92, 1., 1.3, 0.00, 0.0 
25 '---OMEGA, FRAC, ENEXP, RC, KCRC, KCM, RFILE ---' 
26 7.16, .0008, 1.00, 1.E20, 1, 1, 'RCDBS' 

Listing of file "dbrdpin". This is the input data file for calculating 
Daniel's blade on the pressure side. (ReD conditions) 

1 ,---- FILNAME(l) - FILNAME(4) ----, 
2 'BLDATIN', 'BLDAT01', 'BLDAT02', 'BLDAT03' 
3 ,---- LSOLVE(l) - LSOLVE(4) ----, 
4 .T. .T. .T. .T. 
5 ,---- LPRINT(l) - LPRINT(11) ----, 
6 .T .. T .. T .. T .. T .. T .. T .. T .. T .. T .. T. 
7 ,---- TITLE(l) - TITLE(ll) ----, 
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8 'U' 'K' 'E' 'H' 'T' 'TRE' 'YRE' 'AMUT' 'YPLS' 'UPLS' 'DU1' 
9 ,---- RE2P(1) - RE2P(10) ----, 
10 200.0,300.0,400.0,500.0,750.0,1000.,1200.,1500.,2000.,1.E9 
11 '---LASTEP,JUMP1,JUMP2,IPP,JUMPT ---' 
12 8000, 8000, 200, 9001, 20 
13 ,--- KENT, HTC, ITM, LCPSOL ---' 
14 1 1 1 .F. 
15 ,--- TU, EIN, XUI, XUF, RE2F, RE2C ---' 
16 .3913, 10., .0030, .048, 50000., 125. 
17 ,--- PRESS, VINF ---, 
18 2.920E5, 146 
19 ,--- IWTBC, PRT, TINF, TW, UHSL, WTOHF ---, 
20 1, .90, 150., 16., .00001, 16. 
21 ,--- Ml, DEL,DELT, GEXP, GX1, EKI, AI, DXFC, REPI, REPFC ---' 
22 88, 1.111E-4, 1.111E-4, 2.3, .1, 2., 1.0, 1.00, 5.E3, 20. 
23 '---CU, C1, C2, SK, SE, CC, CVRM ---, 
24 .09, 1.44, 1.92, 1., 1.3, 0.20, 0.0 
25 '---OMEGA, FRAC, ENEXP, RC, KCRC, KCM, RFILE ---, 
26 7.65, .0008, 1.00, 1.E20, 1, 1, 'RCDBP' 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
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26 

Listing of file "dI45sin". This is the input data file for Hilton et al.'s 
C3X blade on the suction side. 

,---- FILNAME(l) - FILNAME(4) ----, 
'BLDATIN','BLDAT01','BLDAT02','BLDAT03' 
,---- LSOLVE(l) - LSOLVE(4) ----, 
.T .. T .. T .. T. 
,---- LPRINT(l) - LPRINT(ll) ----, 
.T. .T. .T. .T. .T. .T. .T. .T. .T •• T. .T. 
,---- TITLE (1) - TITLE (11) ----, 
'U' 'K' 'E' 'H' 'T' 'TRE' 'YRE' 'AMOT' 'YPLS' 'UPLS' 'DU1' 
,---- RE2P(1) - RE2P(10) ----, 
200.0,300.0,400.0,500.0,750.0,1000.,1200.,1500.,2000.,1.E9 
'---LASTEP,JUMP1,JUMP2,IPP,JUMPT ---' 
8000, 8000, 100, 9001, 10 
,--- KENT, HTC, ITM, LCPSOL ---' 
4 1 1 .F. 
,--- TU, EIN, XUI, XUF, RE2F, RE2C ---' 
.147, 20., .0040, .160, 50000., 125. 
,--- PRESS, VINF ---, 
4.00E5, 90. 
,--- IWTBC, PRT, TINF, TW, UHSL, WTOHF ---, 
1, .90, 515., 375., .00001, 375. 
,--- Ml, DEL,DELT, GEXP, GX1, EKI, Al, DXFC, REPI, REPFC 
99, 1.12E-4, 2.20E-4, 2.8, .1, 2., 1.0, 1.03, 4.E4, 25. 
'---CU, C1, C2, SK, SE, CC, CVRM, ---' 
.09,1.44,1.92,1.,1.3,0.00,0.00 
'---OMEGA, FRAC, ENEXP, RC, KCRC, KCM, RFILE ---' 
7.16, .0007, 1.00, 1.E20, 1, 0, 'RC3X145S' 

---' 
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Listing of file "d145pin". This is the input data file for Hilton et al.'s 
C3X blade on the pressure side. 

,---- FILNAME(l) - FILNAME(4) ----, 
'BLDATIN','BLDAT01','BLDAT02','BLDAT03' 
,---- LSOLVE(l) - LSOLVE(4) ----, 
.T .. T .. T .. T. 
,---- LPRINT(l) - LPRINT(ll) ----, 
.T .. T .. T .. T .. T .. T .. T .. T .. T .. T .. T. 
,---- TITLE(l) - TITLE(ll) ----, 
'U' 'K' 'E' 'H' 'T' 'TRE' 'YRE' 'AMUT' 'YPLS' 'UPLS' 'DU1' 
,---- RE2P(l) - RE2P(10) ----, 
200.0,300.0,400.0,500.0,750.0,1000.,1200.,1500.,2000.,1.E9 
'---LASTEP,JUMP1,JUMP2,IPP,JUMPT ---' 
8000, 8000, 100, 9001, 10 
'--- KENT, HTC, ITM, LCPSOL ---' 
1 1 1 .F. 
'--- TU, EIN, XUI, XUF, RE2F, RE2C ---' 
.1846, 10., .004, .100, 50000., 125. 
'--- PRESS, VINF ---' 
4.00E5, 90. 
'--- IWTBC, PRT, TINF, TW, UHSL, WTOHF ---, 
1, .90, 515., 375., .00001, 375. 
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'--- MI, DEL,DELT, GEXP, GX1, EKI, A1, DXFC, REPI, REPFC 
88, 1.37E-4, 1.8E-4, 2.3, .1, 2., 1.0, .50, 3.E4, 25. 
'---CU, C1, C2, SK, SE, CC, CVRM ---' 

---' 

.09, 1.44, 1.92, 1., 1.3, 0.00, O. 
'---OMEGA, FRAC, ENEXP, RC, KCRC, KCM, RFILE ---' 
6.03, .00075, 1.00, 1.E20, 1, 1, 'RC3X145P' 
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Appendix A2 

Variable property equations 

The equations used to functionally approximate the material properties 

of air are given below in eqs. (A2.1) through (A2.3). Figures A2-1 through 

A2-3 compare the approximations with the data given in Crawford and Kays 
[18]. 

Thennal Conductivity ( W f(m K) ); 

K== .0241926 + (7.3851 x 10-5) T - (3.203 x 10-8) T2 

+ (1.829 x 10-11) T3 

where T is in degrees C. 

Dynamic Viscosity (Pa Sec); 

Jl== 1.465 T1.5 / (110.4+ T) 

where T is expressed in K 

Specific Heat ( JfCkg K) ); 

(A2.1) 

(A2.2) 

Cp==1003.6 + .01155 T + (5.453 x 10-4) T2 - (4.2422 x 10-7) T3 

(A2.3) 
where T is expressed in C. 
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Figure A2-1. A comparison of the approximated thermal conductivity with 
experimental data [18]. 
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Figure A2-2. A comparison of the approximated dynamic viscosity with 
experimental data [18]. 
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Tabulated experimental data 
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Throughout chapter five, experimental data from a number of sources 

was used to evaluate the predictive capabilities of the computational model. 

Much of this data had to be extracted from figures through a digitization 

process. For the most part this was accomplished with the aid of a Tectronix 

4019 terminal tied a graphics tablet. The purpose of this appendix is to 

document the actual values which were found through this process and which 

are used in the various figures. 

Tabulation of the experimental data shown in Figure 5.5 and 5.6 as 
extracte4 from reference [72]. (Rued, flat plate) 

Rex Stanton No Rex Stanton No Rex Stanton No Rex Stanton No 
Grid~ _Grid 0 {irldl Grid 1 {irid2 Grid 2 Grid 3 {iridl 

8.708E+04 0.001799 9.095E+04 0.001720 8.931E+04 0.002302 8.774E+04 0.002614 
1.1 52E+05 0.001447 1.1 57E+05 0.001600 1.1 72E+05 0.002439 1.151E+05 0.003246 
1.466E+05 0.001427 1.475E+05 0.001493 1.491E+05 0.002784 1.450E+05 0.003307 
1.746E+05 0.001175 1.741E+05 0.001358 1.736E+05 0.003027 1.774E+05 0.003187 
2.003E+05 0.001185 2.069E+05 0.001655 2.034E+05 0.003016 1.995E+05 0.003057 
2.356E+05 0.001077 2.338E+05 0.001606 2.243E+05 0.002964 2.358E+05 0.002979 
2.933E+05 0.001135 2. 973E+05 0.002043 2.910E+05 0.002826 2.983E+05 0.002921 
3.247E+05 0.001069 3.215E+OS 0.002126 3.524E+05 0.002675 3.497E+05 0.002778 
3.548E+05 0.001134 3.522E+05 0.002270 3.833E+05 0.002681 5.682E+05 0.002581 
3.790E+05 0.001252 3.780E+05 0.002494 5.021E+05 0.002585 7.661E+05 0.002498 
4. 120E+05 0.001102 4. 145E+05 0.002531 9.063E+05 0.002284 8.917E+05 0.002398 
4.370E+05 0.001251 4.719E+05 0.002616 1.013E+06 0.002328 
4.693E+05 0.001331 4.957E+05 0.002672 Rex Stanton No 
4.997E+05 0.001445 5.482E+05 0.002529 Grid 4 Grid 4 
5.599E+05 0.001598 5.691E+05 0.002584 8. 524E+04 0.003022 
5.879E+05 0.001723 6.280E+05 0.002487 1. 122E+05 0.003404 
6. 118E+05 0.001872 6.787E+05 0.002416 1.398E+05 0.003343 
6.519E+05 0.001879 7.688E+05 0.002493 1.699E+05 0.003179 
6.818E+05 0.002039 7.858E+05 0.002328 1.981E+05 0.003127 
7.016E+05 0.002119 8.215E+05 0.002373 2.266E+05 0.003026 
7.681E+05 0.002174 8.917E+05 0.002396 2.844E+05 0.002928 
8.085E+05 0.002201 3. 126E+05 0.002865 
8.702E+05 0.002236 3.701E+05 0.002790 

3.957E+05 0.002767 
4.233E+05 0.002708 

16.374E+05 OJlO2570 
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Tabulation of the experimental data shown in Figures 5.8 and 5.9 as 
extracted from reference [8]. (Blair and Werle) 

Rex Stanton No Rex Stanton No Rex Stanton No 
Grid 1 Grid 1 Grid 2 Grid 2 Grid 3 G~ 

1.123E+OS 2.96SE-03 1.132E+OS 2.982E-03 1.124E+OS 4.179E-03 
l.379E+OS 2.272E-03 1.390E+OS 2.337E-03 1.381E+OS 3.374E-03 
1.63SE+OS 1.986E-03 1.649E+OS 2.073E-03 1.638E+OS 3.307E-03 
1.891E+OS 1.716E-03 1.907E+OS 1.823E-03 1.894E+OS 3.208E-03 
2.148E+OS 1.600E-03 2.16SE+OS 1.660E-03 2.1S1E+OS 3.2S9E-03 
2A04E+OS 1.489E-03 2A24E+OS 1.60SE-03 2A08E+OS 3. 180E-03 
2.660E+OS 1.380E-03 2.682E+OS l.S41E-03 2. 664E+OS 3.101E-03 
2.917E+OS 1.281E-03 2.940E+OS 1.592E-03 2.921E+OS 3.0S2E-03 
3.173E+OS 1.240E-03 3. 199E+OS l.S91E-03 3. 178E+OS 3.0S1E-03 
3A29E+OS 1.18SE-03 3AS7E+OS 1.732E-03 3A34E+OS 3.027E-03 
3.68SE+OS 1.142E-03 3.716E+OS 1.812E-03 3.691E+OS 2.9S8E-03 
4.198E+OS 1.l20E-03 4.232E+OS 2.106E-03 4.204E+OS 2.827E-03 
4.711E+OS 1.072E-03 4.749E+OS 2.3S9E-03 4.718E+OS 2.883E-03 
S.223E+OS 1.114E-03 S.266E+OS 2.511E-03 S.231E+OS 2.822E-03 
S.736E+OS 1.1 46E-03 S.783E+OS S.744E+OS 2.780E-03 
6.761E+OS l.397E-03 6.816E+OS 2.4S1E-03 6.771E+OS 2.S72E-03 
7.786E+OS 1.7S8E-03 7.8S0E+OS 2.421E-03 7.798E+OS 2.S64E-03 
8.811E+OS 2.008E-03 8.883E+OS 2.32SE-03 8.824E+OS 2.500E-03 
9.836E+OS 2.1 87E-03 9.917E+OS 2.243E-03 9.8S1E+OS 2 A02E-03 
l.086E+06 2.262E-03 l.09SE+06 2.240E-03 1.088E+06 2.401E-03 
1.189E+06 2.218E-03 1.198E+06 2.20SE-03 1.190E+06 2.3S7E-03 
1.291E+06 2.1 13E-03 1.302E+06 2. 134E-03 1.293E+06 2.282E-03 
1. 394E+06 2.079E-03 1.40SE+06 2.036E-03 1.396E+06 2.218E-03 
1.496E+06 2.038E-03 l.S08E+06 2.04SE-03 1.498E+06 2. 176E-03 
l.S99E+06 2.009E-03 1.612E+06 1.994E-03 1.60 1 E+06 2.181E-03 
1.701E+06 1.981E-03 l.71SE+06 1.9S9E-03 1.704E+06 2.088E-03 
1.804E+06 1.9S4E-03 1.819E+06 1.94SE-03 1.806E+06 2.068E-03 
l.906E+06 1.940E-03 1.922E+06 1.910E-03 1.909E+06 2.04SE-03 
2.009E+06 1.978E-03 2.02SE+06 1.9SSE-03 2.012E+06 2. 126E-03 
2.111E+06 1.898E-03 2. 129E+06 1.892E-03 2.1l4E+06 2.036E-03 
2.214E+06 1.887E-03 2.232E+06 1.8S8E-03 2.217E+06 2.028E-03 
2.368E+06 1.873E-03 2.387E+06 1.849E-03 2.371E+06 1.978E-03 
2.S21E+06 1.843E-03 2.S42E+06 1.796E-03 2.S2SE+06 1.924E-03 
2.67SE+06 1.831E-03 2.697E+06 1.794E-03 2.679E+06 1.940E-03 
2.829E+06 1.784E-03 2.8S2E+06 1.749E-03 2.833E+06 1.917E-03 
2.983E+06 1.788E-03 3.007E+06 1.738E-03 2.987E+06 1.904E-03 
3. 136E+06 1.766E-03 3. 1 62E+06 1.714E-03 3.141E+06 1.897E-03 
3.290E+06 1.754E-03 3.317E+06 1.71SE-03 3.29SE+06 1.872E-03 
3.444E+06 1.721E-03 3.472E+06 1.68SE-03 3.449E+06 1.8S6E-03 
3.S98E+06 1.696E-03 3.627E+06 1.681E-03 3.603E+06 1.837E-03 
3.7S2E+06 1.719E-03 3.782E+06 1.692E-03 3.7S7E+06 1.8S7E-03 
3.90SE+06 1.723E-03 3.937E+06 1.684E-03 3.911E+06 1.864E-03 
4.0S9E+06 1.701E-03 4.092E+06 1.678E-03 4.06SE+06 1.866E-03 
4.213E+06 1.703E-03 4.247E+06 1.686E-03 4.219E+06 1.87SE-03 
4.367E+06 1.689E-03 4.402E+06 1.660E-03 4.373E+06 1.930E-03 
4.S20E+06 1.697E-03 4.5S7E+06 1.66SE-03 4.527E+06 1.82SE-03 
4.674E+06 1.639E-03 4.712E+06 1.632E-03 4.681E+06 1.794E-03 
4.828E+06 L657E-03 4.867E+06 1.607E-03 4.83SE+06 1.79SE-03 
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Tabulation of the experimental data shown in Figure 5.14 as extracted 
from reference [9]. (Blair and Werle, lower K) 

X (m) Stanton No X(m) Stanton No X (m) Stanton No 
Grid 1 Grid 1 Grid 2 _Grid2 Grid 3 Grid 3 

0.0528 0.004648 0.0547 0.004833 0.0619 0.005462 
0.0680 0.003283 0.0646 0.003473 0.0785 0.004157 
0.0775 0.002813 0.0776 0.002962 0.0897 0.003768 
0.0941 0.002399 0.0951 0.002519 0.0996 0.003415 
0.1019 0.002223 0.1083 0.002340 0.1124 0.003311 
0.1116 0.002030 0.1162 0.002127 0.1410 0.003220 
0.1293 0.001891 0.1304 0.002020 0.1554 0.003161 
0.1425 0.001748 0.1481 0.001886 0.1869 0.003149 
0.1567 0.001640 0.1624 0.001831 0.2100 0.003297 
0.1700 0.001580 0.1694 0.001739 0.2372 0.003295 
0.1816 0.001534 0.1854 0.001655 0.2617 0.003325 
0.2039 0.001471 0.2086 0.001618 0.2904 0.003333 
0.2350 0.001333 0.2363 0.001579 0.3405 0.003152 
0.2591 0.001304 0.2856 0.001547 0.3878 0.003083 
0.2841 0.001247 0.3350 0.001639 0.4451 0.002960 
0.3340 0.001113 0.3891 0.001837 0.4909 0.002851 
0.3858 0.001051 0.4377 0.002039 0.5411 0.002876 
0.4340 0.000974 0.4872 0.002252 0.5927 0.002719 
0.4894 0.000926 0.5376 0.002421 0.6372 0.002726 
0.5386 0.000886 0.5878 0.002449 0.6973 0.002617 
0.5859 0.000832 0.6397 0.002411 0.7475 0.002506 
0.6431 0.000796 0.6864 0.002481 0.7948 0.002451 
0.6933 0.000785 0.7418 0.002401 0.8536 0.002434 
0.7399 0.000785 0.8403 0.002333 0.8966 0.002402 
0.7945 0.000782 0.8931 0.002297 0.9554 0.002342 
0.8429 0.000797 0.9468 0.002245 0.9999 0.002392 
0.8950 0.000844 0.9944 0.002282 1.0544 0.002325 
0.9498 0.000867 1.0480 0.002192 1.0974 0.002316 
0.9975 0.000953 1.1035 0.002148 1.1792 0.002285 
1.0478 0.001019 1.1752 0.002145 1.2495 0.002221 
1.0984 0.001174 1.2467 0.002040 1.3341 0.002178 
1.1728 0.001222 1.3274 0.002032 1.4029 0.002143 
1.2502 0.001369 1.4062 0.002029 
1.3266 0.001526 1.4805 0.002022 
1.4056 0.001605 
14183 I O~QQI671 
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Tabulation of the experimental data shown in Figure 5.15 as extracted 
from reference [9]. (Blair and Werle, higher K) 

X (m) Stanton No X (m) Stanton No 
--'irid 2 Grid 2 Grid 3 Grid 3 

0.05013 0.006165 0.05098 0.006061 
0.06645 0.004539 0.06463 0.004506 
0.08134 0.003904 0.07598 0.003932 
0.08276 0.003325 0.08914 0.003465 
0.10226 0.003010 0.10510 0.003198 
0.11461 0.002751 0.11575 0.003039 
0.12872 0.002472 0.12640 0.002887 
0.14212 0.002412 0.14157 0.002790 
0.15724 0.002281 0.15493 0.002677 
0.17235 0.002146 0.16921 0.002581 
0.20357 0.001975 0.18084 0.002544 
0.23658 0.001823 0.20243 0.002599 
0.26073 0.001757 0.23293 0.002580 
0.28484 0.001661 0.27610 0.002668 
0.33038 0.001511 0.32903 0.002654 
0.43505 0.001317 0.43231 0.002730 
0.48880 0.001267 0.48519 0.002650 
0.54442 0.001245 0.53553 0.002728 
0.59012 0.001208 0.58478 0.002629 
0.64486 0.001199 0.63950 0.002583 
0.74097 0.001246 0.73901 0.002477 
0.84343 0.001329 0.83945 0.002374 
0.89014 0.001341 0.89141 0.002300 
0.94945 0.001394 0.94524 0.002254 
0.99540 0.001498 0.99012 0.002276 
1.10315 0.001530 1.04206 0.002156 
1.17506 0.001586 1.09858 0.002129 
1.25133 0.001577 1.17569 0.002067 
1.32497 0.001619 1.24737 0.001972 
1.39939 0.001571 1.32540 0.001928 
1.47658 0.001574 1.40249 0.001858 

1.47958 0.OO17R2 
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Tabulation of the experimental data shown in Figure 5.18 as extracted 
from reference [72] (Rued) 

X(m) K x 1()6 ~~m{o K x 1()6 ~;ml2 K x 1()6 
Nr: 6 Nr.6 Nr.lO Nr. n 

0.0345 1.32 
0.0460 0.751 0.0460 1.894 0.0461 3.427 
0.0575 0.822 0.0575 2.132 0.0559 3.749 
0.0690 0.893 0.0690 2.395 0.0838 4.977 
0.0806 0.965 0.0806 2.704 0.0978 5.561 
0.0921 1.036 0.0921 2.99 0.1061 5.795 
0.1036 1.108 0.1036 3.157 0.1229 5.795 
0.1151 1.156 0.1151 3.24 0.1397 5.474 
0.1266 1.179 0.1266 3.252 0.1536 5.123 
0.1381 1.179 0.1381 3.205 0.1676 4.421 
0.1496 1.179 0.1496 2.943 0.1955 2.754 
0.1611 1.179 0.1611 2.609 0.2235 1.497 
0.1726 1.191 0.1726 2.275 0.2514 0.620 
0.1841 1.222 0.1841 1.93 0.2793 0.006 
0.1956 1.227 0.1956 1.561 0.2933 -0.140 
0.2071 1.227 0.2071 1.227 0.3073 -0.184 
0.2186 1.215 0.2186 0.929 0.3352 -0.184 
0.2301 1.203 0.2301 0.703 0.3631 -0.199 
0.2417 1.203 0.2417 0.512 0.3911 -0.228 
0.2532 1.203 0.2532 0.322 0.4190 -0.140 
0.2647 1.203 0.2647 0.155 
0.2762 1.203 0.2762 0.036 
0.2877 1.215 0.2877 -0.06 
0.2992 1.227 0.2992 -0.107 
0.3107 1.239 0.3107 -0.107 
0.3222 1.251 0.3222 -0.095 
0.3337 1.251 0.3337 -0.107 
0.3452 1.263 0.3452 -0.095 
0.3567 1.251 0.3567 -0.06 
0.3682 1.203 0.3682 -0.083 
0.3797 1.084 0.3797 -0.119 
0.4028 0.846 0.4028 -0.143 
0.4258 10.393 10.4258 -0.083 
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Tabulation of the experimental data shown in Figure 5.19 as extracted 
from reference [72]. (Rued) 

X (m) U (m/s) x (m) U (m/s) x (m) U (m/s) 
Nr. {; Nr.6 Nr.1O Nr.1O Nr .. 12 Nr.12 

0.0000 48.96 o.()()()() 47.50 
0.0345 49.91 0.0345 48.30 0.0279 26.47 
0.0460 49.91 0.0460 49.32 0.0461 27.94 
0.0575 51.10 0.0575 51.10 0.0559 28.68 
0.0690 51.58 0.0690 53.48 0.0838 32.35 
0.0806 52.29 0.0806 55.85 0.0978 35.00 
0.0921 53.48 0.0921 59.42 0.1061 36.77 
0.1036 54.66 0.1036 62.98 0.1229 41.18 
0.1151 55.85 0.1151 68.33 0.1397 46.32 
0.1266 57.04 0.1266 73.68 0.1536 51.47 
0.1381 58.23 0.1381 80.81 0.1676 57.35 
0.1496 59.66 0.1496 89.13 0.1955 70.59 
0.1611 61.08 0.1611 98.04 0.2235 80.15 
0.1726 62.75 0.1726 108.14 0.2514 85.88 
0.1841 64.17 0.1841 117.65 0.2793 86.77 
0.1956 65.95 0.1956 127.15 0.2933 86.62 
0.2071 67.74 0.2071 135.47 0.3073 85.59 
0.2186 69.76 0.2186 143.79 0.3352 84.56 
0.2301 72.49 0.2301 149.73 0.3631 83.82 
0.2417 74.39 0.2417 154.49 0.3911 82.35 
0.2532 76.65 0.2532 157.46 0.4190 80.88 
0.2647 80.45 0.2647 158.65 
0.2762 81.64 0.2762 159.24 
0.2877 84.37 0.2877 158.29 
0.2992 87.34 0.2992 157.10 
0.3107 90.43 0.3107 156.27 
0.3222 93.88 0.3222 155.20 
0.3337 98.63 0:3337 154.25 
0.3452 103.62 0.3452 153.30 
0.3567 109.33 0.3567 152.35 
0.3682 114.44 0.3682 152.11 
0.3797 119.43 0.3797 151.52 
0.4028 129.17 0.4028 149.73 
0.4258 136.07 0.4258 147.95 
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Tabulation of the experimental data shown in Figure 5.22 as extracted 
from reference [72]. (Rued, Nr. 6) 

X (m) Stanton No X (m) Stanton No X (m) Stanton No X (m) Stanton No 
. 4 

4.6703E-02 2.6780E-03 4.738SE-02 3.0880E-03 4.6773E-02 
6.2027E-02 2.6098E-03 6.1888E-02 3.1483E-03 6.1667E-02 
7.6423E-02 2.0976E-03 7.8558E-02 2.880SE-03 7.7127E-02 
9.1347E-02 1.9073E-03 9.2260E-02 2.8526E-03 9.1913E-02 
1.0654E-Ol 1.659SE-03 1.0744E-Ol 2.8080E-03 1.0657E-Ol 
1.2120E-Ol 1.5776E-03 1.2289E-Ol 2.8109E-03 1.2175E-Ol 
1.51 03E-0 1 1.6204E-03 1.5150E-O 1 2.8231E-03 I.S171E-0 1 
1.6663E-Ol 1.5861E-03 1.6856E-Ol 2.8127E-03 1.6784E-Ol 
1.8114E-Ol 1.6261E-03 1.8387E-01 2.8088E-03 1.8209E-Ol 
1.9754E-Ol 1.7342E-03 1.9663E-01 2.726SE-03 1.9646E-Ol 
2.1218E-Ol 1.7810E-03 2.1248E-Ol 2.7024E-03 2.1245E-Ol 
2.2751E-Ol 1.8448E-03 2.2632E-Ol 2.6711E-03 2.2615E-Ol 
2.4269E-Ol 1.9052E-03 2.4190E-Ol 2.6266E-03 2.4254E-Ol 
2.5842E-Ol 1.8946E-03 2.5789E-Ol 2.575SE-03 2.S812E-Ol 
2.8812E-Ol 2.0391E-03 2.8812E-Ol 2.4660E-03 2.8809E-Ol 
3.0398E-Ol 2.1064E-03 3.0343E-Ol 2.4553E-03 3.0380E-Ol 
3.1661E-Ol 2.0174E-03 3.1660E-Ol 2.3561E-03 3.1643E-Ol 
3.3382E-Ol 1.9698E-03 3.320SE-Ol 2.2303E-03 3.3242E-Ol 
3.4739E-Ol 2.1654E-03 3.4790E-Ol 2.3282E-03 3.4760E-Ol 
3.6272E-Ol 2.0802E-03 3.6214E-Ol 2.2326E-03 3.6184E-Ol 
3.9081E-Ol 2.0821E-03 3.9102E-Ol 2.2042E-03 3.9099E-Ol 
4.0653E-Ol 2.1901E-03 4.0687E-Ol 2.3054E-03 4.0657E-Ol 
4 4 

3.5883E-03 4.6547E-02 3.9678E-03 
3.8216E-03 6.l593E-02 4.0212E-03 
3.6279E-03 7.6926E-02 3.7427E-03 
3.4578E-03 9.2251E-02 3.6064E-03 
3.2572E-03 I.0664E-Ol 3.3921E-03 
3.168SE-03 1.2143E-Ol 3.2388E-03 
3.0284E-03 l.5127E-01 2.9593E-03 
2.9094E-03 1.6807E-Ol 2.9182E-03 
2.793SE-03 1.8272E-Ol 2.8123E-03 
2.7691E-03 1.9643E-Ol 2.7604E-03 
2.7009E-03 2.1228E-Ol 2.7326E-03 
2.6628E-03 2.2599E-Ol 2.7180E-03 
2.6320E-03 2.418SE-Ol 2.6530E-03 
2.587SE-03 2.5811E-Ol 2.6117E-03 
2.4270E-03 2.879SE-Ol 2.4712E-03 
2.4300E-03 3.0353E-Ol 2.4671E-03 
2.3679E-03 3.1657E-Ol 2.357SE-03 
2.2794E-03 3.3270E-Ol 2.3332E-03 
2.258SE-03 3.4788E-Ol 2.3561E-03 
2.2036E-03 3.6186E-Ol 2.2568E-03 
2.1718E-03 3.907SE-Ol 2.2008E-03 
2.2629E-03 4.0633E-Ol 2.2882E-03 

4 
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Tabulation of the experimental data shown in Figure 5.23 as extracted 
from reference [72]. (Rued, Nr. 10) 

X (m) Stanton No X (m) Stanton No X (m) Stanton No X (m) Stanton No 
. 4 ri 4 

4.7412E-02 2.8430E-03 4.7418E-02 3.2482E-03 4.8016E-02 3.8119E-03 4.8788E-02 4.105SE-03 
6.3253E-02 2.4796E-03 6.3419E-02 2.9590E-03 6.3112E-02 3.6208E-03 6.2844E-02 4.009IE-03 
7.8311E-02 2. I 80SE-03 7.8634E-02 2.7240E-03 7.8667E-02 3.2068E-03 7.8531E-02 3.5883E-03 
9.4048E-02 1.901SE-03 9.3862E-02 2.5261E-03 9.3 I 26E-02 3.1137E-03 9.386SE-02 3.3094E-03 
1.0790E-Ol 1.6126E-03 1.0922E-OI 2.3080E-03 1.0793E-OI 2.8652E-03 I.0840E-OI 3.0407E-03 
1.2366E-Ol 1.4079E-03 1.2347E-OI 2.0157E-03 1.2343E-OI 2.6673E-03 1.2442E-OI 2.8089E-03 
1.5377E-Ol 1.1608E-03 1.5463E-OI 2.1026E-03 1.534lE-Oi 2.4437E-03 1.5302E-01 2.4944E-03 
1.6904E-OI 1.094SE-03 1.6829E-OI 2.0062E-03 1.6799E-OI 2.3236E-03 1.6829E-01 2.418IE-03 
1.8351E-OI 1.0149E-03 1.8276E-OI 1.970SE-03 1.8247E-OI 2.2946E-03 1.8316E-OI 2.3317E-03 
1.9838E-Ol 9.6900E-04 1.9916E-OI 2.0459E-03 1.9830E-OI 2.2790E-03 1.9899E-01 2.326IE-03 
2. I 364E-O 1 8.5889E-04 2.1327E-OI 2.1182E-03 2.1333E-OI 2.2769E-03 2.1348E-OI 2.3343E-03 
2.2893E-OI 8.3993E-04 2.2832E-OI 2.160IE-03 2.283SE-Ol 2.268IE-03 2.2811E-OI 2.3256E-03 
2.4369E-OI 8.4468E-04 2.4498E-OI 2.2 I 86E-03 2.4460E-OI 2.2896E-03 2.45ISE-OI 2.3469E-03 
2.5873E-Ol 8.5952E-04 2.6297E-OI 2.2567E-03 2.5853E-OI 2.2336E-03 2.5883E-OI 2.3180E-03 
2.8763E-Ol IJ)04IE-03 2.883IE-OI 2. 1 992E-03 2.8831E-OI 2.2093E-03 2.882IE-OI 2.2938E-03 
3.0323E-OI 1.1 I 68E-03 3.0230E-OI 2.2952E-03 3.0282E-OI 2.2614E-03 3.0296E-OI 2.2749E-03 
3.177SE-OI 1.2060E-03 3.1850E-OI 2.1951E-03 3.190IE-OI 2.1208E-03 3.1849E-OI 2.168IE-03 
3.3336E-OI 1.3220E-03 3.3364E-OI 2. I 52SE-03 3.3349E-OI 2.0817E-03 3.3353E-OI 2.220IE-03 
3.472SE-OI 1.5430E-03 3.496SE-OI 2.2719E-03 3.4893E-OI 2.1201E-03 3.4856E-OI 2.21 13E-03 
3.6179E-Ol 1.6828E-03 3.6184E-OI 2.2027E-03 3.6100E-01 2.0914E-03 3.6088E-OI 2. I 556E-03 
3.931SE-OI 1.9588E-03 3.9188E-OI 2.16ISE-03 3.9199E-Ol 2.0872E-03 3.9164E-OI 2.2392E-03 
4.0717E-OI 2. 1 257E-03 4.0679E-OI 2. I 899E-03 4.069IE-OI 2.1493E-03 4.072IE-Ol 2.2506E-03 
4 4 4 4 - 4 - 4 4 
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Tabulation of the experimental data shown in Figure 5.24 as extracted 
from reference [72]. (Rued, Nr. 12) 

X(m) Stanton No X (m) Stanton No X(m) Stanton No X (m) Stanton No 
. 4 

4.7877E-02 3.3694E-03 4.8072E-02 3.4574E-03 4.7725E-02 3.7321E-03 4.7730E-02 4.3220E-03 
6.3058E-02 3.1751E-03 6.2591E-02 3.2769E-03 6.2067E-02 3.6839E-03 6.2842E-02 4.4159E-03 
7.7484E-02 2.6658E-03 7.7038E-02 2.7981E-03 7.8658E-02 3. 1977E-03 7.8937E-02 3.7943E-03 
9.3312E-02 2.2408E-03 9.3514E-02 2.3391E-03 9.3294E-02 2.7968E-03 9.3563E-02 3.3798E-03 
1.0748E-Ol 1.9418E-03 1.0771E-Ol 2.0807E-03 l.0699E-Ol 2.5894E-03 1.0714E-Ol 3.0097E-03 
1.2160E-Ol 1.7648E-03 1.2225E-Ol 1.9307E-03 1.2227E-Ol 2.3409E-03 1.2296E-Ol 2.7610E-03 
1.5353E-Ol 1.5080E-03 1.5321E-Ol 1.6301E-03 1.5253E-Ol 2.0066E-03 1.5289E-Ol 2.3320E-03 
1.6755E-Ol 1.3887E-03 1.6774E-Ol 1.4632E-03 1.6731E-Ol 1.8057E-03 1.6818E-Ol 2.1004E-03 
1.8320E-Ol 1.2858E-03 1.8355E-Ol 1.401OE-03 1.8282E-Ol 1.6995E-03 1.8261E-Ol 1.9809E-03 
1.9869E-Ol 1.1457E-03 1.9943E-Ol 1.2438E-03 1.9860E-Ol 1.5966E-03 1.9841E-Ol 1.9119E-03 
2. 1326E-Ol 1.0330E-03 2.1413E-Ol 1.1378E-03 2. 1292E-Ol 1.5111E-03 2.1263E-Ol 1.8773E-03 
2.2690E-Ol 9.4086E-04 2.2711E-Ol 1.0628E-03 2.2603E-Ol 1.4428E-03 2.2552E-Ol 1.8600E-03 
2.4235E-Ol 9.4315E-04 2.4283E-Ol 1.06 1 7E-03 2.4078E-Ol 1.5877E-03 2.4275E-Ol 2.1024E-03 
2.5853E-Ol 8.2996E-04 2.5849E-Ol 9.7913E-04 2.5833E-Ol 1.7080E-03 2.5810E-Ol 2.1590E-03 
2.8788E-Ol 7.3328E-04 2.8727E-Ol 1.0148E-03 2.8790E-Ol 2. 1164E-03 2.8761E-Ol 2.4725E-03 
3.0375E-Ol 7.59 1 8E-04 3.0347E-Ol 1.1254E-03 3.0282E-Ol 2.3189E-03 3.0312E-Ol 2.5697E-03 
3.1816E-Ol 8. 1262E-04 3.1819E-Ol 1.2364E-03 3.1891E-Ol 2.4668E-03 3.1831E-Ol 2.5788E-03 
3.3271E-Ol 8.6602E-04 3.3344E-Ol 1.3336E-03 3.3258E-Ol 2.4187E-03 3.3221E-Ol 2.6697E-03 
3.4716E-Ol 7.8045E-04 3.4797E-Ol 1.5633E-03 3.4814E-Ol 2.5837E-03 3.4751E-Ol 2.6449E-03 
3.6245E-Ol 7.3872E-04 3.6293E-Ol 1.6234E-03 3.6336E-Ol 2.4437E-03 3.6369E-Ol 2.5283E-03 
3.9285E-Ol 9.9091E-04 3.9224E-Ol 2.0454E-03 3.9254E-Ol 2.4860E-03 3.9231E-Ol 2.5369E-03 
4.0787E-Ol 1.1391E-03 4.0663E-Ol 2.2650E-03 4.0670E-Ol 2.5531E-03 4.0525E-Ol 2.60lOE-03 
4 4 - 4 4 
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Tabulation of the experimental data shown in Figure 5.27 and 5.28 as 
extracted from references [20] and [77] 

... Side Su~ 
S/L H S/L H S/L H S/L H 
ReD Wf(m*m K~ Re+ I Wf(m ... .m...K: ~Il I WLUn"'-.mKl Ret ~"'mKJ. 

3.59OE-02 1.056E+03 6.012E-02 1.272E+03 3.71OE-03 2.096E+03 5.868E-02 1. 296E+03 
5.525E-02 8.929E+02 9.896E-02 1.176E+03 1.071E-02 1.795E+03 1.191E-Ol 1.189E+03 
9.058E-02 7.220E+02 1.365E-Ol 1.169E+03 5. 126E-02 1.321E+03 1.819E-Ol 1.479E+03 
1.280E-Ol 6.838E+02 1.730E-Ol 1.212E+03 8.050E-02 1.005E+03 2.886E-Ol 2.285E+03 
1.687E-Ol 6.454E+02 2.045E-Ol 1.275E+03 7.887E-02 8.999E+02 3.165E-Ol 2.410E+03 
2.015E-Ol 6. 752E+02 2. 123E-Ol 9.598E+02 1.377E-Ol 7.845E+02 3.784E-Ol 2.321E+03 
2.018E-Ol 5.604E+02 2.507E-Ol 9.949E+02 1.847E-Ol 6.399E+02 4.268E-Ol 1.824E+03 
2.465E-Ol 5.923E+02 3.686E-Ol 1.238E+03 2.525E-Ol 5.522E+02 4.374E-Ol 2.377E+03 
3.634E-Ol 7.249E+02 4.267E-Ol 1.351E+03 3.194E-Ol 5.741E+02 4.766E-01 1.776E+03 
4. 180E-Ol 7.105E+02 6.463E-Ol I.644E+03 3.822E-Ol 6.077E+02 5.255E-Ol 1.848E+03 
6.230E-Ol 8.171E+02 7.146E-Ol 1.798E+03 4.302E-Ol 9.569E+02 5.743E-Ol 1.687E+03 
6.374E-Ol 8.646E+02 7.914E-Ol 1.940E+03 4.420E-Ol 6.633E+02 6.339E-Ol 1.860E+03 
7.057E-Ol 9.891E+02 8.579E-Ol 1.962E+03 4.781E-Ol 9.817E+02 8.364E-Ol 1.691E+03 
7.856E-Ol 1.049E+03 9.235E-Ol 1.787E+03 5.313E-Ol 1.068E+03 8.973E-Ol 1.643E+03 
8. 156E-Ol 9.769E+02 5.550E-Ol 9.876E+02 9.729E-Ol 1.658E+03 
8.497E-Ol 1.091E+03 5.780E-Ol 1.030E+03 1.031E+00 1.583E+03 
8.932E-Ol 1.098E+03 6.015E-Ol 1.049E+03 1.094E+OO 1.370E+03 
9. 167E-Ol 1.036E+03 6.405E-Ol 1.059E+03 1.222E+OO 1.243E+03 

6.417E-Ol 1.131E+03 
6.889E-Ol 1.199E+03 
8.388E-Ol 1.115E+03 
8.637E-Ol 1. 156E+03 
9.013E-Ol 1.223E+03 
9.249E-Ol 1.077E+03 
9.796E-Ol 1.195E+03 
9.984E-Ol 1.059E+03 
1.035E+OO 1.294E+03 
1.072E+00 1.015E+03 
1.096E+00 1.085E+03 
1.131E+OO 9.248E+02 
1. 220E+00 8.722E+02 
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Tabulation of the experimental velocity data around the blade of 
Daniels as extracted from references [20] and [77]. This data is 
compared with the functional approximations used in the calculations 
in the two figures that follow. 

S/L (Suet) UIUI S/L (suet) UIUI S/L (press UIUI 
ReD data ~~ Re+ 'data Re+ data dara data 
0.040 1.474 0.040 1.518 0.0 0.0 
0.086 1.970 0.086 1.927 0.172 0.279 
0.165 2.259 0.168 2.386 0.298 0.706 
0.250 2.262 0.248 2.337 0.397 0.828 
0.319 2.227 0.318 2.334 0.507 1.051 
0.397 2.379 0.397 2.469 0.624 1.307 
0.494 2.552 0.493 2.601 0.755 1.670 
0.608 2.675 0.609 2.768 0.894 2.271 
0.675 2.734 0.674 2.815 0.959 2.719 
0.747 2.672 0.746 2.712 0.0 0.0 
0.821 2.591 0.820 2.687 0.172 0.231 
0.899 2.590 0.898 2.657 0.298 0.560 
0.982 2.727 0.981 2.808 0.397 0.775 
1.071 2.802 1.068 2.852 0.505 0.985 
1.184 2.930 1.183 3.049 0.625 1.270 
1.272 2.680 1.270 2.809 0.755 1.723 

0.893 2.223 
0.960 2.686 

4~-------------------------------------' 

3 

- 2 § 
1 

0+---------~~--~~-----,--~--r-----4 

0.00 0.25 0.50 0.75 
S/L 

1.00 

a. Comparison with data on the suction side 

1.25 1.50 
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Appendix A4 
Code used to calculate starting location velocity profile parameters 

This is a FORTRAN listing of the simple code written to calculate the 
boundary layer thickness and acceleration factor for use at the initial starting 
location. This is the implementation of the method explained in section 2.3.3, 
equations (2.30) - (2.34) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

E-3960 

PROGRAM DELIN 
XO=O. 
SUM=O. 
PRINT*,'INPUT THE KINEMATIC VISCOSITY IN M*M/S' 
READ*,ANU 
PRINT*,'INPUT DX, AND THE NUMBER OF STEPS TO TAKE, ISTEPS' 
READ*,DX,ISTEPS 
PRINT*,'.' 
PRINT*, 'X (M) U (MIS) DU/DX (l/S) DEL2 RE2' 
UO=UMl. (XO) 
DO 10 I=1,ISTEPS 

X=XO+DX 
U1=UMl(X) 
DU=(U1-UO)/DX 
ETA=UO/U1 
B=(XO-ETA*X)/(1.-ETA) 
PHIO=XO-B 
PHIl=X-B 
A=(U1/PHIl) **5 
SUM=SUM+A/6.*(PHI1**6-PHIO**6) 
DEL2=SQRT(.45*ANU*SUM)/(U1**3) 
RE2=U1*DEL2/ANU 
WRITE (6, 99) X,U1,DU,DEL2,RE2 
XO=X 
UO=U1 

10 CONTINUE 
ALAM=DEL2*DEL2*DU/ANU 
PRINT*, 'LAMDA=' , ALAM 
PRINT*, 'INPUT THE SHAPE FACTOR S FROM TABLE 4. 8 IN WHITE' 
READ*,SF 
DEL99=0. 
DO 20 J=1,20 

DEL99=DEL2/SF*(2.+DEL99**2*DU/(6.*ANU)) 
PRINT*,J,DEL99 

20 CONTINUE 
OMEGA=DEL99*DEL99*DU/ANU 
PRINT*, 'OMEGA=' , OMEGA 

99 FORMAT(' ',F7.5,3X,F8.3,5X,F10.3,3X,1P2E12.3) 
STOP 
END 
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