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ABSTRACT

This study is concerned with development of a variational formulation and a
procedure for computational solution for the shape optimal design of a two-dimensional
linear elastic body, using a mixed finite element discretization. Shape optimal design is a
problem that has interested many researchers in the last fifteen years. The subject has
been surveyed in a number of review articles, see e.g. Haftka and Grandhi [11].

Zienkiewicz and Campbell [ see, e.g. 12], were among the first to approach this
problem using finite element methods. Subsequently this method has been applied widely
to problems in shape optimal design[see, €.g.2,3,13- 15] , but only with mixed success.
The finite element method based on the displacement formulation has two main
disadvantages, (1) the increase of finite element error that results from mesh distortion
during shape redesign, and (2) in some situations, a lack of sufficient precision in the
prediction of stresses and strains at the boundary and internal nodes. There are some
methods one can consider to overcome these difficulties. Some investigators have
applied the Boundary Element Method[see, e.g.16 - 18]. While the BEM has proved to be
very useful and looks promising in certain applications of shape optimal design, for
problems that require numerous evaluations of state variables in the domain (objective

function = maxye QF(u,€), for example) the BEM loses some of its advantages, also at the
current stage of development it lacks the generality provided by FEM in structural analysis.
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Within the FEM applications, the domain method [see, e.g. 19 ], where sensitivity

expressions are defined in terms of domain integrals rather than boundary mtegrals
(thereby avoiding the evaluation of state variables at the boundary ), provides for improved
accuracy in the numerical calculation of sensitivities. Also recently, Haber proposed an
Eulerian - Lagrangian formulation based on the mutual Reissner energy [see, e.g. 20],
where the shape optimization problem can be formulated in an arbitrary initial domain as a
means to overcome the difficulties inherited from shape redesign .

In this work another approach is considered. With the development of automatic
mesh generation and optimization techniques(see, €.g.7] the first of the cited disadvantages
of FEM is avoided. Mixed finite element methods(see, e.g.8] that may provide for
accurate computation of stresses and strains at the element nodes appears to be a natural
approach to resolve the other difficulty. These considerations are brought together in the
developments reported here, to demonstrate a more effective approach to the overall
treatment of shape optimal design.
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EXAMPLES OF SHAPE OPTIMIZATION PROBLEMS

For simplicity let us consider plane linearly elastic structures to find the optimal
shape using the mixed finite element formulation together with an automatic mesh
generation method based on the elliptic differential equations. Two model problems
shown in the figure are solved by the present method to demonstrate its effectiveness. Itis
noted that the fillet optimal shape design problem (Model B) is a standard one, but is one of
the most difficult problems because of sharp design change at the left edge of the design
boundary.
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DIFFICULTIES OF SHAPE OPTIMIZATION PROBLEMS

The difficulty of the shape optimization problem is large design changes lead to
significant changes of the corresponding finite element model of the structure during an
optimization process. If the final, that is, optimal shape is known, it is possible to set the
initial finite element model very close to the optimum. In this case, design change does not
imply large change of finite element models, and then it is possible to avoid distorted finite
elements which yield significant approximation errors and sometimes even negative values
of the Jacobian of the isoparametric transformation. It is natural that the optimal shape is
not known a priori, and then it is necessary to establish a shape optimization method to deal
with large design change. Finite element approximation errors are strongly dependent
upon the size and shape of finite elements. Errors are generally very large in regions
where stresses are rapidly varying. In most shape optimization problems, stresses are
varying rapidly at the end points of the design boundary where shape also changes rapidly.
Furthermore, if shape change is large, this almost automatically yields distortion of finite
elements, i.e. generation of unnecessary approximation errors. Figure (a) shows the
distribution of finite element approximation error in a similar problem to Model A, while
Figure (b) indicates a pathology in shape optimization.
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(a) Finite Element Approximation Error Distribution

(b) Oscillation of the Design Boundary ( by. C. Fleury )

1-355



FORMULATION OF THE DESIGN PROBLEM

The optimal shape design problem is defined by minimizing the maximum value of

a local criterion F(u,€) stated by the displacement u and the linearized strain tensor €,
subject to the state equations which represent equilibrium, constitutive relation, and

boundary conditions. Here D represents the design variable to describe the shape of the
design boundary.

Minp MaxxeQ F (u(x),e(x))

subject to
the resource constraint JdQ - A<O
Q

the equilibrium equations div +f=0, £=3T inQ
the strain - displacement relations = %( Vu+uV) inQ

the stress - strain relation X=E:g& inQ
the traction boundary condition nX=t onl}

the displacement boundary condition wu=0 onIy

1-356




MIXED FINITE ELEMENT FORMULATION

If the displacement method is applied in finite element analysis, strain and stress
components are computed at each Gaussian integration point to form element stiffness
matrices and load vectors. However, values of stress components must be obtained at the
nodes on the design boundary for the shape optimization problems. Thus an extrapolation
method must be introduced to obtain nodal values of stress components. For example, if
the least squares method is applied to obtain nodal values, it cannot provide sufficiently
accurate values in the region that stress gradient is high. Furthermore, it becomes very
inaccurate if distorted irregular finite elements exist in a finite element model. To avoid
such problems, we here apply a mixed formulation that computes nodal values of
displacements, strains, and stresses, directly without applying an extrapolation method.

0,
O

QUAD4
8 degrees of freedom per node {ux,uy,exx,8yy,7xy,cxx,6yy,0xy}T

4
Ux = Za=1 uxaNa(§,n), etc
4
Exx = Za=1 exxaNa(&M), etc
4
Oxx = Za=1 oxxaNa(€.n), etc

No&m) = 5 (Ea)(1+nan), 0=1,...4
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OPTIMALITY CONDITIONS

Transferring the original shape optimization problem to the upper-bound
formulation Minp B subject to the above constraints and the additional one F(u,e) - B <0

in Q, the Lagrange multiplier method implies the necessary condition for optimality as
shown in below.

Equilibrium Equations

[Gvvesvv)z -sv.nae - [ovear
Q Ty

+ f[Se:(IEe -+ 5T:{1§(Vu+uV) -€}1dQ =0, u=0 on Iy,
Q

Adjoint Problems
f{%(vaV):S): + l(ai);—ez oe + a;;%.Su)}dfz
Q

+ fe:(]E:St—: -dX) + T:(%(V8u+8uV) -3e)}dQ =0
Q

Optimality Condition due to Variation by Shape Change

[ Eie+ AyOm)dT =0, A( Ja@-A)=0, 0sA, [d@-A<0
T4 Q Q

Normality Condition

[MQ=1, MEme-B)=0, 0A, Fue)-p<0, inQ
3 , .
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SOLUTION PROCEDURE : OPTIMIZATION ALGORITHM

Solution procedure for the shape optimization is described in the following flow

chart.

Program Flow Chart
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MESH GENERATION METHOD : ELLIPTIC MESH GENERATOR

Ateach design iteration, a new finite element mesh is reconstructed using the elliptic
mesh generation method. In most of shape optimization practice, finite element meshes are
not regenerated, but are modified during the optimization process. Because of the method
applied for modification of the initial finite element mesh, unnecessary element distortion
is, in general, generated in each iteration. Element distortion can become so large it can
actually destroy accuracy of the finite element approximations, and then yield
unsatisfactory results in shape optimization. To avoid this difficulty, it is better to
regenerate a finite element mesh at each design stage despite of expense required. Here the
elliptic mesh generation method is used that generates almost orthogonal meshes using only
the data of the boundary of the domain occupied by a structure. If the boundary is
represented by a set of spline curves, it is possible to represent the design boundary by

several spline functions defined by the location 0¢, 0=1,...,0max, of the so-called control
points without loss of generality.

Elliptic Mesh Generation Method

V(DVE) =-P(En) and V(DVN)=-QEmn)

.0 .0 . .
where V = i+ Ja-}; (x,y) are the physical coordinates, and (§,n) are the
mesh coordinates.
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EXAMPLE : MODEL A

Model Problem A is to find the optimally shaped hole in a biaxially loaded linearly
elastic thin plate. Starting from a rectangular hole, the optimal shape of the hole is
obtained for the loading condition which yields an elliptic hole as the optimum. Applying
the symmetry condition, only a quarter part of the plate is discretized by 110 QUAD4
elements together with 11 control points on the design boundary for shape optimization.
The minimum admissible area of the hole prescribed by the user is restricted to A=0.16m2.
Iteration history and the optimal shape are given in the figure. The first three redesigns
rapidly reduce the maximum value of the von Mises equivalent stress from 6.6 to 3.3,
while the optimum obtained after 23 iterations is about 2.8.
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EXAMPLE : MODEL B

For finding the optimal shape for a linearly elastic fillet, the domain is discretized by
126 QUAD4 elements together with 14 control points on the design boundary. In this
case, the objective function F is the von Mises equivalent stress. Assuming that the
maximum allowable area of the fillet is restricted to A=1.135 x 10-2m2, an optimal shape is
obtained. The maximum value of the equivalent stress becomes very stable after 15 design
iterations, and its minimum is achieved at the 24th iteration. This means that optimization
and finite element remeshing is performed 24 times. First 10 iterations give rapid
reduction of the maximum value of the stress. The maximum von Mises stress in the final
fillet obtained is less than half of the maximum stress of the initial structure.
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FINAL REMARKS

The development presented introduces a general form of mixed formulation for the
optimal shape design problem, and the associated optimality conditions are easily obtained
without resorting to highly elaborate mathematical developments. Also the physical
significance of the adjoint problem comes out to be clearly defined with this formulation.

In the examples presented, an elliptical automatic mesh generator assuring an
orthogonal finite element mesh at the domain boundary [ see, e.g. 7] was used at each
shape redesign . Although this procedure might seem to be computationally a very
expensive procedure, actually it guarantees a good accuracy for the discrete model with an
increase on computational time of less than 5% of the actual time required for the finite
element analysis.

The numerical examples presented demonstrates the stability of the procedure.
Problems commonly encountered in shape optimization arising from the development of
instabilities in the design boundary definition were largely avoided. As is to be expected,
however, this improvement is accomplished at the expense of the increase in cost of
computation as compared to the simple displacement formulation.

HAP P TI
1. Mixed Finite Element Methods for Analysis

2. Automatic Remeshing Scheme by
Elliptic Mesh Generation Methods

3. Optimality Conditions are Obtained by the Upper Bound
Method

4. Demonstration by Numerical Examples
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