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I. INTRODUCTION 

A s  p a r t  of our program t o  develop the a n a l y t i c a l  and experimental 

t o o l s  required t o  evaluate  structureborne noise on p rope l l e r  driven 

a i rcraf t ,  tests were performed on a twin-engine Beechcraft Baron 58P 

a i r c r a f t  housed a t  NASA Langley Research Center. Two major t e s t s  were 

performed on t h i s  a i r c r a f t ,  one i n  Apri l  1986 and the  other  i n  November 

1986. In  addi t ion s h o r t e r  t e s t s  t o  ve r i fy  instrumentation and t e s t  

procedures were performed i n  December 1986, April  1987 and June 1987. 

A l l  t e s t s  were performed a t  NASA Langley Research Center; technicians 

and o the r  t echn ica l  a s s i s t ance  were provided by NASA for these tests. 

The o v e r a l l  object ives  of t he  t es t  program included the  following: 

t o  obtain measurements t o  support and guide the  development of a n a l y t i c a l  

models of t h e  structureborne noise path; and t o  evaluate  the e f f e c t s  of 

s t r u c t u r a l  parameters and path modifications on the noise  i n  t he  a i r c r a f t  

cabin. 

The Apri l  1986 t e s t s  were designed to help define the  s t r u c t u r e  through 

input  mobili ty and loss f a c t o r  measurements and t o  evaluate s t r u c t u r a l  

acoust ic  t r a n s f e r  functions (i.e.,  cabin sound pressure p e r  s t r u c t u r a l  e x c i t a t i o n  

force)  f o r  t h e  fuselage. 

T e s t s  performed i n  November 1986 w e r e  pr imari ly  designed t o  evaluate 

the  e f f e c t s  of changes i n  t h e  s t r u c t u r a l  path on the noise  f i e l d  i n  the  

cabin. Results of these l a t t e r  tests along w i t h  comparison with the  previous 

measurements are discussed i n  t h i s  report .  



11. TEST CONFIGURATION 

T e s t s  on the Beechcraft Baron were performed a t  NASA Langley Research 

Center i n  a semi-anechoic laboratory space. Acoustic absorption i n  the 

space was provided by approximately a dozen 32 square foot  panels of 4 inch 

thick f ibe rg la s s  b a t t i n g  posit ioned around the  a i r c r a f t .  In a l l  t e s t s  t he  

a i r c r a f t  fuselage and wing were supported by large truck inner  tubes t h a t  

provided v ib ra t ion  i s o l a t i o n  from the laboratory f loor .  The i n t e r i o r  of 

the a i r c r a f t  was f u l l y  trimmed with s e a t s  i n  place. 

The fuselage of t he  Beechcraft Baron 58P w a s  a new production u n i t  t h a t  

w a s  complete except f o r  instrumentation. The wings of the Baron obtained from 

a damaged a i r c r a f t  were incomplete, having n e i t h e r  f l a p s  nor i n t e r n a l  f u e l  l i n e s  

o r  f u e l  tank bladders. Damage i n  the form of wrinkling and loose r i v e t s  w a s  

found on seve ra l  port ions of the skin on each wing. A co r rec t  engine mount f o r  

the wing w a s  not obtained; however, a similar mount was modified t o  f i t  t he  b o l t  

locat ions on the wing. Engines were not present  on the t e s t  a i r c r a f t .  

The a i r c r a f t  w a s  s t r u c t u r a l l y  exci ted by means of a 4 ounce hammer 

instrumented with a PCB force gauge. Accelerations were measured using 

Bruel and Kiaer 4332 accelerometers and 2635 charge amplif iers ,  and 

c a l i b r a t i o n  w a s  performed using a GenRad type 155 7 accelerometer ca l ib ra to r .  

The i n t e r i o r  and e x t e r i o r  acoust ic  f i e l d s  of t h e  a i r c r a f t  were measured using 

Bruel and Kjaer 1/2 inch microphones and type 2209 sound l e v e l  meters. 

Cal ibrat ion of t h e  microphones w a s  performed by means of a GenRad type 1562 

microphone ca l ib ra to r .  

e 

The locat ions of the  accelerometers and microphones a re  indicated on 

Fig. 1. The sound l e v e l s  i n s ide  and outs ide the  cabin were monitored using 

s ing le  microphones (transducers 1 and 6,  r e spec t ive ly ) .  Location 1 is  over 

the  r i g h t  rear seat approximately 9 inches down from the  c e i l i n g  and 11 inches 

i n  from the r i g h t  rear window. Location 6 is approximately 1 2  inches above 

the  top of t h e  fuselage near  t h e  a x i a l  pos i t i on  of the i n t e r n a l  microphone 

(i.e.,  locat ion 1). The s t r u c t u r a l  response w a s  measured a t  several  locat ions.  

Location 52, the  outboard forward engine mount, w a s  used t o  measure the  dr ive 

po in t  response. The fore-and-aft ( i . e . ,  t h r u s t  d i r e c t i o n )  response of the 
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carry-through s t r u c t u r e  of the main wing spa r  i n  the fuselage w a s  measured 

a t  locat ion 106. The t h i r d  accelerometer ( 4 1 )  was attached ex te rna l ly  t o  

the fuselage and or iented outwardly. It w a s  a t tached an the  fuselage skin 

approximately 2 inches away from v e r t i c a l  and a x i a l  s t i f f e n e r s .  The 

accelerometer locat ions 52 and 4 1  as  well  as  the microphone locat ion 1 were 

a l s o  used i n  the  set  of t e s t s  performed during April  1986. 

Signals from t h e  transducers used i n  the t e s t s  were acquired and 

processed by a GenRad 2515 Computer aided t e s t  system. Data acquis i t ion 

w a s  t r i gge red  by the signal from the  force gauge on the hammer. A bandwidth 

of 1000 Hz w a s  used with a 2 Hz resolut ion f o r  the calculated frequency 

response functions.  Auto- and cross- spec t r a  of the responses ( i .e. ,  

accelerat ion and acoust ic  pressure)  r e l a t i v e  t o  the  force e x c i t a t i o n  

w e r e  calculated,  p r in t ed ,  and saved on disk. Transfer of t he  saved 

da ta  from the GenRad sys t em t o  a VAX 11/780 sys tem and then t o  a 

MicroVax system a t  NASA Langley permitted the  calculated response da t a  

t o  be wr i t t en  on a DEC TK50 tape cas se t t e .  In t h i s  form the  da t a  could be 

loaded and f u r t h e r  analyzed on the CAA MicroVax I1 computer. 
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111. RESULTS 

A. Data Presentat ion 

The frequency response data  processed with two Hertz resolut ion 

display s u b s t a n t i a l  va r i a t ions  with frequency due t o  system resonances 

and antiresonances. 

r e s u l t s ,  t he  data  a re  averaged over one-third octave bands. A comparison 

of the narrow-band and one-third octave band da ta  f o r  the i n t e r i o r  micro- 

phone and f o r  the fuselage accelerometer i s  given i n  Fig. 2a. 

A s  a means of simplifying the presentation of these 

While the broader bandwidth i s  useful  f o r  displaying global t rends 

i n  the data  more c l ea r ly ,  it hides the  e x t e n t  of the narrow band f luc tua t ions  

of the data.  One measure of these f luc tua t ions  i s  the standard deviation 

of the decibel  l e v e l s  within each one-third octave band. Results f o r  the 

da t a  of Fig. 2a a r e  shown i n  Fig. 2b. The r e l a t i v e l y  high standard 

deviat ion a t  low frequencies i s  due t o  i s o l a t e d  resonances. I n  the  

frequency range beixeen 100 and 500 H z ,  the  standard deviations of both 

t r a n s f e r  functions a re  approximately 5.6 dB which i s  the value obtained 

when the  frequency dependence of t h e  response has a Gaussian d i s t r ibu t ion .  

B. D a t a  I n t e g r i t y  

The i n t e g r i t y  of the da t a  taken during the  November t e s t s  has been 

evaluated i n  seve ra l  ways. The signal-to-noise r a t i o  ( S / N )  of the data  i s  

examined by sub t r ac t ing  the auto-spectrum of the noise from t h a t  of the 

s igna l  f o r  t he  various sensors,  t e s t  configurations,  and exc i t a t ion  locat ions.  

Of p a r t i c u l a r  i n t e r e s t  are t h e  accelerometers away from the  dr ive po in t  and 

the microphones. Although the  r e s u l t s  vary somewhat,several general  state- 

ments regarding the  S/N i n  one-third octave bands can be made. 

1. When the wing i s  connected t o  the fuselage but  not  mass loaded, 

t he  S/N of the fuselage accelerometers and microphones exceeds 10 dB throughout 

t he  frequency range above 40 Hz and general ly  exceeds 20  dB above 63 Hz. 

2 .  Mass loading the wing tends t o  reduce the S/N somewhat,the g r e a t e s t  

changes being found i n  the microphone s i g n a l s  when the  wing is exci ted along 

the spar. For example when po in t  53 (forward spa r  inboard of the engine) 
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i s  exc i ted  the  S/N of the  micmphone exceeds 10  dB zbove 63  Hz and 20  dB 

above 160 Hz. 

3. When the  wing i s  disconnected from the  fuselage,  the  i n t e r i o r  

cabin microphone S/N exceeds 10  dB above 62 Hz. Ratios of S/N exceeding 

20 dB are achieved above 125 Hz without mass loading; however, the  l eve l  

of S/N i s  never as high as  20 dB when the wing is  mass loaded. The da ta  

presented i n  the  f igures  i n  t h i s  repor t  have a minimum S / N  of 10  dB. Rather 

than s e t t i n g  a uniform low frequency l i m i t  f o r  a l l  r e s u l t s  t o  have a t  least  

10 dB S/N, the  da ta  shown on the  ind iv idua l  f igures  have been p l o t t e d  over 

the  m a x i m u m  frequency range permitted f o r  each set  of data. 

Because the t e s t i n g  i s  performed using broadband exc i t a t ion ,  an 

addi t iona l  requirement is imposed on the  data ,  namely high coherence between 

input  and output  signals. This i s  p a r t i c u l a r l y  important when rec iproc i ty  

between input  and output i s  invoked. Reciprocity general ly  requi res  l i n e a r i t y  

i n  the  t e s t  system, and i n  i t s  s implest  form means t h a t  response and exc i t a t ion  

locat ions may be interchanged without a l t e r i n g  the  t r a n s f e r  function, t h a t  i s  , 

H = y'/x=HyX,=y/x' 
Xy' 

where y i s  t h e  output,  x i s  the  input ,  and the  apostrophe denotes the  t r a n s f e r  

locat ion.  This equa l i ty  i s  only t rue  when the  output and input  a re  pe r fec t ly  

coherent, s ince  by de f in i t i on  the  ordinary coherence function is  given by 

where G is  the  cross-spectrum of the  input  and output s igna l s  and G and 

G are the respect ive auto-spectra. When defined i n  terms of the  cross- 

spectrum, the  direct and rec iproca l  t r a n s f e r  funct ions are 

Xy xx 

YY 

G 
=yx  

Hyx - G 
YY 
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By s u b s t i t u t i n g  these r e s u l t s  i n t o  the d e f i n i t i o n  of the coherence function, 

w e  see t h a t  r ec ip roc i ty  requires  t h a t  the coherence function be uni ty ,  t h a t  

i s ,  

In  the broadband t e s t i n g  performed attempts were made t o  obtain high 

coherence between a l l  s i g n a l  p a i r s  throughout the frequency range of 

i n t e r e s t .  As a p r a c t i c a l  matter however none of t he  t e s t s  r e su l t ed  i n  

t r a n s f e r  functions having unity coherence throughout the frequency range 

from 0 t o  1000 Hertz. . I n  some tests regions of low coherence were un- 

avoidable (e.g., r ec ip roca l  tests using t h e  acoust ic  source below 100 Hz) , 
and i n  general the coherence is low near s y s t e m  antiresonances. I n  broad 

terms however the coherence of most of t h e  t es t  da t a  is  0.90 o r  greater .  

Results of two independent tests performed within one hour of each 

o the r  f o r  t h e  same test  configuration showing the  one-third octave-band 

t r a n s f e r  function between the  i n t e r i o r  microphone and the engine mount 

drive-point accelerometer are given on Fig. 3 .  Although the frequency 

dependence of both curves i s  similar, l e v e l  differences reaching 3 dB a t  

some frequencies are found. 

Var i ab i l i t y  i n  the magnitude displayed on Fig. 3 i s  not  considered t o  be 

important f o r  the p re sen t  purposes; however, o the r  t e s t s  repeated a t  various 

t i m e s  during the  t es t  program give r e s u l t s  with somewhat g r e a t e r  differences.  

On occasion sequent ia l  tests on the a i r c r a f t  r e su l t ed  i n  t r a n s f e r  functions 

having similar frequency dependences bu t  being s h i f t e d  i n  amplitude by as much 

as 3-5 dB. Some of these d i f f e rences  a re  l i k e l y  due t o  va r i a t ions  i n  coherence 

among the tests. 

In  one repeated tes t  the a i rcraf t  configuration w a s  no t  changed; however, 

a d i f f e r e n t  t i p  w a s  used on the  instrumented hammer. Several  interchangeable 

t i p s  are avai lable  t o  the  hammer including s o f t  rubber and hard t e f lon .  

Although t h e  t o t a l  force imparted t o  the  s t r u c t u r e  i s  nominally the same €or  

each t i p ,  t h e  frequency spectrum of t h e  appl ied force va r i e s .  T e s t s  of t h e  

v a r i a b i l i t y  due t o  d i f f e r e n t  t i p s  w e r e  made using a f r e e l y  suspended m a s s  
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with attached accelerometer. The t r a n s f e r  function of applied force t o  

accelerat ion should be equal t o  the mass used i n  the t e s t .  This t e s t  was 

performed with both one and ten pound weights using the  GenRad 2515 

system t o  acquire and process the data. The v a r i a b i l i t y  among r e s u l t s  

obtained from s i n g l e  hammer impacts was as  high as 30 percent ( i . e .  , 
2 . 2  dB), while the v a r i a b i l i t y  w a s  under 20  percent ( i .e . ,  1.6 dB) when 

averaged over 5 impacts. 

During these mass l a w  tests, the re  w e r e  some impacts t h a t  caused an 

overload warning i n  the GenRad 2515 analyzer. I n  some of these cases the  

t r a n s f e r  function obtained from s ing le  impacts appeared t o  be v a l i d  ( i - e . ,  

within the  variance of t e s t s  without the overload warning). 

function derived from o the r  such impacts however w a s  s u b s t a n t i a l l y  d i f f e r e n t  

(e.g., 6 a). 
channels, t he  t r a n s f e r  functions from multiple (e.g., 10) impacts a r e  

averaged. Transfer functions averaged over this number of impacts w a s  found 

t o  be w e l l  defined and not  sub jec t  t o  s i g n i f i c a n t  change with more than 

10 impacts. I n  t h i s  mode of operation a warning message appears when a 

s p e c i f i c  impact t r i g g e r s  t he  overload condition; however, t h e  message 

disappears as soon as  a subsequent impact does no t  overload the system. 

Although the  i n t e n t  during t e s t i n g  w a s  t o  minimize conditions leading t o  

the overload warning, it i s  possible  t h a t  some of t he  variance i n  r e s u l t s  

obtained from repeated t e s t s  i s  due t o  s p e c i f i c  impacts t r i gge r ing  an overload 

condition. 

The t r a n s f e r  

During the  normal t e s t i n g  procedure involving several  data 

An independent tes t  of t h e  acoust ic  da t a  is obtained by comparison with 

a simple a n a l y t i c a l  model. Shown on Fig. 4 is t h e  difference between e x t e r i o r  

and i n t e r i o r  of sound pressure l e v e l s  of t h e  fuselage,  t h e  e x c i t a t i o n  being 

provided by a hammer impacting t h e  detached wing. I n  t h i s  f igure t h e  e x t e r i o r  

pressure is measured by the microphone on top of the fuselage near the locat ion 

of the i n t e r i o r  microphone. The l i n e  drawn through the  spectrum i s  the  low 

frequency transmission l o s s  (i.e.,  the mass law) f o r  random incidence through 

an i n f i n i t e  p l a t e  (Ref. 11, 
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TL = -17+15 log (p h f )  10 s 

where p, i s  the p l a t e  densi ty  i n  kg/m3 and h i s  the  p l a t e  thickness i n  m. 

The slope of t he  measurements i s  cons is ten t  with t h i s  model. Furthermore, 

the p l a t e  thickness in fe r r ed  from the  da ta  of 0 . 0 3 3  inches i s  reasonable 

f o r  the fuselage given the  presence of s t r i n g e r s  and frames on the 0.020 

inch th ick  skin.  

C. Comparison of Transfer Functions Measured by Reciprocal and 

Direct Methods 

I n i t i a l  measurements of t r a n s f e r  functions between cabin pressure 

and force appl ied t o  t h e  fuselage and wing were made using a rec iproca l  

technique. The volume acce lera t ion  of a speaker (0) located i n  the  cabin 

w a s  determined using e lec t ro-acous t ic  rec iproc i ty .  With t h i s  exc i t a t ion  

the  s t r u c t u r a l  acce le ra t ion  (E) a t  po in t s  on the  fuselage and wing w a s  

determined. 

s t ruc tura l -acous t ic  rec iproc i ty  then allows the  r a t i o  of s t r u c t u r a l  

acce le ra t ion  t o  volume acce lera t ion  between the  two po in t s  t o  be equated 

t o  t h e  cabin acous t ic  pressure p e r  s t r u c t u r a l  force exc i t a t ion  (see Ref. 2 )  

t h a t  i s  , 

Assuming sys t em l i n e a r i t y  and pe r fec t  s igna l  coherence, 

.. 
w' /o  = p'/F 

Direct  measurement of t he  t r a n s f e r  funct ion ( i . e . ,  measurement of p '  and 

F) w a s  made a t  severa l  po in t s  during t h e  i n i t i a l  se t  of tests. Narrow- 

band t r a n s f e r  functions between cabin loca t ions  and po in t s  on the fuselage 

were measured using both d i r e c t  and rec iproca l  approaches. 

t e s t i n g  made use of the d i r e c t  method exclusively.  

Subsequent 

I n  both t e s t i n g  methods s u f f i c i e n t  exc i t a t ion  amplitudes were maintained 

t o  provide adequate signal-to-noise r a t i o s  a t  the  response sensors (i. e. , 
grea te r  than 20 dB over most of  t he  frequency range of i n t e r e s t ) .  The 

rec iproca l  method has the  advantages of  permit t ing steady exc i t a t ion  and 

of allowing mul t i -d i rec t iona l  t r a n s f e r  funct ions t o  be e a s i l y  measured 

through o r i en ta t ion  of t he  s m a l l  accelerometers. 

however i s  the  need t o  measure three  separa te  t r a n s f e r  funct ions t o  determine 

Its primary disadvantage 
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one s t r u c t u r a l  acoust ic  t r a n s f e r  function ( i . e . ,  two t r a n s f e r  functions 

t o  c a l i b r a t e  the acoust ic  source i n  s i t u  and one t r a n s f e r  function involving 

the s t r u c t u r a l  acce le ra t ion ) .  In  view of the need f o r  high coherence between 

each of t h e  s i g n a l s  i n  each of the three t r a n s f e r  functions,  t h i s  disadvantage 

reduces i n  p r a c t i c e  the r e l i a b i l i t y  of t r a n s f e r  functions derived by reciprocal  

t e s t ing .  The d i r e c t  tes t  using the t r a n s i e n t  hammer exc i t a t ion  w a s  found 

t o  be a simple method f o r  obtaining the t r a n s f e r  function i n  a s i n g l e  

measurement. As discussed above however non-uniform hammer impacts 

may have influenced t h e  a b i l i t y  t o  achieve r e p e a t a b i l i t y  due t o  p e c u l i a r i t i e s  

i n  the s i g n a l  acqu i s i t i on  system. 

The one-third octave band t r a n s f e r  functions between the cabin pressure 

( loca t ion  1) and an e x c i t a t i o n  force a t  t h e  forward wing attachment b o l t  

( l oca t ion  1 2 )  measured using both reciprocal  and d i r e c t  methods are compared 

on Fig. Sa. These functions were measured during the  same test sequence. 

Above approximately 30 Hz reasonable agreement i s  obtained between these 

two results,  although based on low coherence below 100 Hz due t o  both 

acoust ic  and hammer source s t rengths ,  agreement i n  t h i s  range is  somewhat 

fo r tu i tous .  

Another comparison of t r a n s f e r  functions measured by both methods during 

the  same test  sequence is shown on Fig. 5b. In  t h i s  case the locat ion of 

the cabin pressure is the same; however, t h e  s t r u c t u r a l  locat ion (Point 22)  

is  on the s t i f f e n e d  wing skin near t h e  fuselage. The direct t r a n s f e r  function 

i s  the  RMS average of two-independent tests made sequent ia l ly  using d i f f e r e n t  

hammer t i p s .  

approximately 4 dB and may r e f l e c t  i n  p a r t  d i f f e rences  i n  s i g n a l  coherence. 

Focusing on the region above 100 Hz where both signal coherence and signal- 

to-noise r a t i o s  w e r e  high, t he re  is  somewhat less agreement between both 

tes t  r e s u l t s  than shown on t h e  previous f igure f o r  e x c i t a t i o n  of the fuselage. 

N o  convincing explanation has been found f o r  t he  somewhat poorer agreement 

obtained between direct and r ec ip roca l  r e s u l t s  using s t r u c t u r a l  locat ions 

on the  wing. 

A mean difference between the  two d i r e c t  t es t  r e s u l t s  i s  
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One possible  reasan f o r  disagreement between reciprocal  and d i r e c t  

measurements on the Baron i s  nonlinear behavior of the s t ruc tu re .  Several 

measurements of t r a n s f e r  mob i l i t i e s  on the wing a t  d i f f e r i n g  force amplitudes 

were made t o  examine t h i s  i s sue  (see Appendix A ) .  Force amplitudes were 

var ied by a f a c t o r  of approximately ten.  L i t t l e  change i n  the t r a n s f e r  

accelerance along the wing was found except f o r  regions near antiresonances 

where the signal-to-noise r a t i o  was enhanced a t  the higher impact level .  

Non-linear behavior i s  therefore  not  i nd ica t ed  as the reason f o r  the 

differences between d i r e c t  and reciprocal  measurements shown on Figs. 5a 

and 5b. 

Because of the low coherence associated with t h e  acoust ic  source 

c h a r a c t e r i s t i c s  below 100 Hz and the  existiince of regions of both l o w  

signal-to-noise and coherence i n  the o the r  two t r a n s f e r  functions required 

t o  make the  measurement, less confidence is  placed i n  the r e s u l t s  of the 

r ec ip roca l  t e s t i n g .  Furthermore, i n  t he  direct t e s t i n g  performed subsequent 

t o  the rec ip roca l  tests, more parameters were control led (e.g., b o l t  torque) .  

Results of t he  t e s t s  performed i n  November 1986 are therefore  used f o r  

comparison with ana lys i s  and f o r  drawing conclusions regarding structureborne 

transmission on this aircraft. 

D. Results: Standard Configuration 

In i ts  standard tes t  configuration the Beechcraft Baron with one 

at tached wing is v ib ra t ion  i s o l a t e d  from the f l o o r  of t he  building on t ruck 

inner  tubes. The four  wing b o l t s  are t ightened with a torque of 50 f t - l b  

( the standard configurat ion) ,  and measurements are made of t he  accelerat ion 

and i n t e r i o r  sound pressure a t  t h e  locat ions indicated on Fig. 1.. Excitat ion 

of the a i r c r a f t  by means of the instrumented hammer occurred throughout t h e  

tests a t  several loca t ions  a l s o  ind ica t ed  on Fig. 1. 

The r e s u l t i n g  cabin pressures  p e r  force applied t o  various locat ions on 

t h e  wing and fuselage are shown on Fig. 6a and 6b. With the  exception of 

t h e  frequency range near  50 Hz l i t t l e  difference is found i n  the  pressure 

when the force is  applied t o  the engine mount (point  52) or  t o  t h e  sk in  
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outboard of the engine mount (point  2 6 ) .  I t  should be noted t h a t  t e s t  

r e s u l t s  using po in t  26 have p e c u l i a r i t i e s  t h a t  appear t o  be associated 

with the  damaged ( i . e .  , wrinkled) nature of t he  skin i n  t h i s  area of t he  

wing. Subs tan t i a l ly  lower pressures  are obtained throughout t he  frequency 

range (and e spec ia l ly  below 125 Hz) when the force i s  applied a t  t he  

fuselage forward b o l t  locat ion (point  1 2 )  than when applied t o  t h e  engine 

mount. In  p a r t  t h i s  difference is  due t o  fundamental v ib ra t iona l  modes 

of the wing s t r u c t u r e  (see Appendix A) t h a t  a r e  exc i t ed  when the  engine 

mount i s  driven. The e f f e c t  of these resonances on the cabin pressure i s  

p a r t i c u l a r l y  evident  i n  the  low frequency peak a t  approximately 40 Hz. 

r e s u l t s  shown on Fig. 6b f o r  exc i t a t ions  of t he  forward wing spa r  inboard 

and outboard of t he  engine mount (points  5 3  and 54) are near ly  iden t i ca l .  

The somewhat higher l e v e l s  a t  po in t  22 compared with those of t h e  April  1986 

tests (shown on Fig. 5b) most l i k e l y  r e f l e c t  t h e  more closely control led 

b o l t  torque during the  November t e s t s .  

The 

The accelerat ion response a t  th ree  locat ions is  shown on Fig. 7a f o r  

an e x c i t a t i o n  a t  t he  engine mount. Compared with the drive-point response, 

t he  accelerat ion a t  t h e  fuselage sidewall  i s  down 30-40 dB above 100 Hz 

while t h a t  of t h e  highly s t i f f e n e d  main spa r  carry-through s t ruc ture  i s  

down an add i t iona l  10-20 dB i n  t he  same frequency range. The drive-point 

accelerance of t h e  engine mount i s  high a t  frequencies below 500 Hz compared 

with the  drive-point accelerance of t h e  fuselage a t  the b o l t  attachment 

po in t  (see Fig. 7b). A t  t h i s  p o i n t  t h e  fuselage s t r u c t u r e  behaves on average 

as a s t i f f n e s s  throughout t h e  frequency range above 80 Hz.  

E. Resu l t s :  Parameter S e n s i t i v i t y  

1. Wing Attachment Bolt  Torque 

When t he  wing is force exci ted,  contr ibut ions t o  the i n t e r i o r  

cabin pressure a r r i v e  v i a  t h e  structureborne path (i.e. , t he  sub jec t  of 

t he  test) as w e l l  as v i a  the flanking e x t e r i o r  path through the air and 

fuselage sidewall .  As a means of determining t h e  r e l a t i v e  magnitude of 

these two paths,  a basel ine t es t  with t h e  wing detached form t h e  fuselage 

w a s  performed. Both wing and fuselage were independently soft-mounted on 
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inner  tubes with approximately a foot  of l a t e r a l  distance separating the 

wing and fuselage mating surfaces.  The same exc i t a t ion  of t he  wing as  

used i n  a l l  o the r  t e s t s  was provided, namely, a hammer impulse t o  the 

engine rnount a t  po in t  52. The difference between the i n t e r i o r  and 

e x t e r i o r  pressures  measured with the wing attached and with the wing 

detached are  given on Fig. 8. The presence of t h e  fundamental wing 

resonances has a s u b s t a n t i a l  e f f e c t  on the i n t e r i o r  pressure a t  frequencies 

below 50 Hz (see Fig. 6) i n  the attached configuration. In  the frequency 

range above 80 Hz t he  difference i n  i n t e r i o r  pressure is approximately 

15 dF3 on average. 

This l e v e l  i s  taken t o  represent  t he  difference between structureborne 

and airborne flanking paths t o  the cabin i n t e r i o r  i n  the tests. Based on 

t h i s  r e s u l t ,  t h e  m a x i m u m  a l t e r a t i o n  i n  the structureborne path that can be 

measured from the  tests i s  somewhat l e s s  than 15 dB. Sta t ed  d i f f e r e n t l y ,  

s i n c e  the  detached wing is  p e r f e c t l y  i s o l a t e d  s t r u c t u r a l l y  from the  fuselage,  

the e f f ec t ivenss  o f  attachment compliance could only be examined u n t i l  t he  

i n t e r i o r  l e v e l  w a s  reduced t o  t h a t  of the airborne flanking path ( i . e . ,  a 

15 dB reduction a t  most). Further  reduction i n  the f lanking path would 

require  i s o l a t i o n  of t h e  v ib ra t ing  surface of t he  wing from the air. 

elegant  but  impract ical  means t o  accomplish t h i s  would be t o  t e s t  t he  

pressurized fuselage i n  a vacuum chamber. 

An 

The effect  of the torque on the  attachment b o l t s  i s  shown on Fig. 9. 

The basel ine f o r  this.comparison is  t h e  cabin pressure measured with the  

four b o l t s  i n  place and t ightened t o  a torque of 50 f t - l b .  The two o the r  

conditions are (1) the  addi t ion of the shear  t a b  b o l t  a t  50 f t - l b  and 

( 2 )  the  increase i n  torque of a l l  f i v e  b o l t s  t o  150 f t - lb .  The presence 

of the shear  t a b  b o l t  is  seen i n  the  r e su l t s  below 50 Hz; however, a t  

higher frequencies any e f f e c t  of t h i s  bol t  o r  of t h e  torque within t h i s  

range i s  neg l ig ib l e  ( i . e . ,  within the r e p e a t i b i l i t y  uncertainty of the  

tests). 
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2.  Mass of Simulated Wing Fuel 

Fuel tanks along the  leading edge and i n t e r i o r  of each of the  

Baron's wings have a 80 gallon capacity.  The weight of t h i s  fue l  exceeds 

t h a t  of t h e  wing being t e s t e d  by a f a c t o r  of 2.6. 

the  inf luence of t h e  f u e l  on the  i n t e r i o r  pressure were performed using 

lead  shot  bags and 5-10 pound blocks of sand wrapped i n  p l a s t i c  bags t o  

simulate the  mass f u e l  m a s s .  The t o t a l  weight added of 217  pounds approximately 

equals the  weight of t he  wing. I t  w a s  d i s t r ibu ted  evenly in s ide  t h e  leading 

edge of t he  inboard f u e l  tank,  t h i s  tank extending outboard from the  wing 

root  approximately 100 inches.  As i n  the  previous tes t ,  t he  l e v e l  of the  

airborne f lanking pa th  w a s  estimated by comparing the  r e s u l t s  of t e s t s  

performed with the  wing at tached t o  the  fuselage and with it t o t a l l y  detached. 

The difference i n  cabin pressure f o r  a force exc i t a t ion  of t he  engine mount 

i s  shown on Fig. 10. When compared with Fig. 8 these  r e s u l t s  give s l i g h t l y  

smaller d i f fe rences  (e.g. ,  2 aB) i n  the  frequency range above 150 Hz .  

Tests designed t o  evaluate  

The changes r e l a t i v e  t o  t h e  standard configurat ion (Figs.  6) i n  i n t e r i o r  

pressure f o r  various exc i t a t ion  loca t ions  due t o  the  presence of the f u e l  

m a s s  are shown on Figs.  11. Above 60 Hz the  presence of t he  mass reduces 

the  cabin pressure  l eve l s  by approximately 15 dB f o r  a l l  exc i t a t ion  loca t ions  

but  26 (wing skin outboard of engine mount). The reason f o r  t h i s  l a t t e r  

r e s u l t  i s  not  known; however, t h i s  loca t ion  i s  adjacent  t o  damaged wing skin.  

3. I n t e r i o r  Acoustic Volume Absorwtion 

Forces appl ied t o  the  wing are t r ans fe r r ed  t o  t h e  s t r u c t u r e  

of t he  fuselage through the  bol ted  connection. These loads i n  turn  e x c i t e  

v ibra t ions  i n  the  fuselage and an acous t ic  f i e l d  within the cabin. Sound 

r ad ia t ion  can be associated with both the  near f i e l d  of t he  v ib ra t iona l  

response of t h e  fuselage which would be loca l ized  near  t h e  wing connection 

and with the  propagating v ib ra t iona l  f i e l d  (i.e., t he  f a r  f i e l d )  t h a t  carries 

energy along t h e  fuselage.  As a d iagnos t ic  m e a n s  of  separa t ing  these  

contr ibut ions,  t he  forward por t ion  of t h e  cabin between the  wing connection 

and the  microphone loca t ion  (i.e., approximately a s i x  foot  length of the  

cabin forward of the  rear seats) w a s  f i l l e d  with acous t ica l ly  absorbing foam. 
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The i n t e n t  of t h i s  tes t  w a s  t o  p r e f e r e n t i a l l y  add acoust ic  absorption t o  

the path of the n e a r f i e l d  r ad ia t ion  from the s t r u c t u r a l  region near the 

wing in t e r f ace .  

The r e s u l t  of t h i s  t e s t  i s  shown on Fig. 1 2  as  the difference i n  the 

i n t e r i o r  pressure l e v e l  between the standard t e s t  configuration and t h a t  

having the foam inse r t ed .  In both configurations the wing i s  at tached t o  

the fuselage and the e x c i t a t i o n  locat ion i s  the engine mount. 

of the foam i s  found throughout the frequency range, although a s l i g h t l y  

increasing t rend i s  observed above the frequency noted by the arrow f o r  

which the s p a t i a l  ex t en t  of the added foam measures an acoust ic  wavelength. 

Increased performance i n  t h i s  frequency range would be expected f o r  an 

acoust ic  path through the foam a c t i n g  as a volume absorber; however, the 

s m a l l  e f f e c t  measured suggests t h a t  the sound induced by the v ib ra t iona l  

f i e l d  of t he  fuselage away from the  loca t ion  of t he  wing connection is an 

important contr ibutor  t o  the  i n t e r i o r  noise  f i e l d .  

L i t t l e  e f f e c t  
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I V .  CONCLUSIONS 

Analysis of the data obtained from the t e s t s  on the Beechcraft Baron 

leads t o  the following conclusions regarding the structureborne propagation 

path: 

1. I n  the  frequency range below 400 Hz s u b s t a n t i a l l y  higher cabin 

pressures  are obtained when a u n i t  force i s  applied t o  the  wing s t r u c t u r e  

than when applied t o  t h e  fuselage a t  a wing mounting b o l t  locat ion.  

Differences of up t o  30 dB are obtained i n  the frequency range corresponding 

t o  fundamental resonances of t he  wing (i.e.,  30-40 Hz). This suggests t h a t  

wing e x c i t a t i o n  provides a more e f f i c i e n t  coupling mechanism t o  the v i b r a t i o n a l  

modes of t he  fuselage than provided by a loca l i zed  force e x c i t a t i o n  of t he  

fuselage. 

2. When t h e  wing is  disconnected from t h e  fuselage,  t he  acoust ic  

pressure l e v e l  i n  t he  cabin i s  down approximately 15 dB below t h a t  obtained 

with t h e  wing attached. This is i n t e r p r e t e d  t o  mean t h a t  t h e  flanking path 

associated with r ad ia t ion  through the a i r  of wing v i b r a t i o n a l  energy is only 

down by 15 dB. 

The airborne path would be reduced by sidewall  treatment designed t o  

reduce acoust ic  transmission i n t o  the  cabin. The e f f e c t  of t h e  -15 dB 

flanking path i s  t o  increase the  d i f f i c u l t y  of experimentally ve r i fy ing  

means t o  reduce t h e  s t ructureborne path by more than this amount. For 

example measured noise  reduction due to  a compliant connection between the  

wing and fuselage would a t  b&sb Be 15 dB. Diagnosis of t h i s  f lanking path 

during structureborne noise  tests would be m o r e  d i f f i c u l t  f o r  a i r c r a f t  

having non-bolted wing connections. 

3. The addi t ion of 217 pounds of simulated f u e l  i n t o  t h e  leading edge 

tanks of t h e  wing reduces t h e  pressure i n  the  cabin p e r  force e x c i t a t i o n  by 

approximately 15 dB. It is  assumed t h a t  t he  psesence of this mass d i r e c t l y  

reduces t h e  force t ransmit ted t o  t h e  fuselage. It  follows t h a t  the contr i -  

bution t o  the cabin no i se  due t o  the  s t ructureborne pa th  increases  throughout 

a f l i g h t  as f u e l  is consumed. 
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4. Added acoust ic  absorption i n  the cabin volume only begins t o  be 

e f f ec t ive  i n  reducing cabin noise  when i ts  thickness i s  comparable with 

an acoust ic  wavelength. The r e l a t i v e l y  s m a l l  e f f e c t  of t he  volume 

absorption on the measured sound pressure suggests t h a t  the i n t e r i o r  

noise  i s  not dominated by r ad ia t ion  from the  s t r u c t u r a l  near f i e l d s  a t  

the i n t e r f a c e  of the fuselage with the  wing. 
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APPENDIX A 

MODAL TEST EVALUATION OF LOW FREQUENCY WING DYNAMICS 

A .  I INTRODUCTION 

The low frequency dynamics of t he  wing were evaluated during the 

weeks of November 17 ,  1986 and Apri l  2 ,  1987 using experimental modal 

analysis .  T e s t s  were performed on the right-hand wing i n  seve ra l  

configurations including (1) freely-supported with and without t he  

attached engine mount and ( 2 )  at tached t o  the  fuselage. Some comparison 

tests were a l s o  performed on the left-hand wing. 

The purpose of these tests w a s  t o  determine the  lower order  mode 

shapes and resonance frequencies of the wing when exc i t ed  i n  the l i f t  

d i r ec t ion .  This information provided guidance f o r  t he  development of the 

f i n i t e  element model of t he  wing. 

A . 1 1  PROCEDURE 

In  the freely-supported configuration the wing r e s t s  on several  

a i r - f i l l e d  rubber tubes d i s t r i b u t e d  along the  span of the wing. Exci ta t ion 

of t he  wing is by means of a 4 ounce hammer instrumented with a force gauge. 

Transfer accelerances are measured reciprocal ly  by exc i t ing  the  wing a t  

t en  locat ions along the  forward and a f t  spa r s  of t he  wing and measuring 

the  acce le ra t ion  response using a Bruel and Kjaer 4332 accelerometer located 

midway between po in t s  160 and 170 on the forward spa r  (see Fig. A - 1 ) .  This 

procedure makes use of t he  exis tence of r ec ip roc i ty  between e x c i t a t i o n  and 

response locat ions on the s t ruc tu re .  

t h i s  report ,  however, r ec ip roc i ty  requires  p e r f e c t  coherence between 

e x c i t a t i o n  and response s igna l s .  

i n  the t e s t ing .  

region of antiresonances. High coherence ( g r e a t e r  than 0.90) however is  

found i n  the  v i c i n i t y  of s t rong resonances, these regions being more important 

t o  the experimental determination of mode shapes. 

As discussed i n  Section 1 I I . B  of 

In  general  t h i s  requirement i s  not s a t i s f i e d  

Regions of low coherence e x i s t  a t  low frequency and i n  the 
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Data are  acquired and analyzed using the GenRad 2515 Computer Aided 

Test System. Because the emphasis i s  on the fundamental v ib ra t iona l  modes 

of the wing, the upper frequency l i m i t  i s  s e t  f o r  148 Hz. Resonances of 

the wing skin v ib ra t ing  between s t i f f e n e r s  begin t o  occur around 200 Hz 

and therefore  are  not present  i n  the data  co l l ec t ed  f o r  modal analysis.  

Data acquis i t ion uses a frequency bandwidth of 0.5 Hz. 

The t r a n s f e r  accelerance (i .e.  , the  accelerat ion normalized by the  

e x c i t a t i o n  force)  i s  computed f o r  each e x c i t a t i o n  locat ion.  Results of 

ten hammer impacts a r e  averaged t o  obtain each t r a n s f e r  function. 

Computation of resonance frequencies , mode shapes , and modal damping 

i s  performed by means of the  Modal-Plus software package of S t r u c t u r a l  

Dynamics Research Corporation. The algorithm used i n  t h i s  package f i t s  

the response function of a mult iple  degree-of-freedom l inea r  system t o  

the  measured t r a n s f e r  functions.  E f f e c t s  of non- l inea r i t i e s  o r  noise i n  

the  measurements can r e s u l t  i n  the computation of so-called " f i c t i c i o u s "  

s t r u c t u r a l  modes. One discr iminator  used i n  recognizing these modes i s  

the  modal l o s s  factor .  In  general  t h e  f i c t i c i o u s  modes have u n r e a l i s t i c a l l y  

high values of modal damping. Modes having l o s s  f a c t o r s  g r e a t e r  than 0.25 

are therefore  not  considered t o  be v a l i d  modes of the  s t r u c t u r e  and are 

eliminated from t h e  f i n a l  curve f i t  and d a t a  analysis .  

A.111 RESULTS 

A. Freely-Supported Wing 

Nine v i b r a t i o n a l  modes of the wing are computed i n  the frequency 

range below 148 Hz f o r  t he  freely-supported wing without the engine mount 

while ten modes are obtained i n  the  same frequency range when the engine 

mount is  attached. A representat ive comparison between a measured t r a n s f e r  

function and the curve f i t  t o  the. d a t a  computed by the  Modal-Plus software 

is shown on FTg. A-2. The f i t  of t h e  curve t o  the  measurements is found t o  

be b e s t  i n  those regions where t h e  measured response i s  highest  (i.e.,  near 

resonances). 
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The resonance frequencies and modal loss f ac to r s  f o r  the  freely-  

supported wing with and without the presence of the  engine mount a re  

l i s t e d  i n  Table A- I .  Corresponding mode shapes a re  shown i n  Appendices 

B and C. For both configurations the  fundamental bending and to r s iona l  

modes occur near  45 and 53 Hz, respect ively.  The inf luence of the  engine 

mount i s  more c l ea r ly  seen i n  the  r e s u l t s  above 100 Hz. 

B. Wing Attached t o  Fuselage 

I n  t h i s  configuration the  wing with at tached engine mount i s  

bol ted t o  the  fuselage using a torque of 50 foot-poimds. Both the  fuselage 

and the  t i p  of t he  wing are s o f t l y  supported using the a i r - f i l l e d  tubes. 

The fundamental resonance frequency of the  at tached wing ac t ing  as  a 

can t i l eve r  beam i s  found t o  be less than 10 Hz. Clear de f in i t i on  of the 

lower order  modes of t he  at tached wing i s  made d i f f i c u l t  because of both 

the  r e l a t i v e l y  l o w  exc i t a t ion  provided by the  hammer i n  t h i s  frequency 

range and the  0.5 Hz analyzer bandwidth. 

The resonance frequencies and modal l o s s  f ac to r s  determined €or t h i s  

configurat ion a re  l i s t e d  on T a b l e  A-11. 

configurat ion a re  given i n  Appendix D (with the  exception of modes 2 and 3 ) .  

The fundamental mode a t  3.8 Hz i s  pr imari ly  t h e  rigid-body ro t a t ion  of t he  

wing due t o  the e l a s t i c  support of the fuselage. Based on the s t i f f n e s s  of 

the  f r e e l y  supported wing, t he  t rue  cantilever mode of the  wing would occur 

a t  approximately 7 H2. 

Mode shapes obtained f o r  t h i s  

C. Parameter S e n s i t i v i t y  

1. Force Amplitude 

During the  t e s t i n g  performed i n  Apr i l  1987, s eve ra l  parameters 

were var ied t o  examine the  s e n s i t i v i t y  of  t h e  wing dynamics. 

are the  transfer funct ions between t h e  same loca t ions  on the  r i g h t  wing with 

d i f f e r e n t  force leve ls .  The force i n  the  r e s u l t s  of Fig. A-3b i s  approximately 

10 times that of t h e  results i n  Fig. A-3a, t h i s  increase being achieved through 

a harder hammer impact r a t h e r  than a change i n  hammer t i p .  

Shown on Fig. A-3 

This increase i n  
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exc i t a t ion  produces s u b s t a n t i a l l y  higher coherence between the exc i t a t ion  

and the response i n  the frequency range below 150 Hz. The increased force 

amplitude has l i t t l e  e f f e c t  on the measured t r a n s f e r  function. Although 

some differences between the two t r a n s f e r  functions are found i n  regions 

of low s i g n a l  (e.g. ,  near ant i resonances) ,  the responses near resonances 

a re  nearly i d e n t i c a l .  This suggests t h a t  within the range of forces 

applied t o  the wing, non-linear processes do no t  have a major e f f e c t  on 

the wing dynamics. 

2. Left-Hand and Right-Hand Wing Response 

The two wings of the Baron a i r c r a f t  a re  not  i d e n t i c a l  i n  design. 

Differences i n  the s t r u c t u r e s  e x i s t  because of instrumentation asymmetries 

as w e l l  as physical  access t o  the  a i r c r a f t ;  f o r  example, t h e  skin near t he  

inboard edge of the r i g h t  wing i s  s t i f f e n e d  t o  support  passenger weight 

while accessing the forward cabin door. Additionally,  t h e  e x t e n t  of damage 

on both wings is  d i f f e r e n t .  

Modal t e s t s  on both left-hand and right-hand wings were performed t o  

evaluate  the e f f e c t  of these d i f f e rences  on the  low frequency wing dynamics. 

Each wing w a s  freely-supported using a i r - f i l l e d  tubes d i s t r i b u t e d  along the  

wing. Neither wing had an engine mount attached, 

Results f o r  a t r a n s f e r  function t o  the  forward and r e a r  spa r s  of both 

wings are shown respect ively on Figs. A-4a and A-4b. The shapes of t he  

curves obtained f o r  each wing are similar and seve ra l  of t h e  resonance 

peaks occur a t  nearly the same frequency. Differences are found i n  the 

number of resonance peaks as w e l l  as  r e l a t i v e  amplitude. I n  general  however 

these r e s u l t s  i nd ica t e  t h a t  t he  s t r u c t u r a l  d i f f e rences  between the wings do 

not  r a d i c a l l y  a l t e r  t h e i r  low frequency dynamic response. 

3. Support Configuration 

During most of the t e s t i n g  of the Baron a i r c r a f t  t he  wings were 

supported on a i r - f i l l e d  tubes d i s t r i b u t e d  along the wing. The precise  

locat ion of these  tubes w a s  n e i t h e r  monitored nor adhered t o  during changes 

i n  configuration. While the pos i t i on  of t h e  s o f t  supports would not l i k e l y  
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be a major influence on the  response of the largel: structuralmembers of 

the  wing (e.g., spars  and r ibs ) , i t  w a s  recognized t h a t  the s t a t i c  tension 

i n  the  wing sk in  would be influenced by t h e  configuration of t he  supports. 

The s e n s i t i v i t y  of t he  wing dynamics t o  the  configuration of t h e  air-  

f i l l e d  tubes w a s  evaluated by performing a modal ana lys i s  on the  r igh t -  

hand wing with tubes posi t ioned only along t h e  

edges. I n  t h i s  configuration i n  which t h e  s ta t ic  weight of t he  wing i s  

only supported a t  the  edges, t he  sk in  along the  lower wing sur face  i s  

placed i n  tension while t h a t  on t h e  upper surface i s  placed i n  compression. 

r o o t  and t i p  wing 

Results of t h i s  configuration are compared on Figs. A-4a and A-4b with 

those of t he  more common tes t  configuration i n  which t h e  supporting tubes 

are d i s t r i b u t e d  along the  e n t i r e  wing surface.  The t w o  fundamental fre- 

quencies a t  45 Hz (bending) and a t  54 Hz ( to r s ion )  are minimally e f f ec t ed  

by the support configuration. Differences are found i n  t h e  loca t ion  of the 

higher o rde r  resonance peaks although the  o v e r a l l  character  of  t h e  two 

transfer functions remains similar. 

Based on t h i s  comparison w e  conclude t h a t  t h e  s t a t i c  support  con- 

f igu ra t ion  of the  wing has some inf luence on t h e  higher  o rde r  resonance 

frequencies of  t h e  wing. 

A- 5 



TABLE A - I  

Mode N o .  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

RESONANCE FREQUENCIES AND MODAL LOSS FACTORS OF 

THE FREELY-SUPPORTED WING 

Without Engine Mount 

Frequency Damping 

45.2 Hz 0.016 

53.6 Hz 0.042 

68.0 Hz 0.017 

74.7 Hz 0.032 

87.2 Hz 0.037 

103.8 Hz 0.019 

108.8 Hz 0.029 

120.6 H z  0.045 

132.0 Hz 0.027 

137.6 Hz 0.076 
- - 

With Engine Mount 

Frequency Damping 

45.5 Hz 

53.0 Hz 

66.7 Hz 

71.8 Hz 

84.8 Hz 

95.2 Hz 

103.0 H z  

104.0 Hz 

116.8 Hz 

118.6 Hz 

131.5 Hz 

142.9 Hz 

0.006 

0.017 

0.015 

0.045 

0.028 

0.051 

0.045 

0.028 

0.037 

0.022 

0.024 

0.046 
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TABLE A - I 1  

RESONANCE FREQUENCIES AND MODAL LOSS FACTORS OF 

THE WING WITH ENGINE MOUNT WHEN ATTACHED TO THE FUSELAGE 

Mode N o .  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Frequency 

3.8 Hz 

6.4 Hz 

11.6 Hz 

16.9 Hz 

21.6 Hz 

25.6 Hz 

31.7 Hz 

36.7 Hz 

37.7 Hz 

40.3 Hz 

49.0 Hz 

55.6 Hz 

57.2 Hz 

D a m p i n q  

0.23 

0.14 

0.13 

0.052 

0.017 

0.039 

0.037 

0.045 

0.031 

0.007 

0.056 

0.037 

0.041 
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Tip 

Fig. A - 1  Schematic diagram showing wing locat ions used i n  modal t e s t ing .  
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R e  1 a t i  ve 
Amplitude 

-i I 

F 
I 

1 1 
1 -1 

2.OBE+Bl I. 40E+132 
2. B0E+0 I I I I I I l l  

FREQRESP-BODE 
AZ:Analytical FRF lS5Y+ LB0V+ 
f31:FORCE HRMMER/fiCC+Z Frequency (Hz) 

Fig. A-2 Comparison of measured (-) and curve f i t  (++++) t r a n s f e r  

functions between exc i t a t ion  a t  loca t ion  100 and response a t  

loca t ion  155 f o r  t h e  f ree ly  supported wing w i t h  attached engine 

mount. 
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Fig. A - 3  comparison of transfer functions and coherence for the f r e e l y -  
supported r i g h t  wing obtained using a normal hammer impact (a) 
and an impact having 10 times greater force (b). 
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Frequency (Hz) 

Fig. A-4a Transfer accelerance between forward spar excitat ion and forward 

spar response. (-, right  wing with distributed support; 

---, l e f t  wing with distributed support; - - - , right  wing 

with edge support). 
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Frequency (Hz 1 

Fig. A-4b Transfer accelerance between forward spar exc i tat ion and a f t  
spar response. (-, r ight  wing with distributed support: 
-e-, l e f t  wing with distributed support; - - -, right  wing 
with edge support). 
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A P P E N D I X  B 

MODE SHAPES FOR WING WITHOUT E N G I N E  MOUNT WHEN 

FREELY-SUPPORTED 

i 



Mode 1: f=45.2 Hz 

Mode 2: f=53.6 Hz 
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.. ... ._ 

Mode 3: f=68.0 Hz 

Mode 4: f=74.7 Hz 
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Mode 5: f=87.2 Hz 

Mode 6: f=103.8 Hz 
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Mode 9: f=132.0 Hz 

Mode 10: f=137.6 Hz 
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A P P E N D I X  C 

MODE S H A P E S  FOR WING WITH ENGINE MOUNT WHEN FREELY-SUPPORTED 



M o d e  1: f=45.5 Hz 

M o d e  2: f=53.0 Hz 
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Mode 3: i=66.7 Hz 
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Mode 5: f=84.8 Hz 
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Mode 10: f=118.6 Hz 
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A P P E N D I X  D 

MODE S H A P E S *  FOR WING WITH E N G I N E  MOUNT WHEN 

BOLTED TO FUSELAGE 

* Shapes for  mode 2 and 3 not included. 



Mode 1: f = 3 . 8  Hz 
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-7 

:- 

Mode 5: f=21.5 Hz 

Mode 6: f=25.6 Hz 
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Mode 8: fi36.8 Hz 
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Mode 9: f=37.7 Hz 

Mode 10: f=40.3 Hz 
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