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ABSTRACT

Simple approximation of diffraction surface currents on a conducting half plane, due
to an jncoming plane wave, is obtained with a line current (inonofile) in complex space.
When compared to an approximating current at the edge, the diffraction pattern is seen to
improve by an order of magnitude for a minimal increase of computation effori. Thus, the
inconvenient: Fresnel integral functions can be avoided for quick calculations of diffracted ;
fields and the accuracy is good in other directions than along the half plane. The method
can be applied to general problems involving planar metal edges. =~
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INTRODUCTION

The problem of wave diffraction by a conducting half plane is a classical one, and its
first non-asymptotic solution was given by Sommerfeld in 1896 {11, The exact result for the
surface current induced on the half plane involvs Fresnel integral functions, which although
straightforward to conspute, are inconvenient for quick caleulations, Hence, there have heen
attempts to use approximate expressions for the surface eurrents, Since the surface current
has a singularity at the edge, it is most natural to try to use a line current at the edge as
an approximation for the diffraction current function (true current minus the geometrical
optics current), The accuracy is, however, not too good, In fact, since a line current
radiates omnidirectionally in the plane transverse iu the line, the radiation pattern of
the diffraction current is only poorly approximated, The common technique in improving
the accuracy of the GTD is to use nonphysical, so-called equivalent edge currents, which
depend on the point where the field is to be calculated, These techniques are compared in
the reference [2] but. it is out of scope to delve into any comparisons in this short study.
However, the equivalent currents can obviously be expressed in terms of a multifilar series
expression (soon to be defined), the first term of which is the monofile, or line ¢ srent,
The problem studied here is to find an optimal location for the monofile such that the next
term has the least effect, to make the approximation through the monofile most efficient.

The idea has its origin in the corresponding three-dimensional approximation of scatterers
by multipole series, (3], [4].

MNULTIFILAR EXPANSION OF SOURCES

In references [3), [4] the multipole expansion in complex space has been applied to
source approximation in three dimnensions, The theory can be modified to two dimensions
so that instead of pointlike multipoles, threadlike multifilar elements are used, The problem
need not be iruly two dimensional, since the multifilar currents need not be constant,

Let us consider a current source J(7) and its vector potential A(F) function

AlF) = /" G(D)J(#)dv'. (1)
Here, D is the distance function
D=V )
and it can be complex if # is given complex values. G/{D) is the Green function
3D |
G(D) = -5 (3)

If the source is almosi axial, i.e., of small extension in th - direction transverse to the
~ axis, and we ~r¢ interested in approximations giving good accuracy for the far field

calculation, the Green function can be approximated in two ..imensions (i,y) through the
Taylor expansion: :

G(D) = G(p) - p' - VG(p)+ '8 : VVG(p) ~ ... . (4)
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Here, G/(p) is also a function of z ~ ' . alihough not explicitly shown, When substituted
in (1), after partial integration, we have the expansion

o = =
A(7) = ,,/ (’io(;(p) +11VG(p) + %12 : VVG(p) + ) dz'. (5)

This is equivalent with the following two-dimensional multipole or multifile expansion for
the current function:

3(5) = To(2)6(p) + Ta(2) - V8(3) + LTol) : VVE(3) + .. (6)

The first (zeroth order) lerm corresponds to a monofilar current component, the next
one (first order term) a bifilar, the following one a guadrifilar component and so on. The
expansion (6) follows a similar pattern as given in reference |5} for three-dimensional sources
and it can be formally obtained directly by expanding the function §(p — ') within the
integral J(7) = J(p,z) = [¢6(p — p')J(p',z)dS'. In (5) and (6), the I;’s are polyadic
z-dependent current moments defined by

To = /S J(7)dS, ()
Ti= [[pitias, )
T = [ wic)as, (9)

and the series (6) could be further extended (3], [4]. If the axis of the multifile is moved
from the z axis to an axis going through a point p = &, instead of (6), we can write,
suppressing the > dependence,

J(p) = Po(@)b(p — a) + 1 (a) - Vé(p — &) + %7(«%) : VVE(p—a) + ..., (10)

with the new current moments

To(a) = /s 3(7)d$ = To, (11)
T\(a) = /S(ﬁ ~@)J(7)dS =1, - &Iy, (12)
T2(@) = /S (5= a)p ~ @)I(F)dS = TIp ~ Ty — 3 byae; + aalo. (13)

In (13), we have applied the notation Iy = ¥ b;¢;. For sources sufficiently small in the
transverse plane and of sufficiently slow variation, the series (5) for the radiation field
converges quickly and the first few terms will give a good approximation. To find a good
first- term approximation, we can try to move our multifilar current to a point @ which
makes the first term most dominating. This amounts to finding a point @ such that the

ﬁrs¥i moment in (12) is minimized. Following the method given in [3], [4]; assuming Py # 0,
we find
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= 14
T (14)

In this paper, we study currents that have constant polarization. Thus, the vector
potential will also be of the same constant polarization, Denoting this polarization by a
unit vector w, we can write for 19 = Igw dy = Iyw, ete, Thus, the rank of the current

moment. polyadies can be lowered by one, which makes the formulas appear simpler. For,
example, (14) can be written as

a = }"o. (14(1.)

Also, it is casy to see, that the choice (14a) not only minimizes the norm of (12), but

actually makes 11(a) = 0. Further, if the zeroth moment is zero, the following value for a

will render the first moment the most dominant one by making the second moment (13)
vanish:

. :1:2 -7; 71 T pe
A S5 o= e :*':::-"""12 1]][]. (]5)
INnE 2lh*

For a current depending on a single coordinate z;, (15) can be reduced to the simple
formula

Iy .
,-Q-E (15a)

If a planar surface current is replaced by the multifilar expansion, it can be easily seen
that the monofilar term gives the far field radiation correctly in the direction perpendicular
to the plane. By choosing the location of the monofile as given in (14a), it can further
be shown, that also the derivative of the radiation pattern becomes correct in the same
direction, To see this, we consider the far field in the direction of the unit vector #,, as
AP = pG(r)fliy ), with the radiation function

a=1

flig) = / LS ITOr IS (16)
.

If 71 is the unit vecior normal to the plane, obviously # -7 == 0 when # is on the plane, and
the origin lies on the plane. For a direction 7, differing from 7 only a little, the term in
the exponent in (16) is small and we may write

flir) = /(1 + jkiy - 7 )J(7)dS'

L™

e Ty + jhilp Ty = (1 + jhiey - a)g ~ e* 2L, (17)

The last. expression is equal to the radiation function due to a monofilar current at the
location p = @ Thus, it gives a two-term approximation for the radiation pattern at the

direction i, = 7, or both the radiation and its angular derivative correctly. The monofile
at p = 0 gives only the first term correctly.
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THE HALF-PLANE CURRENT PROBLEM

Let us consider first the simple case of plane wave coming perpendicularly (6 = 0 and
oy = 0..180°, Fig.1) 1o the edge with the field polarized so thaf either the electric or the
magnetic field is in the direction of the edge (2 direction), These two cases are sometimes
called | respectively, the E wave and the H wave, We prefer calling them the TM wave
and the TE wave, where "I denotes transverse 1o the direction of the edge (= coordinate),
For the induced surface current we can write

Ja(z) = Jgolz) 4 Jy(x), (18)

where the gecometrical optics surface current is (7 = iy)

Jgo(z) = 2iiy x H,elk*e0sbe, (19)

According to the reference (6, p.151], the diffraction current can be expressed for the TM
wave as

- - e“jvz
I (z) = ~23]M(2) (F_(v) ~ -—2;;) , (20)
and for the TE wave as
ITE(z) = —275;'3(1)\/%&(@). (21)

Here, F_(v) is a Fresnel integral function and with

v = y/kz(l + cosdyp), (22)

X "
F_(v ~/ I, (23)
it

and with positive branch for the square root.in (22). The Fresnel integral has the preperties

FL(0) = 2{% (24)

‘ —ip? oo .m
Fo(v)= jr (1 ; 22 (2m - 1)lj ) ' (25)
1

2jv (m = 1)l(20)Im

(25) converges quickly for large v values. It is easy to see that, for large v, the function
(25), and hence (21), decay as 1/\/z, whereas the function in brackets in (20) obeys the

law 1/z/z. Hence, the diffraction current in the TM case is more concentrated near the
edge.
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LINE CURRENT APPROXIMATIONS

For the approximation of the previous surface currents (20), (21), we have to ovnl—
nate Hw c'm'n'ni moments (7). (R}, which for the TM wave :uo of the form !0

" l"U Wl s [”’. and for the TE wave of the form 10 uavl(, ,]]
ity ]1 . Al'hv moments can be evaluated invoking the following integral expressions:
. ¢ pr “Ip
iogr (20)
0 v Vo'
O B m(2n - 1)!
/ e P e R ) (27)
Jo (n 1)12%n 1p’H b
o by :
¢ ey T, - -
T M .\{,‘(\/a - V), (28)
Jo p3/2 2

Thus, we can write for the monofilar approximation of the surface diffraction currents

Cny 4 - e
J({‘M(a') . ;}l&,‘Ig‘Mb(-T afTM)‘ (29)

JIP(w) 5 Auy > I ES (e - oTE), (30)

After a number of algebraie operations, the normalized current moments can be found
in the following form:

JTM VT sindyg (31)
213/9}\ V1 ¥ cosgp(l 4 /1t “cosdg)’ (
gy y ]

1'1[' e —‘-}" - tu ‘.;,’,‘;_‘ T 32
0 2k1 ¢ 1 ¢ cosgy (32)
TR "7’,” o sren . BEY
‘13 ‘]]x"' 1 (()su”[] Y 1 e cosaye
e 1 P v ] 4 ('(I‘W()
0E . AU 34
! ﬂn“‘(] 4 \11 i3 (‘0511’0) .

The guantities a7M and aT# can he solved from (31)-(34) and (14a).

with the result asin
the following expressions:

gt ] 1
GTM o

e (35
201 4 /1 + cosdyg (35

TE )2+ /11 cosdy (36)
QA 14 fﬁ cosdy :

It is scen that the best location for the monoﬁ]e is on the negative = axis At a distance
dependent on the angle ¢o of the incoming wave
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DIFFRACTION FIELDS

| } To see the effect of the shift of the monofile from the origin to the complex point, let
| us consider the diffracted far field and the far fields arising from the monofile located hotlk
& at the edge and in complex space. The far field arising from the exael diffraction curpent
) (20} ean be evaluated in the form

v ETM R ISR A [RSataty SN, I (37)
d '\/8«]7?’5/’ Vi .sin%’ +- cas%“
™

The line current I ' at the edge gives rise to the following field:

(ke 2@( sin%

.  owike 9 /m in,
EJM B /(g ), (38)

R 41’\7'8'3;1{;”7? &; -4 (‘08%0

which is seen to coincide with (37) at ¢ = 7/2, The line current at the poini z = a7M
defined by (35), radiates the field

Rt AR i i ik ikl i EAARBA kb e paia aaal .

ETM = _ ke 9. /n _‘_.sin%Q ezp 1 cosp .
‘ VBiTkp i —\}3 o+ cos%Q 2v2 ;}; + coa%‘!

By expanding both (37) and (39) at ¢ = % + 8, in power series in terms of §, which
is a small quantity, it can be seen that the first term is coincident with (38), and the i
second terms in (37) and (38) are equal. This shows that (39) approximates (37) more 3
closely near the radiation direction ¢ = 90°, Examples of direction patterns for these fields
can be seen in figures 2, 3 for the incidence angles ¢g = 60°,120°. It is scen that while
the current at the edge only gives omnidirectional radiation, the complex space monofile
gives quite good estimate for the diffraction patterns for angles about 45° — 180°, wheras
the diffraction field in the direction of the half plane is poorly approximated. From the
previous we conclude, that the complex space line current gives the diffraction pattern and
its derivative correctly for the angle 90°. It is obvious that this is the best that can be

done with an approximation by a single monofile, The value of aT™ could be chosen also
to meet some otﬁm' requirement, For example. we might have wanted the correct field in
the direction ¢ < 0. for which the coefficient of cnso within the exponent function of (39)
could have been accordingly chosen, In this case, however, it is obvious that the radiation
in the direction ¢ = 1809 would be greatly deteriorated.

Corresponding expressions for the TE field can be written, respectively,

(39)

et A o

2

: o ~Jkp 2cos ¢
ETE = aymH;, - (40
K d el VBimkp \ sin % B cos%‘l ' )

E'TE =@ 7)”‘ ) e"jk” \/§.§’ind»
§ d ¢ L2 lgj“i,p «\-/]-_;«}-cos%l ]

(41)

STE e~k V2sing V2 + co.s%‘l
1 , —_

= fignH;: ~——=== €xp —c0s¢ | . (42
o V8inkp —\% 4 co.s%q 2(715 + cas%q) )
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Vgain. after some algebra, it can be seen that the two-term approximations of (40} and
(12} comncide for 5o & dor small & and the first term equals that of (41). Figures 4,
S odemonstrate that the complex space monofile (actunally a current strip with transverse
current flow ) gives quite good approximation, but only for angles 6071807 This is
manly hecause a finite dipolar enrrent cannot produce a non null radiation field inits own
direction, whereas the ifinite original current can. The current strip at the edge gives now
wostnnsordal transverse pattern, and the complex location distorts that pattern to make
the patterny and s denvative mateh tha of the exact solution

GENERAL INCIDENCE

I'he approximation can be generalized to the plane wave incident obliquely to the eage
Fhe waves with TE and TM polarizations are still considered separately. If the angle with
the edge 15 8. the previous theory applies with the = dependence capl jhzcosty) added
to the currents and fields, and with k everywhere in the formulas replaced by ksin#ly, 16,
p 27 0 Thus, the normalized line currents (31), (32) and the locations of the monofiles
(351, (36) must he (ll\iclt't' 'l\ .ul:”h

I he imcoming l"h“r wave must be tlm‘mnpuw-al in two p‘mr waves of TE and TM
polarization. This can be done with the following expansion for the unit dyadic:

(k> (k> ug )k = (k » uz)

: = (43)
2k uz)*

Here, the first term does not affect when multiplying the fields, since k- F - Oand k- - 0
J r'E "I.'H

Multiplving (13) by < E gives us the decomposition / 0 Multiplying by

s T Ag
H we have the decomposition H =~ 0+ HTM o HTE Thus, any plane wave not incident
along the edge can be limumlmu'xf and the monofilar currents for each partial field cen be

Hamn
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FIGURE CAPTIONS ‘

Figure | Basic geometry of plane wave incidence on a conducting half plane, The angle
of incidence @p is between 0 and 1809 and the angle 8y between 0 and 907,

Figure 2 TM polarized diffraction field patierns for 8y = 0 and ¢¢ = 60°, Solid line:
exact diffraction field, equation (37), dot line: monofilar current at the edge, equation (38),
dashed line; monofilar current in complex space, equation (39). The quantity displayed is
actually the bracketed term in the field expressions,

Figure 3 Same as Fig.2, but with Jg = 120°,

o Bt s i aEn i i i A St 21

Figure 4 TE polarized diffraction field patterns for §y = 0 and ¢ = 60° Solid line;
exact diffraction field, equation (40), dot line: monofilar current at the edge, equation (41),
dashed line: monofilar current in complex space, equation (42)., The quantity displayed 1s
actually the bracketed tevm in the field expressions.

o bt e mi

Figure 5 Same as Fig.4, but with ¢¢ = 1207, g
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