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PREFACE

The Joint University Program for Air Transportation Research is a coordinated

set of three grants sponsored by NASA Langley Research Center and the Federal

Aviation Administration, one each with Massachusetts Institute of Technology

(NGL-22-009-640), Ohio University (NGR-36-009-017), and Princeton University

(NGL-31-001-252). The major goal of the Joint University Program is to develop an

air transportation system on a national basis. The continued development of the

national airspace system requires advanced technology from a variety of disciplines,

especially in the areas of computer sciencey guidance and control theory and prac-

tice, aircraft performance_ flight dynamics, and applied experimental psychology.
Solutions to such large-scale problems can come only when creative 9 well-trained

individuals identify and attempt to solve these problems by using a multidisciplinary
approach and when they communicate these results to decision makers. The Joint

University Program was created to provide new methods for interdisciplinary education
to develop research workers to solve these problems. The research grants that were

instituted in 1971 with the Massachusetts Institute of Technology (MIT), Ohio

University, and Princeton University build on the strengths of each institution to
satisfy aeronautical goals consistent with the interests of both NASA and the Federal
Aviation Administration (FAA).

An important feature of this program is the quarterly review held at each of the

schools and at a NASA or FAA facility. The 1986 review was held at the NASA Langley
Research Center9 Hampton9 Virginiay January 8 to 99 1987. At these reviews the

program participants 9 both graduate and undergraduate 9 have an opportunity to present
their research activities to their peers, to professors, and to invited guests from
government and industry.

This conference publication represents the seventh in a series of yearly summa-
ries of the program. (The 1985 summary appears in NASA CP-2453.) Most of the

material is the effort of the students supported by the research grants.

Three types of contributions are included in this publication. Completed works

are represented by full technical papers. Research previously in the open literature

(for example 9 theses or journal articles) is presented in an annotated bibliography.

Status reports of ongoing research are represented by copies of viewgraphs augmented
with a brief descriptive text.

Use of trade names of manufacturers in this report does not constitute an

official endorsement of such products or manufacturers 9 either expressed or implied 9
by the National Aeronautics and Space Administration or the Federal Aviation
Administration.

Frederick R. Morrell

NASA Langley Research Center
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INVESTIGATION OF AIR TRANSPORTATION TECHNOLOGY AT 
1,IASSACHUSETTS INSTITUTE OF TECHNOLOGY, 1986 

Robert W. Simpson 
Director, F l i g h t  Transportation Laboratory 

Cambridge, Massachusetts 

INTRODUCTION ------------ 
There were t h r e e  a r e a s  of r e sea rch  sponsored i n  t h e  F l i g h t  

T ranspor t a t i on  Laboratory a t  t h e  Massachusetts  I n s t i t u t e  of 
Technology under the Joint University Research Program during.1986. 
The f i r s t  was t h e  completion of e f f o r t s  i n v e s t i g a t i n g  t h e  p o s s i b i l i t y  
of us ing  Loran-C f o r  f i n a l  approach guidance t o  a  runway: t h e  second 
is a p re l imina ry  exp lo ra t ion  of t h e  a p p l i c a t i o n  of automated speech 
r ecogn i t i on  i n  Air  T r a f f i c  Control :  t h e  t h i r d  is a  con t inua t ion  of a  
s e r i e s  of r e sea rch  t o p i c s  i n t o  a i r c r a f t  i c i n g  problems. 

1. APPROACH GUIDANCE TO A RUNWAY USING LORAN-C .................................... 
This  work was aimed a t  explor ing  t h e  p o s s i b i l i t y  of f l y i n g  a  

pseudo-precis ion approach using an a l t ime te r - a ided  d i s p l a y  system t o  
prov ide  both  c ross - t rack  and v e r t i c a l  d e v i a t i o n s  from t h e  approach 
c e n t e r l i n e  and glide path. An experimental flight test system was 
designed f o r  Grumman Tiger  a i r c r a f t  using a  King Radio KEAO-346 
e l e c t r i c  a l t i m e t e r  t o  p rov ide  d a t a  on c u r r e n t  a l t i t u d e  and a  
Micrologic  ML-3000 Loran-C r e c e i v e r  t o  p rov ide  ( x ,  y ,  ho) d a t a  
r e l a t i v e  t o  t h e  runway touchdown p o i n t .  ( x  = l o n g i t u d i n a l  d i s t a n c e ,  
y  = d i s t a n c e  from c e n t e r l i n e ,  ho = nominal g l i d e  s l o p e  he igh t  a t  x . )  
An e l e c t r o n i c  d i s p l a y  system was b u i l t  t o  give a c ros s -po in t e r  
d i s p l a y  t o  t h e  p i l o t  g iven cont inuous i n p u t s  from t h e  Loran-C and t h e  
a l t i m e t e r .  Seve ra l  f l i g h t  t e s t s  were flown ( a t  Hanscom F i e l d ,  
Bedford, Mass.) ,  which un fo r tuna t e ly  s u f f e r e d  from a number of 
d e f i c i e n c i e s  due t o  . t rack ing  dynamics a r i s i n g  from t h e  slow update  
r a t e  from t h e  c u r r e n t  Loran-C r e c e i v e r .  However, approaches were 
s u c c e s s f u l l y  flown, and t h e  f e a s i b i l i t y  of using t h e  Loran-C d a t a  t o  
d e f i n e  t h e  v e r t i c a l  guidance was demonstrated.  Comparative d a t a  
between t h e  I L S  guidance and t h e  Loran-C p l u s  a l t i t u d e  guidance was 
ob ta ined .  A complete d e s c r i p t i o n  of t h i s  work is given i n  Reference 
1 of t h e  Annotated Bibl iography.  

For t h e  second yea r  i n  a  row, an MIT t h e s i s  based on Loran-C 
research won t h e  W.E. Jackson award for " b e s t  s t u d e n t  t h e s i s "  from 
t h e  Radio Technical  Commission f o r  Aeronaut ics .  This  y e a r ' s  t h e s i s  
was w r i t t e n  by Norry Dogan, and is a v a i l a b l e  a s  MIT F T ~  Report 86-3 
( r e f .  1). 



2 .  AUTOMATED SPEECH RECOGNITION I N  A I R  TRAFFIC CONTROL ................................................... 
The b a s i c  g o a l  of t h i s  work has  been t o  apply e x i s t i n g  ASR 

technology i n  an ATC environment i n  o rde r  t o  exp lo re  n o t  on ly  some of 
t h e  p o t e n t i a l  b e n e f i t s  and problems a r i s i n g  from t h e  p r a c t i c a l  
a p p l i c a t i o n  of ASRj bu t  a l s o  t h e  f e a t u r e s  and c a p a b i l i t i e s  d e s i r a b l e  
i n  an ASR system t o  be used i n  ATC (ref.  2 ) .  

This basic goal was accomplished by integrating a VOTAN VPC2000 
continuous speech recognition system into an existing ATC simulation 
to provide a means whereby verbal commands issued by controllers 
and directed towards aircraft could be entered into the computer 
d i r e c t l y ,  t he reby  e l imina t ing  t h e  need f o r  b l i p  d r i v e r s  o r  pseudo- 
p i l o t s .  

I n  g e n e r a l ,  t h e  p o t e n t i a l  b e n e f i t s  accrued through t h e  use  of 
ASR i n  an ATC environment involve  t h e  s i m p l i f i c a t i o n  of t h e  
control ler-computer  i n t e r f a c e  i n  an environment where t h e  primary 
means of communication is  v e r b a l  and t h e  u se  of and r e l i a n c e  on 
computers is  inc reas ing  s i g n i f i c a n t l y ,  both  i n  t h e  a i r  and on t h e  
ground. 

The major d i f f i c u l t i e s ,  however, l i e  predominantly i n  t h e  
handl ing of e r r o r s .  I n  o rde r  t o  address  t h e  problem of r ecogn i t i on  
e r r o r s ,  t h e  syntax f o r  ATC commands was incorpora ted  i n t o  a  Speech 
Input Parser in two basic ways. The first utilized a Finite - 

state Machine approach for syntax specification and required 
a c t i v e  i n t e r v e n t i o n  on t h e  p a r t  of t h e  u se r  i n  o r d e r  t o  c o r r e c t  any 
e r r o r s  once they  were de t ec t ed .  The second, however, used a p a t t e r n -  
matching approach t o  compare t h e  input  command t o  a  l is t  of a l lowable  
commands i n  o rde r  t o  determine t h e  b e s t  match, and could hypothes ize  
p o s s i b l e  c o r r e c t i o n s  i f  any e r r o r s  were d e t e c t e d ,  as long as  t h e s e  
d i d  no t  c r i t i c a l l y  a f f e c t  t h e  i n t e l l i g i b i l i t y  of t h e  commanded 
a c t  ion .  

The user-based techniques  developed f o r  c o r r e c t i o n  of 
r ecogn i t i on  e r r o r s  c o n s i s t e d  of u t i l i z i n g  t h e  v e r b a l  channel  i n  o rde r  
t o  e n t e r  s p e c i f i c  keywords t h a t  would e i t h e r  d e l e t e  t h e  l a s t  
recognized word or delete the entire recognized command so far. 
These were found to be lacking in terms of speed, flexibility 
and e a s e  of u se ,  and from t h e  f a c t  t h a t  e r r o r s  could even be made i n  
recognizing t h e s e  keywords. 

The automated techniques  developed t o  c o r r e c t  f o r  r ecogn i t i on  
e r r o r s  i n t e r n a l l y  were l i m i t e d  by t h e  c a p a b i l i t i e s  o f ,  and 
informat ion made a v a i l a b l e  by, t h e  VPC system. I n  many c a s e s ,  even 
though t h e y  were s u c c e s s f u l  i n  hypokhesizing t h e  l o c a t i o n  of t h e s e  
e r r o r s ,  t h e r e  was no c a p a b i l i t y  t o  reanalyze the data and validate 
t h e s e  hypotheses.  A s  such,  t h e s e  automated techniques  were more 
proof of concept v e h i c l e s  t han  implementable s t r a t e g i e s  ( a t  l e a s t  
wi th  t h e  c u r r e n t  c o n f i g u r a t i o n  of t h e  VPC). 



The major  drawbacks o f  t h e  VPC sys tem were i ts  s e n s i t i v i t y  t o  
v a r i a t i o n s  i n  a r t i c u l a t i o n  ( c o - a r t i c u l a t i o n ,  i n t o n a t i o n )  and i ts  
i n a b i l i t y  t o  rewind d a t a  i n  o r d e r  t o  reexamine sections o f  speech 
d a t a .  The former  is f o r  t h e  most p a r t  i n h e r e n t  i n  t h e  p a r t i c u l a r  
r e c o g n i t i o n  a l g o r i t h m  and t e c h n i q u e  being used and c o u l d  n o t  r e a d i l y  
b e  changed.  The l a t t e r ,  however, is a  r e s u l t  o f  t h e  a c t u a l  packaging 
o f  t h e  s o f t w a r e .  T h i s  problem h a s  been a d d r e s s e d  w i t h  a  new s o f t w a r e  
package  ( a  l i b r a r y  o f  u s e r - c a l l a b l e  C-language s u b r o u t i n e s  t o  c o n t r o l  
t h e  r e c o g n i t i o n  f u n c t i o n s )  r e c e n t l y  made a v a i l a b l e .  There  a r e ,  
however, s t i l l  some l i m i t a t i o n s  i n  t h e  c a p a b i l i t y  o f  t h e  VPC t h a t  
have n o t  been a d d r e s s e d .  I n  p a r t i c u l a r ,  t h e  i n a b i l i t y  t o  o b t a i n  a  
r a n k i n g ,  i n c l u d i n g  s c o r e s ,  o f  how w e l l  each  o f  t h e  words i n  t h e  
a c t i v e  vocabu la ry  matched t h e  c u r r e n t  i n p u t ,  as w e l l  a s  a  p o i n t e r  t o  
t h e  l o c a t i o n  i n  t h e  speech  d a t a  where each  o f  t h e s e  words ends  and 
t h e  n e x t  word would t h e r e f o r e  beg in .  

T h i s  r e s e a r c h  w i l l  b e  c o n t i n u i n g  i n  o r d e r  t o  deve lop  a h i g h l y  
r e l i a b l e  method o f  u s i n g  v o i c e  t o  communicate t o  a n  ATC s i m u l a t i o n  o r  
a f u t u r e  automated ATC system. 

3 .  AIRCRAFT I C I N G  RESEARCH .................... 
The a i r c r a f t  i c i n g  e f f o r t  o v e r  t h e  p a s t  y e a r  h a s  c o n c e n t r a t e d  on 

u t i l i z i n g  u l t r a s o n i c  ice a c c r e t i o n  measurement t e c h n i q u e s  i n  wind 
t u n n e l  and f l i g h t  t es t s  t o  b e t t e r  unders tand  t h e  i c e  a c c r e t i o n  
p r o c e s s ,  p a r t i c u l a r l y  i n  t h e  g l a z e  ( w e t )  ice regime. A p p l i c a t i o n  of  
t h e  u l t r a s o n i c  t e c h n i q u e s  h a s  l e d  t o  p r e v i o u s l y  u n r e a l i z a b l e  
measurements of  h e a t  t r a n s f e r  from ice s u r f a c e s  d u r i n g  a c c r e t i o n .  
These  measurements have i d e n t i f i e d  fundamenta l  d i f f e r e n c e s  i n  t h e  
h e a t  transfer and resulting ice growth, between icing wind tunnel 
and f l i g h t  i c i n g  c o n d i t i o n s .  These d i f f e r e n c e s  appear  t o  b e  due t o  
r e l a t i v e l y  h i g h  ambient  t u r b u l e n c e  l e v e l s  i n  ground i c i n g  t e s t  
f a c i l i t i e s ,  which t e n d  t o  i n c r e a s e  t h e  c o n v e c t i v e  h e a t  t r a n s f e r  from 
t h e  i c i n g  s u r f a c e .  

An a r r a y  o f  u l t r a s o n i c  t r a n s d u c e r s  h a s  a l s o  been f lown on t h e  
l e a d i n g  edge o f  a  wing c u f f  mounted on t h e  NASA I c i n g  Research  
A i r c r a f t  (Twin O t t e r ) .  The u l t r a s o n i c  a r r a y  p rov ided  a  un ique  r e c o r d  
o f  t h e  t empora l  and s p a t i a l  behav io r  of  t h e  ice a c c r e t i o n s .  T h i s  is 
i m p o r t a n t  t o  i c e  a c c r e t i o n  modeling e f f o r t s ,  which r e l y  on time- 
i t e r a t i v e  t e c h n i q u e s  t o  g e n e r a t e  t h e  p r e d i c t e d  i c e  a c c r e t i o n .  I n  
a d d i t i o n ,  p l a n s  e x i s t  t o  t e s t  t h e  ar ray-equipped wing c u f f  i n  t h e  
I c i n g  Research  Tunnel t o  p r o v i d e  a  d i r e c t  comparison between f l i g h t ,  
wind t u n n e l ,  and a n a l y t i c a l  a i r c r a f t  i c i n g  t e s t  t e c h n i q u e s .  Two 
r e c e n t  p a p e r s  d e s c r i b i n g  t h i s  work i n  more d e t a i l  a re  appended t o  
t h i s  r e p o r t  ( r e f s .  3 and 4 . 

The f u t u r e  e f f o r t s  i n  t h i s  a r e a  w i l l  c o n c e n t r a t e  on t h e  smal l -  
s c a l e  p h y s i c s  which c o n t r o l  t h e  s u r f a c e  roughness ,  and t h e  r e s u l t i n g  
c o n v e c t i v e  h e a t  t r a n s f e r  from t h e  ice s u r f a c e .  T h i s  a r e a  h a s  been 
c l e a r l y  i d e n t i f i e d  a s  t h e  pr ime r e g i o n  o f  u n c e r t a i n t y  i n  t h e  c u r r e n t  
u n d e r s t a n d i n g  of  t h e  ice  a c c r e t i o n  p r o c e s s .  The e f f o r t  w i l l  combine 
a n a l y s i s  and focused  exper iments  t o  i d e n t i f y  t h e  p h y s i c a l  mechanisms 
which c o n t r o l  t h e  m i c r o s c a l e  roughness  on a n  a c c r e t i n g  ice s u r f a c e .  
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IN-FLIGHT MEASUREMENT OF ICE GROWTH ON AN AIRFOIL USING AN ARRAY 
OF ULTRASONIC TRANSDUCERS# 

R. John Hansman, ~ r . *  and Mark 5. ~ 1 r - b ~ '  
Massachuset ts  I n s t i t u t e  o f  Techno logy 

Cambridge, Hass. 

Robe r t  C. ~ c ~ n i ~ h t * *  
NASA Lew is  Research Cen te r  

C leve land,  Ohio 

Robe r t  L. ~ u m e s + *  
Ca lspan C o r p o r a t i o n  

A r n o l d  A i r  Fo rce  S t a t i o n ,  Tenn. 

A b s t r a c t  

R e s u l t s  o f  p r e l i m i n a r y  t e s t s  t o  measure i c e  
g r o w t h  on an a i r f o i l  d u r i n g  f l i g h t  i c i n g  c o n d i t i o n s  
a r e  p resen ted .  U l t r a s o n i c  pu lse-echo measurements 
o f  i c e  t h i c k n e s s  a r e  o b t a i n e d  f rom an a r r a y  o f  
e i g h t  u l t r a s o n i c  t r a n s d u c e r s  mounted f l u s h  w i t h  t h e  
l e a d i n g  edge o f  t h e  a i r f o i l .  These t h i c k n e s s  
measurements a r e  used t o  document t h e  e v o l u t i o n  o f  
t h e  i c e  shape d u r i n g  t h e  encounter  i n  t h e  f o rm o f  
success i ve  i c e  p r o f i l e s .  

R e s u l t s  f r o m  t h r e e  r e s e a r c h  f l i g h t s  a r e  
p resen ted  and d iscussed.  The accuracy  o f  t h e  
u l t r a s o n i c  t h i c k n e s s  measurements i s  found t o  be 
w i t h i n  0.5 mm o f  mechan ica l  and s t e r e o  pho tog raph  
measurements o f  t h e  i c e  a c c r e t i o n .  U l t r a s o n i c  
measurements show t h a t  t h e  i c e  g r o w t h  r a t e  i s  
t y p i c a l l y  n o t  c o n s t a n t ,  b u t  v a r i e s  d u r i n g  t h e  
f l i g h t .  Fo r  d r y  i c e  growth ,  t hese  v a r i d t i o n s  i n  t h e  
i c e  g r o w t h  r a t e  a r e  p r i m a r i l y  due t o  f l u c t u a t i o n s  
i n  t h e  c l o u d  l i q u i d  w a t e r  con ten t .  The 
e x p e r i m e n t a l l y  measured i c e  g r o w t h  p r o f i l e s  a r e  
compared w i t h  i c e  g r o w t h  p r e d i c t e d  by an a n a l y t i c a l  
i c i n g  code. D i s c r e p a n c i e s  between these  a n a l y t i c a l  
p r e d i c t i o n s  and expe r imen ta l  r e s u l t s  h i g h l i g h t  t h e  
need f o r  a  b e t t e r  unde rs tand ing  o f  t h e  p h y s i c s  o f  
wet i c e  g row th  and t h e  e f f e c t s  o f  v a r y i n g  i c i n g  
c o n d i t i o n s .  

I n t r o d u c t i o n  

A i r c r a f t  i c i n g  i s  a  dynamic process.  I c e  
a c c r e t i n g  on a  s u r f a c e  a l t e r s  t h e  aerodynamic 
f l o w f i e l d  ove r  t h e  su r face ,  chang ing b o t h  t h e  c l o u d  
d r o p l e t  t r a j e c t o r i e s  and t h e  hea t  t r a n s f e r  f r om t h e  
s u r f a c e .  S ince b o t h  t h e  c l o u d  d r o p l e t  t r a j e c t o r i e s  
and t h e  l o c a l  h e a t  t r a n s f e r  c o n t r o l  t h e  r e s u l t i n g  
i c e  shape, t h e  dynamic n a t u r e  o f  t h e  i c i n g  grocess 
must be cons ide red  i f  a c c u r a t e  i c i n g  n o d e l s  dnd 
s c a l i n g  laws a r e  t o  be deve loped.  

Two d i s t i n c t  i c i n g  regimes, " d r y "  and "wet "  i c e  
growth ,  have been i d e n t i f i e d .  D u r i n g  d r y  i c e  g row th  
t h e  i m p i n g i n g  d r o p l e t s  f r e e z e  on impact,  and t h e  
i c e  s u r f a c e  i s  d ry .  Dry,  o r  r i m e  i c e  g rgw th  i s  

* A s s i s t a n t , P r o f e s s o r ,  Ae ronau t i cs  and 
A s t r o n a u t i c s .  

+ Research A s s i s t a n t ,  A e r o n a u t i c s  and 
A s t r o n a u t i c s .  

** P i l o t  and Aerospace Eng inee r .  
++ Research Eng inee r .  
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c h a r a c t e r i s t i c  o f  c o l d  c l o u d  temperatures ,  and l ow  
t o  moderate c l o u d  l i q u i d  w a t e r  con ten ts .  I f  t h e  
hea t  t r a n s f e r  f r om t h e  a c c r e t i n g  s u r f a c e  i s  
i n s u f f i c i e n t  t o  f r e e z e  t h e  i m p i n g i n g  c l o u d  
d r o p l e t s ,  l i q u i d  w i l l  form l o c a l l y  on t h e  su r face ,  
and t h e  i c e  g row th  i s  s a i d  t o  be wet.  Wet, o r  g l a z e  
i c e  g row th  i s  t y p i c a l l y  encountered a t  warm c l o u d  
temperatures  c l o s e  t o  f r e e z i n g ,  and moderate t o  
h i g h  c l o u d  l i q u i d  w a t e r  con ten ts .  

Calculate 
Flowf ield Step 1 

Calculate 
Droplet Trajtctor~es - - - - - - - - - -  Step 2 
lmp~ng~ng Mass Flux 

Dlstr~but~on 

Increment T~mc 
t :  I-at 

Perform Local 
Energy &lance Steo 3 

I 

F i g .  1 Schematic breakdown o f  t y p i c a l  a n a l y t i c a l  
i c i n g  node l  c a l s u l 3 t i o n s .  

C u r r e n t  a n a l y t i c a l  l c  i n q  n o d e l ~ l - ~  t y p i c a l l y  
d i v i d e  t h e  i c i n g  a n a l y s i s  i n t o  f o u r  n a i n  areas,  as 
snown i n  t h e  b l o c k  d iagram i n  f i g u r e  1. F i r s t ,  t h e  
f l o w f i e l d  around t h o  s u r f a c e  i s  computed; t b e  
d r o p l e t  t r a j e c t o r i e s  w i t h i n  t h e  f l o w f i e l d  a r e  t nen  
c a l c u l a t e d  by i n t e g r a t i n g  t h e  d r o p l e t  equa t i ons  o f  
mot ion .  T h i s  second c a l c u l a t i o n  p r o v i d e s  t h e  mass 
f l u x  d i s t r i b u t i o n  (due t o  t h e  d r o p l e t s )  over  t h e  
Sody. The t h i r d  s t e p  i n v o l v e s  c a l c u l a t i n g  t h e  h e a t  
t r a n s f e r  d i s t r i b u t i o n  ove r  t h e  s u r f a c e  and then  
p e r f o r n i n g  a  l o c a l  ?nergy  ba lance  t o  de te rm ine  t h e  



amount of ice formed. The final step is to shape. The principle of ultrasonic pulse-echo
construct the new ice shape. By repeating this thickness measurement is explained below, and the
series of calculations, using the iced geometry for ultrasonic array approach used to measure ice
the new flowfield calculation, the dynamic nature growth is then outlined.
of the icing process is analytically simulated.

For dry ice growth conditions, the ice shapes Ultrasonic Pulse-Echo Thickness Measurement
predicted using these analytical models are

generally in g_o_ agreement with those observed Ultrasonic pulse-echo measurement of ice
experimentally " . However for wet or glaze ice thickness on a surface is accomplished by emitting
conditions, the analytically predicted ice shapes a brief compressive wave, or pulse, from a small

are oft_n4in poor agreement with experimental, ultrasonic transducer mounted Flush with the
results • . The reasons for this poor agreement are accreting surface (see figure 2). The pulse travels
not certain, although the energy balance used by through the ice, is reflected at the ice surface
the analytical models has recently received much and then returns to the transducer as an echo

attention_. A better understanding of the ice signal. The time elapsed, T e' between the
accretion process has, however, been hampered by a emission of the pulse and tRe return of the echo
lack of experimental data on ice growth as a from the ice surface can then be used to calculate
function of time. the ice thickness, D, from the formula:

Experimentally measured ice shape "histories"
would permit a detailed comparison of actual icing D = C.Tp.e/2 (I)
behaviour with that predicted analytically.
Measurements of ice shape as a function of time Where C is the speed of propagation of the
would allow the aerodynamic factors involved in the pulse-echo signal in ice. In a previous study7, the
accretion process (i.e. flowfield and droplet authors Found this speed of propagation to be

insensitive to different types of ice (glaze, rimetrajectories) to be isolated From the more
and mixed) Formed at typical flight airspeeds. Acomplicated thermodynamic processes involved. For

example, by analyzing the flowfield associated with value of 3.8 mm/_s was used for the speed of sound
the evolving ice shape, the significance of in ice for all the results presented in this paper.
collection efficiency variation with changes in ice The ultrasonic pulse-echo technique also allows
shape could be quantitatively determined. This the presence or absence of liquid water on the ice
aerodynamic feedback phenomenon, coupled with surface to be uniquely determined by examining the
changes in the heat transfer distribution over the time variations^of the echo signals received fromthe ice surface_. This information in turn allows
ice surface, are thought to be the controlling
factors in the growth of the "horns" characteristic the type of ice growth ocurring, "wet" or "dry", tobe discerned.
of glaze ice formations. A_R

In addition to providing insight into the T
physics of the ice accretion process, Iexperimentally measured ice growth histories would
also permit a direct, quantitative comparison of _

the differences between ice growth in flight and _ I Iwind tunnel icing tests. A better understanding of

these differences is essential for the accurate
interpretation and application of icing wind tunnel
results . /ULTRASONIC TRANSDUCER SURFACE

Measurement of ice growth in icing conditions
is difficult. Most current ice accretion 0 = C Tp-e
instruments relate ice growth on an exposed probe
to that on the surface of interest. While these 2

probe-type measurements can provide good time
resolution of the icing rate, they cannot provide _uLSE _st_CEIAJR

..HO RETURN Z_ RETURN 3r_ RETURNgood spatial resolution of the ice accretion on the ZmT_D _r
remote surface (due to differences in the \ I

collection efficiencies and heat transfer _ _ /
distributions for the probe and the surface). _ I
Alternatively, mechanical or photographic - .
measurements of the ice accretion can be made at _ _ r

the completion of an icing test. While these _ _ _ _ATTE_UAT_CN"end-point" measurements provide excellent spatial --J -- _l_""_-"_I_'''-_
resolution of the ac'cretion,they contain no _ z ] _ S
information about the growth of the ice shape prior | TIME{_S)

tO the measurement. Since it is not practical to ___

- !
frequently halt an icing encounter in order to make ,----Tp,.--,_
mechanical or photographic measurements, good time "=-e_
resolution of ice growth is not possible with these
types of measurements.

Recently developed ultrasonic techniques for
ice thickness measurement '_ offer the potential Fig. 2 Ultrasonic pulse-echo thickness measurement
For both good time resolution of ice growth as well and typical ultrasonic pulse-echo signal in
as good spatial informationon the accreted ice ice.



By frequently emitting pulses (typical Ultrasonic Array
repetition rates are several KHz), the ultrasonic
pulse-echo technique can provide a direct The array consisted of eight identical 5 MHz
measurement of ice thickness many times a second, ultrasonic transducers mounted flush with the wing
If several transducers are grouped in an array, cuff surface. The transducers were all located
then by interpolating between the individual within a 90 degree arc around the leading edge of
thickness measurements from each transducer, the the wing cuff. The transducer positioning was based

ice shape over the array may be measured as a on previous stereo photograph measurements of ice

function of time. This paper describes results of formatio_,_ the leading edge of the research
preliminary tests using an array of eight aircraft . Due to size constraints only six of
ultrasonic transducers to measure ice growth on the the transducers could be placed at the same span
leading edge of an airfoil during flight icing station, and two additional transducers were
conditions. The primary purpose of these tests was slightly offset (0.75") to provide better ice
to demonstrate the feasibility of using such an surface coverage. The eight transducers were of the
array to document ice growth behaviour as a broadband, heavily damped type, with element
function of time. diameters of 0.25". The transducers were

mechanically supported in the cuff by a thin
Ice growth measurements made with the doubler plate behind the cuff skin.

ultrasonic array during three research flights are

presented in this paper. Ice thickness measurements Multiplexin_from the array transducers are used to construct Pulser/Receiver
profiles of the ice accretion during the icing
encounter. These profiles are related to the A multiplexing pulser/receiver unit was used to
ambient atmospheric icing conditions and are also sequentially excite each transducer in the array
compared with ice growth profiles predicted using (see figure 4). The pulser/receiver section
an analytical icing code. provided the electrical signals necessary to

produce the ultrasonic pulse and amplify the return
echo, with the multiplexer controlling the active

Experimental Apparatus time for each transducer. Typically, themultiplexing rate was set so that each transducer

NASA Lewis Icing Research Aircraft & Winq Cuff was active for approximately two seconds; four
Installation complete "scans" of the array were thus obtained

every minute. Eight 40 foot long co-axial cables

The aircraft used for flight testing the carried the electrical signals from the wing cuff
ultrasonic array was the NASA Lewis Icing Research array to the multiplexing pulser/receiver in the
Aircraft, a De-Havi]land DHC-6 Twin Otter. This aircraft cabin.
aircraft is extensively equipped with
instrumentation to measure and record the ambient

atmospheric icing conditions encountered in WING CUFF
flight . The ultrasonic array was installed in a _ I---.._I
four foot long DHC-6 airfoil section mounted over
the starboard wing of the aircraft at approximately
the 3/4 span station (see figure 3). This airfoil
section, or wing cuff, protruded approximately NSDUCERS
three inches forward of the main wing. The wing
cuff was constructed of aluminum 0.025" thick, and ARRAY
was not equipped with any ice.protection system.

8 CNANNEL MULTIPLEXER[I
& PULSER/RECEIVER i p

Wr_ Cuff i

CLOCK &
_RRAY DISPLAY

FSSP La.._er CCD 8MM VIDEO
Prob_ (MVO) CAMERA/RECORDER

Fig. 3 Wing cuff and ultrasonic array installation Fig. 4 Schematic of ultrasonic array equipment
on NASA Lewis Icing Research Aircraft configuration.
(DHC-6 Twin Otter).
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Oscilloscope/Video Camera Fli_ht 86-31

A 60 MHz bandwidth oscilloscope was used to Figure 5 illustrates the final ice shape
display the ultrasonic echo signal from the active accreted on the wing cuff at the completion of
transducer. In order to provide a permanent record flight 86-31. Three separate measurements of the
of these time-dependent echoes, the oscilloscope final ice profile are shown. The open circles
display was filmed by a video camera (figure 4). represent thickness readings obtained from the
Also within the camera's field of view were an stereo photograph analysis, while the crosses

electronic clock and an LED display, enabling the indicate measurements made with vernier calipers
exposure time and active transducer to be after landing. The Final ultrasonic ice thickness
simultaneously recorded with the pulse-echo trace measurements (from transducers C,D,E and F) are
from the oscilloscope display, shown as a solid line on the figure. The agreement

between all three of these independent measurements
Stereo Camera System is within 0.5 mm, with a final ice thickness of

approximately 9 mm indicated. The accretion rate
Two 70mm cameras mounted in the nose of the throughout the hour long encounter was low (due to

aircraft (see figure 3) were used to photograph the the low cloud liquid water content), and as a
ice accretion on the wing cuff. These photographs result the Final accretion is only moderately
were later photogrammetrically analyzed to obtain a thick. The relatively large droplet sizes
profile of the ice shape (a detailed description of encountered, however, resulted in wide
the stereo camera system and the associated image droplet impingement limits and hence the final
analysis is contained in reference 12). The ice accretion extends over most of the leading edge.
surface can typically be resolved to within

*/- 0.03 in. from these stereo image pairs. However Due to the cold temperature and low liquid
adequate photographs of the ice accretion can only water contents encountered (see Table I), dry or
be obtained when the aircraft is in clear air, and rime ice growth was observed throughout flight
hence the stereo camera system cannot provide ice 86-31. Under these conditions, the impinging cloud
growth data while the aircraft is in the icing droplets Freeze on impact, and the Final ice shape

cloud. Procedure is seen to have a profile similar to that of the
leading edge, and does not display the horns

Since the wing cuff was exposed throughout each characteristic of glaze ice growth. This type of
flight, the ultrasonic array system was activated conformal ice shape is typical of moderate
from take-off to landing. The multiplexing rate on thickness rime ice accretions.
the pulser/receiver was typically adjusted to allow
four complete scans of the array per minute. This o Stereo Photograph Measurement
multiplexing rate provided frequent ice thickness X Mechanical Measurement (Verniers)

measurements from each transducer, while still --Final Ultrasonic Measurement
enabling time variations in each echo signal to be
observed. As discussed earlier, time variations in
the echo signal are used to distinguish the
presence of liquid water on the ice surface, and 0 2
hence to determine if the ice growth is wet or dry. L_.._.J

Cm
The ambient icing conditions (temperature,

cloud liquid water content, droplet size
distribution etc.) were recorded throughout each Edge
flight by the aircraft's on-board icing (DHC-6A_f_l}
instrumentation. Stereo photograph pairs of the
iced wing cuff were also taken during each
encounter. However since these photographs could
only be obtained outside the icing cloud, the time
interval between successive photographs was
generally long {I0-30 minutes). Typically one or 'F l ,

two stereo photograph pairs were taken per IA'H: TransducersIencounter. IE
D

Since the wing cuff was not de-iced, it was
usually possible to mechanically measure the final
ice shape (using vernier calipers) after landing. //

Nine research flights were conducted with the / B

ultrasonic array system between February and March o
1986. A

Results FINAL ICE PROFILE

Ice growth measurements for three research
flights (86-31, 86-32 and 86-33) are presented in
this section. Table i summarizes the time-averaged
icing conditions during each of the three flights.

Fig. 5 Final ice profile for flight 86-31.
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Flight Number 86-31 86-32 86-33

Flight Duration (minutes) 66 58 57
Altitude (feet) 7603 4336 4068
Airspeed (knots) 138 134 129
Static Temperature (oC) -I0.0 -6.3 -5.8
Liquid Water Content (g/m_3) 0.06 0.16 0.26
Median Volume Diameter (microns) 15.0 14.3 13.0

Table I Time-averaged flight and ambient atmospheric icin_ conditions.

Figure 6 is a plot of ice thickness, measured fluctuations in the cloud liquid water content will
by the array transducers, versus time during flight produce similar variations in the ice accretion
86-31. Each thickness measurement represents the rate. Figure 6 clearly shows this coupling between
average ice thickness over the transducer beam cloud liquid water content fluctuations and changes
area, i.e. over a 0.25 in. diameter area. Also in the ice accretion rate. For example, as a result
shown in the figure is the cloud liquid water of the decrease in average liquid water content
content (measured by a Johnson-Williams hot-wire during the latter part of the flight, the measured
probe) during the flight. From the figure it can be growth rates during the last half hour of the
seen that both the cloud liquid water content and flight are significantly lower than those for the
the ice growth rate vary during the encounter, first 40 minutes. Shorter time-scale coupling of

the cloud liquid water content and ice growth rate

is also apparent. For example, the high LWC spike

occuring after 35 minutes produces a noticeable
" increase in the accretion rates at that time.

10r From figure 6 it can be seen that the ice

_ {A_ ,_,_,_! 0 thickness over the central transducers, D and E,

F and C at either side. This spatial variation in

efficiency near the center of the accretion
(transducers D and E), than towards the edges
(transducersC and F).

Figure 7 shows the ultrasonically measured ice
growth during flight 86-31 in the form of
successive ice profiles. These profiles were
constructed by fairing a curve through the "point"
thickness measurements from the array transducers.

O0 10 20 30 40 50 60 70L i _ I m f l f A total of six profiles are shown, with six minutes
between each profile. The time at which the

0"3 profiles were measured is indicated on the lower
plot of the cloud liquid water content during the

fl ight.02

The ultrasonically measured profiles show the

ice shape to be relatively conformal to the leading

0'I the second profile. This was because the slope of

.j edge throughout the encounter. Thickness
measurements from transducers B and G, located near
the edges of the accretion, were not possible after

O0 10 20 30 40 50 60 70 the ice surface above these transducers, relative

TIME (MINUTES) to the airfoil surface, became too large,
reflecting the return echo away from the transducer

Fig. 6 Ultrasonically measured ice thickness and and significantly reducing the received echo
cloud liquid water content vs. time for strength. Increasing the receiver gain in this
flight 86-31. situation would alleviate this problem; however,

varying the receiver gain between transducers was
not practical with the single multiplexed

_ince dry ice growth was observed throughout pulser/receiver used for these tests. Since a
the flight (as indicated by the ultrasonic echo single "optimum" gain had to be used, this "edge"
characteristics from the ice surface), the effect dropout of the echo signal was often
accretion rate is expected to be proportional to unavoidable.
the cloud liquid water content. Therefore

11



the agreement between the final analytical and

experimental ice shapes is good, with both the

impingement limits and final thicknesses
approximately equal.

cm -L_:_rgEarn
(l:)l-K:-6Airfcd) The constant icing conditions used by the

analytical code do however result in predictions of
essentially constant growth rate at each point

654_ around the leading edge. Experimentally the growth
rate is observed to fluctuate with the varying
cloud liquid water content. Since dry ice growth

A-H: Tmr_j¢ers l was observed throughout this encounter, theseI variations in the natural icing conditions affected

0 only the amount of growth between each profile.
However,under different ambient conditions,
fluctuations in the cloud liquid water content may

result in transitio_ between dry and wet ice growth

B during an encounter . In this case the use of a
single, time-averaged liquid water content as input
to an analytical code will not accurately model the
icing process.

LI.TRA_)N_Y ME.a,SUREI:}

ICE PROFILE_5 (6Min.referraLs) _

Cm _-Lead_ Edge
0.3_ _ (DHC-6Arfod)

_ PROFILE I 2 3 4 5 6

0.1 Tra_sclucersil

00 10 20 30 40 50 60 70

TIME (MINUTES) / __A

Fig. 7 Ultrasonically measured ice profiles for
flight 86-31.

The ice profiles in figure 7 again illustrate ULTRASONIC/_LLYMEASURED
the non-uniform growth rate throughout the ICE PROFILES (6Min Intervcls)
encounter. The first three profiles all show
approximately equal growth, corresponding to the
roughly constant average liquid water content
during this period. The higher liquid water content
in the interval between profiles 3 and 4 results in
more growth, as evidenced by the larger profile
spacing. Following profile 4 the liquid water
content falls, and as a result profiles 5 and 6
show little further growth.

Figure 8 is a comparison of the experimentally IF
measured ice growth during flight 86-31 with t_at L
predicted by an analytical icing code (LEWICE) . IE

The time-averaged icing conditions for the flight D
(see Table I) were used as input conditions for the
code, and ice growth was computed at six minute
intervals. /

As discussed earlier, the cold cloud /

temperature and low liquid water contents / A
encountered produced dry ice growth throughout the
flight, and the analytical code correctly predicted
dry-growth for the duration of the simulation. AN_YTICALLY PREDICTED
Because the impinging droplets freeze on impact for (LEWICE) ICE PROFILES
dry growth, no local energy balance is required and (6 Min.Intervols)
the analytical code is reduced to a time-stepped

calculation of the potential flowfield and local Fig. 8 Comparison of _Itrasonically measured ice
collection efficiency. Both flowfield and droplet profiles with analytically predicted
trajectory calculations are well understood, and (LEWICE) profiles, for flight 86-31.

12



Flight 86-32

Figure 9 summarizes the experimentally measured

o Stereo Photo(_'_ Meosurefnent ice growth for flight 86-32. The final ice shape,
X Iv_w:ha_ Measurement (Verm_,f_ obtained from stereo photograph, ultrasonic and
_&'inal U[_$on_ McK_urefnent vernier caliper measurements, is shown. The

agreement between these thickness measurements is
again within 0.5 n_. Also shown in the figure are

0 Z the ultrasonically measured ice growth profiles and
_ the cloud liquid water content during the flight.
Cm

Edge Dry ice growth was observed throughout the
(DHC-6 _'t:W) encounter, and the ice shape is always fairly

conformal to the leading edge, as observed for
flight 86-31. HoweveG the ice accretion formed
during flight 86-32 does not cover as much of the
leading edge as the accretion for flight 86-31, due
to the smaller droplet sizes encountered during

_F IA'H: Tran_w:lucefsl flight 86-32 (see Table I). Variations in the ice
IE growth rate are clearly illustrated by the profileL J

spacing, and again are due to the varying cloud
O liquid water content. The loss of signal from

transducer C towards the end of the flight was due
to the slope of the ice/air interface at the edge

B of the accretion.

Flight 86-33

As a final illustration, the ice growth during
FINAL ICE PROFILE flight 86-33 is presented in figure 10.

Experimental difficulties with the oscilloscope
display prevented ultrasonic thickness measurements
from being recorded for the entire encounter;
hence,there are no final ultrasonic measurements of

the ice shape. However it is interesting to observe
that although the final profile displays a deep
depression near the stagnation region, the initial
ultrasonically measured profiles do not show any
depression developing early in the encounter. Dry
ice growth was indicated by the ultrasonic echo
characteristics for the first 18 minutes of the
encounter, and the depression may have formed as a

IF result of wet ice growth later in the flight.

IE [A-H: Tronsducefs I
A computer simulation of this encounter was

O performed using the LEWICE analytical icing code,
and the predicted ice growth is shown in figure 11
along with the final ice profile from the stereo

B photograph analysis. The time-averaged icing

conditions for the flight were again used as input
for the code, and ice profiles were computed at one
minute intervals.

ULTRASONICALLY MEASURED The analytically predicted ice shape displays a
ICE PROFILES (6 Min.lntefvals) similar depression in the stagnation region to that

observed experimentally. However using the steady
time-averaged icing conditions, the analytical

-- 06r First Last _odel predicts wet ice growth throughout the

PrTfilel I Profile encounter, while dry ice growth was initiallyF0'4 I I I I I observed from the ultrasonic echo characteristics.

A _ A. m i,.._ The analytical code also predicts significant ice_ 0.2 accretion due to liquid runback over transducers Gand H, although experimentally no runback accretion

O0 I, , was observed over these transducers.10 20 30 _0 50 60 70 80
These discrepancies between experimentally

TIME (MINUTES) observed ice growth in fluctuating icing
conditions, and analytically predicted growth for

Fig. 9 Final ice profile and ultrasonically steady icing conditons, highlight the need for more
measured ice profiles for flight 86-32. experimental measurements of the ice accretion

process, particularly during wet or glaze ice
growth.

13
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Cm

/
FINAL ICE PROFILE
[Stereo Photogrol_h)

O

G H B

A. : _nsducersI AN,_LYTJCALLYPREDICTED
(LEWICE) ICE PROFILES
(I Mtn $ntervQl_;)

C B Fig. LL Comparison of final ice profile from
A stereo photograph analysis with

analytically predicted ice profilesULTRASONICALLYMEA
ICE PROFILES (2 ,Min.Intervals) _ (LEWICE), for flight 86-33.

First Last
[Profile IProf,le Conclusions

.'_ 06r I'' t, i I . . Experimental measurements of ice growth as a/
_0._ r , function of time can provide a valuable tool for

icing research. These measurements allow the
02 _. evolution of the ice shape and the underlying

_i_L_= , physical processes to be studied, as well as
00 _ 20 30 40 50 60 permitting quantitative comparisons of flight and

TIME (MINUTES} wind tunnel icing results. Initial tests using an
array of ultrasonic transducers have shown the
following:

Ultrasonic pulse-echo techniques may be used to
measure ice thickness over a small area on a

Fig. 10 Final ice profile and ultrasonically body to within 0.5 mm.
measured ice profiles (incomplete), for

flight 86-33. Thickness measurements from an array of
ultrasonic transducers can be used to provide a
profile of the ice shape. By repeatedly
scanning the array, the ice profile can be
measured as a function of time during the icing
encounter.
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Ice growth rates measured during flight icing 7. Hansman, R.J., and Kirby, M.S., "Measurement of
conditions are typically not constant. For dry Ice Accretion Using Ultrasonic Pulse-Echo

ice growth the accretion rate varies with the Techniques," Journal of Aircraft, Vol. 22,
cloud liquid water content. June 1985, pp. 530-535.

At the edges of the accretion, the ultrasonic 8. Hansman, R.J., and Kirby, M.S., "Measurement of

echoes are significantly weakened due to the Ice Growth During Simulated and Natural Icing
slope of the ice surface relative to the Conditions Using Ultrasonic Pulse-Echo

airfoil surface. Accurate ultrasonic thickness Techniques," Journal of Aircraft, Vol. 23,
measurements are difficult in these cases and June 1986, pp. 492-498.
additional shape measurements, for example from

stereo photographs of the ice accretion, can be g. Ide, R.F., and Richter, G.P., "Evaluation of
used to provide good edge definition. Icing Cloud Instruments for 1982-83 Icing

Season Flight Program," AIAA 84-0020, January
Differences between experimentally measured ice 1984.
growth and analytically predicted growth

underscore the need for a better understanding 10. Mikkelsen, K.L., McKnight, R.C., Ranaudo, R.J.,
of the effects of varying ambient icing and Perkins, P.j., "Icing Flight Research:
conditions, particularly when wet ice growth is Aerodynamic Effects of Ice and Ice Shape
involved. Documentation With Stereo Photography,"

AIAA 85-0468, January 1985.
Despite the preliminary nature of these tests, and

the limited range of icing conditions encountered, 11. Personal communication with R.C. McKnight, NASA
the results presented illustrate the value of Lewis Research Center, Cleveland, OH November
experimental measurements of ice growth. Further 1985.
tests in both flight and wind tunnel icing

conditions will aid the development of more 12. McKnight, R.C., Palko, R.L., and Humes, R.L.,
• detailed analytical icing models as well as "In-Flight Photogrammetric Measurement of Wing
documenting differences between flight and wind Ice Accretions " NASA TM-87191 January 1986.tunnel icing results. , ,
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EXPERIMENTAL MEASUREMENTS OF HEAT TRANSFER FROM AN ICED SURFACE DURING
ARTIFICIAL AND NATURAL CLOUD ICING CONDITIONS#

Mark S. Kirby and R. John Hansman, Jr.
Massachusetts Institute of Technology

Cambridge, Mass.

INTRODUCTION
ABSTRACT

Whenever an aircraft encounters liquid
The heat transfer behavior of accreting ice moisture in the form of supercooled cloud

surfaces in natural (flight test) and simulated droplets, or freezing rain, ice will form on the
(wind tunnel) cloud icing conditions have been exposed surfaces. Typical cloud droplet diameters
studied. Observations of wet and dry ice growth range from as large as 50 microns to less than 10

regimes as measured by ultrasonic pulse-echo microns. In the case of freezing rain, droplets
techniques were made. Observed wet and dry ice may be several mm in diameter. The shape of the

growth regimes at the stagnation point of a accreted ice and its af{ect on the aircraft's
cylinder were compared with those predicted using aerodynamic performance depend on several
a quasi steady-state heat balance model. A series parameters - the cloud temperature, the average
of heat transfer coefficients were employed by the cloud droplet size and size spectrum, the amount
model to infer the local heat transfer behavior of of liquid water per unit volume, W, contained in
the actual ice surfaces. The heat transfer in the the cloud and the size, shape and speed of the
stagnation region was generally inferred to be accreting surface.
higher in wind tunnel icing tests than in natural,
flight, icing conditions. RIME ICE

"Cold" cloud temps. (-10_ to -30"C)
NOMENCLATURE Small droplets(12_ typ.)

A,B experimentally derived constants (-)

Ci specific heat capacity of ice (J/kg K)

specific heat capacity of air (J/kg K) VmP specific heat capacity of water (J/kg K) -_

Dw Diffusion2coefficientof water vapor in
air (m/ /s)

d cylinder diameter (m)
h local _onvective heat transfer coefficient

(W/m_ K)
k thermal conductivity of air (W/m K)

Lf latent heat of fusion of water (J/kg) GLAZE ICE

latent heat of sublimation of water (Jlkg) "Warm" cloudtemps (O'C to-I0_)s latent heat of vaporization of water Large droplets(ZON typ)
v (J/kg)

M" local mass flux/time (kg/m2s)

Nu Nusselt number (-) 2
Q" local heat flux/time (W/m)
Re Reynolds number based on cylinder dia.

and V (-)
r recovery factor, 0.875 (-)
CT cloud supercooling = -T ('C)
T ® equilibrium surface temperature ('C)
Tsurf cloud temperature ('C)
t icing time (s)
V freestream velocity (m/s)

W® cloud liquid water content (g/m 3) Figure I. Typical "rime" and "glaze" ice shapes.
B local collection efficiency (-)

_c,surf saturated3vap°r density over surface When all of the impinging droplets freeze on
(kg/m) impact with the accreting surface the ice

saturatedRvapor density in cloud acGretion is characterized as rime ice. The
Pv,® (kg/m_) resulting ice shape typically protrudes forward

into the airstream (see figure i). Relatively
cold cloud temperatures (below -IO'C) and small
droplet sizes promote rime ice formations. At

. Research Assistant, Aeronautics and warmer cloud temperatures and for the
Astronautics characteristically larger droplet sizes and liquid

* Assistant Professor, Aeronautics and water contents present in these clouds, the
Astronautics. impinging droplets do not freeze on impact and may

#AIAA Paper 86-1352. run back over the accreting surface as
Copyright© 1986 by MIT.
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liquid water before freezing further downstream on Experimental results 6-8 have confirmed the
the surface. This type of ice accretion is accuracy of the flowfield and droplet trajectory
characterized as glaze ice and often the resulting calculations. For rime ice growth, where the
ice shape displays two pronounced growth peaks, or droplets freeze at the point of impact, the
horns, on either side of the stagnation line(see predicted ice shapes are in good agreement with
figure I also). The most severe aircraft experimentally measured ice shapes. However, for

performance degradation due to icing2is typically glaze ice conditions the predicted ice shapes are
associated with glaze ice formations . extremely sensitive to the assumed convective heat

transfer coefficient distribution over the body,

Fig_ 2 illustrates schematically how recent and, to date, no analytic model has accurately
attempts to analytically model aircraft icing predicted ice shapes throughout this important
have decomposed the ice accretion process. First, icing regime.
the aerodynamic flowfield around the body of Because of the sensitivity to heat transfer,
interest is calculated, usually by an inviscid experimental measurements of the heat transfer
panelling method. Droplet trajectories around the coefficient distribution over an iced surface are
body are then calculated by integrating the critical for validating these analytic models.
droplet equations of motion within the body Due to experimental difficulties associated with
flowfield. From these trajectory calculations the these measurements on actual ice surfaces, local

• mass flux of impinging droplets at a given heat transfer coefficient measurements have only

location on the body can then be determined. The been made _round wooden or foam models of typical
third, and crucial step, involves a thermodynamic ice shapes . In addition, experimental
analysis of the freezing process at the icing measurements comparing local heat transfer
surface. A steady-state energy balance involving coefficients obtained in icing wind tunnels and in
the impinging heat load from the droplets and the flight are essential if natural icing conditions
heat removed by convection, evaporation and are to be accurately simulated in icing wind
sublimation is typically applied to small control tunnels. Very little experimental data exists in
volumes along the icing surface. The fourth step this area.
then calculates the amount of ice formed at each This paper outlines the steady-state energy
location on the body as a result of satisfying balance for the stagnation region of a body. From
this energy balance and constructs the ice shape this energy balance the condition for transition
on the body. This entire process may then be from rime or "dry" ice growth to glaze or "wet"
repeated using the iced geometry as input for the ice growth is determined in terms of the locally
flowfield calculation. Due to this form of impinging mass flux and the local heat transfer
time-stepped solution, any errors or inaccuracies coefficient. By measuring the locally impinging
in each of these four steps tend to propagate and mass flux and whether the accreting ice surface is
may result in an unrealistic ice shape, wet or dry, it is thus possible to infer limits on

the magnitude of the heat transfer coefficient at

I the ice surface.The detection of liquid water on an accreting
Calculate ice surface is made by a unique application of an

ultrasonic pulse-echo technique and is described.
Flowfield Step I Results of tests employing this ultrasonic

Around Body technique for cylinders exposed to artificial

icing conditions in the NASA Lewis Icing Research
Tunnel (IRT) and natural icing conditions in
flight from the NASA Lewis Twin Otter IcingI

CQlcu[ate I Research Aircraft are then presented. These

Droplet Trajectories experimental results are used to compare local........... Step 2 heat transfer coefficients _easured around a bare

Impinging Mass Ftux I cylinder with different levels of freestream
Distribution I turbulence and surface roughness.

Increment Time | STEADY-STATETHERMODYNAMICMODELFORAN ICING

t : t-_t _ SURFACE
Perform Local The thermodynamic analysis presented in this

paper for a surface accre_ng ice foll_Sl_he
Energy Balance Step 3 earlier work of Messinger ' and others ' .

Figure 3 shows the principle modes of energy
Oin: Qout transfer associated with an icing surface. Heat

is added to the surface primarily due to the
latent heat of fusion released as the droplets
freeze, but also from aerodynamic heating and, toi

Construct I an even smaller extent, from the kinetic energy ofNew Ice Shape Step_ the droplets impacting the surface. Heat isI removed from the surface primarily by convection,

J and to a lesser degree by sublimation (when thesurface is dry) or evaporation (when the surface

Figure 2. Schematic breakdown of analytical ice is wet). In addition, heat is absorbed from the
surface as the supercooled droplets impinge andaccretion modeling process.
warm to O'C.
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Freestr_mV=,T_ Mout(Wetgrowthonly)

/

Latent He.t _,:] _ ;

--._Sublimation/_
E_porahon ----.

Figure 4. Stagnation region control volume used
for steady state ther_dynamic analysis.

Figure 3. Modes of energy transfer for an

accreting ice surface. M"{Lf + V_ + Ci(O°C - Tsurf)} + rhV_ =

Figure 4 depicts the local control volume _ 2_p
examined in this analysis. Since only the
stagnation region of the body is considered in
this paper, it is assumed that the only liquid h{(Tsurf - TJ + DLs(Pv,surf - Pv,J} + M"Cw&T_

entering the control volume is due to the (4)
impinging droplets. Liquid may, however, flow out

of the control volume along the ice surface. Thus Note that this equation (eq. 4) assumes all of the
if the ice surface in the stagnation region is impinging mass flux, M" is frozen, thus the ice
wet, insufficient heat is being removed to freeze
all of the impinging liquid, and therefore the surface is dry and the latent heat of sublimation,L , is used in the mass transfer term from the
"freezing fraction", n, is less than unity, where s_rface.
n is given by

• It

n : Mfrozen (I) The ice surface will first start to become
wet when the equilibrium temperature of the

Mimpinging surface rises to O'C. The energy balance
appropriate for the transition between dry and wet

When the ice surface is dry the freezing fraction growth is thus
is unity. The steady-state assumption requires Z

that the rate at which energy is added to the M"{Lf + V} + rhV= = h{(O°C - _) +control volume equals the rate at which it is

removed, i.e. 2 2Tp

Q"IN = Q"OUT (2) DLv(Pv,o0c-Pv,=)}+ M"Cw _ (5)
kAt steady-state it is assumed that the ice surface

achieves a locally uniform equilibrium In this case the freezing fraction must be very
temperature, T ,rf. Conduction into the ice is slightly.lessthan unity, since the surface is now
assumed to be _r6 and chordwise conduction wet, although it has been taken to be unity for
between adjacent control volume is neglected, this transitional case. The latent heat of

With these assumptions eq. (I) may be written in vaporization, L., is however used to represent the
terms of its component heat terms as evaporative cooling term.

Qfreezing'" = M"{Lf + Ci(O°C - Tsurf )} The local mass flux, M", of droplets
impinging on a body is given by

"" : rhV_ M" = BWV® (6)Qaero heating _ ",,

2Cp QIN Where B is the "local collection efficiency" and
"" = M"V_ is defined as the ratio of the locally impinging
Qdroplet K.E. T mass flux to the freestream mass flux, i.e.

(3) B : Locally Impinging Droplet Flux (7)

Qconvection = h(Tsurf " T=) Freestream Droplet Flux
The local collection efficiency is governed by the

= hDLs/v(Pv,surf - Pv,J QOUT'" ratio of the impinging droplets inertia to the_subl/evap aerodynamic drag on them due to the freestream
k flowfield disturbance created by the body. For

most aircraft icing regimes the local collection

QdropletTM warming = M Cw _T_ efficiency is primarily a function of the cloud
droplet median volume diameter, MVD, and the size
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of the accreting body. Typical values for the
local collection efficiency on the stagnation line ULTRASONICPULSE-ECHOANALYSIS OF AN ACCRETINGICE
of a lOcm diameter (4") cylinder at a freestream SURFACE
airspeed of lOOm/s (230mph) are 0.6 for a cloud
composed of droplets 20 microns in diameter and Figure 5 illustrates the principle of the
0.4 for a cloud of 12 micron droplets. Thus a ultrasonic pulse-echo measureT_nt technique
small body moving rapidly through a cloud of large applied for an icing surface. A small
droplets will have a much higher local collection transducer mounted flush with the accreting
efficiency than a large body moving slowly through surface emits a brief compressional wave, the
a cloud of small droplets. Using eq. 6 allows the ultrasonic "pulse", that travels through the ice
critical condition for transition between wet and as shown. This wave is reflected at the ice
dry ice growth to be expressed as surface and returns to the emitting transducer as

2 2 an echo signal. By measuring the time elapsed

_V {Lf + V_} + rhV : h{(O°C - T ) + between the emission of the pulse and the return

2C-'-p of the echo, the ice thickness over the transducermay be calculated using the appropriate speed of
sound for ice. By repeatedly emitting pulses the

DLv(Pv,OOc -pv,_) + _V Cw _T (8) ice thickness can be constantly measured as ice
accretes on the body; pulses are typically emitted
several thousand times a second, while the time

It is convenient to express the convective elapsed between pulse emission and echo return is
heat transfer coefficient, h, in terms of the on the order of microseconds for ice thicknesses
dimensionless Nusselt number, Nu, where less than 5 cm (2").

Nu = hd (9)
k

With d being the uniced diameter or characteristic
dimension of the body, and k the thermal A_

conductivity of air. Experimental measurements of _-__ _ - _ -'_'_local heat transfer coefficient distributions are _ __ :_,rrT:_ :_
often presented in terms of a power law _

relationship between the Nusselt number and the _'

Reynolds number __

(i0)

Where A and B are experimentally derived
constants. Using eqs. 9 and I0, equation 8 may be SURFACE UtT_A_N_CTRA_OUCER
rewritten in terms of a "critical" impinging
liquid water content, _W (eq(ll) below).

Here the product (BW)_,I_ is the wet/dry threshold

and represents the crlti_al locallY3impinging V_,T_ Wliquid water content (gramms/meter ) necessary to
produce a wet ice surface. If BW is greater than
this critical value the ice surface will be wet
and the freezing fraction will be less than one, "_"
while if BW is less than this critical value the
ice surface will be dry. From this equation it

can be seen that (BW)._ t depends on the assumed "_
values of A and B in _h_ heat transfer coefficient

model. By measuring the locally impinging liquid ----* Ice/_,_
water content, BW, and whether the resulting ice
growth is wet or dry it is thus possible to
compare different heat transfer models (different
A and B constants in eq. I0) and determine which
models best predict the observed wet or dry ice Figure 5. Ultrasonic pulse-echo measurement
growth. The technique used to detect the presence technique.
or absence of liquid water on an accreting ice
surface is described in the next section.

= Aklp-_-_\B| I 1 (O°C - Too)+ DLv(Ov,OOc -_v,_)- rV_(_)crit

_u_ (V---_)I-B -k 2C--p (ii)
2

Lf - Cw _T + V

2O



In addition to obtaining the ice thickness displayed on an oscilloscope. The oscilloscope
from the pulse-echo transit time, the condition of screen was video-taped in order to provide a
the ice surface may also be monitored via the permanent record of the time-dependent echo
characteristics of the ultrasonic echo pattern patterns. The test procedure consisted of

received from _e ice surface. Specifically it lowering the tunnel temperature to the desired
has been found that the echo patterns received icing cloud condition with the water spray off.
from a dry ice surface and a wet ice surface are Once the tunnel temperature had stabilized, the
markedly different. A "single" echo, water spray system was turned on in order to
corresponding to the ice/air interface over the produce a cloud of droplets of the desired size
transducer, is received from a dry ice surface. (median volume diameter). Typically the spray
However during wet ice growth the presence of system was activated for a six minute period,
liquid water on the ice surface creates a after which it was turned off. Photographic and
different, reflective interface, namely that other measurements of the iced cylinder were then
between liquid and air. Thus during wet ice made and the cylinder was completely de-iced
growth the received echo pattern contains an echo before the start of the next run. A total of 36
from the ice/water interface and further, rapidly runs for 15 different icing conditions were
varying echoes from the water/air interface. The performed.
presence of these echoes, which vary due to the
distortion of the water by the impinging droplets Natural Icing Tests
and flowfield, is used to determine if the ice
growth is wet. If only a single echo is received A second series of tests was performed in
from the ice surface then the ice growth is natural icing conditions using a 0.114m (4.5")
determined to be dry. diameter cylinder similarly instrumentedwith

ultrasonic transducers on the stagnation line. An
EXPERIMENTAL FACILITIES AND TEST DESCRIPTION oscilloscope was again used to display the

received echo signals and video-taped as before.
Icing Research Tunnel Tests The cylinder was exposed to the icing cloud via an

experiment carrier mounted in the roof of the NASA

The first series of tests was performed in Lewis Icing Research Aircraft, (De Havilland Twin
the NASA Lewis Research Center Icing Research Otter) shown in figure 8. When deployed, the
Tunnel. A O.102m (4.0") diameter cylinder cylinder was located 0.53m (21") into the
instrumented with ultrasonic transducers was freestream above the roof-line of the aircraft.
suspended vertically from the icing tunnel roof as The cylinder was exposed tgroughout the icing
shown in figure 6. The transducers were located encounter, which typically lasted approximately 20
on the stagnation line of the cylinder. The echo minutes. Throughout the exposure other
signals received from these transducers were instruments mounted on the research aircraft

measured aircraft and icing cloud parameters. In
EXTENSION POST-_._ particular a Johnson-Williams hot-wire probe was

FI used to record cloud liquid water content and a
TESTCYLJNDER_I-I forward scattering laser probe (FSSP) was used toIz"I_"Oi,

ICIN_CLOUO measure the cloud droplet size distribution. Four
separate exposures were conducted in this series
of flight tests.

5MHz. 025"D_aTransdu( IS"x G 5"Dia

Flow 5"

SlOEVIEW

TRANSDUCERS Ice Detectors n \ \ / ",/t-./
(PlRAM _ _ _._"_

6'

F_. _J<_b. _IDr°P letprobes

_. LWCHot_¢re

FRONT vIEW

Figure 7. Test cylinder installation for natural

Figure 6. Test cylinder installation for icing icing flight tests on the NASA, Twin
wind tunnel (IRT) tests. Otter, Icing Research Aircraft.
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Experimental Results & Discussion CylinderOia.: 0.I02m

The limited time available for testing in the _reestream VeL : 102.8m/s

icing research tunnel and the research aircraft Symbol LWC MVDprevented a precise determination of the local
heat transfer coefficient by means of the (g/m]) (_)
experimentally measured wet or dry ice growths o 0'75 20
alone. However, the wet/dry ice growth data _ 0.37 12
obtained can be used to compare the ice growth

predicted by different heat transfer coefficients Open symbol:Wet growth
in the form Nu=A Re and the quasi steady-state
icing model. Recent experimental heat transfer 06 Solid symb_s:Dry growth
coefficient measurements about a bare cylinder by
Van Fossen et al., in support of NASA Lewis' icing _--

research programme are compared in this way. The _ 0.5 _/{bare cylinder is considered because most of the _ o o-- Rough
wet/dry measurements were obtained for relatively /3.5% _rb

small ice thicknesses, and hence the geometry is _ _////Sm°°th

essentially that of a bare cylinder. In the Van m 04
Fossen study heat transfer coefficients were _"
measured for two different freestream turbulence _ /
levels 0.5% and 3.5%, and for two different Rough
cylinder surface conditions, one smooth and one o 0'5_ _rb.

roughened with grains of sand with an average z // _/=Smooth
element height of 0.33mm. The 0.5% freestream _ 02 / /_/
turbulence level was the minimum turbulence level _ //m/ _-._ .achievable in the Van Fossen tests. The 3.5% _ :

turbulence was chosen to characterize the higher 01

turbulence level believed to exist in the icing _/_J'_"

research tunnel. _"
f

Icing Research Tunnel Results 000 j _ j j-5 -10 -15 -20 -25
Figure 8 shows the ultrasonically measured

ice growth for six different icing conditions in CLOUD TEMPERATURE, T=_('C)

the icing research tunnel. The freestream Figure 8. Plot of impinging liquid water content

velocity was the same, 102.8m/s (230mph), for all versus cloud temperature showing
six runs shown. The impinging liquid water ultrasonically measured wet/dry ice
content, BW, was determined from the growth and theoretical wet/dry threshold
ultrasonically measured dry ice growth accretion curves for four different heat transfer
rate, since when the freezing fraction is unity coefficients. (V = 102.Sm/sec
the local ice accretion rate, d, is given by (230mph).

= _ W V (12) coefficients underpredict the actual heat transfer

Pice in the icing tunnel are therefore too low.
In all cases the ice density, was taken to Since only the stagnation region of the
be that of the pure substance.°ice' cylinder is considered, the local heat transfer

Figure 8 also shows the four wet/dry coefficient in this region is less sensitive to
threshold curves calculated using the Van Fossen the surface roughness than to the freestream
heat transfer coefficients. These curves are turbulence level, as can be seen from the four

curves in figure 8. However local surfaceplotted versus ambient temperature and were
calculated for a freestream velocity of 102.8m/s roughness does play a critical role in determining
(230mph), and a cylinder diameter of 0.i02m (4"). where boundary layer transition occurs, and this
The four curves shown thus represent the in turn significantly affects the heat transfer
transition line between wet and dry ice growth distribution around the body and therefore the
calculated for the four different local heat resulting ice shape. Accurate analytic models of

transfer coefficients implied by the Van Fossen the local surface roughness on real iced surfaces
data. If the local impinging liquid water content have not yet been developed; however the local
exceeds this value of (BW) .. for a given ambient surface roughness has been found to vary with both

rl . position on the body and the icing conditionstemperature then the ice g_ow_h Is calculated to

be wet, and if BW is less than (BW)_r__ the ice under which the ice was _ormed. For example, asurface roughness of 2mm has been measured at -8"C
growth is predicted to be dry. Fro_ t_e figure, (+18"F) for ice accreted on a 0.53m chord NACAit can be seen that the heat transfer coefficient
that best predicts the experimentally observed 0012 airfoil, while at -26"C (-15"F) the _urface
pattern of wet and dry ice growth is that measured roughness was found to be less than O.Imm . Thus
for the cylinder roughened with sand and at a while the heat transfer coefficient implied by the
freestream turbulence level of 3.5%. While dry "rough" surface, 3.5% turbulence level
ice growth was observed at -23"C (-10"F) and an. measurements appears to best predict the
impinging liquid water content equal to O.47g/m3, experimentally observed pattern of wet and dry ice
the heat transfer coefficients for the 0.5% growth, this heat transfer "model" may well only

freestream turbulence level clearly imply wet be applicable to the stagnation region and a
growth for these conditions. Thus it appears that different model may apply elsewhere on the
the 0.5% turbulence level heat transfer cylinder.
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A clear understanding of the stagnation
region heat transfer is essential for ice shape
prediction by current analytic icing models.
Since these models assume that all the impinging
liquid not frozen in the stagnation region flows
downstream into the adjacent control volumes (see
fig. 4}, errors in the assumed stagnation region
heat transfer coefficient will significantly
change the mass flux distribution around the body
during wet growth. If for example the stagnation
region heat transfer coefficient used in such an
icing model is less than the actual value, then Cyhnder Di: =0102m

during wet growth the model will overpredict the Symbol LWC MVD
amount of liquid running out of the stagnation (g/m]) (H)
region into the adjacent control volume. This in o 1.05 205
turn may erroneously produce further liquid _ 052 I_
runback from this control volume, when in fact dry : 150 _B
growth is the correct condition for this region, v 0?5 I_
The ice shapes predicted in such a case will be in

poor agreement with the actually observed shape, Opensymb_s=Wet growth
particularly when the feedback process inherent in Solid symb_s=Dry growth
the time-stepped flowfield and droplet trajectory
calculations is taken into account (fig. 2).

0.7 Freestre:m Vel.:71.Sm_

Since the rough surface, 3.5% freestream o o _..Roug_
turbulence heat transfer coefficient appeared to 0_ Mar_n_/ly _'/'35%F_ Turb

best approximate the actual heat transfer 05 l\

occurring in the icing research tunnel (based on "_'--A/__._.• _ 0_
the wet/dry ice surface date from the ultrasonic

tests), this heat transfer power law model _ 03

Nu = 0.2460 Re0"6444 (13) • 02
c_ OT

was compared with other ultrasonic wet/dry ice _ OC
growth data obtained at different tunnel icing • -5 -I0 -15 -20 -25
cloud conditions. Figure 9 shows two plots

similar to figure 8, with impinging liquid water 0Br Freestream Vel.: 49.2m/s . .
content plotted versus ambient temperature. _ O?L _o_gn
Ultrasonic wet/dry ice growth measurements are _ F a = x/_ 3.5_ Turb
shown for two freestream velocities, 71.5m/s _ 06_ Marg,rw=_iy _ /_
(160mph) and 49.2m/s (TlOmph). The impinging - _ Wet __liquid water content, BW, was obtained from the 0.5I

dry growth accretion rate, where available, or by 0_i __-_
calculation of B for those cases where only wet or 03
marginally wet ice growth was observed. The

wet/dry threshold curves calculated using the 3.5% 02_ x/_'_\__\_'I____

turbulence, rough surface heat transfer 01
coefficient are plotted.

0°0 -5 -T0 -_5 -20 -25
The 3.5% turbulence level, rough surface heat

transfer coefficient correctly predicts all three CLOUD TEMPERATURE. T ('C)
observed dry ice growth cases. In addition, the
two marginally wet cases observed suggest that the

heat transfer over the ice surface may in fact be Figure 9. Plot of impinging liquid water content
even greater than that implied by the 3.5% versus cloud temperature showing
turbulence model. This would be consistent with ultrasonically measured wet/dry ice
the experimental results shown in figure 8 where growth at two additional free stream
dry growth was observed in one case while the 3.5% velocities and the theoretical wet/dry
turbulence heat transfer coefficient predicted threshold curve for the 3.5% turbulence

slightly wet growth, level, rough surface, heat transfer
coefficient.

Based on the results presented in figures8
and 9 it appears that the heat transfer
coefficient model that best approximates the
actual heat transfer occuring in the icing
research tunnel is the 3.5% turbulence level,
rough surface model. The actual heat transfer
coefficient is clearly greater than those
applicable at the low (0.5%) turbulence level and

may be even greater the high (3.5%) turbulence
level value.
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Natural Icing Cloud Test Results Flight 85-24

Dry : Dry ice growth
While constant icing conditions were Wet: Wet ice growth

maintained throughout each exposure in the icing
research tunnel, the natural icing cloud Tr. : Transitional ice growth
conditions, most noticeably the liquid water
content, were not constant throughout each flight.

Figure I0 shows a plot of cloud liquid water _ 0.8
content versus exposure time for research flight _ F A . _
85-24. The liquid water content was measured by a 06

Johnson-Williams hot-wire probe located near the ; _4
nose of the aircraft (see figure 7). Also shown,
are the experimentally observed periods of dry, _ 0.2
wet and transitional ice growth, produced by the 00
varying impinging liquid water content. The 2 4 6 B 10

ultrasonic echo patterns received from the EXPOSURE TIME.t (MINUTES)
accreting ice surface were used to determine if
the ice growth was wet, dry or transitional. Ice
growth was characterized as transitional when the Figure 10. Plot of liquid water content (measured
ultrasonic echoes received from the ice surface by the Johnson Williams probe) versus
displayed neither predominantly dry nor wet echo exposure time for flight 85=24 showing
patterns, typical fluctuations observed in

natural icing conditions. Also shown
Since the thermodynamic model used to compare are ultrasonic measured periods of wet,

heat transfer coefficients assumes a quasi dry, and transitional ice growth.
steady-state icing process, and since the cloud
liquid water content varied significantly
throughout each exposure, a simple, steady-state
"time constant" was estimated. This time constant
was then applied as a criteria for comparing the CylinderDia.:O114m
ultrasonic data with the wet/dry growth regimes _. Freestream_I.:71.4m_
predicted by the steady-state model. A time At Altitude: 1613m
constant of ten seconds was selected based on the
transient thermal response of a thin ice layer and Symbol FlightNO.
on the time response of the Johnson-Williams _ 85-22
liquid water content measurements. Therefore only _ 85-23
liquid water content levels sustained for greater o 85-24
than ten seconds were used in the categorization : 85-25

of ice growth as wet, dry or transitional.

o6F Open _mbols:Wet growth

Figure II is a plot of impinging liquid water _ I Solidsymbots:Dry growth J-Rough

experimentally observed ice growth regimes during 05 ,
the four research flights conducted are shown. Smooth
Note that during flights 85-24 and 85-25 the Full

range of ice growth regimes was encountered with 0.4I / /periods of dry, transitional and wet ice growth

observed. No dry ice growth was observed during _ | Weft" / /" /Rough
flights 85-22 and 85-23. Also shown are the four i _/ / ./.05% Turb
wet/dry threshold curves calculated using the four _ 0.3h _ / _/_-

/ Tr_ • / / _mooth

different Van Fossen heat transfer coefficients I //_/,_// /(0.5% turbulence, rough and smooth surface; 3.5%

turbulence, rough and smooth surface). These ._ //,//_j_j,_curves were calculated for the test cylinder _ 0.2

diameter of O.l14m (4.5%")and for the average _ l T _/_//_i

(85-22 to 85-25) flight airspeed of 71.4m/s 011 ,_ f

(160mph) and the average exposure altitude of

1613m (5292'). O0 "_ i I
Figures 10 and 11 illustrate the considerablp ; ' J- 0 -5 -10 -15 -20 -25

variations encountered in natural icing
conditions, both during a particular flight and CLOUD TEMPERATURE, T_ ('C)
between flights conducted on different days. For

example, the cloud temperature, liquid water Figure 11. Plot of impinging liquid water content

content and droplet size were roughly comparable versus cloud temperature showing wet,
for flights 85-24 and 85-25. However, different dry and transitional ice growth regimes
ranges of wet and dry ice growth were observed, as observed in flights and theoretical
indicated by the overlapping experimental wet and wet/dry threshold curves for four
dry growth ranges at the same impinging liquid different heat transfer coefficients.
water content. The implication is that the heat
transfer differed between the two flights, both at
nominally similar icing conditions, but conducted
on different days through different clouds.
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From the figure it can be seen that for 3..By comparing experimentally measured wet or dry
flight 85-25 the high (3.5%) turbulence level heat ice growth with wet/dry thresholds predicted by
transfer coefficients overpredict the observed different heat transfer coefficients it ispossible to infer heat transfer coefficient
heat transfer, based on the steady-state model
analysis. For this flight the low (0.5%) values for an iced surface in icing conditions.

turbulence level heat transfer coefficients appear 4. The heat transfer occurring during initial ice
appropriate since both of these coefficients growth in the icing research tunnel appears to
correctly predict the observed wet and dry be best modelled by Van Fossen's 3.5%
regimes. The actual turbulence level applicable freestream turbulence level, rought surface
could be even less than 0.5% based on the location heat transfer model for a bare cylinder. The
of the observed wet and dry growth regimes, actual heat transfer coefficient may be

slightly in excess of the values predicted by
The experimentally observed ice growth this model.

regimes during flight 85-24 are consistent with
the wet/dry threshold predicted by the 3.5%
turbulence level, rough surface heat transfer 5. During natural icing cloud encounters
coefficient. For this flight the low (0.5%) conditions are not constant and as a result
turbulence level models incorrectly predict wet periods of wet, dry and transitional ice growth
growth for impinging liquid _ater content levels may be observed within a single encounter.
where dry growth was experimentally observed.
Thus, in contrast to flight 85-25, the low 6. The heat transfer occuring during initial ice
turbulence level appears to be too low, and the growth in natural icing conditions has been

inferred to vary between that predicted at the
3.5% turbulence level model gives acceptable 3.5% Freestream turbulence level and the 0.5%

results, level, using Van Fossen's data.

The results of these tests highlight the 7. Due to variations in natural icing cloudeffect of variations in icing conditions which are
inherent in all natural icing encounters. Ice conditions care should be taken in

extrapolating results from icing wind tunnelsgrowth may thus vary from wet to dry during a
particular encounter as the impinging liquid water to "similar" natural icing cloud conditions.
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INVESTIGATION OF AIR TR_NSPORTATIO_ TECHNOLOGY

AT OHIO UNIVERSITY, 1986

Richard H. McFarland

Avionics Engineering Center

Department of Electrical Engineering

Ohio University
Athens, Ohio

INTRODUCTORY REMARKS

Several important goals were achieved with the work supported by the Joint

University Program during 1986. Among these goals is the first DC-3 flight with
a Navstar Global Positioning System (GPS) receiver collecting positional data

and allowing comparisons with simultaneous collected data from the Long Range
Navigation system Loran-C. The principal purpose for this instrumentation was

to learn of the detailed characteristics evident in the Doppler frequency shift

from signals being received onboard an aircraft in flight (ref. I).

This work was correlated with a thesis effort by a student who

demonstrated the feasibility of using a despread spectrum technique to obtain

positional information from GPS without knowledge of the code (ref. i). By
using Doppler information rather than range measurements one can also obtain

positional information. The theory was mechanized by building a eorrelator and

delay llne which allowed a demonstration in the laboratory that the concept was

indeed valid. The student has subsequently taken a position with an organiza-
tion which is interested in extending this work.

Work with both GPS and Loran-C at Ohio University motivated the study of
the use of Loran-C to augment the GPS capability. Especially in the present

time frame when there are but a few satellites in orbit, additional navigational
data are desirable_ and these can come from a Loran-C station. This augmenta-

tion is expected to be useful for monitoring and integrity checking of GPS
signals.

A completion of the Digital Autonomous Terminal Access Communications

(DATAC) work has been achieved. This began with a student intern in residence

at Langley Research Center. More systems in aircraft dictate more efficient

and effective communications between units. The Airlines Electronic Engineer-

ing Committee of ARINC has evaluated comments concerning such a data bus which

they consider as having the potential for improving integrity such that no
single point terminal failure would significantly degrade the integrity of the
data bus.

A continuing effort has been under way in collecting Loran-C data

(ref. 2). The purpose of this is to learn of the variations in positional

information as a function of the seasons and weather. Quantifying the grid
shifts in the Ohio area has been achieved (ref. 3).
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An investigation is beginning on the use of automatic data transfer from
ground stations to an airplane. Particular emphasis is on handling weather

data. A specific goal is for the system to be extremely efficient principally

because of the limited radio frequency spectrum available for such use and the
tremendous amounts of weather data that will soon become available with the

central weather processor and Next-Generation Weather Radar (NEXRAD) systems

that are now being developed.

Finally, work has begun on reliability assessment of avionics equipment.
The need for high reliability is well known. Many current items used in

aviation, general aviation in particular, are plagued by unacceptable high

failure rates. The increase in the use of more complex avionics to achieve

landings with lower aad lower landing minima (Category III) makes it imperative

to improve reliability. This will be stressed through design approaches (ref.

4).

This year has been fruitful and beneficial to the participants of the
program. Ohio University continues to feel strongly that this Joint University

Program and engineering investigation is extremely valuable to its students who

have the opportunity to become thoroughly involved with contemporary engi-

neering.

ANNOTATED REFERENCES

i. Laube, J. P.: An Investigative Study of Blind Despreading and Doppler
Tracking Using Autocorrelation. Ohio University, Department of Electrical

Engineering, Master's Thesis, June 1986.

A simplified approach to detection of signals from an existing satellite
navigation system is presented, which offers flexibility and po§sible use on
several similar systems. A brief history and general overview are provided,

developing the desirability of the technique described. The concept is pre-

sented analytically and experimentally verified. Results show conclusively

that autocorrelation of a spread spectrum signal can occur, even when the
signal is below the noise floor. The detection of this signal can provide

Doppler information. This Doppler information can provide position data

with low-complexity circuits. Knowledge of the signal spreading code is not

necessary, which allows for inter system compatibility and freedom from

losing code privileges due to government policy decisions.

2. Edwards, J. S.: F_/OHIO University Loran-C Monitor. Ohio University,
Avionics Engineering Center, Interim Data Reports No. 6 through I0, Report

No. OU/AEC 1-86TM-TRIUI04-108, April 1986.

These reports contain Loran-C monitor data which are subject to further
processing. The data are provided to, interested parties as preliminary

information only.

3. Lilley, R. W., and Edwards, J. S.: Loran-C Monitor Correlation Over a
92-Mile Baseline in Ohio. Proceedings of the WGA 15th Annual Technical

Symposium, New Orleans, Louisiana, 21-24 October 1986.
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Two Loran-C monitors, at Galion and Athens, Ohio, were operated over a

one-year period, measuring chain 9960 Time differences (TD) and Signal to
Noise Ratios (SNR). Analysis of data concentrated on correlation of short-

term TD variations during the winter months of 1985-86, over the 92-nm base-

line. Excellent correlation was found, with slight additional improvement
possible if local temperature is also included in the analysis.

4. Alikiotis, D. M.: Discrete Markov Chain Compression Method. Ohio

University, Avionics Engineering Center, Report No. OU/AEC 6-86TM TRIUI09,
June 1986.

This paper presents a method for dealing with the problem of the combi-

natorial explosion of the Discrete Markov Chains when a complex system is

analyzed. A comparison between the standard Markov process or model and the

Discrete Markov Chain Compression Method is also presented.
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LORAN-C MONITOR CORRELATION OVER A 92-MILE BASELINE IN OHIO

Robert W. Lilley and Jamie S. Edwards

Avionics Engineering Center

Ohio University

Athens, Ohio

Abstract

Two Loran-C monitors, at Galion and Athens, Ohio, were operated

over a one-year period, measuring chain 9960 TD and SNR. Analysis of

data concentrated on correlation of short-term TD variations during the
winter months of 1985-86, over the 92-nm baseline.

Excellent correlation was found, with slight additional improvement

possible if local temperature is also included in the analysis.

Although SNR and TD effects were suspected during the presence of thun-
derstorms near the monitors, the scope of the study did not permit storm-

by-storm analysis. This is a necessary area for future work.

A computer tape data base of all measurements was produced, with

measurements at both sites included. Data recording and analysis con-

centrated on the fall and winter months of September 1985 through
mid-February 1986.

Background

Following a measurement study [I] to determine the suitability of

Loran-C signals at Gallon, Ohio, for instrument approach support, a
ground monitor was installed to obtain data on signal variations at the
site. The monitor consisted of a Northstar 6000 receiver linked to a

small computer, driving a digital tape recorder [2]. An uninterruptible

power supply was provided after discovery of frequent momentary power
outages at the site. Subsequently, a monitor using an ARNAV AVA-1000

receiver was installed at Athens, Ohio, approximately 92 nm south of
Gallon.

Galion monitor coordinates were determined by theodolite and laser

ranger measurement from the runway threshold benchmarks surveyed for the
initial study [I]. At Athens, a survey combining trans-located TRANSIT

measurements with conventional ground survey techniques was used.

Expected TD values were then determined using the FAA Airport Screening
Program [3, 4].

Various investigators have measured the long-term seasonal

variation and have compared techniques for modeling the observed pheno-
mena [see, for example, 5]. For the work reported here, shorter term
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variations were emphasized, while the entire measurement data base was

preserved for combination with others data for subsequent analysis as
desired.*

Short-period variations may be caused by thunderstorms in the

vicinity of the monitor, in which case SNR values fall due to increased
local noise. The TD noise then also increases, reducing the reliability

of the measure over a period of minutes or hours, but generally retaining

the longer term mean value. Variations with weather system movement as

the suspected cause occur over a period of hours or days, depending upon

weather dynamics. For this study, the Loran-C sample period was
extended to one hour by averaging to permit comparison of general

weather effects. Raw data plots were inspected for evidence of storm-
related variations.

Short-period TD variations are important, although generally
smaller than seasonal variations. Refinement of Loran-C instrument

approaches in the future through pseudo-differential use of monitor data

will require knowledge of these TD movements. Storm-related SNR effects

on TD quality are of concern both because of the resulting monitor out-
put TD noise and because the storm is simultaneously affecting the air-

borne receiver. Differences between monitor and navigation receiver

response to the impulse noise could well cause divergent TD values,

accentuating position errors.

Data Collection

The two monitors were operated simultaneously during the winter of

1985-86. Each unit was designed to record all TDs and SNR values for

Loran-C chain 9960 at approximately one-minute intervals. Tape

recording limitations at the Athens site prompted a 5-minute interval
for this monitor. Each measurement was time-tagged with date and time

to one second. Initial results were reported in graphical form [4, for

example], and computer tapes were aggregated into a complete data base

for subsequent analysis.

At Galion, some 301,000 observations were recorded, most during

the months of August 1985 through mid-February 1986. A subsequent

recording session was performed during April 1986 to confirm that TD
values had returned to warm-weather values observed in mid-1985.

At Athens, 29,000 measurements were recorded during a period

bracketing the Gallon monitor's operation.

Data Review

An overview of the data plots shows the anticipated seasonal variations,

plus interesting short-term features. Thunderstorms in the Galion local

area may have produced SNR reductions in all primary-triad (MYZ) measurements,

but time and scope permitted only a partial analysis of these data. These
local events were characterized by highly variable SNR in all three

*The tape data were delivered to the DOT Transportation Systems Center,

Systems Evaluation Division, Cambridge, MA.
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traces, with reductions of as much as -12 dB, lasting generally for I-2
hours. The TD variations in both M-Y and M-Z were ± 0.25 to ± 0.5 Dsec

during strong events. Receiver cycle slips did not occur, likely due to

the short-pulse nature of the noise. The TD effects were noisy in

character, with the mean value remaining at the pre-event position.

Hurricane Gloria, moving up the U. S. east coast in late October

1985, apparently caused selective reduction in the Carolina Beach (Y)
trace of up to 6 dB, leaving Dana (Z) and Seneca (M) unaffected.

It is evident from the data that local noise events can cause moni-

tor data variations which would cause no-go approach indications. S_ch

noise may originate with thunderstorms; this was not determined in all

cases at Gallon. The magnitude of such variation will be dependent upon

the characteristics of the monitor receiver used. It is important to

determine the effects of this type of interference on the receivers to

be used in FAA approach monitors so that output data processing can

minimize false no-go indications. If storms are the cause of these

events, a single storm near the monitor could shut down approaches over

a large area. A mosaic algorithm, using more than one monitor, may be
necessary.

Effects of SNR on TD quality were considered for the MYZ triad at

Galion (refer again to figure i, at non-storm periods). The master SNR

varied from +5 dB during the day, to +3 dB at night. The M-Z TD, with

Dana signals at +5 dB day and +3 dB night, showed variations of

generally less than ± 0.1 _sec., even at night, as expected for these

high SNR values. No significant day/night bias is evident.

The Carolina Beach (Y) signal varied from +3 dB day to -6 dB night,

and the TD varied approximately ± 0.05 _sec day and ± 0.i _sec night.

These observations indicate TD position noise of less than 100 feet

short-term, and are typical of the total observation period. It should

be possible to relax the 0 dB SNR requirement for Loran-C approaches

once experience is gained with the actual monitor receivers.

Non-primary TDs from Caribou and Nantucket evidenced position

variations of from ± 1,200 to 2,400 feet at -12 dB, and of ± 400 feet at

-8 dB, respectively. Poor geometry and low SNR combine to disqualify
these TDs in Ohio.

Figure 2 shows an example of TD variation with movement of weather

systems. This observation led to the temperature correlation discussed

in the next section. A TD shift of nearly 0.25 _sec occurred, with the
peak variation coincident in time with the passage of a strong cold

front (temperature drop of > 30 degrees in approximately 12 hours). The

lowest temperature of 20 degrees F occurred at 0000 on day 337.

Temperatures then recovered to pre-frontal levels over the next nine
days.

This weather-related effect is most pronounced during the winter

and appears to introduce most of the short-to-medium term variation in

the signal.
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Correlation of Monitor Data

Some insight into the range of validity of Loran-C monitor data may

be obtained from the correlation of Athens and Gallon monitors' output.

Located 92 nm apart on essentially a north-south llne, these two moni-

tors produced highly correlated outputs, as may be seen in general from

figure 3. Tables I and 2 give the comparisons in more detail.

Gallon TD =

XI = Gallon TD or SNR Athens TD (A) + Athens Temperature (B)

X2 = Athens TD or SNR
A B

X4 = Athens Temperature
MW 0.819 0.153
MX 0.769 0.213
MY 0.769 0.213
MZ 0.769 0.213

r 12 r12.4 r14.2

MW 0.952 0.806 0.247

MX 0.954 0.802 0.341 1 I
MY 0.954 0.801 0.339 MULTIPLECORRELATION
MZ 0.954 0.801 0.337
SNRM 0.954 - -
SNRW 0.888 - -
SNRX 0.937 - - Quality of Prediction Based on Actual Gallon TDI
SNRY 0.950

SNRZ 0.955 - R1.z4 RZ,.z4 rSlz

n • 1072 n - 32 MW 0.955 0.913 0.906
MX 0.960 0.922 0.910
MY 0.960 0.922 0.910

Data Is for January 15 through February 16, 1986 MZ 0.960 0.922 0.010

Table 1 Table 2

Correlation and Partial Correlation Regression and Prediction

Figure 3 is a plot of the l-hour averaged data from Gallon and

Athens monitors from January 15 through February 16, 1986. The period

was chosen to illustrate typical wlnter-months movement of a TD. A

range of nearly 0.5 _sec is seen at both locations.

Table I shows results of simple correlation between Gallon and

Athens, on TD and SNR values. As shown, high positive correlation is

shown in all cases, with a correlation coefficient r(12) above 0.95 for

all TDs. Partial correlations r(12.4) and r(14.2) indicate the degree

to which Athens TD and Athens temperature account for variance in Gallon

TD, with the third variable held constant. These partials are required

for computation of the regression coefficients.
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In Table 2, the linear prediction equation is developed. The Galion

TD value is predicted from Athens TD and temperature, 92 nm away. Coef-

ficients A and B indicate the weight given to each of the predictor

variables. As expected, the Galion TD is much more closely related to

the Athens TD than to the Athens temperature as indicated by the high A
values and the low values for B.

Table 2 concludes with the multiple correlation, giving an index of

quality for the prediction. The predicted TD values from the regression
equation are compared with actual Gallon data. R(1.24) indicates the

coefficient of multiple correlation for each TD using the linear predic-
tion equation A and B values. The square of this coefficient is the

coefficient of determination, which can be interpreted as "... for TD

M-W, 91.3% of the variation at Galion is accounted for by variations at

Athens ...", for example. The degree to which temperature helps the

prediction may be shown by the square of r(12), shown in the last column

of Table 2. In the M-W case, 90.6% of the Galion variation is accounted

for by simple correlation with Athens, ignoring temperature altogether.

The result is an improvement of less than one percent when temperature
is considered.

The fact that coefficients for M-X, M-Y and M-Z are identical is

coincidental and flows from the fact that r(12) was the same in each
case.

The data show good correlation over a baseline similar to that

which has been proposed for FAA monitors. Note that the correlations

performed here use approximately one month's data and thus will not be
sensitive to longer term seasonal variations.

Conclusions

Local thunderstorms may have caused receiver-output variations. A

single storm could shut down Loran-C approaches over a large area,
unless overlapping monitor coverage permits alternate monitor con-
sideration.

The data indicate minimal TD quality derogation with negative SNR
as low as -6 dB at a secondary, with high positive SNR at the master.

Further consideration to permitting approaches, even with monitor SNR

values below zero, is warranted. The TD variations with SNR tend to be

zero-mean noise, with minimal day/night bias present.

Over the 92-nm path tested in Ohio, correlation of short-term TD

variations is good, and some additional improvement is obtained by
including temperature in the computation. The increase is small and

does not warrant instrumenting monitors for temperature measurement.

Recommendations

For the primary triad in Ohio, TD data show few ill effects of SNR

as low as -6 dB. Consideration should be given to relaxation of the 0

dB monitor SNR requirement for Loran-C instrument approach initiation.

39



While TD data show excellent correlation over the 90-mile baseline,

it should be noted that the north-south orientation may contribute to

this positive correlation, since both monitors are affected by typical

weather patterns at nearly the same times. A similar east-west baseline

distance should be similarly measured and analyzed.

If weather effects are to be measured in subsequent tests, con-

sideration should be given to humidity as a variable, rather than tem-

perature. Also, this measurement should be automated and recorded at

intervals similar tO the Loran-C samples.

Specific measurements should be carried out to characterize short-

term monitor effects caused by thunderstorm activity. Ground-based

Stormscope and NWS weather radar data could be used as independent-

variable measures.
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DATAC BUS MONITOR

Stanley M. Novackl, III and Robert J. Thomas, Jr.
Ohio University

Athens, Ohio

INTRODUCTION

The Digital Autonomous Terminal Access Communications (DATAC) bus is a

multiple transmitter data bus developed by the Boeing Company to interconnect

various aircraft systems. Figure I shows a typical DATAC bus installation for

the NASA B-737 aircraft. Essentially a local-area network for use aboard air-

liners, it uses Carrier-Sense, Multiple Access with Collision Detection (CSMA/CD)
protocol. This means that operation of the bus relies on each system that uses

a certain set of rules when it "broadcasts" a message via the bus. In the

simplest mode of operation, each system listens to determine if the bus is

currently in use. If no bus activity is detected, each system enables a counter

with a unique value. The first counter to reach its terminal value assumes the

right to broadcast over the bus and transmits its data. When the other terminals

detect this bus activity, even if their respective timers are active, their

timers are reset and are disabled until bus inactivity is again detected. When

the current broadcasting system has concluded its transmission, its timer is

disabled until all other systems have broadcast. This ensures that one system

will not monopolize the bus. The system with the next shortest terminal count

will expire next, and it will access the bus. The process is repeated until all

systems have had the opportunity to transmit. After all stations have

transmitted their messages, the process repeats itself.

A liability of this autonomous protocol is that it is not possible to
interrogate a specific subsystem to determine its current operating condition.

This would be particularly useful during bus development and testing. Should

problems arise with a DATAC system, it would be useful to have a system which

would enable an operator to identify which systems are using the bus and the

data that they are transmitting. Having an independent means to monitor bus

transactions would help in locating problem areas on the bus.

BUS MONITOR UNIT DEVELOPMENT

A bus monitor unit has been developed for the DATAC data bus. The bus
monitor unit consists of two systems: a Zilog Z8002-based SIO0 bus microcom-

puter system that connects to a DATAC terminal and receives data appearing on
the bus, and an IBM PC-compatible computer used to display and interpret that

data. The bus monitor unit configuration is shown in figure 2. The Z8002

system receives data from the DATAC terminal by way of a ZBUS-to-SIO0 interface.

The DATAC terminal presents data using the Zilog ZBUS component interconnect
specification. The interface circuit translates the ZBUS data transfer signals

to their SI00 counterparts, allowing the bus terminal to deposit data into the

Z8002 systems Random Access Memory (RAM) using a Direct Memory Access (DMA) type

operation. Once the data has been received and identified by the Z8002 system,
it is transmitted to via a 9600 blts-per-second RS-232C serial data llnk to the

MS-DOS system, which can analyze, display, and store the data.
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This bus monitor unit is able to process a maximum of 24 words of data

during the 50 milliseconds data repetition rate of the Mode A operation and a

maximum of four words during the I0 milliseconds repetition rate of Mode C. The

total number of words possible during either the 50 or I0 milliseconds repeti-

tion rates is contingent upon the number of systems that are using the bus, but

it is possible to estimate the maximum number of words appearing on the system
by dividing the frame repetition rate by 20 microseconds to transmit a word

across the bus. For example, 50 milliseconds per frame divided by 20 microse-

conds per word would yield 2,500 words per 50 milliseconds frame. This is a

high estimate, since the label words used by each bus system take 24 microse-
conds themselves to transmit and be processed.

The limiting factor in processing the data is the relative slowness of the

serial data link between the Z8002 and MS-DOS systems. The serial link was cho-

sen because a CP/M computer with a closed architecture was originally chosen to
serve as the console device for the SI00 system. Because of its closed archi-

tecture, RS-232 was the only way to transmit data between the two systems. The

CP/M system failed and was replaced by the MS-DOS system. Rather than redesign
major parts of the system to accommodate a faster llnk between the two systems,
the bus monitor unit was completed using RS-232 and then evaluated.

CONCLUSIONS AND RECOMMENDATIONS

Because of the general nature of the bus monitor unit, it is desirable to

process large amounts of data in real time. Test results of the existing bus

monitor have indicated areas for improvement. The most obvious improvement is

to increase the speed of the data transfers between the SIO0 and MS-DOS systems.

This could be achieved by using a bidirectional 16-bit port between the two com-

puters. Such a port would improve the data transfer rate by nearly an order of

magnitude. An expensive but more flexible approach would be to revise the

design of the system to incorporate the Z8002 system into the MS-DOS system

enclosure. The SS-62 bus used by most IBM PC-compatible computers provides

several DMA channels which would be used for even hlgher-speed data transfers
between the SI00 and MS-DOS systems. This approach simplifies the overall

system design by consolidating the entire unit into a single chassis with a

single power supply and one set of support peripherals. The high throughput

available with a DMA-type transfer could make real-time analysis and reconsti-

tution of large amounts of data possible, a highly desirable feature for the
bus monitor unit.
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INTEGRATED MULTISENSOR NAVIGATION SYSTEMS

Frank van Graas

Ohio University

Athens, Ohio

BACKGROUND

The multisensor navigation systems research evolved from the availability
of several stand-alone navigation systems and the growing concern for aircraft

navigation reliability and safety. The intent is to develop a multlsensor navi-

gation system during the next decade that will be capable of providing reliable

aircraft position data. These data will then be transmitted directly, or by
satellite, to surveillance centers to aid the process of air traffic flow

control. In order to satisfy the requirements for such a system, the following
issues need to be examined:

- Performance

- Coverage

- Reliability

- Availability

- Integrity

The presence of a multisensor navigation system in all aircraft will improve
safety for the aviation community and allow for more economical operation.

COMBINED GPS, LORAN-C, AND ALTIMETER

For the development of an integrated multisensor navigation system several
navigation sensors were considered including the Long Range Navigation System

(Loran-C), the Global Positioning System (GPS), an Inertial Navigation System

(INS), and an altimeter. Based on system cost and complexity, signal charac-
teristics and sensor accuracies, the inertial sensors are omitted from the ini-

tial design. Although the use of inexpensive inertial sensors can reduce the

variance of the position solution error, the overall position accuracy still
depends on the absolute position sensors such as Loran-C and GPS.

During last year, a GPS receiver (FAA Experimental Dual Channel GPS
Receiver), a Loran-C receiver (Texas Instruments 9900), and an altimeter were

installed in the DC-3 research aircraft. Figure I shows the functional block

diagrams of the equipment. Data from the navigation sensors is stored on magne-
tic tape for post test analysis. The GPS receiver was initially installed to
provide verification data for a codeless GPS tracking scheme developed under the

FAA/NASA Joint University Program (JUP) (ref. i). Loran-C receiver and applica-
tion technology has been part of the JUP at Ohio University since 1976.

The navigation sensors were flight-tested during June 1986. The flight
test results provide novel capabilities for a direct comparison between GPS and

Loran-C. Figure 2 shows the ground track results for a typical data collection
flight across southern and central Ohio on June 22, 1986. The duration of the

flight was 24 minutes and contained two turns at an altitude of 12,000 feet.
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Figure 3 shows the navigation solution differences between GPS and Loran-C in
the East direction and figure 4 shows the differences in the North direction.

The cause of the larger differences during the two turns is illustrated in

figure 5. This figure shows the ground tracks for GPS and Loran-C during the
second four-minute turn. From this figure it can be concluded that the Loran-C

navigation solution lags in time due to a larger time constant used in the navi-

gation filter. Even with the lag in the Loran-C solution, differences between
GPS and Loran-C were typically less than 0.15 nmi during the flight. However,

the stand-alone use of both systems does not provide optimal navigation and

failure detection capabilities.

Original techniques were developed during the last year for a fully
integrated GPS/Loran-C navigation system. Loran-C will be used in the ranging

mode providing ranging accuracies on the same order of magnitude as GPS range

measurements. In addition, the integrated system will have the following advan-

tages compared to a combination of stand-alone GPS and Loran-C:

- Larger coverage area: degraded satellite observability can be compensa-
ted for by one or two range measurements to Loran-C stations.

- More measurements are available than necessary for the navigation solu-

tion allowing for user autonomous failure detection and system monitoring.

- The integrated system is expected to meet the requirements for sole
means random navigation (RNAV) systems and nonprecislon approaches.

FUTURE RESEARCH

Next year's multisensor navigation research will be focused on the
following areas:

- Realize Loran-C direct ranging.

- Combine receiver clocks for GPS and Loran-C.

- Ground test Loran-C receiver.

- Integration of high-quality altimeter data.

- Computer simulations to predict the performance and coverage of the
integrated GPS/Loran-C navigation system.

- Flight experiments with ground-referenced tracking.

The sensors involved in the flight experiments are GPS, Loran-C, and an
altimeter. For this experiment, the hyperbolic Loran-C receiver will be

replaced by a ranging receiver, most likely the Racal Megapulse Accuflx 500.

Aircraft data will be referenced to measured positions obtained using the

Ohio University ground tracking system. The data will then be post processed on

the ground to prove the multisensor navigation concepts.
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Successful flight tests of the integrated GPS, Loran-C, and altimeter
system will be used as a basis for further multisensor navigation system

research. Algorithms for efficient integrity checking will be developed and

implemented. An inertial measurement unit will be added to the system to reduce
position noise and also to aid failure detection algorithms.

REFERENCES
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INTEGRATED AVIONICS RELIABILITY

Dimitri Alikiotis

Ohio University
Athens, Ohio

INTRODUCTION

The integrated avionics reliability task is an effort to build credible

reliability/performability models for multisensor integrated navigation and

flight control. The 1986 research was initiated by the reliability analysis of

a multtsensor navigation system consisting of the Global Positioning System
(GPS), the Long Range Navigation system (Loran-C), and an inertial measurement

unit (IMU). Markov reliability models were developed based on system failure
rates and mission time.

Figure I shows the mechanization of the multlsensor navigation system
based on GPS, Loran-C, and an IMU. Each sensor is implemented with triple
redundancy. The decision making logic determines which sensors are to be used

for navigation based on the Kalman filter residuals. Figure 2 depicts the state
transition diagram for the multisensor system. The corresponding 16-state

Markov model is shown in figure 3, with the assumption that no repairs are made
during system operation.

In order to obtain position information from the IMU both the accelero-

meters and the gyros are needed. Using this information, the state transition

diagram can be reduced to eight states as depicted in figure 4. The

corresponding reduced Markov model is shown in figure 5. From the state tran-

sition matrix the stochastic probability matrix (SPM) can be obtained. The ele-

ments of the SPM represent the probabilities that the system will remain in a

certain state (diagonal elements) and the probabilities that the system will

make a transition to another state (off-diagonal elements). The SPM for the

integrated navigation system is given in figure 6 along with the reliability
formulas.

Starting the system from the initial state probability vector P(0), the
state probabilities for some time later can be found by multiplying the state
probability vector by the stochastic probability matrix. The number of

multiplications is determined by the quotient of the mission time and the time

interval between state updates.

As an example, consider the configuration as depicted in figure 1 and
assume that the mean time between failure for each sensor is equal to 4,500

hours. It then follows that the probability of system failure during a mission
with a duration of one hour is approximately one part in one hundred billion.

DISCRETE MARKOV CHAIN COMPRESSION METHOD

Markov analysis is based on the Stochastic Probability Matrix (SPM). The
dimension of the SPM is determined by the nth power of two, where n is
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the number of sensors in the system. For example, if a system consists of
eight sensors, the dimension of the SPM is 256 by 256. Manipulation of
matrices of this size is rather complicated.

A solution to the manipulation of large stochastic matrices was found
by separating the sensors into statistically independent sets; i.e. the
Discrete Markov Chain Compression Method (DMCCM). Figure 7 illustrates the
DMCCM, the sensors are separated in sets and individual Markov models are
made for the corresponding sets. The output of each smaller Markov model
represents the failure probability for the given sensor set. All those
outputs are merged into smaller size models again, until a single output is
produced. The final (single) output represents the failure probability of
the last system state for the specified mission time. This is also the

probability that the system will have a total failure during the given

mission time. A detailed description of the DMCCM can be found in
reference 1.

FUTURE RESEARCH

Next year's reliability effort is defined with input from NASA

Langley Research Center. This effort deals with the creation of a generic
reliability tool for flight control systems operating in tile terminal area.

Figure 8 shows a multisensor flight control baseline system for terminal

area guidance. The reliability model for this system is depicted in figure

9. The attitude, air data, and navigation aids are in series for the

reliability evaluation since the system will fail if any of these three

components fails.

In addition to the evaluation of a more complex avionics system, the

system will also be allowed to incorporate fault detection and isolation
(FDI) techniques (ref. 2). Adding FDI to the system increases the

complexity of the reliability evaluation tremendously. This is illustrated

in figures 10 and 11. Figure 10 shows the Markov model for a two-sensor

system without FDI. Adding probabilities of fault detection, isolation,

transient recovery, false alarm, and damage results in the Markov mode]

shown in figure 11.
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TRIPLE MODULAR REDUNDANCY
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Figure I. Multisensor navigation system mechanization for reliability
analysis of an integrated GPS, Loran-C, and inertial
measurement unit system.

STATE DEFINITION

1 GYROS, ACCELGPS, LORAN

2 GYROS. ACCEL,GPS, LORAN

3 GYROS, ACCEL,GPS----.LORAN

4 GYROS, ACCEL,GPS, LORAN

5 GYROS.ACCEL,GPS. LORAN

6 GYROS. ACCEL,GPS, LORAN

7 GYROS, ACCEL,GPS, IX)RAN

g GYROS, ACCE---'_.GPS,LORAN

9 GYROS.^CCEL, GPS, LORAN

10 GYRO''"_,ACCEL,GPS-'_,LORAN

11 GYROS, ACCEL, GPS, LORAN

12 GYROS, ACCEL,GPS, LORAN

13 GYRO'-"S,ACCEL, GPS, LORAN

14 GYROS,ACCEL, GPS,LORAN

15 GYROS, ACCE'_GPS'mLORAN

16 GYROS, ACCEL,GPS, LORAN

GYROS- GYROSGOOD
GYROS - GYROS FAILED
ACCEL- ACCELEROMETERSGOOD
ACCEL. ACCELEROMETERSFAILED
GPS - GPSGOOD
GPS - GPS FAILED

LORAN - LORAN-CGOOD
LORAN - LORAN-C FAILED

Figure 2. State transition diagram for the reliability analysis of a

multtsensor navigation system based on GPS, Loran-C, and
and an inertial measurement unit.
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I^= ACCELEROMETERS (3) _.IMU 5,11 11,15
IG= GYROS (3) J
G - GPS

L = LORAN-C

E = EMERGENCY

Figure 3. Sixteen-state Markov model for the reliability analysis of
an integrated navigation system based on GPS, Loran-C, and
and an inertial measurement unit.

STATE DEFINITION

1 IMU, GPS, LORAN

2 IMU, GPS, LORAN

3
I'_, GPS, LORAN

4 IMU, GPS, LORAN

5 IMU, GPS, LORAN

6 IMU, GPS, LORAN

7 IMU, GPS, LORAN

8 IMU, GPS, IX)RAN

IMU = INERTIAL MEASUREMENT UNIT GOOD

IMU = INERTIAL MEASUREMENT UNIT FAILED

GPS = GPS GOOD

GPS = GPS FAILED

LORAN = LORAN - C GOOD

LORAN = LORAN - C FAILED

Figure 4. Reduced state transition diagram for the reliability analysis
of an Integrated navigation system based on GPS, Loran-C,
and an inertial measurement unit.
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Figure 5. Reduced Markov model for the reliability analysis of an

integrated navigation system based on GPS, Loran-C, and
an inertial measurement unit.
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Figure 6. State transition matrix and reliability equations for the
integrated navigation system.
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Figure 7. Functional block diagram representation of the Discrete
Markov Chain Compression Method (DMCCM).
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Figure 8. Multlsensor flight control baseline system mechanization for
terminal area guidance.
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ALl': BAROMETRIC ALTIMETER
RA: RADAR ALTIMETER
IAS: INDICA'I "EDAIRSPEED
MLS: MICROWAVE LANDING SYSTEM

Figure 9. Reliability diagram for the multisensor flight control system.
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Figure I0. A two-sensor Markov model without fault detection and
isolation.

PFA = PROB. OF FAILURE FOR SENSOR A
PD = PROB. OF DETECTION

D,

iF= SENSOR i FAILED Pn = PROB. OF ISOLATION
BUT WAS NOT PDAM= PROB. OF DAMAGE
DETECTED PFAL= PROB. OF FALSE ALARM

PTR= PROB. OF TRANSIENT RECOVERY

2 4

3,3 5,5

Figure II. A two-sensor Markov model with fault detection and isolation
including probabilities of failure detection, isolation,

transient recovery, false alarm, and damage.
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INVESTIGATION OF 6I_ T_ANSPORT6TION TECHNOLOGY

6T P_INCETON UNIVERSITY, 1986

Robert F. St engel

Department o{ Mechanical and Aerospace Engineering

Princeton University

Princeton, New Jersey

SUMMBRY OF RESEARCH

The Air Transportation Technology Program at Princeton Uni-

versity, a program emphasizang graduate and undergraduate student

research, proceeded along four avenues during the pest year:

o Guidance and Control Strategies _or Penetration c,f
Microbursts and Wind Shear

e Application o{ _rti_icial Intelligence in

Flight. Control Systems

• Computer-6ided Control System Design

o Effects o_ Control Saturation on Closed-Loop

Stability and _esponse of Open-Loop-Unstable Aircraft

Areas o{ investagation relate to guidance and control o{

commercial transports as well as general aviation a_rcra{t.

interaction between the flight crew and automatic systems is a

sub]act of principal concern.

Recently, it has become apparent that severe downdra{ts and

resulting high velocity outflows present a signa{icant hazard to

aircraft on takeo{{ and final approach. This condition is called

a microburst., and while it often is associated with thunderstorm

activity, it also can occur in the vicinity o{ dissipating con-

vective clouds that produce no rainfall at ground level. Micro-

burst encounter is a rare but extremely dangerous phenomenon that

accounts {or one or two air carrier accidents and numerous gene-

ral aviation accidents each year (on average). Conditions are

such that an aircra_t"s per£ormance envelope may be inadequate

for sale penetration unless optimal control strategies are known

and applied.

_hile a number o_ simulation studies have been directed at

the problem, there are varied opinions in the flying community

regarding the best piloting procedures, and optimal control stra-

tegies have only recently been de{ined. Graduate student Mark

Psiaki has undertaken a study o_ guidance and control strategies
for penetration o{ mlcrobursts when encounter is unavoidable.

His initial work shows that simple control laws could greatly

reduce an aircra£t"s response to wind shear. Although the res-

ponse mechanism is the same, let transport and general aviation

aircra{t behave somewhat differently in microbursts; the larger,

heavier aircraft are more adversely a{_ected by variations in the
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horizontal wind, whlie the smaller, lighter aircraft have gre3ter

da{ficuity wi'th the _owndra_t. Our emphasi_ ha_ shifted to the

determination of optimal control strategies {or the microburst

encounter [i]. The study has begun with the computation of

optimal control histories using _teepest-descent and second-order

gradient algorithms. An envelope of safe flight has been deter-

mined {or typical 3at transport and general aviation aircraft:

these results will be documented shortly in Mr. Psiaki"s doctoral

thesis and an technical papers.

6trent.ion is now being directed at optimal closed-loop con-

troi laws _or wind shear encounter that could be executed in

"real time." [23. Graduate student Amit. Joshi is working in this

area. In addition, he will be developing a real-time fixed-based

cockpit simulation as an adjunct to this research.

Undet.ected system failures and/or inadequately defined re-

covery procedures have contributedto numerous air carrier inci-

dents and accidents. The infamous DC-IO accident at Chicago's

O"Hare Airport, in which loss o_ an engine pod, subsequent loss

of subsystems, and asymmetric wing stall led to disaster, pro-

vides a prototype for the kind o{ tragedy that could be averted

by intelligent {light control systems. <An intelligent control

system is one that uses artificial intelligence concepts, e.g.,

an expert, systems program, to improve performance and fault

tolerance.) Although many methods o{ modern control theory are

applicable, the scope of the problem is such that none of the

existing theories provides a complete and practical solution to

the problem. At the same time, heuristic logic may be appli-

cable, but it has yet to be stated in satisfactory format.

Graduate student David Handelman is developing a knowledge-

based reconfigurable {light control system that will be implemen-

ted with the Pascal programming language using parallel micro-

processors. This expert system could be considered a prototype

for a fault-tolerant control system that could be constructed

using existing hardware. The knowledge-based _light control

system is specified initially and tested using the LISP program-

ming language. When desired logic is determined, the corres-

ponding Pascal code is generated automatically. Details of know-

ledge base development, expert system logic, and initial evalua-

t.ions are contained in Re_. 3.

Zn a parallel e_{ort, graduate student Chien Huang is using

LISP to investigate the utility o{ a string-oriented, recursive

logical system in the same role. A principal distinction between

this and the previous approach is that _light control code will

be modified in response to control system {allures. As an ad-

9unct to automatic restructuring o£ the control system, a tool

_or computer-sided control system design is being developed. The

Control Equation Parser allows conventional state-space expres-

sions to be translated to LISP code, and it executes complex

design functions such as the solution of Riceati equations by
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ca.[iing subrout, ines writ%.en in numerically e_Icien_ computer
languages _uch a_ FORTRAN or Pa_cai [4].

Moin_enance o_ _iigh_ control _y_zems between fiight_ also

is a knowledge-intensive task, so it is likely that expert sys-

tems can be useful aids to aircraft mechanics. Senior Christo-

pher Lob demonstrated the possibility of translating conventional

maintenance and operations manuals for the hydraulic system o_ a

tandem-rotor helicopter into an expert system using LISP [53 .
The prototype expert, system contains over 250 ruies and 150

parameters in a MYCIN-like format, yet it describes only a frac-
tion of the information contained in the manuals.

Whereas most expert system development tools are deductive,

requiring the system designer to specify rules to be executed by

a computer, inductive knowledge acquisition tools that generate

rules from specified scenarios may be more useful in many appli-

cations. For example, a skilled pilot might well be able to

explain what he or she would do in a given emergency, yet not

recognize the rule structure that the actions represent.

Graduate student Brenda Belkin has documented an exercise (per-
• ormed under separate contract> in which an inductive tool was

used to define procedures for an in-fiigbt emergency [63.

One of the virtues of highly reliable electronic flight

control systems is that an aircraft"s stability and response,

i.e., its closed-loop flying qualities, can be tailored to the

pilot"s needs. For reasons of performance and maneuverability,

it may be desirable to design the aircraft so that its natural

(unaugmented) modes of motion are unstable, with the under-

standing that the _light control system will provide the neces-

sary stability by deflecting control surfaces to counter poten-

tially divergent motions. Because control surfaces have limita-

tions on their displacements and rates of travel, stability can

be restored only within a bounded region about the trim point.

I_ the aircraft's motions exceed the boundaries, the available

control forces and moments will not be sufficient to prevent
divergence.

Graduate student Prakash Shrivastava developed methods for

determining the stability boundaries and control response _or

systems containing control saturation, and in the process, he was

awarded the Ph.D. degree [7). Analysis was carried out using

state-space plots, in which saturation boundaries were repre-

sented by straight lines, stability boundaries were seen to be

unstable limit cycles or straight lines, stable trajectories

approach equilibrium points, and unstable trajectories diverge to

infinity. The analysis pertained to systems containing unequal

saturation boundaries, as well as those with multiple saturating
controls.
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_n nddit_on, a technical paper descrlbing work cc,mDlezed in

earlier years wa_ p,ubiished during 19_6. _eference _, which

summarizes, in part, the Ph.D. research of 6baron Bar-Gill,

describes the results of flight experiments to determine the

eIfects of aircra_% dynamic characteristics on flying quai_tles

during single-pilot instrument flight.

The F6A/N6SA grant supporting student research in air trans-

port.ation technology has inestimable value in helping educate a

new generation of engineers _or the aerospace industry, and it is

producing research results that are relevant to the continued

excellence of aeronautical development in this country.

64



_NNOTATED BIBLIOGRAPHY OF 1986 PUBLICATIONS

i. Psiaki, M.L., and Stengel, R.F., "Optimal Flight Paths Through

Microburst Wind Profiles", _I_6 Journal of Aircraft, Vol. 23, No.

8, Aug 1986, pp. 629-635.

The problem of safe microburst wind shear encounter during the

approach and climb-out flight phases was addressed using flight

path optimization. The purpose was to investigate the physical

limits of safe penetration and to determine control strategies

that take full advantage of those limits. Optlmal trajectories

for both get transport and generei avaation aircraft were com-

puted for encounters with idealized and actual microburst pro-

files. The results demonstrate that limits to control system

design rather than to the alrcraft's physical performance may be

the deciding factor in an aircraft's capability for safe passage

through a wide class of mlcrobursts. The best control strategies

responded to airspeed loss in an unconventional manner: by rai-

sing the nose to maintain lift.

2. Stengel, R.F., "'Optimal Control Laws for Microburst

Encounter," in Proceedings of the 15th Congress of the

International Council of the Aeronautical Sciences, Paper No.

XC6S-86-5.6.3, London, Sept 1986, pp. _70-878.

Simplified structures for longitudinal control laws that reduce

an aircraft's response to the strong head-tailwlnd variations

associated with microbursts are presented. They are based on

non-zero-set-point linear-quadratic regulators that command

throttle setting and angle of attack as functions of velocity and

flight path angle, and they can incorporate direct measurements

of the wind profile if avaiiable. Selection of cost functions to

be minimized by feedback control has been aided by a prior study

of classical control laws and exact nonllnear-optimal flight

paths through realistic microburst wind profiles. The resulting

optimal control laws have an adaptive, dual-mode structure that

can be implemented either in flight-director logic or in an
autopilot.

3. Handelman, D.A., and Stengel, R.F., "'A Theory for Fault-

Tolerant Flight Control Combining Expert System end Analytical

Redundancy Concepts," in Proceedings of the 1986 AIAA Guidance,

Navigation, and Control Conference, Williamsburg, AIAA Paper No.

86-2092-CP, Aug 1986, pp. 375-384.

This paper presents a theory for rule-based fault-tolerant flight

control. The obDectlve is to define methods for designing con-

trol systems capable of accommodating a wide range of aircraft

failures, including sensor, control, and structural failures. A

software architecture is described that integrates quantitative
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anaiytlcai redundancy techniques and heuristic expert system

concepts {or the p,urpose o{ In-Slight, real-time fault toierance.

The resultant controller uses a rule-based expert systems a_,-

proach to transform the problem o_ failure accommodation task

scheduling and selection into a problem of search. Control

system performance under sensor and control failures is demon-

strated using linear discrete-time deterministic simulations of a

tandem-rotor helicopter's dynamics. It is found that the rule-

based control theory can be used to enhance existing redundancy

management systems. This approach to control system design also

provides inherent parallelism for computational speed, smooth

integration of algorithmic and heuristic computation, a search-

based decislon-making mechanism, straightforward system organiza-

tion and debugging, and an incremental growth capability.

4. Huang, C.Y., and Stengel, R.F., "A Symbolic Parser for Control

Equations," in Proceedings of the Instltute of Measurement and

Control 2 nd Workshop on Computer-Aided Control System Design,

Salford, England, July 1986, pp. 7-14.

A computer program for symbolic compilation and numerical simula-

tion o{ control system design equations has been developed. The

Control Equation Parser translates expressions written in stan-

dard state-space format into the LISP computer language for

evaluation. Vectors and matrices are easily defined, and common

operations of linear algebra are readily executed using this

program. Numerical solutions can be obtained by executing LISP

code or, as in the case of control calculations, by calling

FORTRAN subroutines. In combination with a LISP workstation, the

program provides a highly interactive tool for assisting in the

design o_ multivariable control systems.

5. Lob, C.T., "'6 Prototype Maintenance Expert System for the CH-

47 Flight Control Hydraulic System," Princeton University

Technical Report No. MAE-I?51, Apt 1986.

An investigation of the use of artificial intelligence techniques

in the maintenance of hydraulic flight control systems was under-

taken. A knowledge-based expert system employing situation-

action rules (production systems) _or diagnosing failures and

subsequently identifying faulty devices was developed. The ex-

pert system's "'in_erence engine" performs a backward-chaining

process via a goal-driven control strategy. Its strategy in-

volves _inding rules that demonstrate a given hypothesis, then

veri_y the _acts used by the rule. The resulting LISP program,

which emulates a small fraction of the procedures contained in

maintenance and operations manuals for the CH-47 helicopter,

contains over 250 rules for setting over 150 parameters.
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6. _elkin. Brenda L., "'_ Demonszration Hx_,ert System _or

implementing Emergency Procedures in a High-Per{ormance Fighter

Aircraft," Princeton University Report No. M_E-17Ag, _pr 1986.

6 demonstration expert system was developed using a Knowledge

acquisition tool to simulate the operation of an _iectronic

piiot's assistant. The task selected was the implementation c,{

in-_ilght emergency procedures {or a _ignter alrcra_t. Two modes

require the computer to help with routine {light tasks. Two

others require the computer to plan and execute procedures _or

aircra{t control autonomously, for instances in which the pilot

is Incapacitated or is sub3ected to high _orkload.

7. _hrivastava, P.C°, "Stability _egions o{ _elaxed Static

Stability _ircra{t Under Control S_tur_tion Constraints,"

Princeton University _eport No. NAE-174?-T (Ph.D. Theszs), Oct

1986.

Oeneral characteristics o{ closed-loop stability regions {or

open-loop-unstable linear systems _ith bounded controls were

determined. The shapes and sizes o{ stability regions were shown

to depend on the types of singularities associated with system

dynamics, {eedback gains, control saturation limits, and command

inputs. 6naiytical expressions _ere derived in normal-mode

coordinates {or the stability boundaries. Longitudinal static

instability o{ the alrcra{t normally forces a single system root

to become unstable, creating a saddle-point singularity, while

directional static instability results in two unstable (real)

roots with a {Goal point singularity. Stability regions can be

characterized as hypercylinders in the state space surrounding

the commanded closed-loop equilibrlum point. Non-zero command

inputs create asymmetry in the saturation e_ects, usually resul-

ting in a net shrinkage ol the stable region. Displacement

saturation and rate saturation produce distinct e{{ects, and a

combination o{ the two can be particularly restrictive.

8. Bar-Gill, A., and Stengel, R.F., "'Longitudinal Flying

Oualities Crlterla _or Single-Pilot Instrument Flight

Operations," AIAA Journal o£ Aircra£t, Vol. 23, No. 2, Feb 1986,

pp. iii-i12.

Experiments to determine the {lying qualities o_ more than a

dozen dynamic con{iguratlons were conducted using the variable-

stability Avionics Research Aircra{t. Particular attention was

paid to variations in long-perlod longitudinal characteristics

and their e{{ects on the performance o{ simulated IFR {lights

{tom takeo{{ through lending. Li{t slope had the greatest e{{ect

on pilot opinion, workload, and tracking error. Bounds {or

satisfactory {lying qualities were {ound {or three parameters:

phugoid mode damping, stick {orce gradient (with respect to trim

airspeed), and pitch/airspeed gradient.
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Wind Shear Guidance and Control

Aircraft Applications of Machine
Intelligence

Fixed-Base Simulation

WIND SHEAR GUIDANCE and
CONTROL

Classical Control System Design to Reduce
Microburst Response

Flight-Path Optimization to Minimize
Microburst Response

Linear-Quadratic Control System Design to
Approximate Optimal Microburst Response

Significance of Control & Short-Period Lag

Application of Nonlinear Inverse Dynamics in
Closed-Loop Control
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AIRCRAFT APPLICATIONS of
MACHINE INTELLIGENCE

Functions of a Knowledge-Based Control System

Fault-Tolerant Flight Control Systems

Real-Time Expert System Development

Signal Dependencies, Graphs and Frames

Computer-Aiding for the Pilot

Hydraulic System Failure Diagnosis

FIXED-BASE SIMULATION

Three Aircraft Simulations in Preparation:
Navion

Small Twin-Jet Transport
Twin-Jet Fighter/Attack Aircraft

Single-Person Crew Station

Computer-Generated "Out-the-Window" and
Panel Displays

Silicon Graphics IRIS 3020 Workstation
(UNIX, 68020, Graphics Engine)

IBM PC-AT (PC-DOS,80286/7)
-3 - Multibus Single-Board Computers (80286/7)

"C" Programming Language

Verbex 4000 Voice Recognition System

Ethernet Connection to

Symbolics 3670 LISP Machine
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RULE-BASED FAULT-TOLERANT FLIGHT CONTROL

Dave Handelman

Department of Mechanical and Aerospace Engineering
Princeton University
Princeton, New Jersey

APPLICATION VEHICLE: CH-47

Fault tolerance has always been a desirable characteristic of aircraft.

The ability to withstand unexpected changes in aircraft configuration has a

direct impact on the ability to complete a mission effectively and safely.
The objective of this research was to investigate possible synergistic effects

of combining techniques of modern control theory, statistical hypothesis
testing, and artificial intelligence in the attempt to provide failure
accommodation for aircraft. This effort has resulted in the definition

of a theory for rule-based control and a system for development of such a

rule-based controller. Although presented here in response to the goal
of aircraft fault tolerance, the rule-based control technique is applicable
to a wide range of complex control problems.
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FAILURE MODES

The flight control system is expected to handle single abrupt and

significant failures in aircraft sensors, controls, and structure. Biased,
attenuated, and stuck sensors and controls, as well as structural

failures in the form of center-of-gravity shifts, are to be detected,

diagnosed, and accommodated automatically by the control system.

COMPONENT TYPE ELEMENT MODE

SENSOR LONGITUDINAL VELOCITY BIASED

LATERAL VELOCITY ATTENUATED

VERTICAL VELOCITY STUCK

ROLL RATE

PITCH RATE

YAW RATE

PITCH ANGLE

ROLL ANGLE

CONTROL FORWARD CYCLIC PITCH BIASED

FORWARD COLLECTIVE PITCH ATTENUATED

AFT CYCLIC PITCH STUCK

AFT COLLECTIVE PITCH

STRUCTURE CENTER OF GRAVITY SHIFTED
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LINEAR MODEL OF AIRCRAFT DYNAMICS, ESTIMATOR, AND CONTROLLER
WITH FAILURE-MODELVECTORS AND MATRICES

The fault-tolerant controller is designed to regulate aircraft motion

about a constant flight condition. Assuming linearity within a neighborhood

of this nominal operating point, a state-space mathematical model approximates
the aircraft dynamics. Based on this no-failure model, a Kalman Filter is
used for state estimation, and a Linear-Quadratic Regulator is used for

feedback control calculations. A failure is assumed to change significantly
the mathematical model representing the actual aircraft dynamics, prompting
the need for estimator and regulator reconfiguration.

CONTROLLER • i AIRCRAFTi w .YNAMIC_

: " i

ESTIMATOR l

A

__ i. " • z ,

._ A : A : . A A
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ORGANIZATION OF THE FAULT-TOLERANT FLIGHT CONTROL SYSTEM

The fault-tolerant flight controller breaks the overall job of failure
accommodation into five main tasks. The executive control task provides

continual dynamic state estimation, feedback control calculations, and

synchronization of the remaining tasks. The failure detection task monitors
aircraft behavior and detects significant abnormalities. The failure

diagnosis task finds a set of probable causes and effects of the problem,
while the failure model estimation task generates a mathematical model of
the aircraft dynamics considered to reflect changes due to the failure.

Finally, the reconfiguration task determines what action should be taken
to correct the situation.

CONTROL SYSTEM

EXECUTIVE CONTROL

;i F
PILOT CONTROLCOMMANDS DYNAMICS

INPUTS
J

STATE

ESTIMATE LESTIMATOR .
I" SENSOR
I MEASUREMENTS

ESTIMATOR i
• PREDICTIONERROR

r r

FAILURE
! CON- MODEL FAILURE FAILURE
FIGURA- ESTIMA- DIAG- DETEC-

TION TION NOSIS TION
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RULE-BASED CONTROL SYSTEM SOFTWARE ARCHITECTURE

The control system uses a rule-based search mechanism to perform control
task scheduling and selection. Controller software development begins with

the creation of a knowledge base for each task. Containing parameters,

rules, and procedures, these knowledge bases perform intended task actions
when properly searched. Tasks are grouped into processes, and each process

knowledge base is translated automatically from LISP to Pascal. This code
optimization, coupled with parallel processing, enables eventual real-time

performance. The reduction of the overall control problem into tasks,
followed by the grouping of tasks into processes, results in an organized
hierarchical software structure resembling a set of cooperating expert

systems using blackboard communications.

CONTROLSYSTEM

PROCESS1 PROCESS2 PROCESS3

} INFERENCEENGINE ] I INFERENCEENGINE ] [ ,NFERENCEENGINE }

TASKA TASKB TASKG TASKD TASKE , TASKF

I I I I I I

EXTERNALPARAMETERS
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RULE-BASED FAULT-TOLERANT FLIGHT CONTROL SYSTEM SOFTWARE ARCHITECTURE

The fault-tolerant flight control system, presently capable of accommodating

a significant bias or stuck failure in a sensor or control, implements the
rule-based software architecture using 8 major tasks distributed among 3

processes.. Each process contains a process control task responsible for

intra-process task coordination and initialization. Process 1 contains the

executive control task and a total of 19 parameters and 23 rules. Process

2 performs failure detection, failure model estimation, and reconfiguration

using 51 parameters and 50 rules. Within process 3, 143 parameters and 247

rules perform failure diagnosis.

CONTROL SYSTEM

PROCESS 1 I CONTROL PROCI ESS 2ESTIMATIONi I PROCESS 3,

I '"F_NO_N_'N_I I 'N_NO_N_'N_II '_F_NO_N_'_I
- PROCESS FAILUREMODEL

ROCESSP EXECUTIVE PROCESS i FAILURE
CONTROL CONTROL CONTROL DIAGNOSIS

.... i I Ij   cONDETECTION I FIGURATION

I I ___ u_ I I
PARAMETERS

[ 50 RULES, IRULES,19 PARAMETERS I 51

EXTERNALPARAMETERS
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RULE-BASED CONTROL SYSTEM HARDWARE ARCHITECTURE

The controller is composed of single board computers embedded in a

tightly coupled multi-microprocessor system. Each process is assigned to a
processor, with inter-processor communications occurring through shared
memory. During development, controller software is downloaded from a

personal computer linked to the controller hardware through a memory-mapped
bus interface.

INTEL iSBC 286/12 INTEL iSBC 286/12 INTEL iSBC 286/12

LOCAL BUS _ LOCAL BUS _<
I BIT3
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RULE-BASED FAULT-TOLERANT FLIGHT CONTROL SYSTEM
SEARCH EFFORT TIME HISTORIES

The rule-based control system uses search to schedule and select actions.
During a search, rules are tested in the attempt to infer parameter values.
The amount of effort expended by a control system processor during a search
can be measured in an absolute sense by the total number of rules tested,
and in a relative sense by the ratio of rules tested to parameters set.
Performance measures such as search effort can be used to verify adequate
balancing of work loadbetween processors.
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CONCLUSIONS

Based on experience gained through the design and implementation of a

fault-tolerant flight control system, the proposed rule-based approach appears
applicable to a large class of complex control problems. Its beneficial

characteristics include a hierarchical system organization, high-level

rule description, a search-based decision-making mechanism, smooth integration
of numeric and symbolic computation, an incremental growth capability, inherent

parallelism and automatic code optimization for real-time execution speed,
simplified coordination of processor communications, simplified modification
of code, and powerful debugging facilities. Additionally, the rule-based
technique can deliver real-time performance using conventional, economical
hardware.

• RULE-BASED APPROACH FACILITATES

COMPLEX CONTROL SYSTEM DESIGN

• REAL-TIME PERFORMANCE ACHIEVABLE

USING CONVENTIONAL HARDWARE
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IT'S TIME TO REINVENT THE
GENERAL AVIATION AIRPLANE

Robert Stengel
Princeton University

Current designs for general aviation airplanes have become
obsolete, and avenues for major redesign must be considered. New
designs should incorporate recent advances in electronics,
aerodynamics, structures, materials, and propulsion. Future
airplanes should be optimized to operate satisfactorily in a positive
air traffic control environment, to afford safety and comfort for
point-to-point transportation that is at least comparable to auto
motive travel, and to take advantage of automated manufacturing
techniques and high production rates. These requirements have
broad implications for airplane design and flying qualities, leading to
a concept for the Modern Equipment General A__.viation (ME(3A)

airplane. Synergistic improvements in design, production, and
operation can provide a much-needed "fresh start" for the general
aviation industry and the traveling public. Achieving these goals
requires nothing less than the reinvention of the small airplane,
providing new opportunities and requirements for research.

Although the term "general aviation" applies to a wide range of
aircraft -- from single-engine, propeller-driven, single-seat planes to
business jets -- the focus of this presentation is at the low end of the
scale. Except as noted, a small four-place airplane is taken as a
reference. Nevertheless, the proposed philosophy for new airplane
design applies across the entire spectrum of general aviation.
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IT'S TIME TO REINVENT THE
GENERAL AVIATION AIRPLANE

Declining Practical Importance of
Small General Aviation Airplanes

New Technologies .for Airplane
Systems

MEGA_PI_¢

Goals and Assumptions

Characteristics of a 4-Place ME_3A-Plane

Opportunities for Research
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DECLINING PRACTICAL IMPORTANCE OF SMALL GENERAL

AVIATION AIRPLANES

For all practical purposes, the production of small general aviation (GA)
airplanes in the United States has come to an end. The production rate for GA
airplanes of all categories is about 1500 planes per year, less than 10 percent
of what it was a decade ago. A thousand small GA airplanes were produced in
1986, but few of these were made by the manufacturers that formerly could be
considered "The Big Three." Exports accounted for 30% of the US production;
in the coming year, the General Aviation Manufacturers Association expects a
comparable percentage of foreign imports, with a large concentration in the
single-engine category. The average age of US small airplanes is 20 years old.
The production of GA airplanes currently has minimal impact on the domestic
economy. Although general aviation is said to be a $15 billion, business, only
$200 million of that can be attributed to the sale of small airplanes.

As fixed-base-operator income decreases, the idea of converting airfield
real estate to condominiums and shopping centers becomes attractive, driving
many small airports near major urban areas out of business. Small airports
are losing the business of serious travelers, and an increasing number
principally serve weekend pilots and flight schools. This trend is particularly
detrimental to the national transportation system in view of the heavy
congestion at most major airports, and it accelerates the decline in travel by
GA airplane.

An ancillary point is that recent growth in commercial air travel has
created a shortage of airline pilots. General aviation has long been a spawn-
ing ground for airline pilots, but it is not producing enough well-qualified
pilots to meet the demand. One consequence is that relatively low-time pilots
are flying in the right seats of many commercial aircraft cockpits.

Although important research continues in applicable technology areas
such as stall/spin dynamics and aerodynamic flow control, neither the Federal
Aviation Administration (FAA) nor the National Aeronautics and Space
Administration (NASA) currently supports substantial research and develop-
ment specifically directed at general aviation. If GA airplanes are no longer
produced in the US or if GA flying must be perceived as the domain of the
hobbyist and the well-to-do alone, it will be increasingly difficult to justify the

expenditure of federal funds for its enhancement.
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DECLINING PRACTICAL
IMPORTANCE OF SMALL GENERAL

AVIATION AIRPLANES

Large-Scale Production of Small
Airplanes has Ended

GA Production Rates are Less Than 10% of What

They Were a Decade Ago ( about 1500 planes/yr)

Small Airplanes Production is Less Than a
Thousand per Year

Three Major GA Manufacturers Currently
Produce Few Small Airplanes

Small Airports are Closing

Neither FAA nor NASA has Any
Substantial GA R&D Initiatives
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REASONS FOR THE DECLINE

There are many reasons for the decline in production of small
airplanes. While numerous evolutionary changes have been
incorporated in GA airplanes, most examples trace their basic designs
to the late 1940s, with technologies established a decade or more
earlier. Manufacturers find certification costs higher than ever
before, and production costs are in an unstable spiral as the number
of produced aircraft decreases. Except in special cases, there is a
large disparity between the cost of owning and using a GA airplane
and the cost of traveling by competing modes. The GA airplane may
well be cost-effective in a small-business setting, particularly where
a large area must be covered quickly on a regular basis; lacking a
business subsidy, few middle-income travelers consider GA
transportation affordable.

GA manutacturers are being found liable for an increasing
number of airplane accidents, and the cost of liability insurance or
"self-insurance" has become a significant percentage of the total cost
of each new airplane. This is a disincentive not only to the airplane
producer but to the potential owner, who must pay the added costs.
While gains have been made, the accident rate for GA aircraft still is
substantially higher than that for competing modes. The hazard is
comparable to motorcycle riding and somewhat greater than
traveling by commercial aircraft, train, or automobile. Air traffic
control procedures have become more complex with airline
deregulation and increasing commercial air travel, and future GA
travel is likely to be limited even more in view of productivity and
fuel-use considerations. Flying an airplane in poor weather
conditions demands a high level of IFR proficiency, something that
relatively few GA pilots can achieve and maintain.

Finally, there is real confusion about the goals of general
aviation. Should it be considered as a candidate mode for

transporting large numbers of people? Should travel by small
airplane be more like sailing to Bermuda or driving to Pittsburgh?
Can general aviation have a major impact on the economy? Should
particular classes of general aviation (e.g., air taxis and corporate
aircraft vs. personally owned small planes) be singled out for special
treatment? Without answers to these and similar questions, general
aviation will decline even further.
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REASONS FOR THE DECLINE

Slow Incorporation of New
Technologies

High Costs of Certification, Production,
and Operation

High Costs of Liability

High Accident Rates in Comparison to
Other Modes of Transportation

Increasingly Complex Air Traffic
Control Regulations

High Level of Piloting Proficiency
Required for All-Weather Flying

Confusion About GA Goals
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NEED FOR A RESURGENT GENERAL AVIATION INDUSTRY

General aviation provides unique capabilities for rapid point-
to-point travel for small groups of people. It is complementary to
the hub-t0-hub and hub-spoke services of the major and feeder
airlines. With area navigation and sufficient satellite airports,
general aviation airplanes can be routed through under-utilized
airspace, avoiding areas of congestion both in the air and on the
ground. By diverting significant numbers of travelers from the
public carriers, general aviation could actually reduce congestion in
the terminal area. Just as automobile travel between two suburbs

often is quicker, cheaper, and more efficient than public ground
transportation into and out of a neighboring metropolis, general
aviation offers a potentially attractive alternative for many trips
between points not near large airports.

Improving reliability and safety are continuing issues in all
modes of transportation. No matter what the current level, we
always seek to lower the costs of operation, to simplify maintenance,
to facilitate on-time performance, and to reduce the risks inherent in
travel. In order for new GA airplanes to attract potential buyers,
they must provide benefits in comparison to the competition -- used
airplanes or new planes produced by other (possibly foreign)
manufacturers.

The production of small airplanes could be a multi-billion-
dollar business. The two most likely outcomes of not rebuilding the
GA industry will be the de facto encouragement of foreign airframe
and engine manufacturers to introduce their products to the US
market and the loss of additional foreign markets for American
products. Yet another business will be converted from a manufactt_
ring to a service industry, with its attendant diminution of technical
leadership and long-term economic security.

There is an opportunity -- if not an imperative -- to ask the
question, "If we were unfettered by the need to adapt new
technologies to old designs in piecemeal fashion, how would we
design small airplanes?" Or put another way, "Hgw wqold we invent
the GA airplane to satisfy the needs of potential users while
accounting for the realities of the National Airspace System and pro-
viding a reasonable incentive to prospective manufacturers to build
such airplanes?"
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NEED FOR A RESURGENT GENERAL
AVIATION INDUSTRY

Transportation Requirements of the
Public

Continuing Drive for Improved
Reliability and Safety

Stimulation of Domestic Economy

Increasing Domestic Dependence on Foreign
Suppliers

Lost Foreign Market Opportunities
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NEW TECHNOLOGIES FOR GENERAL AVIATION AIRPLANE
SYSTEMS

There is an exciting array of new technologies that, for the
most part, have not been applied to the production of small
airplanes. Some of them are listed here.

Electronics - In little more than a decade, the microprocessor
has revolutionized many products and services, but it has done little
for the GA airplane. It can provide the focal point for a host of major
improvements. Together with concurrent advances in sensors,
actuators, displays, and external systems, it can spearhead the drive
for a new level of performance, reliability, and safety in GA
production and operation. At the same time, flight-critical
electronics introduce new concerns that must be addressed during
design and operation, including guaranteed uninterupted power,
lightning protection, mode switching, and complex control logic, all at
a far lower cost than is normally associated with avionics equipment.

Modern Manufacturing Techniques - While it is unlikely
that production rates would ever approach those of automobiles,
much can be learned from advances being made in the automotive
industry. Today's GA airplanes are essentially custom-made,
deriving little benefit from common production-line concepts;
however, modern manufacturing techniques emphasize flexibility,
using computers, communication networks, and robotic devices
(including numerically controlled machines) to perform a wide
variety of functions from preliminary design to painting the end
product. This flexibility is precisely what is needed in GA airplane
production.

Structures and Materials - New materials not only promise
direct benefits: they provide an opportunity for redesigning the basic
airplane structure. Furthermore, modern objectives such as
enhanced crash survivability and lightning protection can be
combined with traditional design considerations like weight, air
loads, and fatigue through the use of computational analysis.
Composite materials offer strong and lightweight alternatives to
aluminum components, although aluminum remains the cost-
effective choice for most primary structures.
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NEW TECHNOLOGIES FOR GENERAL
AVIATION AIRPLANE SYSTEMS

Electronics

Microprocessors
Fiber Optics

Integrated Motion Sensors
High-Flux-Density Electric Motors

Electronic Displays
Weather Sensors

Precise Long-Range Navigation
Air Traffic Control Systems

Modem Manufacturing Techniques

Computer-Aided Design
Computer-Integrated Manufacturing

Robotics

Structures and Materials

Composites
Aluminum Alloys

Honeycomb
Integrated Structures
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NEW TECHNOLOGIES FOR GENERAL AVIATION AIRPLANE
SYSTEMS, continued

Aerodynamics There is a widespread misconception that we
have learned all we will ever know (or need to know) about subsonic
aerodynamics. In fact, some rather dramatic breakthroughs have
been made in recent years, and it is likely that there is much more to
come. While seemingly redundant, three controllable horizontal
surfaces for lift, stability, and control (canard, wing, and tail) provide
a number of advantages, including reduced wing size, optimization of
cruise condition to reduce trim drag, and stall/spin protection.
Control surfaces need not be coupled mechanically as in the past;
hence, there is a high level of redundancy that can be put to good use
in improved safety margins. It is now realized that a combination of
modern surface finishing techniques and shape selection can provide
natural laminar flow over large segments of wings and fairings,
reducing drag and improving overall performance. New perspectives
on wing design suggest that significant gains in lift/drag ratio can be
realized by reshaping the planform, particularly in the vicinity of the
tips, as well as the airfoil.

Propulsion - Great strides have been made in automobile
engines, suggesting avenues for improving the reciprocating engines
of small airplanes. Computer-controlled electronic ignition, improved
combustion chambers, multiport valving, and turbocharging all could
contribute to increased safety, reliability, and efficiency. The new
engines could be designed to use automobile gasoline with no loss in
performance or economy, solving one of the more pernicious
problems of operating small planes today. Computational fluid
dynamics, new perspectives on laminar flow control, and recent
developments in propeller design for human-powered airplanes, the
world-circling Voyager, and wind turbines all can further advance
propulsive efficiency.
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NEW TECHNOLOGIES, continued

Aerodynamics

Three-Surface Longitudinal Control
Control Surface Redundancy

Natural Laminar Flow

Planform and Wingtip Design

Propulsion

Automotive Ignition and Combustion Technology
Propeller Design
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THE MODERN EQUIPMENT GENERAL AVIATION AIRPLANE

The principal objective for the "reinvented" GA airplane is to provide a
viable alternate form of transportation for a large number of air travelers, in
much the same way that automobiles provide a desirable alternative to public
ground transportation. The goal is not to redefine our notions of existing GA
concepts but to redefine the GA concepts themselves, to make general aviation
something that it is not today. The goal is to design a new breed of airplanes
that really do make private flying a constructive segment of the National
Transportation System through the use of modern technology and
manufacturing techniques.

Starting over in the design of small airplanes will result in synergistic
benefits that would otherwise be unattainable. In effect, the whole design
process is "rubberized", identifying desirable attributes in one system, evalu-
ating the impacts of these attributes on other systems, and redefining the lat-
ter accordingly. For example, if independent, reconfigurable control surfaces
are desirable (which they are) but they require uninterrupted electrical power
with extremely low mean failure rates (which they do), existing systems for
power supply and distribution are unacceptable. A new standard for power
system design is mandatory, and such a system will, no doubt, contain
redundancies that are not currently considered necessary. There is good
reason to believe that the redesign can be achieved, given modern technology
and no predetermined requirement to interface with traditional elements.
Furthermore, by designing for the production process and reasonable
production rates, costs will be minimized.

It is essential to take bold steps in planning for what amounts to a major
overhaul of the National Transportation System. Clearly, the impact of a large
increase in small airplane traffic would be great, and without a com-
prehensive approach that considers not only production and distribution but
operation within the confines of the National Airspace System, that impact
would be calamitous. There is a lot of unused airspace that could be used safely
and efficiently, with virtually no infringement on airline operations. "Back-
of-the-envelope" calculations suggest that a million GA airplanes (about five
times the current number) would produce a volumetric density that is on the
order of one hundred million times smaller than ground traffic density. Still,
this space is unusable without positive assurances that airplanes will not
interfere with each other. Consequently, the reinvented GA airplane must
have a degree of autonomy and compatibility with other airplanes that is not
realized in current designs.
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THE MODERN EQUIPMENT GENERAL
AVIATION AIRPLANE

Objective:
Fast, Reliable,Safe, Comfortable, Cheap

Transportationfor Large Populationof
Travelers

Synergistic Use of New Technologies

No Need for Compatibility with Old Technology
Design for Low-Cost Automated Manufacturing

All-Electric Control Actuation

Reciprocating Engine(s)

Planning for GA to Become a Major
Component of the National

Transportation System

Production Rate of 50,000 Airplanes/yr by 2000

Equilibrium GA Population of 1,000,000
Airplanes by 2015

94



_AolPLA_Ig, continued

The reinvented GA airplane should be as simple as possible, containing
few clever-but-failure-prone mechanisms. It is, for example, preferable to
forego the extra aerodynamic efficiency of an intricate flap deployment
mechanism in favor of a simply hinged flap with a single rotational degree of
freedom. The latter device is less likely to fail, is easy to fix when it does, and
provides a backup roll control device. Systems should contain line-
replaceable units that are comprehensive in function, individually reliable,
easily understood, and easily replaced. Redundancy should be provided where
single-string reliability is inadequate; however, as automatic redundancy
management in modern flight control systems often grows to dominate
software specifications, the airplane should be designed to allow the pilot to do
as much redundancy management as possible. This means that failure modes
should be forgiving, allowing time for human decision making. In a similar
vein, the airplane's flying qualities must be good enough to allow a relatively
inexperienced (or not current) pilot to maintain safe control in a wide range
of flight conditions, including those that generate high workload in existing
airplanes (weather, traffic, etc.).

The reinvented GA airplane must be specifically designed for ATC sys
tem compatibility, or else none of the suggested improvements can be realized.
The area navigation system is as important as the wings and engine of this
airplane. It must be integrated with sufficient communication links to allow
positive control at all times, and it must provide the pilot with the same sorts of
cues that road signs, maps, and traffic lights provide the automobile driver.

There is an important caveat: positive air traffic control may not have
the same meaning with this airplane that it has for current airplanes; it may
be much less restrictive than the current ATC system. In the future, positive
control for small planes operating outside major terminal areas could be more
like positive control for today's automobiles, consisting of the equivalent of
traffic lights and limited-access highways, with automated up- and down-link
of important information, e.g., airplane identifier, location, destination,
approved routing, and so on. Furthermore, by adhering to more stringent
design and operational requirements, the reinvented GA airplane could be
allowed to have preferential departure, routing, and arrival assignments
without degrading safety or airline scheduling.
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__&oP__, continued

Simplified Design for Certification and
Operation

Improved Inherent Safety, Reliability, and
Maintainability

Forgiving Failure Modes
"Video Game" Flying Qualities

Design for Air Traffic Control System
Compatibility

Operation Under Positive Control 100% of the
Time

Fail-Safe Area Navigation
Preferential Priorities for M_A-Planes
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CONCEPT FOR A TYPICAL 4-PLACE _(3A-PLANE

To provide a tangible idea of what a ME_3A-Plane might be, a
concept for a 4-place, single-engine design is discussed. This figure
is a sketch, not a detailed drawing; it presents a concept for a MEGA-

Plane, not the ME_3A-Plane. The configuration appears similar to
existing airplanes, and most of its characteristics have been
suggested separately in earlier work. The most obvious difference is
the addition of a controllable canard surface in addition to a conven-
tional horizontal tail. More subtle visual characteristics include a

split rudder, a "T" tail, small wing area, swept wing tips, large
window area, fixed gear, and a sizable storage compartment.

i

/
I
t
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CONCEPT FOR A TYPICAL 4-PLACE _A-PLANE

AERODYNAMIC FEATURES

The principal control features of the airplane are its 3-surface longi-
tudinal control, control redundancy, and simple flaps. Three-surface control
provides a number of desirable attributes, including increased allowable
center-of-gravity travel, pitch trim for minimum cruise drag, pitch control
redundancy, and reduced wing area. (The latter comes about because the
canard, unlike the rear tail, can provide positive angular rotation and positive
lift for takeoff, eliminating the otherwise necessary download of the
tailplane.) Because the canard control surfaces are immediately behind the
propeller, they deflect the slipstream, providing strong forces and moments
that can be used to reduce takeoff distance, to implement gust alleviation for
improved ride qualities, and for stall/spin prevention (or recovery).

Each control surface is independent, i.e., not connected mechanically to
any other surface; hence, there are 10 surfaces that can be used in numerous
combinations to produce 3 forces and 3 moments for control. (Although not a
primary requirement, it would be possible to produce side force for wings-
level crosswind landings.) Consequently, ailerons could act like flaps and
flaps like ailerons in the event of failure, within possibly reduced limits.

Recent flight research has shown that dramatic reductions in drag can
be achieved by encouraging natural laminar flow over the airplane. Simi-
larly, long-held notions of planform effects are being questioned; there is the
possibility that swept tips and even more dramatic treatments such as sheared
tips, crescent planforms, and serrated trailing edges may further reduce
subsonic drag.

Although a redundant fly-by-wire/light control system is indicated, the
ME(3A-Plane should have inhe/'ent aerodynamic stability about all axes,

allowing the "forgiving failure modes" mentioned earlier and eliminating the
need for a stability augmentation system. (Closed-loop control may be desi-
rable for a number of reasons; however, it should not be mandatory for safe
flight.) While the airplane should never find itself in a spin, if it does enter
the spin, it should have "honest" recovery characteristics, as implied by the
unshadowed vertical tail and the full-length rudder.
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CONCEPT FOR A TYPICAL 4-PLACE
_i__&-PLANE

NATURAL LAMINAR FLOW

AIRFOILS and FAIRINGS

'__ UNSHADOWED
VERTICAL TAIL

REDUNDANT AE RODYNAMI C

CONTROL ' STABILITY

SURFACES

SIMPLE FLAP

I CONTROL SURFACES

\
REDUCED WING AREA VORTEX-DIFFUSING

WING TIPS

VECTORED THREE-SURFACE

THRUST LONGITUDINAL
CONTROL

AERODYNAMIC FEATURES
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CONCEPT FOR A TYPICAL 4-PLACE t_,I[E_A-PLANE

SYSTEM & STRUCTURAL FEATURES

The all-electric/fiber-optic control system provides redundant, direct
commands and power to all control actuators with a reliability that is at least
equivalent to current pushrod-and-cable systems. In overall use, control
reliability would be considerably better than that of current mechanical sys-
tems because individual control surface failures will not have disasterous

effects -- in fact, with one or two random failures, the changes in flying qual-
ities would be barely discernable. Electric actuation is possible because the
hinge moments for this small airplane need not be large. There would be
considerable cost and reliability benefits from using identical actuators on all
control surfaces. Fail-safe area navigation would be integrated with the flight
control system; both systems would be aided by the use of solid-state motion
sensors, as well as external navigation aids like LORAN. The integrated
navigation, guidance, and control system would have artificial intelligence
attributes as well as anti-wind shear/wake vortex features, which can be
provided at minimal cost by existing microprocessors. Cockpit instruments
also should be all electric, with a minimal complement of backup air-driven
instruments to allow for display failure. Although the "see-and-avoid"
approach to collision avoidance has been totally discredited over the years,
optical aids that are visible in daylight should be mandatory.

While flight loads establish firm constraints, the airplane structure
should be designed for inexpensive, automated fabrication and assembly.
Common, "pre-fabricated" components should be used where appropriate, and
major elements should be designed to minimize the need for labor-intensive
operations. While much enthusiasm has been generated for composite
materials lately, it is not clear that they present the minimum-cost solution to
small airplane construction when labor and time costs are taken into account.
There is a strong likelihood that large components would be made from
aluminum, with small components and panels that can easily be molded into
shape being made from composites.

For reasons mentioned earlier, advanced propulsion technology is war-
ranted. With the increased importance of electrical power dictated by the
control system, an auxiliary power unit and large batteries are appropriate.
The APU should not only provide electrical power; it should be designed to

support anti-icing capability for the primary aerodynamic surfaces.
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CONCEPT FOR A TYPICAL 4-PLACE
__3&-PLANE

STROBE LIGHT

ADVANCED TECHNOLOGY
POWERPLANT

cm-

FIXED LANDING
GEAR

ALUMINUM COMPOSITE and HONEYCOMB
MAIN F RA_4E COMPONENTS

ANTI-ICING

AUXILIARY
POWER UNIT

SYSTEM and STRUCTURAL FEATURES
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CONCEPT FOR A TYPICAL 4-PLACE I_, E-PLANE

REDUNDANT CONTROL(_ANNELS

Because the loss of control more often than once per some large
number of flights (e.g., 109) is an unacceptable risk, it is likely that
control system redundancy would be required. While the necessary
level of redundancy is system-specific and should be the subject of
intensive study, the sort of strategy that can be applied is suggested
by this figure. The present objective is not to pre-design the system
but merely to indicate that high reliability may be achievable in a
fairly simple fashion.

There are two primary systems, each of which commands a
different set of control surfaces and both of which operate in parallel
in normal conditions. Both can command single units, such as the
engine and auxiliary power unit, separately, and both accept the
same pilot commands. In the event that either computer fails, a
third computer (a "hot spare") would be brought on-line; in normal
operation, the third computer would monitor the other two. If either
primary string fails altogether, the other string can maintain control
with the remaining control surfaces. The implication is that each
string in a 2-string system must be individually quite reliable, with a
mean-time-between-total-failures on the order of 40,000 hr (about
41/2 years of operation). Individual components could fail much

more frequently; this large figure applies to all. components in a
single string failing simultaneously. Even in this case, the other
40,000-hr string would still be adequate to continue safe flight, and
the spare computer would remain at the ready.
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CONCEPT FOR A TYPICAL 4-PLACE
__&-PLANE
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REDUNDANT CONTROL CHANNELS
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OPPORTUNITIES FOR RESEARCH

Reinventing the small GA airplane is a _ystern,s prqblem,

involving airplane design, human factors, and the air traffic control
interface. This paper does not provide all the answers. It presents a
concept and raises a challenge to the US aeronautical establishment,
including government agencies, industry, and universities: conduct
the research that is needed to make general aviation the vital
contributor to economic, social, and transportation requirements that
it can be.

Now in its fifteenth year, the FAA/NASA-sponsored Tri-

University Program on Air Transportation Technology can play an

important role in this research. Each of the participating universities
__ Massachusetts Institute of Technology, Ohio University, and
Princeton University -- provides unique perspectives and talents to

be applied to the task. Together, we have demonstrated capabilities
in literally all of the technologies that must be marshalled to produce
this new generation of airplanes and the corresponding upgrade in
the air traffic control system.
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OPPORTUNITIES FOR RESEARCH

MB(3A-Plane Development is a
Systems Problem, involving

Aircraft Design
Human Factors

Air Traffic Control Interface

Well-Defined Roles for FAA, NASA,
Industry, and University Participants

Candidate Focal Point for

Tri-University Program
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FLIGHT PENETRATION OF

WIND SHEAR"

CONTROL STRATEGIES

AMIT S. JOSHI

PRINCETON UNIVERSITY

A Typical Microburst EncountQr

Wind shear is a dangerous condition where there is a sharp change in the
direction and magnitude of the wind velocity over a short distance or time.

This condition is especially dangerous to aircraft during landing and
take off and can cause a sudden loss of lift and thereby height at a
critical time.

I

RUNWAY
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Problem Formulation

Wind shearis a conditionofchangingspeedand/ordirectionof thewind
rapidlyover a shortdistance.A microburstis a specialkindof a windshear
in whicha downwardblastof air hitsthe ground.Windshears,especially
microbursts,are very hazardousto aircraftmanueuveringcloseto the
ground. If unopposedbythe pilot,thereis a suddengain in heightandthen
an equallysuddenlossin heightwhichcan leadto a crash.Microbursts
havecauseda numberof crashesduringtake off and landing.

Wind Shear

A change in wind velocity in a brief time so as to cause

a rapid change in the speed of the air flowing over the

wing

Microburst

A downward blast of air which spreads on hitting the

ground

Effects of Wind Shear

Loss in height and or position due to changes in lift

causing severe hazard to the airplane

Problems

Could cause crashes during landing, take off or other

,maneuvers close to the ground
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Linear Quadratic Regulator

An aircraft represents a nonlinear system; hence the general problem of its
control is nonlinear. It is possible to linearize about the flight Path to
allow control strategie_sdeveloped for linear systems to be applied..1.One
approach is to use a Linear Quadratic Regulator, in which a control law that
minimizes a quadratic cost function is found. Minimization leads to a
linear state feedback strategy giving a stable closed-loop system.

x ==> states = { velocity flight-path-angle pitch-rate angle-of-attack
height thrust }

u ==> controls = { elevator throttle }

w ==> disturbances = { horizontal-wind vertical-wind }

A ( ) ==> perturbation about nominal

Q, M, R ==> cost weighting matrices

This approach hinges on choosing good cost weights. This is clear
from the results. The choice can be difficult, and it is dependent on
the aircraft; this is a major drawback of this method.

Given linear system

& _ = F&x+ G&u+ L&w

Define a " cost"

px
0

Minimizing J leads to

Au = -R1 (GTs+ _ ),_ = -CAx

Where S is the solution of the Riccati Equation

{F-GR'_S+S/F-G.'I_ r - SGR"Es+o-..'MT=o
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Variation of Cost Weights

The cost weights for the cost function were obtained by using a
combination of state-rate and direct state and control weighting. No
direct cross weighting between the states and the controls was used.
The cost weights were varied by varying the direct cost weights on the
controls.

A sinusoidal model of the microburst developed by Mark Psiaki was
used.It had a maximum headwind/tailwind of 10.7 m/s and a maximum
downdraft of 6 m/s.

u

State rate weighting used" 100 O
10

10
1

O 100
1

B

Q0 (direct statecost weighting) = Identity

R0 (direct control weighting ) =

['::o] ,:ol
Microbursts :

Range • Headwind/tailwind begins 0 m and ends 3000 m

Strength • 10.7 m/s

Range • Downdraft begins 1050 m and ends 1950 m

Strength • 6 m/s
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Gains with Varvina Cost Weiahts

By varying the costweight associated with the elevator, differentgains were
obtained for a Linear Quadratic Regulator. The aim of this figure is to show
that different weights lead to very different control requirements.

Gains set #1:

F" -1

/ -3.407E-2 -9.228 -7.403 -4.496 -2.801E-2 -8.644E-2 /C
L /4.268E-1 3.260E+1 1.926E+1 1.299E+1 1.468E-2 1.983

Gains set #2:

F -7c, 6336 308E  66E,
l /3.372E-1 8.2 9.741E-1 1.104 7.082E-2 1.762

Gains set #3 :

F 7

/ -1.783E-1 -6.367E+1 -2.585E+1 -2.503E+1 -3.108E-1 -3.309E-1 /C
/ /4.100E-2 6.429E-1 1.806E-3 8.513E-3 5.802E-3 3.414E-1
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Effects of Cost Weighting

Variations on Altitude 6nd Controls

Simulation results for a simplified model of a Boe727 (representing a
typical jet aircraft) follow. All the simulations are for a take off
condition. The nominal flight conditions are

Airspeed = 71.628 m/s flight path angle = 0.0523 rad
pitch rate = 0.0 rad/s angle of attack = 0.0611 rad
altitude = 3.0 m thrust = 0.8713" maxthrust

elevator =-0.0518 rad throttle = 0.8713 * max thrust

These conditions apply to allthe simulation results. SI units are used
on all the plots.

The altitude vs range plot shows the dramatic improvement due to the
control law over the openloop performance. It also shows that a
choice of high elevator cost weight leads to a poorer performance.

The difference between the throttle and the thrust plots is due to
modelling of a lag between the generation of the thrust and the
throttle command. The throttle vs range plot shows that as the cost
weight of the throttle is increased, the throttle saturates later. The
result is that the control activity of the elevator goes up. In general,
though, the saturation of the throttle sooner or later means that the
elevator is the main control remaining. This is seen from the similarity
between all the elevator plots.
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o= open loop

A= gain set #2
Effects of Cost Weighting

o= gain set #1Variations on Altitude and Controls
• = gain set #3

1.0 10
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Effects of Cost Weights

Variations on Velocity and Angular Control_

These set of plots show the velocity, angle of attack(alpha), flight
path angle (gamma), and the pitch rate as functions of the range.
Again there is a dramatic improvement over the open-loop case. The
flight path angle and velocity variations are reduced considerably,
leading to the improvement in the altitude vs range seen earlier. The
pitch rate and the angle of attack are affected much less. It can be
seen that the angle of attack reaches quite high values.

a= open loop

A = gain set #2

o = gain set #1

• = gain set #3
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Nonlinear Inverse Dynamics

The aircraft is a nonlinear system, and we can tackle the nonlinear
control problem directly using a nonlinear inverse dynamics
( NID ) approach.

In this approach we asume that we have a nonlinear system with
x, u, w the states, controls,and the disturbancesas for the LQR.
Additionally we define an output _ as linear combination of the states.
Since an exact inverse of the nonlinear system cannot be found, we
calculate an approximate one.

We differentiate the output 'd' times until some controls aDpear in each
of the outputs. It is assumed that there is a function defining the
desired output. Setting the derivatives of the output equal to those of
the desired output .gives us a set of nonlinear algebraic equations.
When solved for the control with some simplifications, we get the set
of controls giving the desired output behavior,

Given a nonlinear system

f(x ,_.u

y..= Cx

Differentiate y.. 'd' times until the control

appears in the output to get

[d]
y_. = g(X,V_)

where v = ,u,u,u...)

Now let the desired output be .y..
desired

Now set "_u= _ .... O and solve

_d]= [d]g (X_,U ) = _lesired
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Nonlinear Inverse Dynamics

In the NID approach, we are free to choose either a functional form of
the desired output or choose the dth derivatives of the desired output
and then specify a dynamics for the output.

Choosing ,V-desiredwe choose the desired

dynamics for y

[d]
Alternatively choosing a dynamics for ,y..

[d] desired

gives us the ,y..
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(_onclusions

* The results of the simulation show the effective performance of the
LQR and the NID controllers. The major conclusions that one can
draw from these results are

* The LQR seems to try to keep the variation in the velocity and the
flight path angle to the minimum. This is obvious in hindsight when it
is realized that these are the major factors controlling deviations from
the desired flight trajectory.

* There is more variation in the angle of attack and the pitch rate
from the nominal values.

* Thrust almost always saturates for the LQR type of control law and
a reasonably large microburst. There is an initial reduction in the
thrust as the aircraft enters the microburst ; then there is sharp
increase until it saturates. Finally the thrust comes back to normal as
the aircraft gets out of the region of the microburst.

* The elevator shows a very different behaviour. High cost weights
associated with the elevator lead to lesser elevator use. However, with
the thrust saturated, the elevator is effectively the only control and this
shows in the elevator behaviour.

Linear Quadratic Regulators lead to a good

performance with a good choice of costs.

LQR s can require very high feedback gains

for a good performance.

Nonlinear Inverse Dynamics with complete

solution of nonlinear equations promises

to give excellent performance.

NID with complete solution of nonlinear

equations would have the penalty of:

1) Time required

2) Possibility of none or multiple

solutions.
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ACRONYMS*

ARINC Aeronautical Radio_ Inc.

ASR Automated speech recognition
ATC Air traffic control

FLT Flight Transportation Laboratory
GA General aviation

GPS Global positioning system

IFR Instrument flight rules
IMU Inertial measurement unit

INS Inertial navigation system

IRT Icing Research Tunnel

JUP Joint University Program

LQR Linear quadratic regulators

LWC Liquid water content

MEGA Modern equipment-general aviation
MVD Median volume diameter

NEXRAD Next-generatlon weather RADAR

NID Nonlinear inverse dynamics

R-NAV Random navigation

SNR Signal-to-noise ratio

TD Time delay

*Not previously deEined in individual papers.
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