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SUMMARY

The steady form of the full potential equation, in conservation form, is employed to
analyze and design a wide variety of complex aerodynamic shapes. The nonlinear method
is based on the theory of characteristic signal propagation coupled with novel flux biasing
concepts and body-fitted mapping procedures. The resulting code is vectorized for the
CRAY-XMP and the VPS-32 supercomputers.

Use of the full potential nonlinear theory is demonstrated for a single-point supersonic
wing design and a multipoint design for transonic maneuver/supersonic cruise/maneuver
conditions. Achievement of high aerodynamic efficiency through numerical design is veri-
fied by wind tunnel tests. Other studies reported here include analyses of a canard/wiag/

nacelle fighter geometry.
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1.0 INTRODUCTION

Development of supersonic/hypersonic configurations has traditionally relied on
linearized methods and hypersonic impact theory. These approaches can treat complex
geometries with minimum response time and cost, providing wide data coverage in terms of
Mach number, angle of attack, trim deflection, yaw angle, etc. Shortcomings are present,
however, in both the impact and the linearized methods. For the former, interference be-
tween surface elements is totally ignored in implementations such as classical Newtonian,
tangent wedge and cone theories. Crossflow interactioqs and stagnation point singularities
are also implicitly disregarded. In the latter, shocks, vorticity, and entropy wakes and
layers are excluded. Furthermore, superposition of elementary solutions such as those for
thickness and angle of attack freely used in linear models are, strictly speaking, invalid at
supersonic/hypersonic speeds.

Modern vehicle concepts such as the Advanced Tactical Fighter (ATF) attempt to
achieve an effective compromise between the transonic maneuver and supersonic cruise/
maneuver conditions. Multiple design considerations of this type impose stringent con-
straints on the aerodynamic shape of the vehicle to achieve high buffet-free lift perfor-
mance with reduced trim drag. The analysis and design of these modern vehicle shapes
is a tremendous challenge, requiring increasingly sophisticated nonlinear methods ranging
from the full potential theory to the Navier-Stokes equations.

Full potential approximations include enough physics of the flow to allow realistic
optimization and permit consideration of mutual interference of highly integrated, closely
coupled arrangements to provide improvements to aerodynamic efficiencies achievable using
linear methodology. This approach, in conjunction with the use of modern high-speed
computers, achieves the objective of economic computational design that is responsive to
conceptual aircraft development efforts.

This report presents a state-of-the-art technique to solve the steady form of the full
potential equation employing several novel concepts such as 1) flux biasing for capturing

shocks, 2) implicit approximate factorization scheme for computational efficiency, 3) wake
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treatment, 4) numerical mapping for treatment of complex geometries, and 5) vector cod-
ing for supercomputers. The steady form of the full potential equation is mainly used for
treating predominantly supersonic flows with embedded subsonic regions, while the un-
steady full potential equation is employed to treat blunt-nosed configurations, transonic
Mach number flows and time-accurate unsteady simulations (oscillating wings). A unified
full potential method! is currently under development which can handle flows across the
Mach number range (subsonic, transonic, supersonic), ihcluding the supersonic marching

2-6 35 a special case.

technique

This report demonstrates the use of this full potential nonlinear aerodynamic pre-
diction methodology to treat a wide variety of complex conﬁgurgtions, including a single
point and a multipoint design of advanced fighter wings. Results shown include geomefries
with canard, nacelle and vertical tail.

In designing a fighter wing, linear theory”'® is used to establish candidate optimum
thickness and zero drag-due-to-lift twist, camber and variable camber deflections at super-
sonic speeds. Nonlinear potential flow analyses are employed to capture embedded shock

waves at transonic®10

and supersonic conditions>~® and then subsequently weaken the
wave system through parametric redesign. Boundary layer analysis!! follows the inviscid -
design/analysis to assess the flow quality of the nonlinear potential design. The extent
of trailing edge separation in particular is evaluated. The general approach is schemati-
cally indicated in Fig. 1 and represents a summary of the numerical design experience at
Rockwell covering the HIMAT, forward swept wing, SAAB and Air Force/Navy Research
Technology contract studies.

The full potential code employed in this paper is operational on several .cornputer sys-
tems, such as the CYBER 176 and VAX serial machines and the CRAY-XMP and VPS-32
supercomputers. Analysis of a complete fighter-like configuration requires 500 seconds on
the CYBER 176 and about 20-35 seconds on the VPS-32 or CRAY-XMP class machines.
The execution time required to run a case depends on the number of marching plane
calculations and on the number of grid points at each marching plane. A typical fighter

calculation may involve 400 marching planes to cover the entire length of the configuration

with an average of 75 x 20 grid points per plane.
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A brief description of the full potential methodology is presented here for completeness.

More details can be found in Refs. 1 through 6 and 9.

INITIAL DESIGN, DESIGN CRITIQUE/REDESIGN, DESIGN CRITIQUE,
3-D LINEAR 3-D NONLINEAR ) 3-D BOUNDARY LAYER

.

CANDIDATE CANDIDATE

eDIRECT DESIGN ®ACCURATE ANALYSIS SPROBLEM DETECTION
sQUICK TURNAROUND ePROBLEM DETECTION *BOUNDARY LAYER
SRELATIVELY INEXPENSIVE *SHOCK OCCURRENCES SEPARATION

*CRITICAL PRESSURES

Fig. 1. Numerical design approach.



2.0 METHODOLOGY

As mentioned earlier, the steady form of the full potential equation is used for treating

predominantly supersonic flows with pockets of subsonic regions.

2.1 Treatment of the Steady Equation

The steady, conservative full potential equation cast in an arbitrary coordinate system

defined by ¢ = ¢(z,¥,2), n = n(z,y,2) and € = £(z,y,z) can be written as

(9),+ (4, (%),

where the density p is given by

1 1/(v-1)
p= [1— (lT)Mgo(U¢c+V¢n +W¢€"l)] . (2)

The nature of Eq. (1) can be analyzed by studying the eigenvalue system of Eq. (1)
combined with the irrotationality condition in the (¢,n) and (¢, €) planes. A detailed
discussion on this and the nomenclature can be fourd in Ref. 4. Therefore, only the final

results are presented here.

1. At a grid point, the marching direction ¢ is hyperbolic (a;; ~ (U?/a?)) < 0 and the
total velocity g is supersonic, g > a. This point will use the algorithm of Ref. 3. The
quantity ay; is (¢2 +¢2 + ¢2).

2. At a grid point, the marching direction ¢ is elliptic (au - (Uz/a2)) > 0, but the total
velocity ¢ is supersonic, ¢ > a. This point will be treated by a transonic operator
with a built-in density biasing based on the magnitude of [1 — (a?/g?)]. This case is
termed Marching Subsonic Region (MSR). '

3. At a grid point, the direction ¢ is elliptic (au - (U2 /a2)) > 0 and the total velocity
q is subsonic, ¢ < a. This point will be lreated by a subsonic central-differenced

operator. This case is called Total Subsonic Region (TSR).
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Figure 2 shows the schematic of a fuselage-canopy forebody geometry with an em-
bedded MSR and TSR present in the supersonic flow. To solve this problem, the marching
scheme of Ref. 3 is used when [au - (Uz/a2)] is positive. First, march from the nose
up to the plane denoted by (A-B) in Fig. 2 using the method of Ref. 3. Then, between
(A-B) and (C-D), which bound the subsonic bubble (MSR and TSR), use a relaxation
scheme and iterate until the subsonic bubble is fully captured. Then, resume the marching
scheme from the plane (C-D) downstream of the body. For blunt-nosed configurations,

the unsteady method of Ref. 9 is used to generate the starting blunt body solution.

Treatment of /3¢ (p%) Term

At a grid point (¢ + 1,7, k), the derivative in the marching direction ¢ is given by

3 (U a (U 3 (.U
2 (p%) =02 (o~ — 1) = (5~ ,
5 (pJ) Fr <p-7).-+1+(1 +1)a§ (pJ)'_H (3)
| !’
supersonic marching subsonic

U2
q>a; (a49--5)>0
a2 '
A C {MARCHING SUBSONIC REGION)

_ DOWNSTREAM
BOUNDARY FOR
UPSTREAM THE RELAXATION
COMPUTATIONAL ZONE

BOUNDARY FOR
THE RELAXATION

ZONE
u2
\_q <8: (811 -—2—) >0 .
a
g / e e —— | . {TOTAL SUBSONIC REGION)

RELAXATION__
ON
MARCHINGB REGION t——rnMARCHING REGION————

REGION

Fig. 2. Embedded subsonic bubble in a supersonic flow.
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where
5 refers to backward differencing
3 refers to forward differencing
8; = 1if [a1; — (U%/a?)] < O (supersonic with respect to ¢)

= 0 if [a11 — (U?/a?)] > 0 (subsonic with respect to ¢)

and s + 1 is the current marching plane.
The first term in Eq. (3) corresponds to the supersonic marching operator and the
second term is the subsonic operator. By using a local linearization procedure, Eq. (3) can

be expressed in terms of ¢ only. The supersonic operator is given by

5(0Y L3 [(o U\ B,
a; \P7 m‘a;”‘ 117 97 ) 8¢

4
+ (aw - Z—Z) Solb+ (ala - ’i—vf) 2 nd+ U.-] “

Ad = (dit1— i)
and the subsonic relaxation operator is given by
3 (.U _ 3 [/ i
(p_j)i-n = 6_5‘ [ :;l (@11 ¢; +ajody + a13¢€),-_{_l , (5)

a¢

where .
P?.:l = pipr — V(P?+1 - P?) , forU>0

2
Vzmax(o,l—g-;)

The superscript (n + 1) denotes the current relaxation cycle for a subsonic bubble

calculation.



Treatment of 3/8n (p%) Term

7 () = (75) 5 (35)

— |p= ) =it | P +(1=0i41) — | P = . 6

31) J/ s+1 ar’ J j+l/2 ( +1) an J j+1/2 ( )
supersonic marching subsonic

When 6;,; =1, that is, the point is supersonic with respect to ¢, only the first term

in Eq. (6) is used and the biased density g is defined by (for V' > 0)

— — * 1 - * *
Pirrjz = (1= Pjy1/2) Pi+1/2 T 3¥i+1/2 (b5 +P5-1) (7)

where 7 = max [0, 1 — az2(a%/V?)].

In Eq. (7), the evaluation of p* depends on whether the flow is conical or nonconical.
For conical flows, all p* quantities are evaluated at the 1t plane. For nouconical flows,
at each nonconical marching plane, initially p* is set to be the value at the 1*8 plane and
then subsequently iterated to convergence by setting p* to the previous iterated value of
p at the current 1 + 1 plane.

When the point is elliptic in the marching direction, the density biasing ? is based on
= max [0,1 — (a2/g?)].

Combining the various terms of Eq. (1) as represented by Eqs. (3)-(7) together with
the terms arising from [p(W/J)¢] will result in a fully implicit model. This is solved
using an approximate factorization implicit scheme®. Details on the initial and boundary
conditions, wake treatment, and geometry and grid setup can be found in Ref. 5.

For treatment of complex geometries, the body—fitted coordinate system (7, ¢,n, §) is

generated using the procedure outlined in Ref. 12.

2.2 Treatment of Combined Yaw and Angle of Attack

A complete analysis of an aircraft configuration must address the vehicle’s performance

under angle of attack (a) and sideslip (8) flight conditions. For asymmetric configurations,
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a similar pfoblem exists in that the flow field is not symmetric, and therefore requires a
solution of the entire crossflow plane.

Given a symmetric configuration at a sideslip angle of § = 0, only the half-plane
problem needs to be solved with the plane of symmetry boundary conditions imposed
along K = 2 and (KMAX — 1), as shown in Fig. 3a (see Ref. 4 for a complete description
of the nomenclature). Imposing the flow conditions along K = 1 to be the same as the
ones along K = 3 gives a tridiagonal system of equations for the L¢ operator that can
be easily solved. For a symmetric configuration, when yaw (or sideslip) angle is present,
the entire crossflow plane needs to be solved, as shown in Fig. 3b. In this case, the flow
conditions along K = 1 are set to be the same as the ones along K = (KMAX — 2). This
destroys the tridiagonal nature of the L¢ operator. A special routine has been developed

to invert a matrix of the following type:

X X—X 07
X X X—0 0
X X X 0

L0 X

NS

— X X/

(8)

In the current formulation, positive angle of attack a represents a positive Cartesian
velocity v in the freestream, and similarly positive yaw f# produces a positive w in the
freestream. When both angle of attack and yaw are present, first the freestream is turned
by an angle 8 and then by a. Let (z,y, z) be the inertial Cartesian system. After an initial
yaw turn G, let the wind axis system be (z',y’,2'), and after a subsequent a turn let it

become (Z, y,2). Now, referring to Fig. 3c,

-

cosf 0 sinf]

z cosa sina 0 z
y —sina cosa O 0 1 y
z 0 0 1 —sinff 0 cosff| |z )
- - 9
cosacosf sina cosasinf z
—sinacosf cosa —sinasinf| |y
—sinf 0 cosfB z
The freestream is now along z. The normalized freestream velocity potential is given by
=zﬁg=zcoso:cosﬂ+ysina+zcosasinﬂ. (10)
0



K=1 2 3 K=1 2 3

KMAX
KMAX-1 K = (KMAX + 1)/2
a) PLANE OF SYMMETRY b) PERIODIC CONDITION FOR
(YAW ANGLE = 0) YAW TREATMENT
%163 4.1 * ¢, KMAX-2
¥ KMAX = ¢j, KMAX-2 ¢, KMAX = ¢,3

Fig. 3a,b. Boundary conditions imposed for cases with and without yaw treatment.

POSITIVE a == POSITIVE v

x’ cosf O sinp x 3 cosa sinae O x
Y |= o 1 o 4 Y |=|[tne cose 0
2 sing O oosp/ \1z z 0 0 1/\z

Fig. 3c. Coordinate transformation for yaw and anglc-of-attack treatment.



Using Eq. (9), the drag, lift and side forces are easily calculated:

Drag = Fzcosacosf + Fysina + F, cosasin 8
Lift = —Fysinacosf + Fycosa — Fysinasinf. (11)
Side Force = —F;sinf + F,cosf
In Appendix B, the demonstration of the code for a combined yaw and angle of attack over a
fighter-like configuration is presented to familiarize the user with the various input/output

aspects of the code.

More results on the yaw capability of the code can be found in Ref. 13.

2.3 Nonisentropic Flows

The full potential equation is based on the assumption that the flow is isentropic.
This is true only for very weak shocks (Mach number normal to the shock is less than 1.4).
Some researchers have tried to modify th;a full potential formulation to correct the results
for entropy effects’*. No such attempt is made in the present work. Instead, an Euler
capability is being developed!® (included in Appendix C) to treat flows with strong shocks
and rotational effects. A sample result from this Euler development is provided in the

Results section of this report.

2.4 Salient Features of the Marching Code

The marching code developed under this NASA contract is named Supersonic Implicit
Marching Program (SIMP) and is available from COSMIC under the designation LAR-
13413'¢. The code structure is described in Appendix A. Some of the salient features of

the code are:
e Equation in conservation form
o Flux linearized upwind differencing in the marching direction

o Conservative switch operators to treat embedded subsonic zones

10



e Treatment of wakes
e Yaw and angle of attack

e Complex geometry treatment (fuselage, canopy, wing, canard, nacelle, tail, multibody,

etc.)

Numerical grid generation with constraints

e Use of GEMPAK!7 or CDS!8 to generate geometry input files

Vectorized code for supercomputers.
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3.0 APPLICATIONS
To demonstrate the capability of this nonlinear full botential methodology, the appli-
cation to several configurations is discussed:
1. Nonlinear aerodynamic wing design for an advanced ﬁghter configuration.
2. Canard/wing/nacelle supersonic fighter analysis. - |
3. Shuttle, Transatmospheric Vehicle (TAV), and supersonic inlet cowl design.
Also, in Appendix B — User’s Guide, a complete test case is presented for an advanced

fighter configuration for a combined yaw and angle of attack flight condition.

3.1 Case 1 — Nonlinear Aerodynamic Wing Design

A cooperative effort between Rockwell International and the National Aeronautics and
Space Administration-Langley Research Center was conducted to determine the effect on
supersonic aerodynamic characteristics of increasing wing sweep on a North American
Rockwell fighter design!®2°, The effort was also to provide validation of the nonlinear full
potential analysis code described in this report.

The configuration used in the study is a preliminary design version of a Rockwell
fighter concept (see Fig. 4). This concept includes a slender forebody and prominent canopy
blended smoothly into a highly swept wing center section. The outboard wing panel,
selected for transonic performance requirements, extends outward from about 37 percent
of the semispan and has a 48° swept leading edge. Leading- and trailing-edge devices
for high lift and roll control extend along most of the span of the outer wing panel. The
wing is twisted and cambered for transonic maneuvering. The propulsion system consists
of two engines located beneath the center-wing section in nacelles which are blended into
the lower surface inboard of the 37-percent semispan. The nozzles are vectorable in pitch.
Twin vertical tails are located at the outboard edge of the center-wing section and are
canted out 20°. Control surfaces located at the trailing edge of the wing cenfer section, in

conjunction with the canted vertical tails and vectorable nozzles, provide pitch control.
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A model of the configuration was tested in the Langley Unitary Plan Wind Tunnel
and Rockwell’s Trisonic Test Facility. In addition to the 48° leading-edge outboard wing
panel of the concept, two 55° leading-edge panels, and two new 48° leading-edge panels
were designed and tested. One of the 55° panels was twisted and cambered for a Mach 1.6
maneuver design point. The two new 48° panels were designed with leading- and trailing-
edge flap systems to best meet the subsonic/transonic/supersonic cruise and meneuver
design points. For details of the wing panel design procedure, see Ref. 20. Aerodynamic
force data for the 48° baseline panel and the 55° panels can be found in Ref. 19. Experi-
mental data (aerodynamic force and surface pressure) for the new 48° panels and surface
pressure data for the 55° panel will be reported in a forthcoming NASA report.

The computational model of the wing-body-tail-nacelle fighter under development is
shown in terms of surface grid plots in Figs. 5 and 6. A typical marching plane contained
a 75 x 20 mesh generated by the elliptic grid solver of Ref. 12. Figure 7 shows the cross-
sectional grid and circumferential surface pressures at various axial stations in front of the
nacelle face at the cruise flight conditions. Figures 8 and 9 show results at two different
axial stations where the nacelles are present. The presence of a shock around the nacelles
is clearly seen in Fig. 8. Details of the crossflow velocity vectors (projection of the total
velocity vector on a unit sphere whose center is at the apex of the fighter configuration)
around the wing-body-nacelle geometry is shown in Fig. 9. In Fig. 9, the freestream is
aligned predominantly along the z-axis and away from the geometry and is seen as inflow
crossflow velocity vectors. Crossflow velocity information: provides insight into the behavior
of vortical singularities and plays a key role in activating the density biasing switches in
the code necessary to simulate crossflow shocks.

Linearized theory and full potential estimates of the 55° twisted and cambered wing
panel configuration are presented in Fig. 10. Fully turbulent skin friction drag for a
mean aerodynamic chord test Reynolds number of 1.56 x 108 is used for this assessment.
Examination of the results indicates the design is an aerodynamically efficient one, taking
into consideration nominal scale effects.

Figure 11 shows comparisons of chordwise pressures at two different span stations

(60% and 80% span). The results show that the full potential predictions are in good

14



Fig. 5. Surface grid for ATF with nacelle.
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Turbulent Skin Friction

Cp, = 0.0129 unitary , Ry, = 1.56 x 10°

Linear Analysis

a = 4.46 deg
Cr =0.32
Cp, =Cp, + Cp, = 0.109 + 0.02185 = 0.03275
Cy = —0.061

L/D = 0.32/(0.0129 + 0.03275) = 7.0

Full Potential

a = 4.46 deg
L = 0.311
Cn, =0.0325
Cpu = —0.0579

L/D = 0.311/(0.0129 + 0.0325) = 6.85

*Cambered plate fuselage

Fig. 10. Pretest M = 1.6 maneuver point design drag assessment.
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Fig. 11. ATF chordwise pressure distribution; My, = 1.6, a = 1.24,
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agreement with Rockwell’s experimental data. Figure 12 shows comparison of overall forces
and moments in terms of Cr, Cp, and Cyy.

Supersonic cruise and maneuver pretest assessment of the new 48° leading-edge design
is summarized in Fig. 13. Linear predictions indicate lift-drag ratio levels of 3.25 and 6.19,
respectively, for the proposed Unitary Plan Wind Tunnel test condition. Comparison with
the 55° point design result of Fig. 10 indicates a 13% reduction results from multipoint
compromises associated with wing sweep and airfoil leading edge radius. Two—thirds of
the penalty is associated with thickness considerations and one-third with drag due to lift.
Figure 14 shows the lift, drag and pitching moment results for the 48° leading—edge sweep
multipoint design. The full potential predictions are in good agreement.

The impact of multipoint considerations on the nacelle off untrimmed lift-drag ratio
is presented in Fig. 15. For the 48° wing configuration, a 7.6% reduction at the nominal
design point results from the decrease in planform sweep and increase in airfoil leading edge
radius, twist and camber. This penalty is modest and overstated by full potential analysis
which is slightly optimistic for the subsonic edge (55°) case and somewhat pessimistic for

the supersonic edge (48°).

3.2 Case 2 — Canard-Wing—Nacelle Fighter Analysis

The full potential method of Refs. 2-6 can handle extremely complex geometries. This
is demonstrated by app]ying‘the method to analyze the complex geometry?! of Fig. 16,
which has a canard, clipped wing tip, canopy and a flow-through nacelle mounted on the
undersurface of the fuselage. Figure 17 shows the computational geometry and surface
gridding. Note that the boundary layer diverter and swept nacelle were not modelled in
the computations. Computations were performed for this configuration at My, = 2 and
a = 4°. Figures 18 and 19 show the crossflow streamlines, surface pressures, pressure
~ contours and crossflow velocity vectors at two different model axial staticné. Figure 18
shows results at an axial station where the fuselage, wing, canard wake and canard are
all present. The nodal singularity in pressure contour that is present at lower wing-body
junction regions corresponds to a saddle singularity of crossflow streamlines, as shown in

Fig. 18. Note the pressure match along the canard wake cut, Fig. 18. Figure 19 shows

21



— TUNNEL DATA

O FULL POTENTIAL + Cp_|
| FuLLY TURBULENT Cop

DUNEAR +Cp

d !

1 i | . 1 1 1 ] .
12 0 -0.04-0.08-0.120 0.01 0.02 0.03 0.0 0.05 0.06 0.07 0.08
Cm Co

Fig. 12. Comparison of measurement with predictions at M = 1.6 for nonlinear point

design, ALg = 55 deg, nacelle off.
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Turbulent Skin Friction

Cp, = 0.0129 unitary, Ry, = 1.56 x 10°

Linear Analysis

a =124 deg a=5.22
Cr =0.1 Cr =0.32
Cp, =Cp, +Ch, =0.0149+0.0031  Cp, =Cp, + Cp_ = 0.0149 +0.0239
= 0.180 = (0.0388
Cy = —0.0136 Cir = —0.035
L/D =324 L/D =6.19

Full Potential

a = 1.24 deg a =5.22
Cr =0.119 Cr =0.336
Cp, = 0.0164 Cp, = 0.04075
Cy = —0.0284 Cn = —-0.051
L/D = 4.06 L/D =6.26

*Cambered plate fuselage

Fig. 13. Pretest M = 1.6 multipoint design drag assessment.
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results at a station where the nacelle is present. The formation of a shock around the
nacelle is clearly seen in Fig. 19. The upper and lower center plane pressure contours at
M, = 2.0 and a = 4° are shown in Fig. 20. The bow shock, canopy shock, nacelle shock

and expansion wave are evident in this figure.

3.3 Case 8 — Miscellaneous Cases

3.3.1 Shuttle Aerodynamics

Appendix C contains the reprint of a paper® presented in January 1985 (AIAA-85-
0272) that deals with applications of the full potential method to three dimensional geome-
tries including multibody configurations. The paper presents the results of calculations for
the isolated Shuttle Orbiter and the mated Shuttle configuration (Orbiter, External Tank,
and Solid Rocket Boosters). ‘

3.3.2 Transatmospheric Vehicle

The paper of Ref. 6 also presented some preliminary results for analysis of a pro-
posed transatmospheric vehicle (TAV) concept. Figure 21 presents results of additional
calculations on an alternate TAV configuration. Analysis of these TAV concepts indicates
that the rapid execution times of the vectorized full potential code makes it a very useful
design/analysis tool for preliminary design of TAV configurations.

Figures 22-24 show application of the full potential code to a TAV-like configuration

with fuselage-mounted vertical tails.

- 3.3.3 Supersonic Inlet Cowl Design

Appendix C includes a paper?® given in July 1985 (AIAA-85-1703) which illustrates
the use of the SIMP program for the design of a twisted—cone inlet spike. The objective
was to determine the proper location of the swept cowl lip such that the oblique shock
emanating from the compression cone is attached at the cowl lip at the design supersonic
Mach number. The SIMP calculations were compared with the results of an Euler solver!®
under development and, as expected, the SIMP code overpredicts the pressuré on the upper

surface where a nonisentropic shock is formed. This problem illustrates the limitations of
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the SIMP code and shows the need for an Euler method for supersonic flow computations

which must capture strong shock waves.

Fig. 20. Upper and lower centerplane pressure contour for Langley fighter configuration;
My =20, a = 4.0.
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TAV CENTERLINE PRESSURE CONTOURS
Mo =14,a=0°

/

Fig. 21. TAV configuration and pressure contours.
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4.0 CONCLUSIONS

This report demonstrates the use of a nonlinear full potential acrodynamic prediction
capability developed at Rockwell International under a contract from NASA-Langiey Re-
search Center. The method is now routinely employed to analyze and assist in the design
of advanced fighter wings at supersonic flight conditions. Also, the nonlinear method is be-
ing used to analyze extremely complex geometries that include complete fighter geometries
(canard, nacelle, vertical tail and wake effects). Use of supercomputers and vector coding
make application of this powerful nonlinear method very attractive and cost—effective.

Appendices are included which give details of the code structure, input data, a sample

test case and user’s guide, and relevant publications.
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APPENDIX A — CODE STRUCTURE

CODE ORGANIZATION

The SIMP analysis code is applicable to arbitrary wing—body—nacelle-tail arrange-
ments from moderate supersonic Mach numbers (Mg, ~ 1.2) to values of the hypersonic
similarity parameter Mé < 1. The lower code limit is governed by the extent ‘of the
embedded subsonic flow while the upper limit results from a breakdown in the isentropic
assumption for strong shock waves. Also, since the potehtial theory is irrotational, the
modeling of any vortices is not attempted.

The program is written in FORTRAN V language. It can be executed on any CDC
machine (CYBER 176, CDC 7600), as well as on the CRAY-XMP and CYBER 205. For
a cross-plane (g, ¢) grid of 25 x 140, the program requires 660,000 words of memory. The
program consists of a main routine and several subroutines. A brief description of the code

along with input instructions needed to execute the code are given in this Appendix.

Program MAIN

Program MAIN coordinates the entire operation. A flowchart describing the various
operations performed by the MAIN program is given in Fig. A1l. The MAIN program
sets up the initial (known) data plane and the body-fitted grid system and performs the
L¢ and L, operators to advance the solution. The marching step size A¢ can either be
prescribed or computed at each marching plane from a given Courant number and the
maximum eigenvalue. The various read and write tapes used in the calculation are listed

below.

Program MAIN (Tape 1, Tape 2, Tape 3, Tape 4, Tape 5, Tape 7, Tape 8, Output,
Tape 6 = Output).

Tape 1: Output solutions for plot.

Tape 2: Output solutions for restart.
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Tape 3: Read in starting solutions for restart.

Tape 4: Output solutions for restart.

Tape 5: Input data.

Tape 6: Solution output.

Tape 7: Read tape containing solutions for subsonic region.

Tape 8: Write tape for subsonic bubble calculation.

Subroutine INVSXI and Subroutine INVSETA

The factored implicit scheme for the governing full potential equation can be written

as
L¢eLy(A¢) =R
and it is implemented as follows:
Le(A¢)* =R,  Ly(A¢) = (A¢)"
$i+1 = ¢i + A

The subroutine INVSXI performs the £ inversion, and the 5 inversion is solved in subrou-

tine INVSETA.

Subroutine EIGEN (EIGENY, EIGENZ)

This subroutine computes the maximum eigenvalue EIGENY in the (¢,n) plane and
the maximum eigenvalue EIGENZ in the (¢, ) plane. The expression used for calculating
the eigenvalue is given in Ref. 5. The maximum eigenvalue information is then used to

compute a marching step-size A¢ for a specified Courant number.
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Subroutine NFORCE (PX, PY, PM, AREA, KG)

At the end of each marching plane calculation, this subroutine computes the axial
force, PX, vertical force, PY, and the side force, PZ, by integrating the pressure force acting
on an elemental area, dA. The elemental area, d4, is computed from the transformation

matrix using the formula (at a body point j = 2).

2 2 2\1/2
dA = {[y;ze — 2eye]” + [zeze — zoze]” + [ezs — yoze] } d¢dg.
KG =0, conical or blunt body nose force calculation

= 1, rest of the body force calculation.

The program also prints the force coefficients, Cr, Cp, and Cs (side force coefficient)
information based on a prescribed reference area, and moment coefficients, Cps, Cy, and
Cr about a given reference point (Xp, Yo, Z5). Cy is the yawing moment coefficient
and Cp is the rolling moment coefficient. Cg, Cy, and Cg are opposite in sign from the
standard convention, since the W component of velocity is defined to be positive from the

centerline out towards the left wing.

'Subroutine GEOM (N9, NRP)

N9 =0, geometry data at X; and X, are read in

L

> 0, geometry data at X, is updated and X, is read in

NRP =0, constant z marching plane geometry calculation

= 1, spherical marching plane geometry calculation

Subroutine GEOM sets up the body grid points from a prescribed geometry shape.
From the input geometry points, a key point system is established using cubic splines.
These key points are then joined from one prescribed geometry station to the next to

provide the geometry at any intermediate marching plane!2.
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Subroutine GRID

Once the body points are obtained at a marching plane from GEOM, subroutine
GRID sets up the entire crossflow plane grid using an elliptic grid solver that satisfies

certain grid constraints.

Subroutine METRIC

This subroutine computes all the necessary transformation metrics and Jacobians at
various node and kalf-node locations as required by the solution algorithm (L¢ and L,

operators).

Subroutine UVW

This subroutine computes all the contravariant velocities, U, V, and W, and the

density p.

Subroutine RHOBIAS

This subroutine performs the density biasing in the (5, £) plane based on characteristic
signal propagation theory. This operation is essential to treat crossflow supersonic regions

and to capture shock waves.

INPUT DATA

The input data can be divided into four parts: (1) header data describing mesh
information, Mach number, angle of attack, aerodynamic coefficient reference quantities,
center of gravity location, etc.; (2) detailed geometric coordinates defining configuration
cross plane contours; (3) program update file directives defining code modifications; and
(4) job control directives defining program and input/output file allocations (this depends

on the particular computer).
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Header Data

A typical analysis of a complete configuration' requires several regions of marching
calculations for a complete analysis. Each region calculation has a different set of header
instructions for describing grid parameters, wake information if pertinent, restart direc-
tions, and number of mesh points for each patch of the region. A sample input is given
in Appendix B for the configuration of Fig. A2, and a brief description of each variable is

given in this section.

Card* Symbol Format Description

100 NMAX I5 Number of axial marching steps.
If NMAX =0, and ZTA1 = ¢ and TAPER = F
the code generates geometry and grid data
at z = ¢ for plotting. For NMAX# 0,
the code will march for NMAX steps unless
XEND is éncountered first. NMAX must
include NCON iterations if applicable.
(NMAX = 0 option for grid plot is provided
to allow the user to review the quality
of grid at various axial stations before

the flow solver is turned on.)

110 JMAX I5 Mesh points in the normal direction (n).
Present maximum is 25. This can be
increased by increasing the dimension.

This number includes the J = 1 dummy line

inside the geometry.

120 KMAX I5 Mesh points in circumferential direction (&)

(maximum value: 140). This number includes

* Card number (e.g., Card 100) is not part of the input file.
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130

140

150

160

170

180

NRM

NUO

NP

KWKMIN

KWKMAX

NCON

I5

I5

I5

I5

I5

I5

the K =1 and K =KMAX dummy lines. If this
number is incorrectly specified, the code

will reset KMAX properly using the

KMAX =1 + (IPT1-1) + (IPT2-1) + (IPT3-1)
+ --+ + (IPTn-1) + 1 (definition of IPT

follows in the next section). “n” is the

number of patches.

Number of grid regions (separated by
dashed lines in Fig. A3). Maximum of 6

allowed.

Not used.

Selected surface output for every

NP steps.

K value of starting point of a patch

containing wake (Fig. A3).

K value of ending point of a patch
containing wake (Fig. A3).

Number of iterations for conical starting
solution (usually set to 30). To establish

this starting solution, the geometry is
initially assumed to be conical. The geometry
at ZTA1 is projected forward conically

to a point at (0,0,0). (The nose of the
configuration is assumed to be at (0,0,0).

If the geometry is not input this way,
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190

200

210

NITER

NSPTI

ITERGE

I5

I5

I5

shift the geometry using PTNOSE and
YSHIFT.) The solution is then obtained
for this conical geometry based on
NCON iterations. The conical solution
is used as a starting solution for

the nonconical case, beginning at

ZTA1l. The marching step size A¢

for the conical calculation is based

on a specified Courant number (CFLIN).

The user should be aware that NCON is
included in the NMAX total. Also, ZTA1l
output values have no physical

significance during conical calculation.

Number of iterations to generate the
marching grid using an elliptic grid solver.
Usually set to 30. If grid routine fails,

set this to O to analyze the geometry

and the initial grid generated before grid
relaxation (this is for debugging purposes).
Set NITER back to 30 for flow field
analysis. NMAX should be set to zero

for analyzing the grid quality.

Number of ¢ locations for detailed

flow field output (maximum of 10 locations).

Number of global iterations for subsonic

region calculations.
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The marching calculation can encounter subsonic
(MSR and TSR) regions, especially at low
freestream supersonic Mach numbers (Mg, ~ 1.2
to 1.8). For the first pass through subsonic
regions, the relaxation routine in the code
assumes sonic flux conditions (Ref. 4). If the
extent of the subsonic region (usually confined
near the body surface, especially near the
leading edge) is very small, just the first

pass with assumed sonic flux conditions will
suffice for the marching calculation. However,
if the subsonic zone is expected to be large,
(around bumps on the geometry which might
create detached shocks such as the canopy),
several relaxation passes through the

subsonic zone are essential for correct
representation of the flow. ITERGE represents
the number of relaxation passes for subsonic
calculation. The user may not know ahead

of time if a large subsonic zone is to be
encountered during the marching calculation.
The output prints the location of subsonic
points encountered during the first pass.

If too many subsonic points are predicted

by the code during the first pass, then set
ITERGE > 1 and TAPESW = TRUE.

Then, subsonic relaxation is carried out

over the entire NMAX marching planeé for

ITERGE times. The relaxation solution from
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220

CFLIN

F10.5

each pass is stored on tape (TAPESW)

to aid in the relaxation process (Ref. 4).

If the initial prescription of ITERGE

value is not enough for satisfactory
subsonic convergence (RMS change in
density between two relaxation cycles
should be a small value, preferably 10~4),
then additional subsonic iterations can

be performed through the restart option
(TAPER = TRUE, TAPE8W = TRUE) by reading
the previously stored solution on TAPET7.
During subsonic calculations, the marching

step size A¢ is to be kept constant.
The CFL number.

If DZTAIN (Card 230) is negative, the

axial step size A¢ is generated based

on CFL number. The relationship between A¢
and CFL number through the maximum eigenvalue
is given in Ref. 3. When the geometry change
in the axial direction is minimal (nearly
conical shape), the marching step size A¢

is given by the CFL number (usually CFLIN
set to 5). If the geometry changes are very
abrupt (emergence of wing, canopy, tail, or
any other component) or drasticaily
nonconical, then A¢ is prescribed by

the user (see Fig. A4).
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230

240

250

260

270

280

DZTAIN

DZMAX

DZMIN

FSM

ALFA

THTO

F10.5

F10.5

F10.5

F10.5

F10.5

F10.5

Initial step size. For nonconical geometry
calculations, DZTAIN is chosen to be either
DZMIN or DZMAX. If DZTAIN is set to less
than DZMAX, then during marching calculation
A¢ will be slowly increased to DZMAX.

b

Maximum step size.
Minimum step size.

(DZMAX and DZMIN depend on the complexity
of the geometry. Suggested value:

DZMAX = total length/400 and

DZMIN = DZMAX/2.) If DZMIN is set equal
to DZMAX, then constant step size is used.

Freestream Mach number.
Angle of attack (degrees).

Angle of outer boundary (degrees).

This angle must be larger than the bow
shock wave in order for the code to capture
the bow shock. Often the best way to
choose this value is to calculate the

bow shock wave half angle and add 10°.

THTO

T ¢
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290

300

310

320

330

DZTA

ZTA1

XEND

AMU1

AMU2

F10.5

F10.5

F10.5

F10.5

F10.5

First step size for the marching
calculation after conical starting solution.

Usually, this value is set to DZMIN.

Af

STARTING
CONICAL
PLANE

Starting ¢ location. If TAPER =
TRUE, this value is overwritten by stored

restart value.

Final ¢ location for this run.

1: first order accuracy in marching
direction.
0: second-order accuracy in marching

direction.

0: first-order accuracy in marching

direction.
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1: second-order accuracy in marching

direction.

Usually, first—order accﬁracy is used for rapidly
varying geometries. For nearly conical cases,

second-order accuracy is recommended.

340 XWAKE F10.5 Wake starting location in the axial
direction (see Fig. A3).
350 BETANG F10.5 Angle of yaw (degrees).
360 | CHL F10.5 Geometry scale factor. If set to total
length, ¢ will be scaled from 0 to 1.
I éet to 1, actual dimensions of the
geometry are used. Use of dimensional
(CHL = 1) or nondimensional (CHL = ¢)
option is left to user’s choice.
370 PTNOSE  F10.5 Axial geometry shift. Equal to negative
of apex of the forebody (i.e., shifts
configuration nose to ¢ = 0).
Yy
4 y
4' - X P 4 A!
— ed
— f=—IPTNOSE
1 M ¢=x+PTNOSE
380

YSHIFT F10.5 Vertical geometry shift (i.e., shifts

configuration nose to = 0).
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390

400

410

420

430

440

450

460

X0

YO

AAA

ALL

OMEGA

YAW

NUGRID

IREAD

F10.5

F10.5

F10.5

F10.5

F10.5

L5

L5

L5

Moment reference z location (unit~length).

Moment reference y location (unit~length).

Reference area to compute aerodynamic

force coefficients (unit~ler:zth?).

Reference length to compute aerodynamic

moment coefficients (unit~length).

XO, YO, AAA) and ALL are to be chosen

(dimensional or nondimensional) based on CHL.

Overrelaxation parameter for grid generation.
Suggested value:
1.0 (for vectorized code)

1.75 (for scalar code).

T: Calculation with yaw (full cross-
plane grid).
F: Without yaw (half-plane grid).

T: Numerical grid generation (normally
used).

F: User must adapt code for his particular need.

T: Read body geometry input which must
be supplied in the format described iu

the next section titled “Geometry Data”.
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470

480

490

500

510

520

RPLANE

TAPER

TAPEW

TAPESW

FORCE

THTU(5)

L5

L5

L5

L5

L5

515

F: Analytic geometry (which must be supplied
by the user and inserted in subroutine
GRID).

T: Spherical plane marching (spherical
plane marching is exercised only for
conical flow calculations).

F: Constant z plane marching.

T: Restart the calculation.
F: Start the calculation from freestream

¢ values.

T: Write restart data on Tapes 2 and 4.

F: No data storage for restart.

T: Write entire flow field data for
subsonic iterations on Tape 8.

F: No flow field data saved.

When a tape read or tape write is set TRUE,
the user will have to provide the necessary

job control cards.

T: Compute aerodynamic forces and moments.

F: No force computation.

Grid region terminal points (k)
(see Fig. A3). These values are the K values

of the points where the dashed lines intersect
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the body.

530 INU(5) 5F10.4 Polar angle (degrees) at respective

terminal point.

540 ZTAPT(10) 10F8.4 z-locations of detailed flow field

printouts.

550 ISC I5 Number of patches (geometry) that define
the cross—sectional shape of the configuration
for this region of the configuration
(see Figs. A3 and A5). (Maximum number
of patches = 15.)

560 NPT(15) 15I5  Number of output points on each patch

(maximum number of points per patch is 30).

Geometry Data

The cross-sectional geometry of a typical aircraft changes considerably in the axial
direction due to emergence of various components such as canopy, wing, nacelle, and tail,
etc. The marching computation, as it sweeps along the marching direction ¢, has to account
for this geometry variation to set up the proper body-fitted coordinate system to aid in
the application of body boundary conditions. To treat complex geometry cross sections,
patches are introduced to define the geometry as indicated in Fig. A2. Using patches, a
configuration is defined by several regions of cross sections. The number of patches defining
a section is constant for a given region (Fig. A2).

A complete computation over a configuration such as the one in Fig. A2 is usually done
in segments rather than in one shot. The calculation starts from the nose and proceeds
along ¢. Even within a region (defined by the same number of patches), the calculation

might be done in segments using the restart option in the code. Restart is used any time
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the calculation is halted and then continued with another run that picks up where the
previous run left off. Pure restart is performed only when there is no alteration to the
number of points along n (JMAX) and along ¢ (KMAX), and no change in the number
of grid points per patch between the previous run and the current restart run. If there is
any alteration to the grid structure, the restart run will automatically perform a respace
operation to interpolate the solution from the previous solution grid to the current grid.

Respace is used whenever the following situations are encountered:

1) Number of patches defining the cross section is changed. This situation occurs when

the cross-sectional geometry becomes more complex. This is illustrated in Fig. A2,

2) Number of JMAX and/or KMAX points is changed (even if the number of patches
defining the cross section is kept the same as before). This situation often occurs for
cases where a patch length is increasing with ¢. For example, a swept wing is very
small when it first appears in the cross section of the geometry and only requires a
few grid points for accurate computation of the flow field. However, as the analysis is
continued in the ¢ direction, the wing patches grow and will require more points for

accurate flow field analysis.
3) Number of grid points per patch is changed (even if KMAX is kept the same as before).

Any time a respace is required, the code must be stopped. The code will automatically
do a respace if KMAX or JMAX is different from the previous values of KMAX and JMAX.

One may be able to compute the entire configuration using the same number of patches
and same KMAX and JMAX values throughout to avoid the respace requirement. This will
mean even in the forebody region of a configuration, where the cross-sectional geometry
is usually simple, more grid points and more patches are to be used than necessary to
adequately resolve the flow field. Use of the same number of patches and grid points
for thr.oughout- the length of the configuration is generally not recommended. This can
substantially increase the total execution time.

Transitioning from one region to the next (number of patches is changed) requires an

overlapped zone, as illustrated in Fig. A6, to allow for increased or decreased number of
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patches in the next region. The extent of this overlapped zone must be sufficient to include
at least the final three marching data planes of the prior region. In the overlapped region,
the data from the previous region is interpolated onto the grids of the new region. For the
example of Fig. A6, the results from the 3—patch region are interpolated onto a 4-patch
region grid at the same z location. This is required in order to continue marching along
the body with the new patch definition.

Figure A6 illustrates how to transition from a fuselage computation to a wing-fuselage
computation. First, the calculation is performed for the fuselage section denoted by
REGION1 which ends just prior to the starting point of the wing. This calculation might
involve, say, three patches. Then, to introduce the wing, a four patch representation is
used in REGION2. In the overlapped zone, the fuselage which is defined using a three
patch representation in REGIONI1 is represented by a four patch representation as part
of REGION2. The second and third patch locations on the fuselage in REGION2 within
the overlapped zone are chosen in the vicinity of where the leading edge of the wing is

expected to emerge from the fuselage.

Wake Geometry

Behind the trailing edge of a lifting surface a cut is introduced (see Fig. A3), across
which potential ¢ jumps are imposed (the ¢ jumps are computed at the trailing edge)
to preserve density continuity across the flow through cut. Mathematical details of this
so—called “wake model” are given in Ref. 4. The treatment of wake cut within the code
requires the knowledge of starting and ending K index values of the upper wake cut and
the lower one. Depending on the sweep of the trailing edge, the wake cut is appropriately
modeled. This is illustrated in Fig. A3. The user has to define the shape of the trailing
edge and also the starting z value where the wake begins to appear in the cross-sectional
geometry (XWAKE). The wake cut is part of a patch which contains the wing also as
illustrated in Fig. A3. As marching proceeds along the axial direction, the extent of the
wake cut grows within that patch. The nomenclature for the starting and ending points of
the wake cut are also indicated in Fig. A3. The number of points in the patch containing

the wake cut is not allowed to change during the calculation. Thus, while exercising the
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respace option in the region containing the wake, the user has to ensure that the number
of points in the wake patch (usually there are two wake patches; one corresponding to the
upper cut and one for the lower cut) is not altered.

The shape of the trailing edge is provided by the user using the update option.

For the wing-body-vertical case of Fig. A2, a 3-patch initial region, a 6-patch center
region, and an 8-patch final region was used. The patch definition for Region 1 is as indi-
cated in Fig. A5. Zero length patches are pot permissible. Since the analysis is marching
in nature, a complete geometry data set is not required to begin and partially process a
problem. Appropriate use of restart solutions allows continuation of the analysis as new
or modified geometry becomes available.

The format for a typical station is shown below. The group of cards is repeated for
each station of a region. The last point of each patch (except for the last patch of a station)

should have the same coordinates as the first point of the next patch.
Card No. Format Field Name Description

Al F15.6,I5 1 X1 The z value (longitudinal)

of this station.

2 ISC1 The number of patches for this
section. 1 < ISC1 < 15.

The group of cards A2 through A3 are repeated ISC1 times.

A2 3I5 1 ITH Patch number < 15.

2 IPT Number of points in this
patch. 2 < IPT < 30.
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3 ND Mesh spacing parameters®.
Typically the same for all

stations of a region.

The A3 card is repeated IPT times

A3 2F15.6 1 YK Vertical location of point
(positive upwards). Points start

at top centerline (see Fig. A5).

2 ZK Spanwise location of point.

Cubic spline interpolation is performed on input patch data to derive the geometry.
Linear interpolation is performed to define the geometry at a marching plane between
input stations. |

Sample geometry data for the problem of Fig. A2 is presented in Table 1 and was
developed using CDS?!8,

Update File Directives

The SIMP code is not intended to compute all cases without the user having to interact
with the code. There may be cases which will require the user to incorporate specific
changes to the code to obtain a solution. The changes that are frequently encountered are

listed here.

1) Shape of the trailing edge for wake calculation. In order to initiate the wake calcula-

tion, the code has to know the starting and ending K values of the wake region in the
marching plane (see Fig. A3). Depending on whether the trailing edge has a positive
slope or a negative slope, the K values in Fig. A3 are properly computed by the code.
The user has to prescribe the shape of the trailing edge. This update change is done
in Program MAIN by prescribing Zrg = f(¢) = a¢ + b where “a” defines the trailing

* For segment AB: 0 equal space; 1 cluster near A; 2 cluster near B.
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2)

.

edge slope. The location where this change is made in MAIN is clearly marked in the
code. If the trailing edge has no sweep, then KWKED1 = KWKST1 = K of leading
edge (KLE).

Respecification of the relaxation parameter OP in the grid generation routine.  For

severe geometry cases, to impose orthogonality and required specific grid spacing
in the n direction will require smaller values of OP (as low as 0.005). Generaily, OP =
0.02. The parameter OP provides underrelaxation for the constraints P and Q which
impose the orthogonality and grid spacing near the body surface. When OP = 0,
the grid solver does not impose any constraints. For geometry sections with drastic
variation in slopes in the cross section, imposition of P and Q constraints can lead to

instability in the grid solver. Lowering the value of OP should relieve this problem.

Usually, the grid in a marching plane is divided into several subregions (the NRM
parameter defines the number of subregions, see Fig. A3). The value of OP can be set
to different values for different gri‘d regions depending on the severity of the geometry

slope change in that particular region.
The update change for OP is made in Subroutine GRID in loop “DO 100”.

Averaging of ¢. In regions of rapid flow expansion (flow around a sharp leading edge,

clipped wing tip) the marching algorithm can run into instability problems. This will
result in the density value at certain grid points becoming negative. Even though
this might occur at only one or two points at a marching plane, the whole marching
calculation comes to a halt. This problem, for most cases, can be alleviated by reset-
ting the potential ¢ values, at grid points encountering negative density, by averaging
the ¢ values surrounding those grid points. One such ¢ averaging technice usually
specified through the update option is illustrated in Fig. A7 for a sharp leading edge
point. If the problem persists, even after implementing the ¢ averaging procedure,
one might consider a similar averaging procedure for density also. The user should
carefully examine the grid to make sure that the negative density pfoblem is not due

to improper grid or improper geometry.
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4)

The update for ¢ averaging is made in Subroutine INVSETA. The location is after
the statement “705 CONTINUE”.

Restart for nacelle on. In order to introduce a flow through nacelle in the calculation,
the respace/restart option is exercised just at the nacelle face location as illustrated
in Fig. A8. The calculation is first performed just prior to the nacelle face location
(Region N). Then, in the overlapped region, the nacelle face is extended forward
(fictitious flow through nacelle surface) and a respace is performed to set up grid and
¢ values that correspond to the nacelle-on geometry. Such a respace calculation with
a fictitious flow through nacelle is essential for a smooth transition into nacelle-on
marching calculation. Through update, the user has to prescribe the K value of the
starting and ending points of the n#celle to aid in the respace procedure. A sample
update procedure for a nacelle-on calculation is given in Appendix B for the Zone 3

calculation.
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CALL INPUT

NO| YES
y
CALL GRID J READ INITIAL DATA
FROM TAPE 3
4
SETUP INITIAL
DATA PLANE.

CONICAL OR BLUNT
BODY SOLUTION

! 3
START MARCHING rnocsounz]-——
1
UPDATE 5 PERFORM { INVERSION

R

PERFORM n INVERSION

SOLUTION
CONVERGENCE

UPDATE ALL
CALL OUTPUT | | e vamianies
s 1

CALL EIGEN CALCULATE NEW af]

CALL GRID |

END
OF CALCULATION

3

NO

" SOLUTION
CONVERGENCE
YES

Fig. Al. Flow chart for the full potential code.
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Fig. A2. Sample problem.
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/ KWKED1
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\ \
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. XWAKE
8) AFT-SWEPT TRAILING EDGE
KWKST = KWKMIN; KWKED = KWKMAX

ZWAKE! = fn (X)
%—(wxsm, KWKSTI

KWKST, KWKED

K VALUES OF KWKEDI AND KWKSTIARE COMPUTED FROM ZWAKEI

KWKEDI! = KWKST! = KLE

\ KWKST, KWKED
\ KWKMIN, KWKMAX

XWAKE

b} FORWARD-SWEPT TRAILING EDGE

Fig. A3. Cross—section patches and nomenclature.
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NEARLY CONICAL SHAPE
CALCULATION BASED ON CFLNO

NONCONICAL SHAPE
A¢ BASED ON DZMIN AND DZMAX

Fig. A4. Marching step size selection.
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Fig. A5. REGION1 patching.

67



OVERLAPPED —>

-REGION 1 \

ZONE

3

3

: REGION 1
REGION 1
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CLIPPED
WING TIP

¢(K. 2) = [p(K -1, 2) + ¢(K + 1, 2) + ¢(K, 3)]/3.

Fig. A7. Potential averaging at wing tip clip region.
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— FLOW THROUGH
FICTITIOUS - ~
NACELLE NACELLE

EXTENSION
/ REGION N+1
% E E REGION N+1

WITH NO-FLOW-THROUGH
REGION N NACELLE LINE

OVERLAPPED
ZONE N

\

REGION N+1

WITH FICTITIOUS
NACELLE EXTENSION
(FLOW-THROUGH
NACELLE LINE)

Fig. A8. Nacelle-on calculation.
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APPENDIX B — DEMONSTRATION OF A TEST CASE

A sample test case is presented here to familiarize thé user with the operation of the
code.

Figure B1 shows the surface grid for the fighter configuration discussed in Appendix A.
The configuration is an advanced fighter concept consisting of a blended wing/body with
underslung nacelles and twin vertical tails. As mentioned in Appendix A, the solution
for a complex configuration is accomplished by breaking the configuration up into regions
or zones. These separate calculations are necessary because the configuration becomes
increasingly complex in cross—sectional shape as marching is done in the axial direction.
To accommodate the emergence of the wing, nacelle, tail, and wake region requires that the
number of points in the circumferential direction be increased from zone to zone through
use of a respace option.

A brief description of the appropriate header information for each analysis zone is
given below. The test case is for a combined yaw and angle of attack flight condition,

M=16,=4° and a=6°.
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Zone 1 — Input Description

This zone initially performs the conical calculation necessary to set up the starting
plane solution needed to initiate the marching calculation. The parameter NCON specifies
the number of conical iterations to be performed for the crossflow geometry at ZTA1.

The header data for this region is given and a display of the flow field pressure contours
and grid at the end of Zone 1 is shown. A sample of the printed output data and a discussion

of the display postprocessor will be given at the end of Appendix B.

Cross-section patch definition for Zone 1.
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GEOMETRY SCALE FACTOR

AXIAL GEOMETRY SHIFT FOR Z2TA>0.
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Zone 2 — Input Description

This zone is required to increase the number of circumferential points to accommodate
definition of the wing. The number of cross-sectional patches increases from three to six
and there is a slight overlap region to adjust the Zone 1 flow field solution to the new grid.

The header data is given along with a flow field display at the end of Zone 2.

Cross-section patch definition for Zone 2.
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Zone 3 — Input Description

Zone 3 is required because the underslung nacelles on the configuration will be mod-
eled as flow—through ducts. The primary changes required other than the obvious one
of modifying the contour geometry is to overlap Zone 2 and Zone 3 both upstream and
downstream of the inlet face. This permits both transition between six and nine patch
definition required to add the two sides and the bottom of the rectangular-like nacelle, and
allows associated grid index information and temporary code corrections to be supplied
via the update file.

Again, the header data is given as well as the necessary update statements and a flow

field display at the face of the nacelle.

Cross-section patch definition for Zone 3.
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Update for Nacelle

100=2IDENT YUP1

110=x]1 RESPACE.Z24

120=C RESPACE NACELLE STARTING DIRECTIVES;DELETE FOR NEXT RUN
130=C KN-BEGINNING K3;KED-END K

140e KN=41

150= KED=55

160= KM=KN-1 SQ\ /Ql
KNA KED KN

170- KPeKN+1

180+ KNA=69 — —
190- KEDA=83 keoa\ /. \_
200+ KMA=KNA-1

210- KPA=KNA+1

220+=%1 RESPACE.?77 .

230= IF (K.GT.KN ) GO TO 130

240=C IF (K.GT.KNA.AND.K.LT.KEDA) GO TO 130

250+2D RESPACE.97?

260« JSTe2

270 IF (K.GT.KN.AND.K.LT.KED) JST=1

280« IF (K.GT.KNA.AND.K.LT.KEDA) JST=1

290+ DO 100 J=JST,JMAXC |

300=%1 RESPACE.10S

310- IF (J.EQ.2.AND.K.GT.KN ) GO TO 113

320+C IF (J.EQ.2.AND.K.GT.KNA.AND.K.LT.KEDA) GO TO 113
330=x1 RESPACE.119

340 IF (J.EQ.2.AND.K.GT.KN ) GO TO 117

350=C IF (J.EQ.2.AND.K.GT.KNA.AND.K.LT.KEDA) GO TO 117

360=x1 RESPACE.120

370= 117 CONTINUE

380=%1 RESPACE.121

390= IF (J.LE.2.AND.K.GT.KN ) JJ=JJS
400~ IF (J.LE.2.AND.K.GT.KN ) KB=KBS
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400-
410-X1
420-
430«
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450+
460+=
470-%1
480+
490+x1
500«
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S20e%1
530=C
540=C
550
560
570=
580«
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600
610=

IF (J.LE.&.GND.K.GT.KN ) KB=KBS
RESPACE.169

IF (JJ.EQ.0) KB=KB-1

IF (JJ.EQ.9) JJ=3

RESPACE.173
IF (J.EQ.3.AND.K.GT.KM ) JJS=JJ
IF (J.EQ.3.AND.K.GT.KM ) KBS=KB
RESPACE.181

IF (D22 .LT. 1.E-10. AND. ABS(2ZN).GT.2) GOTO 177
RESPACE .255
IF (K2.GT.KN.AND.K2.LT.KED) GO TO 341
IF (K2.GT.KNA.,AND.K2.LT.KEDA) GO TO 341
uvuv.17
UUU NACELLE STARTING DIRECTIVES;DELETE FOR NEXT RUN
KN-BEGINNING K;KED-END K
KN=41
KED=5S
KNA=69
KEDA=83
IF (K.GT.KN.AND.K.LT.KED) GO TO 312
IF (K.GT.KNA.AND.K.LT.KEDA) GO TO 312
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Zone 4 — Input Description

Zone 4 is required to incorporate the vertical tail and the wing wake. This region
corresponds to the region 3 solution 2 discussion of Appendix A. The number of patches
is increased to 11 and the solution of Zone 3 is interpolated on to the new respaced grid
through an overlap region between Zone 3 and Zone 4.

The total solution is now composed of four sequential regional solutions for Zones 1
through 4. The header data for Zone 4 is given with a flow field display approximately

midway in the region.

Cross-sectional patch definition for Zone 4.
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1:FIRST ORDER,2:2ND ORDER.
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Output Data Description

Sample printed output data is presented on Table B1. Standard tabulated data is
produced every NP marching steps as defined in the header data. More detailed physical
plane data can be output at specified stations using the parameter NSPTI and the tabu-
lated stations following the true/false header data input. Cartesian coordinates, velocities,
and mesh indices are indicated in the following sketch. The axial velocity component, U,

is positive out of the plane of the paper.

8v,v
k=2

3

!

!

!

!

§

-

1

'-z’w k=<kmax-1

Crossplane data and tabulated surface pressure coefficient data at constant span sta-
tions (i.e., z) are output via Tape 1. These files are displayed using the postprocessor

described in the next section.
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Postprocessor Description

A Tektronix based graphics display capability is available for displaying results. The
file containing the cross-sectional data is génerated for ZTA1 by the supersonic full poten-
tial analysis as Tape 1.

Typical program prompt response is

Xx-STATION » 54,65

IPLOT...
2 FOR MACH NO. CONTOURS

3 FOR PRESSURE CONTOURS

2 FOR CCMPUTATIONAL GRID

2 FOR MeCH NO. PROFILES

3 FOR PRESSURE PROFILES

e R il e ket *

AX,YRIN,YMe%. .. 4F10.4
HE'PLOTES X CCORDINATE

HE PLOTLS v COORDINATE

HUS MACK NO. FOR 1PLOTe:2

WUS  PRESSURE FOR IPLOTe:3

15 OTKERUISE THE PHYSICAL Y COORCINATE
15 ALUAYS THE PAVSICAL X CCORDINATE
XPINe Q. XMAXs  .22787053E+03
VMINs -.22351750C+@3vFAXs  ,22938620E+03
@=---#-=-=Q-m-cd4onoc@omocdocm@oo--4ooand
7 0.0 2c. -10. 12.

X ©
—
]
1
L]

2 o=
A4 ATO+ s e v v

N
1
)
1
I

XMCLCLCCHXIXV
wnhun-

Typical output is shown below. The results are truncated at Z = 25 and Y =+10as
specified in the input above.

MACH MO, » 1.20 LTerioat cals
A - S.00 oTPLTaTIINGL CRIZ

L] $ 10 1s e 5
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.
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NACH NO.
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Conservative Full Potential, Implicit Marching Scheme
for Supersonic Flows

Vijaya Shankar*
Rockwell International Science Center, Thousand Oaks, California

An aerodynamic prediction technique based on the full potential equation in conservation form is developed
for the treatment of supersonic flows, This technique bridges the gap between simplistic linear theory methods
and complex Euler solvers. A local density linearization concept and a second-order-accurate retarded density
scheme, both producing the correct artificial viscosity, are introduced in developing an implicit marching scheme
for solving the scalar potential ¢. Results for conical flows over delta wings, cones, and wing-body com-
binations, and for nonconical flows over bodies of revolution at angles of attack are compared with Euler and
nonconservative full potential calculations and experimental data. The present formulation requires an order of
magnitude less computer time and significantly less computer memory over Euler methods.

I. Introduction

ERODYNAMIC prediction techniques that can handle

significant geometric complexity for use in supersonic or
hypersonic configuration design are based on either hyper-
sonic impact methods' or linear theory analysis,* both of
which require minimum response timé and cost. However,
shortcomings are present in both the impact and linearized
methods. Aside from these simplified techniques, limited
capabilities also exist for calculating supersonic flowfields
using very complex Euler codes,*® using either shock cap-
turing’ or shock fitting*® methods. The use of these codes as
viable aerodynamic prediction techniques for configuration
design is, however, not practical due to their slow response
time (requirement of large computer memory) and excessive
computer cost per run due to strict stability requirements.
Thus, we have on one end of the spectrum, very simplified
codes that require minimum computer time to provide less
accurate results and, on the other end, very complex Euler
"codes that require excessive computer time to provide quality
results.

In an attempt to bridge this gap between simplistic linear
theory methods and complex Euler solvers, several
methodologies such as the second-order potential analysis,”
hypersonic small disturbance theory,® and, more recently,
nonconservative full potential methods*!'® have been con-
sidered by various investigators. The second-order theory,’ in
spite of the significant improvements reported, suffers from
the lack of nonlinearity in resolving proper cross flow shocks
and sonic lines. Also, the singularities inherent in the for-
mulation create difficulties in the numerical treatment of
subsonic leading edges. The finite difference analysis of the
hypersonic small disturbance theory® indicates that the
solution procedure is as complex as that for the Euler
equation and not particularly responsive to preliminary design
level of effort.

Recently, Grossman? and Grossman and Siclari'® have
computed supersonic flowfields over conical and nonconical
cambered and twisted delta wings with remarkable success
using the nonconservative full potential equation and a
transonic relaxation method. However, their approach is
made complicated by the use of global conformal mappings
which apply only to certain classes of configurations. Also,
the nonconservative form of the full potential equation is in

Presented as Paper 81-1004 at the AIAA Fifth Computational Fluid
Dynamics Conference, Palo Alto, Calif., June 22-23, 1981; submitted
June 24, 1981; revision received March 22, 1982, Copyright ©
American Institute of Aeronautics and Astronautics, Inc., 1981. All
rights reserved.

*CFD Project Leader. Associate Fellow AIAA.

terms of second derivatives of the potential ¢, which, when a
transformation is applied, generates a large number of first
and second derivative transformation terms.

The full potential method proposed in this paper is
significantly different from that of Refs. 9 and 10. First of all,
the method is based on the conservative form of the full
potential equation, since for a shock capturing procedure to
conserve mass across the shock wave,!! it is essential that the
equation be cast in conservation form.!? Second, the method
can accommodate a numerical or analytical mapping
procedure that is either orthogonal or nonorthogonal without
complicating the form of the equation, in contrast to Refs. 9
and 10. Third, the method is based on an approximate fac-
torization implicit algorithm that can yield convergence much
faster than the conventional successive line over-relaxation
method.' Finally, the method is not an adaptation of a
transonic code using type dependent operators, but a scheme
specifically developed and tailored for supersonic marching
problems using a density linearization concept and has no step
size restrictions.

To validate the present methodology, results are shown for
a variety of conical and nonconical geometries and are
compared with Euler solutions and full potential results of
Refs. 9 and 10. Results indicate that the method works just as
fast and effi¢ient for nonconical flows as in the case of conical
geometry treatment. Results also indicate that the method is
very useful in computing very high-speed flows (M, ~2-6) for
the moderate flow deflection angles (a ~4-10 deg) where the
neglect of entropy generation does not seriously distort the
main features of the flowfield.

The present method can also handle more complicated
geometries (realistic wing-body combinations) than the ones
reported in the paper, but requires a suitable grid generation
routine, especially near wing-body junction regions. In a
subsequent paper,!? results for nonconical wing-body flows
will be presented along with a formal method of charac-
teristics treatment for cross flow signal propagation.

II. Formulation

The conservative form of the full potential equation in
Cartesian coordinates x, y, £ can be written as

a a d(pw

(pu) + (pv) + (pw) -0 )
X [:3% 9z

where p is the density and u, v, w are the velocity components.

They are calculated as the gradient of the potential ¢,

(2)

u=¢.; v=é,; w=¢
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The density p is computed from the isentropic formula

-1 1y=1
p=[1—%Mi(u’+v7+w2-l)] ! (3)

If the density is normalized with respect to the freestream
value, then the speed of sound a is given by

a=pr=! /M2 @

where M, is the freestream Mach number.

The objective of the paper is to solve for the scalar potential
¢ from Eq. (1) subject to the surface tangency condition
¢, =0 (nis normal to the body surface). Examining Eq. (1), it
is very clear that ¢ appears in a nonlinear form due to the
presence of the density term inside the derivative. The ap-
proach to be described here is a method that treats the density
term in such a way that it produces the correct artificial
viscosity needed for shock capturing and that enables one to
solve for ¢ with relative ease.

In order to apply the surface tangency condition at the
actual body location, a body-fitted coordinate transformation
is essential. Introducing a body-fitted coordinate trans-
formation, {={(x,5,2), n=n(xy2), and £¢=£(x,2), Eq.
(1) transforms to

(67),+63) +67)= ®

where U, V, and W are the contravariant velocity com-
ponents. Introducing the following notation for convenience:

v=vu,, v=U, W=U,
X=X, V=X, =Xy
=X, =X, £=X;

the contravariant velocities and density are given by

i=1,23

i=123 j=123

©
il
—
~
I
—~
K
~
S—

Hy=-n
M (Us+ Ve, + Wy 11 (®)

The Jacobian of the transformation J is represented by

r,\' g’_v g':
a(&n¢)
= —— = | . 7
! 3(x,,2) A M
£ & &

Equation (5) is in terms of a general coordinate system
(5n,£) and can accommodate any kind of mapping
procedure, either analytical (conformal mapping) or
numerical type. Any numerical marching procedure applied
to Eq. (5) to simulate a supersonic flow should have a
truncation error whose leading terms represent a correct
artificial viscosity. This is essential to ensure marching
numerical stability and to exclude the formation of expansion
shocks which are unphysical and correspond to a decrease in
entropy. The nature of the required artificial viscosity can be
studied by an analysis'® of the canonical form of Eq. (5),

IMPLICIT MARCHING SCHEME FOR SUPERSONIC FLOWS 1509

which indicates that for stability, the form of artificial
viscosity be

a)
2 {i- q—Z][A{Ul Uy + Vo i+ Wobgss |

Ja? i18 LIy

+anV (U, + Ve, + Woy,, |

s

FALW U + Ve + Wy ] (8

assuming that U, V, W are positive. What this implies is that if
the flowfield is hyperbolic (g>a), then solution can be ob-
tained by marching along the hyperbolic flow direction s.
Once the total velocity g becomes less than g, then marching
along s is not possible. This is reflected in the fact that the
effective artificial viscosity given by Eq. (8) is now negative.

Now we will proceed with the numerical procedure for
solving Eq. (5), and show the resemblance of the resulting
artificial viscosity to that of Eq. (8).

urh

A. Treatmentofl in Eq. (5)

Consider the direction { to be the marching direction. The
condition to be satisfied for this to be true will become evident
at the end of this analysis. Both the density p and the con-
travariant velocity U are functions of the potential ¢ and the
transformation metrics, as represented in Eq. (6). In order to
finite difference this { derivative quantity in terms of ¢ only
will require some linearization treatment of the density. This
will be termed the ‘‘local density linearization’’ procedure. In
the transonic formulation described by Holst,!s the density is
upwind biased and computed at the old level, while retaining
central differencing for the (U/J) term at the current level.
Such an upwind density bias is shown to produce the right
artificial viscosity in Ref. 14. Referring to Fig. 1, for a pure
supersonic marching problem (say we want to march from the
ith plane to the i+1th plane), a transonic relaxation
procedure'® in the marching direction ¢ is not appropriate
because the solution ¢ at the i+ Ith plane is not influenced by
the i+ 2th plane. Hence, the following marching procedure is
developed.

Given the ¢ information at all the previous planes /, i—1,
i—2,..., the problem is to compute ¢ at the i+ Ith plane.
Now, expand the unknown p =p(¢) in terms of a neighboring
known state denoted here by a subscript 0 (ith plane in-
formation would represent the neighboring known state for
the i + 1th plane).

dp
= +(—) Ab+... 9
P=py 3/, -] 9
KNOWN DATA
PLANE CURRENT

DATA PLANE
WHERE o IS UPDATED

¢ IMARCHING
DIRECTION!

EENES N

=2 -1 0 %
i*lj-1k

Fig. 1 Implicit computational molecule.
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where A¢ =¢ — ¢, and dp/3¢ can be shown to be a differential
operator'®

(2), - glog

Substituting Eqs. (9) and (10) into the first term in Eq. (5), we
get

ad
Voge + Wagg J(6=60) (10

+w,,%}(¢—¢o)](}j) (an

Substituting for U in terms of ¢ from Eq. 6 and rearranging
Eq. (11) in terms of the potential difference A¢, we get

___a(p;;/./) :‘_ {pg [(an UZ) ag_A¢+ (012_ %/)0

W) e A¢>+UO]} (12)

where the speed of sound a,, the density p,, and the con-
travariant velocities Uy, V,, W,, represent information at the
neighboring known plane. The { derivative term of Eq. (12)
will now be one-sided differenced. Assuming U is positive,

a
X 5-1;A¢+ (ﬂ,_,

- = — {( ),1-[.]'.[\'—( )i.j.k; (13

An upwind differencing of the form Eq. (13) applied to Eq.
(12) can be shown to produce a truncation term whose leading
term is

’ a’a,
s (1= T Juresar a9

which will always represent a positive artificial viscosity as

long as
2

— >a’ (15)
a

The preceding relation sets the condition for { to be the
marching direction, for if U?/a,, is less than the square of the
local speed of sound, then the artificial viscosity becomeg
negative and a marching instability will occur. This also
implies that the projection of the total velocity vector g in the
direction normal to the {=const plane (n,£ plane) is super-
sonic. For example, in a spherical system, for the radial
direction r to be the marching direction, the radial velocity q,
must be supersonic. The similarity between the artificial
viscosity term given by Eq. (14) and the first term appearing in
Eq. (8) can be noted. When backward differenced, the terms
in Eq. (12) will lead to a diagonally dominant tridiagonal set
of equations for the unknown A¢ when coupled with the other
two terms in Eq. (5). The mixed derivative terms like ¢, and
D appeanng in Eq. (12) will be upwind biased, dependmg on
the sign of the coefficient multiplying them to preserve
djagor}al dominance and to provide the right artificial

viscosity.

] N
B. Treatment of ( in Eq. (5)

This term will be written at the i+ lth plane to make the
- resulting scheme fully implicit.

Vi) @

p
{}(a""bs""a-’-"bn"‘“.’sd’s)} (16)
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The density term p in Eq. (16) cannot be represented at the
i+ 1th plane since that would result in a very complicated
nonlinear form for ¢. Hence, a density approximation is
introduced by setting p=p* where p* =p, for conical flow
treatment. In the case of nonconical flows, while advancing
from i to the i+ Ith plane, several iterations are performed
within each cross flow plane (3,£) to refine the density p* to
properly account for the axial geometry variation. This is
done by initially setting p* to p, and then subsequently
refining it by setting p* to the previous iterate value of p at the
current plane. In many cases where the axial variation of the
geometry is gradual (especially for smaller step size
calculations) it was found that setting p* =p, even for non-
conical flows produced very good results without having to
refine the density subsequently.

Writing Eq. (16) in terms of the potential difference A¢

apVs1J)) N (p.au -_S_d’> +(p'a;,_,
an - J af/, J

(pju aag‘w’) ( J’ a,,"’ﬂ)v (p; az""’) an

A simple central differencing for the various terms in Eq.
(17) will not be sufficient as that would not provide the
desired artificial viscosity given by Eq. (8), required for shock
capturing. To simulate an artificial viscosity of the form given
by Eq. (8), the density will be upwind biased based on the
previous work reported in Refs. 14-16. The density p* will be
replaced by a modified density 5* given by

a%‘m)"

(5.)/'*“:1 = (I_"j+ k) (p‘)j+ ek

+ Vv kLU H0) (0742 + (T =0) (0™ p 4 2mi } (18)

where m=0 when (V4);, ., >0 and m=+1 when
(V5) 44 <0. When 0 is set to zero, first-order accurate
density biasing is achieved while 6=2 gives second-order
accuracy. The artificial viscosity coefficient v;, ., , is com-
puted as follows:

Viewa == (a3/q5) ) 0k (19
wheres=0for V; ., ,>0ands=1for V,,,, , <0.

Treatment of density as represented by Eqs. (18) and (19)
would always produce a positive artificial viscosity as long as,
the local total velocity g, is supersonic. If that becomes
subsonic, then the marching procedure would fail and the
problem have to be treated as a transonic problem.

The treatment of the (3/8¢)[pW/J] term in Eq. (5) is very
similar to the just described (3/dn)[p¥V/J] term, except that
the density biasing will be in the £ direction and will be based
on the sign of W.

C. [Implicit Factorization Algorithm

Combining the various terms in Egs. (12) and (17), and the
terms arising from (3/3£) (o W/J] will result in a fully implicit
representation of Eq. (5) which cannot be solved without
introducing an approximate factorization procedure. After
some rearrangement of the terms, the factored implicit
scheme becomes

A3 10 (5 ey, 10 5y 0
[I+BA§'65+B{)£( ;)ﬂsaz 7 ag]
A3 10 (Fa
|1+ G a5 (Cat)
liﬁ‘au_a_ _
o Fri an]Aqb-R 20)
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This equation has the form

L,L,(A¢)=R @n
and it is implemented as follows:
L:(48)*=R L (40)=(4d8)" o=¢,+4¢ (22)
The various quantities appearing in Eq. (20) are given by
v
B= AI, Alzﬁ(”//“—)
(Af)? J a’ /g
P vy P uw
Az—7(a/2"7)” A3—7(‘7u“ ‘7_2)0 (23)

and the right-hand side term R consists of various known
quantities.

The algorithm Eq. (22) requires only scalar tridiagonal
inversions. Also, the scheme does not pose any restrictions on
_the direction of sweep that are present in the successive line
over-relaxation method. %1

D. Freestream Truncation Errors

To subtract out any numerical truncation error due to
incomplete metric cancellation,'¢ it is essential to add the
terms (especially for a highly stretched nonorthogonal grid)

(27 ) 5 (7))

to the right-hand side of Eq. (20).

(24)

E. Boundary Conditions

In order to solve for A¢ from Eq. (20), boundary con-
ditions will have to be prescribed at all four boundaries as
shown in Fig. 2 at the current i + 1th plane. While performing
the L, operator in Eq. (21), boundary conditions in terms of
A¢* will be required along the k=2 and A=KMAX-1
boundaries. For a pure angle-of-attack problem, k=2 and
k=KMAX -1 can be considered as planes of symmetry
across which all flow variables reflect. The quantity Ag*, even
though it has no physical significance, can be safely set

(A¢) [ 1jamax =(AP) 7y p i kmax -2

(8D 7111 = (84 p )3 (25)

The L, operator would require boundary conditions along
j=2and j=JMAX n terms of A¢. Since j=2is the body, the
surface tangency condition

V=0,0.+0,0,+a,¢;=0 (26)
OUTER BOUNDARY A
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i 1
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Fig.2 Physical and computational plane.
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will be set at all points (i+1,2,k). Along j=JMAX,
freestream A¢ will be imposed.

F. Grid System

As shown in Fig. 2, the physical space (x,y,7) is trans-
formed into a body-fitted ({,5,£) computational space. The
transformation is performed numerically by using the elliptic
grid generation techniques originally developed by Thompson
et al.,'” and later modified by Steger and Sorenson,!8 and
Middlecoff and Thomas.!? The present full potential method
does not require an orthogonal grid; however, the error in-
troduced by the approximate factorization, Eq. (20), can be
minimized if the grid is orthogonal in the cross flow plane
(n,£). For conical flow calculations, the grid is generated only
once, and, as the marching procedure continues, the grid is
allowed to grow conically. For a general nonconical body, it
would be necessary to construct the grid in every marching
plane.

III. Results

Results are presented for both conical and nonconical
supersonic flows. Comparisons are made with Euler®’ and
full potential®!® results and experimental data. All the
calculations were performed using a CDC 7600 machine.

A. Conical Flows

Besides validating the methodology, computation of
conical flows is of interest for generating the initial data plane
for nonconical calculations. For a conical geometry (radially
invariant), the initial data plane with freestream conditions is
chosen at some location {={, (usually set at {=1). The
solution is then marched along { using Eq. (20) and boundary
conditions. The conical flow calculation is assumed to have
converged when the change in the root mean square density is
less than 10-4.

Supersonic Leading-Edge Delta Wing

Figure 3 shows the compression surface pressures for a
supersonic leading-edge delta wing at M, =6, angle of attack
«a = —8 deg, and leading-edge sweep A =70 deg. The present
full potential solution compares well with the Euler solution!?
and experimental data. Also shown are the results from the
first- and second-order linear theory.” Using a 30 x40 grid in
the (1,£) plane, the present approach required 40 iterations to
achieve convergence, and 12-15 s of computer time to produce
the results shown in Fig. 3.

It is interesting to note that in spite of the limitations of the
full potential theory, even at a very high Mach number of 6,
the comparison is in reasonable agreement with the Euler

0.03 ® FULL POTENTIAL SOLUTION (PRESENT METHOD) | |

0.02 N FIRST ORDER LINEAR THEORY } REF 7 |
" & SECOND ORDER LINEAR THEORY

0.01 O SOLUTION BY METHOD OF LINES (REF 19)

| 4 EXPERIMENT (NASA LANGLEY)

— 1 L I ! 1
0 02 04 06 08 10 12 14 16 18

i
20 22
Zx\ M, 21

Fig. 3 Predicted compression surface pressure for a 70-deg sweep
delta wing 2t M, =6, a= — 8 deg.
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solution and is significantly better than the second-order
theory. The discrepancy between the full potential and Euler
results is mainly due to neglect of entropy generation in the
present approach.

Circular Cone and Ellipse

Figure 4 shows the surface pressure distribution for a
circular cone, half angle 7.5 deg, M, =3 at 15 deg angle of
attack. At this angle of attack the cross flow Mach number
becomes supersonic as the flow turns around the cone from
the windward symmetry to the leeward symmetry. This cross
flow supersonic region is terminated by the formation of an
embedded shock on the cone surface. This is evident from the
results of Fig. 4. Grid clustering near the cross flow shock was
used both in the Euler calculation of Kutler,? and in the
present method, to finely resolve the pressure jump. The
present calculation required 25 s of computer time, using a
30 x 60 grid in the (n,£) plane.

The liftoff of the vortical singularity on the leeward
symmetry plane associated with the formation of the em-
bedded shock is shown in Fig. 5. The location where the
contravariant velocity V goes through zero on the leeward
symmetry plane (W =0) denotes the location of the vortical
singularity. The behavior of the cross flow streamlines
converging to the vortical singularity is also shown in Fig. 5.

Figure 6 shows the full potential and Euler cross flow Mach
number contours for the circular cone case. The presence of
the embedded shock wave in both the results is very clear. The
location of the vortical singularity liftoff is also shown in the
" figure. The Euler result is very oscillatory near the vortical
singularity location while the present method predicts a
smoother flowfield in the vicinity of the vortical singularity.

The surface pressure distribution on an elliptic cone
6. =18.39 deg, 6.=3.17 deg at M, =1.97 and a=10 deg is
shown in Fig. 7. The results of the present study are compared
with Euler calculations of Siclari,’ full potential results of
Grossman,? and the linearized thin wing solution of Jones
and Cohen.?® The agreement between the various nonlinear
methods is very good, including the position and strength of
the embedded shock wave.

Wing-Body Combination

Figure 8 shows the numerically generated grid distribution
in the cross flow plane (,£) of a conical wing-body com-
bination. The design of this conically cambered delta wing to
achieve shockless recompression is reported in Ref. 21. Figure
9 shows the pressure distribution around this wing-body
combination at M =2, and «=7.81 deg. The leading-edge
sweep A is 57 deg. The comparison of the results from the
present method with the experimental data?! is excellent. The
calculation used a 15 x 49 grid in the (n,£) plane and required
less than a minute of computer time.
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Fig. 4 Surface-pressure distribution for cone at angle of attack;
M, =3,a=15deg, 8, =7.5 deg.

AlAA JOURNAL

9o
o LR
',

LOCATIONOF |
VORTICAL —F=

0 Y
(0EG) 18 KNSINGULARITY R\
|
14 ‘
1 L 1 L yE— 1 L
<4 -3 -2 - 12 3 4

CONTRAVARIANT
VELOCITY -V

Fig. 5§ Vortical singularity liftoff for a circular cone at M_ =3,
a=15deg, 0, =7.5 deg. )

Fig. 6 Comparison of cross
flow Mach number contours
for cone at angle of attack;
M, =3, a=15 deg, 6.=1.5
deg (VS = vortical singularity).

PRESENT EULER
FULL RESULT
POTENTIAL  (REF.3)
RESULT

0.1

& PRESENT THEORY ¥
o EULEREQSOLUTION
- (SICLARI - REF 5) T
- -~ LINEARIZED THIN WING
—— GROSSMAN - REF 9 1
0 02 04 06 08 10

0.2

0.

w

Y

04

—n X -

ZTANUg
Fig. 7 Surface-pressure distribution on an elliptic cone; M, =1.97,
0, =18.39 deg, 5, =3.17 deg, = 10 deg.



NOVEMBER 1982

Fig.8 Computational grid around a wing-body combination.
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Fig. 9 Surface-pressure distribution for a conically cambered wing-
body combination; M, =2, a=7.81 deg, A =57 deg.

B. Nonconical Flows

Results are also presented for nonconical bodies of
revolution and compared with experimental data. The initial
data plane for the nonconical marching calculation is first
obtained by performing a conical calculation over an assumed
very small conical nose. This conical calculation usually takes
20-30 iterations on a typical 30x 30 grid in the (,£) plane.
The nonconical calculations did not exhibit any increase in
computational time over the conical procedure. As mentioned
earlier, for the applications considered here where the cross
flow station does not vary substantially from the previous
one, it was found that there was no need to iterate the solution
at each cross flow plane (n,£) to converge the density, and
plottable accuracy was achieved by simply marching right
along the body. However, if the body changes shape ap-
preciably, the current implicit procedure might take 3-5
iterations per cross flow plane to refine the solution.

Reference 22 contains experimental data for several bodies
of revolution at various Mach numbers and angles of attack.
The shape chosen for comparison here is a circular arc-
cylinder body. After the initial data plane was computed using
a conical nose assumption, the current method typically used
60 marching steps to reach the end of the body but the
calculations are not subject to any step size restriction. A
typical calculation required 40-45 s of computer time. Figure
10 shows the circumferential surface pressure distribution at
two different axial stations (x/¢=0.225 and 0.425) for4 and 8
deg angles of attack at M, =2.3. The results from the present
method are compared with experimental data,?? showing very
good agreement for the windward region with some
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Fig. 10 Circumferential pressure distribution for a circular-arc-
cylinder body at M, =2.3.
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Fig. 11 Surface-pressure distribution for a circular-arc-cylinder body
at a=8deg, M, =2.3.

discrepancy on the leeward side, possibly due to boundary-
layer buildup.

Figure 11 shows the surface pressure distribution in the
axial direction along the windward and leeward plane of
symmetry, at M, =2.3 and o =8 deg. Again, results from the
preserzlzt method compare very well with the experimental
data,

IV. Conclusions

An aerodynamic prediction technique based on the full
potential equation in conservation form is developed for the
treatment of supersonic flowfields. A local density
linearization concept and a second-order accurate density
biasing scheme are introduced in developing an implicit
marching procedure. The method produces results that
compare well with Euler- solvers, and requires an order of
magnitude less computer time and significantly less computer
memory over existing Euler codes for the cases presented in
the paper. In a subsequent paper," results for more com-
plicated nonconical wing-body flows are presented, along
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with a formal theory for the characteristic signal propagation
in the cross flow plane.
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Vijaya Shankar*
Rockwell International Science Center, Thousand Oaks, California

Stanley Oshert
University of California, Los Angeles, California

A nonlinear aerodynamic prediction technique based on the full-potential equation in conservation form has
been developed for the treatment of supersonic flows. The method uses the theory of characteristic signal
propagation to accurately simutate the flow structure, which includes shock waves and mixed elliptic-hyperbolic
crossflow. An implicit approximate factorization scheme is employed to solve the finite-differenced equation.
The necessary body-fitted grid system in every marching plane is generated numerically, using an elliptic grid
solver. Results are shown for conical and nonconical wing-body combinations and compared with experimental
data and Euler calculations. The method demonstrates an enormous savings in execution time and memory

requirements over Euler methods.

I. Introduction

ONLINEAR aerodynamic prediction techniques based

on the Euler equations'? and the full-potential
equation*’ are steadily maturing into complex aerodynamic
tools and becoming an attractive alternate approach to using
the linearized panel methods.? Panel methods can handle very
complicated geometries requiring minimal computer time to
provide less accurate results, while the Euler solvers need
expensive computer runs even for simple wing-body con-
figurations. The full-potential methodsé” are a substitute for
the Euler methods'? to avoid the requirement of excessive
computer time and memory allocation. While using a full-
potential method for supersonic flows, one should be aware
of the isentropic limitations of the theory. As a general rule,
the full-potential theory is expected to perform well when the
product of the Mach number and the characteristic flow
deflection angle is less than | (Mé<1).

The full-potential method of Refs. 4-6 is based on the
nonconservative form of the equation, while Ref. 7 and the
present paper deal with the conservative form, to conserve
mass across the shock.%! In order to properly treat the
supersonic flow structure, which includes shock waves and
mixed elliptic-hyperbolic crossflow, the present method uses
the theory of characteristic signal propagation based on the
eigenvalue system of the full-potential equation. An ap-
proximate factorization implicit scheme, which includes a
density biasing procedure in the crossflow plane, is in-
corporated to accelerate the computational efficiency. The
density biasing procedure is activated by the ecigenvalue
system and properly takes into account the direction of the
crossflow, The implicit approximate factorization scheme
does not pose any restrictions on the direction of sweep that
are present in the successive line overrelaxation method
(SLOR).4¢

The full-potential as well as Euler methods require the
application of boundary conditions at the actual body surface
location. This, in general, necessitates the use of a body-fitted
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coordinate system. In the present method, the equation is cast
in a more general arbitrary coordinate system and the ap-
propriate body-fitted grid is generated numerically, em-
ploying an elliptic grid solver.!!

The paper presents various results for conical and non-
conical wing-body configurations and comparison is made
with experimental data and Euler solution. The effect of the

. density biasing based on the characteristic signal propagation

is demonstrated in terms of a sharper pressure profile across
the shock wave. References 5 and 6 present excellent results at
low supersonic Mach numbers, while Ref. 7 and the present
paper demonstrate the capability of the conservative full-
potential approach in handling even very high Mach number
flows (M, ~4-6, a ~0-8 deg). All of the calculations reported
in this paper were performed using the CDC 7600 computer
and clearly demonstrated an order-of-magnitude or more
reduction in computer time over Euler methods. A typical
nonconical wing-body calculation takes less than 2 min of
execution time to produce results comparable with ex-
perimental data.

II. Formulation

The conservative full-potential equation cast in an arbitrary
coordinate system defined by {={(x,5,2), n=7%(x,»,2), and
£=£(x,»,7) takes the form

(DD D

where U, V, and W are the contravariant velocity com-
ponents. Introducing the following notation for convenience

U=U, V=U, W=U,
X=X, y=x,, =X,
f’—'xlp 7I=X). £=X,

the contravariant velocities and density are given by

3
u=Y a6y, i=123

j=1
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i=123 .
j=123

oe o 20X,
YIS axy dx

o=[1- (77_1)M§.| Usy+ Ve, +wo~n )" " @

The Jacobian of the transformation J is represented by

rx ry g‘!
a({im.8)
= = 3
J a(x,5.2) T My e @
' 5 &, &

Equation (1) is in terms of a general coordinate system ({,7,£)
and can accommodate any kind of mapping procedure, either
analytical (conformal mapping) or numerical. Use of Eq. (1)
to simulate the supersonic flow by marching in the { direction
first requires the establishment that the equation is indeed
hyperbolic with respect to the marching direction. The nature
of Eq. (1) can be analyzed by studying its eigenvalue system.
Combining the irrotationality condition in the ({,9) and ({,§)
plane and Eq. (1), one can write the following matrix
equation:

Aq;+Bq,+Cq,;=0 C))

where

UMYy, U (eU), (1) (V) T
A= 0. 1 0

0 0 1 |

[UD Gy UD ) U@V ]
B= -1 0 0

o0 0 0 J

(U W), U (6w, D) (W), ]
C= 0 0 : 0

T 0 0 ]

o
a=| ¢,

\ ¢

The subscripts in Eq. (4) denote differentiation with respect to
that variable.

In order for Eq. (4) or Eq. (1) to be hyperbolic in the ¢
direction, the following two conditions must be satisfied:

1) A-! must exist.

2) All real linear combinations of A-/B and A-/C must
have real eigenvalues (characteristics). This implies A4~/
(aB+ BC) must have real eigenvalues for all combinations of
o and 8 satisfying o? + 82 =1.

When the two conditions are applied to Eq. (4), the
following criterion is obtained for { to be the marching
direction. '

U}
(00, =p (21~ = ) <0 ©)

where the transformation metric a,, is defined in Eq. (2) and @
is the local speed of sound. Equation (5) is the most general
form. For example, in a spherical system (r,8,¢), for the
radial direction r to be the marching direction, according to
Eq. (5), the radial velocity g, must be supersonic. In a Car-
tesian system (x,,2), for x to be the marching direction, the
velocity u must be supersonic. For convenience, the derivation
of Eq. (5) for a Cartesian system is described in Appendix A,
and the derivation for an arbitrary coordinate system ({,7,£)

- has been derived in a similar manner.
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Thus far, the condition for { to be a marching direction has
been identified from the characteristic theory. This means the
(1,£) plane will be treated as a marching plane, which will be
defined from here on in this paper as the crossflow plane (the
real crossflow is the projection of the velocity vector on a unit
sphere with center at the origin). Even though the flow is
supersonic in the marching direction (i.e., hyperbolic type),
the behavior of the flow structure in the crossflow plane (n,&)
can be a mixed elliptic-hyperbolic type. Depending on the
nature of the flow at a crossflow plane grid point (whether
elliptic, parabolic, or hyperbolic), the 5 and £ derivative terms
in Eq. (1) will be appropriately modeled. Again, the theory of
characteristics will dictate how the signals are propagated in
the crossflow plane.

A. Crossflow Signal Propagation

The nature of the flow in the (1,£) plane can be analyzed by
separately studying the eigenvalues of 4 -/B and A-/C. The
eigenvalue character of A -/B will determine the g-derivative
treatment and similarly 4A-/C for the ¢ derivative. For
illustration, only the study of 4 ~/B is shown here, and A-/C
follows the same procedure.

The eigenvalues A of A-/B are obtained by setting the
determinant |4~/B—\I|=0. Since A~/ is assumed to exist
[condition 1 preceding Eq. (5)], the following is true.

n
A
P §
A2
CASE 1. ELLIPTIC CASE 2. HYPERBOLIC
CROSSFLOW CROSSFLOW
POSITIVE V
n n
" Al
A2 P §
=t
A2

CASE 4. PARABOLIC
CROSSFLOW

CASE 3. HYPERBOLIC
CROSSFLOW
NEGATIVE V

Fig. 1 Eigenvalue structure in ({,9) plane.

KNOWN DATA
PLANE CURRENT
—— DATA PLANE

WHERE ¢ IS UPDATED

¢ (IMARCHING
DIRECTION)

it,j+ 1Lk

-2 -1 0 i+
i+1,j-1k
Fig.2 Implicit computational molecule.
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1 A 1 N 1 _ 1‘
'J'(Py)or_.-,(pu)ﬂ, .‘,(PV)."j(DU)% ](pV)‘E J(pU)éf
IB=MMI= -1 -\ 0 =0 (6)
0 0 -A
Solving for A from Eq. (6), one gets
_ LoDy + (6N ) 2V V) + (V) 4 )P = 4(0U) o, (oY), -

2=

When Eq. (5) is satisfied, the discriminant in Eq. (7) is always
positive.

Now, analyzing \, and )\,, the following combinations are
possible.

1) A, is positive and X, is negative, or )\, is negative and A,
is positive.

2) A, and A, are both positive.

3) A, and A, are both negative.

4) N\, or )\, is zero.

These possible combinations are schematically shown in
Fig. 1. Each one of these combinations describes a different
feature of the flow in the crossflow direction 5. Referring to
the diagrams of Fig. 1, the following descriptions are made.

Case 1

Here, one eigenvalue is positive and one negative. This
implies an elliptic-type crossflow because the characteristic
signals are brought into point P from both the positive and
negative direction of 7.

Case2

Here, both the characteristics are positive, which means the
characteristic signals propagate into point P only from below
and anything happening above point P does not influence that
point. This describes a hyperbolic-type crossflow point with a
positive contravariant velocity V.

Case 3

Here, the characteristic signals propagate from above into
point P and, similar to case 2, this describes a hyperbolic-type
crossflow with a negative contravariant velocity V.

Case 4

Here, one of the eigenvalues is zero and describes a
parabolic-type crossflow. This will represent the crossflow
sonic line.

The transition from an elliptic to a hyperbolic crossflow
type takes place through a parabolic point, which is indicated
by one of the cigenvalues going to zero. Thus, by monitoring
the cigenvalues A\, and A,, one can precisely model the
crossflow plane terms. Depending on whether it is elliptic or
hyperbolic, appropriate finite-difference models for the 5-
derivative term in Eq. (1) are chosen. This will be described
later in this paper.

One can readily see from Eq. (7) that one of the eigenvalues
goes to zero when (p V), =0. From the definition of p and V
from Eq. (2), one can write

V), =0[0~ 5 | ®

Thus, when a,,= V?/a? occurs, the method will anticipate a
switch in the character of the crossflow and realize the onset
of the formation of a supercritical crossflow.

Besides providing valuable information regarding the type
of crossflow, the eigenvalues N\, and A\, of A~'B and,

2000),,

similarly, A; and A, of A~/C can also be used to determine
the marching step size A{ from a given Courant number.

CFL*Aq
(Ama)y

The quantities (Ay,,), and (Ap,,); define the maximum of
(A\.N\;) and (A\;,N,), respectively, and CFL is the user-
prescribed Courant number, usually set to values much
greater than one for implicit schemes (CFL ~ 5-20).

CFL'AE}

A!’=min{ T

8]

B. Treatment of (pU/J), in Eq.(1)

The direction { has been identified to be the hyperbolic
marching direction satisfying the condition given by Eq. (5).
Referring to Fig. 2, this derivative term will be backward
differenced as

69)-
@-00{(5),,-63)]-2(65)-¢3) )

a,af, —0b, (AL, +Af,)

(10
where

a,= (AL +AL)?
b, =(Af, [} )»?
0 =0 first-order accurate
=1 second-order accurate

Given the velocity potential ¢ information at all previous
planes i, i—1, i-2,..., the problem is to compute ¢ at the
current plane i+ 1. Equation (10) involves both the density
and contravariant velocity at the (i+1) plane, and both are
functions of ¢ [Eq. (1)]. In order to write Eq. (10) in terms of
¢ will require only a local linearization procedure. This is
done as follows:

()12 (0U) 4+ [ (o), ], 40 +... an
where

(PU).=P,U+DU‘ and A¢=¢1¢[—¢i

Substituting for p, and U, into Eq. (11), and grouping
various term,

U\ 3(Ad) Uvy a(as)
(p(])“_,ﬁpi[(ﬂ”—z)._ar +(an'7 i o

UW\ 3(Ad) +Ul]

i 2
) o (12)

+\a;-

The above locally linearized equation involves only A¢ as the
unknown to be solved for. To maintain the conservative
differencing, both (pU),,, and (pU); appearing in the first
term of Eq. (10) will be linearized. That is, (pU); will be
linearized about (i - 1) plane values. The upwind differencing
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of the {-derivative term as shown in Eq. (10) will produce a
truncation term whose leading term is. (1-(a’a,,/U?))
u? @ (Ag' This will always represent a positive artificial
vxscosny as long as the marching condition dictated by the
characteristic theory, Eq. (5), is satisfied.

C. Treatment of the Crossflow Term V), inEq.(1)

Similar to the treatment of the (oU) term, the (pV),,, will
also be linearized as

V) ir1= V) + [(pV) ] 40 +...

B
+(e- 27 ) G2+ V] a3

The above linearized expression for (o¥),,, will be plugged
inside the g-derivative term of Eq. (1). It involves only A¢ as
the unknown variable. The finite-difference model for the
[o(V/J)], term will be dictated by the theory of characteristic
signal propagation as described in Sec. IILA. When the
eigenvalues of A~/B represent case 1 in Fig. 1 (one positive
and one negative eigenvalue representing an elliptic type),
then all of the terms in [p( V/J) ], will be central-differenced.
For this case, [a,,—(V?/a?)] is positive, and central dif-
ferencing of the [p(V/J)], term along with the backward
differencing of the [p(U/.I)] term as in Eq. (10) will
preserve the diagonal dommance For cases 2 and 3 of Fig. 1,
the crossflow behaves like a hyperbolic type, and [a,,
—(V?2/a?)] is negative. Then, central differencing of the
terms in Eq. (13) is inappropriate, as it will destroy the
diagonal dominance, and, in addition, will not provide the
necessary artificial viscosity to avoid the formation of ex-
“pansion shocks. Thus, when A\, and A, are both positive or
both negative (hyperbolic type), the terms in [po(¥/J)]
should be upwind differenced depending on the direction of
V. However, such an upwind differencing in the  direction
will not give rise to a tridiagonal system and, in general, the
overall system will be pentadiagonal in nature. In order to
preserve the tridiagonal nature of the implicit scheme, rather
than upwind differencing the ¢ derivatives, the density biasing
concept’#? is implemented when the crossflow is hyperbolic.
The procedure is as follows:

(p ;)'= 6_31.7 {_‘:; (a5, +a0, +a23¢g)] (14)

Here, the density p has been replaced by 5 defined to be
(referring to Fig. 2)

Bivijeusa=U=Visux)0ls 1k
+ (P;+zm.k+";—l+2m.k) s

where m=0 when V,;,,>0,=+1 when V;,,, ,<0. The
artificial viscosity cocfl ficient v, i+ b5k IS computed as follows:

a,a?
i+ 3.k [Z]
i+ %,k

where a is the local speed of sound and

u=0 for (a,,— :L:)

(16)
>0 (elliptic crossflow)
ij+ .k
& .
=1 for (a 25 ) <0 (hyperbolic crossflow)
ij+ %k

Thus, the density biasing is switched off smoothly when the
cigenvalues A, and N, exhibit an elliptic crossflow. All the ¢-
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derivative terms are central differenced in Eq. (14). Treatment
of the density as represented by Egs. (15) and (16) would
always produce a positive artificial viscosity when the
crossflow is hyperbolic. The local total velocity is always
assumed to be greater than the speed of sound, otherwise the
marching procedure would fail.

In Eq. (15), the evaluation of p* depends on whether the
flow is conical or nonconical. For conical flows, all p*
quantities are evaluated at the ith plane. For nonconical
flows, at each nonconical marching plane, initially p* is set to
be the value at the ith plane and then subsequently iterated to
convergence by setting p* to the previous iterated value of p at
the current i + 1 plane.

A similar dcnsity biasing procedure is implemented for the
[e (W) ]5 termin Eq. (1).

Activating the density biasing based on the eigenvalue
structure of A~/B and 4-/C has proven to be very efficient
in predicting sharp shock profiles. The same concept can also
be employed for transonic applications.

D. Implicit Factorization Algorithm

Combining the various terms of Eq. (1) as represented by
Eqgs. (10, 14, and 15) together with the terms arising from
[o(W/J) ], will result in a fully implicit model. This is solved
using an approximate factorization implicit scheme. After
some rearrangement of the terms, the factored implicit
scheme becomes

A9 10 (5 ay), 10 5ay0
[I+BA§'6£+BB£(J ac /YB3 7 az]
Ay 0 13 pay\ 13 baydl,, .
[1+BA5‘3 tsam (JA;)+ﬁan 7 aq] ¢=R
a7
which has the form
L,L,(Ad)=R as)

and is implemented as
L¢(a¢)*=R, L,(A¢)=(A9)*, ¢=¢,+4¢ (19)
The various quantities appearing in Eq. (17) are given by

A, I u? Y uv
B= (Anz’. A= 7 A= ) A,= 7 a2 = a? )"

a,=2 (a,,- i—?')l Y

and the right-hand-side term R consists of various known
quantities. The algonthm Eq. (19) requnres only scalar
tridiagonal inversions.

III. Grid System

The transformation of the physical space (x,7,2) to a body-
fitted computational space ({,7,§) is performed numerically
by using the elliptic grid generation technique of Ref. 11. The
body geometry at every marching plane is prescribed along
with a suitable outer boundary where freestream conditions
are imposed. Since the equation is cast in a general coordinate
system, the marching plane (constant {) can either be a
constant x plane or a spherical (constant r) plane as long as the
marching criterion [Eq. (5)] is satisfied. Given the geometry
shape and the prescribed outer boundary, the following set of
elliptic equations are solved to generate the interior grid.

£, +E,=P&n), 1, +1,=Qn) 2n

The forcing terms P and Q are properly chosen to achieve two-
main desirable features: 1) to cluster grid points to a bound-
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ary, and 2) to force grid lines to intersect the boundary in a
nearly orthogonal fashion.

Once the grid is generated, all the metric terms a;; in Eq. (2)
and the Jacobian J in Eq. (3) are computed by numerical
differentiation. To subtract out any numerical truncation
error in the freestream due to incomplete metric can-
cellation,'? it is essential to add the term (especially for a high
stretched nonorthogonal grid)

a%(”’j”')+%(p°ly“ +%(p°‘;v°') 22)

to the right-hand side of the finite-differenced model of Eq.
(1). To be consistent with the implicit operator, Eq. (18), the
linearization procedures given by Eqs. (12) and (14) are also
applied in evaluating Eq. (22).

IV. Results

A series of calculations were performed for conical and
nonconical geometries at various Mach numbers (M, ~2-6)
and angles of attack (a~0-10 deg) to validate the full-
potential characteristic switch methodology and assess the
feasibility of using numerical grid solvers for complex con-
figurations. The results from this study are compared with
experimental data and Euler simulation.

The generality of the formulation allows one to choose any
¢ as the marching direction, provided the condition given by
Eq. (5) is satisfied. Thus, depending on the geometry
definition and the flowfield character, one could choose either
a consiant x-plane marching or constant r-plane spherical
marching.

“

—— ON,OFF DENSITY
BIASING ACTIVATOR
BASED ON
CHARACTERISTICS

=== DENSITY BIASING
EVERYWHERE IN
(n.£} PLANE

My >2, ¢ =20% g = 10°
alk (SURFACE CROSSFLOW MACH NUMBER)

Fig. 3 Effect of density biasing activator on the crossflow Mach
aumber distribution in the shock region.
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The effect of on/off density biasing based on characteristic
signals in the crossflow plane (1,£), described by Eq. (16), is
demonstrated in terms of the crossflow Mach number (M)
distribution in the shock region in Fig. 3. When density

Fig. 4 Grid arrangement in the marching plane for a conically
cambered wing-body combination.
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Fig. 5 Surface pressure distribution on a conically cambered wing-

body combination, M, =2.
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Fig. 6 Surface pressure distribution on s flat conical wing-body
combination, M, = 2.
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biasing is applied everywhere,” including elliptic crossflow
points, it introduces unnecessary artificial viscosity and tends
to smear the discontinuities like shocks in the flowfield. This
is seen by the dashed-line crossflow Mach number distribution
across the bow shock and across the embedded shock on a
cone surface in Fig. 3. When the density biasing is switched
off at crossflow elliptic points, the shocks appear as a sharper
discontinuity (usually within two mesh intervals), as shown by
the solid line distribution in Fig. 3. All the calculations to be
presented here were achieved using the second-order accurate
implicit scheme [#=1 in Eq. (10)], with on/off density biasing
activator u in Eq. (16).

Figure 4 shows the grid arrangement in the marching plane
for a conically cambered wing-body combination. The elliptic
grid solver with orthogonality constraints near the surface
required 40-60 iterations to converge to within 10-2 error in
the residual. Figure 5 shows the pressure distribution at
M, =2 and angles of attack of 7.81 and 10.82 deg. The
leading-edge sweep is moderate (57 deg), and spherical plane
marching is implemented (instead of x-plane marching) to
avoid low supersonic Mach number components along the x
direction near the leading edge. The results are compared with
experimental data given in Ref. 14. The comparison is ex-
cellent. The marching step size A{is chosen by monitoring the

= FULL POTENTIAL RESULTS
® UNPUBLISHED NASA
A LANGLEY DATA
[ 1 1 | I A o2 go
A B .
A=
" l//.l,.—-L—--—l,‘/L t=4°
B o
Ak
C O 2 4 3 5 100
X
/1

77777222222
Fig. 7 Pressure distribution on Sears-Hasck body at M, =6,
windward plane of symmetry.

z 8 — € me—— B

- —— = X
Fig. 8 Top and side views of a typical arrow wing-body con-
figuration.

EFFICIENT, FULL-POTENTIAL IMPLICIT METHOD FOR FLOWS 1267

eigenvalues and setting the Courant number to about 20, The
numerical formulation, being a conservative form, predicts a
stronger crossflow recompression on the leeward side than
those seen in experiments. On a 20 % 49 (»,£) grid, the method
requires about 1 min of CDC 7600 time. The conical flowfield
is assumed to have converged when the change in root-mean-
square density between two successive marching planes is
reduced to less than 105,

Figure 6 shows the surface pressure distribution on a flat
conical wing-body (that is not designed to weaken the
crossflow shock formation) at two different angles of attack
(1.72 and 5.71 deg) and a Mach number of 2. The ex-
perimental data and the numerical prediction are in excellent
agreement and clearly indicate the presence of an embedded
crossflow shock.

Even though the full-potential theory is restricted by the
isentropic assumption, one will be surprised to find that the

40 T T 1 T
36 -
a2 ' -1
—— FULL POTENTIAL
8k ==—EULER MODEL _J
< (MORETTI, REF. 15)
NASA
24~ O M, =463|LANGLEY -
DATA
O M, =2.36) (REF. 15) -l

Fig. 98 Grid arrangement and surface pressure distribution for a
symmetric arrow wing at x/£=0.3,
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32 T T T
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Ll M, =463 NASA LANGLEY DATA
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-70[ O M,*236

2 T T T

28 |- —— FULL POTENTIAL

24|~ === EULER MODEL
(MORETTI, REF. 15)

C M4 GJ]NASA LANGLEY DATA

A6~ (REF. 15)
C M,*2.36
RE1S - TN
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08 - X.065

1

04 - -X
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Fig.9c Arrow wing pressure distribution at x/¢=0.65.

theory can be effectively utilized to predict even very high
Mach number flows as long as M3 is less than or of the order
of 1 (M&=<1). This is demonstrated in Fig. 7, which shows the
results for a Sears-Haack body at M, =6 and different angles
of attack (0, 4, and 8 deg). The numerical prediction is
compared with unpublished NASA-Langley data, and the
agreement is excellent. Constant x-plane marching is im-
plemented for this configuration.

Figure 8 shows a schematic of a symmetric arrow wing-
body configuration. The actual geometry shape is prescribed
analytically as detailed in Ref. 15. A series of computer runs

AIAA JOURNAL
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Fig.9d Arrow wing pressure distribution at x/¢=0.8.

were made for this configuration at different Mach numbers
and angles of attack and some results are presented here.
First, an initial data plane near the nose region of the con-
figuration is established by assuming a conical nose shape.
The nonconical marching is then initiated. At each nonconical
marching plane, the density is iterated to convergence {p* in
Eq. (15) usually takes 2-3 cycles to converge to 103 error
tolerance] before proceeding to the next marching plane. The
grid at each marching plane is generated using the elliptic grid
solver. Figures 9a-d show a series of results at x/¢ of 0.3, 0.5,
0.65, and 0.8, respectively. The full-potential results are
compared with the experimental data and Euler simulation in
Ref. 15. Figure 9a, which shows results for an x/¢ of 0.3,
clearly demonstrates the accuracy of the full-potential
simulation. It is surprising to see that the present full-
potential method compares with the experimental data even
better than the Euler calculation, even at a high Mach number
of 4.63. Similar excellent full-potential results are shown in
Fig. 9b for an x/¢ of 0.5 and compared with data from Ref.
15. The striking full-potential results are shown in Fig. 9c,
where the unphysical oscillations experienced by the Euler
simulation at M, =2.36 near the wing-body junction area are

~ not seen in the present method, and comparison with ex-

perimental data is more dramatic. Figure 9d shows the
pressure distribution at an x/¢ of 0.8, where the wing is
separated from the body. The wake is simulated by assuming
a planar shape, and imposing pressure equality (in the present
method, it will be density equality due to full-potential for-
mulation) across the cut. Again, the full-potential results are
in good agreement with the Euler solution and experimental
data.

Figure 10 shows an angle-of-attack case, M, =4.63, a=3
deg for the same symmetric arrow wing-body configuration.
The results are compared with the data of Ref. 15 at x/¢ of
0.65, and the agreement is good even near the wing-body
function region.

A typical arrow wing-body calculation using a 20 x 49 grid
in the (n,£) plane and a marching step size Courant number of
3-5 [for a given Courant number, the predicted marching step
size from Eq. (9) will decrease with decreasing freestream
Mach number}, required approximately 2-3 min of CPU time

_for the entire calculation. This includes the numerical grid

generation at each plane and the conical initial data plane and
represents an enormous savings in computer execution cost
over other nonlinear methods, especially Euler solvers.
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Fig. 10 Angle-of-attack solution for the arrow wing at x/f=0.65.

V. Conclusions

A nonlinear full-potentfal aerodynamic prediction
capability based on a sound mathematical theory of
characteristic signal propagation has been developed. The
method uses a general body-fitted coordinate system and
numerical mapping techniques. The on/off density biasing
activator in the crossflow plane has proved to be very effective
in capturing sharp shock profiles. Results for conical and
nonconical flows at various Mach numbers and angles of
attack are shown to be in excellent agreement with ex-
perimental data and Euler results. The enormous savings in
computational cost exhibited by the present approach makes
it a very promising substitute for the less accurate linearized
panel methods and expensive Euler solvers, for use as a
preliminary design tool. Future work will involve automatic
grid generation for wing-body-nacelle-canard configurations
and better wake treatment.

Appendix—Derivation of the Marching
Condition [Eq. (5)] for a Cartesian System
The Cartesian system analog of Eq. (4) is given by

Af,+Bf,+Cf,=0 (A1)
where
(pu), (ou), (pu),
A= 0 1 0
0 0 1
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{(pv)., (o), (o0, ]
B= -1 0 0
|0 0 0
[(ow),  (ow), (pW), ]
C= 0 0 0
| -1 0 0
(u
Sf=1v
w

.~

Equation (A1) is hyperbolic with respect to the x direction if
1) A-? exist, and 2) A-! (aB+BC) must have real eigen-
values for all o and g satisfying o? +82 =1.

Since A-! is assumed to exist, the eigenvalues of 4~/
(aB+B8C) can be obtained by setting the following deter-
minant to zero.

laB+BC—-N1=0 (A2)

Substituting for 4, B, and C from Eq. (Al) into Eq. (A2), the
roots of the equation are obtained.

A= [— a—uz (va+wf)

E e () - )

(A3)

Equation (A3) will have real values as long as the square root
term is real. This implies the quantity inside the square root
must be positive. Simplifying the quantity inside the square
root, the condition becomes

u? + (va+wp)? _

] 1>0 (Ad)

Let

a=cosf

= o? 2 =

B=sind } ol +fi=1

v=qgcosd,  w=gsind
where

g=Vvi+w?, tanf=w/v

Substituting these into Eq. (A4) and simplifying results in

24 A2cos? (§—
.'ﬁc_::(ﬂl_1>o (AS5)

Since this condition must hold for all combinations of # and 6,
Eq. (AS) implies (for 0—6=x/2)

u?
pr i 1>0] for xto be the marching direction (A6) -

Equation (A6) is a special case of Eq. (5) in Sec. 11.
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A nonlinear method based on the full potential equation in conservation form, cast in an arbitrary coordinate
system, has been developed to treat predominantly supersonic ows with embedded subsonic regions. This type of

flow field occurs freq

ly near the fuselage/canopy junction area and wing leading-edge regions for a

moderately swept fighter configuration. The method uses the theory of characteristics to accurately monitor the
type-dependent flowfield. A conservative switching scheme is developed to handle the transition from the
supersonic marching algorithm to a subsonic relaxation procedure, and vice versa. An implicit approximate
factorization scheme is employed to solve the finite differenced equation. Results are shown for a few configura-

tions, including a wing /body / wake realistic fighter model having

L Introduction

ONLINEAR aerodynamic prediction methods based on
the full potential equation are used regularly for treating
transonic’? and supersonic** flows over realistic wing/body
configurations. The transonic algorithms'? are designed to
treat predominantly subsonic flows with pockets of supersonic
regions bounded by sonic lines and shocks. The supersonic
methods®?® are based on a marching concept and require the
flow to remain supersonic in a given marching direction. Once
the marching direction velocity becomes subsonic, the domain
of dependence changes and a pure marching scheme®> will
violate the rules of characteristic signal propagation. The
possibility of a marching velocity becoming subsonic in a
supersonic flow is great, especially for low supersonic
freestream Mach number flows (M, =1.3 ~ 1.7) over mod-
erately swept fighter-like configurations (sweep angle A =45 ~
50 deg) and over forebody shapes having a sizeable
fuselage /canopy junction region. There is a strong need to
construct a supersonic marching computer program that has
built-in logics to detect and treat the embedded subsonic regions.
The method of Ref. 5 is based on the characteristic theory
of signal propagation and uses'a generalized, nonorthogonal,
curvilinear coordinate system. Compared to other nonlinear
supersonic methods,? the method of Ref. 5 has no restrictions
(limitations of the full potential theory hold) on its applicabil-
ity to complex geometries and intricate shocked flowfields. It
is a conservative formulation and uses numerical mapping
techniques to generate the body-fitted system. The purpose of
this paper is to describe an extension to the methodology of
Ref. 5 to include the treatment of embedded subsonic regions

in a supersonic flow.
The paper describes the characteristic theory involved in
determining the condition for a marching direction to exist.
Once that condition is violated, the marching scheme is transi-
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tioned to a relaxation scheme through a conservative switching
operator. For marching condition violation, the total velocity
q does not have to be subsonic. Even for a supersonic total
velocity g, if the component in the marching direction is
subsonic, a relaxation scheme is required. In order to properly
produce the necessary artificial viscosity through density bias-
ing, the paper defines two situations: 1) the total velocity q is
supersonic, but the marching direction component is subsonic
[defined as marching subsonic region (MSR)]; and 2) the total
velocity ¢ is subsonic [termed as total subsonic region (TSR)).

Results are presented for a few configurations that exhibit
either the MSR or both the MSR and TSR flowfield. The
paper also presents results from a wake model applied to a
realistic wing/body fighter configuration.

The Appendix describes a flux biasing concept that will
supersede the density biasing procedures currently in use.

The methodology of this paper is not restricted to the full
potential equation alone. Currently, similar marching/relaxa-
tion methods are under development at Rockwell for applica-
tion in parabolized Navier-Stokes (PNS) codes to treat the
embedded subsonic regions or streamwise separated flows
without having to use a time-dependent Navier-Stokes pro-
gram.

I1. [Equation and Characteristic Theory

The conservative full potential equation cast in an arbitrary
coordinate system defined by {={(x,y,2z), n=n(x,y,2),
and ¢ =§(x, y,z), takes the form

(7). e7),+7) 0 @

where U, V, and W are the contravariant velocity compo-
nents. Introducing the following notation for convenience:

U=U, V=U, W=U,
X=Xy, Yy=X5, Z=X;
§=X,, 7‘=XJ' £=Xj
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the contravariant velocities and density are given by

3
l/i=zau¢X/ i=1'2‘3
J=1
R .
ax, X, i=1,2.3 . .
a;;= Bx,( axk j=12.3 (transformation metrics)

iNfy-h

[1—( ZI)M-{U¢;+ V¢,,+W¢e—1}]

a = speed of sound = Jp'"~ ") /M (2)

The Jacobian of the transformation J is represented by

6 &
A&nd) |y, u, ©)]

J=
Wxra) e g e

Equation (1) is in terms of a general coordinate system ({, 7, £)
and can-accommodate any kind of mapping procedure, either
analytical (conformal mapping) or numerical. The nature of
Eq. (1) can be analyzed by studying the eigenvalue system of
Eq. (1). Combining the irrotationality condition in the ({,7)
and ({,£) plane and Eq. (1), one can write the following
matrix equation:

Afe+ Bf, + Cf, =0 (4)
where
[ 1 ! !
. 70 5(pU)s, - 5(pU)s,
0 1 0
R 0 0 1
[ 1 ! 1
B j(PV)¢, j(PV)ds., 7(PV)¢(
L -1 0 0
0 0 0
[ 1 | 1
cm FeW)e F(pW)e,  F(pW)e
0 0 0
L -1 0 0
o0
f= ¢n
_¢€

The subscripts in Eq. (4) denote differentiation with respect to
that variable.

The matrices 4, B, and C appearing in Eq. (4) can now be
analyzed to determine the character of that equation. In
general, the following is true:

1) Equation (4) is elliptic in the { direction if the matrix

~!(aB+ BC) has complex exgenvalues for all combinations
of a and B such that o” + 87 =1.

2) Equation (4) is hyperbolic in the { direction if A ! (sz +
BC) has real eigenvalues for all « and 8 satisfying a® + 8° = 1.

The eigenvalue structure of 4A~/(aB + BC) can be obtained
by setting the determinant

|aB+ BC—AA|=

(assuming 4~/ exists)  (5)

Substituting for 4, B, and C from Eq. (4), the eigenvalucs of
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Eq. (5) are given by solving the quadratic
=N (U)o + A[a(pV) 6+ B(pW) s+ a(pU)s,
;a(pU)w]—{aﬂpVN.+ﬁ¥pW)%
+aB[(pW)e, +(oV)e]} =0 (6

Representing Eq. (6) in the form
AN +BA+C=0 7

the discriminant (B? — 44C) determines the character of Eq.
4):

1) If (73" — 44 C) remains positive for all « and B satisfy-
ing a’ + 87 =1, then the eigenvalues of Eq (4) are real and
direction f is hyperbolic (marching scheme is valid).

DI (B —44C)is negative, then the eigenvalues of Eq. (4)
are complex and direction { is elliptic (requires a relaxation
method).

To analyze when the eigenvalue solutions of Eq. (6) are real
and when complex, the discriminant (B’ - 44C) is rewntten
in the following form using Eq. (2):

UV)', ( : ( V'”)
) 447
a’ a- a-
7 2 ‘W
+7"B[ “'1"2)(“11 L_}‘V)_(“H_'”U_,)(a:.i_ ;;-l )]
a- ar a’
, uwy’ U’ ;
+.B'[(a,u‘__v) —(a,,——,—)(a”——,)] (8)
a a- a-

Using the properties of a positive definite quadratic form and
the Schwarz inequality (a,,a,, > a;,), Eq. (8) can be shown to
have the followmg results:

1) (B® — 44C) is positive if {a,, —(U*/a")] is less than
zero. Then the { direction is hyperbolic (the marching al-
gonthm of Ref. 5 is valid).

2) (B? — 44C) is negative if [a,, — (U’ /a*)] is greater than
zero. Then the { direction is elliptic (requires a relaxation
scheme).

Ti"—4If=a"[(a_.,—

1%y

Physical Interpretation

The physical interpretation of these results from the char-
acteristic theory is illustrated in Fig. 1. Let ¢ be the total
velocity. The projection of ¢ in the direction normal to the
¢ = constant surface is given by

($i+8.j+8k)

A= (ui+uy+wk) s

=U/\fa,;,  (9)

where u, v, and w are the Cartesian velocities and 7 the
normal to the { = constant plane. Figure la shows the case
when U/\/}; is greater than the speed of sound {(a,, —
(U?/a’)] < 0). For this case, the characteristic cone of in-
fluence is behind the { = constant plane and marching along ¢
is valid. Figure 1b illustrates the case for the ¢ > a, but for the
U/‘/aT, < a situation, [a,, — (U*/a”)]> 0. For this case, a
part of the characteristic cone of influence lies forward of the
¢ = constant plane and marching along { is not possible. This
case (Fig. 1b) is termed marching subsonic region (MSR) in
this paper. Figure lc shows the case when ¢ < g and U/ /{T
<a.la,; — (U’ /a’)]> 0. This represents a pure subsonic flow
and marching along ¢ is not possible. This case is termed total
subsonic region (TSR). For cases represented in Figs. 1b and
lc, a relaxation algorithm is required.
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CHARACTERISTIC
ZONE OF INFLUENCE

2
a) PURE SUPERSONIC REGION, {a;4 -Ezp <0.
MARCHING ALONG ; ISVALID.  *

4 = TOTAL VELOCITY

A = NORMAL TO
{ = CONSTANT PLANE

a = SPEED OF SOUND w2
b) MARCHING SUBSONIC REGION {MSR), (ayy -—2) >0.97
MARCHING ALONG ¢ IS NOT VALID.

CHARACTERISTIC
ZONE OF INFLUENCE

¢} TOTAL SUBSONIC REGION (TSR), fagy -—) qa
COMPLEX CHARACTERISTICS.

Fig. 1 Role of characteristics in defining supersonic region, marching
subsonic region (MSR), and total subsonic region (TSR).

III. Numerical Method

Figure 2 shows the schematic of a fuselage/canopy fore-
body geometry with an embedded MSR and TSR present in a
supersonic flow. To solve this problem, the marchmg scheme
of Ref. 5 will be used when [q,, — (U /a )] is negative and a
relaxation scheme when {a,, — (U"/a”)] is positive. First,
march from the nose up to the plane denoted by (A-B) in Fig.
2, using the method of Ref. 5. Then, between (A-B) and
(C-D), which embed the subsonic bubble (MSR and TSRY), use
a relaxation scheme and iterate until the subsonic bubble is
fully captured. Then, resume the marching scheme from the
plane (C-D), downstream of the body.

The purpose of this paper is to present a conservative
algorithm that will automatically switch from a pure marching
scheme of Ref. 5 to a relaxation method at the onset of an
MSR formation and revert to the marching procedure when
the flow becomes fully supersonic again. The entire flowfield
can be classified into three types with respect to the marching
direction {:

1) At a grid poini, the marching direction is hyperbolic and
the total velocity ¢ is supersonic, [a,, — (U /a")]< 0, ¢> a.
This point will use the algorithm of Ref. 5.

2) At a grid point,. the marching direction { is elliptic,
la;; — (U7 /a*)]> 0, but the total velocity g is supersonic,
q > a (MSR). This point will be treated by a transonic oper-
ator with a built-in density biasing based on the magnitude of
(1 -(a’/g)].

3) At a grid point, the direction § is ell:pnc and the total
velocity q is subsonic, g <a (TSR). This point will be treated
by a subsonic central differenced operator.

Treatment of (3 /3%)e(U/J)] in Eq. (1)
Refer to the computational molecule in Fig. 3.

??(Pg)ﬂ‘%(pg).-, - '*')ag( U),,, (10)

St e m—
supersonic Tuagggrl\?g
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20ONE
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! o _RELAXATION
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a
(TOTAL SUBSONIC REGION}

—e-1=———MARCHING REGION
o]

Fig. 2 Embedded subsonic bubble in a supersonic flow.

where
9 refers to backward differencing

9 refers to forward differencing

0=1 if(a,,—i)<0
a

=0 if(a,,—i)>o
a

In Eq. (10), the first term corresponds to the supersonic
marching operator of Ref. 5 and the second term is the
subsonic operator.

The backward difference operator in Eq. (10) is represented
by

+
——
R
|Q
<
_
[
[
©
+
p—
i~
b
|
'Q
=

J
) 2 Ap + U, ] .
A¢=(¢,*, —-¢) (11)
The term (3/3¢)(A¢) is backward differenced. Reference 5
gives more details on this supersonic marching operator.

The forward difference operator in Eq. (10) is represented
by :

J(.U RN <
759 2| B adrasran,| 02

where
Bri=0l —v(e,—p)) forU>0
. v=max[0.1-(a’/q")] (13)

The superscript n + 1 denotes the current relaxation cycle for
a subsonic bubble calculation.

Note that in Eq. (12) the term ¢; is backward differenced
such that (6/8{ Xp/Na, ,¢:§ will provnde the central differenc-
ing needed for an elliptic (subsonic) point. The den51ly biasing
[Eq. (13)] is activated only when the total velocity q is greater
than the speed of sound a. This will take place when a grid
point is in the region denoted by MSR in Fig. 2. When g<a
(the TSR in Fig. 2), the density is not biased and the genera-
tion of artificial viscosity is turned off. The ¢ derivatives in
Eq. (13) can be rewritten in terms of A¢, just as in Eq. (11).

Equation (10) can also be interpreted as

#(e5)- 5 07)., - wgo-zd)., 0

elliptic flux biasing to produce
operator the artificial viscosity
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Fig. 3 Conservative type-dependent switching scheme for the treat-
ment of subsonic bubble in a supersonic flow.

Figure 3 illustrates various possibilities that can be handled
by Eq (10). It has both the shock point operator and the sonic
operator required to treat the type-dependent flow. The only
issue that philosophically affects the concept of a conservative
scheme is that the definition of pU for a supersonic operator
* in Eq. (11) is different from the definition for the subsonic
operator of Eq. (12).

The evaluation of the subsonic operator in Eq. (12) requires
velocity potential ¢ values at i + 1 and i + 2 planes from the
previous n relaxation cycle to compute the density. The
section on initial and boundary conditions below prescribes a
method to start the first relaxation cycle of the subsonic
bubble calculation.

Treatment of (3 /30){p(V/J)] in Eq. (1)
Referring to the Fig. 3a molecule,

a( v (v d(-V
w(e7) =i aa(77),. ru-aen 5 (37)

—_ —
supersonic ':::::::CE
(15)
where
2
0,.,=1 if ( a; - —,) <0  (supersonic point)
a Jier _

9,.,=0 if(a,,—l:) >0  (MSR)
a i+t

When 4,,, =1, that is, the point is supersonic with respect
to {, only the first term in Eq. (15) is used and the biased
density p is defined by (for V> 0),

Bot=(1 =5 ) +45(0r +or,)  (16)

where
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In Eq. (16). the evaluation of p* depends on whether the
flow is conical or nonconical. For conical flows, all p* quanti-
ties are evaluated at the ith plane. For nonconical flows, at
each nonconical marching plane, initially p* is set to be the
value at the ith plane and then subsequently iterated to
convergence by setting p* to the previous iterated value of p
at the current i + 1 plane. Reference 5 provides more details
on the density biasing procedure and the implicit treatment of
(3/311)[10("/1)1“1 in Eq. (15).

When the point is elliptic, the density biasing is defined by

Bil=(1-5.)p + (e +e,) (D)
where 5= max[0,1 — (a°/q")]. As before, the superscript n +
1 denotes the current relaxation cycle for a subsonic bubble
calculation. Note the diflerence in the definition of » and ».
The density biasing in the cross-flow direction 7 is turned off
when the total velocity ¢ is less than the speed of sound 4.
just as in the marching { direction {Eq. (13)). The implicit
treatment of V in the marching subsonic operator of Eq. (15)
is the same as that of the supersonic part, explained in Ref. 5.

A similar procedure is implemented for the [p(W/J)]; term
in Eq. (1).

Implicit Factorization Algorithm

Combining the various terms of Eq. (1) as represented by
Egs. (10)-(17) together with the terms arising from [p(W/J)],
will result in a fully implicit model. This is solved using an
approximate factorization implicit scheme. After some re-
arrangement of the terms, the factored implicit scheme be-
comes

[’ * BAA{ 3 %ai(ga—')
pa,

v o d o2 b
BAtan "B

v
+
Wi~
|
o
E
D

2 2] s

(18)
The density p appearing in Eq. (18) can be either 5 or 5
depending on the sign of [a,, — (U’ /a?)] as illustrated in Eq.
(lslzz,;luation (18) has the form

L L (A¢)=R (19)
and it is implemented as follows:
L(A¢)*=R L (3¢)=(4¢)* ¢.,=¢+4¢

(20)

The various quantities appearing in Eq. (18) are given by

1 Ab(bay
B=1a 0.4, ~(1-0,.) 3¢ (%5 ),]

G'I:JI* (all_—_ ] (1_ 10I) ( )’-I
A§4)= :&.‘_“:+I' Ag:g:*l_gr (21)

and the right-hand side term R consists of various known
quantities.
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If the flowfield does not contain an embedded MSR or
TSR, the implicit factored algorithm of Eq. (18) performs a
pure marching procedure starting from an initial known data
plane. In this situation, there is no need to go back to the
upstream starting plane and iterate the solution. However, if a
subsonic bubble is present (between planes AB and CD in
Fig. 2). then the solution procedure of Eq. (18) performs a
relaxation method and iterates for the elliptic subsonic bubble
to converge [superscript n in Egs. (12), (13), and (17) refers to
the relaxation cycle counter].

Initial and Boundary Conditions

Initial Conditions

For a pure supersonic flow, initial conditions need to be
prescribed only at the starting plane. Usually, the starting
plane is set close to the apex of the configuration to be solved
and the conical solutions are prescribed.

Inside an MSR, as in Fig. 2, when Eq. (12) is applied at an
(i + 1) grid point, information on ¢, , , is required to form the
density p and various derivative terms. For the first relaxation
pass, an initial estimate for quantities in the (i + 2) plane is
prescribed in the following manner:

2+9).. =35 { (9.

Mt i
*(:’;(0114’;4'0/:4’.,+“l.«¢e))}‘+l (22)
In Eq. (22), sonic conditions are assumed at (i + 2) for the
first relaxation pass, . .
Pis2=p% U,+.‘=‘I'VW (23)

The sonic values p* and ¢* are purely a function of the
freestream Mach number M. Also, p,,; in Egq (22) is
initialized to be p,.

For the second relaxation cycle and onward (n>1), the
conditions from the previous relaxation cycle are used,

U n+1 . U n . R
(P‘_‘,‘) =(P7) v =6y (24)

i+2 i+2

Boundary Conditions

At a solid boundary, the contravariant velocity V is set to
zero. Exact implementation of ¥ = 0 in the implicit treatment
of Eq. (18) is described in Ref. 4.

The outer boundary is set away from the bow shock and the
freestream velocity potential ¢, is imposed along that
boundary. All discontinuities in the flowfield are captured.
The precise. density biasing activator », based on the char-
acteristic theory, allows for sharp capturing of shocks in the
flow.

Behind the trailing edge of a wing, a wake model is im-
posed. Figure 4 shows a schematic of a wake model. At a
point P lying on the wake, the boundary condition is that
there is no jump in the pressure across the wake, ie., (p, -
Py)=0. In the full potential (isentropic) formulation, this
translates into the condition that the jump in density (8, — pg)
is zero, or the jump in the total velocity ¢ is zero [(g, — ) =
0]. The jump in g across the wake is set to zero in an
approximate manner in the following way.

First, compute the jump in the potential ¢ at the trailing-
edge point P’ and maintain that jump constant along the line
P’P in Fig. 4. At the wake point P, Eq. (1) is not valid.
Instead of solving Eq. (1), ¢,, =0 is satisfied at the wake
point P to achieve the condition (¢,), - (¢,)o = 0. Incorpo-
rating a constant jump in ¢ along P’P insures (¢;), — (¢;)o
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Fig. 4 Wake boundary condition.
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Fig. 5 Axial surface pressure distribution for a developed cross-sec-
tion forebody (M_, = 1.7, a = —5 deg).

=0. The net effect is that (g, — qp) is approximately set to
zero, yielding the necessary wake boundary condition. The
following section presents a calculation performed for a realis-
tic wing/body/wake fighter model and shows an excellent
matching of the pressures across the wake, using the above
wake boundary condition.

Grid System

The transformation from the physical space (x,y,z) to a
body-fitted computational space ({, 1, £) is performed numeri-
cally at each constant { plane by using the elliptic grid
generation technique of Ref. 6. Once the grid is generated, all
the metric terms g,; in Eq. (2) and the Jacobian J in Eq. (3)
are computed by numerical differentiation. As described in
Ref. 5, a freestream error subtraction is performed at each grid
point to account for any improper metric cancellation.

Density Biasing Summary

This section summarizes in a tabular form the type-depen-
dent density biasing procedures incorporated in this paper to
generate the proper artificial viscosity. See Table 1.
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Tablel S Yy to type-dependent density biasing procedure
Term ' Total supersonic Marching subsonic Total subsonic
Definition {a;; - (U/a*) <0, [a; = (U /a*)]>0, la;; — (L /a?))> 0.
q>da q>a q<da
pU in Upwind differencing, Density biasing Shut off density
¢ direction Eq.(11) based on biasing

[1-(a%/g")]inEq.(13)

pV,pWinn, ¢ Density biasing Density biasing Shut off density
directions based on , based on biasing
(1 -ay(a’/V°)L (1-(a"/q7)]
[1-a;(a /W) p in Eq. (17)
p in Eq. (16)
200 L T T
CANOPY
|
oe £ 100F )
> i
06
]
Cp 04 !
0 i 1 L
o 100 200 300
xfin)
02 Fig. 7 Nose region geometry for Space Shuttle.
MSR ~ MARCHING SUBSONIC REGION
— PRESENT METHOD
® DATA NASA TM 80062
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4 (DEGREES) ’
Fig. 6 Circumferential pressure distribution for a developed cross-sec- ©ROCKWELL EXPERIMENTAL £ 200
tion forebody (M., = 1.7, a = -5 deg, x//=0.28). 10, DATA ‘:wo T
\\ 0o 100200300
a ¢ mo—- xtin)
IV. Results 9 sl . ]
As illustrated in Fig. 2, supersonic marching calculations )
are performed from the nose until an embedded MSR forms.
In Fig. 2, the plane AB is the last supersonic marching plane o} ==~ 1STPASS THROUGH SUBSONIC ZONE A
. . === 2ND PASS
preceding the subsonic bubble and forms the upstream com- ( 3RD PASS .
putational boundary for the relaxation calculation. For the .
first relaxation pass through the subsonic bubble region, 6, , L s sis =5

in Eq. (10) is set equal to 8, and (pU);, , = p*q*. From the
second relaxation cycle on, 4,,,, 0,, and (plU),., are com-
puted according to their definitions. A typical supersonic flow
with a subsonic bubble calculation required at most only four
relaxation cycles (iterating back and forth between planes AB
and CD) to obtain a converged location for the bubble. The
initial guess, based on the sonic conditions p*q*, worked out
very well for all the subsonic bubble cases presented in this
paper. The (n, §) marching plane can be any arbitrary surface,
but for convenie€nce was chosen to be a constant x plane.
The step size in the marching direction ¢ for the supersonic
part {[a;; — (U?/a*)) <0, ¢>a) was automatically chosen
by setting the Courant number® to be around 5. Once the
MSR forms, the eigenvalues become complex and the step size
cannot be computed based on a specified Courant number.
For marching planes containing the MSR /TSR, the step size
was specified into the code depending on the geometry varia-
tion. When geometry changes were drastic (region of emer-
gence of a wing from a fuselage), usually a smaller step size A{
was required (as small as 0.003 ~ 0.005 for a total length of
one) to properly account for rapid changes in the flow. Once
the MSR /TSR is fully captured and the flow becomes super-
sonic again, the step size selection once again becomes based
on the Courant number. For a pure supersonic flow all the
way, the entire calculation could be performed using 40 planes

xlin}

Fig. 8 Surface pressure distribution at leeward plane of symmetry.

or less (A{ > 0.025). However, once an MSR or TSR is
present, the total number of { planes in the calculation could
go as high as 300.

Figure 5 shows the surface pressure distribution in the axial
direction on the upper (8 =0, lee side) and lower (8 =180
deg, windward side) plane of symmetry for a developed cross-
section forebody geometry reported in Ref. 7. At M, =1.7
and a = —35 deg, the lee side has an embedded MSR that
required use of the relaxation operator in Eq. (10). A pure
supersonic x marching for this case would have failed without
the MSR treatment described in this paper.

Figure 6 shows the circumferential pressure distribution for
the same developed cross-section forebody at M, =1.70, a =
-5 deg, and x//=0.28. The embedded MSR thickness is the
largest at this axial station. The extent of the subsonic bubble
is marked in Fig. 6. The results of Figs. 5 and 6 exhibit only
MSR—TSR is not present.

To simulate both the MSR and TSR, the flow over the
Shuttle orbiter at M_ =14 and a=0 deg was considered.
The side view, cross section, and grid in the fuselage/canopy
region of the orbiter are shown in Fig. 7. At this Mach
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Fig.9 Supersonic fighter with an embedded marching subsonic region
near the leading edge.

Fig. 10 Pressure distribution on a fighter-like configuration (M, = 1.6,
a =5 deg).

number, the fuselage /canopy junction exhibits a large MSR /
TSR. Figure 8 shows the surface pressure distribution along
the leeward plane of symmetry. At x =4.3 m (170 in.), which
is the beginning of the canopy, the pressure increases rapidly
from C,=0.3 to 1.0 and an MSR /TSR is formed. It required
three relaxation cycles to develop the solution. The compari-
son with the Rockwell experimental data is favorable. The
blunt body initial solution for this Shuttle case was obtained
from the unsteady full potential code of Ref. 8.

Figure 9 shows a supersonic fighter configuration with a
wing sweep of around 48 deg. At a freestream Mach number
of 1.6 and a = 5 deg, the leading edge of the wing exhibits an
MSR/TSR. To solve the flowfield over such a fighter con-
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Fig. 11 Grid and pressure distribution in the wake region of a
fighter-like configuration (M, = 1.6, a == 5 deg, x = 0.85).
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Fig. 12 Circumferential pressure distribution in the vertical tail and
wing region of a fighter-like configuration (M, = 1.6, a =4.46 deg,
x /1= 090).

Table 2 Test cases for fighter-like configurations

a, deg 5 5 5 5

M, 1.6* 1.6° 1.4° 1.6°

A, deg 48 48 48 55

C -
Code 0.298 0.3016 0.3561 0.29186
Data® 0.277 0.295 0.342 0.3

Cp
Code 0.0462 0.04916 0.04117 0.028129
Data* 0.0457 0.0493 0.0425 0.0301
*Tail of.  ®Tailon.  “Rockwell data.

figuration, one needs to use the embedded subsonic bubble
treatment. Figure 10 shows the surface pressure at various
axial stations along with respective grid distribution for the
wing/body geometry. For this case, the MSR/TSR starts
around x = 0.4. Figure 11 shows the pressure distribution for
the fighter configuration of Fig. 9 at an axial station x//= 0.85,
where a wake sheet is present. The grid distribution goes
around the wake sheet just like a wing/body case. The ap-
proximate wake model described in the paper seems to pro-
vide the correct zero pressure jump condition across the wake,
as seen in Fig. 11. Figure 11 shows the simulation without the
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Fig. 13  Drag prediction for a double-wedge delta wing at M_ = 1.62,
a =0 deg; for sweep angles less than 60 deg, the leading edge has a
marching subsonic flow (C,,_h = CD/ + C,,___ ).

vertical tails. Figure 12 shows the result for a different fighter
model with a pronounced wing/body shape and a vertical tail.
At this cross section, x/l=09, the geometry is multiply
connected with a wake sheet present between the tail and the
wing. The circumferential pressure distribution on the wing/
body/tail /wake and the gridding are shown in Fig. 12.

The lift and drag coefficients from the present calculation
for a fighter model are given in Table 2. The comparison with
Rockwell experimental data is excellent.

Figure 13 shows the drag prediction capability of the full
potential code by demonstrating it on a double-wedge delta
wing at M =1.62. At this Mach number, the leading edge
exhibited the presence of an MSR for sweep angles less than
60 deg. A pure supersonic marching code would not have
worked for this case. The drag calculation from the full
potential code compared very well with the experimental data
available in the Princeton series.

V. Conclusions

A nonlinear full potential method has been developed to
treat supersonic flows with embedded subsonic regions. A
conservative switching scheme is employed to transition from
the supersonic marching algorithm to a subsonic relaxation
procedure. The theory of characteristic signal propagation
plays a key role in activating various density biasing proce-
dures to produce the necessary artificial viscosity. The method
has been shown to produce results that were hitherto not
possible using a pure supersonic marching scheme. The con-
cept of density biasing will be modified in the future to a flux
biasing procedure described in the Appendix.

Appendix: Flux Biasing Procedure
Based on the work of Hafez et al.,” it is possible to modify
the density biasing concept to a flux biasing procedure.

AIAA JOURNAL

Consider the term (B/BQ)[ﬁ(V/J)] in Eq. (15). The density
biasing procedure defines p to be

ﬁja—";:(l_")P,*g+.L’”(PJ+P,'—I) (A1)
where
v=ma.x[0;l —(a"/q")]

In the flux biasing technique, it will be modified to

(- V 3alv -
36("7);+%“a_n[fq{""'A"a“(”)‘} jot
(A2)
where

(pq)-=0 ifg<a

=(pq)—p*q* ifg>a,

where p* and g* represent sonic conditions, a the local speed
of sound, and (pq) the flux. When the flow is purely subsonic,
the flux biasing is turned off automatically.

Acknowledgment -

This work was partially supported by NASA-Langley Re-
search Center under Contract NAS1-15820.

References

{Jameson, A., “Transonic Potential Flow Calculations using Con-
servation Form,” A74A Second Computational Fluid Dynamics Con-
ference Proceedings, AIAA, New York, 1975, pp. 148-155.

2Holst, T.L., “ Fast, Conservative Algorithm for Solving the Trans-
onic Full Potential Equation,” 4144 Journal, Vol. 18, Dec. 1980, pp.
1431-1439.

3Siclari, M.J., “Computation of Nonlinear Supersonic Potential
Flow over Three-Dimensional Surfaces,” AIAA Paper 82-0167, Jan,
1982.

*Shankar, V., “A Conservative Full Potential. Implicit, Marching
Scheme for Supersonic Flows,” ATAA Journal, Vol. 20, Nov. 1982, pp.
1508-1514.

Shankar, V. and Osher, S., “An Efficient Full Potential Implicit
Method Based on Characteristics for Analysis of Supersonic Flows,”
AIAA Journal, Vol. 21, Sept. 1983, pp. 1262-1270.

6Shankar, V.. Rudy, S.. and Szema, K.-Y.. “Application of a
Two-Dimensional Grid Solver for Three-Dimensional Problems,”
ASME Applied Mechanics, Bioengineering, and Fluids Engineering
Conference, Vol. No. G00222, ASME, New York, June 1983.

"Townsend, J.C.. Howell, D.T., Collins, 1.K., and Hayes. C.,
“Surface Pressure Data on a Series of Analytic Forebodies at Mach
Numbers from 1.7 to 4.50 and Combined Angles of Attack and
Sideslip,” NASA TM 80062, June 1979.

*Shankar, V., “Implicit Treatment of the Unsteady Full Potential
E%uation in Conservation Form,” AIAA Paper 84-0262, Jan. 1984.

Hafez, M., Osher, S., and Whitlow, W. Jr.. “Improved Finite
Difference Schemes for Transonic Potential Calculations.” AIAA Paper
840092, Jan. 1984.



Computation of Supersonic Flows over Three-
Dimensional Configurations

K.-Y. Szema, W.L. Riba, V. Shankar, J.J. Gorski

Reprinted from

J -
@ n“r"al ul Alml‘a“ Volume 22, Number 12, December 1985, Page 1079

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS * 1633 BROADWAY « NEW YORK, N.Y. 10019



VOL. 22, NO. 12, DECEMBER 1985

J. AIRCRAFT

1079

Computation of Supersonic Flows
over Three-Dimensional Configurations

Kuo-Yen Szema,* William L. Riba,* Vijaya Shankar,t and Joseph J. Gorski}
Rockwell International Science Center, Thousand Oaks, California

An aerodynamic prediction technique based on the steady form of the full-potential equation has been applied
to a variety of three-dimensional supersonic flow problems exhibiting embedded subsonic regi A conser-
vative switching scheme is employed to transition from the supersonic marching procedure to a subsonic relaxa-
tion algorithm, and vice versa. Numerical solutions are obtained for a number of complex configurations, in-
cluding advanced tactical fighter, Langley canard-wing fighter configuration, isolated shattle orbiter, and mated

shuttle orbiter configuration with external tank. The computed results are in good agr

perimental data.

Nomenclature
a =speed of sound .
ay, =transformation metric {2 + {3
Cp =drag coefficient
C, =lift coefficient
Cu = pitch-mqment coefficient
c, =pressure coefficient
iLj,k =streamwise, radial, and circumferential indices
J = Jacobian of transformation
M, ‘= freestream Mach number
q* =[p*v~!/mi}]*, sonic condition
U, V,W  =contravariant velocities
X, 0,2 ,= Cartesian coordinates
a =angle of attack
¥ =ratio of specific heats
Lk =transformed coordinates
o =density
p* =sonic density
¢ =velocity potential
) =wing sweep angle
Introduction

HE prediction of inviscid low supersonic Mach number

flowfields about complex three-dimensional configura-
tions is of great interest to both researchers and designers. For
treatment of such flows, full-potential methods! based on a
space-marching procedure offer the advantage of requiring
only moderate computer resources (memory and time) while
maintaining sufficient accuracy. .

In the full-potential method of Refs. 1 and 2, the equation is
transformed to a generalized, nonorthogonal, curvilinear
coodinate system and is solved by a highly efficient, implicit,
finite difference scheme based on the characteristic theory of
signal propagation. A space-marching technique is used when
the flow is supersonic in a given marching direction. If the
velocity in the marching direction becomes subsonic, the do-
main of dependence changes and the marching scheme is
modified to a relaxation-type method through a conservative
switching operator.

Presented as Paper 85-0272 at the AIAA 23rd Aerospace Sciences
Mecting, Reno, NV, Jan. 14-17, 1985; received March 14, 198S; revi-
sion received Sept. 10, 1985. Copyright © American Institute of
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The presence of subsonic pockets in a supersonic flow oc-
curs very frequently near fuselage-canopy junction areas and
wing leading-edge regions. In fact, future design of advanced
fighter wings (M, =1.2-2.0, wing sweep ~ 48 deg) will pur-
posely incorporate subsonic regions near the leading edge to
benefit from the leading-edge suction peak associated with
subsonic flows.

In Ref. 1, a numerical mapping technique is used to
generate the body-fitted coordinate system at a marching
plane. The key advantage of this method is that it has no
restrictions on its applicability to complex geometries and in-
tricate shocked flowfields. In contrast to the general coor-
dinate formulation of Ref. 1, the method of Ref. 3 is based on
a spherical plane marching technique and its application to
general three-dimensional geometries is yet to be
demonstrated.

The main purpose of this study is to investigate the
usefulness of the methodology of Ref. 1 in treating supersonic
flows with large embedded subsonic regions over complex
geometries, including realistic fighter configurations, shuttle
orbiter, and multibody configurations (orbiter on top of the
external tank/solid rocket boosters) at low supersonic Mach
numbers (M, = 1.2 to 2.0).

) Analysis

The physical and computational coordinate systems are
shown in Fig. 1. As discussed in Refs. ! and 2, the entire
flowfield is divided into three regions (see Fig. 2): 1) the pure
supersonic region, 2) the marching subsonic region (MSR),
and 3) the total subsonic region (TSR). The basic governing
equations and boundary conditions are essentially the same as
in Ref. 2 and, therefore, only a brief discussion of the method
is presented here.

Governing Equation

The conservative form of the full-potential equation cast in
an arbitrary coordinate system defined by ¢={(x,»,2),
n=1(x,5,2), and £=§(x,y,2) can be written as

A

where the density is given by

p= [1_ (7;1)M§, {U¢r+y¢'+w¢z_l]]l/(y—l) @

and M., is the freestream Mach number, U, V, and W are the
contravariant velocity components, and J is the Jacobian of
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Fig. 1 Computational coordinate system.
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Fig. 2 Embedded subsonic bubble in a supersonic flow,

Fig. 3 Fighter-like configuration (ATF).

the transformation. The treatment of each term in Eq. (1), in-
cluding the density biasing procedure and the implicit approx-
imate factorization algorithm, can be found in Refs. 1 and 2.

Initial Conditions
Supersonic Flow Region

For a pure supersonic flow, initial conditions are required at
the starting plane. For sharp-nosed configurations, conical
solutions are prescribed, and for a blunt-nosed configuration,
the axisymmetric, unsteady, full-potential solver of Ref. 4 is
used to obtain the detached bow shock flowfield in the
forebody region.

Embedded Subsonic Flow Region

When Eq. (1) is applied at the (i + 1) plane within an embed-
ded subsonic region, information on the flux pU at the (i+2)
plane is required. For the first relaxation pass, sonic condi-
tions are assumed at (i+2)

2 v-d )
—pte M2, V-1 3
Piv2 =P ('y+l+'y+l » 3)
Uis2=¢*Vay,,,

where
q* =o'/ ML)

Sonic- values p* and g* are purely a function of the
freestream Mach number M. The quantity a,, is a transfor-
mation metric term.

J. AIRCRAFT
Table 1 Test cases
Ca'xse 1 Case 2 Case 3 Case 4
(Fig. 3) (Fig. 10) (Fig. 12) (Fig. 17)
M, 16, 1.4 2.0 1.4 1.4
a See Table 2 4.0 0deg, —1.94 deg 0 deg

Boundary Conditions

In order to solve the full-potential equation, it is essential to
specify appropriate boundary conditions on the body surface
and along the outer boundary.

Body Surface

At a solid boundary, the contravariant velocity V is set to
zero. Exact implementation of ¥'=0 in the implicit treatment
of Eq. (2) is described in Ref. 1.

Quter Boundary

The outer boundary is outside the bow shock where the free-
stream velocity potential ¢, is imposed. All discontinuities in
the flowfield are captured. The precise density biasing ac-
tivator of Ref. 1, based on the characteristic theory, allows for
sharp capturing of shocks in the flow.

Swept Trailing-Edge Wake Treatment

In order to treat the region behind the trailing edge, an ar-
tificial cut is created, and the pressure jump [p] across this cut
is imposed to be zero as a boundary condition. The full-
potential equation is not solved at grid points on the wake cut.
Instead, ¢,, =0 is solved to provide [p]=0 across the wake
cut. A complete discussion of this is given in Ref. 2.

Method of Solution

Figure 2 shows the schematic of a fuselage-canopy forebody
geometry with an embedded MSR and TSR present in a super-
sonic flow. To solve this problem, the marching scheme of
Ref. 1 is used when (a,, — U?/a?) is negative, and a relaxation
scheme is used when (a,, — U?/a?) is positive.

First, march from the nose up to the plane denoted by A-B
in Fig. 2, using the method of Ref. 1. Then, between planes
A-B and C-D, which embed the subsonic bubble (MSR and
TSR), use a relaxation scheme and iterate until the subsonic
bubble is fully captured. Finally, resume the marching scheme
from the plane C-D downstream of the body.

Geometry and Grid System

The geometry of a configuration is prescribed at discrete
points in a cross plane (usually x = constant planes) at various
axial locations. These geometry input points are usually ob-
tained from a geometry package such as GEMPAKS® or CDS.¢
The input points are then divided into several patches, and at
each patch a key-point system is established. The geometry at
a marching plane is then obtained by joining appropriate key
points for each patch. Using a cubic spline passing through the
key points, a desired grid-point distribution (clustering) is set
up on the body surface. Then, by choosing an appropriate
outer boundary, the grid for the flowfield calculation is
generated by using an elliptic grid generator. More discussions
can be found in Ref. 2.

Results

Results for the following five different configurations are
presented to demonstrate the versatility and robustness of the
code in handling a wide variety of nonlinear flows:

Case 1: Advanced tactical fighter configuration (Fig. 3).
Case 2: Langley canard-wing fighter configuration (Fig. 8).
Case 3: Isolated shuttle orbiter (Fig. 12).

Case 4: Multibody configuration: shuttle orbiter with external
tanks/solid rocket boosters (Fig. 17).
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Table 2 Test cases for the advanced tactical fighter configuration

a s° 4.5° 5° 4.5°
Mo 1.6 1.6° 1.4° 1.6°
A 48° 48° 48° 55°
L Code 0.298 0.3016 0.3561 0.29186
Data 0.277 0.295 0.342 0.283
Cp Code 0.0482  0.04916  0.04117  0.0404
Data 0.0457  0.0493 0.0426 0.0396

" Without vertical ail. With vertical tail. A=wing sweep angle.
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The test conditions for each of these cases are summarized in
Table 1.

Case 1

Figures 4 and 5§ show the chordwise pressure distribution on
the upper and lower surfaces at 60% (183 in.) and 80% (245
in.) span stations, respectively. The results show that the pres-
ent predictions are in very good agreement with Rockwell’s ex-
perimental data.

Figure 6 shows the comparison of overall forces and
moments in terms of C;, Cp, and Cy,. The full-potential
results compare very well with NASA data. The drag calcula-
tion Cp includes the skin-friction and base drag. The com-
puted viscous drag was for a fully turbulent condition at the
test unit Reynolds number of 2 10%. The 48-deg wing sweep
results of Fig. 6 correspond to a supersonic leading-edge con-
dition of 3.3 deg. The lift and drag coefficients from the pres-
ent calculations for this fighter model, at different Mach
numbers, are summarized in Table 2. The results are in ex-
cellent agreement with experimental data.

Figure 7 shows the grid and pressure contours for the same
fighter geometry with a nacelle mounted on the undersurface
of the wing. Only the exterior of the nacelle is modeled as part
of the wing-body combination. At an axial marching station
immediately preceding the inlet face, initial conditions are
generated by interpolation from the flowfield without the
nacelle. The shock formed around the nacelle near the inlet
face (see Fig. 7) is diffused at downstream stations.

Case 2

Figure 8 shows a fighter model tested at NASA Langley that
has a canard and a fuselage-mounted flow-through nacelle.
The actual computational geometry and the surface grid
employed in this study are shown in Fig. 9. Computations
were performed for this configuration at M, =2 and «=4
deg. Figure 10 shows results of cross-flow streamlines, surface
pressures, pressure contours, and cross-flow velocity vectors
at an axial station where the fuselage, wing, canard wake, and
nacelle are all presented. The nodal singularity in pressure
contour present at lower wing-body junction regions cor-
responds to a saddle singularity of cross-flow streamlines, as
shown in Fig. 10. Note the pressure match along the canard
wake cut. The upper and lower center plane pressure contours
at M, =2.0 and a=4.0 deg are shown in Fig. 11, The bow
shock, canopy shock, nacelle shock, and expansion wave are
all nicely presented in this figure.

Case 3

Figures 12-16 give the geometry, the gridding, and the cor-
responding flowficld solutions of the isolated shuttle orbiter at
M. =14, a=0, and —1.94 deg. The chordwise pressures on
the upper surface are shown in Fig. 13, and they compare very
well with the experimental data. Figure 14 shows the cir-
cumferential pressure distribution for the orbiter at x= 1200
in~It is noted that the pressure along the vertical tail and the

=

Fig. 7 Pressure contour and grid of ATF with nacelle; M, =1.6,
a=5 deg at x=375 in.
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Fig. 8 Langley canard-wing fighter configuration.

Fig. 9 Computational geometry and surface gridding for Langley
fighter configuration.
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Fig. 10 Solution for Langley figher configuration, M, =2.0,
a=4.0, x=14.0; a) Streamlipe. b) Surface pressure coefficient. ¢)
Pressure contour. d) Velocity vector.

orbital maneuvering subsystem (OMS) pods are well
predicted.

Figure 15 shows the details of the orbiter geometry as
modeled in this study. The OMS pod is clearly seen in Fig. 15.
Figure 16 presents a series of isobar plots at different x loca-
tions. The onset of the OMS pod shock formation is clearly
seen. The OMS pod shock is formed around x = 1065 in., then
grows, and finally hits the upper wing surface at approxi-
mately x= 1090 in. The foot of the OMS pod shock moves fur-
ther away from the fuselage for increasing x along the orbiter.
The trace of the shock foot on the upper surface is also shown

J. AIRCRAFT

Fig. 11 Upper and lower centerplane pressure contour for Langley
fighter configuration; M,, =2.0, x=4.0.
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Fig. 12 Shuttle orbiter configuration.

in Fig. 16, and a comparison between the experimental shock
and the numerical prediction is made, It should be mentioned
that, since the present method is valid for supersonic flow with
an embedded subsonic region, it allows one to treat the actual
shuttle orbiter without having to make any modifications in
geometry.

Case 4

Figure 17 schematically illustrates the multibody interaction
problem of the shuttle orbiter in a mated configuration with
the external tank (ET) and solid rocket boosters (SRBs) pres-
ent. Figure 18 shows a perspective view of the complicated
multibody problem as modeled by this full-potential code. It is
found that the external tank has no effect on the upper wing
surface and only a small effect on the lower wing surface of
the shuttle orbiter. The high pressure present on the lower sur-
face of the orbiter wing is caused by the aft attach struts that
connect the orbiter to the external tank. The presence of the
aft attach struts is modeled by a wedge blockage effect and the
ET and SRBs are modeled by an elliptic cross-section exter-
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a=1.54. My =14, a=0 deg.
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nal tank. Figure 19 shows the gridding and- the isobar plot for
this multibody problem at an axial station where the wedge
blockage effect is present. The detached bow shock formed by
the blockage is clearly shown in this figure. Chordwise
pressure distribution of the orbiter lower surface at {=0.34,
with and without the blockage, is given in Fig. 20. The result
with the blockage effect included shows a very good com-
parison with the experimental data.

Conclusion

The main objective of this study is to illustrate the versatility
and usefulness of a recently developed nonlinear aerodynamic
prediction capability based on the full-potential equation.
Results are shown for a variety of complex configurations, in-
cluding a multibody problem. Comparison of results with
available experimental data are in good agreement. The fully
vectorized version of this code takes about 4 to § min of CPU
time for analysis of typical fighter-like configurations on the
CYBER 176 computer and about 25-30 s on the CRAY-XMP
for a marching plane grid of 70 x 25.

Acknowledgments

This work was partially supported by NASA Langley
Research Center under Contract No. NAS1-15820 and by

J. AIRCRAFT

Rockwell International Space Division under IDWA No.
M22178, Contract No. NAS9-14000.

References

'Shankar, V., Szema, K. Y., and Osher, S., “A Conservation
Type-Dependent Full Potential Method for the Treatment of Super-
sonic Flow with Embedded Subsonic Region,” AIAA Paper 83-1887,
July 1983.

2Szema, K. Y. and Shankar, V., “Nonlinear Computation of
Wing-Body-Vertical Tail-Wake Flows at Low Supersonic Speeds,"’
AIAA Paper 84-0427, Jan. 1984.

ISiclari, M. J., “The NCOREL Computer Program for 3D
Nonlinear Supersonic Potential Flow Computations,”” NASA CR-
3694, Aug. 1983.

4Shankar, V., “Implicit Treatment of the Unsteady Full Potential
Equation in Conservation Form,”” AIAA Paper 84-0262, Jan. 1984,

3Stack, S. H., Edwards, C. L. W., and Small, W. 1., “GEMPAK:
An Arbitrary Aircraft Geometry Generator,”” NASA TP-1022, Dec.
1977.

$Tice, S. E., Zolon, 1. L., and Repic, R. A., “SVCDS—An Evolu-
tionary CDS for Preliminary Space Vehicle Design, Analysis and
Simulation,”” AIAA Paper 84-2393, Oct. 1984.



| AIAA-85-1703

AN EULER SOLVER FOR THREE-DIMENSIONAL
SUPERSONIC FLOWS WITH SUBSONIC |
POCKETS

S.R. CHAKRAVARTHY and K.Y. SZEMA,

ROCKWELL INTERNATIONAL SCIENCE CENTER,
THOUSAND OAKS, CA

AIAA 18th Fluid Dynamics and
Plasmadynamics and Lasers Conference
July 16-18, 1985 / Cincinnati, Ohio

For permission to copy or republish, contact the American institute of Aeronautics and Astronautics
1633 Broadway, New York, NY 10019




AN EULER SOLVER FOR THREE-DIMENSIONAL
SUPERSONIC FLOWS WITH SUBSONIC POCKETS

Sukumar R. Chakravarthy* and Kuo-Yen Szema®
Rockwell International Science Center, Thousand Oaks, California

Abstract

A new finite-difference scheme has been developed to
efficiently solve the Euler equations for three-dimensional
inviscid supersonic flows with subsonic pockets. The tech-
nique utilizes planar Gauss-Seidel relaxation in the march-
ing direction and approximate factorization in the cross-
flow plane. It is a unified formulation based on the unsteady
Euler equations: an ‘infinitely large’ (‘infinitely small’ re-
ciprocal of) time step is used in parts of the flow-field
where the component of velocity in the marching direction
is supersonic—here the Gauss-Seidel sweeps are restricted
to the forward direction only and the procedure reduces to
simple space-marching; a finite time step is used in parts of
the flow-field where the marching component of velocity is
subsonic—here backward and forward Gauss-Seidel sweeps
are employed to allow for upstream and downstream prop-
agation of signals, and a time-asymptotic steady state is
obtained. The discretization formulae are based on finite-
volume implementations of high accuracy (up to third or-
der) Total Variation Diminishing formuilations. The fully
general coordinate treatment used permits the use of ar-
bitrary marching fronts (rather than just planes perpen-
dicular to an axis, spherical fronts, etc.). Results are pre-
sented for an analytically defined forbody, a twisted-cone
inlet spike, a realistic fighter configuration, and the Space
Shuttle.

1.0 Introduction

For fully supersonic flows, an efficient strategy for ob-
taining numerical solutions is to employ space-marching
techniques. Realistic high speed flight vehicle configura-
tions often give rise to subsonic pockets even though they fly
at supersonic speeds. For such predominantly supersonic
flows, a hybrid approach is suitable: a space marching tech-
nique for the supersonic parts and a relaxation technique for
the subsonic parts. Such a hybrid approach has been devel-
oped for potential flows by Shankar, Szema et al!+33, For
the Euler equations, however, the hybridization is conven-
tionally achieved by coupling separate space-marching and
time-marching codes, each with disparate grid systems, etc.
Here, we present a unified approach for efficiently solving
the Euler equations for three-dimensional supersonic flows
with subsonic pockets. The aim is to develop an Euler
solver as versatile as the potential flow solvers’*2 in treat-
ing complex and realistic aircraft, space shuttle, and other
types of flight vehicle configurations. By solving the Euler
equations, however, we hope to be able to compute a wider
range of flows with stronger shocks, rotational slip streams,
etc. which void the irrotationality assumptions built into
the potential flow simulations.

* Member Technical Staff

Computational Fluid Dynamics Department
Member, ATAA
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The new approach utilizes finite-volume implementa-
tions of high accuracy (up to third order) Total Variation
Diminishing (TVD) discretizations and are thus expected
to be more accurate and reliable than other Euler space-
marching and time-marching techniques based on central
difference approximations. In contrast to these latter meth-
ods, there are no parameters in our approach for fine-tuning
numerical dissipation for every case. Numerical oscillations
are, for the most part, eliminated by using TVD scheme
based discretizations.

The new approach is based on the unsteady Euler
equations. However, in the supersonic parts of the flow
(where the velocity component normal to the cross-flow
plane that identifies the local marching direction is super-
sonic) an ‘infinitely large’ time step (which implies an ‘in-
finitely small’ reciprocal of time step) is employed. This
makes the transient terms of the discretized unsteady equa-
tions vanish. In subsonic parts of the flow, a finite time step
is employed and tlie steady-state is approached as a time-
asymptote.

The new solution approach is based on a planar Gauss-
Seidel relaxation method coupled to approximate factor-
ization in the cross-flow plane. In supersonic parts of the
flow-field, the Gauss-Seidel method is restricted to forward
sweeps and thus the solution procedure reduces to a sim-
ple marching technique. In subsonic parts, both forward
and backward sweeps are used along with the finite time
steps mentioned earlier. Stability of such an approach is
guaranteed by the diagonal dominance resulting from us-
ing TVD discretizations in the marching direction in the
transonic parts of the flow-field. This is a crucial difference
between conventional hybrid Euler solvers and the new ap-
proach. In conventional approaches, space-marching and
time-marching techniques must be applied in overlapping
regions for stability. In the new unified approach, there is
no need for overlap.

In the following sections, we describe the new method
in detail. We first cast the equations in finite-volume dis-
crete conservation law form. Then we explain how the vol-
ume and the metrics are evaluated. This essentially com-
pletes the treatment of geometry and we proceed next to
the details of the algorithm. TVD discretizations are ex-
plained first. Then the marching/relaxation procedure is
described. This covers the use of approximate factorization
in the cross-flow plane, the reduction of the Gauss-Seidel
procedure to a marching procedure in supersonic zones, etc.
The boundary point treatment is also explained briefly.

In the results section, calculations for an analytically
defined forebody are presented first to illustrate some fea-
tures of the new algorithm. Results for many conical flow
cases have also been obtained but are presented elsewhere?.
Next, results for a twisted-cone inlet spike are shown. Then,



results are presented for a realistic fighter aircraft configu-
ration with fuselage, canopy, wing, nacelle and vertical tail.
Finally, we conclude by presenting results for the Space
Shuttle Orbiter configuration.

2.0_ Finite-Volume F ]

In this section, we describe the finite-volume frame-
work chosen to implement the algorithm. We start by in-
troducing the semi-discrete conservation law form and asso-
ciating it with a finite-volume formulation of the geometry.
Then we provide detailed formulae for the evaluation of the
cell volume and cell-face normals.

i-diseret . W

We begin with the conservation law form of the un-
steady Euler equations in the Cartesian coordinates z, y, 2,
and time ¢

Qt+Ez+Fy+Gs=0 (2.16)

where the dependent variable vector Q, and the fluxes E,
F, and G are given by

ey [le+n
; (%7 P
Q=|pu |,E=]|p?+p |,
U \ pru
pw puu
(e+ p)u\ ((e + p)w\ (2.19)
pv pw
F= puY ,G= puw
M +p pYw
pwy \ puw3 +p J

In the above, pressure is p, density is p, Cartesian z,y,2
velocity components are u,v, w, and the total energy per
unit volume is ¢ computed from e = p/(v—1)+p(u? + 2 +
w?)/2.
Assuming a time invariant grid, under the transforma-
tion of coordinates implied by
r=t,
E=E(z,0,2), n=nlzy2), =z ¥:2),
Eq. 2.1 can be recast into the conservation form given by

Q,+E¢+Fy+G, =0 , (2.30)

(2.2)

where
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where, in turn, J is the Jacobian of the transformation
J= a(fl L] f)/a(zl Y, z) (2.36)

Associating the subscripts j, k,! with the £,n, ¢ direc-
tions, a numerical approximation to Eq. 2.3a may be ex-
pressed in the semi-discrete conservation law form given by
(Qs)e + (Bisrjama = Bizijans)

+ (Finsrjag = Finoayan)
+ (Gskas1/a — Gixi-1/2) =0

(2.4)

where I?, ﬁ, G are numerical or representative fluxes at the
bounding sides of the cell for which discrete conservation is
considered, and Qj 1 is the representative conserved quan-
tity (the numerical approximation to Q) considered con-
veniently to be the centroidal or cell-average value. The
half-integer subscripts denote cell sides and the integer sub-
scripts the cell itself or its centroid. In Fig. 1, the eight
vertices of one computational hexahedral cell are identified
by numerals 1 through 8. These must be associated with
the appropriate j, k, [ triplets:
1=j5-1/2,k-1/2,1-1/2
2=j+1/2,k—1/2,1-1)2
3=j-1/2,k+1/2,1-1/2
4=j-1/2,k=1/2,1+1/2
S5=37+1/2,k+1/2,1-1/2
6=5—-1/2,k+1/2,1+1/2
T=5+1/2,k=-1/2,1+1/2
8=j+1/2,k+1/2,1+1/2
In the following, subscripts easily understood by implica-
tion will be dropped for brevity.

The semi-discrete conservation law given by Eq. 2.4
may be regarded as representing a finite-volume discretiza-
tion if the following associations are made:

(2.5)

Fig. 1 Computational finite-volume cell



Qina = QVirt

where V is the volume of the cell under consideration;

neys{(k-1/2,1-1/2),(k +1/2,1-1/2),
(k+1/2,0+1/2), (k= 1/2,1+1/2)}i51/2

(%9*)uarn =

neya{(7 - 1/2,1-1/2),(j = 1/2,1+1/2),
G+ 1/2,1+1/2),(G + /2,1 =1/ Dlazryz

(55 =

n:.’.l{(j = llzvk - 1/2)1(j + llzvk - 1/2)1 .
(G+1/2,k+1/2),(5 - 1/2,k + 1/2)):11/3( .
2.6

(2.6a)

In the above, n. 4 5 are the z,y,z components of the repre-
sentative normals to the surface formed by the four points
a,b,c,d implied in ns y ,(a, 8, ¢,d). Four points do not nec-
essarily lie in one plane and therefore the components n. g 4
refer to representative values for an equivalent single plane.

The evaluation of the volume and metrics (cell-face
normals) are now presented in the following subsections.
The evaluation of the representative flux is presented in
the next major section.

2.2 Computation of Cell Volume

First, the volume of a tetrahedron denoted by its ver-
tices a,b,c¢,d is evaluated from

Vtt(a,be,d) =
|Zalys(2e — 2a) = ye(2o — 2a) + ya(2s — )]
~zp{ya(2ze — 24) — Ye(2a — 24) + ya(2a - 2¢)|
+Zc[Va(2s — 24) — yo(2a ~ 2a) + ya(za — 2]
—z4[ya(2s — 2c) — y5(2a — 2c) + ye(za — 2)]1/6.0

(2.7)

Then, referring to Fig. 1 again, the volume of the hexahe-
dron is computed as a sum of the six individual tetrahedra
that constitute it.

V= V"‘(l,2,5,7) + V'”(l!',l 5,8)

+V*et(1,3,5,8) + V*(1,3,8,6)
+V*et(1,7,8,6) + Vi (1,4,7,6)

(2.8)

It is of interest to note that such a formula will result in the
proper evaluation of volume even when some of the faces of
the hexahedron collapse to a line or a point.

2.3 Computation of Cell-Face Metrics (Normals)

In Eq. 2.6b, cell-face normals were introduced. Each
cell face is identified by four vertices not all of which are
necessarily on a single plane (three points being sufficient
for defining a plane). In our approach, we allow for this
and also for some of the faces to collapse to an edge or even
a point. Computationally, we will always identify a face
by its four vertices a,b, ¢, d expressed in the j, k, ! subscript

system. Physically, some or all of the four vertices may lie
at the same z,y, z location.

The cell-face normals are evaluated as

nz(a, b, ¢,d) = (dysadzer — dycbdzea)/2
+ (dydedzad — dYaddzac)/2
ny(a,b,c,d) = (dzsadzes — d2cbdzsa)/2

+ (dz4cd%ad - dZaadzac)/2 (2.99)
n,(a,b,¢,d) = (dzpadycs — dZcsdYsa)/2
+ (dzgcdYad — dZaddyac)/2
where
dsiz =9~ (2.9b)

where, in turn, & corresponds to z or y or z, and 1 and 2
correspond to a or b or ¢ or d. The first term in each of
the definitions is respectively one half of the z, y, or z com-
ponent of the cross product of the vector from a to b with
the vector from b to ¢. The second term in each definition
is correspondingly one half of the z, y, or z component of
the cross product of the vector from ¢ to d with the vector
from d to a. A cross product of two vectors lies along the
direction of the normal to the two vectors. In the present
situation, the two vectors are connected. Therefore, such a
normal also defines the direction of the normal to the plane
containing the two vectors. One half of the cross product of
connected vectors also has a magnitude equal to the area
of the three dimensional triangular planar shape defined
by the two vectors. Thus, while &;y.5/J\0z.9.5/J,$2.y.5/J
define the z,y, z.components of the normals (not unit nor-
mals) to the local tangent plane to the constant £,7,¢ sur-
faces respectively, the associated quantities (nzy,s)jk.1 de-
fine the components of the normals to the local constant
7, k,1 planes,

3.0 TVD Discretizati

In the last section, the numerical or representative
fluxes E, F,G were introduced. These fluxes are so named
because they approximate the real fluxes E, F,G to the re-
quired order of accuracy. The actual fluxes appearing in
the governing partial differential equations depend on the
metrics £2.4.:/J,Nz.y.s/J; $2.y.2/J and correspondingly, we
allow the numerical fluxes to depend on the numerical met-
rics (the cell-face normals). In the last section we did point
out the link between the metrics and the components of the

cell-normals, but the numerical flux was not defined there.
The latter task is the subject of this section.

We employ an upwind-biased scheme in our approach -
in such a fashion as to essentially eliminate numerical or
spurious (unphysical) oscillations while, at the same time,
achieving high accuracy. In order to describe this type
of discretization, we first mention the underlying upwind
scheme used in terms of the corresponding approximate
Riemann Solver, and then expand upon how high accu-
racy and the TVD property are built in. More details on
these and related topics may be found in Refs. 5 and 6 and
in references cited therein.



3.1 Roe’s Approximate Riemann Solver

The Riemann Solver is a mechanism to divide the flux
difference between neighboring states (between Q,, and
Qm+1 for e.g.) into component parts associated with each
wave field. These can in turn be divided into those that
correspond to positive and negative wave speeds. When we
compute the numerical flux at the cell face at m+1/2 using
various combinations of fluxes and positive and negative
flux differences, in the finite-volume formulation, we will
only use the cell-face normals defined at m+ 1/2 in all the
terms contributing to that representative flux. The actual
fluxes E, F, G, when evaluated with the metrics equated to
cell-face normals, can all be written in the same functional
form given by

E,F)G=I(anz’nl)"l)=I(Q|N) (3-1)
where the appropriate values of n;,ny,n, are used and N
denotes the set of those normals. Using such notation, it is
possible to present the necessary algebra very concisely.

Let us first denote the Jacobian matrix of the flux f
with respect to the dependent variables @ by 8f/3Q. This
Jacobian can also be called the coefficient matrix. Let us
denote the eigenvalues of the coefficient matrix by A* and
the corresponding left and right eigenvectors by £ and r¥,
respectively. The matrix formed by the left eigenvectors as
its rows is then called the left eigenvector matrix L and the
matrix of right eigenvectors comprising right eigenvectors
as its columns is R. For our purposes, we choose an or-
thonormal set of left and right eigenvectors which implies
that LR = RL = I, the identity matrix. In the above, the
superscript { has been used to denote the association of the
i-th eigenvalue with its corresponding eigenvector. Each
eigenvalue is also associated with its own wave field.

The underlying upwind scheme is based upon Roe’s ap-
proximate Riemann solver’. In this approach, cell interface
values of density, velocities, and enthalpy (A = ~p/((7 -
1)p) + (u? + v? + w?)/2) are computed using a special av-
eraging procedure:

Pm+1/Pm+1 + Pm/Pm
VPmir +/Pm
(u’ Y, w)m+l m + (“s v, w)mm
© P+ Pm
hm+1y/Pmrt + hm/Pm
VPmy1 +/Pm
(32)

where m = j or k or I. From the above, the speed of sound
can be computed from

Pm+1/2 =

(ul v, w)m+l/2 =

hnyrpa =

emprja = \[{hmerja = (3 + 07 +03)/2) (1~ 1) (3.3)

Knowing (4, v, W, €)m+1/3, the eigenvalues and orthonormal
set of left and right eigenvectors corresponding to a cell face
can be computed. These may be denoted by

Mat1/2 = Mns1/2(@m+1/2: Noms1/2),
l:n+l/2 = l'm+|/z(Qm+x/:. Neviya), (3.4)

Trt1/2 = Tins1/2(@m+1/2: Nms1/2).

At each cell face, the positive and negative projections
of the eigenvalues may be defined by
_ (M2 £ Pmiipal) i=1,.5

2 ’ )

In order to help Roe’s Riemann Solver avoid expansion
shocks, only at sonic rarefactions (A*(@m, Nm+1/2) <0 <
A (Qme1, Nnt1 /2)), the corresponding positive and nega-
tive projections are redefined as

Aix (3.5)

A"* —_ Al’t
“m+1/2 T “m+1/2
+ ('\‘(Qm+l ’ Nm+1/2) - A.(Qm, Nm+l/2)) (3.6)

4

For the sake of completeness, detailed formulae for the
eigenvalues and the eigenvector matrices are now presented.
Defining the contravariant velocity by

U =nu+ngv+nuw , (3.7)
the eigenvalues are given by
M =U-c/n2+nd+n2
a4 =T (3.8)
A® =T +c\/n? +n3 +n?
Defining
ﬁ:.y.:'= ﬂz,y,:/ n§ + n; + nz (3_9)
and
¥ = (¥ + % +uw?)/2 (3.10)

the left and the right eigenvector matrices are given in Ta-
ble 3.1 and Table 3.2 respectively.

3.2 High-Accuracy TVD Schemes

We can construct upwind-bjased schemes of varying
accuracies using the basic ingredients given in the last sub-
section. Here, we present a family of schemes based on
the preprocessing approach®. Let us now define some con-
venient variables as an intermediate step before defining
the numerical flux corresponding to a high-accuracy TVD
scheme. First, we define a parameters which are a measure
of the change in dependent variables across the correspond-
ing wave family and therefore are a measure of the slope
between neighboring states. In the following, the super-
script § corresponds, as usual, to the i-th eigenvalue and
i-th eigenvector. The subscripts 1, 2, and 3 are just la-
bels to differentiate between the three different types of a
parameters.

":.mn/z = t';n+l/2(Qm = Qm-1),
°§.m+1/2 = 4u+|/z(Qm+1 - Qm) (3.11)

ag.m+l/2 = ‘fnﬂ/z(QmH = Qm+1)-
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Table 3.1 The left eigenvector matrix L

Next, we define the slope-limited values given by
""l

@) my1)3 = minmod|a$ ,",H/,,ba, ,,H,,/,],

"2.m+l/2 = mmmod[a,'m“/,, ba,',,,.,.llg], (3.12)
o~ . . . *
A3.m+1/3 = mmmod[a;,,,,H/,, b“:'a.m“/z]n
a?;.m+1/2 = minmod[a!,'m“/,,ba‘,'m“/,].

In the above, the compression parameter b is to be taken as

the following function of the accuracy parameter ¢ which

is explained shortly.

_3-9¢
1-¢

The “minmod™ slope-limiter operator is

b (3.13)

minmod|z, y] = sign(z) max[0, min{|z|, ysign(z)}] (3.14)

In Eq. 2.4, we introduced numerical fluxes I? P G.
Based on the concise notation of using f to represent ei-
ther E or F or G). let us use f to denote the numerical
fluxes E or F or G. We can then write down 2 family of
TVD schemes as follows in terms of the previously defined
a parameters (with the subscript m + 1/2 dropped from
these for convenience):

fm+l/2 = hm+x/2

1+¢ 1—¢=i\ ., ;
'*‘Z: ( 2 &+ n "n) ‘\::4.1/2':'-4-1/2
1 ]
1+ ¢ - . i
- E ( a3 + 3 ‘?3) ‘\:n+1/:':n+l/z
(3.15)

The first term on the right hand side of Eq. 3.15 defines
a first-order numerical flux and is constructed from

hmirya =5 [I(Qm+n Nens173) + 1(Qm, m+1/2)]
3 [}: '\m+1/2 m+1/n) °;'§n+1/n]
= f(Q@m) Nm+1/2) + Z M 1/2%8 e

= f(Qm+1,Nmy1y2) = ZAm-#-l/Za?r:.n-’-l/ﬁ
' (3.16)

The remaining terms on the right hand side of Eq. 3.15

~ define correction terms that upgrade the accuracy. For use

in the next subsection, we define

df:ntﬁ-l/? = A:f+l/2a;.m+l/2r:n+l/2 (3.17)
It is interesting to note that in all the above formulae used
to define the numerical flux at m + 1/2, the eigenvectors
and eigenvalues are only necessary at the corresponding
cell interface. Therefore, the only geometry information
used corresponds to the cell-face normals at m + 1/2. The
solution variables Q are sampled between the centroidal .
points m—1,m,m+1,m+2 when the various a parameters
are defined.

The parameter ¢ defines schemes of varying accuracy.

The notations &° and & have been used to define slope-
limited values of the a parameters. If we replace these by
their unlimited values, we obtain schemes whose truncation
error in one-dimensional steady-state problems on uniform
grids is given by

TE = - (¢ )(A )’——z?

(3.18)
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Table 3.2 The right eigenvector matrix R

Here, the truncation error refers to the difference between
the centroidal value of the numerical solution and the av-
erage value of the exact solution in that cell. The choice
of ¢ = 1/3 results in a TVD scheme based on an under-
lying third-order scheme. The choice of ¢ = —1 results
in a TVD scheme based on the fully upwind second-order
accurate formulation. Fromm’s scheme arises when ¢ = 0.

3.3 TVD Schemes and Diagonal Dominance

In the next section, a procedure is presented to solve
the finite difference equations resulting from the TVD dis-
cretization of the space differencing terms. In supersonic
zopes, the method reduces to a simple marching scheme,
while in subsonic zones it becomes a relaxation approach
and both forward and backward sweeps are employed along
the marching direction. In order for such a relaxation ap-
proach to be stable, a sufficient condition is the diagonal
dominance of the underlying finite difference scheme. This
diagonal dominance can be shown to exist for TVD dis-
cretizations. For more details, the reader is referred to
Ref. 8.

4.0 The Solution Procedure
We begin this section by considering an implicit time
discretization coupled with the TVD space discretization

discussed earlier in terms of the corresponding numerical
flux terms.

w + (Ej-n/z - j—-x/:)wl
+ (Fk+l/2 -?l:--l/z)”'H

+ (6'“1/3 —61-112)"H =0

(4.1)

Here, n is the index in time and At is the time step. In what
follows, we will consider the linearization of the above non-
linear set of finite difference equations. Then we will sim-
plify the algebraic solution procedure by approximately fac-
torizing the implicit operator in the cross-fow plane (which
is a plane in only computational coordinates—constant J
plane). The marching direction is along 5. We will further

specialize the scheme for the two cases of supersonic and
subsonic velocity components in the marching direction.

4.1 Linearization
Let us linearize Eq. 4.1 about a known state @ = ¢°

using a Newton procedure to obtain a better approximation

q**! to Q™+, Here, s is a subiteration index. Defining
A'g=¢'t ¢
A:'E = EJ'H/G = Ej1pa
AF = i‘kﬂ/: —Fiop2
a6 = Ev':+n/2 =Gz

(4.2)

we can describe the Newton procedure by
A -g-(A-E+A F+a 5)] Alg=
Ar 8g k !

[2(0" - @7+ 8,B(6") + 81Fa) + 8.8
(4.3)
We next simplify the left hand side by defining an ap-
proximation to the true linearization. Towards this goal,
we consider only a first-order accurate scheme (based on
the first-order numerical flux A) for the left hand side while
we include the full high-accuracy scheme on the right hand
side. Even so0, when the subiterations converge, the right
band side is satisfied to the desired degree. Next we assume
that the eigenvalues and eigenvectors are not functions of
g. Finally, we observe that

E hmttfa = hm—ypa =

m=yk,l

Z Zd[itl/?*’ 2 z:d::ﬂ/z

m=ykl ¢ m=skl §

(4.4)

because, in expanding Eq. 4.4 using Eq. 3.16, we find that

E [(nS)M+l/2 - (nz)m—l/gl =0

m=jkl

z [(ny)ms1/2 — (ny)m—1/2l =0

m=jyk.l

(4.5)



Z [(ns)msrs2 = (ns)m-1/3] =

m=jykd

when the cell-face pormals are evaluated using the formulae
given in Eq. 2.9. Using the above, Eq. 4.3 is simplified to

v

arde
+AT_ 5(8%95 = B°gj1) + A7y 15(8%551 — A%;)
+B} 12(A%0n = B°qu-1) + By, (8°ks1 ~ A%G)
+OL 4 15(8°q = A%qi-1) + G, 13 (8% 141 — %)
=Right Hand Side of Eq. 4.3

(4.6)
where N :
Ajtl/2= J'tllﬁAjtn/zbJ'tllﬁ
Bkttllﬁ = R"*I/‘lAfﬂ/zI’*ﬂ/? (A
Cu».x/: thllﬂAlﬂ/zz“tl/2
Here,
* = (A +]A))/2 (4.8)

in which A is the diagonal matrix whose diagonal elements
are A' and [A| is the diagonal matrix whose diagonal ele-
ments are |A%].

.2 Planar Gauss-Seide] Relaxati

Even after the many simplifications leading to Eq. 4.6,
it is obvious that more algebraic simplification is needed be-
fore a computationally feasible and efficient solution proce-
dure is obtained. This is because Eq. 4.6 signifies a system
of equations which links every point j, k, ! with its six neigh-
bors +1,5—-1,k+1,k—-1,14+1,I—1 in such a fashion that
the left hand side of Eq. 4.6, when considered for all grid
points, is a huge (even though sparse) matrix whose band-
width is also very large. Of course, for supersonic flows,
a fully upwind difference approximation arises in the 5 di-
rection and the dimensionality is reduced because the left
hand side does not link j with 5 + 1. However, with our

expressed aim of developing a method for subsonic pockets

also, it is necessary to consider the case when j is linked
with both its neighbors § —1 and j+ 1. In such a case, a di-
rect Gaussian elimination procedure for the matrix system
of equations would be unacceptably expensive. Therefore,
instead of a direct elimination procedure, we seek to ob-
tain an efficient relaxation solution to Eq. 4.6. We choose
a planar Gauss-Seide]l procedure by retaining all terms of
the left band side except the off-diagonal terms in j (those
terms that multiply A®¢;4+,). That such a procedure will
be stable for TVD discretisations was discussed in Section
3.3 and in the references cited therein.

The planar Gauss-Seidel procedure can be written as’
[—+ A+ +-!-A' 1A%q;
V =112 T 7 45+11218 %
+ ‘73 NI (-0 . O PRy

1.
+ 7 Beia(8% ks - A%x)
(4.9)

1
+ Vcltx/z(A'QI -A'q)

1
+ 7Chp8tan ~ o)
= %[Right Hand Side of Eq. 4.3]

Denoting

1
v ,-1/2"' A;+1/2 , (4.10)

~ I
=57
we can rewrite Eq. 4.9 as
1+ 138}, .8 ;o
+VA { k—1/38%-1/3F Oy 1280412
+Ct1/2A‘—l/3 + C‘:_lle[+|/3}] A‘q

A-![Right Hand Side of Eq. 4.3] .

<|=

(4.11)
Of course, when the relaxation cycles denoted by super-
script s converge to the desired extent, A’q = 0, and the
full accurate formulae of the right hand side will be satisfied
to a corresponding degree.

4.3 Approximate Factorization in the Plane

While Eq. 4.11 defines an algebraic set of equations
whose dimensionality is one order less than that of Eq. 4.9,
it is still too huge to be tackled by an elimination algorithm.
Therefore, we will now further reduce the dimensionality by
approximately factorizing the left hand side of Eq. 4.11 to
result in

[+
[1+

l k-x/zAk—l/3 + B;+1/2Ak+l/2}]

l-x/zA'—l/2 + Cl+1/:A‘+l/3}]

A~'[Right Hand Side of Eq. 4.3]

I'-' <|... <|.—

(4.12)
The actual sequence of steps to solve Eq. 4.12 can be chosen
g0 that A—! need not actually computed and only Ais
needed. For this purpose, we solve, in order, the equations

[A v {Bk-n/aAk-llﬁ + Bk+1/2A"+l/7}]

. (4.130)
= V[Right Hand Side of Eq. 4.3
and
A+ {ct, .a Cr, A a*
+ 7{ 1—17201-1/3 + Gy pn 1+1/2} q (4.136)
= 26
with § being a temporary storage variable.

Let us summarize the solution procedure developed in
Eq. 4.13 for just one constant j plane. Equation 4.13a
must be solved for all k-varying lines (for all ). Then
Eq. 4.13b must be solved for all l-varying lines (for all values



of k). However, each k-varying or I-varying line is associ-
ated with only a one-dimensional block-tridiagonal system
of algebraic equations whose block matrices are 5x 5. These
two steps only constitute one cycle of the Gauss-Seide] it-
erations and that too for only one constant j plane. The
planar Gauss-Seidel procedure requires that one constant j
plane is updated at a time. When the neighboring 5 plane
is updated next, the latest available values of the update
variables g are used in the right and left hand sides. The 5
sweep strategy will be specialized for supersonic and sub-
sonic flow regions in what follows.

4.4 Programming Notes

We store grid information at two planes (grid-planes 2
and 3) which describe the j boundaries (5 ~ 1/2,7 + 1/2)
of one plane of cells. Let the centroids of these cells be
denoted as solution-plane 3. Array storage is provided for
dependent variable planes (solution-planes) 1,2,3,4,5. As
the solution is marched, the contents of the grid-plane and
solution-plane arrays are updated by replacing them with
neighboring values or by the planar Gauss-Seidel algorithm.

Let us consider the very first marching sweep now. We
begin by initializing the two grid planes and the dependent
variables at solution-planes 1 and 2. We are interested in
updating the solution at plane 3. We first set the solution
at planes 3, 4 and 5 to be equal to the values at solution-
plane 3. After one or more subiterations for solution-plane
3, we shift our attention to the next j-plane. Grid-plane 2
is replaced with the contents of grid-plane 3. Grid-plane 3
nodal values are stored on auxiliary storage for later use.
New values for grid-plane 3 are generated by grid genera-
tion procedures or read in from auxiliary storage initialized
previously. Similarly, solution-plane 3 is saved on auxiliary
storage for subsequent processing. Solution-plane 1 is re-
placed by contents of solution-plane 2, and plane 2 is then
replaced by contents of plane 3. Solution-planes 4 and §
are set to the values at plane 3 and the marching proceeds.

If more than one subiteration is to be performed in
the first marching sweep, the grid information is not up-
dated for the subsequent subiterations. Solution-planes 4
and § are reset to values at solution-plane 3 after the pre-
vious subiteration and the next subiteration is processed.
Solution-plane 3 values are not set to solution-plane 2 val-
ues for the second and subsequent subiterations.

For fully supersonic flows, a fully-upwind, not-flux-
limited differencing scheme is used. Thus, the values set for
solution-planes 4 and 5 are actually not used at all. For-
ward marching is enough. Even first-order upwind scheme
in the j-direction and one subiteration per marching plane
are also often enough. A small value is input for the recipro-
cal of time step. Accuracy of approximate factorization for
any time step size is maintained due to reasonable marching
step size (distance between j grid planes).

Subsonic regions could develop as a result of gradual
compression (for e.g., around canopies) or abrupt transition
through a shock wave (for e.g., in front of a blunt nosed ob-
ject in an oncoming supersonic flow). In such regions, a
. larger value is chosen for the reciprocal of time step. The
solution is marched forward using one or more (usually a

maximum of two) subiterations by conforming to the pro-
cedure outlined above for the first marching sweep. Then, a
backward marching sweep (or even another forward marck-
ing sweep) is performed. For all sweeps (forward or back-
ward) after the first, solution planes are filled with previous
sweep solution values before updating using subiterations.
Shifted replacements of solution-plane values of dependent
variables are not used. For subsonic regions (subsonic pock-
ets in supersonic flow), a TVD formulation of the desired
accuracy is used enabling even strong shocks to be captured
routinely. '

For very small pockets of subsonic flow caused by grad-
val compression, one forward sweep followed by one reverse
sweep is enough. Even the reverse sweep is usually redun-
dant in this case. For larger subsonic zones, a few (tens) of
sweeps usually suffice. Residues are monitored for conver-
gence.

5.0 Boundary Point Treatment

Only an outline of the boundary point treatment will
be presented here due to lack of space. The b-undary
method used is fully compatible with the interior point dif-
ferencing. It is based on considering a Riemann Initial and
Boundary Value Problem at the boundary to construct the
boundary point discretization. In this, it is similar in spirit
to the correspondence between interior point discretization
and the Riemann Initial Value Problem. The implemen-
tation is specifically tailored to approximately factored im-
plicit schemes. Linear boundary conditions (such as surface
tangency) are exactly satisfied after every marching step.
Corner points are also properly treated. More details on the
new treatment used here including theoretical background
and implementation details for explicit and other implicit
methods are available in Ref. 9. A brief description of the
type of boundary condition techniques used here can also be
found in Ref. 5. Another approach to boundary condition
procedures which can be applied to implicit schemes for the
Euler equations is presented in Ref. 10, The importance
of proper and accurate boundary condition procedures is
demonstrated in Ref. 4.

6.0 COMPUTATIONAL EXAMPLES

The preceding sections have described an Euler March-
ing Technique for Accurate Computations (EMTAC) and
we now present many computational results obtained using
the EMTAC code. The first set of results are for an an-
alytically defined forebody geometry and these results are
compared with experimental data. The next case consid-
ered is the supersonic flow over a twisted-cone spike of a hy- °
pothetical aircraft inlet and the results are compared with
numerical results obtained using a full potential marching
code. The third set of results are for a realistic fighter con-
figuration and once again most of the comparisons for this
case are with the full potential marching code. The last set
of results are for a Shuttle Orbiter configuration and the
numerical results are compared with experimental data for
this case.



6.1 Analytic Forebody

Figure 2a shows the developed cross-section of a fore-
body geometry reported in Ref. 11. The surface pressure
distributions in the axial direction on the upper (§ = 0°,
leeward side) and lower (§ = 180°, windward side) planes
of symmetry at My = 2.5,a = 0° are given in Fig. 2b.
The grid and circumferential pressure distribution on the
body surface at z/¢ = 0.22 and z/¢ = 0.34 for the same
free-stream cornditions are presented in Figs. 2¢c and 2d re-
spectively. Figure 2e shows the circumferential pressure
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Fig. 2b Axial pressure distribution

distribution on the same geometry for My, = 1.7,a = —5°
at z/¢ = 0.278. It is noted that a small subsonic pocket
develops, for this second case, on the lee side and two
global marching sweeps are enough for the present numeri-
cal method to give a very good converged solution. The ex-
perimental datal! are also presented in these figures. The
comparisons show that the present numerical predictions
are in excellent agreement with experimental data.
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6.2 Twisted-Cone Inlet Spike

Figure 3a presents the geometry of a twisted-cone in-
let spike. At M = 2.5, the pressure contours at various z
locations are given in Fig. 3b. The circumferential pressure
at z = 40 is compared with results obtained using a full
potential solver (SIMP, described in Refs. 1-3) in Fig. 3c.
As expected, the full potential method predicts a higher
pressure on the upper surface where a strong nonisentropic
shock is formed for the case considered. This shows the
importance of using an Euler solver rather than a full po-
tential solver for supersonic flow computations which must
capture strong shock waves.

COWwL LiP

OBLIQUE
SHOCK

6.3 Realistic Fighter Configuration

Figure 4a shows the geometry and surface gridding of a
realistic fighter-type configuration which includes a nacelle
and a vertical tail. To illustrate the important features of
the present analysis method, results have been obtained
for the free-stream condition My = 1.6,a = 4.94°. The
results are compared with those obtained using the SIMP
full potential solver. Figures 4b and 4c present the surface
pressure at the upper and lower symmetry plane. The re-
sults show the excellent agreement between the predictions
of these two codes. Circumferential pressure distributions
and pressure contours at two different z locations which in-
clude the nacell, vertical-tail, wake and wing are presented
in Figs. 4d-e. The comparison shows very good agreement
except at the lower surface of the wing in the vicinity of the
wake region. A higher pressure is predicted by the Euler
(EMTAC) code. 1t is also noted that the wake treatment
in both methods provides the correct zero pressure jump
across the wake.

Table 6.1 shows the comparison of ‘overall forces in
terms of Cr,Cp and C./Cp. The drag calculation in-
cludes skin friction drag estimated using a boundary layer
technique and an estimate of the base drag. Both the full
potential and Euler results agree very well with Rockwell
experimental data with the Euler results being closer to the
data. :
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OBLIQUE SHOCK-/
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SHOCK
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Fig. 3a Spiral inlet-cone geometry



Fig. 3b Pressure contours - evolution of
inlet compression cone shock pattern
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Fig. 3c Circumferential pressure distribution

Fig. 4a Geometry and surface grid for
realistic fighter-type configuration
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SIMP EMTAC DATA

L 0.30588 0.3017 0.303 —;ﬁ““é

Cp 0.032458 + 0.013 | 0.03433 +0.013 | 0.0475

{d03

)

= 0.045458 = 0.04733

CL/Cp 6.72 6.38 6.42

Table 6.1 Comparison of Potential, Euler and
and experimental data for Cr,Cp,CL/Cp

6.4 Space Shuttle Orbiter

Figures 5a-5g give the geometry, gridding and corre-
sponding flow-field solutions for an isolated Space Shuttle
Orbiter flying at Mo = 1.4,a = 0°. The EMTAC code
is applied to compute the flow field about the entire or-
biter, from nose to tail. Multiple (uni- or bi-directional 18
sweeps are used in the nose region to capture the detached
bow shock and the subsonic region behind it. After this
subsonic region transitions by expansion, over the shoul- 10
der region of the nose, into a supersonic flow-field, a simple
forward-marching technique is employed. Multiple relax- %
ation sweeps are also used in the canopy and OHMS pod
regions to compute the locally subsonic regions. ® EXPERIMENTAL DATA

The surface pressure distribution along the leeward - T 15T PASS THROUGH SUBSONIC ZONE
plane of symmetry in the nose region is presented in Fig. 7b.

At z = 170in., which is the beginning of the canopy, the
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embedded subsonic pocket is formed in the canopy region Alin}
and required three relaxation marching sweeps to develop Fig. 5b Surface pressure distribution
along upper symmetry plane
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Fig. S¢ Canopy region pressure contours for
z —y and z — y sectional cuts
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the solution. The results show that the present predic-
tion is in excellent agreement with data. Pressure contours
on the upper symmetry plane and on the marching plane
cross-sectional views are shown in Fig. 5¢c. The shock and
expansion waves induced by the canopy can be clearly seen
in this figure.

Figure 5d shows the details of the orbiter geometry in
the OMS pod region as modeled in this study. A detached
OMS pod shock and a large subsonic pocket are formed
in this region. Since the subsonic pocket is big and the
Mach number is almost tero near the root of the OMS pod,
a total of 30 relaxation marching sweeps (forward only)
are required to give a good, converged result. Figure Se
presents the pressure and Mach number contours as ob-
tained in this region. The cross-sectional pressure contours
at £ = 1080in. and z = 1128 in. are given in Fig. 5f. The
OMS pod shock is formed around z = 1050in., then grows
and finally hits the upper wing surface at z & 1095in.. The
chordwise pressure distributions on the upper surface of the
wing at several span stations are compared with experimen-
tal data in Fig. 5g. It is seen that the present calculation
agrees with the experimental data very well over the entire
upper surface including in the region where the OMS pod
shock interacts with the wing surface.

PRESSURE CONTOURS
320 , ,

284
-
248

212

176~

|
1130

140
1020

1090
X

1060

1160

Fig. 5d Computational surface geometry of Orbiter
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7.0 CONCLUDING REMARKS

A new computational procedure has been devised to
solve the Euler equations for three-dimensional supersonic
inviscid flows with subsonic pockets. The method is akin
to a simple marching procedure in portions of the flow field
where the componrent of velocity normal to the local march-
ing plane is supersonic. When this local velocity is subsonic
(in subsonic pockets for example), a relaxation approach is
used. The marching and relaxation strategies are both but
variations of a unified approach to the development of fi-
nite difference methods for this class of problems. This
approach is based on a planar Gauss-Seidel procedure cou-
pled with approximate factorization in the plane. Being
an expository paper, detailed formulae are presented to aid
the reader who would like to program the method indepen-
dently.
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It is of interest to note the following observations: The
method presented is not only applicable to supersonic flows
with subsonic pockets, but is also applicable to all com-
pressible inviscid flow regimes including entirely subsonic,
transonic (subsonic flow with supersonic pockets), and en-
tirely supersonic flows. By iterating in just one march-
ing plane, a computer program based on the method pre-
sented can be used to also solve problems that are two-
dimensional or that can be reduced to two dimensions.
Conical flows are examples of the latter. The same com-
puter program can also be used to solve three-dimensional
{and two-dimensional) unsteady flows. Thus, the unified
approach taken is really greater in scope and applicability
than what the title of this paper might suggest. Of course,
the method is eminently suitable for the case of supersonic
flows with subsonic pockets.

The use of TVD discretisations results in a highly re-
liable method with no artificial parameters such as coeffi-
cients of numerical smoothing to be provided by-the user.
Spurious oscillations and expansion shocks are also elimi-
nated.

The relaxation approach used can also be used to solve
the Navier-Stokes equations!?. By following the unified
methodology used to derive the present algorithm for the
Euler equations, a unified scheme can also be derived for the
Navier-Stokes equations. Parabolized forms of the Navier-
Stokes equations may be solved in regions where there is
little upstream propagating influence upon the boundary
layer and when the flow external to the boundary layer is
supersonic. In regions of separation, etc. where there is an
appreciable effect of the downstream upon the upstream
flow, and/or where the external flow is subsonic, the re-
laxation approach may be used. Such methods can provide
superior replacements to current Parabolized Navier-Stokes
solvers and can be the subject of research by us or by other
investigators.
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