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Summary

An investigation was conducted in the Langley
16-Foot Transonic Tunnel to determine the aero-

propulsive performance characteristics (the aerody-
namic quantities affected by propulsion) of 13 iso-
lated combined turbojet/ramjet nozzle configura-
tions. These configurations simulated the variable-
geometry features of two nozzle designs designated
as the multiple-expansion ramp nozzle (MERN) and
the composite contour nozzle (CCN). Test data were
obtained at static conditions and at Mach numbers

of 0.60, 0.90, and 1.20 while angle of attack was held
constant at 0 °. High-pressure air was used to sim-
ulate jet flow, and the nozzle pressure ratio of the
simulated turbojet portion of the nozzle was varied

from 1.0 (jet off) to approximately 20, depending
on the configuration and free-stream Mach number.
Since there was only a single air supply, the ramjet
pressure ratio was a function of the turbojet pres-
sure ratio and this function was varied by the use
of choke plates with varying porosity. The results
showed that the CCN had the higher performance
over the Math number range than the MERN, as
indicated by the difference of thrust minus drag di-
vided by ideal thrust. Increasing the ramjet throat
area for the MERN resulted in an increase in per-
formance that increased with Math number. For the

CCN at Mach numbers less than 1.20, increasing the
ramjet throat area resulted in a loss in performance.

Introduction

Studies reported in references 1 through 7 indi-

cate the feasibility of hypersonic, blended wing-body
types of aircraft using turbojet and ramjet engines
to provide propulsion over a widely diverse flight en-
velope (at Mach numbers from 0 to 5 and from sea
level to an altitude of 100000 ft). This combined
propulsion system couples turbojets arranged in par-
allel above separate ramjets. Climb and acceleration
to a flight Math number of 0.80 are accomplished

with only the turbojets operating because the ram-
jets produce little or no thrust below this Math num-

ber. Both turbojets and ramjets operate from a flight
Mach number of 0.80 to the point of turbojet shut-
down. After turbojet shutdown, the turbojet sub-
sonic duct is sealed and the vehicle accelerates to

cruise with ramjets only. Figures 1 and 2 show a
possible installation of the turbojet/ramjet propul-
sion system on the bottom aft portion of a hypersonic
aircraft. These figures also indicate the appearance
of the multiple-expansion ramp nozzle and the com-
posite contour nozzle.

The purpose of this investigation was to de-

termine the aeropropulsive performance character-

istics (that is, the aerodynamic quantities affected
by propulsion) such as thrust, drag, normal force,
and pitching moment of two turbojet/ramjet nozzle
concepts at flight Math numbers up to 1.20. These
concepts are referred to as the "multiple-expansion
ramp nozzle" (MERN) (because both the turbojet
and ramjet exhausts expand on ramp nozzles) and
the "composite contour nozzle" (CCN) shown in ref-
erence 7 (because the nozzle is composed of both the
turbojet nozzle and the ramjet nozzle), with the lat-
ter contoured to reduce expansion losses of the ramjet
exhaust.

These nozzles were tested in the Langley 16-Foot
Transonic Tunnel at static conditions and at free-

stream Mach numbers of 0.60, 0.90, and 1.20. The
simulated turbojet nozzle pressure ratio was varied

from 1.0 (jet off) to approximately 20, and the angle
of attack was maintained at 0° .

Symbols

Model forces and moments are referred to the

body-axis system with the positive directions shown
in figure 2 and the model moment reference center
located at model station 32.950 in. oil the model
centerline.

Ac,k

Ae,RJ

Ae,TJ

Ae,total

Amax

Ath,RJ

Ath,TJ

Ath,total

Awet

CD,f

increment of model cross-
sectional area at metric break

station 24.000 in. (see appendix),
in2

exit area of simulated ramjet

nozzle (see figs. 5 and 9), in 2

exit area of simulated turbojet

nozzle (see figs. 5 and 9), in2

total exit area (see figs. 5 and 9),
in 2

model cross-sectional area (maxi-

mum), 35.946 in 2

throat area of simulated ram-

jet nozzle (see figs. 5 and 9),
3.014 in 2 or 7.634 in 2

throat area of simulated turbo-

jet nozzle (see figs. 5 and 9),
3.300 in 2

= Ath,R J + Ath,TJ, in2

surface wetted area (see appen-

dix), in 2

aerodynamic skin-friction drag
coefficient (see appendix),

D f /Amaxqoe
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CN

C

D/

Df,af'*

D_

F

FA ,hal

]_'a ,iil()iil

//th.H,]

/

,'l/

My

pitching-monwnt coefficient,

positive in nose-up direction

for model as shown in figure 2,

My/Amaxpal for M = 0 and

My/Amaxqool for M > 0

normal-force coefficient, positive

in up direction for model as

shown in figure 2, N/AmaxPa

for M = 0 and N/Amaxqac for
M>0

pressure coelHcient. --
P - Pac

qoc

chord, in.

aerodynamic skin-friction drag

aerodynamic skin-friction drag

on afierbody portion of model
between st at ions 24.000 and

43.700 in.. tbf

total llozzle (trag (aft of st:,dion

43.700 in.), lift

tllt'llSI ahmg body axis. correcte(t

as indicated ill appendix, lift

axial fort'e measured by t)alall('('

(see appendix), lbf

axial-mmnentmn tare force due

(o bellows (see appendix), lbf

(hrus( of calibration nozzle (see

appendix), lbf

gross lhrusl, (F 2 + N2) 1/2. lift

ideal isentropic thrust (st,(,

appendix), lift

st amtard acceleration of gravity

(l.q _ 32.17,1 ft/se('2)

lhrt)at heighl of simulated rainjet

nozzle (see figs. 5 an(t 9), ill.

sunlnlation index (see apt)endix)

model reference length, 6 in.

nozzle r('fer(uw(' length, distance

fr()ln simulated lurt)oj('t nozzle

throat to trailing edge of turl)ojet

flap (see figs. 5 and 9), 6.58() in.

['r('e-slre',un Ma('h nulnt)er

t)itc'hing moment

measured mass-ttow rale, It)in/see

N

(NPR)Rj

(NPI_)Tj

P

Pa

Pc

Pt,j,IL1

Pt,j,T,I

Poo

qoc

R

Zt,j,RJ

Tt,j,TJ

fl

ideal mass-flow rate, lbin/sec

normal force measured by bal-

ance, positive in up (tire('tkm for
inodel as shown in figtlre 2, lbf

Reynolds nulnber for characteris-

tic length (see appendix)

nozzle t)ressm'e ratio of simuhtte(t

ralllj('t ilOZZle. Pt,j,RJ/Pa for

M = 0 an(t Pt,j,R,l/Poc for /_l > 0

nozzle t)ressuI'e rat io of simulat e(l

t tll'bOj('( llOZZle. Pt.j,TJ/l)a for

M -- 0 and Pt,j.T.l/Poo for M > 0

h)('al static pressure, psia

atmospheric l)ressure, t)sia

h)('al stall(' pressure in metric

break, station 24.000 in. (se('

apt)en(tix), t)sia

jet total pressure of sinmlate(t

ramjet nozzle, psia

jet total t)ressure of simulated

turl)o,}el nozzle, t)sia

Dee-st ream st at ic t)ressure, t)sia

fre(,-strealll dymuni(' t)ressure,

psia

gas COllSt;tilt for air, 53.3

ft-lbf/lbm-°12

jet total lellli)eralllre of shllll-

lated ramjet nozzle (assumed to

})e S;tlll(' as "/'t,j,T,l)" o[{

jet l()tilJ t('llll)('l"i-tlllt'(' O[ Silllll-

late(t lurl)ojet nozzle, °l/

axial distance from simulate(t

turl)ojet nozzle throat (see figs. 5

and 9), positive downstream, ill.

|)oatt all angle of simulat ed

ramjet nozzle h)w(,r ttat) (see

figs. 5 and 9). (h'g

ratio of sl)e('ili(' heals, 1.3997 for
air

(,tt'('('(iv(' j('l-th)w turning angh',

l)osil iv(' in (liI'('('t i()tl ()f posit iv('
normal for('(' ((lownwar(l j('t-llow

V('(,'tor), fail- 1 T_ (leg



7? internal turning angle of sim-
ulated ramjet nozzle flap for
MERN configurations (see fig. 5),
deg

0 internal turning angle of flow
splitter of simulated ramjet
nozzle for MERN configuratibns
(see fig. 5), deg

a upstream divergence angle of
flow splitter of simulated ramjet
nozzle for CCN configurations
(see fig. 9), deg

¢ downstream divergence angle of
flow splitter of simulated ramjet
nozzle for CCN configurations
(see fig. 9), deg

Abbreviations:

CCN composite contour nozzle

MERN multiple-expansion ramp nozzle

t2J ramjet

TJ turbojet

Apparatus and Procedure

Wind Tunnel

This investigation was conducted in the Langley
16-Foot Transonic Tunnel, which is a single-return,
continuous-flow, exchange-air-cooled, atmospheric-
pre,a,_ure wind tunnel with an octagonal, slotted-
throat test uect.ion. The tunnel has a continuously
variable airspeed up to a Math number of 1.30. A
detailed description of this wind tunnel is given in
references 8 and 9.

Models

A possible proposed installation of an isolated

combined turbojet/ramjet propulsion system on the
bottom aft surface of a hypersonic aircraft is shown
in figure 1. Both the multiple-expansion ramp nozzle
and the composite contour nozzle are depicted in this
figure and in figure 2, which shows the orientation of

force and moment vectors. Figure 3 gives the general
arrangement of the isolated nacelle model, support
system, and the two families of nozzles tested. The

nozzles were oriented on the support strut such that
the ramjet lower flap was not in the wake of the strut.
Since the Langley 16-Foot Transonic Tunnel has a

floor-mounted support strut, it was necessary when

testing for the nozzles to be rolled 180 ° (i.e., inverted)
from the orientation indicated in figure 1, as shown
in figure 3.

It is noted that the simulated turbojet portion of
the nozzles was not changed for this investigation.
Along with other geometric variables, the simulated
ramjet nozzles had two throat sizes. The smaller
throat size represented the case in which the air was
flowing through the ramjet with or without combus-
tion. The larger throat size represented the case in
which a large volume of air without combustion was
flowing through the ramjet in order to fill the nozzle

region and thereby reduce base drag. Also, configu-
rations were tested that represented no flow through
the simulated ramjet nozzle.

Multiple-expansion ramp nozzle. A photograph
of the MERN with minimum ramjet throat area in-

stalled in the tunnel is shown as figure 4. Figure 5
gives the dimensions of the two MERN configura-
tions, that is, the minimum and maximum ram-

jet throat areas. These configurations represent the
range of variable-geometry throat settings used dur-
ing the acceleration, cruise, and deceleration modes
of fight operations. Photographs of the two MERN
configurations with their left sidewall removed are
shown as figures 6 and 7.

Composite contour nozzle. A photograph of one
of the 11 CCN configurations is shown as figure 8.
Figure 9 gives the dimensions of the CCN configu-
rations. In addition to the minimum and maximum

ramjet throat areas as discussed for the MERN, the
CCN also had variable ramjet flap positions in or-
der to contour the exhaust for the reduction of over-
expansion losses. The CCN was studied with two

types of sidewalls. The original sidewall concept was
designated as the V-notch sidewall, and a proposed
lighter-weight concept was designated as the cutback
sidewall. Photographs of the 11 CCN configura-
tions with their left sidewall removed are shown as
figures 10 through 20.

Jet-Exhaust Simulation

For jet-exhaust simulation, an external high-
pressure air system provided a continuous flow of

clean, dry air at a maximum pressure of 105 psia
and a controlled temperature of nominally 540°R
ahead of the nozzle throat. As shown in figure 3,
this high-pressure air was brought through the sup-
port sting and strut into a high-pressure plenum and
was then introduced, through eight sonic nozzles, ra-
dially into the metric portion of the model to mini-
mize incoming axial momentum. Two flexible metal
bellows provided an air seal between the metric and

nonmetric portions of the nacelle. Finally, the air
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traveled through choke plates into stagnation cham-

bers and expanded through the nozzle eonfignration

being tested.

Since only a single supply of compressed air was

available, choke plates of differing porosity were used

to regulate the airflows through the simulated turbo-

jet and ramjet nozzles. Porosity refers to the percent-

age of flow area relative to the duct cross-sectional

area. Only one choke plate was used for the sinm-

lated turbojet nozzle and it had a porosity of 49 per-

cent. A choke plate with zero porosity was used in

the ramjet nozzle, which represented the case of the

ramjet being t)ypassed: a choke plate with 21-percent

porosity was used in tile ramjet nozzle having mini-
lnuln throat area: and a choke I)late with 40-percent

p<>rosity was use(t in the ramjet nozzle having maxi-
nnnn throat area.

Instrumentation

Metric model forces and moments were measured

by a t}wee-comtmnent strain-gauge t)alance. Jet to-

tal pressure and total temperature were measured

by prot)es mounted in the instrunlentation section

as shown in figure 3. Rows of static-pressure ori-
rices were on the centerline of the internal surfaces of

the turbojet and ramjet nozzle flaps and on both the

surfaces of the/tow splitter. There was also a row of

static-t)ressure orifices on the centerline of the exter-

nal surfitce of the ranljet nozzle flap. Table I giw, s the

t)ressllre orifice lo('atio|ls for the MEH,N with mini-

mmn ramjet throat area, and table 1I gives the pres-
sm'e orifice locations for the MERN with nlaxinluln

rallljet throat area. The pressure orifice locations

for all ctmfigurations of tiw CCN are given in ta-

ble III. Static pressures in the gap at the metric break

(station 24.000 in.) were obtained fl'om 16 orifices

(list ritmte<t around the perimeter of the gap.

Test Conditions and Procedure

This investigation was conducted in the Langley

16-Foot Transonic Tunnel, where each nozzle eonfign-

ration was tested at tunnel static conditions (M = 0)

and at free-stream Math numbers of 0.60, 0.90, and

1.20. Angle of attack was held constant at 0 ° for all

tests. This angle was corrected for the 0.1 ° average

upflow angle determined by previous experiments.

Simulated turbojet nozzle pressure ratio was varied

from 1.0 (jet off) to approximately 20 depending on
free-stream Math immber and nozzle configuration.

In accordance with the criteria of reference 10,

boundary-layer transition strit)s were used to ellsure

a turbulent boundary layer over the afterbody and
the nozzle. A 0.10-in-wide strip of No. 100 silicon

carbide grit, st)arsely distributed in a lacquer film,
was located 1.00 in. from the nose of the model.

The average Reynolds number per foot varied from
3.25 x 106 at a Math mlmber of 0.60 to 3.90 x 106 at

a Mach Imlnber of 1.20.

Figure 21 presents a representative schedule of

nozzle pressure ratio with Maeh number for a typ-

ical supersonic cruise turbojet engine operating at
maximum thrust. This schedule, previously given in

reference 11. was obtained froln unpublished indus( ry

sources and is presented to indicate probable operat-

ing nozzle pressure ratio (NPR) versus Mach number

values for use with the present data.

The data reduction used in this investigation is

described in the appendix.

Presentation of Results

The results of this investigation are presented

graphically in figures 22 through 44. Figures 24

through 31 show the force and moment data; fig-

ures 32 through 44 show the pressure distribution
data. A list of data fignres follows:

Fignre

Variation of (NPI/)R J with (NPR)T J ............................ 22

Variation of total discharge coefficient with (NPR)Tj ..................... 23

Effect of ranljet throat area on characteristics of MERN .................... 24

Effl'ct of ramjet flap t)osition on characteristics of CCN with ininimum ramjet

throat area and V-notch sidewalls ............................ 25

Effect of

throat

Etfect of

throat

ramjet flap position on characteristics of CCN with minimum ramjet

area and cutback sidewalls ............................

l;'It'ecl of

sidewalls on ('haracteristics of CCN with nfinimum ramjet

area alld ranljet flap 3 .................

ramjet tlat) position on characteristics of CCN with nlaxilnuin

26

27

ramjet throat area and V-notch sidewalls ......................... 28

Sltllllllltl'y of t)oI'[Ol'l|lltll('(' ('omt)arisons fin"selected configurations ................ 29
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Characteristics of CCN with maximum ramjet throat area, ramjet flap 2,
and cutback sidewalls .................................. 30

Effect of throat area and sidewalls on characteristics of CCN with

blanked-off ramjet and ramjet flap 3 ........................... 31

Pressure ratio and pressure coefficient distributions of MERN

with minimum ramjet throat area ............................ 32

Pressure ratio and pressure coefficient distributions of MERN

with maximum ramjet throat area ............................ 33

Pressure

ramjet

Pressure

ramjet

Pressure

ramjet

Pressure

ramjet

Pressure

ramjet

Pressure

ramjet

Pressure

ramjet

Pressure

ramjet

Pressure

ramjet

Pressure

ramjet

Pressure

ramjet

ratio and pressure coefficient distributions of CCN with minimum

throat area, V-notch sidewalls, and ramjet flap 1 ...................

ratio and pressure coefficient distributions of CCN with minimum

throat area, V-notch sidewalls, and ramjet flap 2 ...................

ratio and pressure coefficient distributions of CCN with mmmmm

throat area, V-notch sidewalls, and ramjet flap 3 ...................

ratio and pressure coefficient distributions

throat area, cutback sidewalls, and ramjet

ratio and pressure coefficient distributions

throat area, cutback sidewalls, and ramjet

ratio and pressure coefficient distributions

throat area, cutback sidewalls, and ramjet

of CCN with minimum

flap 1 ...................

of CCN with minimum

flap 2 ...................

of CCN with minimum

flap 3 ...................

34

35

36

37

38

39

ratio and pressure coefficient distributions of CCN with maxlmu_m

throat area, V-notch sidewalls, and ramjet flap 1 ................... 40

ratio and pressure coefficient distributions of CCN with maydmmn

throat area, V-notch sidewalls, and ramjet flap 2 ................... 41

ratio and pressure coefficient distributions of CCN with maximum

throat area, V-notch sidewalls, and ramjet flap 3 ................... 42

ratio and pressure coefficient distributions of CCN with maximum

throat area, cutback sidewalls, and rainjet flap 2 ................... 43

ratio and pressure coefficient distributions of CCN with blanked-off

and ramjet flap 3 ................................ 44

Discussion of Results

The flow through the simulated turbojet nozzle
appeared to be choked throughout the test range.
This condition represents a realistic simulation of
flight operations in which the turbojet engine would
be providing thrust in this Mach number range and
the ramjet engine would be either in a noncombust-
ing mode or a partial-combusting mode. For the sim-
ulated ramjet nozzles of this investigation, the flow
passed through orifices in a choke plate. Although
these orifices initiated discrete parallel jets, the dis-
tance from the orifice to the simulated ramjet nozzle
throat divided by the orifice diameter, the result be-
ing approximately 57, implied uniform flow across

the duct (ref. 12).

A review of the data indicated that variation

of ramjet nozzle pressure ratio (NPR)Rj and total
discharge coefficient rh/rh i with (NPR)Tj for the
MERN and the CCN configurations of this test de-
pended only on throat area. Therefore, (NPR)Rj
and rh/rhi can be presented uniquely for the two
throat areas at each Mach number representative of
all configurations tested. Figure 22 gives the varia-
tion of (NPR)R J as a function of turbojet nozzle pres-
sure ratio (NPR)Tj for the two ramjet throat areas.
The variation of rh/rh i (the discharge coefficient) for
the two ramjet throat areas is shown in figure 23.
This figure indicates that the discharge coefficient for
the nozzles with the smaller simulated ramjet throat
area was very high, near unity, whereas the discharge
coefficient for the nozzles with the larger simulated



ramjet throat area was rather low. near 0.81 at all
Math munbers. Therefore. it can t)(, concluded that

the discharge coeflCicient for the NPR's investigated

is indet)en(tent of nozzle type tested. Math number.
and nozzh' pressure ratio: and it varies inversely with

ramjet nozzh' throat area tbr the nozzles tested.

An estimate of mass-flow split between the turbo-

jet and ramjet nozzles was cah,ulated using the mea-
sured total mass-flow rate and tit(, ideal mass-flow

rate lhrough the turb(@t nozzle. These values are

twesente(t ill labh, IV.

Force and Moment Data

The three and moment (tara are shown ill fig-

urcs 2-1 lhrough 28 and in figures 30 and 31.

These figures show the varialiou of axial-force ra-

tio. nornlal-f(wce ('oetficient, pitching-moment coef-

[icienl, gross lhrust ratio, and effective turning an-

gle. all as a function of simulated turbojet nozzle

pressure ratio. ()f primary hilt)or(ante is axial-fln'ce

ralio (/: D.,t)/b_. whi('h indicates t)('rfl)rmance at

win(l-on (M > 0) conditions. All (tala are displayed

at Ma('}l mmflwrs of 0, 0.60, 0.90, and 1.20, exc(,pl

for gross lhrusl ratio and effective jel tm'ning angh'

which could be measured only at static conditions.

l"igure 29 is a summary conlparison of selected dala.

Multiple-expansion ramp nozzle (MERN). The

lwo lest coutigurathms of the MEI{N design (see

fig. 5 au(l labh, V(a)) had (titf('renl simulated ram-

,iettlu'(mlareas. It is holed thal since the turbo-

jet nozzle lhroal area remains constant throughout

the ('x[)tTilllent. the IPl'lll "'lhl'o;4t ;tl'ea'" l'e[el's to tilt'

rallljt'I llllZZ]U lhro;ll ill'Ca. T}le ¢q[(,('ls (if lhrf)at

area on the aeroprot)ulsive t)erformant.t , characteris-

tics (aerodynamic quanl il it's ait'ecl(,(t by t)ropulsioll)

(11" lilt' MERN (st'(' tigs. 6 alid 7) al'e showll ill fig-

ure 2.1. The internal thrust t)ertbrmance F/I_- at

M -- 0 (fig. 2.1(a)) was essentially Ill(, same for both
llu'()al areas, th/wever, a difference due to throat

area can be seen for axial-force ralio (l,'- Drill[ Q
(fig. 21(a)). This difference increases with hwreas-

ing Mac}_ nmnl)er and is approxhnalely 11 t)ercenl

for (Nl'l/),i,.i = 7 at M = 1.20. The MERN design

Of Ill(' ('llITell[investigation is similar in geometry to

lyt)ical singh'-ext)ansion ralllp llozzle designs (ref. 13)
l}laI ]l;IV(' exh;/usl-tlow ('Olllgtilllllellt Oil O110 side of the

II/)ZZIe all([ ['l'eu exhallsl-t|ow eXl);lllSiOll 011 the other

shh'. The I}II'USl t)ert'ornmnce of nozzles with free-

expansion },mndari(,s (singh'-('xlmnsion ranlt), plug.
aI.t wc(lge nozzles) will I)(' sensilive lo exlernal-flow

etIi'cts at forwar, l spee(ts. Thus. some of lhe axial-

f, wc('-ralio (tiffereuces shown in figure 2.1 for 3I > 0

may Iw cause(l 1).,, exlcrnal-tlow ell'eels. Itowever.

6

most of tilt, axial-force-ratio variation with throat

area is believed to be caused by differences in ex-

ternal drag on the two flap configm'ations tested. It

is apparent that the nozzle with the smallest throat

area (with the largest boattail angle/3) has tilt, lowest

values of axial-force ratio at fl)rward speeds.

The t)ressure tiara for the external surface of the

ramjet ttat), shown in figures 32 anti 33. indicate that
tilt, external flow over both the nlinimunl and max-

hnunl throat area flaps wits Sel)arated. Ill ad(tilion,

hot h flaps had nearly identi('al pl'eSSlll'e (list rilmtitms.

t)artieularly at 51 = 0.90 and 1.20. ltowever, lhe ax-

ial t)rojecte(t area ()f th(' nlildnmm thr()al area flap

is appr()xinlately 60 percent larg('r than lhat of the
lnaximuln throal area ttap. Thus. the external drag

on the minimum throal area flap is also at)proxi-

lnalely 60 t)ercenl higher than that on the maximum

lhroal area tlat). This increased drag would t)artially

itct'Ollllt for tilt' low(,r axial-force-ralio t)erf(lrlllallce

of t Ill' nfininlllnl t hroitl area COllfigurat loll al forward

speeds.

The tren(ts of normal-for('e ('oefli('h, nl ('N

(fig. 24(t))) are very similar fi)r t)oth throal areas wilh
tile most negative value occurring at (NI)II)T,1 _ 5

for all Math numl)ers, a result at)t)arently due to

tilt' lna2¢illllllll _ (.)Cc/lrrhlg at this (NPR)T J. (See

fig. 240t). ) Normal-rotor' ('oeflicient bet'ouws less lleg,-

ative with inert,ashtg Mat'h nulnber since (_N (tue to

aerodynamics is overt)owering ('N due lo lhe nor-

real cmnt)onent of thrusl at increasing Mach munl)er.

Likewise. lilt' trends of t)itching-mt)nwl: coefli('ients

('m are naturally similar with tile largest value al

(NPR)T J _ 5. anti this value decreases with increas-

ing Math number (fig. 24(e)). Since the i)roje('l('(t
nt)rmal area of the m/zzle does not vary greatly wilh

throat ar('a, large changes in ('N and (_'m wouht nol

be ext)e('ted It) t)ccur. Although angle of attack (t wits

held ('Oils(ant at ()o, ('N an(t ('m were llOllZero vahles

|)(,caus(, of tilt' llllSyllllllel rical dr,sign of the nozzles.

At static ('on(It(ions (M = 0), lwo a(htiliomtl t)a-

rallleters were ineasure(t anti given its follows: the ra-

tio of gross thrust to ideal t]lrusl Fv/F i and lhe effe('-
tive jet-flow tm'ning angle b. l_ef('rences 13 through

17 (h'scrit)e t)revious research con(hwtett on llllSylll-

metrical nozzles at static con(It(ions. Figures 2,1(a)

and 21((t) show that lilt, value of F/F i is approxi-
mately 4 percenl less than /')J/:i al (Nl'l{),r, I _ 5

(b = -17 ° highest lurnhlg angle achieved), whi('h

(telllOllslrales lh&l signiti('ant tlow turning w;ts (h'-

velope(t and that a loss ill lhrusl resulls [r()m thal

th)w turning. This h,vel of Imrt'ormance loss agrees
with lhe calculalion ill which Ibis loss is ext)resse(t its

1 - cos /_.



Composite contour nozzle (CCN). The test
configurations of the CCN design involved two ram-
jet throat areas, three ramjet flap positions, and two
types of sidewalls. (See fig. 9 and table V(b).)

The effects of ramjet flap geometry on the aero-
propulsive characteristics of the CCN with minimum

ramjet throat area and V-notch sidewalls (see figs. 9
through 12) are shown in figure 25. There is an effect
of ramjet flap geometry on F/F i with flap 3 generally
having the highest level of static performance. Large
fluctuations of 6 occurred for all ramjet flap configu-
rations (fig. 25(d)). The largest turning angles were
measured for ramjet flap 2. The pressure data for the
ramjet side of the flow splitter and internal surface
of the ramjet flap shown in figures 34, 35, and 36 in-
dicate shocks and regions of exhaust-flow separation
in the CCN that vary in strength and location with
(NPR)T J. Obviously, this unstable flow caused the
erratic values of 6 as shown in figure 25(d), and this
turning of the flow from the body axis resulted in
a substantial axial-thrust loss, as well as a substan-
tial increase in the magnitude of normal force and
pitching moment.

In addition to the effects of 6, both Ae,RJ/Ath,R J

and Ae.total/Ath,total also have an effect on the
thrust. Since flap 2 has lower Ae,Rj/Ath,R J and
Ae.total/Ath.total than flaps 1 and 3, it could be ex-
pected to have a lower thrust loss due to less possible

overexpansion than flaps 1 and 3 at low (NPR)Tj.
(See figs. 10, 11, and 12.) Even so, the configuration
with flap 2 still generally had the lowest thrust per-
formanee throughout the Maeh number test range.
From the photograph shown in figure 11. it is obvi-
ous that use of flap 2 will result in turning the jet flow

away from the body-axis direction. This observation
is confirmed from the fact that this configuration pro-
dueed the largest absolute values of 6, CN, and Cm.
Thus, large jet-flow turning losses were probably the

cause for the low performance of this configuration.
The axial-force ratio (F- Dn)/Fi decreases with in-
creasing Math number for all configurations tested,
a result probably due to the increasing drag on the

lower surface flap of the ramjet.

The effects of ramjet flap geometry on the char-
acteristics of the CCN with minimum ramjet throat

area and cutback sidewalls (see figs. 13, 14, and 15)
are shown in figure 26. The trends for these data are
the same as those noted for this configuration with
the V-notch sidewalls. Therefore, it can be concluded

that there is no significant difference in aeropropul-
sive performance, and only minor differences in
the other characteristics, resulting from substitution
of the cutback sidewalls for the V-notch sidewalls.

Figure 27 is given as an example that illustrates data
affected by sidewall geometry for all configurations
tested.

The effects of ramjet flap geometry on the aero-
propulsive characteristics of the CCN with maximum

ramjet throat area and V-notch sidewalls (see figs. 16,
17, and 18) are shown in figure 28. At M -- 1.20, the
three flap geometries gave essentially the same thrust
ratio results. Values of the normal-force coefficients

and pitching-moment coefficients are similar to those
of the minimum throat area configuration, except

that they are smaller in magnitude. The lower mag-
nitudes are probably caused by less jet-flow turning

for the large Ath,RJ configurations. (See fig. 28(d).)
This lower jet turning angle is due to the reduced
angle of the ramjet flap that is required to increase
the ramjet throat angle. (Compare figs. 11 and 17.)

From a comparison of figures 25(a) and 28(a), it
can be concluded that, generally, the configurations
with the minimum throat area produce the higher
aeropropulsive performance for the composite con-
tour nozzle at Maeh numbers less than or equal to
0.90. However, at a Maeh number of 1.20, the con-
figurations with the maximum throat area produced
the higher performance.

A comparison of figures 25(a) and 28(a) leads to
the conclusion that for the entire Math numbers and

nozzle pressure ratios tested, the highest aeropropul-
sive performance of the composite contour nozzle was
obtained with the straight ramjet divergent flap (that
is, RJ flap 3 as shown in figs. 9(b), 12. and 15).

From a comparison of figures 24(a), 25(a), and
28(a), it can be concluded that at M < 1.20, the
performance of the composite contour nozzle was
higher than that of the multiple-expansion ramp
nozzle, especially for the minimum ramjet throat
area configurations. At M = 1.20 the performance
was essentially the same. This result is summarized
in figure 29.

The aeropropulsive characteristics of the CCN
with maximum ramjet throat area (RJ flap 2) and
cutback sidewalls (see fig. 19) are shown in figure 30.
As expected, these data are the same as those for
the configuration with ramjet flap 2 and V-notch

sidewalls. (See fig. 28.)
Figure 31 shows the aeropropulsive characteris-

tics of the CCN with ramjet flap 3 (see figs. 12, 15,
18, and 20) and a blank plate in place of the choke
plate at the entrance to the simulated ramjet noz-
zle. This arrangement simulated conditions in which
the ramjet inlet would be bypassed for turbojet-only
operation. The geometric variables for this set of
configurations were minimum and maximum simu-
lated ramjet throat area and V-notch and cutback
sidewalls. Although there is no flow through the
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simulated ramjet throat, the geometries of the noz-

zles are considerably different, as can be seen by con>
paring figures 12 and 18. The variation of axial-force

ratios F/F i and (F - Dn)/F i was only slightly af-

fected by both ramjet throat area and the sidewall

type. The variation of normal-force coefficient CN

and all tile values related to this parameter, such as

Crn, Fg/F i, and 6, displayed somewhat more depen-

dence oil both the ramjet throat area and the sidewall

type. It is noted that most variations occurred at

wind-on conditions (M > 0). Therefore, it appears

that the boattail angle of tile simulate(t ramjet noz-

zle ({4 = 14.7 ° fl)r the mininmnl ramjet throat area

and fl = 7.2 ° for the nmxinnnn ramjet throat area)

is the t)redonfinant geometric cause of data variat ion

between these [()Ill" nozzle configurations.

Pressure Data

The t)ressure data are pros(rated in figures 32 and

33 for tile MERN configurations and in figures 34
through 44 fl)r the CCN configurations. Data are

presented for Mach mnnbers of 0, 0.60, 0.90, and

1.20 over a (NPR)T J range from 1.0 (jet off) to the

maximmn value det)ending on nozzle geometry and

Mach number. The jet-off condition pertains only to

the Cp plots of figures 32 through 43. Pressures on

the external surface of the ramjet flap are presented

as C v versus x/In, where x is the distance down-

stream froln 1.t1(' turbojet throat and In is the length

of the turt)(ijet flat) fi'om the throat t.o the trailing

edge. (See figs. 5 and 9.) The internal pressures

are presented as ratios of P/Pt,j (where tile jet to-
tal pressure Pt,j is either for the ramjet or turbojet)

versus x/In. For the MERN with nlinimmn ramjet
throat area, the turbojet throat is located at station

49.200 in. (x/ln = 0.000) and the ramjet throat is

h)cated at station 45.700 ill. (x/ln = -0.532). For
the MERN with maximum ramjet throat area, tile

turbojet throat is still located at station 49.200 ill.,

but tile ramjet throat is h)cated at station 45.300 in.

(X/In = -0.593). (See fig. 5.) For all CCN coil-

figurations, the turbojet throat is located at. station

48.700 in. (X/In = 0.000) and the ramjet throat is

located at station 47.000 ill. (X/In ---- 0.258). (See
iig. 9.)

The pressure data in figure 44 are for the special

cases of four CCN configurations when the ramjet
portion of the nozzle was t)lanked off. The data are

l)res('nlcd for Math numl)ers of 0.60, 0.90, and 1.20

over a (NI'I_)T.I range fr(inl 1.0 to s(>me maxinnml

wlhw (h'p('n(iixig on nozzle geometry and Ma('h num-

ber. Only the internal pressures for the turbojet are
t)r('sonte(t since the ramj(,I wits l)lanked off for those
(' ase,'.,L
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Multiple-expansion ramp nozzle. As can be seen

in figures 32 and 33, all the internal pressure ori-

fices of the simulated turbojet portion of the noz-
zle are located downstream of the geometric throat

(turbojet nozzle throat at X/In = 0.000). The pres-

sure ratio P/Pt,j at the first static orifice location is

less than the ratio P/Pt,j = 0.528 (the choke coil-
dillon at the turbojet throat) and indicates that
the flow was choked at the turbojet throat for all

(NPR)Tj vahles. However, for the MERN with

nlinimmn ramjet throat area, shock-induced sepa-

ration occurs shortly (h)wnstream of the throat for

(NPR)T J = 2.89 at M = 0, and this separation
moves downstream as NPR is increased and t)ecomes

flllly attached at (NPR)Tj = 18.73 and M = 1.20.

Comparing the data for the internal surfaces of the

turbojet shows that tiler(, is very little effect of Math

number or ramjet throat area ell these pressures
when the flow is choked and attached.

All tile pressure orifices on the ramjet side of

the flow splitter and flap interior surface are located

downstrealn of the ramjet throat (x/In = -0.532 and
-0.593 for mininmnl and nlaxinnuu ranljet throat

area, respectively). On the ramjet side of the split-
ter, the flow was choked upstream of the first pressure

measurement (probably near or slightly upstreani of

the geometric throat) and supersonic flow existed on
the splitter. A series of exhaust-flow conlpressions

and expansions occurre(t as the flow progressed down

the duct. During tile conq)ression that occurred be-

tween X/In = -0.20 and x/In = -0.04 on the min-
inmm ramjet throat area configuration, tile exhaust

flow became sut)sonic (P/Pt,j,R.I > 0.528) for tile low-
est vahles of (NPR)T J tested (e.g., (NPR)Ta < 5.74

at M = 0.60). Except for (NPR)Tj = 2.87 where
the exhaust flow remained subsonic throughout the

remainder of tile duct at M = 0.60 and 0.90, tile en-

suing expansion generally caused supersonic exhaust

flow on the downstream portion of tile splitter.

Since subsonic flow does not occur (m the internal

side of the ramjet flap except at (NPR)Tj = 2.87,

a subsonic-flow bubl)le (surrounded by supersonic

flow) exists on the ramjet splitter at some vahles of

(NPR)Tj. Reference 18 describes the formation of
subsonic-flow bubbles in supersonic flow. A similar

phenomenon is indicated on tile splitter for the max-

imum ramjet throat area configuration, exeet)t that
tile subsonic-flow bubble has inoved downstream and

beeolnes smaller. From the pressure distrilmtions
shown on the internal surface of the mininnml ram-

jet throat area flat) (fig. 32), it is obvious that the
exhaust flow did not chok(, a| the geomelric throat

but at a downstream station near x/ln = -0.40.

Thus, the actual ramjet throa! for lhe minimum

throat area configuration did not coin('ide with the



geometricthroatbutwascantedinsidetheduct.For
themaximumthroatareaconfiguration(fig.33),this
wasnot the casesincethe exhaustflow is choked
upstreamof the first measuredpressure.Oncethe
flowwaschoked in the minimum ramjet throat area

duct, the flow expanded supersonically until a shock-

induced separation occurred near X/In = -0.28. On
the flap of the maximum throat area ramjet duct

(fig. 33), a single compression occurred downstream

of the throat followed by a supersonic-flow expansion.

For the maximum ramjet throat area configuration,

exhaust flow remained attached to the ramjet flap for

all values of (NPR)Tj above approximately 5.

Although the boattail angle of the ramjet flap was
different for the MERN with minimum and maxi-

mum ramjet throat area (42.5 ° and 26.1 ° , respec-

tively), the magnitude of the external-flap pressures

remains nearly the same for both configurations at

M -- 0.90 and 1.20. Therefore, since previous exper-

imentation (ref. 19) indicates that the largest possible

boattail angle without separation (at the current test

Mach numbers) is in the range from 18 ° to 20 °, it is

expected that the flow over both flaps is totally sepa-

rated. Even at M -- 0.60, the flow along the exterior
of the ramjet flap of the MERN with the minimum

ramjet throat area (_ = 42.5 °) appears totally sepa-

rated. At this Mach number, some pressure recovery

(an increase in Cp with increasing X/In) should oc-

cur if the external flow were attached to the flap. At

jet-on conditions, the external flow again appears to
be separated from the flap. Therefore, it can be con-

cluded that for both configurations of the MERN,
flow separation was present on the external surface

of the ramjet flap.

Composite contour nozzle. Figures 34 through

44 show internal pressure distributions on the CCN

nozzle. As in the case of the MERN, all the internal

pressure measurements for the turbojet portion of the

CCN nozzle are downstream of the turbojet geomet-

ric throat. Also, the discussion of pressure distribu-

tion in the turbojet portion of the MERN configura-

tions applies to the CCN configurations. All the pres-

sure orifices on the ramjet side of the flow splitter and
flap interior surface are located downstream of the

ramjet geometric throat (x/In = -0.258). Two dis-

tinct pressure distribution profiles are evident for the

ramjet side of the flow splitter. For the CCN config-

urations with the minimum ramjet throat area, there

was a pressure rise near the trailing edge caused by a

shock recompression that is characteristic of an over-

expanded (too large Ae,aJ/Ath,RJ) nozzle operation.
For the CCN configurations with the maximum ram-

jet throat area, the pressure distribution decreases

throughout the ramjet duct, an indication of flow

expanding supersonically along the entire length of

the flow splitter. For both throat areas, the exhaust

flow appears to choke (become sonic) on the split-

ter at a location near or slightly downstream of the

geometric throat location.
The pressure distributions on the internal sur-

face of the CCN ramjet flap indicate that the ex-

haust flow chokes upstream of the first pressure mea-

surement for both throat areas tested. Supersonic

flow characterized by a series of flow expansions and

compressions exists on the entire length of the in-

ternal ramjet flap. An exception to this result can

be noted for the lowest values of (NPR)T J tested
for which subsonic flow existed over the aft por-

tion of the flap ((NPR)Tj = 2.87 in fig. 34(b)).
Some of the ramjet flap distributions indicate shock-

induced flow separation ((NPR)Tj = 3.82 and 4.78

in fig. 34(b)) and subsonic-flow bubbles embedded in

the supersonic-exhaust flow field ((NPR)Tj = 3.64
in fig. 35(b), for example).

The external Cp distributions shown in figures 34
through 43 are typical. Some pressure recovery is
evident at M = 0.60 and 0.90. Jet effects are small

but feed relatively far forward in the separated flow

over the ramjet flap for subsonic flow (M = 0.60 and

0.90). At M = 1.20, jet effects are small and limited

to the areas of the flap trailing edge since pressure

disturbances do not propagate upstream in super-

sonic flow. Large increases in Cp near the trailing
edge of the flap (the farthest aft pressure measure-

ment) could be caused by shock-induced separation
or by slight movement of the terminal shock with
NPR.

There was no significant difference in the pressure

distributions between the CCN configurations with
V-notch sidewalls and those with cutback sidewalls.

This can be seen in the comparison of figure 34 with

37, 35 with 38, and 36 with 39 for minimum ramjet
throat area and in figure 40 with 41 for maximum

ramjet throat area.

The pressure distributions on the turbojet side
of the flow splitter and the internal surface of the

turbojet flap are shown in figure 44 for the special

case in which the flow inlet to the ramjet nozzle is
blanked off. This figure shows that the effects of both

sidewalls (i.e., V-notch or cutback) and the ramjet
throat area are insignificant.

Conclusions

An investigation has been conducted in the Lang-
ley 16-Foot Transonic Tunnel to determine the aero-

propulsive performance characteristics of two fami-

lies of isolated combined turbojet/ramjet nozzle con-

figurations. This investigation was conducted at

static conditions and at Mach numbers M of 0.60,
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0.90,and1.20overanozzlepressureratiorangefrom
1.0(jetoff) to approximately20whileangleofattack
washehteonstantat 0°. Theresultsofthis investiga-
tion indicatedthefollowingconclusionsfortheMaeh
numberrangetested:

1. The dischargecoefficientwasindependentof
tile nozzletype tested,Maehnumber,and nozzle
pressureratio:andit variedinverselywith theramjet
nozzh'throatareafor tile nozzlesinvestigatedin this
experinlellt.

2. Increasing the ramjet throat area of the

mult it)h'-expansion ramp nozzle (MEt_N) produced
an aeropropulsive performance increase that in-
creased with Math nmnber.

3. Some configurations of the composite contour

llozzle (('('N) generated large values of effective jet-

flow tm'ning angle at static conditions. This turning
of the flow from the body axis resulted in a substan-

tial thrust loss, as well as substantial increases in the

magnitude of normal force and pit.ehing moment.

4. No significant difference in aeroprotmlsive per-

formanee of tile CCN was observed by substituting
the cutback sidewalls for the V-notch sidewalls.

5. Generally, the minilmml ramjet throat area

produced the higher aeroprotmlsive performance for

the CCN at M _< 0.90. However, at M = 1.20, the

maxinmm ramjet throat area produced tilt, higher

performance.

6. Throughout the entire Maeh mmfl)er and noz-

zle pressure ratio regime, the highest aeropropulsive

performance of the CCN was obtained with a straight

ramjet diwq'gent fla t) (position 3).

7. At M < 1.20, the t)erformanee of the ('(_N was

higher than that of the MEI/N: but at M = 1.2(I. the

performance was essentially the same.

NASA I_angh,y Research (_,ellter

Halnpton, VA 23665-5225

April 13. 1988
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Appendix the relationship

Data Reduction

All data from the instrumentation of the air-

craft nozzle model and the wind-tunnel facility were
recorded simultaneously on magnetic tape. For each
data point, 50 frames of data were taken over a pe-
riod of 5 see and the average value was used for com-
putation of standard force, moment, and pressure
coefficients.

However. before experimental testing of tile
MERN and CCN configurations could begin, it was
necessary to conduct a calibration to determine axial-
momentum tare force. Axial-momentum tares were

evaluated by statically (M = 0) testing several Strat-
ford calibration nozzles (ref. 20) over tile range of
supply pressures, mass-flow rates, and throat areas
intended for the test nozzles. Reference 12 shows the

geometry of these calibration nozzles and gives their
well-established values of Fcal/F i and rh/rh i. There-
tore. this evaluation took the form

FA,mo m = FA,ba 1 -- Fca 1 (1)

The value of FA,mo m determined was used to
correct for axial-momentum and bellows tare forces

caused by the high-pressure air flowing from the non-
metric high-pressure plenum into the instrumenta-

tion section through the eight small injection nozzles.
(See fig. 3.) Although the air is injected radially and
the flexible seals (metal bellows) are placed in tan-
dem in an effort to eliminate such tares, small forces

do arise in practice and must be taken into account.

In the present investigation, these forces were gen-
erally less than 2 percent of ideal thrust. In equa-

tion (1), the term FA,ba 1 represents the raw-balance
output corrected for interactions and model weight
tares. (See ref. 8.) At static conditions (M = 0) dur-
ing testing of the MERN and CCN configurations,
the thrust along body axis (F) was determined as

F = FA.ba 1 -- fA,mo m (2)

In order to determine the thrust minus nozzle drag
(F - Dn) during wind-on testing (M > 0) of the
MERN and CCN. additional corrections were re-

quired to isolate the sum of external and internal

forces on the nozzle alone (model portion aft of sta-
tion 43.700 in.), since the model strain-gauge balance
(fig. 3) measures the sum of pressure and viscous
forces on the entire metric afferbody (model por-
tions aft of station 24.000 in.). The nozzle body-axis
thrust-Ininus-drag performance was computed from

16

F- Dn = FA,ba I + E (Pc,k - Poc) Ac, k + Df,af t - FA,mo m

k:l

(3)
The pressure-area term corrects for the force on

the front face of the metric afterbody caused by dif-
ferences between the cavity pressure Pc in the metric
break and free-stream pressure p_. Even though
experience with this model has shown cavity pres-
sures to be extremely uniform, 16 orifices were used
in these tests to determine this balance-correction
term.

The term DLaft is the friction drag of the metric
afterbody (stations 24.000 to 43.700 in.) ahead of
the nozzle, which must be restored to the balance
reading since this force is not associated with the

nozzle. Aerodynamic skin-friction drag coefficients

Co,f were computed from the flat-plate formula for
the turbulent, compressible boundary layer given in
reference 21 and modified by the factor Awet/Amax.
Thus.

0.472 ] AwetCD'f = (1 + 0.2M2) 0.467 (lOgl0 NRe)2.58 Amax (4)

At each Mach number, CD, f was calculated for
Reynolds number NRe and wetted area Awe t corre-
sponding to two different characteristic lengths on
the model (fig. 3): (1) from tile nose to the upstream

end of the nozzle at station 43.700 in.. and (2) from
the nose to the metric-break station (24.000 in.).
The difference between calculations (1) and (2) pro-
vided the estimated skin-friction drag coefficient of
the metric afterbody ahead of the nozzle. The value

Df,af t used in tile correction of the balance data was
then computed as the product of the above coeffi-

cient, the model reference area at the correspond-
ing test Math number, and the free-stream dynamic
pressure.

Ideal thrust, defined as the product of measured

mass flow and the ideal isentropic velocity, was
obtained from the relation
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Measuredmass-flowrate rh was obtained by us-

ing the multiple critical venturi system described in
reference 12.

The ideal mass-flow rates for the test configura-

tions were computed from staguation pressure and
temperatures measured in the tailpipe by using the
choked-flow equation

_/ (_)"/g 2 "_-- 1

rhZ = pt,j. TjAth.TJ RTt,j,TJ

_ (_)_+ Pt 3.RjAth.RJ RTt,3,Rj
(6)
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Table I. Pressure Orifice Locations for the MERN With Minimum Throat Area

[Coordinate system is defined in figure 5]

TJ flap

(internal surface)

x/_
n

0.025
.099
.148
.198
.277
331
418
505
593
790
923

Flow splitter

TJ side RJ side

x/l n x/l n

0.025
.099
.148
.198

-0.508
- .426
-.380
-. 334
-.274
- .212
-.137
- .046

,099

I

-.6

i J t t I I i | I L

0 .2 .4 .6 .8

x/1 n

TJ throat

I I t I t I m i

-.4 -.2 0 .2

x/_
n

I

1.0

RJ flap

Internal External
surface surface

xll xl_
n n

-O.5O8
-.426
-.380

-.334
-.274
-.213
-.137

-0,501
-.401
-,365
-.319
-.274
-,228
-.182
-.137

I f I t I t

-.6 -.4 -.2

x/_ n
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Table ]I. Pressure Orifice Locations for the MERN With Maximum Throat Area

[Coordinate system is defined in figure 5]

TJ flap

(internal surface)

x/I n

0.025
.099
.148
.198
.277
.331
.418
.505
.593
.790
.923

Flow splitter

TJ side RJ side

xll
n n

0.025
.099
.148
• 198

-0. 568
-.502
- .410
-.331
- .258
-.167
- .076
-.046

.099
• 198

RJ flap

Internal External
surface surface

x/l n x/1 n

-0.568
-.501
-.410
-.334
-.258
-.167
-.076

-0.501
° .410
-.342
-. 289
-.236
-. 182
-.129
-.076

l I I I I I I I I f i

0 .2 .4 .6 .8 1.0

x/_
n

TJ throat

t i I I _L i I i I

-.6 -.4 -.2 0 .2

X/_ n

I

I I I I t i i

-.6 -.4 -.2 0

X/z n
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Table III. Pressure Orifice Locations for all Configurations of the CCN

[Coordinate system is defined in figure 9]

TJ flap

(internal surface)

x/_ n

0.025
.099
.148
.198
.277
.331
.418
.505
.593
.790
.923

Flow splitter

TJ side RJ side

x/i n x/i n

0.025
.099
.148
.198

-0.227
-.133
-.007

.099

.198

\
t

-.4

IZ

J ! I i ! I I

0 .2 .4 .6

x/_
n

J I I i

.8 1.0

TJ throat

1
I ! _ I 1

-.2 0 .2

x/_ n

R.J flap

Internal External
surface surface

x/1 n x/i n

-0.227
-.133
-,007

.099

.198

.227

.331

.418

.505
.790
.950

-0.471
-.297
-.106

.091

.28O

.496

.712

.927

I I I I

-o4 -.2
! | I I .I | I I ! f

0 .2 .4 .6 .8 1.0

×/_n
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Tabh' IV. Estimated Mass-Flow Split Between qSu'bojet and Ramjet Nozzles

(a) Configurations with nfinimmn ramjet throat area

(N Pt_ )T3 rhi,T3/rh (NPR)t_.I _hrtj/,h

1.92 0.69 1.29 0.31

4.78 .68 2.92 .32

12.77 .68 7.83 .32

(b) ' ' , '( onhgm'ations with maxiinmn ramj('t throat area

(NPR)TJ

2.69

6.89

12.44

thi,TJ/rh

0.53

.52

.52

(NPR)R,I

1.33

3.34
5.95

0.47

.48

.,18
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Wing

Multiple-expansion ramp nozzle

Composite contour nozzle

Figure 1. l_ossibh , instalhdion of turbojets and ramjets oil bottoin aft port ion of hypersonic ah'('rafl.
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Normal force

'= _ Pitching moment

Thrust _ _i:,:=-.'.'._:.::_._>_'.7..w:!_-:..'..'_a".-__ _ _Drag
_____ Ramjet __ \

_.. _P tching-moment center
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/
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"_;:e"" .... \ Ramj e t _i_':_::_"{:_".¢".'_-{-_!-_"_':":....
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Composite contour nozzle-_X

.d
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Figure 2. Aircraft-oriented positive direction of thrust, drag, normal force, and pitching moment used in data
presentation of this report.
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L-8 1-695 

Figure 4. Installation of MERN with minimum ramjet throat area. 
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Figure 21. 1Representatiw, schedule of nozzle prossure ratio with Math number for typical supersonic cruise
turbojet engine at In_Lxinnnn thrust.
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Figure 25. Effect of ramjet flap position on characteristics of CCN with minimum ramjet throat area and
V-notch sidewalls.
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Figure 27. Effect of sidewalls on characteristics of CCN with minimum ramjet throat area and ramjet flap 3.
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Figure 44. Continued.

(NPR)Tj

4.90

6.50

6.89

9.37

10.19

10.21

(NPR)Tj

5.06

5.12

7.14

9.59

11.51

15.04

(NPR)Tj

5.11

5.12

7.18

9.72

11.66

1 5.65

17.07

(NPR)Tj

3.47

5.51

7.96

9.99

12.00

14.02

16.01

17.96

19.98

169



P/Pt,j,TJ

P/Pt,j,TJ

M = 0

M 0.60

Internal surface of TJ flap

[3

[%

(I

(NPR)Tj

.4.88

666

(NPR)Tj

.'3.04

5.18

715

905

1170

1310

;4 13

170

P'Pt,j, TJ

P/Pt,j, TJ

8

2

0

10

8

2

0

2

M = 090

(NPR)Tj

[] .'3.0:.>

£" b. 16

,\ 7.16

LX 9.24

11 Pb

c_ 13.26

O 15.43

% _8.83

0 2 4

'M = 1,20

(NPR)Tj

tJ 3.13

',2 5 [_<'4

,2 / {; /

9s6

[% 11.9P

(_ 141{)

(_ 16.1 ,'

) 1822

2 4 {i {4 1 Q

x/7 n x/Z
rl

(l') M_lxhnuni ranijot throat are_t and V-notch si{h'wMls.

Figure 44. (_oniinued.



pIPt,j,TJ

TJ side of flow splitter

1 0 T TV .L_ ±_ ,

M -- 0

Internal surface of 7J flop

_, : i i i i i I i I

.... _ ...... <l I _=t _ _

[]

O

%

(NPR)Tj

4.89

6.B7

8.86

I0.74

I 1.08

P/P t,j, TJ

P/P t,j,TJ

P/Pt,},TJ

_.o EEL-[-

.g --.e-e---_

2L2

4 ,-.,._+-_

444
o--i

8 -+-+-

---4--

+_.

6 -+---

.4 _+

2--_-_

.2

i

0 2 4

x//. n

M = 0.60

M = 0.90

M = 120

4-

I

4_

H

2_

"N

O
2x

©

©

' )

P"t -+--+

4

x/_. n

6 8 i .0

%

0
z2

m

D

©

0

(NPR)Tj

5.06

5.08

701

9.04

10.97

12.99

1_-.!4

(NPR)Tj

3.10

5.16

7.!7

915

!1.14

13.17

15.28

1865

(NPR)Tj

5.45

5.51

7.57

9.72

11.76

13.80

15.84

1800

(d) Maxhnum ramjet throat area and cutback sidewalls.

Figure 44. Concluded.

171



Report Documentation Page
Natlc hal A_ rur-,a_t,c_; _r_

S_ace Ad m,n,st,a_,on

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

NASA TP-2814

4. Title and Subtitle

Aeropropulsive Characteristics of Isolated Combined Turbojet/

Ramjet Nozzles at Maeh Numbers From 0 to 1.20

7. Author(s)

George T. Carson, Jr., and Milton Lamb

9. Perfornfing Organization Name a_ld Address

NASA Langley Research Center

Hampton, VA 23665-5225

12. Sponsoring Agency Nalne and Address

National Aeronauties and Space Administration

Washington, DC 20546-0001

5. Report Date

June 1988

6. Performing Organization Code

8. Performing Organizatkm Report No.

L-16390

10. Work Unil No.

505-62-91-01

11. (',olllral'l or Gralll No.

13. Tyt)e of Report and Period Covered

Technical Paper

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

An investigation was comtueted in the Langley 16-Foot Transonie Tunnel to determine the aero-

propulsive performance characteristics (the aerodynanfie quantities affected by t)ropulsion) of 13 iso-

lated combilwd tm'bojet/ramjet nozzle eonfigurations. These configurations silnulated the wtriable-

geoIllelry featllres of tWO llozzle designs designate(t as tile multiple-ext)ansion ramp nozzle (MERN)

and tilt, comt)osite conlollr llOZZle (CCN). Test (tata were obtained at static conditions anti at Math

mmfl)ers of 0.60, 0.90, and 1.20 with jet exhaust simulated t)y high-pressure air. Tile results showed

that the CCN had the higher I)erfornmnce over the Math nllnlber range than tile MERN, as indi-

cated by the difference of thrust minus drag divided by ideal thrust. Increasing tile ran@t throat

area for the MERN resulted in an increase in performance that increased with Maeh number. For

the CCN at Maeh nmnbers less than 1.20, increasing tile ramjet throat area resulted ill a loss in

performance.

17. Key Words (Suggested by Authors(s))

Turbojet/ramjet
Hypersonic air-breathing propulsion

Nonmxisymnlet ric nozzles

19. Secm'ily Ula.ssil'.(of 1his rcporl )

llnclassitied

NASA FORM 1626 ()('T 86

18. Distribution Statemenl

Unclassified Unlimited

20. Securily Cla.ssif.(of this page)

I rnelassified

Sul)j('ct (?ategory 02

21. No. of Pages122. Price172 A08

NASA-Langley, 1988

For sale by the Nalional Techni('al hfformati<>n Serw<'e, Springfield, Virginia 22161-2171



i

t

/


