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ABSTRACT 

This paper is concerned with the parameter estimation for houn~ary 

integral equations of the second kind. The parameter estimation technique hy 

using the spline collocation method is proposed. Based on the compactness 

AAsumptlon imposed on the parameter space, the convergence analysis for the 

numerical method of parameter estimation is discussed. The results obtained 

here are applied to a boundary parameter estimation for 2-D elliptic systems. 
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I. INTRODUCTION 

Recently, there is growing interest in the problem of identification for 

II lRtributed pammeter systems ([DPS) both from the theoret ical :tnri numerica1 

points of views (e.g. [4-8], [11],[15],[21],[22]). The minimization of the 

output least square criterion (OLS) is one of the most popular methods for 

lOPS (see [16] and the references therein). The numerical determination of 

parameters by minimizing OLS involves some theoretical difficulties. Namely, 

numerical methods proposed must be equipped with convergence properties, such 

that the solution of discretized optimization problem implemented on the 

computer converges to the optimal solution of the original problem in infinite 

dimensions when we take the limit with respect to the number of dimensions. 

The compactness inea in the context of parameter estimation provides us a use-

ful theoretical framework for the convergence and stability arguments in 

computer implementations of the discretized problems (see [4-81). 

In this paper, an effort for parameter estimation is directed to the 

numerical method of parameter identification on the boundary, equipped with 

convergence properties for the optimal solution of discretized parameter esti-

mation problem. Let G and aG be the bounded domain and its boundary 

curve such that 

aG = {x = ~(t)I~(t) = (~l(t),~~(t», ~k(t) (k = 1,2) are a 

I-periodic C{r+I}_ class function on [0,1] with Id~/dtl"l- O} 

where {r} := -[-r] and [r] stands for the greatest integer < r. 

Throughout this paper, we assume r > 2. We consider the boundary integral 

e~uation of the second kind, 
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1 
~(s) - f k(s,t;e)~(t)I~~ldt a f(t) 

o 
(1) 

where o is the unknown parameter to be identified. A large number of 

clas5cs of 2-D elliptic boundary value problems can be reduced to systems of 

integral equations of the second kind as described in (1). Such integral 

equat ions are found in many applications to the field of engineering which 

appear in thermal diffusivity, viscous flow, electrostatics, acoustics, 

elasticity, etc. (See [10] and the references therein). 

Hotivated by this fact, we consider the following parameter estimation 

problem. 

(IP) Given the measurement data I/I i 
at t:ero,l] (i 1,2,···,m), 

* f lnd a E (]) wh tch minimizes the OLS 

1 m p 2 
.l(a) ="2 L IHti,e) - I/Iil 

i=1 
(2 ) 

fHlbject to (l). 

In Section 2, we discuss the existence property of an optimal solution for the 

pr.oblem (IP). In Section 3, the finite approximation technique for parameter 

I~stimation is proposed. Theoretical convergence proofs of the approximation 

method proposed are given. In Section 4, the method proposed in Section 3 is 

applied to the boundary parameter estimation of 2-D steady state thermal dif-

fusivity. Finally, some numerical results will be demonstrated in Section 5. 

The notation used throughout this paper is standard and closely follows 

that explained in [17]. For norms, we use a-IX where X is an appropri-
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ate Banach or Hilbert space. We denote by Hr(y) the periorlic Sobolev space 

of arbitrary real order r on Y. The notation eft} (Y) stands for the 

-Rpace of {t}-tlmes Holder continuously differentiable functions on Y. 

2. PRELIKINARIES 

The equation (1) is rewritten symbollically as 

r(I + K(6»~](s) = f(s) for 0 < s < 1 (3) 

with the integral operator 

1 d~ 
K(e) := - f k(s,t;e)(e)l-d Idt. o t 

Throughout this paper we assume that: 

(H-l ) e E e{t} (T;R (1» 

where T is a closed interval in [0,1], t is a real number such that 

1 
t < r - 2" ' and R. is a natural number, respectively; 

(H-2 ) autO < n(I + K(6»tn 
Hr(aC) Hr(aC) 

for each e and V4lEHr (3C); 
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(11-3 ) K(8 ) is a compact linear operator in Hr(aC) 

for each 0; 

(H-4) n(K(8 1) - K(a 2 »W 1 r ~anal - 82ne{t}(ToR(R.»IWDHr(aC) 
H (ac) , 

for YcjI € Hr (aC); 

(11-5) f€Hr(aC). 

The admi.ssible parameter set ® in {IP) is then defined as follows: 

QD is a compact subset of Hr (T;R(R·» and its metric space (~,d) is com-

pact with respect to the distance function 

d := p(x,y) = 
Ox - yl eft} (T;R(R.» 

for x,y€®. 

Theorem 1: Under hypotheses (H-l) to (H-S), there exists at least one 

solution * 8 €® of (IP). 

To prove Theorem 1, we need the preliminary results: 

Proposition 1: Let $1 = $(8 1) and $2 = cjI(8 2 ) be the solutions of 

(2) corresponding to the parameters a
1 

and a 2' Then, under (H-I) to 

(11-'», there exists a positive constant a such that, for Ya a €®, 
l' 2 
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B Icjl1 - cjl2 n ~ 2" p(6 1,6 2)afl 
Hr (aG) a Hr (aG) 

Proof: From (3), it follows that 

(I + K(61»(~1 - cjl2) = (K(6 2 ) - K(6 1»cjl2· 

r By taking the norm in H (aG) and by virtue of (H-2) and (H-4), 

a Dcjl1 - cjl2 D < - p(6 1 ,62)Ucjl2 D 
Hr(aG) - a Hr(3G) 

From this fact and noting that 

Icjl2B <! a(I + K(62»cjl21 = ! afl , 
Hr(aG) - a Hr(aG) a Hr(aG) 

we obtain the a priori estimate (4). 

Proposition 2: For (2), the following inequality holds: 

IJ(6 1) - J(6 2)1 < 'Im aH6 1) - cjl(6 2)n 1 
- H (aG) 

2 2 
x(nH8 1)1 1 + IH8 2)· 1 + 4 

H (aG) H (3G) 

m 
I 11/1 12)1/2 

i=l i • 

By virtue of Sobolev imbedding (see [17, p. 46]), we find that, for any 

1/1 € III (a G) 

m 2 < Icjll • I 11/I(ti)I ~ 11/ID C(3G) - Hl(3G) 
i=l 

By applying this, we obtain the inequality (6). 

(4 ) 

(5) 

(6 ) 
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Proof of Theorem 1: From the compactness property, we may extract a suh-

sequence {a ... } 
n 

of a minimizing sequence {an} in ® such that 

<IS n .... -+ 00. From Propositions 1 and 2 and using (5), we have 

IJ(a ... ) - J(a)1 < a m
2 

p(a ... ,e*)RfO 
nan Hr(aC) 

x{.!..nfn2 +2 
a Hr (aC) 

~ 1 12 1/2 * L ~i} < c p(e ... ,a ). 
i=1 - n 

Hence we argue that 

* J(a ... ) + J(e ) = 
n 

The proof has been completed. 

inf J(e) 
a€$ 

as * e ... + e • 
n 

3. PARAMETER ESTIMATION TECHNIQUE AND CONVERGENCE ANALYSIS 

a + a* 
n'" 

In order to solve (IP) on the computer, we consider a discretized optimi-

z:ttion problem. Many numerical methods have been proposed for solving the 

integral equation (e.g., see [1]-[3] ,[20]). Here we adopt the collocation 

methods wi th spli ne functions. 

points, 

t. 
J 

j 
N = jh with 

and the nodal points 

.... 1 
tj = C1 - 2)h 

lie select an increasing sequence of mesh 

j = N 
O,l, ••• ,N; t:. 

N 
:= {tj}j=O 

with j = 1,2, ••• ,N. 



-7-

We denote by Sk (~N) the space of all I-periodic (k-I)-times continuously 

d l fferentiable splines of degree k with knot sequence ~N . The spline 

collocation method for (3) is stated as follows [I), [20): 

Find 

i'-. __ . . ~'; .'~. <:; -.; 

~N e: s (~N) 
k 

a re Rat is fled. 

such that the collocation equations 

N ~ ~ 
[(I + K(e»4> ](t

j
) = f(t.1)' j = I,2,··.,N (7) 

To formulate the discretized optimization problem, we approximate both the so-

lution 4> 

Let {BN}N+I 
i i=O 

and the admissible parameter e by a parabolic B-spl!ne [9). 

and (SM}M+I 
i i=O 

N be basic elements with the knot sequence ~ 

and ~M (CT), respectively. Then we approximate 4> and e by 

wh(!re 

M 6
i
(t) := 

4>N(t) = 
N+I 
L 

i=O 

eM(t) = 
R.(M+2) 

L 
i=I 

~M 
(Bi,O,O, ••• ,O) 

~M 
(O,B

i
_
M

_
2

,0, ••• ,O) 

• • • 

~M ) 
(0, ••• ,0,B i _(R._I)(M+2) 

N N 
WiBi(t) 

M M 
Ai6i(t) 

for i = O,.·.,M+I 

for i = M+2, ••• ,2(M+I) 

for i = R.M-M+R., ••• ,R.(M+I). 
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The collocation equation (7) yields the linear equation for the unknown coef-

f {ci ent Vf!ctor N w 
N N N 

col(w l ,w2 ,··· ,wN), 

(CN + KN(eM»wN fN (8 ) 

where CN, KN(e M) and fN are N-dimensional element matrices and vector, 

respectively" Since cf>N(t) claims a I-periodic function on [O,lJ, we note 

N N that Wo = wN and 

C1(T;R(R.» into 

wN _ N 
N+1 - wI" 

R(R.(M+2» 

lole introduce the mapping 1M of 

such that 1~ is a compact subset of 

R(R.(M+2» By using this, let us define the admissible parameter class af 
for the discretized parameter estimation problem (A1P)N,M 

af= A 
eM 

eM(t,AM) = 
R.(M+2) 

L 
i=l 

M M 
AiBi(t), 

M M M M M 
A = col(A 1 ,A 2 , .. ·,AR.(M+2» E1 (fl) 

Thus we implement the parameter estimation numerically by solving the problem 

(AIP)N,M Find eM(xM)E~ which minimizes the approximate OL5, 

IN (aM) =! ~ Icf>N(tP,e M) - ~ 12 
2 i=l i i 

(9 ) 

sub.1ect to (8). 

In the sequel, we assume that all hypotheses stated in Section 2 hold only for 

the case r 2. Our next results play a fundamental role in establishinp, 

the convergence proof. 
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Lellma 1 ([20, p. 104, Theorem 3.5]): For each e EC 1 Cf;R(R.», the 

following error estimate holds: 

n~(a) - ~N(a)n 1 < yh.~(a). 2 
H (aG) - H (aG) 

Lemma 2 <rl, p. 3,3]): For any 6 E H2 (T;R(1» and 1 
€E(O'"2)' there 

M M 
exis ts 6 E S2 (6 ) such that 

where n = max 
i 

M -:-e: 
06 - 6 n 1 _ (1) ~ ISh a6n 2 (1) 

C (T;R) H (T;R ) 

It1+1 - ti 1 for ti ,tl+1 E 6M• 

Theorem 2: For each Nand M, there exists an optimal solution of 

(AIP)N,M. 

To prove Theorem 2, we. requi re 

Proposition 3: Let a i = a M
('A7) E~ (i = 1,2). Then 

N 1 
U~ (6 i )n 1 ~ - (yh + l)nfn 2 for i = 1,2, 

H (aG) a H (aG) 
(10) 

N N a ( II~ (8 1) -~ (a 2 )0 1 ~2(Yh+ 1)lIfn 2 n6 1 -6 2 a 1 0.) 11) 
H (ae) a H (aG) C (f;R ). 

Proof: Applying lemma 1, it follows that 
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II~N(a )D 1 ~ O~N(ai) - Hai)O 1 + n~(ai)O 1 
i H (aG) H (aG) H (aG) 

(12 ) 

(a ) n • < (yh + l)n~ i H2 (aG) 

SInce a
i 

e: C1Cf;R(t», we note that, from (H-2), 

o~(ai)1I 2 ~! nfO 2 (13) 
H (aG) a H (aG) 

Combining (12) with (13), we obtain the inequality (10). By using the same 

procedure as in Proposition 2, it follows that 

N NaN O~ (a 1 ) - ~ (a 2 )0 1 ~ - oa 1 - a 2 11 1 _ (1) II~ (6 2 )0 1 • (14) 
H (aG) a C (T;R) H (aG) 

From the inequality (10) to (14), the inequality (11) can be obtained. 

Proof of Theorem 2: Since rt® is compact, there exists a convergent 

suosequence of {aMo,M)} 
n 

such that 

aM().M,) + aM(fN,M) 
n 

N M 
where A' is the solution of 

inf IN(aM().M)) = I N(8 M(xN,M)). 

a~<BM 
). 

M M N M M Hence it suffices to show that, for each Nand M, 8 (). ) + J (8 (). » is 

continuous. From Proposition 2, we have 
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IJN (aM(A ~If» _ IN (aM(A~» 1 

< 12m IcpN(a t1 (AM» - cpN(aM(A~»)a 1 
- Z- 1 H (aG) 

m 
x(ucpN(a M(AM»n2 + II.pN(aM(AM»n2 + 4 L 11/1 12)1/2. 

1 HI (aG) 2 H2 (aG) i=1 i 

Applying Proposition 3, we obtain 

IJN(aM(AM» _ IN(aM(AM))1 
1 2 

~~ (yh + l)na
M

(A7) - aM(A~)"c1(f;R(.O) 
a 

(15 ) 

m 
x !If n { ( y h+1 ) 2 Of n 2 ? + 2 L 11/1 12 } 1 /2 • 

H2 (aG) a H'-(aG) i=l i 

The statement of Theorem 2 directly follows from (15). 

The next theorem shows that the solution of (AIP)N,M converges to the optimal 

solution of (IP). 

M.....NM Theorem 3: The sequence {a (A--')} admits a convergent subsequence 

M _N1 ,Mk 
{a (1' )} such that 

N ,Mk * 
IN(aM(T j » + J(6 ) = 

as Nj'~+CO. 

inf J(e) 
aE® 
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Nj,Mk M 
Since X" E I ®, there always exists 

M'" Nj ,Mk = I aA By using this, it follows that 

eNr~E® 
A 

N ,Mk * 
aM

(,.1 ) - a n 1 _ RCO ) a ~ c (T; 

N , Mk '" N j , Mk '" N j ,~ _ a * n • 
< naMeX" i ) - a, n 1 _ (R.» + De). r.l(-T'R(R.» 

1\ C (T;R ., , 

Applying Lemma 2, we have 

N M. * 
M j 'K) - a n 1 (R.» oa ex- C (T;R 

N M ",Nj'~ * 
-:-€ '" j' k + Da - a n ( ) • < 15 h n a , II 2 (R. ) H 2 (T • R R. ) 

1\ H (T; R ) , 

Noting that ® is a compact set in H2 (T;R(R.» and that n£+ 0 as 

M
k

+ 00, the inequality (16) asserts there exists convergent subsequence 

such 

(16 ) 

M Nj,Mk M Nj,Mk * { a (A ) } wi t h a (X" ) + a as Nj' ~ ... 00. The remainder half 

N H Nj ,Mk of this proof is to show J (a (I . » * ... J(a) as M Nj,Mk * 
a(I )+a, 

N.l' Mk + co. Applying Proposition 2, we derive 

N N.,~ * 
IJ (aM(X".l » - J(a )1 

N N j ,'\ N * N * * < IJ (aM(X" » - J (a )1 + IJ (a ) - J(a )1 

- N. ,Mk N * < 12m a~N(aM(X" J » - 4> (a )0 1 
- -r H (aC) 

X(II4>N(aM(XNj'~1k»n2 + U4>N(a*)u 2 + 4 f 11/1 12)1/2 

H1 (aC) Hl(aG) i=l i 
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* + /2m n~N(a*) - .p(a )IIH 1(aC) 2 

x (n.p N (a *)U 2 + II Ha *) 112 + 4 I 1 tjI 12 1/2. 
HI (ac) HI (ac) i=1 i ) 

By virtue of Lemma 1 and Proposition 3, we obta1n 

N M N.,~ * 
IJ (a (X" ] » - J(a ) 1 

. - .. ' .... , ,. .. N M. . *". - ... '.'- .. 
M ., k 

~ ~ (yh + 1)IIa (fJ ) - 0 "C1(T;R(R.» 
a 

m 
xHfn {(Yh~)2nfU2 + 2 ): ItjI 12}1/2 

H2 (aC) a H2 (aC) 1=1 1 

, - 2 m 
+ h. 21lT'( OfU {(Yh+1) + 1 IIH2 + 4 }: ItjI 12}1/2. 

2a H2 (aC) a 2 H2 (aC) 1=1 1 

From the fact that h + 0 as N
j 
+~, we conclude that 

N.Mk * 
IJN(SM(XJ » - J(S )1 + 0 as Nj'~ + ~. 

The proof has been completed. 

4. APPLICATION TO PARAMETER ESTIMATION OF ELLIPTIC SYSTEMS 

We consider a 2-D steady state diffusion system 

tou = 0 in C (17.a) 
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with the boundary condition 

~ + c(u - g) an 

au an + e~ = 0 

o on aC
l 

(17.b) 

on aG
2 

(17.c) 

where the domain G represents some geometrical shape of the material and one 

part of the boundary aG
I 

means the surface of system structure. The given 

input g stands for the external excitation through the surface aG
I 

and 

c is a known parameter on aG 1• The problem considered here is to identify 

the parameter e on ac2• One possible application in the problem above 

mentioned arises in material testing, in particular, in the area of 

nondestructive evaluation approach in space technology (see [13]). The 

parameter e on aG 2 represents the conductivity and/or heat transfer 

which characterize the structural flaws of unvisual section of the boundary 

aGo The decomposition of aG into aC l and aG 2 is taken as 

aG l {E;(t)lt E [O,t]} and aG
2 

= {E;(t)ltE[t,l]}. By using Green's 

formula, Eq. (17) is reduced to an integral equation on the boundary curve 

(sec [10, Ch. 2],[12]) 

1 t dE; 
$(s) - (A(S»- [f c(t)1nlE;(s) - ~(t)I$(t)l--d Idt 

o t 

1 dE; 
+ f e(t)R.nl~(s) - ~(t)IHt)ldtldt 

t 
(18) 

1 a 
+ b an R. n IF; (s) - E; (t) I H t) I :~ I d t] 

1 t d~ = -(A(S»- f c(t)R.nlF;(s) - F;(t)lg(t)ldEldt 
o 
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wh(!re 

~(s) := u(~(s» for 0 < s < 1. 

Tn the above equation (18), A(S) 

A(S) :={Tr 
Ki 

is given by 

for 

for 

i R. 
sE[O,l]/{tb}i=l 

i 
sEtb i = 1,2,···,1 

(I q) 

where Ki is the internal angle of the boundary at i 
tb' By setting as 

-1 ,... I a d~ I k(s,t;6) = (A(S» (c(t,6)R.n ~(s) - ~(t)1 + ~ 1nl~(s) - ~(t)I)ldt 

and 
1 

f(s) = -(A(s»-l f R.nl~(s) - ~(t)lg(t)I:~ldt, 
o 

we have the representation (1) where 

~(t;6) :=lC(t) 

6(t) 

gCt) := I:Ct)gCt) 

for 0 < t < t 

for t < t < 1 

for 0 < t < t 

for t < t < 1 

reRpectively. Although each integral in (18) becomes singular, its limit is 

computable in terms of its principal value. Without loss of generality, we 

assume that 
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sup IHt) - l;(s)1 < 1. 
O~t ,8.9 

t1or.eover, the following conditions are assumed: 

(A-I) 

(A-2) 

(A-1) 

gEH1(0,l) and 8upp(g)C3G
1

; 

2 -c EH (O,t) 

o < n 1 ~ c( t) ~ n2 < co 

e EH 2(t",1) 

and 

a.e. in (O,t); 

and 

o < n1 ~ a(t) ~ n2 < co 

e (t) = c(t') e(l) = c(O) 

e '(t) c' ('t) e'(l ) c' (0) • 

Then It can be checked that the operator K(e) and the input f satisfy 

the hypotheses (H-2) to (H-5) in Section 2. Hence the results of Section 1 

can be applied to this problem. Since the unknown function e in (l7.c) 

takes its value in H2(0,t";R1), aM(t) in Section 3 is simply rewritten by 

aM(t) M+l ~M() 
t ). B t. = L. i i 

i=O 

In order to assert the assumption (A.3), we require the following linear and 
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inequality constraints: 

h 
M - M -AO = C(t) - ~ C'(t) 

h 
M (-) M '(-) Al = c t + ~ c t 

M hM 
A = c(O) - -- c'(O) M 2 

M hM , 
AM+l = c(O) + ~ c (0) 

M o < a 1 ~ A i ~ a 2 < co for i = 2, •• ·, M-l , 

where 

h 
_ I-t" 
M-~ 

The problem (AIP)N,M in this section is to solve 

subject to 

min IN(AM) = IN(iN,M) 

AM 

(eN + KN(AM»wN = fN 

with the constraints (20), where 

M M M M) A = (A O,A I ,···,AM+1 • 

(20) 

(21) 

(22) 
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N N M The corresponding coefficient matrices C, K (>. ) and vector fN in (22) 

are explicitly r,tven by 

[CN l l1 := 

[K
N

(>.M)]1.1 := 

r fN ] j : = 

where 

N.... N .... 
B1(t i ) + BN+1(ti ) for i = 1,··· ,N;j = 1 

B~(ti ) for i=1,···,N;j=2, ••• ,N-l 

N"" N-
BN(ti ) + BO(t i ) for i = 1,···,N;j = N 

1 1 - M N N 
~-v - f T(ti,t;A ){B1(t) + BN+1(t)}dt 

>.(t i ) 0 

for i = 1, ••• ,N;j = 1 

1 1 
>.(t

i
) ~ T(ti,t;AM)B~(t)dt 

for i=l, ••• ,N;j 

~ fl T(ti,t;AM){B:(t) + B~(t)}dt 
>.(t i ) 0 

2,.·· ,N-l 

for i = 1,2, ••• ,N;j N 

1 
>.(~) l s(tj,t)g(t)dt 

j 

for j = 1,2,· •• ,N 
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M ~ M 
T(s,t;A ) := {C(t,A )!nl~(s) - f,(t)1 

a + an ! n I ~ ( R) - F. ( t) Il I dF. I dt 

s ( s , t ) : = ! n I ~ ( s) - ~ ( t ) I I :~ I 

~ M 
C(t,A ) := 

c(t) 

M+1 ~M() I AiBi t 
i=O 

for 0 < t < t 

for t < t < 1 

For a fixed Nand M, the necessary condition for the optimality of (AIP)N,M 

can be obtained. 

Theorem 4: Set the matrix HM and vector $ as 

N P N P 
SI(ti ) + BN+1(t i ) for i = 1, ••• ,m;i = 1 

[HN] i.1 := { N P Bj(t i ) for i = l, ••• ,m;j = 2,.··,N-I 

N p N P 
HN(t i ) + BO(t i ) for i=I,··.,m;j N 

[1/1 J
1 

: = 1/1 j for j = 1, •• ·, N • 

~N M 
Then the necessary condition for A' to be optimal is characterized by 
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Mfl vN(iN,M),[V KN(iN,M)]'wN(iN,M)(~M _ ~N,M) > 0 
k=O ~k k k 

where 

[eN + KN(~N,M)]wN = fN 

[eN + KN(~N,M)]'VN = _(HN)'(HNwN(iN,M) _ ~) 

and where ~~ is an any element of R(M+2) with the constraint (20). 

Proof: As is well-known, the necessary condition for 

optimal is characterized by 

V IN(iN,M) • (~M _ iN,M) > 0 
~ -

for all ~M with the constraint (20). We note that, from (9), 

where 

N H 
[V~J (~ )]k = (wN (AM»'(HN)'(HNwN(AM) _ ~) 

Ak 

for k = O,I, ••• ,M+l 

N N M 
[w

A
]· :=V

A 
Wj(~) 

k J k -
for .1 1,2,· •• ,N. 

iN,M 

The sensitivity equations for (20) with respect to ~k are given by 

(23) 

(24) 

(25) 

to be 

(26 ) 

(27) 



[eN + KN (). M) Jw~ 
k 
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= -[v KN().M»)WN().M) 
).k 

for k = O,l, ••• ,M+l. 

lienee, by introducing the adjoint equation 

[eN + KN().M»)'vN = _(HN)'(HNwN().M) _ ~), 

we can evaluate the gradient vector by 

[V). IN (). M) ) k .. ( wN ( ). M » , [V). KN (). M) ) ' vN ( ). M ) • 
k 

(28) 

(29) 

(30 ) 

Setting as ).M;::iN,M in (30), the substitution of (30) into (26) yields 

the variational inequality (23). The proof has been completed. 

In the sequel, we consider numerical procedures for solving (AIP)N,M. 

From Theorem 4, we can compute the gradient of the cost function using (30). 

Hence many optimization techniques for the constrained problem are readily 

appl icable to our problem (see (14), [18) and their references therein). We 

Conn represent the constraint (20) as the linear equality and inequality: 

AM).M = bM 
1 1 

(31 ) 

AM).M < bM 
2 - 2 

(32) 

where 
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_ hMc"'(f) 
c(t) - 2 

_ hMC"'('t'> 

[

1 0 0 • • 0 0 0] I c(t) + ~ 
A = 0 10· • 000 

1 0 0 0 • • 0 lOb1 -
o 0 0 • • 0 0 1 I ~c"'(O) 

c(O) - 2 

hMc"'(O) 
c(O) + ~ 

1 62 
-1 0 -6 1 

1 • 
A2 .. I • -1 b2 = • • 62 • • 

• 1 -6 0 -1 1 

For the numerical results reported in this paper, we adopted the gradient 

projection method which is a particularly useful technique for the 

optimization problem with linear constraints as described in (31) and (32) 

(see [14],(18);[19)). The iterative algorithm by the gradient projection 

method can be stated as follows: 

«Numerical Algorithm» 

Step 0: Fix the number of dimensions Nand M for the problem (AIP)N,M. 

Set an initial value vector AN,M(O) satisfying (31) and (32) 

and i .. O. 



Step I: 

Step 2: 

Step 3: 

Compute the grarlient vector 
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V JNO.N,M(i» 
>.. 

by 

[V>..JN(>..N,M(i»)k = wN,[v>.. KN(>..N,M(i»)'vN 

k 

for k = O,l,···,M+I 

[CN + KN(>..N,M(i»)wN = fN 

[~N + KN(>..N,M(i»)'vN = _(HN)'(HNwN(>..N,M(i» _ ~). 

If A~>..N,M(i) ~ b~, set 

nN,M(i) = -v IN(>..N,M(i)) 
>.. 

and proceed to Step 5; otherwise, proceed to Step 3. 

Compute the current direction by 

where 

nN,M(i) = 
pMV IN(>..N,M(i)) 

>.. 

IpMV>..JN(>..N,M(i»I 

pM = I _ AM'(AMAM,)-lA 
P P p P 

(33) 

(34) 

(35) 

(36) 

(37) 

M and A includes the gradient of all currently active constraints p 

associated with matrix M A2 0 

otherwise, proceed to Step 50 

If nN,M(i) * 0, proceed to Step 4; 



Step 4: 

Step 5: 

Step 6: 

Compute (i) 
Ymin 
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satisfying 

IN(~N,M(i) + y(i)nN,M(i» a min ~ IN(~N,M(i) + ynN,M(i» (38) 
min ye[O,y] 

~ 

where y is the largest step that may be taken from 

along n N,M( 1) without violating any constraint. If 

~N,M(i) 

(i) = y, 
Ymin 

M then add the new constraint to the matrix A and proceed to Step 
p 

5; otherwise, the new approximation to the solution is given by 

AN,M(i + 1) .. ~N,M(i) + y(i)nN,M(i) 
min 

and proceed to Step 6. 

Compute the vector ~(AN,M) by . 

6(~N,M(1) = _(AMAM,)-l AMV IN (A N,M( 1). 
p p p A 

If all components of ~ are nonnegative, then set 

~N,M .. ~N,M(i) 

and terminate the computation; otherwise, delete the column of 

corresponding to the smallest components of 6(~ N,M(i». 

(39) 

(40) 

AM 
P 

If i < i , then replace i + 1 by i and return to Step 1; 
- max 

otherwise, print the statement "iteration over" and stop the 

computation. 
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5. NUMERICAL EXPERIMENTS 

This section is devoted to a report of our efforts on computer implemen-

tntion of our techniques for the problem (AIP)N,M outlined in the previous 

section. In numerical experiments, we set the rectangular domain G with the 

boundary curve ~(t) given by 

(2t, 0) for o < t < i-
-' 

, 
1 1 for 1 < t < .!. (2 ' 2t - 2) 4- 2 , 

F;(t) = (~I(t), ~2(t» = 
3 1 

(-2t + "! ' "2") for 1 3 
"!~t<4 

(0, -2t + 2) for 3 
4" ~ t ~ 1. 

Clearly, we have 

d~ d~ 
Id~ I = «_1)2 + (_2)2) 1/2 = 2 
dt dt dt for 0 < t < 1 

and we decompose the boundary aG into aG I and 

The known function c(t) was preassigned as 

c(t) = 10 

The test input was set as 

get) 10 

for 3 
0<t~4 

for 0 < t ~ i 

aG2 

(42) 

by 3 
t = 4' • 

(43) 

(44 ) 
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The unknown function BO(t) in the numerical experiments was given by 

7 for 1 (45) B (t) = e (- - t) - < t < o 0 4 4- -

-800t
2 + 1200t - 440 for 3 31 

4" ~ t < 40 

e O( t) 81 
'\ -40t + "'2 for 31 17 

40 ~ t < 20 

800t 2 - 1400t + 1237 for 
17 7 

2 20 ~ t ~ 8" • 

Solving the boundary element model (34) and (35), the computations of 

element matrix KN and vector fN must be carefully treated since, as 

indicated in Section 4, KN and fN involve the integrands with the weak 

singular kernel. In the numerical experiments, we computed these in the fol­

lowing way. The (t,j)-component of KN (i = 1,2, ••• ,N;j = 2,.··,N-l) is 

rewritten as 
N 

- ~ [ L 
1T R.=1 

tR. 

J 
tR.-l 

~ M ~ N 
C(t,A )R.nl~(ti) - ~(t)IBj(t)dt 

(46 ) 

t 
N R. a N 

+ ~ J an lnl~(ti) - ~(t)IBj(t)dt]. 
R.-l tR.-l 

For the first integral, we decompose it into 

t 
N R.~ M ~ N 
~ J C(t,A )1nl~(ti) - ~(t)IBj(t)dt 

1-1 tR.-1 
Ui 
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ti 

f 
~ M ~ N 

+ C(t,A )tnl~(ti) - ~(t)IBj(t)dt. 
t i - 1 

The firf>t integnmd becomes well-behaved and each integral CAn be .,pproximated 

Ilsing an appropriate Gaussian quadrature formula. On the other hand, the 

second integral becomes singular. In this case, we further decompose it into 

ti 

f ~ M I~ I N C(t,A )1n t i - t Bj(t)dt 
t i - 1 

t ~ I i ~ M I ~ ( t i ) -~ ( t) N 
+ f C(t,A )1n ~ Bj(t)dt. 

t i - 1 It i - tl 

We can compute the first term analytically. The second integrand has a remov-

able singularity at the point ti since l{tl t- O. Therefore, the 

Gaussian quadrature can again be used to approximate this integral. Similar-

1.y, the second integral in (46), which is the so-called "double layer 

potential," has a removable singularity at point 
~ 

ti (see [12] for more 

details). The element vector fN can be computed in the same way. 

Our numerical experiments were carried out as follows: First, the ob-

served data ~ = (liI 1 ,liI 2 ,···,liIm" were generated by solving the boundary 

element model, i.e., 

N' 
liI = 41 (t

p
) 

i i 
(i = 1,2, •• ·,m) 

[eN' + KN'(9)]~N' = f 
N' 

with the true parameter 9 = 9 0 
for N' > N. Secondly, we implemented 

the numerical scheme proposed in Section 4. Experiments were carried out for 



-28-

the dlmenRion N a 40 and M = 10. Namely. we solved the problem 

(AIP)40, 10. The initial guesRes were given by 

10 
[~ (O)J

j 
= 10 for j .. 1.···.10. 

In Step 1, the numerical integration of KN and fN can be accomplished by 

using the eight point Gauss-Legendre formula. In Step 2. parameters of the 

constraint vector b2 in (32) were chosen as 

13
1 

.. 2 6 2 = 12. 

In Step 4, the golden section search was used for a method of optimization 

.llang a line [14]. In Step 6. we set i max = 64. 

In the numerical example, we checked the sensitivity of our estimation algo-

rithm with respect to the number of sensors by testing experiments for a 

d lfferent number of sensors. From several numerical findings. we suggest 

that, for a couple of fixed dimension (N.M) of (AIP)N.M. the proposed method 

requires at least M sensors, i.e., m 2 M. in order to assert the 

effer.tfveness of the propoRed method. To demonstrate this, we present 

numerical results for the following three typical cases; 

(Case 1) m .. 20 

p 2i+9 for i" 1 2 •••• 20 
ti = 80 • • 
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(Case 2) m = 10 

41+7 
for 80- i = 1, ••• ,5 

t P = i 
\ 33 

80 for i = 6 

4i+9 for 8'0 i =, 7, ••• ,10 

(Case 3) m = 4 

12i-l for i 1,2 """"8"() 
• 

t P = i 
12i+l 

i = 3,4. for 80 

The corresponding sensor locations are illustrated in Fig. 1. Our results are 

l,lven tn Tables 1, 2, and 3. For convenience of comparative discussions, the 

estlmateci parameter function eM(t,AN,M) and true function 6
0
(t) are 

shown in Flgs. 2, 3, and 4, respectively. 

6. CONCLUDING REMARKS 

The computational costs in solving the identification of distributed 

parameter systems often tend to be quite expensive. For some class of 

boundary value problems (BVP), computational savings can be achieved in the 

usc of the boundary integral equation method (BIE). Since the BIE method 

makes it possible to replace the BVP by certain integral equations, the 
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application of the HIE method to the related identification problems has the 

(>ffect of reducing the dimension of the problems. A couple of effective 

eAtlm~tlon algorithms by HIE methods have been proposed for identifying 

houndary parameters without the theoretical convergence proofs [211,[22]. In 

this paper, we developed the numerical method with emphasis on a theoretical 

framework for the boundary parameter estimation technique. To assert the 

convergence property, we claim the regularity of the solution for an integral 

e~uation model and also require compactness of the set of parameter functions 

to be identified. A spline collocation method of even degree was used to 

obtain a spline-based parameter space. Following the compactness ideas for 

parameter estimation in [4]-[8], a convergence property for the discretized 

solutions of (AIP)N,M was shown in Section 4. The efficiency of the theo­

retical idea was demonstrated by the numerical experiments. Our approach can 

he readily extended to treat optimal shape design, optimal shape control, etc. 
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05
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:·~f J 0.1 ~ ,l 

0.0 I 0'0 0'0 0' 0' 0' 0.0 
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 

Case-3 
0.6[ 

0.5 0 

0.4 ~ ct> 

0.3 ~ 

0.2 ~ 

0.1 r 
0.0 0' f 

0.0 0.2 0.4 0.6 

Fig. 1. An illustration of sensor locations in Cases 1, 2, and 3. 
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AN M 
Table 1. Estimated Value of A' in Case 1. 

initial guess iteration 8 iteration 16 iteration 32 j,N,M (iteration 64) 
,\~,M 10.000 8.7072 8.7377 8.8241 8.8812 
>.N,M 

s 10.000 7.7119 7.7159 7.7352 7.7494 
,\l'I,M 

4 10.000 6.9597 6.9432 6.9102 6.8905 
,\~,M 10.000 6.5553 6.5277 6.4654 6.4263 
>.N,M 

6 10.000 6.5553 6.5267 6.4655 6.4262 
>.l'I,M 

7 10.000 6.9539 6.9406 6.9106 6.8902 
>.:;"M 10.000 7.7028 7.7117 7.7360 7.7491 
>.N,M 

I) 10.000 8.6924 8.7319 8.8250 8.8807 
Value of 6.1742 1.5297 1.3093 7.6534 5.2906 
Cost xlO-s X 10-7 X 10-7 X 10-8 X 10-8 

Function 

1 0 i oc:::: ::::>" 

I rue f~nction 
, : : . , 

Bl-....... ......... }-., .......... .Estim.at.ed .. f.unction ...... ~~( ................ . . , : j : " · .' · . · . · . · . .... . -' .- ~ ---------6 r······ .......................... . ....................... 

41-' ..................................................................... [ ................. . 

2 l-.............. : ....................................................................... . 

O~I--------~--------~------~--------~--------~ 
0.75 O.BO 0.B5 0.90 0.95 1.00 

t 

Fig. 2. True and estimated function in Case 1. 
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AN M 
Table 2. Estimated Value of A' in Case 2. 

initial guess iteration 8 iteration 16 iteration 32 ~N,M (iteration 64) 
~;,M 10.000 7.8689 8.0285 8.1654 8.3297 
~N.M 

3 10.000 7.5169 7.5837 7.6076 7.6438 
~IV.M 

4 10.000 7.2489 7.2387 7.1752 7.1108 
~:.M 10.000 7.1080 7.0479 6.9372 6.8164 
~~.M 10.000 7.1215 7.0452 6.9370 6.8159 
~IV.M 

7 10.000 7.2887 7.2311 7.1749 7.1094 
~N.M 

8 10.000 7.5817 7.5716 7.6076 7.6421 
~IV.M 

9 10.000 7.9562 8.0133 8.1664 8.3289 
Value of 3.6011 7.2368 5.4085 4.1514 2.7980 
Cost x10-3 x10-7 x10-7 X 10-7 X 10-7 

Function 

10 " ::::a= 

"" True flmction , . . ., , : : ., 

8 J-............. ><" ............. .Estimat.ed .. f.Unctian ... .... l ... ..<.' ......... .. .. . "'" ; L ; "; ..... . . 
.... . . . ... - . . -- . :-- ------ -:- : 

6 ~ ................ ~................... ...... . ..... ···················f·············· ... . 
: : . . 

41-······· . .; ......................................................................... . 

2 ...................... . . .................................................. . 

o~'--------~----------~--------~--------~--------~ 
0.75 0.80 0.85 0.90 0.95 1.00 

t 

Fig. 3. True and estimated function in Case 2. 
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~N M 
Table 3. Estimated Value of ~, in Case 3. 

---

initial guess iteration 8 iteration 16 iteration 32 ).N,M (iteration 64) 
).IV,M 

2 10.000 7.2629 7.7044 7.7634 7.9721 
).~,M . 10.000 7.4443 7.5174 7.5326 7.5681 
).IV,M 

4 10.000 7.5814 7.3820 7.3639 7.2961 
).~,M 10.000 7.6516 7.3108 7.2726 7.1076 
).IV,M 

6 10.000 7.6511 7.3110 7.2722 7.1073 
).~,M 

7 10.000 7.5800 7.3853 7.3626 7.2684 
).IV,M 

8 10.000 7.4419 7.5227 7.5307 7.5673 
).JV,M 

9 10.000 7.2596 7.7119 7.7611 7.9714 
Value of 2.3216 4.8032 2.8174 2.6762 1.8701 
Cost x10-3 x10-7 X 10-7 X 10-7 x10-7 

Function 

10, = ~ 

fLmction . . , : . 

8 l-........... >:-.~) .............. EStimat.ed .. f.Unction ....... ~ .. ;.~< ... . 
1----- ----~--~-------J---- ------r~ . . . . 

6 l-.................. ; .................. ~ .. . .. . . ..... ~ ................... ; .................. . 
. . . 

4 r·················· ........................................................ ; .................. . 

2 L .............. ···· ........................................................ ; ................. . 

O~I ------~------~------~------~----~ 
0.75 0.80 0.85 0.90 0.95 1.00 

t 

Fig. 4. True and estimated function in Case 3. 
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