
NASA Contractor Report 181667

ICASE REPORT NO. 88-31

ICASE
AUTOMATICALLY GENERATED ACCEPTANCE TEST:

A SOFTWARE RELIABILITY EXPERIMENT

Peter W. Pretzel

JKASi-Cfi-181667) AB3GEATICAILY GENERATED N88-23984
ACCEPTANCE TEST: ,A SCFTBAEE EEIIAEIIJTY
EXFEBIMEK1 Final Eeport (K S £ f i) 22 p

CSCL 14D onelas
G3/38 j 01460-28

Contract No. NAS1-18107
May 1988 .,. -

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

NASA
National Aeronautics and
Space Administration

langfey Research Canter
(Hampton, Virginia 23665

Automatically Generated Acceptance Test:
A Software Reliability Experiment

Peter W. Protzel *

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center

Hampton, VA 23665

Abstract

This study presents results of a software reliability experiment that investigates
the feasibility of a new error detection method. The method can be used as an
acceptance test and is solely based on empirical data about the behavior of inter-
nal states of a program. The experimental design uses the existing environment of
a multi-version experiment previously conducted at the NASA Langley Research
Center, in which the 'launch interceptor' problem is used as a model problem. This
allows the controlled experimental investigation of versions with well-known single
and multiple faults, and the availability of an oracle permits the determination
of the error detection performance of the test. Fault-interaction phenomena are
observed that have an amplifying effect on the number of error occurrences. Prelim-
inary results indicate that all faults examined so far are detected by the acceptance
test. This shows promise for further investigations, and for the employment of this
test method in other applications.

*This research was supported by the National Aeronautics and Space Administration under NASA
Contract No. NAS1-18107 while the author was in residence at ICASE, NASA Langley Research Center,
Hampton, VA 23665.

1. Introduction

The problem of dealing with software faults has become one of the most critical issues in

the design of systems that have to meet very high reliability requirements, especially in

life-critical applications. This is also reflected by the increasing cost of software testing

and maintenance, which has been estimated to consume 70% of the overall software

development effort [1]. Thus, the development of effective error detection techniques

plays a major role in the effort to reduce the cost and to increase the reliability of

software. A comprehensive overview about research activities and results in the area of

validation, verification, and testing strategies can be found in [2] and in a more recent

survey by Morell [3], which includes an extensive annotated bibliography.

Although many different approaches to software testing and error detection have

been proposed in the last years, the basic problem is far from being solved. There

exists no unified methodology yet, and each strategy has its own advantages. A recent

empirical study by Basili and Selby [4] even indicates that code reading by stepwise

abstraction is at least as effective as on-line functional and structural testing in terms

of number and cost of faults observed; however, it is also stated that the direct extrap-

olation of these findings to other testing environments is not implied. But in general it

is expected that the production and testing of complex and highly reliable software will

require a high degree of automation of the testing and verification strategies in order

to eliminate as much subjectiveness and human intervention as is practical [5,6].

This paper addresses the problem of error detection by studying the feasibility of an

acceptance test solely based on empirical data about the behavior of internal states of

a program. The following section describes the basic idea of the proposed method and

discusses implementation and application issues. In order to study the effectiveness and

error detection capability of this approach, an experiment was originated by using the

existing environment of a previously performed multi-version experiment at the NASA

Langley Research Center. Section 3 describes the experimental design, which uses the

'launch interceptor' problem as a model problem, and section 4 shows the empirical

results obtained so far. Another aspect of the experiment is the investigation and

observation of fault interaction phenomena, and how it might affect the error detection

performance. These results are also given in section 4, followed by a general discussion

in section 5. In section 6, the results are summarized and conclusions drawn.

2. Acceptance Test Based on Empirical Data

The starting point of this approach is the definition of several test-bits within the appli-
cation software; for example, these test-bits might be derived from certain intermediate
results or flags. The test-bits are combined into a pattern which reflects the internal
state of the program during its execution. Empirical data about this pattern is collected
from the execution of an oracle by storing the values and the frequency of the test-bit
patterns in the form of a distribution. This distribution contains information about
the correct program behavior and can be used as an acceptance test for the application
program, in which for each run the observed pattern is compared to the data stored in
the distribution. If the observed pattern has never occurred before, i.e. is not listed in
the distribution, then this corresponds either to a software error or to a correct, but
very unusual, new event. In either case, a 'warning' message should be produced as an
indicator of a dubious output or appropriate error handling measures should be taken.

But there is also the possibility that a software error produces a 'known' pattern
that is listed in the distribution and has occurred under different input conditions as a
'correct' pattern during the test run of the oracle. This is possible because the test-bit
pattern can be seen as the product of mapping the (usually infinite) input space onto a
finite set of numbers. Therefore, the input space contains an infinite number of points
that produce the same bit pattern. Since such an error would not have been detected
by comparing the pattern with the distribution, the frequency of these events determine
the error detection performance. Unfortunately, there is no general analytical way to
predict this performance because of the complexity of the problem and the dependency

on the application, but this is the case for almost all error detection techniques.

One problem associated with this approach is the availability of an 'oracle', that is
an external mechanism that produces the correct results for a given set of inputs. In
this context, it is important to distinguish between a true oracle and a pseudo-oracle
[7]. If a true oracle is available, which produces all required outputs always correctly
and within the required time, then there is clearly no need for any testing, and such
an oracle can simply be used as the application program; but this is hardly ever the
case. However, there is a certain class of applications where a pseudo-oracle is available,
which might be less efficient than required for the final application, or less complete
and able to produce only certain parts of the required output.

Examples for the implementation of a pseudo-oracle are the use of a very high level

language [7] or executable specification languages [6], which are less likely to be in-

correct than the application program, but cannot be used for an on-line comparison

to the output of the application program in real time due to the inefficiency of the

compiled object code. Another important class of applications is the area of paral-

lel programming, in which it is quite common that a sequential program version is

written before implementing the parallel version in order to check and verify the used

algorithms. Then the sequential program can be used as a pseudo-oracle for parallel

debugging, but with the same difficulty of an on-line comparison in real time. An

incomplete pseudo-oracle might be available when analytical methods or formal proof
techniques allow one to predetermine only partial aspects of the software behavior, for

example, the values or the range of values of certain internal states of the program.

Wild suggests e.g. in [6] the use of algebraic specification of abstract data types to
generate assertions about the general behavior of the system.

The additional effort to develop a pseudo-oracle is especially justified or even re-

quired in life-critical applications and other areas where high reliability requirements

have to be met. If a pseudo-oracle is available, it can, of course, be used to generate

specific test cases for an off-line testing of the application program, and this should

always be done to test, for example, the handling of exceptional cases by employing

special or extremal values. But in order to develop an acceptance test that gives an

(on-line) error indication after each run, it is necessary to make some assertions about

the correct software behavior, and to use this information for judging whether the
current behavior is acceptable.

In contrast to the classical error detection and program instrumentation techniques

[8,9,10], the proposed method derives these assertions solely from empirical observations

about the behavior of a pseudo-oracle. Thus, it is not necessary to have any a priori

knowledge about the correct behavior, which is the major difficulty in implementing

standard instrumentation techniques. In order to get sufficient information about the

program behavior, a representative set of test cases has to be provided for the run of

the pseudo-oracle. One way to automate this process is the use of randomly generated

input data according to the expected usage distribution. Although random testing is

a controversial issue, a comparative study by Duran and Ntafos [11] shows its cost

effectiveness for many programs with the application of only 25 to 120 random test

cases. The use of random testing seems reasonable in the context of the presented

approach, since it is based on statistical data about the program behavior, and the

availability of a pseudo-oracle allows the automatic generation of a large number of

test cases in the order of 104 to 106.

The next section describes the 'launch interceptor' program, which is used as a

model problem for the implementation of the described test method, and the design of

the experiment which is performed to study the feasibility of this approach and to get

statistical data about the error detection performance.

3. Experimental Design

The 'launch interceptor' (LIC) problem was chosen as an application because it is a well-

known model problem, which has been used in various other experiments for software

reliability estimation and modeling [12,13,14], and for evaluation of the independence
assumption in multi-version programming [15]. This experiment uses four different

program versions from a previous software reliability study carried out by the Research

Triangle Institute (RTI) for the NASA Langley Research Center [13,14]. This allows a

controlled experimental investigation since there is considerable confidence that all the
original faults in the different versions have been identified during extensive testing by

the previous study, and these versions can now be instrumented with known single or

multiple faults. Furthermore, there is another empirical study that has used the LIC

problem to evaluate the error detection performance of standard self-check techniques

[16], and it is interesting to compare these results to those of the present experiment.

The launch interceptor program can be seen as part of a hypothetical antiballis-

tic missile system that reads simulated radar tracking information and has to decide

whether the radar reflections represent the trajectory of a missile. This is done by

using 15 different geometrical conditions, called launch interceptor conditions (LICs).

If a missile is detected, a signal to launch an interceptor has to be generated. Figure 1

shows a schematic representation of the launch interceptor program.

For each run, the program reads a random number of up to 100 two-dimensional

points as its input, which are randomly generated according to a specified usage distri-

bution. The program determines which of the 15 LICs is met for the given set of input

points. For example, LIC 1 is met if there exists at least one set of two consecutive

•••1 »»

?
I |

LIC LIC
1 2

' T^N2T3 4

/ LCM: ^

Logical

Connector

Matrix
\ /

5 6 7 8 9 1 0 1 1 1 2]

""""""!

LIC
1 5
H

L 3 1 4 1 5| CMV

1 Conditions Met Vector

/ ^\\ PUM \

\" ^/
Final Unlocking Vector y

F U V 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2]

t

Prel iminary

Unlocking

Matrix

L 31 4 1 5

L Launch Signal

Figure 1: Schematic representation of the launch interceptor program.

points that are a distance greater than a given length / apart. If this is the case, the
first bit of the Conditions Met Vector (CMV) is set to '!', otherwise it remains at '0'.
The length / is a parameter for LIC 1, and there are other parameters for the various
LICs that are given as additional input. The Logical Connector Matrix (LCM) and the
15 diagonal elements of the Preliminary Unlocking Matrix (PUM) are further input
information that dictate how to combine the outputs of the 15 LICs and which of them

are relevant for the current set of input points. By using this information and the

results of the CMV, the elements of the Final Unlocking Vector (FUV) are computed.

The final launch bit is set to '!' to signal an interceptor launch if and only if all 15 bits
of the FUV are set to T.

Thus, the launch bit is the only true output of the program, while the CMV, the

FUV, and the non-diagonal elements of the PUM can be seen as intermediate results

of the computation. The values of the parameters used for the determination of the 15

LICs are the original values of the previous experiment [13], and are not changed during

the test runs. Some of the LCM-elements are also constants and some are randomly

generated for each run with a given probability distribution. All of the 15 binary

diagonal elements of the PUM are randomly generated for each run. More detailed

information about the values and the generation of the parameters can be found in

[13], which also contains the complete program specification.

The binary form of the intermediate results in the LIC program makes it easier

to select appropriate test-bits for the proposed acceptance test, but similar situations

can be found in many programs, for example in the area of digital control problems.
For this application, the 15 bits of the CMV and additionally the final launch bit

have been selected as test-bits. They are combined to a pattern in the order of the

CMV enumeration with the first bit of the CMV (corresponding to LIC l) as the most

significant bit and the launch bit as the 16th and least significant bit. The order of the

test-bits is arbitrary in principle, but important to define because the pattern will be

referred to in its octal or decimal representation. These 16 bits are selected as test-bits

because they represent important intermediate results as well as the final output. The

general problem of selecting test-bits will be discussed in section 5.

The definition of some terms used in the following is essential to the interpretation

of the results. In this context, it is especially important to distinguish between the

terms fault and error. According to [14], a fault is a conceptual flaw in the program.

An error is seen as the manifestation of a fault under certain input conditions, and

results in an undesired state of the program. Thus, a fault is the cause of an error.

A fault is latent as long as it has not caused any errors, but exists in the program as

a potential cause [l]. An error is latent as long as it is not detected by a detection

mechanism. In the following, the term bug is also used to characterize a software fault.

Since the meaning of bug and fault is identical, both terms are used interchangeably.

Furthermore, a test case is denoted as a single program run, in which the program is

provided with a complete set of input data and generates the corresponding outputs.

Figure 2 shows the configuration of the program versions for this experiment. After

identifying and removing all the bugs, three of the four available versions are employed

as oracles and their outputs, that is the launch signal and all intermediate results,

are compared by a voter for each test case. The three oracles together with the voter

constitute the so called "gold-version". This configuration is chosen to increase the

confidence of getting a correct result. Two of the versions are instrumented with known
bugs, and all the outputs of all versions are compared to the gold-version. The names

of the bugs refer back to the original numbers assigned in the previous experiment, in

which, for example, bug 7 and 8 were identified in one version called ATI, and another
version (ATS) originally contained bug 2 and 13 [13,14]. These previous publications

also give a detailed description of those bugs. In Figure 2 for example, three copies of

version ATI are used, each instrumented with bug 7 only, bug 8 only, or bug 7 and 8,

respectively. The run of a given number of test cases is automatically performed by
a software package called N-version controller developed at NASA Langley Research

Center that generates the input data, executes the versions, and examines the outputs.

Detailed information about certain events, like e.g. output disagreements, are stored

according to commands specified by the experimenter.

The gold-version of this experimental multi-version environment actually represents

a true oracle. As discussed in the previous section, this is not necessarily required for

the application of the proposed test method, but in the context of the performed

experiment, it is required to have a true oracle for the evaluation of the effectiveness

of the test method. Thus, it is necessary to detect and to list all error occurrences in

order to see if, and how many of, these errors would have been found by applying the

acceptance test. But since the test is based on empirical data about the correct program

behavior, the first step of the experiment is to gather this information by executing

the gold-version for a certain number of test cases. These experimental results are

described in the next section.

Gold-Version

Figure 2: Configuration of the multi-version environment.

4. Results of the Experiment

Since 16 bits are selected as test-bits and combined to a pattern, there are 216 = 65535

different patterns that can theoretically occur. To obtain the desired information about
the program behavior with respect to the test-bit pattern, data about the values and the
frequency of the patterns were accumulated by executing the gold-version for various
numbers of test cases. Surprisingly, only 208 different patterns out of the 65535 possible
patterns occurred after one million test cases. Furthermore, one out of the 10 most

8

frequent patterns occurred in about 95% of the test cases and there is one special case

that occurred in 71% of all test cases. This special pattern with an octal value of

'177777' represents the event that all of the 15 launch interceptor conditions were met

(all CMV elements set to '!'), and that the launch signal was given (test-bit 16 also set

to '!'). Table 1 shows a partial listing of the distribution of patterns, which is called

"gold-distribution" because it reflects the correct program behavior and was obtained

by executing the gold-version. Figure 3 shows a plot of the gold-distribution with

the number of occurrences related to the total number of test cases to get a relative
frequency representation.

The shape of the distribution in Figure 3 depends on the (arbitrary) definition of

the order of test-bits, but it is interesting to observe the considerable differences in the

frequency of different patterns. The frequent occurrence of the special case with all

bits set to '!' also means that a launch signal is given in more than 71% of the test

cases under random input conditions. Since this is hardly the expected behavior of a
real anti-ballistic missile system, the LIC program has to be regarded as a hypothetical

model problem. The occurrence of only 208 different patterns in one million test cases

raises the question how the number of different patterns depends on the number of

test cases. Figure 4 shows the observed statistical convergence by executing the gold-

version for different numbers of test cases. The statistical convergence can be used to

determine the number of test cases necessary to get representative information about

the program behavior. Thus, the number of different patterns can be seen as a special

kind of 'coverage measure', and provides useful supplementary information about the

testing process.

One reason for the occurrence of the small number of different patterns is possible

dependencies between test-bits. In fact, there are three obvious dependencies due to

the specification of the underlying launch interceptor conditions. For example, the

output of LIC 8 (CMV 8) is set to '!' if a certain condition A is met, and CMV 13 is

set to '!' if the same condition A and another condition B is met [13,15]. Therefore,

LIC 13 can never be met if LIC 8 is not met, and this dependency inhibits all pattern

combinations with CMV 8='0' and CMV 13='!'. Similar dependencies exist for two

other LIC pairs and it can be estimated that these three dependencies inhibit 58% of

the possible pattern combinations. But this does not yet explain the observed small

number of different patterns. It would be interesting to apply formal proof or analytical

9

test-bit j

decimal

0

64

1024

1088

8192

8256

9216

9217

9280

9281

>attern

octal

0

100

2000

2100

20000

20100

22000

22001

22100

22101

number of

occurrences

4962

1

4706

1

1359

348

7434

1

23517

1

test-bit

decimal

»

65518

65519

65520

65522

65528

65529

65530

65531

65533

65535

pattern

octal

177756

177757

177760

177762

177770

177771

177772

177773

177775

177777

number of

occurrences

181

798

1

1

9

9

6

41

2

705731

Table 1: The "Gold-Distribution" after 1 million test cases (partial listing).

1 VJ

0)

3 1 n-2o ' u
0
o
+— | \J
o
>~

Q)
13
CT i Q-5

•4—

(U
l_

m-7

o

i

i i i

,

i i

0. 6.00e+04 1.20e+05
test-bit pattern (octal)

1.80e+05

Figure 3: The "Gold-Distribution" after 1 million test cases.

10

CO
c

250

200

Q.

C
CU

150

~ 100

H—

o

d 50
z

0
0. 4.00e+05 8.00e+05

No. of test-cases

Figure 4: Statistical convergence of the number of different test-bit patterns.

techniques to detect other, possibly more subtle dependencies.

The question in using this gold-distribution as an acceptance test is whether soft-

ware errors produce one out of the 208 known patterns or a different pattern. This

information was obtained by executing the versions that contain different bugs together

with the gold-version. The bugs were not removed after an error occurred, but each

discrepancy between the outputs was registered and the values of the corresponding

test-bit patterns were stored. Table 2 shows examples of these listings for three dif-

ferent bugs after executing 234,988 test cases. By looking at the erroneous pattern

(bug-pattern), it can be determined if this pattern is listed in the gold-distribution. If

it is not listed, the error would have been detected by the proposed acceptance test.

Additional information about the bug-effects are also listed in Table 2. The com-

parison of the bug-pattern and the corresponding correct pattern of the gold-version

(gold-pattern) shows that bug 2 produces errors by changing the output of LIC 13

from '!' to '0', while bug 13 has the opposite effect. The errors caused by bug 7 affect

11

bug

name

bug2

bug2

bug2

bug2

bug2

bug2

bug2

buglS

buglS

buglS

bug!3

bug?

bug?

bug?

bug?

bug?

bug?

bug?

bug?

bug-

pattern

140600

142700

160600

160640

160700

177724

177767

10

2010

100010

102010

0

0

100

2000

2000

2100

177651

177657

gold-

pattern

140610

142710

160610

160650

160710

177734

177777

0

2000

100000

102000

20000

20100

20100

22000

22100

22100

177751

177757

number of

occurrences

1

1

2

2

2

16

338

1114

1124

126

108

73

1

2

259

5

22

1

2

bug-

effect

LIC13 1 -> 0

LIC13 1 -»• 0

LIC13 1 -> 0

LIC13 1 -> 0

LIC13 1 -> 0

LIC13 1 -> 0

LIC13 1 -> 0

LIC13 0 -> 1

LIC13 0 -> 1

LIC13 0 -> 1

LIC13 0 -> 1

LIC3 1 -> 0

LIC3+10 1 -*• 0

LIC3 1 -> 0

LIC3 1 -+ 0

LIC3+10 1 -> 0

LIC3 1 -> 0

LIC10 1-^0

LIC10 1 -> 0

0:detected

l:undetected

0

0

1

0

0

0

0

0

0

0

0

1
1
1
1
1
1

0

0

Table 2: Exemplary listing of error occurrences for several bugs.

the output of two different LICs and there are also cases with a two-bit disagreement,

that is, both LIC outputs are changed simultaneously. This analysis of the bug-effects

provides valuable information for locating the faults.

As a measure for the error detection performance of the acceptance test, an error

detection rate is defined as the number of errors detected relative to the total number

of errors occurred. Table 3 shows the values of the error detection rate together with a

summary of the error statistics. It can be seen that a remarkably high error detection

12

bug
name

bug2
bug!3
bug2+13

bug7
bug8
bug7+8

number of
test cases

234,988
234,988
180,000
234,988
234,988
234,988

number of diff.
error patterns

94
4
92
84

rel. number of
error occurrences

1.4%

1.1%
5.2%
0.5%

error detec-
tion rate
82.0%

100.0 %
98.8 %

8.3%
67 abort cases

like bug?, but additionally 90 abort cases

Table 3: Summary of the error statistics.

rate was observed in most cases, which is even 100% for errors caused by bug 13. But
the relatively small error detection rate for errors caused by bug 7 also demonstrates
the different sensitivity of the test for different bugs. For the interpretation of these
results, it is essential to distinguish between the error detection rate and the fault
detection rate, which can be defined as the number of detected faults relative to the
total number of faults. The error detection rate is an estimator for the conditional
probability of detecting an error under the condition that the error occurs. Only if this
rate is zero for a given number of test cases, that is none of the error occurrences is
detected, is the fault not detected. This shows clearly that all the faults investigated so
far would have been detected by using this test method. These results show promise for
further investigations of different faults, since it seems highly unlikely that errors caused
by a specific fault produce always one out of the known patterns of a gold-distribution.

Another aspect of this experiment was the investigation of fault-interaction phe-
nomena, and how this might affect the error detection rate. For example, Table 2
shows that bug 2 and bug 13 affect the output of LIC 13 in an opposite way, and one
could suspect that this leads to a compensational effect if both bugs are present. In
order to study this phenomenon, a version with both bugs (bug2+13) was executed on
180,000 test cases. The result in Table 3 indicates that the presence of both faults has
an amplifying effect, because the relative number of error occurrences is considerably
higher than the sum of these numbers for the single faults. But despite the high rate
of error occurrences, a very high error detection rate of 98.8% was observed, which
means that 98.8% of the errors produced patterns not listed in the gold-distribution.
The same experiment was made by executing a version with bug 7 and 8, but since

13

bug 8 produced only abort cases, the results are difficult to quantify. Nevertheless, a

similar amplifying effect can be observed because 23 additional abort cases occurred in

the presence of both faults.

The test-bit pattern can be regarded as the product of mapping the N-dimensional

input space onto a linear array, and it can be used to visualize this fault interaction

phenomenon. Figure 5 shows plots of the produced error patterns after executing the

version with bug 2 only, bug 13 only, and bug 2 and 13 for 60,000 test cases. It can be

seen that the errors of bug 2 and bug 13 produce patterns in different 'regions'. The

version with both faults produces similar patterns in those regions, but also additional

patterns with a high frequency in other regions. Since the effect shown in Figure 5

represents only one possible fault-interaction phenomenon, further empirical studies are
necessary to classify different effects. The use of the test-bit patterns might be helpful

for visualizing these effects and to gain more insight in the behavior of programs with

multiple faults.

5. Discussion

It is interesting to look at the results of another empirical study that has also used

the LIC program to evaluate the fault detection performance of standard self-check

techniques [16]. In this study, 8 programs were selected out of 27 different versions

from a previous multi-version experiment [15]. Three copies were made from each

of the 8 programs and assigned to 24 students who instrumented the programs with

self-checking code. The programs were executed using the test cases on which they

had failed in the previous experiment along with 20,000 new randomly generated test

cases. The students applied overall 865 self-checks in the 24 programs, but only 33

checks were effective in detecting a fault. These effective checks detected only 11 out of

20 previously known faults, but also 6 new faults that were not found by over one million
test runs of the previous experiment. Furthermore, 22 new faults were introduced by

the students during the instrumentation of the programs.

Although the employment of 24 students does not represent an industrial environ-

ment to perform software testing, the results of this study clearly show the difficulties

in developing effective self-checks for the considered application. The results also con-

firm the known problem of introducing new faults by changing the program code.

14

a) Bug2: 777 errors in 60,000 test cases (1.3%)

M

ô
_

0)

» -̂
o

E
D
C

10°

102

10°

-

-

1 1 1 1 1 1 M l 1 1 ;

103
b) Bug13: 649 errors in 60,000 test cases (1.1%)

.0

I
10°

I I I I I

103

V)l_
o

£ 102

c) Bug2&13: 3030 errors in 60,000 test cases (5.1%)

JQ

E

10°
j | I

0. 6.00e+04 1.20e+05
test-bit pattern (octal)

1.80e + 05

Figure 5: Visualization of fault interaction in form of produced error patterns.

15

Unfortunately, these results cannot be directly compared to the results of the present
experiment, since the program versions and faults are different. But it can be seen
that the LIC problem is not a trivial example that allows an easy implementation of
standard error detection techniques.

There are several problems associated with the use of the proposed acceptance test
that limit the range of possible applications. One problem concerns the availability of
a pseudo-oracle, and this has already been discussed in section 2. Another problem
concerns the definition or placement of test-bits within the application program. This
is basically the same problem that arises in all instrumentation techniques, and the
existing methods for locating insertions could also be applied for locating test-bits. If
the application mainly uses binary variables, for example in digital control problems,
then it is not even necessary to insert additional code, and appropriate test-bits can
be identified by using the existing variables. This avoids the problem of introducing
new faults by changing the source code. If it is not possible to derive the test-bits from
existing variables, the program might be instrumented with assertions that result in an
binary output. For example, in [5] executable assertions are used in a different context,
but these techniques could be easily combined.

Another aspect is the occurrence of 'false alarms'. Since the gold- distribution does
not contain all possible patterns, it is possible that the application program produces
a pattern that corresponds to a correct result, but is not listed in the distribution. The
frequency of these false alarm cases depends on the number of test cases that are used
to produce the gold-distribution, or on the statistical convergence of the number of
different patterns, respectively. During the performed test runs, only three false alarm
cases were observed, which is not seen as a serious problem compared to events in which
an actual error is not detected. Applications that tolerate a relatively high number of
false alarms could even use only a subset of the gold-distribution, for example only the
50 most frequent patterns, because this increases the error detection rate.

6. Summary and Conclusion

The goal of this study was to investigate the feasibility of an error detection method
that can be used as an acceptance test. The basic idea is to define a test-bit pattern
within the application program that represents the internal states of the program. The

16

values and frequency of this pattern are stored in the form of a distribution during the

execution of a pseudo-oracle to get information about the correct program behavior.

This information can be used as an acceptance test for the application program, in

which after each run the observed pattern is compared to the data stored in the dis-

tribution. If the observed pattern has never occurred before, it corresponds either to a
software error or to a false alarm, but false alarms were observed in only three cases.

On the other hand, it is also possible that an error produces a pattern that is listed in

the distribution, and these events determine the error detection performance.

In order to study the error detection performance, an experiment was performed

by using the existing environment of a previous multi-version experiment that uses the

launch interceptor problem as a model problem. Several versions instrumented with

known single and multiple faults were executed together with an oracle to see if the

occurred errors would have been detected by the acceptance test. The results obtained

so far show error detection rates between 82% and 100%, except for one case with a

rate of 8.3%. Since the error detection rate was greater than zero in all cases, all faults

were detected by the acceptance test. The presence of two faults in the same version

resulted in a fault-interaction phenomena with an amplifying effect on the number of

error occurrences.

The experiment succeeded in proving the feasibility of the proposed test method

m principle. Further investigations of different faults and with other applications are

necessary to draw more general conclusions. But the results show promise for a certain

class of applications, especially in the area of parallel programming, where a pseudo-

oracle is often available in the form of a sequential version. There are many different,

application specific variables that influence the error detection performance of the test,

and further empirical studies have to identify the conditions under which this test

method can be successfully implemented.

Acknowledgement

I am grateful to Earle Migneault and Larry Morell for many stimulating discussions

and valuable suggestions. Thanks are also due to Bernice Becher who modified the

control software to perform this experiment, and to Bob Voigt for his support and

encouragement.

17

References

[l] A. AviSienis and J. P. Kelly, "Fault Tolerance by Design Diversity: Concepts and
Experiments", Computer, Vol. 17, No. 8, pp. 67-80, Aug. 1984.

[2] W. R. Adrion, M. A. Brans tad, and J. C. Cherniavsky, "Validation, Verification,
and Testing of Computer Software", ACM Computing Surveys, Vol. 14, No. 2, pp.
159-192, June 1982.

[3] L. J. Morell, "Unit Testing and Analysis", SET Curriculum Module SEI-CM-9-1.0,
Software Engineering Institute, Carnegie Mellon University, Oct. 1987.

[4] V. R. Basili and R. W. Selby, "Comparing the Effectiveness of Software Testing
Strategies", IEEE Trans, on Software Eng., Vol. SE-13, No. 12, pp. 1278-1296,
Dec. 1987.

[5] D. M. Andrews and J. P. Benson, "An Automated Program Testing Methodology
and its Implementation", Proc. of the 5th Intern. Conf. on Software Eng., San
Diego, CA, pp. 254-261, March 1981.

[6] C. Wild, "Automating Software Fault Tolerance", Journal of Spacecraft and Rock-
ets, Vol. 24, No. 1, pp. 86-89, Jan.-Feb. 1987.

[7] E. J. Weyuker, "On Testing Non-testable Programs", Computer Journal, Vol. 25,
No. 4, pp. 465- 470, Nov. 1982.

[8] T. Anderson and P. A. Lee, Fault Tolerance Principles and Practice, Englewood
Cliffs, NJ, Prentice/Hall Intern., 1981.

[9] J. C. Huang, "Program Instrumentation and Software Testing", Computer, Vol.
11, No. 4, pp. 25-32, April 1978.

[10] R. L. Probert, "Optimal Insertion of Software Probes in Well-Delimited Pro-
grams", IEEE Trans, on Software Eng., Vol. SE-8, No. 1, pp. 34-42, Jan. 1982.

[11] J. W. Duran and S. C. Ntafos, "An Evaluation of Random Testing", IEEE Trans.
on Software Eng., Vol. SE-10, No. 4, pp. 438-444, July 1984.

[12] P. M. Nagel and J. A. Skrivan, "Software Reliability: Repetitive Run Experimen-

tation and Modeling", NASA Contractor Report 165836, Feb. 1982.

18

[13] J. R. Dunham and J. L. Pierce, "An Experiment in Software Reliability", NASA
Contractor Report 172558, March 1985.

[14] J. R. Dunham, "Experiments in Software Reliability: Life-Critical Applications",
IEEE Trans, on Software Eng., Vol. SE-12, No. 1, pp. 110-123, Jan. 1986.

[15] J. C. Knight and N. G. Leveson, "An Experimental Evaluation of the Assumption
of Independence in Multiversion Programming", IEEE Trans, on Software Eng.,
Vol. SE-12, No. 1, pp. 96-109, Jan. 1986.

[16] S. D. Cha, N. G. Leveson, T. J. Shimeall, and J. C. Knight, "An Empirical Study
of Software Error Detection Using Self-Checks", Proc. of the ink Intern. Symp.
on Fault-Tolerant Computing (FTCS-17), Pittsburgh, PA, pp. 156-161, July 1987.

19

NASA
NjlOnjI Ap*on,Tulcs a Report Documentation Page

1. Report No.

NASA CR-181667
ICASE Report No. 88-31

2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle

AUTOMATICALLY GENERATED ACCEPTANCE TEST: A
SOFTWARE RELIABILITY EXPERIMENT

5. Report Date

May 1988

6. Performing Organization Code

7. Author(s)

Peter W. Protzel
8. Performing Organization Report No.

88-31

10. Work Unit No.

505-90-21-01
9. Performing Organization Name and Address

Institute for Computer Applications in Science
and Engineering

Mail Stop 132C, NASA Langley Research Center
Hampton. VA 23665-5225

11. Contract or Grant No.

NAS1-18107

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665-5225

13. Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

15. Supplementary Notes

Langley Technical Monitor;
Richard W. Barnwell

Final Report

Submitted to Proc. of the Second
Workshop on Software Testing,
Verification, and Analysis, Banff,
Alberta, Canada

16. Abstract

This study presents results of a software reliability experiment that invest-
igates the feasibility of a new error detection method. The method can be used as
an acceptance test and is solely based on empirical data about the behavior of
internal states of a program. The experimental design uses the existing environ-
ment of a multi-version experiment previously conducted at the NASA Langley
Research Center, in which the "launch interceptor" problem is used as a model
problem. This allows the controlled experimental investigation of versions with
well-known single and multiple faults, and the availability of an oracle permits
the determination of the error detection performance of the test. Fault-
interaction phenomena are observed that have an amplifying effect on the number of
error occurrences. Preliminary results indicate that all faults examined so far
are detected by the acceptance test. This shows promise for further investiga-
tions, and for the employment of this test method in other applications.

17. Key Words (Suggested by Authorls))

software reliability, acceptance
test, fault-interaction

18. Distribution Statement

38 - Quality Assurance and
Reliability

61 - Computer Programming and
Software

unlimited
19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this page)

Unclassified

21. No. of pages

21

22. Price

A02

NASA FORM 1626 OCT 66

