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SUMMARY

Recently, there has been an Increased need to develop Parameter

Identification methods for improvlng structural dynamlc models.

This need has arlsen out of the Inablllty of englneers to produce

mathematlcal models whlch correlate wlth experlmental data. The

present research explores the efficlency of comblning Component

Mode Synthes|s (substructurlng) methods wlth Parameter

Identlflcatlon procedures in order to improve analytical modeling

of structural components and thelr connectlons. Improvements are

computed In terms of physical stiffness and damping parameters In

order that the physical characterlstlcs of the model can be better

understood. Connections involving both vlscous and friction

damp|ng are investigated.

Substructurlng methods are utllized to reduce the complexity of

the identlflcatlon problem. Component and inter-component

structural connection propertles are evaluated and Identlfled

independently, thus simplifying the identificatlon problem. In

the present research It was shown that modal test data is

effectlve for |dentlfylng modeling problems assoclated wlth

structural components, and for determining the stlffness and

I



damping properties of inter-component connections. In general,

Parameter Identification is improved when greater quantities of

experimental data are available. The results of the present

research demonstrate the relative ease of generating models which

duplicate the experimental data. However, it is difficult to

generate physically accurate models.
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° CHAPTER I

Introduction

Recently, there has been an increased need to develop Parameter

Identification methods for improving structural dynamic models.

This need has arisen out of the inability of engineers to produce

mathematical models which correlate with experimental data. While

great strides in computer technology and analysis methods have

enabled engineers to solve relatively large and complex structural

problems, the results often do not compare well with test data due

to limitations in the quality of the mathematical model.

The fleld which addresses mathematical modeling is termed System

Identification (!,_,_,_,_). In general, System Identification

involves the utilization of input and output relations in order to

determine differential equations. Once the relevant differential

equations are determined, the unknown parameters within the

equations are resolved and the equations can be used to represent

the actual system. When the differential equation is known a

priori (e.g., a vibrating beam), the identification problem is

reduced to the more specific area of Parameter Identification.

Parameter Identification methods can be separated into modal and

physical model identification. In modal Parameter Identification
i

experimental data is used to derive modal parameters such as

characteristic frequencies and mode shapes. These parameters then
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are used to create a frequency domain, modal model. Physical

Parameter Identification also involves the use of experimental data,

except that a physical, time domain based model, is generated.

The present research is unique and contributes to the field of

parameter identification in a number of ways. It provides critical

evaluations of existing methods for "component" parameter

identification. Research in the past has utilized overly simplified

structures, making their applicability to general identification

problems uncertain. The present research assesses the extent of

applicability of a number of methods by applying them to a range of

systems. The present research also contributes to the field of

parameter identification in the development of methods for

identifying inter-component (connection) structural properties. In

this facet of the research an original concept involving the coupling

of substructuring methods with parameter identification procedures

is introduced. As a result of the application of thls concept the

proportions of the identification problem are reduced, thus

permitting larger, more complex problems to be solved.

The present dissertation consists of three "complete" studles related

to physical domain Parameter Identification methods for structural

dynamic systems. The groundwork for a fourth study Is in Appendix A.

In Chapter II, a procedure for identifying differences between

Finite Element component models and modal test data is expanded to

include structural components with viscous damping. This procedure
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_s advantageous in that differences are identlfled |n terms of

physical mass, damping, and stiffness parameters as opposed to

frequencies and mode shapes. Since the differences are computed In

terms of physical parameters, locations of modeling problems can be

directly identif|ed in the finite element model.

The study presented in Chapter III explores the identification of

structural connect|on properties using Component Mode Synthesls.

Connection properties are computed in terms of physical stiffness

parameters in order that the physical characteristics of the

connections can be better understood, and so that improved Input to

the system physical model is provided. Two sample problems, one

utilizing simulated data, the other using experimental data from a

rotor dynamic test rig, are presented in this study.

Chapter IV extends the research presented In Chapter III. In thls

study connection damping is included as a part of the Parameter

Identification. The effects of friction damplng on an assumed

viscously dampedmodel also are investigated.

Appendix A briefly examines a method which utilizes discrepancies

between predicted and measured frequencies to identify mass and

stiffness differences in the model. This method, which is

applicable to either connections or components, is in contrast to

the previous methods which requlre both experimental frequency and

mode shape data.
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CHAPTERII

IDENTIFICATION OF DIFFERENCESBETHEENFINITE ELEMENTANALYSIS
AND EXPERIMENTALVIBRATION

Introduction

The dynamic characteristicsof structuralcomponentsare often

predictedusing Finite Element(F.E.) analysisand then later

verifiedexperimentallywith dynamic analysistestingsystems.

Increaseddemandsfor reliability,minimalvibrations,optlmum

performance,and low cost design,among other criteria,have

increaseddesignersneeds for sophisticateddynamicanalysis

testingtechniques. Since the 196O's F.E. computerprograms have

become the preferenceof designersfor analyticaldynamic

analysis. The use of F.E. computercodes has become especially

widespreadin the automotiveand aerospaceindustriesdue to the

requirementto analyzevery large and complexstructures.

CommercialF.E. computerprogramssuch as NASTRAN,ANSYS, and SAP

(!) are availableto anyone having access to a computerterminal.

In many situations experimental verification ls requlred to Insure

the validity of the results predicted by the F.E. analysis.

Aerospace structures, which are very expensive and have rigorous

safety and reliability requirements normally require experimental

verification (2). Automobile prototypes are also experimentally

verified to insure that vibration and noise problems wlll not

exist in production models. Hundreds of other applicatlons of

F.E. analysis and experimental validation can be found.
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Digital signal analyzers are the most commonly used systems for

experimental verification. Digital signal analyzers, which

utilize the Fast Fourier Transform (FFT) developed In the 1960's

(3), a11ow rapid and relatively accurate determination of

structural transfer functions, resonant frequencies, and

characteristic mode shapes. Modern dlg|tal analysls equipment has

both automated the modal extraction process and decreased the

required data acquisition and post-processlng time. These systems

have replaced traditional analog devices because of thelr high

speed and their ability to measure many modes simultaneously.

An important problem that has emerged from these combined

analytical/experimental investigations is the task of _dentifying

and quantifying the differences between results predicted by F.E.

analysis and results obtained from the experlment. Although both

the F.E. and experimental methods can be accurate from a

theoretical standpoint, inaccuracies do exist in thelr

appllcations to real structural problems. In the case of F.E.

modeling there is considerable uncertalnty in the modeling of

items such as boundary conditions, joint flexibilitles, and

damping. Because of this, the F.E. results are not exact since

the input data itself is approximated. Also, it is not posslble

to completely eliminate experimental error. F.E. analysts take

the responsibility for producing theoretically correct computer

codes but sometimes do not place enough emphasis on predlctlng the
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behavior of real world structures. The experlmentallst, through

testing, often show the limitations of the F.E. analysis, but do

not always present clear cut procedures for quantifying the

differences in a useful manner.

A communication gap can exist between the experlmentaIist and the

F.E. analyst when the experimentalist can not provide the

quantitative data required by the analyst to identify the

differences between the experimental data and the F.E. model. The

gap exists because the experimentalist normally measures

frequencies and mode shapes in a vibration test, while the analyst

requires a mass, damping, and stiffness matrix for describing the

F.E. model.

It would be useful if the differences between the experimental

data and F.E. model could be found in terms of discrete mass,

stiffness, and damping. If thls could be done, and the

experimental data was rellable, a more accurate F.E. model with

improved mass, damping, and stiffness descriptions could be

created. This model could then be used for not only subsequent

dynamic analysis, but also for static analysis, for studying the

effects of structural modifications, or for any analysis requiring

the use of a mass, damping, or stiffness matrix. It would be

ideal if the discrete parameters could be measured experlmentally

but this is not practical. For example, to measure the values for
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a row or column in the stiffness matrix, a displacement would have

to be applied to the real structure while every other degree of

freedom was constrained, and then the forces at all the other

degrees of freedom would need to be measured. This would be both

time consuming and require elaborate fixtures and

instrumentation. Experimental measurement of the mass and damplng

matrix would be at least equally complex, if not impossible.

One possible way to compare the experlmental results to the F.E.

model is to compute analytical frequencies and mode shapes from

the F.E. equation of motion and then compare them to the

frequencies and mode shapes obtained from the experiment. The

limitation of making a comparison at this level is that even

though disagreements can be identified, the cause of the

disagreements namely differences in the mass, damping, and

stiffness matrices, can not be identlfied of quantlfied.

A more useful comparison between F.E. and experiment can be made

through the equations of motion. By using the orlglnal F.E.

equations and the equations of motion derived from the

experimental data, differences between experiment and F.E.

coefficients can be identified and corrected. Unfortunately, the

procedure of deriving an equation of motion from the experimental

frequencies and mode shapes is not straight forward. To derlve

the equation of motion from experimental data requires that the
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. same number of modes as degrees of freedom |n the F.E. model be

experimentally measured and that the experimental data not contain

any measurement error or no|se. If both of these requlrements are

not met the experimental data can not be used to construct a

correct equation of motion. Since the coefficients for the

equations of motion are computed by inverting matrices contalning

the experimental mode shapes, these matrices must be square. In a

typical experiment, the number of measured modes will not be equal

to the number of degrees of freedom so the moda] matrlces wlll be

rectangular instead of square. Another dlfficulty is that the

experimental data will always contain some amount of experimental

error and no|se which makes the outcome of a matrix inversion

questionable. Also, if the highest modes In the structure are not

included in the experimental data the stiffness matrix computed

from a modal matrix inversion will be incorrect (4). Flnally, it

is dlfficult to measure the values of the mode shapes

corresponding to every degree of freedom used In the F.E. model.

Th|s causes the order of the experimental matrlces to be less than

those in the F.E. equations.

Previous research in this area has focused on using experlmental

data to improve F.E. models rather than on Identifylng the

differences. Most of the techniques have been based on some form

of a least squares fit. In the work by Berman and F1annelly (4),

the analytical matrices are assumed to be close to the actual
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solutionand then the smallestchange in the analytlcalmodel that

makes the experimentaland analyticalfrequenciesand mode shapes

|denticalis found. This assumptionwill not necessarilylead to

an analyticalmodel that is physicallyrepresentativeof the

actual structure. The only assuranceis that the revisedmodel

will correctlypredictthe modes that were measured. The problems

arisingfrom using "incomplete"data (data containlngfewer modes

than there are in the F.E. model) are also discussedIn thls

work. In Ref. 5, Fuh, Chen, and Berman use similarapproachesfor

correctingstructureswith viscousdamping.

Chen, Peretti, and Garba (6) refined a F.E. model of the Galileo

spacecraft by first performing static tests to improve the

stiffness matrix, and then dynamic tests for correcting the mass

matrix. The mass matrix correction was based on a minimum change

criteria. The limitations of this approach are that two

independent sets of tests must be run, and again, there Is no

guarantee that actual physical characteristics will result from

the least squares approach.

Hart and Yao (Z) discuss the advantages of using weighted least

squares and Bayesian estimation. By using these extended forms of

least squares methods, uncertainties in both the experimental data

and analytical model can be included in the updating procedure.

It can be very important to define the uncertainty In the
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experimental data since this data often contalns more error than

the F.E. description. It does not make much sense to attempt to

improve a F.E. model with experimental data that is less certain

than the F.E. model. By includlng relative uncertalntles in the

procedure, changes to the analytlcal model w|ll not be applied

indiscriminately and the possibility exists for retaining the

physical meaning of the structure in the updated model.

Dobb, B1akely,and Gundey (8), and B1akelyand Nalton (9) applied

the Bayesianestimationprocedureto a F.E. model of an offshore

platformand a dam. In their study the effectsof change in the

uncertaintiesin both the experimentaldata and the F.E.

parameterswere investigated. Unfortunately,well defined

proceduresdo not exist for quantifyinguncertaintiesso they had

to be estimatedusing engineeringjudgement.

Sidhu (lO) developeda procedurefor approximatingthe difference

betweenexperimentallymeasuredfrequenciesand mode shapesand

F.E. parametersin terms of differencesin mass, damping,and

stiffnessmatrices. This approach has the potentialfor providing

a dlrectionto correcta F.E. model while retainingthe physical

characteristicsof the real structure. The objectiveof the work

presentedin this chapter is to extend the proceduredevelopedby

Sidhu for correlationof linearfinite elementand modal test data

to includestructureswith viscousdamping. In this study, the
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derivatlon of the extended procedureand several case studies

which use simulated experimental data are presented. The purpose

of developing this procedure is to formallze a process for

identifying the differences between experimentally measured

frequencies and mode shapes and F.E. models in terms of

differences in mass, damping, and stiffness.

Formulation of Equations

The free vibration equation of motion for a damped, linear system

can be written as:

[M]{U} + [C]{O} + [K]{u} : {0} (1)

where [M] is the mass matrix, [C] is the viscous damping

matrix, [K] is the stiffness matrix, and {u}, {u}, and {u} are

the acceleration, velocity, and displacement vectors,

respectively. The size of [M], [C], and [K] are nxn and {U},

{u}, and {u} are of size n, where n is the number of degrees

of freedom in the equations of motion.

In only specialcases can Eq. (I) be decoupledusing normal modes

(11). In general,when damping is present,the solutionof this

equationresults in complexeigenvaluesand elgenvectorsappearing

in conjugatepairs. Since there are pairs of roots there wlll be

twice as many roots as there are displacementdegreesof freedom

and the modal matrix will be of the order nx2n insteadof nxn.
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This rectangularmodal matrix can not be used to decouple Eq. (I).

Equation (1) can be rewrittenin state vectorform as"

[A]{y}+ [B]{y}: {0} (2)

[[0][M]1 r-IN] [O]lwhere {Y} = _.{u}J [A] = IN] [C]J [B] = L [O] [K]J

([A] and [B] are of order 2n x 2n and {y} is of order 2n.)

The advantage of writing the equation of motion in state vector

form is that the modal matrix can now be used to decouple the

equation. Assuming a solution {y} = {@}est and substituting

into Eq. (2) leads to the eigenvalue problem:

{[A]s+ [B]}{@}: {O} (3)

For less than criticaldamping,the solutionof thls equation

yields 2n complexeigenvalues sr, where Sr = -wr _r +/- lWDr"

wr is the naturalfrequency,WDr Is the damped natural

frequency,and _ is the damping ratio for mode r. An equal

numberof complexeigenvectorsare also obtained.

Substitutingthe modal matrix [@] Into Eq. (3) and premultlplylng

by [@]T leads to:

[.]T[A][@][_s_] + [¢]T[B][@]= {0} (4)

from orthogonality

[@]T[A][@]= [_a_] and [@]T[B][@]= [_b_]



14

where [_a_] and ['-b_] are dlagonalmatrices.

If the eigenvectorsare normalizedwith respectto the [A]

matrlx then:

[@]T[A][@]= [I] (5)

and

[@]T[B][@]= -[_s-_] (6)

Since the objectiveis to determinethe differencesbetweenthe

experimentalmodel and the analyticalmodel we need to flnd a

common ground that will a11ow the comparlsonof the structural

matrices computedfrom the F.E. analysis to the experimental

frequenciesand mode shapes. The differencesbetweenthe F.E.

"[B]" matrix and the [B] matrix computedfrom the experlmental

data (assumingthat a [B] matrix can be createdfrom the

experimentaldata) is written as:

[D]B = [B]exp - [B]F.E. (7)

rearranging

[B]exp = [B]F.E.+ [D]B

then |nvertingboth s|des

-l
[B]exp = {[B]F.E.+ [D]B}-I

and factor|ngout [B]F.E.

-I -I -I
[B] = {[B] {[I] + [B] [D] }}

exp F.E. F.E. B
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and

-1 -1 -1 -1
[B] = {[I] + [B] [D] } [B] (8)

exp F.E. B F.E.

If the bracketed expression in Eq. (8) is expanded uslng a Taylor

ser_es (I__22,1_33)and terms past the first derlvatlve are dropped,

Eq. (8) can be approxlmated by"

-1 -1 -1
[B] = {[I] - [B] [D] }[B]

exp F.E. B F.E.

-I
mult|plying out [B]

F.E.

-I -I -I -I
[B] = [B] - [B] [D] [B]

exp F.E. F.E. B F.E.

and then rearranging

-I -I -I -I
-[B] + [B] : [B] [D] [B]

exp F.E. F.E. B F.E.
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and solving for [D] B

-I -I
[D] = [B] {[B] - [B] }[B] (lO)

B F.E. F.E. exp F.E.

Using Eq. (6) to obtain [B] -I and substltuting into

Eq. (I0) the final expresslon for the dlfference matrlx [D] B is

obtained:

-I[D]B = [B]F.E. {[_]F.E. [_S_]F.E.[_] .E.

- [_]exp[_S_] p [_]exp}[B]F.E.

The same approach can be used for deriving the d|fference in the

[A] matrix. In this case:

T - [D] D T
[D] A = [A]F.E.{[D]F.E.[D]F.E. exp[ ]exp}[A]F.E. (12)

The format of Eqs. (11) and (12) are well suited for computing

the differences between the F.E. model and experimental data.

Since these equations do not require any Inverslon of the modal

matrices, the fact that all the modes are not measured does not

cause a problem. As discussed previously, the modal matrix wlll

not be completely known since fewer modes than degrees of freedom

are typically measured. An inversion of the frequency matrlces

are required, but this does not present any problems since these

matrices are diagonal and their inverses are just the reciprocal

of the diagonal terms.
=
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o Once [D] A and [D] B are computed, the disagreement between

the F.E. and experimental descriptions of the component can be

found. Since there is a direct relationship between the elements

of the mass, damping, and stiffness matrices and the elements of

the [A] and [B] matrices, the discrepancies In mass, damping,

and stiffness at any degree of freedom In the structure can be

found by merely picking out values from the [D] A and [D] B

matrices. For example, the disagreement in damping at the f|rst

degree of freedom would be obtalned from the [D] A matrix at

location [D(n + I, n + I)]A, the mass disagreement at

[D(I, n + l)] A, and the stiffness disagreement at [D(n + l, n +

I)] B. Note that the mass discrepancy can be found from either

one of two partitionsin the [D]A matrix or the [D]B matrix.

It was mentionedpreviouslythat in practiveexperimentalmode

shape data wi11 normallynot be availableat a11 of the degrees

of freedomused in the F.E. model. When this situationexlsts,

either the mode shape data must be interpolarted(7) or the F.E.

model reduced(16). In this work It wlll be assumed that one of

these procedureshas alreadybeen applied,thus renderlngthe

numberof degreesof freedom equal to the numberof experimental

measurementpointswhere mode shape data Is taken. It w111 also

be assumedthat the experimentalmode shapes are measured at the

F.E. node locations.
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Sample ProblemOne" CantileverBeam

Sample problemone consistsof a planar cantileverbeam. Two

finite elementmodels were used in the analysis. Th|s first

model, referredto as the analyticalmodel, is used for computing

the frequenciesand mode shapes that would normallybe generated

by an analyticalanalysis. The secondmodel, referredto as the

"experimental"model, is used for simulatlngfrequenciesand mode

shapes that would be obtalned by performingan actual

experimentalmodal analyslson a real beam. It Is advantageous

to use simulateddata in place of real data becausethe property

matrices correspondingto the simulateddata are known, whereas

the propertymatricesfor any real structureare unknown. Since

the mass, damping,and stiffnessmatrix are known for the

simulatedexperimentaldata, the exact error matricescan be

compared to the error matr|cesgeneratedby the equationsderived

in this study and the procedurescan be evaluated.

The analyticalmodel is made up of nlne, equally spacednode

points and eight connectingbeam elements (Fig. l). All of the

degreesof freedomare constralnedat node I and every degree of

freedom except for the z-displacementand y-rotationare

constrainedat the other node points. Thls leaves slxteenactive

degreesof freedomfor the structure. The sectionpropertlesfor

the beam elementsare 2.6xi0-3 for the moment of inertia,10xlO6 •



19

r for Young's modulus, and 2.6x10 -4 for the mass denslty per un|t

length.

The complex eigenvalue extraction solutlon sequence (Solutlon 28)

of the MSC/NASTRANfinite element program was used to compute the

free vibration frequencies and mode shapes for the beam. The

Hess method (1--4) was selected for extractlng the modes since thls

method is more efficient when all of the modes are deslred. All

of the modes were initially required for a complete verlflcatlon

of the difference matrix routines.

The simulated experimental model was made to differ from the F.E.

model by adding a concentrated mass, damper, and spring to the

beam. The location of these elements is shown In Fig. I. The

values used for the elements are listed in Table I as AM, AC,

and AK. The mass, damping, and stiffness from the F.E. model at

the same nodes and directions are also llsted to give an

indication of the relative magnitude of the differences. NASTRAN

was again used for computing the complex frequencies and mode

shapes of the experimental model.

Table II shows the comparison between the computed eigenvalues

for the analytical model and the simulated experimental model for

each of the four cases. All 16 of the modes were computed by

NASTRAN. From Table II, a comparison can be made between the
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complex valued eigenvalues. As expected, the real part of the

analytical eigenvalues are zero since there is no damping present

in the F.E. model, and the real part of the experlmental

e|genvalues are non-zero since damping Is present. In general,

the addition of the tip mass and the damper tends to lower the

frequencies while the sprlng raises the frequencies. The modal

damping Is totally dependent on the concentrated damper.

The imaginary (frequency) part of the F.E. and experlmental

elgenvalues are plotted in Fig. 2 for case I. If the elgenvalues

matched exactly they would plot directly on the straight, 45°

11ne. There is a small deviation from the straight line, but not

enough to indicate any slgnlficant differences between the

analytical and experimental models. Even if there were large

deviations between the analytical and experlmental elgenvalues,

there would not be any way to use the results in Fig. 2 or

Table II to relate the deviations to differences in physlcal

mass, damping, or stiffness coefficients.

The real components of the first four mode shapes for the

analytical model (case I) are plotted in Fig. 3. Only the

translational degrees of freedom are plotted. Even though the

first frequency has the largest deviation (Fig. 2) the first mode

shape matches up very closely. The opposite occurs for the

second and third modes where the mode shapes deviate from each
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other while the frequencies are very similar. As with the

frequency plots, there is no way to relate the deviation from

perfect correlation in mode shape plots to physical differences

in mass, damping, or stiffness.

The Difference Matrix program was used to relate the differences

between the experimental and analytical models in terms of

differences in mass, damping, and stiffness. The computer

program was verified using all four cases and various numbers of

modes as input data. When all of the modes are included as input

the only approximation in the procedure is from the Taylor series

truncation. As previously discussed, in a real situation all the

modes would not be available from tests. Plots of mass,

damping, and stiffness difference matrices for case I, using all

16 modes are shown in Fig. 4. The differences are plotted on a

grid where each intersection of a grid line corresponds to a

location in the matrix being plotted. For example, the mass

difference shown in the figure corresponds to the (15, 15)

location in the structure's mass matrix. In the figure the

physical differences between the analytical and experimental

models are clearly defined. The mass difference matrix indicates

a mass difference at degree of freedom 15 which corresponds to

the translational direction at the beam tip where the

concentrated mass was added. The damping and stiffness errors at

degree of freedom seven and one respectively, correspond to the
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locations of the concentrated damper and spring. There were no

other differences between the analytical and experimental models

which is indicated by the flat areas in a11 three of the

difference matrix plots. Even though the location of the

difference is exact, there is some amount of disagreement between

the actual magnitudes of the mass and stiffness, and the

magnitudes computed by the error matrix program. The program

computed a mass difference of 0.00011 while the actual

concentrated mass was 0.0002. The spring magnitude was computed

to be 3294, while the real spring was 5000. The magnitudes of

the actual damper and the magnitude computed by the program were

both 1.0. It is not surprising that the computed mass

differences was so far off since the mass added to the

experimental model was almost as great as the original mass _n

the analytical model. Since all of the modes were included in

these calculations, the differences between the real values and

the computed ones can be attributed to the higher order terms

that are missing in the Taylor expansion. A procedure for

improving the accuracy of the magnitudes will be discussed later

in this section.

Nhen less than all 16 modes are included in the calculations the

results deteriorate. In Fig. 5 results are shown for the case

where only one mode was included as input into the Difference

Matrix program. The mass and damping difference plots do not
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show anything but some distributed noise. The stiffness

difference plot indicates a difference at the spring location,

but the difference is of the wrong magnitude. (After examining

the data, the sign of the difference was also found to be

incorrect) Figure 6 shows difference plots where I0 modes are

included as input. In this case the noise has virtually

disappeared and the correct locations of the differences have

shown up.

A compilation of results for all four test cases are shown in

Figs. 7 to 9. In these figures the ratio of the computed to

actual difference at the mass, damper, and spring location are

plotted as a function of the number of modes used as input data

into the Difference program. All four cases were run using 16,

8, 5, 3, 2, and 1 modes as input into the Difference program.

From the mass difference plot (Fig. 7), it is seen that when the

mass difference is large (case I), the computed difference is

only about half of the correct difference. Nhen the mass

difference was reduced (cases 2, 3 and 4) the computed difference

was much closer to the correct difference. If the mass

difference is as great or greater than the analytical mass, the

location of the difference will be correct but the magnitude will

not. From cases 2, to 4 it is also seen that the computed mass

difference doeslnot change with the level of the damping or

stiffness differences.
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Figure 8 shows the computed damping differences for the four

cases. This plot shows that the differences are independent of

the level of damping as well as independent of the magnitude of

the mass and stiffness difference. Even when large amounts of

damping are present in the structure the damping calculations are

accurate (the damping level in case 2 was close to critical). It

is encouraging to note that the accuracy is independent of the

damping difference level, because in analytical modeling it is

the damping values that are the most difficult to predict. Thus

for a typical structure the difference procedure would work

fairly well, since the mass and stiffness differences would

ordinarily be small, and the magnitude of the damping difference

would not matter.

Figure g shows the effects of the various difference ratios on

the computed stiffness differences. Similar to the mass

calculations, the accuracy of the difference is dependent upon

its relative magnitude. Nhen the stiffness difference is

relatlvely large, the computed difference is inaccurate; when the

difference is small, the computed value is much closer to the

actual value. Again, the computed difference is independent of

the level of the differences in the other parameters.

From any of the figures presented thus far it is apparent that

when only a few modes are included the results are meaningless.
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When less than eight modes are included the results are poor, and

past eight modes the results are good and do not improve by

including more than the first eight modes. To determine how the

number of degrees of freedom used in the model effects the number

of modes required for good results, a new model of the cantilever

beam was constructed using 32 degree of freedom instead of 16.

The difference plots for this model were computed using the

differences from case 3. The results are shown in Fig. 10. The

difference matrices using 16 modes as input are shown in Fig. 11.

From these results it is seen that while only 8 modes produced

good results in the 16 degree of freedom model, at least 16 modes

are needed in the 32 degree of freedom model.

Previously, it has been shown that the accuracy of the computed

differences are dependent on the magnitude of the differences and

the number of modes included in the calculations. In an attempt

to improve the accuracy an iterative procedure was implemented

(Fig. 12). In this procedure the differences computed by the

Difference program are accumulated from all previous iterations

and are then added to the mass, damping, and stiffness matrices

for the analytical model. The updated analytical model is then

used to compute a new set of differences for the next iteration.

The iterative procedure was tested uslng the differences from
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test case 3 and the sixteen degree of freedom model. The results

for three iterations are shown in Fig. 13. Nithout iterating, it

was shown that when a11 sixteen modes are included in the

calculations the results are very good. After iterating only

twice, the results are exact. The same is also true when only

eight modes are used. In general, when less than elght modes are

used, the accuracy of the computed differences are not Improved

significantly by iterating. Nhen only a few modes are included,

the accuracy is not improved at all. The advantage of using the

iteration procedure is that when an adequate number of modes are

used the results will converge to the exact values regardless of

the magn|tude of the differences. The limitation of the

|terat|ve process is that it does not reduce the number of modes

required for good results.

SAMPLE PROBLEMTWO: Simply SupportedBeam

The second sample problemconsistsof a planar,simply supported

beam. The finite elementmodel of this problem is made up of

nine node points and eight connectingbeam elements (Fig. 14).

All of the degreesof freedomare constrained,except for the

y-rotationsat nodes one to nine, and the z-translatlonsat nodes

two througheight. There are sixteendegreesof freedom for this

problem. The same sectionpropertiesthat were used of for the

first sample problemare also used here. The d|fferencematrix
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plots for this problem were generated using the iteration scheme

shown in Fig. 12.

The "experimental" model was made to differ from the analytical

model by adding three concentrated springs and seven dampers to

the beammodel. The locations and properties for these elements

are shown in the figure. This sample problem differs from the

first one in thatthe differences in the first problem were

limited to a single mass, damper, and spring, while in thls

problem there are several springs and dampers at every node.

Also, the level of damping is much less in this problem than in

the previous one.

A comparison of the eigenvalues for the second sample problem is

shown in Table III. From thls comparison it is seen that the

major differences between the analytical and experimental models

are in the first frequency and the modal damping in the first

seven modes. Beyond the seventh mode there are not any

differences between the analytical and experlmental elgenvalues.

The first frequency is higher for the experimental model because

of the additional stiffness from the three springs. The modal

damping is different because the experimental model has the seven

translational dampers while the analytical model does not have

any damping. It is understandable that there is no modal damping

in the higher modes for the experimental model since the higher
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modes are dominatedby rotationsand the dampersonly act in the

translationdirection.

The computed damplng and stiffness difference matrices using the

first mode only as input into the Difference program are shown in

Fig. 15. From these plots it is Imposslble to Identlfy any of

the differences that actually exist between the analytical and

experimental models. Whenonly one mode was used for the flrst

sample problem calculatlons the differences could not be

Identlfied either. When the number of modes was increased to

four (Fig. 16) the correct differences were reasonably apparent

in the difference plots. For the stiffness matrix plot,

differences appear at degree of freedom 4, 6, and 8 whlch

corresponds to the locations of the three springs that were added

to the experlmental model. In addltlon to the dlfferences at

these degrees of freedom, differences also appear at some of the

other degrees of freedom. These differences do not actually

exist in the models and would not appear if more modes were used

as input. Many of these "extra" differences can be e11mlnated by

examlnlng the posslble coupling that may exist In the analytlcal

mode. For example, node two and six are not connected to each

other so degrees of freedom 2 (z-translatlon, node two) and

degree of freedom I0 (z-translatlon, node six) are uncoupled

which allows for location (2,10) and (10,2) in the difference

matrix to be set to zero. The same logic can be used to
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eliminate some of the other unobtainable differences appearing in

the plots.

In Fig. 17, the difference plots using four modes are recreated,

except that the differences at uncoupled degrees of freedom are

set to zero. In these plots the correct differences are even

more evident although some differences continue to appear where

there are not any true differences. There does not appear to be

any way to eliminate these "extra" differences except by using

more modes in the calculations. Whenthe number of modes is

increased to six (Fig. 18), both the computed stiffness and

damping difference matrices are very accurate. In addition, no

significant differences appear where they do not actually exist

in the models. In Fig. 19, plots are shown where all sixteen

modes are included in the computations, and as expected, the

results are almost exact.

Conclusion

A general procedure for identifying and quantifying the

differences between F.E. models and experimental data has been

developed and demonstrated with simulated experimental data. The

differences, which can be computed for linear, viscously damped

components, are presented in terms of mass, damping, and

stiffness coefficients. Since the differences are computed in



3O

terms of mass, damping, and stiffness coefficients, possible

modeling problems can be identified in the F.E. or analytical

model.

From data generated for a damped cantilever beam and a damped

simply supported beam, it was determined that the accuracy of the

computed differences increases as the number of experimentally

measured modes included in the calculations is increased. Nhen

the number of experimental modes is at least equal to the number

of translational degrees of freedom both the location and

magnitude of the differences can be computed very accurately.

Nhen the number of modes is less than this amount the location of

the differences may be determined even though their magnitudes

will be under estimated. Nhen too few modes are available

neither the location or the magnitudes of the differences can be

|dentified.

In practice, it will be required to measure the experimental

frequencies and mode shapes very accurately before the

differences can be attributed to shortcomings in the analytical

model. If the experimental data is not precise, the computed

differences can still provide considerable insight into the

possible locations of deficiences. The difference is that the

deficiencies may be in the experiment and some judgement will be

required to decide whether to modify the experiment or the

analytical model.
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TABLE I. - TEST CASES FOR

SAMPLE PROBLEMONE

Case AM/Ma AC/Cb ak/kc

2xlO -4 1.O 50001
2.6x10-4 0 78000

5xlO-5 l.B 2500
2

2.6xi0-4 0 78000

5xlO-5 l.0 2500

3 2.6xi0-4 0 78000

5xlO-5 1.0 25000
4

2.6xi0-4 0 78000

aRatlo of mass A to F.E.
mass at node 9.

bRatlo of damping A to F.E.
dampingat node 5.

CRatlo of stiffness a to
F.E. stiffnessat node 2.



TABLE II. - COMPARISON OF ANALYTICAL AND "EXPERIMENTAL" EIGENVAI.UESFOR SAMPLE PROBLEM ONE

Mode Analytical Case 1 Case 2 Case 31 Case 4
elgenvalue "

ExPerlmental Experimental Experimental Experimental
elgenvalue elgenvalue elgenvalue elgenvalue

1 0 _ 1371 -44.3 + 1301 -123 . 1111 -53 _ 1331 -45 + 1501
2 0 . 8401 -247 + 7611 -438 , 5811 -245 • 7821 -258 _ 8741
3 0 * 2 3121 -179 + 2 2711 -12 + 2 3141 -74 + 2 3171 -31 + 2 5251
4 0 + 4 4471 -203.9 + 4 3811 -378 + 4 3591 -21.4 _ 4 4251 -183 _ 4 7941 _o
5 0 + 7 1971 -28.2 + 7 1781 -30 _ 7 2031 -17 + 7 2071 -59 + 7 6921
6 0 * lO 4271 -195 , lO 4281 -360 . lO 3871 -202 , lO 4301 -158 , lO 9721
? 0 . 13 7571 -247 _ 13 7941 -35 _ 13 7761 -19.6 , 13 7801 -55 . 14 2351
8 0 + 16 3711 -197 + 16 369_ -359 + 16 3041 -199 , 16 3591 -16B _ 16 5721
9 0 _ 63 0171 0 + 62 9221 0 . 62 9821 0 + 62 9821 0 _ 62 9821
I0 0 _ 75 7271 0 _ 75 7111 0 _ 75 7211 0 . 75 7211 0 _ 75 7211
II 0 + 84 0331 -3 . 83 9441 -5 . 840191 -3 . 84 Ol91 -3 , 84 Olgl
12 0 . 94 0261 0 + 93 9741 0 . 94 0071 0 . 94 0071 0 . 94 0071
13 0 * I03 9281 -2 . I03 8751 -4 , I03 9091 -2 + I03 9091 -2 , I03 909_
14 0 . 112 5991 0 , 112 5591 0 _ 112 5841 0 _ 112 5841 0 . 112 5841
15 0 _ ll9 2781 0 . ll9 2561 -l _ ll9 2701 0 + ll9 2701 0 _ ll9 2701
16 0 . 123 47]I 0 . 123 4661 0 , 123 4701 0 _ 123 4691 0 . 123 4701
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TABLE III.- COMPARISON OF

ANALYlICAL AND

"EXPERIMENTAL"

EIGENVALUES

FOR SAMPLE

PROBLEM

TWO

Mode Analytical Experimental
elgenvalue elgenvalue

l 0 . 3861 -48 _ 4881
2 0 . l 5411 -48 . l 5601
3 0 + 3 4551 -48 + 3 4661
4 0 + 6 0931 -48 + 6 0951
5 0 + 9 3491 -47 + 9 3521
6 0 + 12 9171 -47 + 12 9191
7 0 + 16 0311 -48 + 16 0331
8 0 + 62 6681 0 + 62 6681
9 0 + 62 9301 0 + 62 9301
lO 0 + 76 6171 0 + 76 6171
II 0 + 85 5771 0 + 85 5771
12 0 + 95 5621 0 + 95 5621
.13 0 + I05 llgl 0 + I05 I191
14 0 + ll3 3471 0 + ll3 3471
15 0 + ll9 6331 0 + ll9 6331
16 0 + 123 5631 0 + 123 5631
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CHAPTERIII

IDENTIFICATION OF STRUCTURALINTERFACE CHARACTERISTICS
USING COMPONENTMODESYNTHESIS

INTRODUCTION

The dynamic response of large structural systems is often analyzed

using component mode synthesis (CMS) techniques. CMSis widely

accepted for predicting coupled system response with increased

modeling efficiency and flexibility over conventional methods.

CMStechniques utilize a reduced set of component modes to

characterize the overall system behavior. However, the inability

to adequately model the connections between components has limited

the application of CMS. Connections between structural

components, and between components and ground are often

mechanically complex and difficult to accurately model

analytically. The modeling of these connections can profoundly

influence predicted system behavior. This is because only the

connections determine the boundary conditions which are imposed

upon the system components. Thus, improved analytical models for

connections are needed to extend the applicability of CMSand to

improve system dynamic predictions.

55
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Parameter identification (PID) techniques can be used to improve

predicted response when experimental data are available. Modeling

accuracy is improved with PID by reducing discrepancies between

the measured characteristics of a physical system with those

predicted by an analytical mode] of the system. Many techniques

are available to carry out this process of parameter refinement.

Most involve the determination of a set of structural parameters

which optimally minimize differences between experiment and

analytical prediction.

In this chapter, the combining of CMSand PID methods to improve

the analytical modeling of the connections in a component mode

synthesis model is explored. The approach involves modeling

components with either finite elements or experimental modal data

and then joining the components with physical connecting elements

at their interface points. Interface connections in both the

translational and rotational directions are addressed. Once the

system model is derived, experimentally measured data is used with

PID methods to improve the characterizations of the connections

between components. Corrections in the connection properties are

computed in terms of physical parameters. Nith this approach, the

physical characteristics of the connections can be better

understood, in addition to providing improved input for the CMS

model.
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" The identification of connection characteristics is simplified by

requiring individual components to be verified before they are

incorporated into the coupled system model. This requirement will

normally not present any difficulties, since component testing and

verification has become a regular practice. Nith this

requirement, the components are verified before they are used in

the coupled system model. Any differences between the measured

and predicted coupled system response can be solely attributed to

inaccuracies of the estimated properties of the connections.

Also, the quantity of test data that must be obtained from the

coupled system is greatly reduced. This is particularly useful

when it is impractical to obtain a complete set of vibration test

data for a coupled structure. Examples, include large space

structures, spacecraft systems, and turbomachinery.

ComponentCouplingProcedure

Numerous variations of the CMSmethod are currently available for

the dynamic analysis of coupled structural systems (_,2,3). In

the classical CMSapproach, all of the system components are

characterized in the modal domain using their respective modal

parameters (frequencies and mode shapes). Coupling between

components also is performed in the modal domain through use of

modal constraints. These constraints are derived from

displacement compatibility conditions existing at the component
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interface locations. Nith the classical CMS approach, any

components or connections that have been modeled in terms of

physical coordinates (e.g., finite elements) must be transformed

into the modal domain before they can be included in the coupled

system equations of motion. The system equations, in terms of

modal coordinates, are used to compute the system natural

frequencies. The system mode shapes are computed by transforming

the mode shapes obtained from the system equations back to

physical coordinates.

Recent applications of the CMSmethod have shifted from the

classical approach of utilizing only modal coordinates. Instead,

techniques that use a mixture of both modal and physical

coordinate systems have been implemented (3). There are several

reasons for the shift to a "mixed" coordinate set. One reason is

that a combination of component types can be incorporated into

the coupled system equations without requiring all of the

components to be in identical coordinate systems. This is

particularly useful when some of the components have been modeled

using F.E. methods and other component models have been derived

from modal test data. In most of the currently used CMSmethods

boundary degrees of freedom of all of the components are expressed

in terms of physical coordinates, and the internal degrees of

freedom are expressed in either modal or physical coordinates.

The inherent efficiency of the component representation is
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retained. Nith physical boundary coordinates, components can be

coupled utilizing classical direct stiffness assembly techniques

as in conventional F.E. computer codes. Furthermore, nonlinear

connecting elements can be used when boundary degrees of freedom

are in physical coordinates. In the classical CMSapproach, where

modal coordinates are used, it is very difficult to incorporate

nonlinearities into the coupled system model because of the

difficulties associated with defining modal parameters for

nonlinear elements.

In this chapter a simplified variation of the previously mentioned

procedures for CMSis developed. The procedure is defined to be

compatible with PID procedures which will be used subsequently for

identifying the component interface characteristics. The modal

components are first converted to "pseudo" finite elements to

connect modal components to physical finite element components.

The pseudo elements are then treated in the same manner as

conventional finite elements, i.e., system property matrlces are

assembled through direct stiffness techniques.

Consider the system shown in Fig. I. This system is comprised of

two components which are coupled by a physical connecting

component. The undamped, free vibration equation of motion for

the uncoupled system is written in terms of physical coordinates

as:
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[0] _c + [Kc] Uc = {0} (I)

[MIll I [KIll I

where [M] and [K] are the component system mass and stiffness

matrices, and {U} and {U} are the vectors of component nodal

accelerations and displacements (the superscripts refer to the

component identification). Equation (I) can further be

partitioned by separating displacements internal to the

components from those that are at the interfaces between

components. Nhen this is done Eq. (I) is written as:

(2)

The coupled system equation is obtained by applying the

displacement compatibility conditions at the interface between

the components and the connections. The displacements of the

component and the connection must be equal at the interface

therefore:

C
U_ = Ulb

and

II = Uc (3)Ub llb
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. Using Eq. (3), the transformation matrix, IT], which relates the

dependent and independent displacement sets is"

UI l 0 0 0
f

UI 0 l 0 0 I UIb

c 0 l 0 0 I U_

c 0 0 1 0 'U_ I

UII _LUII 0 0 l 0 I LUt

UII 0 0 0 ]
j _ _ , •

T

From conservation of energy principles and the above

transformation, the coupled equation of motion is found from:

[K]couple d = [T]TEK]uncoupled[T]

and

[M]couple d = IT]TIM]uncoupled[T] (5)

Substituting the property matrices from Eq. (2) into Eq. (5) the

coupled equation of motion is"

i r
-/ _ _ _'_ _ l_4 _ 4 -_I__ _

. -CII I . T - {01

(6) •
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The procedure outlined above can be used to couple any number of

physical components into the system equations. As mentioned

previously, when modal components are to be coupled into the

system model they are converted to pseudo physical components and

then are treated in the same manner as conventional physical

components. The pseudo physical property matrices are obtained

from orthogonality relationships between the property matrices

and the modal parameters. Hhen the component mode shapes are

normalized so that the modal mass matrix equals the identity

matrix, the modal and physical property matrices are related by:

[€]T[M][€] = [I]

and

[o]T[K][_] = [_w_] (7)

where [M] and [K] are the component physical mass and stiffness

matrices, [_w_] are the component frequencies, and [_] is the

matrix of component mode shapes.

Nhen experimental modal data is used to characterize the

component, the matrix [_], containing the component mode shapes

may be rectangular. If "m" mode shapes are measured, and the

value of the mode shapes are recorded at "n" different physical

locations on the component, then the mode shape matrix will be of

order n x m. Normally, there will be more measurement locations

available than there will be modes that can be measured. To
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• obtain a square modal matrix from experimental mode shape data,

data at some measurement points can be neglected so that the

number of points is equal to the number of modes. Nhen data at

measurement points is discarded no information is lost as far as

the overall system response is concerned, so long as measurements

at the component's interface points are retained. Once a square

mode shape matrix is available, the pseudo physical property

matrices are related to the modal data by:

IMp] = [€T]-1[_] -1

and

-1

[Kp] = [¢T]-1[\w_][¢] (8)

where [Mp] and [Kp] are the component pseudo mass and stiffness

matrices. (The coefficients of the mass and stiffness matrices

are in terms of physical coordinates corresponding to the location

and direction where the mode shapes are measured).

The matrices computed in Eq. (8) are designated as pseudo matrices

because their physical interpretation is unlike that of

conventional mass and stiffness matrices. Because it is

impractical to measure a11 of the component modes, the modal data

will be incomplete (see (4)) and will not contain all the

information required to produce the actual component mass and

stiffness matrices. Therefore, although the mass and stiffness
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matrices computed in Eq. (8) are in terms of physical rather than

modal coordinates, the matrices will not necessarily represent the

actual physical mass and stiffness characteristics of the

component. The mass and stiffness matrices from Eq. (8) will

reproduce the measured frequencies and mode shapes, and will be

suitable for representing the component in the coupled system

model.

Either the "free" or the "fixed" boundary component modes can be

used for the component characterization. The "free" mode shapes

are those modes that correspond to the component when it is in the

unconstrained or free boundary condition. In many situations

these modes are more conveniently obtained than the fixed boundary

modes. This is particularly true when the modes are measured

experimentally, because the component itself does not have to be

physically constrained during the experimental testing. In

practice, the free boundary condition often is approximated by

suspending the component from flexible cords or by supporting it

on soft springs.

The fixed modes are obtained by simultaneously constrainlng a11 of

the component's boundary degrees of freedom while performing the

modal testing. Analytically, the fixed modes are computed as

easily as the free modes. Experimentally, they are more difficult

to obtain, because a11 of the component's boundary degrees of
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freedom must be fully constrained during the experiment. To

attain this condition requires that elaborate fixtures be attached

at the components boundary locations, and in practice, full

constraint is never completely achieved. Another difficulty of

using fixed boundary mode shapes is that an additional set of

"static" deflection or constraint modes must be added to the set

of fixed boundary modes. These modes are required so that the

component will have flexibility at its boundary locations where it

is connected to adjacent components.

Normally, the values of the experimental mode shapes are measured

in the translational directions. It is not generally practical to

measure the values of the mode shapes in the rotational directions

because of limitations in available instrumentation. However, it

is sometimes desirable to couple rotational degrees of freedom

between components. If the values of the mode shapes are not

measured in the rotational directions, the pseudo matrices will

only have translational degrees of freedom and there will not be

means of coupling the rotational connecting stiffnesses. To

circumvent this difficulty, the rotational values of the mode

shapes can be extrapolated from the translational values, either

by curve fitting through the translational degrees of freedom and

then computing the slope of the curve at the connection location,

or by using an approximate F.E. model of the component (see (5)).
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Hhen the rotational values are extrapolated from a curve fit any

existing rotational inertia effects will not be reflected in the

values of the rotations. Neglecting the actual independent motion

of the rotation implies that there is no rotational inertia and

that the rotations are dependent on the translations. Because of

this dependence, the combined translational/rotational mode shapes

can not be used directly to compute the pseudo matrices without

encountering numerical problems during the matrix inversions in

Eq. (8). A solution to this difficulty is to initially use only

the translational mode shapes to compute the pseudo matrices.

Then, a transformation which is based on the dependence between

the rotations and translations is used to transform the pseudo

matrices from the translational coordinate system to a combined

translational/rotational system.

The dependent rotational values of the mode shapes can be related

to the independent translations by:

n

U@j >--aiUAi (9)i

Where Uej is the dependentrotationat j, UAi are the

translationsat the independentmeasurementpoints,ai are the

coefficientsrelatingthe independenttranslationsto the

dependentrotations(determinedfrom curve fit, etc.), and n is

the numberof independentmeasurementpoints.
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• The transformation from the mixed coordinate matrices to the

entirely translational pseudo property matrices is:

[::]{UuO)= (10)

n nxn "--_'n

where [T'] is the transformation matrix derived from the

relationships in Eq. (9) and {u6}' is a subset of {u_}. For each

rotational degree of freedom that is added in {ue}, a

translational degree of freedom is removed from {u6}' The

selection of the translational degrees of freedom that are

removed is arbitrary, and since a translation is removed for each

rotation that is added, both systems will contain the same number

of degrees of freedom.

Using the original translational pseudo property matrices from

Eq. (8), the transformation in Eq. (10), and principles of

conservation of energy, the pseudo matrices are derived in the

combined translational/rotational coordinate system by:

I.,[To
(11)
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Once the component pseudo matrices in Eq. (II) are computed, they

can be inserted into the system equations of motion and coupled

to adjacent components using the previously discussed procedures.

The final coupled system equations can be used to predict the

overall system dynamic characteristics. The frequencies that are

computed from this equation will correspond to the overall system

resonances. The accuracy of the predicted frequencies will be

dependent on the precision with which the connections between

components have been modeled. It has been assumed that the

component modal models have been verified and are accurate, and

also, that the proper component modes have been included in the

model to adequately predict system response (see sample problem

one).

The mode shapes derived from the system equations will correspond

to the physical degrees of freedom included in the system model.

Nhen the combined translational/rotational model is used some of

the mode shape values will correspond to translational degrees of

freedom and some to rotations. The accuracy of the mode shapes,

like the frequencies, will be dependent on the adequacy of the

component modal representations and the modeling of the

connections.
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" Parameter Identification Procedure

Once the system equations of motion and their corresponding

frequencies and mode shapes are computed, and the experimental

system modes have been measured, PID can be used to find an

improved set of connection parameters that better predict the

measured experimental system data. For this study the Neighted

Least Squares method for parameter estimation is used (6).

If {c} and {c} are vectors containing the measured and

computed system frequencies and mode shapes respectively, then

the weighted squared difference between the predicted and

measured characteristics is:

{F} : [N]({c} - {c}) 2 (12)

where [N] is the weighting matrix and {F} is a vector of weighted

squared differences. To find the set of connection parameters

that minimizes the weighted squared differences, the derivative

of {F} with respect to the connection parameters is set to zero.

Noting that the predicted characteristics {c}, are a function of

the connection parameters {r}, the derivative of {F} is written

as:

a{F} {c}) a{c} {0} (13)a{r} : a{r} :

Expanding {c} in a Taylor series and truncating higher order

terms, {c} is approximated as:
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{c} = {C}es t + a{r}

Nhere {6r} are the differences between the estimated and actual

values for the connection parameters. Substituting Eq. (14) into

Eq. (13) and letting a{c}/a{r}=[s] leads to"

[_]({_} - {C}es t - [S]{_r})[S] = {0} (15)

From Eq. (15) it is desired to solve for {at} so that the actual

connection parameters can be determined. Solving for {6r} can

not be accomplished by simple inversions, however, because in

general the number of measured and predicted characteristics will

be greater than the number of connection parameters, rendering

the matrix [S] to be nonsquare. The vector {6r} can be solved

for if Eq. (15) is first premultiplied by IS] T When this is

done, {_r} is solved as:

{6r} = ([s]T[N][S_ -I [s]T[N ] ({c} - {c}EST) (16)

An updated set of connection parameters is computed by"

{r} = {r}ES T + {&r} (17)

or by substituting from Eq. (16)"

{r} : {r)EsT - {C} sT (18)

Since {c} is approximated by a truncated series, the improved

connection parameters will be only an approximation to the final

parameters. However, the final parameters can be obtained by

iterating on Eq. (18).
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A direct approach for computing the elements of the sensitivity

matrix [S] is to perturb the analytical model with changes in the

connection parameters, and then compute the resulting changes in

the system characteristics. The elements are then computed by

setting Sij equal to the change in the Ci characteristic

divided by the change in the rj connection parameter.

Alternative methods for computing these derivatives have been

presented (see (7)) but for problems such as the example, with

only a small number of connection parameters, the above method is

adequate.

The selection of the system characteristics that are used in the

estimation procedure is determined by data acquistion capability.

Experimentally, it is generally easier to measure frequencies

than mode shapes, so in many cases it may be practical to include

more frequencies than modes shapes. Characteristics other than

frequencies and mode shapes also can be utilized: in (8), it is

suggested that kinetic energy may be a useful characteristic.

Once the characteristics are chosen, the weight that is placed on

each characteristic must be determined. If one characteristic is

measured more accurately than another, then it can be weighted

more heavily.

Nhen the number of system characteristics is large, the size of

the weighting and sensitivity matrices increases, and the matrix
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in Eq. (18) may become ill conditioned for inversion (see (9)).

The PID procedure only requires a minimum number of system

characteristics to adequately identify the connection parameters

since each component has already been verified. Therefore, the

size of the matrices in Eq. (18)will be kept small and inversion

problems will be minimized. Another problem may arise when the

analytical model cannot be exactly made to fit the experimental

data. Nhen this is the situation the set of connection

parameters that minimizes the differences, rather than eliminates

them, must be used. The model may not be able to produce the

desired measured •system characteristics because of limitations in

the component modal representation. Also, if the experimentally

measured modes are not orthogonal, perfect agreement can never be

achieved because the analytical model can only produce orthogonal

mode shapes.

Sample Problem One" Coupled Beams

The following sample problem is offerred to demonstrate the

component coupling and parameter identification procedures. To

verify these procedures simulated experimental data generated

from a F.E. model was used. The sample problem (Fig. 2) is

comprised of two simply supported beams connected at their ends.

For simplicity, both beam components were made identical. In

actual applications the system can be partitioned into any set of
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components that is desired. Each of the components in this

problem are discretized into.seven massless, planar beam elements.

Concentrated translational masses are added between the elements

at nodes 2 through 7 and 10 through 15. The components are

connected by a rotational spring (K = IO.E5) at nodes eight and

nine. A connection also is made to ground by a rotational spring

(K = I0.E5) added to the second component at node 16.

The accuracy of the computed system frequencies as a function of

the number of modes used for the component representations was

evaluated with six, four, and two component modes (see Table I).

Both the six and four component mode representations produced

system frequencies that are in good agreement with the baseline

F.E. solution. Although there are only six component modes in

the F.E. solution, the six mode representation does not produce

exact frequencies because the F.E. model has more than 6 degrees

of freedom. The two mode representation allows for the first and

third modal frequencies to be predicted satisfactorily but does

not provide enough information for an accurate prediction of the

second and fourth frequencies. At least two component modes are

required so that there will be a rotational degree of freedom at

each end of the component that is connected to ground (only one

mode is needed for the other component). In every case the

component mode solution produced frequencies that are higher than

the baseline frequencies. This is understandable since the
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component mode solution uses a truncated set of modes and

therefore does not include all of the component's flexibility.

For the initial attempt at identifying the connection properties,

only the simulated system frequencies from the F.E. model

(Table II) were used in the parameter identification routines.

It is preferable that the connection properties be identified

without having to use system mode shapes because the mode shapes

are considerably more difficult to experimentally measure than

the frequencies. Nhen either six or four component mode

representations were used two possible solutions were found for

the KI and K2 connecting stiffnesses which satisfied the system

frequency constraints (see Table II). The chosen solution was

dependent on the initial starting estimates for K1 and K2.

Although neither solution is equal to the actual connecting

stiffnesses, the first one is reasonably close Considering the

limited number of system data used and the approximation of the

component modal representation. Nhen either of the solutions are

input into the F.E. model they produce system frequencies that

are very close to the exact frequencies. The first solution does

produce a better set of system mode shapes. In an actual

application, without more than system frequency information, it

would be impossible to determine which of the two solutions is

closer to the actual values of the connecting stiffnesses.

Furthermore, since both the five and two system frequency cases
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produced similar solutions there is no advantage to using more

than two system frequencies. Nhen two component modes are used a

maximum of four system frequencies are available, therefore the

five system frequency case cannot be analyzed. For the two

component modes and two system frequency case, the solution

failed to converge.

A subsequent attempt, using a combination of both system

frequencies and mode shapes was made with the expectation that

the identification of the connection properties would be

improved. By adding the first mode shape as a constraint, along

with the first five system frequencies, the second multiple

solution was eliminated. Nhen only one system frequency and one

mode shape was used, the problem still converged to the first

solution regardless of the initial estimates for the connecting

stiffnesses. This combination of system data is ideal because,

while it eliminates the multiple solution, it only requires a

minimal amount of experimental data. Similar results were

produced for both the six and four component mode

representations, while the two mode representation continued to

present difficulties.

Sample ProblemTwo: RSD Rig Verification

Once the component coupling and parameter identification

algorithms were evaluated with simulated data (Sample Problem
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One), it was decided to assess the procedures using actual

experimental data. To accomplish this, the RSD (Rotating

Structural Dynamics Rig) at NASALewis Research Center was

selected. The RSDrig (Fig. 3) is designed to simulate engine

structures to study active rotor control and system dynamics

(component interaction) problems. The rig components, although

considerably simpler than a real turbine engine's, were scaled

such that they would simulate an actual engine's structural

dynamics response characteristics.

The objective of the parameter identification was to determine

the stiffnesses of the squirrel cage bearing support that

connects each end of the rotor to the support frame. To

accomplish this, the RSDrig was divided in two components; the

rotor support frame, and the rotor. Each of these components was

characterized and then verified experimentally, so that accurate

component representations would be available for the coupled

system model. In the system mode] the support frame was

represented by an experimentally verified F.E. model while the

rotor component was represented by experimental modal data.

Since both components were experimentally verified, any

differences that appeared between the predicted and measured

system characteristics could be attributed to the uncertainties

in the squirrel cage connections between components. This

approach considerably simplified the verification task by

reducing the quantity of modal data required from the coupled

system.
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The support frame finite element mesh is shown in Fig. 4. The

frame is mounted on a relatively stiff base plate so grid points

35 through 39 are fully constrained. Grid points 19 and 20,

where the rotor is attached, were allowed to freely displace.

This free condition is representative of the conditions used

during the modal tests and is also compatible with the

requirements for the component coupling procedure. The grid

points are connected with beam (bending and axial deformations)

elements except for the diagonal elements at grid 35 which are

modeled with rod (axial deformation only) elements. All of the

elements are modeled with A36 steel properties. The frame F.E.

model was analyzed with NASTRAN,to compute the component

frequencies and mode shapes (Fig. 5). The frequencies were

experimentally verified by using vibration data obtained from an

HP 5423 Dynamic Analyzer. The rotor modal representation was

obtained by measuring the rotor mode shapes in the free boundary

condition. This condition was approximated by hanging the rotor

from bungy cords. The component modal characteristics were

generated from transfer function data obtained from the dynamic

analyzer and impact testing. A total of six rotor modes were

measured (see Fig. 6) including two rigid body and four elastic

modes.

The support frame and rotor were coupled by combining the

physical F.E. model of the frame with the modal representation of
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the rotor. For simplicity the coupled system model was

constrained to motion only in the vertical plane. This

restriction a11owed for a reduction in the required number of

degrees of freedom in the system model and a11owed for all of the

system testing to be performed in one plane. The coupled system

frequencies for the six mode rotor representation are plotted

along with the measured frequencies in Fig. 7. The predicted

frequencies were computed for different values of squirrel cage

stiffness to determine the effect that the cages have on the

system frequencies.

To generate these results it was assumed that both squirrel cages

had identical stiffnesses. This was a rational assumption, since

both cages are built to the same specifications. (Subsequent to

this analysis the cage stiffness was measured as 5050 Ib/in.

using a static loading test.)

Only the first three computed system frequencies are shown

because only three frequencies were measured. Nhen all three

frequencies are used the cage stiffness is identified as

5750 Ib/in. This value is in good agreement with the measured

stiffness (5050), considering that only three system frequencies

were used for the, parameter identification. In Fig. 7 it is

shown that this amount of difference in cage stiffness does not

have a significant effect on the system frequencies.
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- In addition to the six mode rotor representation, a four and two

mode representation were used to determine the effect that the

number of component modes has on the stiffness identification.

The four mode representation identified the same cage stiffness

as the six mode representation. The two mode representation

identified the cage stiffness as about 2300 ]b/in. or only

46 percent of the measured stiffness. It was expected that the

two mode representation would be insufficient for identifying the

cage stiffness because this representation is inadequate for

accurately predicting the system modes. It is obvious that the

two mode representation cannot produce very good results because

only rigid body modes are included in the representation, and the

system modes involve elastic bending in the rotor. Although

rules of thumb are available for determining the required number

of modes, additional work is required in this area.

Conclusion

From the two sample problems analyzed in this study it was

determined that the stiffness characteristics of component

connections can be identified using component mode synthesis and

parameter identification procedures. Furthermore, the

characteristics can be identified using experimentally obtained

component modal representation and a minimal quantity of measured

system modal data. In the first sample problem it was found that
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multiple solutions are possible, but that they can be avoided

when system mode shapes are included in the identification

procedure. In the second problem it was found that the rotor for

a rotor/support frame coupled system could be adequately

represented by experimentally obtained modal data. It was also

found that only three system frequencies had to be measured for

the connection characteristics between the frame and rotor to be

identified. From the results obtained thus far, it is determined

that the quantity of data required for the component

representations and for the connection characteristic

identification is problem dependent. Therefore, each application

must be treated on an individual basis.
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TABLE I. - COUPLED SYSTEM FREQUENCIES (SAMPLE PROBLEM ONE)

(CONNECTION STIFFNESS K=I0xlO5)

BASELINE FINITE COMPONENT MODE SYNTIIESIS SOLUTION
ELEMENT SOLUTION

NUMBER OF COMPONENT MODES
t

6 4 2

i. i12 Hz 114 Hz (2%) 114 Hz (2%) 145 Hz (29%)

2. 165 177 (7%) 180 (9%) 197 (19%)

3. 421 425 (1%) 426 (1%) 431 (2%)

4. 496 523 (5%) 525 (6%) 561 (13%)

5. 927 932 (1%) 933 (1%) ---



TABLE II. - COMPUTED CONNECTION STIFFNESS

NUMBER OF SYSTEM NUMBER OF COMPONENT MODES
FREQUENCIES

6 4 2

KI=6.5xI05, K2=7.4xlO 5 Kl=6.3xl05, K2=7.3XlO 5

5 and and (a)
oo

Kl=3.7x105, K2=13.1x105 KI=3.6xI05, K2=I2.5xI05

Kl=6.7x105, K2=7.4xlO 5 KI=4.1xI05, K2=10.8x105

2 and and (b)

KI=3.7xI05, K2=13.4x105 KI=5.4xI05, K2=8.1xI05

aonly four system frequencies available

bsolution does not converge
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CHAPTER IV

CHARACTERIZATIONOF DAMPED STRUCTURALCONNECTIONS
- FORMULTI-COMPONENTSYSTEMS

Introduction

As discussedin the previouschapters,analyticalmodels of

structuralsystemsnormallydo not normally possess

characteristicswhich agree completelywith those obtained from

experiments. Although there are many possible explanationsfor

the discrepancies,the major causes often can be attributedto

inaccuraciesin the data used to create the analyticalmodel.

Parameterssuch as material and dimensionalproperties,which are

usuallyobtainedfrom nominaldesign specifications,can differ

considerablyfrom the true values,thus causing the analytical

model to be inaccurate. Structuralpropertiessuch as dampingand

connectionstiffnessesalso are extremelydifficultto

predetermine,yet their influenceon structuralresponse

predictionsis profound.

For large structural systems it is commonpractice to utilize

substructuring methods to create the analytical system model.

These methods are used to construct the model by partitioning the

structure into components, and then linking the individual

components together with inter-component connections. The

" components frequently can be modeled with reasonable accuracy

9!
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whereas the connections are difflcult, or in many situations

impossible to analytically model. This is especially true when

the connections contain significant amounts of damping.

The objective of the work in this chapter is to investigate the

feasibility of determining the characteristics of viscously damped

connections from test data obtained from the complete coupled

system. It is desirable to be able to determine the connection

stiffness and damping from tests performed on the complete system

so that the difficulties associated with testing individual joints

can be circumvented. The problem with testing individual joints

is that often special test fixtures are required for mounting the

joint. Also, conventional modal tests can not be performed on the

jolnt because joints normally are very stiff, and thus require

static and cyclic loading tests in determining stiffness and

damplng properties (_). Furthermore, although several joints may

be nominally identical, their actual properties may vary enough to

requlre that every joint be tested. When system tests are

performed the difficulties associated with tests on individual

joints are elimlnated. Instead of special fixtures the system can

be tested in its actual operating environment or hung from flexible

suspenders. Conventional modal tests which are much simpler to

perform than static or cyclic loading tests can generally be used

because the system modes are in a suitable range. Also, the low

frequency modal data contains information about the jolnts even

though the joints themselves are relatively stiff.
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. Several previous studies have addressed the issue of identifying

the stiffness of connections without considering damping. In

Chapter III an attempt was made to identify the stiffness of

connections by using a combination of a weighted least squares

parameter identification and substructuring methods. This work

showed that physical stiffness characteristics can be determined

from experimentally obtained frequency data as long as sufficient

test data are available. In Ref. 2 the stiffness characteristics

of the connections between the Centaur G Prime Launch Vehicle and

the shuttle orbiter were modified based on experimentally obtained

modal data. The connections were altered so that a test-verified

analytical model would be available for subsequent loads analysis.

The modifications, based on engineering intuition and judgement

were deemed satisfactory when the analytical and experimental

frequency data were in agreement.

Previous studies that have addressed connection damping (_,_-Z)

have focused on identifying damping properties from tests on

individual joints rather than from coupled system tests. In

Ref. I a mix of analytical and experimental component models were

combined to characterize the dynamics of a flexible spacecraft.

For this study, joint stiffness and damping were ascertained

before the joints were incorporated into the system model. Data

obtained from cycl|c loading tests indicated that the joint

damping was primarily viscoelastic, although it was noted that
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joints in actual space structures may exhibit nonlinearities and

friction damping. Since the system modal properties computed from

the experimentally derived joint models were in agreement with

test results, there was no need to modify the joint characteristics

by using the coupled system test data. In Ref. 3 damping and

stiffness characteristics of a representative space truss joint

were studied. In that work results from simplified joint models

were compared to results obtained from a complex model which

included dead bands, large deformations, and friction forces. It

was concluded that simplified models based on linear springs and

viscous dampers could represent the behavior of the more

sophisticated joint model. No actual experimental data was used

in that study. In Ref. 4 nonlinearities in a structural joint

were identified by using an approach termed "force-state mapping"

Thls approach involved simultaneously measuring the force on a

joint along with its position and velocity. From the shape of the

three dimensional surface generated by plotting force as a

function of displacement and velocity the type and quantitative

description of the joint mechanisms were Identlfied.

In the present work a general procedure for component coupling is

presented. This procedure accommodates components that have been

modeled w_th either, flnite elements or with modal data which has

been obtained from analytlca] models or experiment. A parameter

identification procedure based on the weighted least squares method
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also is introduced. This procedure utilizes system test data to

find an optimal set of stiffness and viscous damping connection

properties. Finally, two example problems which use simulated

experimental data are presented. For these problems both stiffness

and damping connection properties are identified. A Monte-Carlo

simulation is run to assess the effect of variance in the

experlmental data on the identified properties in the first

problem. The effect of friction damping is evaluated in the

second.

Component Coupling Procedure

The approach used for developing the coupled system equations of

motlon is extrapolated from the procedure of Ref. 8. In this

approach component models are represented through the use of finite

elements or with modal data. Component modal data may be obtained

from experiment, or from a reduced finite element model. Once the

component models are obtained, they are coupled at physical

boundary degrees of freedom through physical connecting elements.

In the present work both stiffness and viscous damping is

accommodated In the connecting elements. Residual flexibility,

which is discussed in Ref. 8 also is included.

Conslder the system shown in Fig. I. This system is comprised of

two components which are coupled by a single connecting element.
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The damped equation of motion for the uncoupled system is written

as:

[01 c + [CC] _c + [Kc] Xc = {0}

[MII] I [0] I [KII] I

(I)

where [M], [C], and [K] are the systemmass, damping,and

stiffnessmatrices respectively,{_}, {u}, and {u} are the

correspondingaccelerations,velocities,and displacementsin terms

of physicaland/or modal coordinates,and {_}, {_}, and {x} are

the physical accelerations,velocities,and displacementsat the

connections. (Superscriptsrefer to componentidentifications.)

Note that the connectingcomponentis massless,and the other two

componentshave no damping. For many systems it is reasonableto

assume that the actual componentdamping is negligible,and that

any significantdampingis isolatedin the connections.

Once partitioning between boundary and internal degrees of freedom

has been completed, and displacement compatlbllity between

components has been implemented, the coupled system equations of

motion for the damped system may be derived as follows"

• " I lul
{0}

(2)
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where the component degrees of freedom {u} are partitioned into

internal {ui} and physical boundary {Xb} degrees of freedom.

For components modeled with finite elements, all of the degrees of

r freedom are physical. For modal components, the boundary degrees

of freedom are physical while the internal, {ui} , degrees of

freedom are represented in terms of modal coordinates.

Whenmodal data is used to characterize components, physical

degrees of freedom at the component boundary must be derived from

the modal data before the component can be input into Eq. (2).

These degrees of freedom are obtained by transforming a subset of

the modal coordinates into physical coordinates. The equation of

motion for an undamped component in terms of physical coordinates,

X, iS:

[M]{X} + [K]{X} : {0} (3)

The physical displacement x can be approximated by:

{X} = [Qk]{qk } + [Gb]{qb} (4)

where k is the number of measured or retained modes, q are

generalized coordinates, and Gb is the residual flexibility matrix

contains the flexibility which is not included in the component modal

characterization. Normally, the component characterization is

incomplete because the component model is constructed from a

. truncated set of component modes. The residual flexibility is used

to supplement ,the truncated set of modes.
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Analytically, the matrix Gb, containing the component residual

flexibility is computed by summing a11 of the missing modal data (m

+ I, N) at each of the boundary degrees of freedom, Beginning with"

[_]T[K][@] = [_w 2 ] (5)

Then solving for K"

I
[K] = [o]T- [_w2 ][@]-1 (6)

The total componentflexibilitymatrix is obtained by inverting K"

[F] = [K]-I = [€][_w2-...]-1[@]T (7)

In summation form:

_-_i@i T _- @i@iTF = 2 + 2 (8)
i=I wi i=k+l wi

where k is the number of kept modes and N is the total number

of modes (For componentsmodeled by F.E. N equals the total number

of degreesof freedomwhereas for actual components N = _). The

term on the r.h.s, of Eq. (8) is termed the residualflexibility,

G. From Eq. (8) it is evident that G is comprisedof the

"left-over"flexibilitywhich is not includedin the truncatedset

of modal data. Experimentally,the entries in the residual

flexibilitymatrix are obtained by determiningthe differences

betweenthe curve fit and the experimentallymeasured frequency

responsefunctions(9).

The residual flexibility is implemented so that flexibility which

is not contained in the truncated set of component modes is
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includedin the componentmodel. The values of the residualsat

the boundarydegreesof freedomare requiredbecause they provide

informationnecessaryfor accuratecomponentcouplingand for the

creationof a precisesystem model. Only the diagonal terms in

the matrix are used here because it was determinedthat the

off-dlagonalterms,which relatedthe cross coupllng between

boundarydegreesof freedom,have a negligibleeffect on the

fidelity of the model (8).

Returningto Eq. (4) and partitioning{x} into Internal.o, and

boundarydegreesof freedom:

{x} : : (9)
L¢bk G dbb q

T

where T _s the transformation which relates the physical coordinates

to the generalized coordinates. Pre- and post multiplying Eq. (3)

by T (and knowing @ and G are orthogonal):

[T]T[M][T]{q}+ [T]T[K][T]{q}= {0} (lO)

which leads to the equationof motion:

q qk

M* + K* = {0} ( 11)

' qbJ
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where [Ikk] is the identity matrix, [Wkk2] Is the matrlx of

component frequencies, and [Gbbd] %s the diagonal matrix of

N

residual flexibillties _Z __Jb¢jbT at the boundary b degrees' 2 '
j=k+l WJ

of freedom.

Using the transformation:

= (12a)

[¢bk Gdbb

leads to:

= (12b)

-G-lCbk G-1 X

Using the above transformation and Eq. 3, the component equations

of motion in terms of modal and physical boundary coordinates are

derived as:

0 + -G-I G-1 : {0} (13)¢bk

After the component equations are transformed into the coordinate

system used in Eq. (5), the component can then be incorporated into

the system equations in the same manner as are the finite element

components.

Once the system equations of motion are constructed, they can be

used to predict the system frequencies and mode shapes. This modal
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data is then used in conjunction with the experimentally measured

modal parameters to identify the connection properties. Because

the system is damped, the frequencies will be complex: the real

part corresponding to the modal damping and the imaginary part to

the modal frequency. The mode shapes also will be complex but for

most damped systems (including the present research) the imaginary

part can be disregarded.

Parameter Identification Procedure

Several methods are available for parameter identification (I0).

The methods which incorporate optimization strategies can be

classified into three groups; least squares, weighted least

squares, and Bayesian estimation. Nith the least squares method

the set of parameters which minimizes the differencebetween the

measured and predicted response is computed. The weighted least

squares method is similar except that a "weight," corresponding to

the relative confidence in the measured data, is incorporated. The

Bayesian method permits specification of the randomness of the

parameters that are being computed as well as the confidence in the

measured data. Since in practice the randomness of the connection

parameters may be difficult to quantify the Bayesian method

normally is not useful. The weighted least squares method will be

used in the present study because it is feasible and useful to

quantify the confidence levels in the measured data.
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Assuming that the component characterizations are accurate, and

that an appropriate set of component modes has been used to

represent the overall system response, a search can be initiated

for a set of connection parameters which better predicts the

system frequencies and mode shapes. The assumption that the

component representation is accurate may require that experimental

verification be performed on the component models before they are

used in the system characterization. Although this approach may

require additional effort in that verified component models are

required, it greatly simplifies the parameter identification by

limiting the location of possible inaccuracies to the connections.

The requirement that an appropriate set of component modes be used

normally can be met by including the lower modes, and by utilizing

a number of degrees of freedom in the system model that is at least

twice the number of modes of interest (a mode equates to 1 degree

of freedom). This requirement is comparable to the modeling

guidelines used for conventional finite elements. By including

residual flexib_lities, the requirement can be relaxed.

The parameter identification (PID) discussed in Chapter III is

used here to find an improved set of connection parameters that

better predict the measured system data. The difference between

this work and the work in Chapter III is that in this work modal

damping is included in the identification.
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The improved set of connectlon parameters are computed Iteratlvely

from:

{r} = {r}ES T + ([s]T[w][S])-I[s]T[N]({c} - {C}EST) (14)

where {r} Is the vector of improved connectlon parameters

(physical stiffness and damping coefficients), {c} and {C}EST

are the measured and computed system modal parameters, IN] is a

weighting matrix for the measured data, and IS] is a sensitivity

matrlx containing the partial derlvatives, d{c}/d{r}.

The vector of measurements, (c}, can contain both complex frequency

(frequency and damping), and/or mode shape data. For the mode

shape data it is sensible to use a measure of the overall flt

between the predicted and experlmental mode shape instead of using

values of the mode shapes at individual locations. A logical

measure of the overall fit is the least squares difference between

mode shape data _olnts. The Mode Shape Correlation Coefficient

(l..Zl) provldes this klnd of measure. The Mode Shape Correlatlon

Coefficient is advantageous because it provides a quantitative

measure of the fit between the entire analytlcal and experimental

mode shape, and furthermore, it does not require the experimental

and computed mode shapes to be normalized in the same manner.

The weighting matrix, [W], is used for specifying the confidence

" levels as well as for scaling the system modal parameters. For

. example, to specify that the modal damping has equal Importance to
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the frequency, a larger weight may need to be placed on the damping

parameter. This is due to the fact that the order of magnitude of

modal damping is less than that of frequency. Also, a higher

weight may be warranted for parameters that are more slgnlflcant,

or that have been measured with greater accuracy.

The sensitivity matrix, IS], although relatively latorious, Is

straightforward to compute. In the present study the sensitivity

matrix is computed by perturbing the system with small changes in

the connection parameters, {r}, and then recording the resultlng

changes in the system modal parameters, {C}EST. A new sensitivity

matrix is computed for each iteration of Eq. (14).

Sample Problem One: Coupled System

The first sample problem is presented to demonstrate the parameter

identification prc,cedures and to assess the feaslblllty of

identifying physical connection properties from coupled system

modal data. For this problem a finite element model was used to

generate simulated experimental data. The model (Fig. 2) consists

of three planar eiastic beams connected at their ends with revolute

(pinned) connections. Each connection is attached to ground by a

linear, translaticnal, spring, and viscous damper. The properties

of the connectiens are varied by changing the value of 'm' and 'n'

which are shown in the figure. Each of the beam components is
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r discretlzed into five beam elements wlth the beam mass lumped at

the ends of the elements. The complex elgenvalue extraction

capabilities (Soi 28) of MSCNASTRAN(I__22)were used to compute the

simulated experimental frequencies, modal damping, and mode shapes

for the coupled system. NASTRANalso was used for computing the

free-free modes for the Individual beam components. These modes

are used for creating the modal components for the analytlcal

model. Four modes, two rigid body and two elastlc, were used for

the component representations.

Figure 3 shows the effect that the grounded springs have on the

system's undamped resonant frequencies. The results in this figure

are generated from the experimental model. For n = O, the first

four modes resemble rigid body modes, reflecting the softness of

the springs. As 'n' is increased the system becomes stiffer, the

frequencies |ncre&se, and the system behaves more llke a series of

simply supported Deems. For 'n' greater than eight, the grounded

sprlngs act as rigid supports. In the subsequent parameter

identification, a range of 'n' values Is Investlgated so that a

performance assessment can be made for both very flexible, and

relatively rigid, connections.

In Fig. 4, a comparison is made between resonant frequencies from

the modal model (residual flexibilities not included) and those

from the experimental model. Since four modes were used to
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represent each component, and there are three components, the

system modal mode; had twelve degrees of freedom. Based on th|s

number of degrees of freedom it was expected that the first four

or five modes could be predlcted with reasonable accuracy. For

low 'n' values there is very good agreement between the

experimental and component mode models for the flrst flve modes.

This is expected since the component mode model is generated from

free-free component modes. For low 'n', each component behaves as

if it were freely supported. For larger 'n' values the system

behaves like a series of simply supported beams, creating greater

disagreement between the frequencles predicted by the experimental

and modal models. This also |s expected because the truncated

component mode representation is better suited for predicting rigid

body type motions, and has a more dlfficult time with the bending

type behavior of the simply supported components. The mismatch for

high 'n' values is still moderate, especially for the flrst three

system resonant frequencles. Obv|ously, when more or less than

four component modes are used the respective mismatch decreases and

increases. In _eneral, the modal model ut111zlng four component

modes produced very reasonable results. Nhen residual flexibility

was included there almost was perfect agreement over the entlre

range of 'n' values.

In Fig. 5, the d_fferences between the experimental and identified

connection stiffnesses are plotted as a function of 'n' value. The
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connection values were identified by minimizing the differences

between the first seven system resonant frequencies. Mode shape

data was not utilized. It was preferable not to have to use any

mode shape data because shape data is conslderably more difficult

to measure experimentally than are frequencies. To Initiate the

parameter identification (Eq. (6)), inttlal estlmates are required

for the connection parameters. In creating the data shown In thls

figure, zero stiffness values were used for the tnltlai estimates

of the connecticn parameters. When the connection properties are

better known, the initial estimates can be improved, and

convergence is accelerated.

The strongest agreement between experiment and computed connection

parameters is at 'n' : 4. This is in contrast to the highest

frequency match (Fig. 4) which was at 'n' = O. Even at 'n' : O,

where the difference is as large as thirty percent, the match Is

stlll fairly good considering the prevalent difficulties assoclated

with determining connection properties. In many situations It Is

adequate merely to be able to determine the order of magnitude of

the connection properties. For 'n' = 6, converged parameters could

not be computed without including residual flexibilities, although

the order of magnitude of the connection properties was determined

correctly. With _he inclusion of residuals, the connection

stiffnesses were computed to within forty percent accuracy.
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There are two reasons why disparities between the identified and

experimental connection values may occur, even though the

analytical model accurately predicts the system frequencies (e.g.,

at 'n' = 0,2,4). The first reason Is that when the frequencies

are relatively insensitive to the connection stiffnesses, a hlgh

degree of precision in the experlmental data Is required for

accurate identification. In practice, thls requlred degree of

precision may not be attainable and only an order of magnitude

estimate of the connection properties may be realized. The second

explanation involves the existence of multiple solutions. For many

systems, including the one presented in this paper, more than one

set of connection properties exists which satisfies the objective

of eliminating the differences between the measured and predicted

modal parameters. Nhen this is the case, the resulting set of

connection properties is dependent on the initial estimates for the

connections and on the step size used for computing the sensltlvlty

matrix. Normally, the number of solutlons can be m_n!mized by

utilizing additional frequencies and/or mode shapes in the

identification. The number of posslble solutlons and the required

quantity of experimental data can be determlned beforehand by

performing simulaIion studies with varying step sizes and initial

estimates for the connection properties.

The data in Figs. 6(a) and (b) were created to assess the effect

of damping on the identification of connection propertles. For
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these figures,the connectionstiffnesseswere held constantat

'n' = 4, and the dampingwas varied from 'm' = 0 to 1.4 (crltIca]

damping is near 'm' = 1.6). In Flg. 6(a) the flatnessof the

curves demonstratethe insensitivityof the stiffnesscomputations

to damping. Even For large damping, 'm' = 1.4, the connection

stiffnessesare computedaccurately. In Fig. 6(b) the effect of

dampingon the identifiedconnectiondamplng is dlspIayed. Similar

to the stiffnessresults, the identifieddampingalso is fairly

insensitiveto the level of the damping. In general,when the

level of damping is low, and hence frequencyIs unaffectedby

damping, there will not be any couplingbetweendampingand

stiffness,and the connectionstiffnessand dampingpropertiesmay

be identifiedindependently.

A Monte Carlo simulationwas used to assess the accuracyof the

parameteridentlficationfor various degreesof experlmentalerror.

Normally,the level of experimentalerror In frequencyIs small,

while the error in dampingand mode shapes is relativelylarge.

Based on this assumption,the coefficientof variationin the

frequencymeasurementswas set at l percentand the damping

coefficientof variationwas varied from l to 15 percent. For

simplicity,mode shape data was not utillzed. Slmulateddata was

generatedby making forty runs at 'n' = 4, 'm' = 1.2, and uslng a

" random number generator to select the experimental modal

frequencies and damping (normal distributions were assumed). Plots
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displaying the probability of achieving a precision level for the

various degrees of measurement coefficlent of variation are shown

in Figs. 7(a) and (b). In these flgures It is shown that as the

coefficient of variation In the measured data increases, the

probability of achieving a given level of preclslon decreases.

For example, the probability of identifying the damping to wlthin

20 percent of the actual damping is nearly 80 percent for a damping

coefficient of variation of I percent, while It Is less than

40 percent for a coefficient of variation of 15 percent.

Obviously, as the required precision level is relaxed, the

probability of reaching that level is Increased.

From Fig. 7(b) it is evident that regardless of the damping

coefficient of variation, the identified stlffness propertles are

reasonably precise. For example, the probabillty of attalnlng a

30 percent precision is very good (greater than 80 percent) for a11

three levels of damping coefficient of varlatlon. These results

were expected since for the mean damping used for the slmulatlon

('m' = 1.2) the stiffness is fairly independent of damplng. It

should be noted that the results from the Monte Carlo slmulatlon

are problem dependent and can only be used for providing insight

into the degree of accuracy that might be expected for other

problems.
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Sample Problem Two: Coupled System With Frtctton

The connections in many structural systems contain nonlinearities

such as friction or gaps. For mu]ti-degree of freedom systems it

is virtually impossible to identify and characterize a11 of the

complexities that may exist in connections. Often, a simplifying

assumption is made that the connection damping can be adequately

described by linear viscous dampers even though other types of

damping exist in the connection. Nith this assumption the

identification process and subsequent analysis are greatly

simpllfied. In the second sample problem the effects of the

viscous damping assumption are assessed by adding friction damping

into the system. First, the effect of friction damping on the

identified viscous damping connection properties is determined.

Subsequently, a comparison is made between the actua] response of

the system with friction damping and the response oF the identified

system with the friction damping approximated by viscous damping.

The structure utilized for the second sample problem is identical

to the first except that friction dampers have been added at each

of the connection locations (Fig. 8). The friction dampers at each

of the four connections were identical. The viscous dampers and

grounded springs which were used in the first sample problem also

were used here. lhe parameters for these elements (Fig. 2) were

fixed at m = I and n = 4.
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MSCINASTRANSolution 99 was used to computethe modal damplng for

the coupled system. The dampingwas computedby exciting the

systemand then allowing it to decay (Fig. 9). The rate of free

decay then was used to computean equivalentmodal damping for each

of the first seven modes at different levels of frlction damping.

To obtain the free decay response each mode was Indlvidually

excited by applying a distributed sinusoldal load at the modal

frequency with the same distribution as the mode shape. The

magnitude of the sinusoldal load was set so that the resulting

displacements were on the order of the system span/lO0. The

excitation frequency and distribution was determined by assuming

that the modal frequencies and mode shapes would be unchanged from

the system without friction damping.

Equivalent viscous damping ratios were computed for four levels of

friction damping. The friction ratio was defined as the ratio of

the friction force at each of the four connection 1ocatlons to the

maximumvalue of the distributed sinusoldal excitation. Damping

ratios were computed at friction ratios of r = 0.0, r = 0.02,

r = 0.I0, and r = 0.50. The resulting modal damping values are

given in Table I. As expected, the equivalent modal damping

increases with an increase in friction force. The damplng ratios

from this table next were used in the parameter identification to

compute equlvalent viscous dampers. The identified viscous dampers

are given in Table II. Without friction damplng, r = 0.00, the
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identified dampers are very close In value to the actual dampers.

Whenfriction is present, the identif|ed dampers do not appear to

follow any pattern, but they do enable the predicted frequencies

and modal damping to match the experlmental data closely.

The performance of the identified models was assessed by comparlng

transient responses of the identified models to those from the

experimental models at each of the four levels of frlctlon damplng.

The models were excited by applylng a step function input load at

the center of the system. The effect of the step input is to

excite all of the system modes, with a greater emphasls on the

lower modes. The resulting system response, shown in Fig. I0,

reaches a peak displacement just after the step load is applied and

then decays while oscillating about a steady state displacement.

The responses from the identified and experimental models were

evaluated by comparing peak response, sett1_ng time, and RMSerror

(see Table III). At all four friction levels there was very 11ttle

error in peak response (e.g., only 2 percent error at r : 0.50).

The settling time error, which is deflned as the error in tlme to

reach I0 percent of the steady state displacement, increased

considerably from the lower to higher levels of friction damplng.

For example, at Y : 0.50 the time it took for the identlfled model

to reach steady state displacement was twlce that of the

experimental model (122 percent error).
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The Fourier transforms of the displacement responses were computed

for r = 0.I0 and r = 0.50 (Figs. ]l(a) and (b)). To clarify these

transforms, the steady state displacements were subtracted from

the displacement responses. From the Fourier transforms it is

seen that most of the discrepancy between the experimental and

identified model responses can be attributed to the difference in

contribution of the first mode. For both r = O. iO and r = 0.50

transforms there is minimal difference, except for the first mode

where the difference is extreme.

In Fig. 12, the amplitude and settling time errors are compared at

three magnitudes of input load while the friction force was held

constant at r = 0.I0. Since the friction damping is amplitude

dependent (inversely proportional to displacement and frequency),

it was expected that the identified model would accurately match

the experimental model response only at the same excitation levels

and distributions as were used to compute the equlvalent viscous

damping ratios. Considering that the equivalent viscous dampers

were derived by us;ng sinusoidal excitation, and the responses in

the figure are the result of a step input excitation, the

identified model does a fairly reasonable job of predicting the

experimental response for a broad range of excitation levels and

distributions. As expected, the identified model over-estlmates

the system damping at high amplitudes. This is because the
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equivalent viscous damping is inversely proportional to amplitude

and therefore would have to be decreased for higher amplitude

response.

Conclusion

A method for coupling multi-component systems, and for identifying

connection stiffness and damping characteristics was developed and

verified with simulated data. In the first sample problem

component connection properties were determined for a three

component planar beam model. From this analysis it was found that

properties could be accurately identified for a broad range of

connection stiffnesses and damping using relatively minimal

measured data. The connection properties were identified using
i

frequency data alone. Mode shape data was not required. By

performing a Monte-Carlo simulation it was determined that

connection damping and stiffness can be identified even in the

presence of experimental error.

In the second sample problem equivalent viscous connection damping

was identified for a model actually having friction and viscous

damping. A comparison between the experimental and identified

model showed thai: for particular ranges of input excitation the

identified model could reliably predict peak response and settling

time. However, at high levels of friction damping, the identified
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model did not perform as well. Since many systems include

connections with nonlinearities, it is important that unYealistic

predictions concerning the in-seYvice response of the system aye

not made. Instead, the extent of any nonlinearity should be

determined by inspection of the measured data, and then the

subsequent effect of any identified nonlinearity on system

response should be explored.
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TABLE I. - EQUIVALENTVISCOUSDAMPINGRATIOS,

Mode r = 0 r = 0.02 r = 0.10 r = 0.50

94.9 Hz 0.024 0.031 0.048 0.082
119 .027 .035 .051 ' .lO0
]45 .031 .032 .042 .080
208 .040 .036 .045 .II0
307 .040 .041 .054 .I00
408 .032 .035 .037 .080
484 .060 .063 .067 .140
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TABLE If. - IDENTIFIED EQUIVALENT
VISCOUS DAMPERS

C] C2 C3 C4

r = 0.00a 9.4 21 27 37
r = 0.02 20.6 7.7 23.3 43.6
r = 0.10 26.2 7.7 45.3 34.6
r : 0.50 25.1 52 54 53

aActual values are C = 10, C2 = 20,
C3 = 30, and C4 = _0.
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TABLE I11. - EVALUATION OF IDENTIFIED MODELS

Peak amplitude Peak amplitude Sett_;ng" RMS
(experimental) error, time error, error

percent percent

r = 0.00 0.755 0 0 0.00
r 0.02 .754 2 13 .07
r 0.10 .750 3 44 .ll
r 0.50 .731 2 122 .24

"Settling time : time to reach ±10 percent of steady state
displacement.
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CHAPTERV

CONCLUSIONAND RECOMMENDATIONS

In the present research methods for linklng substructurlng methods

with Parameter Identification techniques are developed. It was

demonstrated that the Identlfication of structural dynamlc systems

can then be effectively performed by thls comblnation of

substructuring and Parameter Identificatlon. Nlth substructurlng

methods, component and connectlon propertles can be Identifled

independently, independent identificatlon of the structural

properties was found to be advantageous because the Identlflcation

problem is reduced to a collection of smaller order problems. For

each of these problems the complexity of obtaining the experimental

data, and the required quantity of data, is less than if the entire

system were to be identified as a whole. Furthermore, the

experimental data which is used to verify the component models

also can be used Lo characterize the component in the system

equations of motion.

In the present research it is shown that modal test data Is

effective for identifying both modellng problems In structural

components, and fcr determining the stiffness and damping

properties of inter-component connections. Identification methods

which use modal, rather than time domain, test data are favorable

for linear systems because the test apparatus for obtalning the

modal data is readily available. Furthermore, the same test

134
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equipment and post-processing software can be used for a wide

range of structura] dynamic systems. Moda] testing also has

advantages over time domain tests in that the modal data, which

normally includes resonant frequencies and mode shapes, provides

global system information which is useful for identifying overa11,

as well as specific, system characteristics (e.g., existence of

rigid body modes, system flexibility).

The present research also demonstrates that the quality of the

identified properties is dependent on both the quality and quantity

of the experimenta! data. In general, parameter identification is

improved when both the quality and quantity of experimental data

are increased, in Chapter III it was found that several combinations

of connection properties matched the initial test data, and it was

not until additional experimental data was provided that the actual

properties could be determined. For relatively s|mple systems,

only a limited amount of test data may be required, while for

larger, more complex systems, the required quantity of test data

may become prohibitive. For most situations the quantity of test

data required for an accurate identification can be predetermlned

by performing trail runs on approximate models. In Chapter IV the

effect which the quality of test data has on the identified

properties was assessed by using simulated data which contained

experimental error. From these results it was found that the

• identified properties can be determined with reasonable accuracy,

even in the presence of limited experimental error.
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It also is shown in the present research that it is relatively

easy to generate models which duplicate the test data, but that it

can be difficult to generate physically accurate models.

Therefore, an important issue to consider when evaluating the

effectiveness of the identification is whether the resulting model

is a better representation of the real system, or whether the model

merely reproduces the available test data. The present research

emphasizes this concern, whereas previous studies have stressed

the formulation of models which merely match the test data.

A point of concern involves the identified model's capability to

accurately predict in-service structural response. Since the

fidelity of the identified model varies with the quantity and

quality of the experimental data, methods for assessing the

overall fidelity of the identified model are required. Hhile the

identified model maybe able to simulate situations that are similar

to the test condltions, it may not be able to reliably simulate

situations where the loading conditions or response levels differ

from the test conditions. Statistical methods which ascertain the

effects of uncertainty in the identified parameters could be

useful in these circumstances.

Based on the system studied in Chapters III and IV it was found

that connection properties normally can be determined by using

only measured resoaant frequencies. Mode shape data normally are
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not required. This situation is favorable because mode shape data

are more difficult to obtain experimentally, and when available,

may be of questionable accuracy.

In Chapter IV the effects of nonlinearity were assessed for a

friction damped system; it was found that small amounts of

friction can be approximated with viscously dampedmodels. Since

many structural systems, particulary systems wlth complex

connections (e.g., space structures), contain at ]east some amount

of nonlinearity, it is important that general identification

methods be developed which are capable of predicting both the type

of nonlinearity and it's characteristic parameters. As presented

in this research, several Investigators have attempted to identify

nonlinearities in individual structural connections, but none have

confronted the problems associated with multicomponent/connected

systems. Parameter Identification methods which use time domain

based test data may be applicable for identifying structural

systems containing nonlinearities but, clearly, additlonal work is

required in this area.



APPENDIXA

Evaluation of Shepard's Method for Identifying

Modeling Errors

Introduction

A limitation of the procedures developed in the previous chapters

is that often both frequency and mode shape data is requlred for

the identification of the component or connection structural

properties. Since mode shape data is relatively difficult to

obtain, and when it is available from tests it's accuracy is

questionable, it is desirable to be able to identify the

properties using frequency data alone. In this chapter a method

proposed by Shepard (_) which is based on using discrepancies

between measured and predicted frequencies for identifying

modeling errors is evaluated.

Formulation Of Equations

Although the details of this method appear in (!) a summary of the

procedure is outlined here for clarity. The objective of the

derivation is to relate the differences between predicted and

measured modal frequencies to discrepancles In mass and stiffness

properties. The derivation begins by using Rayleigh's quotient to

relate frequency to energy:

2 Vm
Wm= T- (I)

m
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In this relation w is the modal frequency, and V and T are

the total potential and kinetic energy for the mode. 'm' is the

mode number. Taking the natural logarithmic of both sides of (I)
J

and differentiat_ng •

dw I d i (2)
W--m=2 Ti=I

where dw is taken as the difference between the predlcted and

measured frequencies, and dv i and dt i are the differences

between the predicted and actual potential and kinetic energies

for each of the system elements. The summation is over all

elements, n.

By assuming that the variationbetween predlctedand actual mode

shapes is small, the energy differentialscan be relatedto

stiffnessand mass differentials,and Eq. (2) is rewrlttenas"

() 2(, 0m)dw l v dkI tl (3)
w-"m _ V ki T Mi m

i=l

where ki and mi are elementstiffnessand mass parameters.

Equation(3) can furtherbe simplifiedwhen the mass propertiesof

the e|ementsare known,or when massless connectionsare

considered. When this is the situation dmi is equal to zero and
c

Eq. (3) can be written in matrix form as"
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dwI

I111/V112/V2v21/V1. ........ vnl/VI. Idkl/k11. _i-.

• = . (4)

I m/Vm Vnm/Vm LdkniknJ d_i

The matrix on the 1.h.s. is referred to by Shepard as tile modal

reference matrix. This is a square matrix containing the ratios

of the element strain energy to the strain energy for the entire

structural system for each mode. The ratios are obtained from

the analytical model. By inverting the modal reference matrix,

and then multiplying the frequency differences by the inverted

matrix, the distribution of stiffness errors or differences,

dki/ki, is computed.

It is important to note that the modal reference matrix is

square. This is because there is an equal number of measured

modal frequencies as there are elements. This requirement

imposes severe limitations on the procedure because in practice

it is impossible to measure a11 of the modal frequencies and thus

the system of equations will be incomplete and therefore

unsolvable.

Results

Two alternative approaches that circumvent this limi_ation were

investigated. The first approach involved substituting dvi/v i

back into Eq. (4) for dki/k i and then solving for discrepancies
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• in terms of differences in component strain energy instead of in

terms of element stiffness. It was believed that by using this

approach differences in the individual elements could still be

identified but with only a limited amount of frequency data. The

procedure for identifying the element differences entails

dividing the structure into as many substructure components as

there are measured frequencies. Next, strain energy

discrepancies would be identlfied for each component using the

modified Eq. (4). Then, based on the computed strain energy

differences the structure would be partitioned into a different

set of domains, a new set of differences would be computed, and

the procedure would be repeated until the desired degree of

precision in the locations of differences was determined. If

desired, an element level of resolution could be obtained (see

Fig. I). Unfortunately, several attempts at implementing this

approach were unsu:cessful.

The second approach that was investigated for circumventing the

rigid frequency requirements of Shepard's method was based on the

assumption that the component mass and stiffness representatlons

could be assumed to be accurate and the discrepancies were caused

by differences in connections between components. If the

component representations are accurate then dki/k i = 0.0 for

all of the elements in the components and the corresponding rows

" and columns of the modal reference matrix can be eliminated. By
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reducing the size of the modal reference matrix the required

quantity of measured frequencies is considerably reduced.

t

As a test case for the second approach the supported beam shown

in Fig. 2 was studied. The objective was to identify the two

connection properties, k I and k2, using two measured

frequencies. The identification of the connections was attempted

using both a "rigid" and "flexible" beammodel. The model

stiffness was varied by changing it's modulus of elasticity.

Except for differences in the connection stiffnesses the same

model was used for both the reference and experimental beam. The

connection properties for both models are given in Table I. Once

the models were generated the strain energy from the reference

model and the differences between the frequencies from the

experimental and reference models were used in Eq. (4) to compute

the differences in the connection stiffnesses.

For the rigid model (El = lO.Ox107) there is llttle deformation

and therefore negligible strain energy in the beam for the flrst

two modes. Because there is no strain energy in the beam

elements no information is lost by removing the rows and columns

of the modal reference matrix corresponding to the beamelements.

Actually, the rigid beam system is naturally reduced to a two

degree of freedom system and the complete modal references matrix

can be represented by a two by two matrix. As expected for this
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system the identified difference, shown in Table I, are computed

exactly. For the flexible model (El = ]O.x]O 3) there is

deformation and strain energy in the beam for the first two modes

and some information is lost by eliminating the rows and columns

of the modal reference matrix corresponding to the beam elements.

Similarly to the rigid beam analysis, the connection stiffness

properties were also computed correctly for this model.

The effect of experimental error was assessed for the rigld beam

model by adding a two percent error to the experimental

frequencies. Nhen this error was included in the analysis the

resulting connection stiffnesses were off by 4 percent. For

systems with a larger number of connections the size of the modal

reference matrix would increase and the effect of experimental

error could be amplified even more. Fortunately, in practice,

frequency data normally can be measured well within 2 percent

accuracy.

Conclusion

From the analysis performed on the rigid and flexlble beammodels

it is concluded that for systems where the component analytical

models are accurate, the connection stiffness properties can be

identified using Shepard's method. By applying this method to

both a rigid and flexible beammodel it was determined that the

identification of the connection stiffness properties is

- independent of the component flexibility or equivalently, the
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amount of component strain energy for the measured modes. The

computation of the connection properties does require that the

number of connections does not exceed the number of measured

system frequencies.



145

ReFerencesto Appendix
e

I. Shepard, G.D." Spatial Distribution of Model Error Based on

Analytlcal/Experimental Frequency Discrepancies. Proceedings

of the 5th International Modal Analysis Conference, Union

College, Schenectady, NY, 1987, pp. 1665-1668.



TABLE I - SYSTEM PROPERTIES FOR IDENTTFICATION OF
CONNECTION DIFFERENCES

"Rigid" Beam "flexible" Beam

Reference Model kl=900.,k2=llO0, kl=900.,k2=l100.
Connection Stiffness

Reference Model fl=223.,f2=354, fl=152.,f2=335.
Frequencies (Hz)

Experimental Model kl=850.,k2=1250, kl=850.,k2=1250.
Connection Stiffness

Experimental Model fl=223.,f2=365, fl=223.,f2=365.
Frequencies (Hz)

Actual Difference kl=50.,k2=150, kl=50.,k2=150.

Identified Difference kl=50.,k2=150, kl=50.,k2=150.
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