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SUMMARY
Recently, there has been an increased need to develop Parameter
Identification methods for improving structural dynamic models.
This need has afisen out of the inability of engineers to produce
mathematical models which correlate with experimental data. The
present research explores the efficiency of combining Component
Mode Synthesis (substructuring) methods with Parameter
Identification procedures in order to improve analytical modeling
of structura1 components'and their connections. Improvements are
computed in terms of physical stiffness and damping parameters in
order that the physical characteristics of the model can be better
understood. Connections involving both viscous and friction

damping are investigated.

Substructuring methods are utilized to reduce the complexity of
the identification problem. Component and inter-component
structural connection properties are evaluated and identified
independently, thus simplifying the identification problem. In
the present research it was shown that modal test data is
effective for identifying modeling problems associated with

structural components, and for detérm1ning the stiffness and
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damping properties of inter-component connections. In general,
Parameter Identification is improved when greater quéntities of
experimental data are available. The results of the present
research demonstrate the relative ease of generating models which
duplicate the experimental data. However, it is difficult to

generate physically accurate models.
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CHAPTER I

Introduction

Recently, there has been an increased need to develop Parameter
Identification methods for improving structural dynamic models.
This need has arisen out of the inability of engineers to produce
mathematical models which correlate with experimental data. While
great strides in computer technology and analysis methods have
enabled engineersbto solve relatively large and complex structural
problems, the results often do not compare well with test data due

to Timitations in the quality of the mathematical model.

The field which addresses mathematical modeling is termed System
Identification (1,2,3,4,5). 1In general, System Identification
involves the utilization of input and output relations in order to
determine differentiél equations. Once the relevant differential
equations are determined, the unknown parameters within the
equations arevresolved and the equations can be used to represent
the actual system. When the differential equation is known a

priori (e.qg., a Vibrating beam), the identification problem is

reduced to the more specific area of Parameter Identification.

Parameter Identification methods can be separated into modal and
physical model.identification. In modal Parameter Identification
experimental data is used to derive modal parameters such as

characteristic frequencies and mode shapes. These parameters then
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are used to create a frequency domain, modal model. Physical
Parameter Identification also involves the use of experimental data,

except that a physical, time domain based model, is generated.

The present research is unique and contributes to the field of
parameter identification in a number of ways. It provides critical
evaluations of existing methods for "component" parameter
identification. Research in the past has utilized overly simplified
structures, making their applicability to general identification
problems uncertain. The present research assesses the extent of
applicability of a number of methods by applying them to a range of
systems. The present research also contributes to the field of
parameter identification in the development of methods for
identifying inter-component (connection) structural properties. 1In
this facet of the research an original concept involving the coupling
of substructuring methods with parameter identification procedures
is introduced. As a result of the application of this concept the
proportions of the identification problem are reduced, thus

permitting larger, more complex problems to be solved.

The present dissertation consists of three "complete" studies related
to physical domain Parameter Identification methods for structural
dynamic systems. The groundwork for a fourth study is in Appendix A.
In Chapter II, a procedure for identifying differences between

Finite Element component models and modal test data is expanded to

include structural components with viscous damping. This procedure
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is advantageous in that differences are identified in terms of
physical mass, damping, and stiffness parameters as opposed to
frequencies and mode shapes. Since the differences are computed in
terms of physical parameters, locations of modeling problems can be

directly identified in the finite element model.

The study presented in Chapter III explores the identification of
structural connection properties using Component Mode Synthesis.
Connection properties are computed in terms of physical stiffness
parameters in order that the physical characteristics of the
connections can be better understood, and so that improved input to
the system physical model is provided. Two sample problems, one
utilizing simulated data, the other using experimental data from a

rotor dynamic test rig, are presented in this study.

Chapter IV extends the research presented in Chapter III. In this
study connection damping is included as a part of the Parameter
Identification. The effects of friction damping on an assumed

viscously damped model also are investigated.

Appendix A briefly examines a method which utilizes discrepancies
between predicted and measured frequencies to identify mass and
stiffness differences in the model. This method, which is
applicable to either connections or componénts, is in contrast to
the previous methods which require both experimental-ffequency and

mode shape data.
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CHAPTER II
IDENTIFICATION OF DIFFERENCES BETWEEN FINITE ELEMENT ANALYSIS
AND EXPERIMENTAL VIBRATION

Introduction
The dynamic characteristics of structural components are often
predicted using Finite Element (F.E.) analysis and then later
verified experimentally with dynamic analysis testing systems.
Increased demands for reliability, minimal vibrations, optimum
performance, and low cost design, among other criteria, have
increased designers needs for sophisticated dynamic analysis
testing techniques. Since the 1960's F.E. computer programs have
become the preference of designers for analytical dynamic
analysis. The use of F.E. computer codes has become especially
widespread in the automotive and aerospace industries due to the
requirement to analyze very large and complex structures.
Commercial F.E. computer programs such as NASTRAN, ANSYS, and SAP

(1) are available to anyone having access to a computer terminal.

In many situations experimental verification is required to insure
the validity of the results predicted by the F.E. analysis.
Aerospace structures, which are very expensive and have rigorous
safety and reliability requirements normally require experimental
verification (2). Automobile prototypes are also experimentally
verified to insure that vibration and noise problems will not
exist in production models. Hundreds of other applications of

F.E. analysis and experimental validation can be found.
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Digital signal analyzers are the most commonly used systems for
experimental verification. Digital signal analyzers, which
utilize the Fast Fourier Transform (FFT) developed in the 1960's
(3), allow rapid and relatively accurate determination of
structural transfer functions, resonant frequencies, and
characteristic mode shapes. Modern digital analysis equipment has
both automated the modal extraction process and decreased the
required data acquisition and post-processing time. These systems
have replaced traditional analog devices because of their high

speed and their ability to measure many modes simultaneously.

An important problem that has emerged from these cohbined
analytical/experimental investigations is the task of identifying
and quantifying the differences between results predicted by F.E.
analysis and results obtained from the experiment. Although both
the F.E. and experimental methods can be accurate from a
theoretical standpoint, inaccuracies do exist in their
applications to real structural problems. In the case of F.E.
modeling there is considerable uncertainty in the modeling of
items such as boundary conditions, joint flexibilities, and
damping. Because of this, the F.E. results are not exact since
the input datavitself is approximated. Also, it is not possible
to completely eliminate éxperimental error. F.E. analysts take
the responsibility for producing theoretically correct computer

codes but sometimes do not place enough emphasis on predicting the
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behavior of real world structures. The experimentalist, through
testing, often show the limitations of the F.E. analysis, but do
not always present clear cut procedures for quantifying the

differences in a useful manner.

A communication gap can exist between the experimentalist and the
F.E. analyst when the experimentalist can not provide the
quantitative data required by the analyst to identify the
differences between the experimental data and the F.E. model. The
gap exists because the experimentalist normally measures
frequencies and mode shapes in a vibration test, while the analyst
requires a mass, damping, and stiffness matrix for describing the

F.E. model.

It would be useful if the differences between the experimental
data and F.E. model could be found in terms of discrete mass,
stiffness, and damping. If this could be done, and the
experimental déta was reliable, a more accurate F.E. model with
improved mass, damping, and stiffness descriptions could be
created. This model could then be used for not only subsequent
dynamic analysis, but also for static analysis, for studying the
effects of stfuctural modifications, or for any analysis requiring
the use of a mass, damping, or stiffness matrix. It would be
ideal if the discrete parameters could be measured experimentally

but this is not practical. For example, to measure the values for
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a row or column in the stiffness matrix, a displacement would have
to be applied to the real structure while every other degree of
freedom was constrained, and then the forces at all the other
degrees of freedom would need to be measured. This would be both
time consuming and require elaborate fixtures and
instrumentation. Experimental measurement of the mass and damping

matrix would be at least equally complex, if not impossible.

One possible way to compare the experimental results to the F.E.
model is to compute analytical frequencies and mode shapes from
the F.E. equation of motion and then compare them to the
frequencies and mode shapes obtained from the experiment. The
limitation of making a comparison at this tevel is that even
though disagreements can be identified, the cause of the
disagreements namely differehces in the mass, damping, and

stiffness matrices, can not be identified of quantified.

A more useful comparison between F.E. and experiment can be made
through the equations of motion. By using the original F.E.
equations and the equations of motion derived from the
experimental data, differences between experiment and F.E.
coefficients can be identified and corrected. Unfortunately, the
procedure of deriving an equation of motion from the expérimental
frequencies and mode shapes is not straight forward. To derive

the equation of motion from experimental data requires that the
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same number of modes as degrees of freedom in the F.E. model be
experimentally measured and that the experimental data not contain
any measurement error or noise. If both of these requirements are
not met the experimental data can not be used to construct a
correct equation of motion. Since the coefficients for the
equations of motion are computed by inverting matrices containing
the experimental'mode shapes, these matrices muét be square. In a
typical experiment, the number of measured modes will not be equal
to the number of degrees of freedom so the modal matrices will be
rectanguiar instead of square. Another difficulty is that the
experimental data will always contain some amount of experimental
error and noise which makes the outcome of a matrix inversion
questionable. Also, if the highest modes in the structure are not
included in the experimental data the stiffness matrix computed
from a modal matrix inversion will be incorrect (4). Finally, it
is difficult to measure the values of the mode shapes
corresponding to every degree of freedom used in the F.E. model.
' This causes the order of the experimental matrices to be less than

those in the F.E. equations.

Previous research in this area has focused on using experimental
data to improve F.E. models rather than on identifying the
differences. Most of the techniques have been based on some form
of a least squares fit. In the work by Berman and Flannelly (4),

the analytical matrices are assumed to be close to the actual
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solution and then the smallest change in the analytical model that
makes the experimental and analytical frequencies and mode shapes
identical is found. This assumption will not necessarily lead to
an analytical model that is physically représentative of the
actual structure. The only assurance is that the revised model
will correctly predict the modes that were measured. The problems
arising from using "incomplete" data (data containing fewer modes
than there are in the F.E. model) are also discussed in this
work. In Ref. 5, Fuh, Chen, and Berman use similar approaches for

correcting structures with viscous damping.

Chen, Peretti, and Garba (6) refined a F.E. model of the Galileo
spacecraft by first performing static tests to improve the
stiffness matrix, and then dynamic tests for correcting the mass
matrix. The mass matrix correction was based on a minimum change
criteria. The limitations of this approach are that two
independent sets of tests must be run, and again, there is no
guarantee that actual physical characteristics will result from

the least squares approach.

Hart and Yao (7) discuss the advantages of using weighted least
squares and Bayesian estimation. By using these extended forms of
least squares methods, uncertainties in both the experimental data
and analytical model can be included in the updating procedure.

It can be very important to define the uncertainty in the
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experimental data since this data often contains more error than
the F.E. description. It does not make much sense to attempt to
improve a F.E. model with experimental data that is less certain
than the F.E. model. By including relative uncertainties in the
procedure, changes to the analytical model will not be applied
indiscriminately and the possibility exists for retaining the

physical meaning of the structure in the updated model.

Dobb, Blakely, and Gundey (8), and Blakely and Walton (9) applied
the Bayesian estimation procedure to a F.E. model of an offshore
platform and a dam. In their study the effects of change in the
uncertainties in both the experimental data and the F.E.
parameters were investigated. Unfortunately, well defined
procedures do not exist for quantifying uncertainties so they had

to be estimated using engineering judgement.

Sidhu (10) developed a procedure for approximating the difference
between experimentally measured frequencies and mode shapes and
F.E. parameters in terms of differences in mass, damping, and
stiffness matrices. This approach has the potential for providing
a direction to correct a F.E. model while retaining the physical
characteristics of the real structure. The objective of the work
presented in this chapter is to extend the procedure developed by
Sidhu for correlation of linear finite element and modal test data

to include structures with viscous damping. In this study, the
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derivation of fhe extended procedure and several case studies
which use simulated experimental data are presented. The purpose
of developing this procedure is to formalize a process for
identifying the differences between experimentally measured
frequencies and mode shapes and F.E. models in terms of

differences in mass, damping, and stiffness.
Formulation of Equations

The free vibration equation of motion for a damped, linear system
can be written as:

[M1{u} + [CI1{u} + [K1{u} = {0} QP
where [M] s the mass matrix, [C] is the viscous damping
matrix, [K] is the stiffness matrix, and {u}, {u}, and {u} are
the acceleration, velocity, and displacement vectors,
respectively. The size of [M], [C], and [K] are nxn and {u},
{u}, and {u} are of size n, where n 1is the number of degrees

of freedom in the equations of motion.

In only special cases can Eq. (1) be decoupled using normalvmodes
(11>. In general, when damping is present, the solution of this
equation results in complex eigenvalues and eigenvectors appearing
in conjugate pairs. Since there are pairs of roots there will be
twice as many roots as there are displacement degrees of freedom

and the modal matrix will be of the order nx2n instead of nxn.
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This rectangular modal matrix can not be used to decouple Eq. (1).

Equation (1) can be rewritten in state vector form as:

(AI{y} + [BI{y} = {0} (2)

[O] (M1 -[M1 (0]
where  {y} = {{ } (A} = [M] [C]] (8] - [ (0] [K]]
([A] and [B] are of order 2n x 2n and {y} 1is of order 2n.)
The advantage of writing the equation of motion in state vector
form is that the modal matrix can now be used to decouple the
equation. Assuming a solution {y} = {¢}eSt and substituting
into Eq. (2) leads to the eigenvalue problem:
{(Als + [B1}{¢} = {0} (3
For less than critical damping, the solution of this equation
yields 2n complex eigenvalues sy, where s, = -w, ¢ +/- ivpy.
Wy is the natural frequency, Wp, 1is the damped natural
frequency, and cr is the damping ratio for mode r. An equal

number of complex eigenvectors are also obtained.

Substituting the modal matrix [¢] into Eq. (3) and premultiplying
by [T 1leads to:

[61TCAIL®IIN s 1 + [¢1T[BI[®] = {0} (4
from orthogonality

[61TCAI®] = [~a-1 and [$1T[BI[$] = [~b-]
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where [~Na~.] and [>bx] are diagonal matrices.

If the eigenvectors are normalized with respect to the [A]
matrix then:
[61T[AI[®] = [I] (5)
and
[61TIBI[®] = -[~s~.] (6)
Since the objective is to determine the differences between the
experimental model and the analytical model we need to find a
common ground that will allow the comparison of the structural
matrices computed from the F.E. analysis to the experimental
frequencies and mode shapes. The differences between the F.E.
"[B]" matrix and the [B] matrix computed from the experimental
data (assuming that a [B] matrix can be created from the
experimental data) is writtgn as:
[Dlg = [Blexp - [BIF. E. (7
rearranging
(Blexp = [BIf g, + (Dl

then inverting both sides

-1 -1
(Bly,, = ([Blp ¢ + [Dlg)

and factoring out [BIf E.
-1

(81 = {(B]  {[I]+ (Bl
exp F.E. F

1 ]

01 }}
E. B
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and

-1 -1 ~1 -1
[B] = {[I] + [BI] (D1 } (8] (8)
exp F.E. B F.E.

If the bracketed expression in Eq. (8) is expanded using a Taylor

series (12,13) and terms past the first derivative are dropped,

Eq. (8) can be approximated by:

-1

-
[B1 = {[I] - [B]

1

(D] }[BI]
exp F.E. B F.E.
-1
multiplying out (Bl
F.E.
-1 -1 -1 -1
(B] = [B] - [B] (D] (8]
exp F.E. F.E. B F.E.
and then rearranging
-1 -1 -1 -1
-[B] + [B] = [B] (D] (Bl

exp F.E. F.E. B F.E.
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and solving for (Dlg

-1 -1
(0] = (B] {[B] - [B1  }[B] (10)
B F.E. F.E. exp F.E.

Using Eq. (6) to obtain (B1-! and substituting into

Eq. (10) the final expression for the difference matrix ([DIlg is

obtained:
(D], = [B] ([®] [~s1.7) [61)
g = Bl ¢ FLE. ~lp g el ¢
C 8] [~s~J7' 1" }rB] an
exp exp exp F.E.

The same approach can be used for deriving the difference in the
[Al matrix. In this case:

T T

[D]A = [A]F.E.{[D]F.E.[D]F.E. - [D]exp[D]exp}[A]?.E. a2)

The format of Egs. (11) and (12) are well suited for computing
the differences between the F.E. model and experimental data.
Since these equations do not require any inversion of the modal
matrices, the fact that all the modes are not measured does not
cause a problem. As discussed previously, the modal matrix will
not be completely known since fewer modes than degrees of freedom
are typically measured. An inversion of the frequency matrices
are required, but this does not present any problems since these
matrices are diagonal and their inverses are just the reciprocal

of the diagonal terms.
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Once ([Dly and iDlg are computed, the disagreement between
the F.E. and experimental descriptions of the component can be
found. Since there is a direct relationship between the elements
of the mass, damping, and stiffness matrices and the elements of
the [A] and (Bl matrices, the discrepancies in mass, damping,
and stiffness at any degree of freedom in the structure can be
found by merely picking out values from the ([Dly and [Dlg
matrices. For example, the disagreement in damping at the first
degree of freedom would be obtained from the [D]ly matrix at
location [D(n + 1, n + 1)1a, the mass disagreement at
[(DC1, n + 1)]a, and the stiffness disagreement at [D(n + 1, n +
1)1g. Note that the mass discrepancy can be found from either

one of two partitions in the ([D]ap matrix or the [Dlg matrix.

It was mentioned previously that in practive experimental mode
shape data will normally not be available at all of the degrees
of freedom used in the F.E. model. When this situation exists,
either the mode shape data must be interpolarted (7) or the F.E.
model reduced (16>. In this work it will be assumed that one of
these procedures has already been applied, thus rendering the
number of degrees of freedom equal to the number of experimental
measurement points where mode shape data is taken. It will also
be assumed that the experimental mode shapes are measured at the

F.E. node locations.
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Sample Problem One: Cantilever Beam

Samp]é problem one consists of a planar cantilever beam. Two
finite element models were used in the analysis. This first
model, referred to as the analytical model, is used for computing
the frequencies and mode shapes that would normally be generated
by an analytical analysis. The second model, referred to as the
“experimental” model, is used for simulating frequencies and mode
shapes that would be obtained by performing an actual
experimental modal analysis on a real beam. It is advantageous
to use simulated data in place of real data because the property
matrices corresponding to the simulated data are known, whereas
the property matrices for any real structure are unknown. Since
the mass, damping, and stiffness matrix are known for the
simulated experimental data, the exact error matrices can be
compared to the error matrices generated by the equations derived

in this study and the procedures can be evaluated.

The analytical model is made up of nine, equally spaced node
points and eight connecting beam elements (Fig. 1). All of the
degfees of freedom are constrained at node 1 and every degree of
freedom except for the z-displacement and y-rotation are
constrained at the other node points. This leaves sixteen active
degrees of freedom for the structure. The section properties for

the beam elements are 2.6x10~-3 for the moment of inertia, 10x106
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for Young's modulus, and 2.6x10~4 for the mass density per unit

length.

The complex eigenvalue extraction solution sequence (Solution 28)
of the MSC/NASTRAN finite element program was used to compute the
free vibration frequencies and mode shapes for the beam. The
Hess method (14) was selected for extracting the modes since this
method is more efficient when all of the modes are desired. All
of the modes were initially required for a complete verification

of the difference matrix routines.

The simulated experimental model was made to differ from the F.E.
model by adding a concentrated mass, damper, and spring to the
beam. The location of these elements is shown in Fig. 1. The
values used for the elements are listed in Table I as AM, AC,
and AK. The mass, damping, and stiffness from the F.E. model at
the same nodes and directions are also listed to give an
indication of the relative magnitude of the differences. NASTRAN
was again used for computing the complex frequencies and mode

shapes of the experimental model.

Table II shows the comparison between the computed eigenvalues
for the analytical model and the simulated experimental model for
each of the four cases. All 16 of the modes were computed by

NASTRAN. From Table II, a comparison can be made between the
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complex valued eigenvalues. As expected, the real part of the
analytical eigenvalues are zero since there is no damping present
in the F.E. model, and the real part of the experimental
eigenvalues are ron-zero since damping is present. In general,
the addition of the tip mass and the damper tends to lower the
frequencies while the spring raises the frequencies. The modal

damping is totally dependent on the concentrated damper.

The imaginary (frequency) part of the F.E. and experimental
eigenvalues are plotted in Fig. 2 for case 1. If the eigenvalues
matched exactly they would plot directly on the straight, 45°
lTine. There is a small deviation from the straight line, but not
enough to indicate any significant differences between the
analytical and experimental models. Even if there were large
deviations between the analytical and experimental eigenvalues,
there would not be any way to use the results in Figi 2 or

Table II to relate the deviations to differences in physical

mass, damping, or stiffness coefficients.

The real components of the first four mode shapes for the
analytical model (case 1) are plotted in Fig. 3. Only the
translational degrees of freedom are plotted. Even though the
first frequency has the largest deviation (Fig. 2) the first mode
shape matches up very closely. The opposite occurs for the

second and third modes where the mode shapes deviate from each
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other while the frequencies are very similar. As with the
frequency plots, there is no way to relate the deviation from
perfect correlation in mode shape plots to physical differences

in mass, damping, or stiffness.

The Difference Matrix program was used to relate the differences
between the experimental and analytical models in terms of
differences in mdss, damping, and stiffness. The computer
program was verified using all four cases and various numbers of
modes as input data. When all of the modes are included as input
the only approximation in the procedure is from the Taylor series
truncation. As previously discussed, in a real situation all the
modes would not be available from tests. Plots of mass,
damping, and stfffness difference matrices for case 1, using all
16 modes are shown in Fig. 4. The differences are plotted on a
grid where each intersection of a grid line corresponds to a
location in the matrix being plotted. For example, the mass
difference shown in the figure corresponds to the (15, 15)
location in the structure's mass matrix. In the figure the
physical differences between the analytical and experimental
models are clearly defined. The mass difference matrix indicates
a mass difference at degree of freedom 15 which corresponds to
the translational direction at the beam tip where the
concentrated mass was added. The damping and stiffness errors at

degree of freedom seven and one respectively, correspond to the
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locations of the concentrated damper and spring. There were no
other differences between the analytical and experimental models
which is indicated by the flat areas in all three of the
difference matrix plots. Even though the location of the
difference is exact, there is some amount of disagreement between
the actual magnitudes of the mass and stiffness, and the
magnitudes computed by the error matrix program. The program
computed a mass difference of 0.00011 while the actual
concentrated mass was 0.0002. The spring magnitude was computed
to be 3294, while the real spring was 5000. The magnitudes of
the actual damper and the magnitude computed by the program were
both 1.0. It is not surprising that the computed mass
differences was so far off since the mass added to the
experimental model was almost as great as the original mass in
the analytical model. Since all of the modes were included in
these calculations, the differences between the real values and
the computed ones can be attributed to the higher order terms
that are missing in the Taylor expansion. A procedure for
improving the accuracy of the magnitudes will be discussed later

in this section.

When less than all 16 modes are included in the calculations the
results deteriorate. In Fig. 5 results are shown for the case
where only one mode was included as input into the Difference

Matrix program. The mass and damping difference plots do not
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show anything but some distributed noise. The stiffness
difference plot indicates a difference at the spring location,
but the difference is of the wrong magnitude. (After examining
the data, the sign of the difference was also found to be
incorrect) Figure 6 shows difference plots where 10 modes are
included as input. In this case the noise has virtually
disappeared and the correct locations of the differences have

shown up.

A compilation of results for all four test cases are shown in
Figs. 7 to 9. In these figures the ratio of the computed to
actual difference at the mass, damper, and spring location are
plotted as a function of the number of modes used as input data
into the Difference program. All four cases were run using 16,
8, 5, 3, 2, and 1 modes as input into the Difference program.
From the mass difference plot (Fig. 7), it is seen that when the
mass difference is large (case 1), the computed difference is
only about half of the correct difference. When the mass
difference was reduced (cases 2, 3 and 4) the computed difference
was much closer to the correct difference. If the mass
difference is as great or greater than the analytical mass, the
location of the difference will be correct but the magnitude will
not. From cases'z, to 4 it is also seen that the computed mass
difference does not change with the level of the damping or

stiffness differences.
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Figure 8 shows the computed damping differences for the four
cases. This plot shows that the differences are independent of
the level of damping as well as independent of the magnitude of
the mass and stiffness difference. Even when large amounts of
damping are present in the structure the damping'caTculations are
accurate (the damping Tevel in case 2 was close to critical). It
is encouraging to note that the accuracy is independent of the
damping difference level, because in analytical modeling it is
the damping values that are the most difficult to predict. Thus
for a typical structure the difference procedure would work
fairly well, since the mass and stiffness differences would
ordinarily be small, and the magnitude of the damping difference

would not matter.

Figure 9 shows the effects of the various difference ratios on
the computed stiffness differences. Similar to the mass
calculations, the accuracy of the difference is dependent upon
its relative magnitude. When the stiffness difference is
relatively large, the computed difference is inaccurate; when the
difference is small, the computed value is much closer to the
actual value. Again, the computed difference ts independent of

the level of'the differences in the other parameters.

From any of the figures presented thus far it is apparent that

when only a few modes are included the results are meaningless.
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When less than eight modes are included the results are poor, and
past eight modes the results are good and do not improve by
including more than the first eight modes. To determine how the
number of degrees of freedom used in the model effects the number
of modes required for good results, a new model of the cantilever

beam was constructed using 32 degree of freedom instead of 16.

The difference plots for this model were computed using the
differences from case 3. The results are shown in Fig. 10. The
difference matrices using 16 modes as input are shown in Fig. 11.
From these results it is seen that while only 8 modes produced
good results in the 16 degree of freedom model, at least 16 modes

are needed in the 32 degree of freedom model.

Previously, it has been shown that the accuracy of the computed
differences are dependent on the magnitude of the differences and
the number of modes included in the calculations. In an attempt
to improve the accuracy an iterative procedure was implemented
(Fig. 12). 1In this procedure the differences computed by the
Difference program are accumulated from all previous iterations
and are then added to the mass, damping, and stiffness matrices
for the analytical model. The updated analytical model is then’

used to compute a new set of differences for the next iteration.

The iterative procedure was tested using the differences from
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test case 3 and the sixteen degree of freedom model. The results
for three iterations are shown in Fig. 13. Without iterating, it
was shown that when all sixteen modes are included in the
calculations the results are very good. After iterating only
twice, the results are exact. The same is also trué when only
eight modes are used. In general, when less than eight modes are
used, the accuracy of the computed differences are not improved
significantly by iterating. When only a few modes are included,
the accuracy is not improved at all. The advantage of using the
iteration procedure is that when an adequate number of modes are
used the results will converge to the exact values regardless of
the magnitude of the differences. The limitation of the
iterative process is that it does not reduce the number of modes

required for good results.
SAMPLE PROBLEM THWO: Simply Supported Beam

The second sample problem consists of a planar, simply supported
beam. The finite element model of this problem is made up of
nine node points and eight connecting beam elements (Fig. 14).
A1l of the degrees of freedom are constrained, except for the
y-rotations at nodes one to nine, and the z-translations at nodes
two through eight. There are sixteen degrees of freedom for this
problem. The-séme'section properties that were used of for the

first sample problem are also used here. The difference matrix
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piots for this problem were generated using the iteration scheme

shown in Fig. 12.

The "experimental" model was made to differ from the analytical
model by adding three concentrated springs and seven dampers to
the beam model. The locations and properties for these elements
are shown in the figure. This sample problem differs from the
first one in that the differences in the first problem were
limited to a single mass, damper, and spring, while in this
problem there are several springs and dampers at every node.
Also, the level of damping is much less in this problem than in

the previous one.

A comparison of the eigenvalues for the second sampie problem is
shown in Table iII. From this comparison it is seen that the
major differences between the analytical and experimental models
are in the first frequency and the modal damping in the first
seven modes. Beyond the seventh mode there are not any
differences between the analytical and experimental eigenvalues.
The first frequency is higher for the experimental model because
of the additional stiffness from the three springs. The modal
damping is different because the experimental model has the seven
translational dampers while the analytical model does not have
any damping. It is understandable that there is no modal damping

in the higher modes for the experimental model since the higher
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modes are dominated by rotations and the dampers only act in the

transtation direction.

The computed damping and stiffness difference matrices using the
first mode only as input into the Difference program are shown in
Fig. 15. From these plots it is impossible to identify any of
the differences that actually exist between the analytical and
experimental models. When only one mode was used for the first
sample problem calculations the differences could not be
identified either. When the number of modes was increased to
four (Fig. 16) the correct differences were reasonably apparent
in the difference plots. For the stiffness matrix plot,
differences appear at degree of freedom 4, 6, and 8 which
corresponds to the locations of the three springs that were added
to the experimental model. In addition to the differences at
these degrees of freedom, differences also appear at some of the
other degrees of freedom. These differences do not actually
exist in the models and would not appear if more modes were used
as input. Many of these "extra" differences can be eliminated by
examining the possible coupling that may exist in the analytical
mode. For example, node two and six are not connected to each
other so degrees of freedom 2 (z-translation, node two) and
degree of freedom 10 (z-translation, node six) are uncoupled
which allows for location (2,10) and (10,2) in the difference

matrix to be set to zero. The same logic can be used to
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eliminate some of the other unobtainable differences appearing in

~the plots.

In Fig. 17, the difference plots using four modes are recreated,
except that the differences at uncoupled degrees of freedom are
set to zero. In these plots the correct differences are even
more evident although some differences continue to appear where
there are not any true differences. There does not appear to be
any way to eliminate these "extra" differences except by using
more modes in the calculations. When the number of modes is
increased to six (Fig. 18), both the computed stiffness and
damping difference matrices are very accurate. In addition, no
significant differences appear where they do not actually exist
in the models. In Fig. 19, plots are shown where all sixteen
modes are included in the computations, and as expected, the

results are almost exact.
Conclusion

A general procedure for identifying and quantifying the
differences between F.E. models and experimental data has been
developed and demonstrated with simulated experimental data. The
differences, which can be computed for linear, viscous]y.damped
components, are presented in terms of mass, damping, and

stiffness coefficients. Since the differences are computed in
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terms of mass, damping, and stiffness coefficients, possible
modeling problems can be identified in the F.E. or analytical

model.

From data generated for a damped cantilever beam and a damped
simply supported beam, it was determined that the accuracy of the
computed differences increases as the number of experimentally
measured modes included in the calculations is increased. When
the number of experimental modes is at least equal to the number
of translational degrees of freedom both the location and
magnitude of the differences can be computed very accurately.
When the number of modes is less than this amount the location of
the differences may be determined even though their magnitudes
will be under estimated. When too few modes are available
neither the location or the magnitudes of the differences can be

identified.

In practice, it will be required to measure the experimental
frequencies and mode shapes very accurately before the
differences can be attributed to shortcomings in the analytical
model. If the experimental data is not precise, the computed
differences can still provide considerable insight into the
possible locations of deficiences. The difference is that the
deficiencies may_be in the experiment and some judgement will be
required to decide whether to modify the experimeht or the |

analytical model.
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TABLE I. - TEST CASES FOR
SAMPLE PROBLEM ONE

mass at node 9.
bRatio of damping A to F.E.
damping at node 5.
CRatio of stiffness A to
F.E. stiffness at node 2.

Case AM/M3 ac/cb | ak/ske
-4
] 2x10 1.0 | 5000
> 6x10-" 0 78000
-5
) 5x10 1.8 | 2500
> 6x10-" 0 ‘78000
-5
5x10 1.0 | 2500
3 > 6x10-" 0 78000
. 5x10™° 1.0 | 25000
2 6x10-" 0 78000
apatio of mass a to F.E.




TABLE II. - COMPARISON OF ANALYTICAL AND "EXPERIMENTAL"

EIGENVALUES FOR SAMPLE PROBLEM ONE

Mode Analytical Case 1 Case 2 Case 3. Case 4
eigenvalue ,
Experimental Experimental Experimental Experimental
elgenvalue eigenvalue elgenvalue elgenvalue
1 0 + 13714 -44.3 + 1304 -123 + 1111 -53 + 1334 -45 + 1501
2 0 + 8401 -247 + 7611 -438 + 5811 -245 + 7821 -258 + 8741
3 0 +2 3121 -179 + 2 2711 -12 + 2 3144 -74 + 2 N7 -31 + 2 5251
4 0 + 4 4479 -203.9 + 4 3811 -378 + 4 3591 -21.4 + 4 4254 -183 + 4 7944
5 0 +7 1971 -28.2 + 7 171814 -30 + 7 2034 =17 + 7 2071 -59 + 7 6921
6 0 + 10 4274 -195 + 10 428% -360 + 10 3871 -202 + 10 4304 -158 + 10 9724
7 0 + 13 7574 -247 + 13 7941 -35 + 13 7761 -19.6 + 13 7801 -55 + 14 2351
8 0 + 16 37114 -197 + 16 3691 -359 + 16 3041 -199 + 16 3591 -168 + 16 5721
9 0 + 63 0174 0 + 62 9221 0 + 62 9821 0 + 62 9821 0 + 62 9821
10 0+ 175 12714 0+ 75 71114 0 + 75 7211 0 + 75 72114 0 + 75 7214
11 0 + 84 0334 -3 + 83 9444 -5 + 840194 -3 + 84 0191 -3 + 84 0191
12 0 + 94 0261 0 + 93 9741 0 + 94 00714 0 + 94 0074 0 + 94 0071
13 0 + 103 9281 -2 + 103 8754 -4 + 103 9091 -2 + 103 9091 -2 + 103 9091
14 0 + 112 5994 0 + 112 5591 0 + 112 5844 0 + 112 5841 0 + 112 5841
15 0 + 119 2784 0 + 119 2561 -1 + 119 2704 0 + 119 2704 0 + 119 2704
16 0 + 123 4714 0 + 123 4661 0 + 123 4704 0 + 123 4691 0 + 123 47014

123



35

TABLE III. - COMPARISON OF
ANALYTICAL AND

"EXPERIMENTAL"
EIGENVALUES
FOR SAMPLE
PROBLEM
TWO
Mode Analytical Experimental
eigenvalue eigenvalue
- 0 + 3861 -48 + 4881

2 0 +1 54114 -48 + 1 5601

3 0 + 3 4551 -48 + 3 4661

4 0 + 6 0931 -48 + 6 0951

5 0 + 9 3494 -47 + 9 3521
6 0 +12 9111 -47 + 12 9194
7 0 + 16 0311 -48 + 16 0331
8 0 + 62 6681 0 + 62 6681
9 0 + 62 9301 0 + 62 9301
10 0 + 76 6171 0 + 76 6171
N 0 + 85 5771 0 + 85 5771
12 0 + 95 5621 0 + 95 5621
13 0 + 105 11914 0 + 105 1194
14 0 + 113 3474 0 + 113 3471
15 0 + 119 6334 0 + 119 6331
16 0 + 123 5631 0 + 123 5631
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(@) Analytical model.

(b) "'Experimental' model.

Figure 1. - Sample problem one.
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Figure 2. - Comparison of frequency data for sample problem one, case 1.
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Figure 3. - Comparison of mode shapes for sample problem one, case 1.
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ABS difference

{a)} Mass difference matrix,

5000 =

{b) Damping difference matrix, {c) Stiffness difference matrix.

Figure 4, - Computed differences for sample problem one, case 1, using 16 modes.
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Figure 5. - Computed differences for sample problem one, case 1, using 1 mode.
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Computed differencelexact difference
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Figure 7, - Mass difference at concentrated mass location (sample problem one). (“See
table I for case definition, )
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Computed difference/exact difference
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Cases 1°,2°,3", 4:::‘\
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Number of modes

Frgure& - Damping difference at concentrated damper location (sample problem one),
("See table I for case definition, )
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Computed difference/exact difference
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Figure 9. - Stiffness difference at concentrated spring location (sample problem one),
("See table I for case definition, )
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(a) Mass difference.
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(b) Damping difference.
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Number of modes

(c) Stiffness difference.

Figure 10. - Computed differences for 32 D.0.F. model.
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ABS difterence

(a) Stitfness matrix ditference.
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(b} Damping difference matrix. (c} Mass difference matrix.

figure 11. - Computed differences for 3z 0.0.F. model, using 16 modes.
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Figure 12, - Iteration scheme.
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Figure 13. - Improvement in computed differences with iterations (sample problem one,
case 3),
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Figure 14, - Sample problem two.
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CHAPTER III

IDENTIFiCATION OF STRUCTURAL INTERFACE CHARACTERISTICS
USING COMPONENT MODE SYNTHESIS

INTRODUCTION

The dynamic resbonse of large structural systems is often analyzed
using component mode synthesis (CMS) techniques. CMS is widely
accepted for.predicting coupled system response with increased
modeling éfficiency_and flexibility over conventional methods.

CMS techniques utilize a reduced set of component modes to
characterize the overall system behavior. However, the inability
to adequately model the connections between components has 1limited
the application of CMS. Connections between structural
components, and between components and ground are often
mechanically complex and difficult to accurately model
analytically. The modeling of these connections can profoundly
influence predicted system behavior. This is because only the
connections determine the boundary conditions which are imposed
upon the system components. Thus, improved analytical models for
connections afe needed to extend the applicability of CMS and to

improve system dynamic predictions.

55
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Parameter identification (PID) techniques can be used to improve
predicted response when experimental data are available. Modeling
accuracy is improved with PID by reducing discrepancies between
the measured characteristics of a physical sysﬁem with those
predicted by an analytical model of the system. Many techniques
are available to carry out this process of parameter refinement.
Most involve the determination of a set of structural parameters
which optimally minimize differences between experiment and

analytical prediction.

In this chapter, the combining of CMS and PID methods to improve
the analytical modeling of the connections in a component mode
synthesis model is explored. The approach involves modeling
components with either finite elements or experimental_modal data
and then joining the components with physical connecting elements
at their interface points. Interface connections in both the
transiational and rotational directions are addressed. Once the
system model is derived, experimentally measured data i§ used with
PID methods to improve the charécterizations of the connections
between components. Corrections in the connection properties are
computed in terms of physical parameters. With this approach, the
physical characteristics of the connections can be better
understood, in addition to providing improved input for the CMS

model.
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The identification of connection characteristics is simplified by
requiring individual components to be verified before they are
incorporated into the coupled system model. This requirement will
normally not present any difficuities, since component testing and
verification has become a regular practice. With this
requirement, the components are verified before they are used in
the coupled sySfem model. Any differences between the measured
and predicted coupled system response can be solely attributed to
inaccuracies of the estimated properties of the connections.
Also, the quantity of test data that must be obtained from the
cbup]ed system is greatly reduced. This is particularly useful
when it is impractical to obtain a complete set of vibration test
data for a coupled structure. Examples, include large space

structures, spacecraft systems, and turbomachinery.
Component Coupling Procedure

Numerous variations of the CMS method are currently available for
the dynamic analysis of coupled structural systems (1,2,3). In
the classical CMS approach, all of the system components are
characterized in the modal domain using their respective modal
parameters (frequencies and mode shapes). Coupling between
components also is performed in the modal domain through use of
modal constraints. These constraints are derived from

displacement compatibility conditions existing at the component
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interface locations. With the classical CMS approach, any
components or connections that have been modeled in terms of
physical coordinates (e.g., finite elements) must be transformed
into the modal domain before they can be included in the coupled
system equatiohs of motion. The system equations, in terms of
modal coordinates, are used to compute the system natural
frequencies. The system mode shapes are computed by transforming
the mode shapes obtained from the system equations back to

physical coordinates.

Recent applications of the CMS method have shifted from the
classical approach of utilizing only modal coordinates. Instead,
techniques that use a mixture of both modal and physical
coordinate systems have been implemented (3). There are several
reasons for the shift to a "mixed" coordinate set. One reason is
that a combination of component types can be incorporated into
the coupled system equations without requiring all of the
components to be in identical coordinate systems. This is
particularly useful when some of the components have been modeled
using F.E. methods and other component models have been derived
from modal test data. In most of the currently used CMS methods
boundary degrees of freedom of all bf the components are expressed
in terms of physical coordinates, and the internal degrees of
freedom are expressed in either modal or physical coordinates.

The inherent efficiency of the component representation is
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retained. With physical boundary coordinates, components can be
coupled utilizing classical direct stiffness assembly techniques
as in conventional F.E. computer codes. Furthermore, nonlinear
connecting elements can be used when boundary degrees of freedom
are in physical coordinates. In the classical CMS approach, where
modal coordinétes are used, it is very difficult to.incorporate
nonlinearities into the coupled system model.because of the
difficulties associated with defining modal parameters for

nonlinear elements.

In this chapter a simplified variation of the previously mentioned
procedures for CMS is developed. The procedure is defined to be
compatible with PID procedures which will be used subsequently for
identifying the component interface characteristics. The modal
components .are first converted to "pseudo" finite elements to
connect modal components to physical finite element components.
The pseudo elements are then treated in the same manner as
conventional finite elements, i.e., system property matrices are

assembled through direct stiffneﬁs techniques.

Consider the system shown in Fig. 1. This system is comprised of
two components which are coupled by a physical connecting
component. The undamped, free vibration equation of motion for
the uncoupled system is written in terms of physical coordinates

as:
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where [M] and [K] are the component system mass and stiffness
matrices, and {U} and {U} are the vectors of component nodal
acceleratiohs_and diéplacements (the superscripts refer to the
component identification). Equation (1) can further be
partitioﬁed by separating displacements internal to the
components from those that are at the interfaces between

components. MWhen this is done Eq. (1) is written as:
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The coupled system equation is obtained by applying the
displacement compatibility conditions at the interface between
the components and the connections. The displacements of the

component and the connection must be equal at the interface

therefore:
I C
Yo = Urp
and
II o ’
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Using Eq. (3), the transformation matrix, [T], which relates the

dependent and independent displacement sets is:

N
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From conservation of energy principles and the above
transformation, the coupled equation of motion is found from:
[K] - M [T]
coupled uncoupled
and
[M] - 11T [T] (5)
coupled uncoupled

Substituting the property matrices from Eq. (2) into Eq. (5) the
coupled equation of motion is:
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The procedure outlined above can be used to couple any number of
'physical components into the system equations. As mentioned
previously, when modal components are to be coupled into the
system model they are converted to pseudo physical components and
then are‘treated in the same manner as conventional physical
components. The pseudo physical property matrices are obtained
from orthogonality relationships between the property matrices
and the modal parameters. MWhen the component mode shépes are
normalized so that the modal mass matrix equals the identity

matrix, the modal and physical property matrices are related by:

61 IMIT6] = [1]

and
61 IKIL6] = [~ N

where'[M] and [K] are the component physical mass and stiffness
matrices, [“w2_1 are the component frequencies, and [¢] is the

matrix of component mode shapes.

When experimental modal data is used to characterize the
component, the matrix [$], containing the component mode shapes
may be rectangular. If "m" mode shapes are measured, and the
value of the mode shapes are recorded at "n" different physical
locations on the component, then the mode shape matrix will bé'of
order n x m.‘ Normally, there will be more measuremént locations

available than there will be modes that can be measured. To
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obtain a square modal matrix from experimental mode shape data,
~data at some measurement points can be neglected so that the
number of points is equal to the number of modes. When data at
measurement points is discarded no information is lost as far as
the overall system response is concerned, so long as measurements
at the component's interface points are retained. Once a square
mode shape matrix fs available, the pseudo physical property

matrices are related to the modal data by:

T -1 -1
[Mp] =[¢']1 [¢]

and

1 1

(K, = 611 2. 1061 (8)

where [Mp] and [Kp] are the component pseudo mass and stiffness
matrices. (The coefficients of the mass and stiffness matrices
are in terms of physical coordinates corresponding to the location

and direction where the mode shapes are measured).

The matrices cohputed in Eq. (8) are designated as pseudo matrices
because their physical interpretation is unlike that of
conventional mass and stiffness matrfces. Because it is
impractical to measure all of the component modes, the modal data
will be incomplete (see (4)) and will not contain all the
information required to produce the actual component mass and

stiffness matrices. Therefore, although the mass and stiffness
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matrices computed in Eq. (8) are in terms of physical rather than
modal coordinates, the matrices will not necessarily represent the
actual physical mass and stiffness characteristics of the
component. The mass and stiffness matrices from Eq. (8) will
reproduce the measured frequencies and mode shapes, and will be
suitable for representing the component in the coupled system

model.

Either the "free" or the “fixed" boundary component modes can be
used for the component characterization. The "free" mode shapes
are those modes that correspond to the component when it is in the
unconstrained or free boundary condition. In many situations
these modes are more conveniently obtained than the fixed boundary
modes. This is particularly true when the modes are measured
experimentally, because the component itself does not have to be
physically constrained during the experimental testing. In
practice, the free boundary condition often is approximated by
suspending the component from flexible cords or by supporting it

on soft springs.

The fixed modes are obtained by simultaneously constrainihg all of
the component's boundary degrees of freedom while performing the
modal testing. Analytically, the fixed modes are computed as
easily as the free modes. Experimentally, they are more difficult

to obtain, because all of the component's boundary dégrees of
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freedom must be fully constrained during the experiment. To
attain this condition requires that elaborate fixtures be attached
at the componenté boundary locations, and in practice, full
‘constraint is never completely achieved. Another difficulty of
using fixed boundary mode shapes is that an additional set of
"static" deflection or constraint modes must be added to the set
of fixed boundary modes. These modes are required so that the
component will have flexibility at its boundary locations where it

is connected to adjacent components.

Normally, the values of the experimental mode shapes are measured
fn the translational directions. It is not generally practical to
measure the values of the mode shapes in the rotational directions
because of limitations in available instrumentation. However, it
is sometimes desirable to couple rotational degrees of freedom
between components. If the values of the mode shapes are not
‘measured in tﬁe rotational directions, the pseudo matrices will
only have translational degrees of freedom and there will not be
means of coupling the rotational connecting stiffnesses. To
circumvent this difficulty, the rotational values of the mode
shapes can be extrapolated from the translational values, either
by curve fitting through the translational degrees of.freedom and
then computing the slope of the curve at the connection location,

or by using an approximate F.E. model of the component (see (5)).
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When the rotational values are extrapolated from a curve fit any
existing rotational inertia effects will not be reflected in the
values of the rotations. Neglecting the actual independent motion
df the rotation implies that there is no rotational inertia and
that the rotations are dependent on the translations. Because of
this dependence, the combined translational/rotational mode shapes
can not be used directly to compute the pseudo matrices without
encountering numerical problems during the matrix inversions in
Eq. (8). A solution to this difficulty is to initially use only
the translational mode shapes to compute the pseudo matrices.
Then, a transformation which is based on the dependence between
the rofations and translations is used to transform the pseudo
matrices from the translational coordinate system to a combined

translational/rotational system.

The dependent rotational values of the mode shapes can be related

to the independent translations by:
U, = 2. 23Uy 9
Where Ue is the dependent rotation at j, U
]

translations at the independent measurement points, aj are the

A are the
coefficients relating the independent translations to the
dependent rotations (determined from curve fit, etc.), and n s

the number of independent measurement points.
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The transformation from the mixed coordinate matrices to the

entirely translational pseudo property matrices is:

T 0 U
{?%} - © | (10)
| no o 1, Yy n

where [T'] is the transformation matrix derived from the
relationships in‘Eq. (9) and {up}' is a subset of {up}. For each
rotational degree of freedom that is added in {ug}, a
translational degree of freedom is removed from {up}'. The
Selection of the translational degrees of freedom that are
removed is arbitrary, and since a translation is removéd for each
rotation that is added, both systems will contain the same number

of degrees of freedom.

Using the original translational pseudo property matrices from
Eq. (8), the transformation in Eq. (10), and principles of
conservation of energy, the pseudo matrices are derived in the

combined translational/rotational coordinate system by:

K 1. = K
PUNNe |0 1 P lu, I
_ _ an
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Once the component pseudo matrices in Eq. (11) are computed, they
can be inserted into the system equations of motion and coupled

to adjacent components using the previousty discussed procedures.

The final coupled system equations can be used to predict the
overall system dynamic characteristics. The frequencies that are
computed from this equation will correspond to the overall system
resonances. The accuracy of the predicted frequencies will be
dependent on the precision with which the connections between
components have been modeled. It has been assumed that the
component modal models have been verified and are accurate, and
also, that the proper component modes have been included in the
model to adequately predict system response (see sample problem

one).

The mode shapes derived from the system equations will correspond
to the physical degrees of freedom included in the system model.
When the combined translational/rotational model is used some of
the mode shape values will correspond to translational degrees of
freedom and some to rotations. The accuracy of the mode shapes,
like the frequencies, will be dependent on the adequacy of the
component- modal representations and the modeling of the

connections.
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Parameter Identification Procedure

Once the system equations of motion and their corresponding
frequencies and mode shapes are computed, and the experimental
system modes have been measured, PID can be used to find an
improved set of_connection parameters that better predict the
measured experimental system data. For this study the Weighted

Least Squares method for parameter estimation is used (6).

If {c} and {c} are vectors containing the measured and
computed system frequencies and mode shapes respectively, then
the weighted squared difference between the predicted and

measured characteristics is:

{F} = NIC(T) - {chH? (12)
~ where [W] is the weighting matrix and {F} is a vector of weighted
squared differences. To find the set of connection parameters

that minimizes the weighted squared differences, the derivative

of {F} with respect to the connection parameters is set to zero.
Noting that the predicted characteristics {c}, are a function of

the connection parameters {r}, the derivative of {F} is written

aS.
g%% - IHICE) - {cD) gi{% - {0 (13)

Expanding {c} in a Taylor series and truncating higher order
terms, {c} 1is approximated as:
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(c) = (clyq, + g%g% (ar) (14

Where {Ar} are the differences between the estimated and actual
values for the connection parameters. Substituting Eq. (14) into

Eq. (13) and letting 3{c}/3{r}=[S1 leads to:
[Wl({c} - {c}est - [SI1{ar} ST = {0} v (15)

From Eq. (15).it is desired to solve for {ar} so that the actual
connéction parameters can be determined. Solving for {ar} can
not be accomplished by simple inversions, however, because in
general the number of measured and predicted characteristics will
be greater than the number of connection parameters, rendering
the matrix [S] to be nonsquare. The vector {ar} can be solved
for if Eq. (15) is first premultiplied by [S1T. When this is
done, {Ar} is solved as:

-

{ar} = ([S]T[N][S]> SH ({E} - {c}EST) (16)

An updated set of connection parameters is computed by:
{r} = {r}ge + {or} an
or by substituting from Eq. (16):
(r} = (r}een + ([SJT[w][sﬂ'JESJTtw] (€} - (c} (18)
- EST EST

Since {c} is approximated by a truncated series, the improved
connection parameters will be only an approximation to the final
parameters. However, the final parameters can be obtained by

iterating on Eq. (18).
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A direct approach for computing the elements of the sensitivity
matrix [S] is to perturb the analytical model with changes in the
connection parameters, and then compute the resulting changes in
the system characteristics. The elements are then computed by
setting 593 equal to the change in the Cj characteristic
divided by the change in the T connection parameter.
Alternative methods for computing these derivatives have been
presented (see (7)) but for problems such as the example, with
only a small number of connection parameters, the above method is

adequate.

The selection of the system characteristics that are used in the
estimation procedure is determined by data acquistion capability.
Experimentally, it is generally easier to measure frequencies
than mode shapes, so in many cases it may be practical to include
more frequencies than modes shapes. Characteristics other than
frequencies and mode shapes also can be utilized; in (8), it is
suggested that kinetic energy may be a useful characteristic.
Once the characteristics are chosen, the weight that is placed on
each characterfstic must be determined. If one characteristic is
measured more accﬁrate]y than another, then it can be weighted

more heavily.

When the number of system characteristics is large, the size of

the weighting and’sensitivity matrices increases, and the matrix
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in Eq. (18) may become i11 conditioned for inversion (see (9.
The PID procedure only requires a minimum number of system
characteristics to adequately identify the connection parameters
since each component has already been verified. Therefore, the
size of‘the matrices in Eq. (18) will be kept small and inversion
problems will be minimized. Another problem may arise when the
analytical model cannot be exactly made to fit the experimental
data. When this is the situation the set of connection
parameters that minimizes the differences, rather than eliminates
them, must be used. The model may not be able to produce the
desired measured system characterisfics because of limitations in
‘the compohent modal representation. Also, if the experimentally
measured modes are not orthogonal, perfect agreement can never be
achieved becauée the analytical model can only produce orthogonal

mode shapes.
Sample Problem One: Coupled Beams

The following sample problem is offerred to demonstrate the
component coupling and parameter identification procedures. To
verify these procedures simulated experimental data generated
from a F.E. model was used. The sample problem (Fig. 2) is
comprised of two simply supported beams connected atbtheir ends.
For simplicity,_bdfh beam components were made identical. 1In

actual applications the system can be partitioned into any set of
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;omponents that is desired. Each of the components in this
problem are discretized into-seven massless, planar beam elements.
Concentrated translational masses are added between the elements
at nodes 2 through 7 and 10 through 15. The components are
connected by a rotational spring (K = 10.E5) at nodes eight and
nine. A connection also is made to ground by a rotational spring

(K = 10.E5) added to the second component at node 16.

The accuracy of fhe computed system frequencies as a function of
the number of modes used for the component representations was
evaluated with six, four, and two component modes (see Table I).
Both the six and four component mode representations produced
system frequencies that are in good agreement with the baseline
F.E. solution. ‘Although there are only six component modes in
the F.E. solution, the six mode representation does not produce
exact frequencies because the F.E. model has more than 6 degrees
of freedom. The two mode representation allows for the first and
third modal frequencies to be predicted satisféctorily but does
not provide enough information for an accurate prediction of the
second and fourth frequencies. Af least two component modes are
required so that there will be a rotational degree of freedom at
each end of the component that is connected to ground (only one
mode is needed for the other component). In every case the
component mode solution produced frequencies that are higher than

the baseline frequencies. This is understandable sinée the
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component mode solution uses a truncated set of modes and

therefore does not include all of the component's flexibility.

For the initial attempt at identifying the connection properties,
only the simuiated system frequencies from the F.E. model

(Table II) were used in the parameter identification routines.

It is preferable that the connection properties be identified
without having to use system mode shapes because the mode shapes
are considerably more difficult to experimentally measure than
the frequencies. MWhen either six or four component mode
representations were used two possible solutions were found for
the Ky and Ky connecting stiffnesses which satisfied the system
frequency constraints (see Table II). The chosen solution was
dependent on the initial starting estimates for Ky and Kj.
Although neither solution is equal to the actual connecting
stiffnesses, the first one is reasonably close considering the
limited number of system data used and the approximation of the
component modal representation. When either of the solutions are
input into the F.E. model they produce system frequencies that
are very close to the exact frequencies. The first solution does
produce a better set of system mode shapes. In an actual
application, without more than system frequency information, it
would be impoésible to determine which of the two solutions is
closer to the actual values of the connecting stiffnesses.

Furthermore, since'both the five and two system frequency cases
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produced similar solutions there is no advantage to using more
than two system frequencies. MWhen two component modes are used a
maximum of four system frequencies are available, therefore the
five system frequency case cannot be analyzed. For the two
component modes and two system frequency case, the solution

failed to converge.

A subsequent attempt, using a combination of both system
frequencies and mode shapes was made with the expectation that
the identification of the connection properties would be
improved. By adding the first mode shape as a constraint, along
wifh the first five system frequencies, the second multiple
solution was eliminated. When only one system frequency and one
mode shape was used, the problem still converged to the first
solution regardless of the initial estimates for the connecting
stiffnesses. Thi§ combination of system data is ideal because,
while it eliminates the multiple solution, it only requires a
minimal amount of experimental data. Similar results were
produced for both the six and four component mode
representations, while the two mode representation continued to

present difficulties.
Sample Problem Two: RSD Rig Verification

Once the component coupling and parameter identification

algorithms wére evaluated with simulated data (Sample Problem
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One), it was décided_to assess the procedures using actual
experimental data. To accomplish this, the RSD (Rotating
Structural Dynamics Rig) at NASA Lewis Research Center was
selected. The RSD rig (Fig. 3) is desfgned to simulate engine
structures to study active rotor control and system dynamics
(component interaction) problems. The rig components, although
considerably simpler than a real turbine engine's, were scaled
such that they wou]d simulate an actual engine's structural

dynamics response characteristics.

The objective of the parameter identification was to determine
the stiffnesses of the squirrel cage bearing support that
connects each end of the rotor to the support frame. To
accomplish this, the RSD rig was divided in two components: the
rotor suppoft frame, and the rotor. Each of these cdmponénts was
characterized and then verified experimentally, so that accurate
component representations would be available for the coupled
system model. In the system model the support frame was
represented by an experimentally verified F.E. model while the
rotor component was represented by experimental modal data.
Since both components were experimentally verified, any
differences that appeared between the predicted and measured
system characteristics could be attributed to the uncertainties
in the squirrel cage connections between components. This
approach considerably simplified the verification faék by
reducing the quantity of modal data required from the coupled

system.
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The support frame finite element mesh is shown in Fig. 4. The
frame is mounted on a relatively stiff base plate so grid points
35 through 39 are fully constrained. Grid points 19 and 20,
where the rotor is attached, were allowed to freely displace.
This free condjtion is representative of the conditions used
during the modal tests and is also compatible with the
requirements for the component coupling procedure. The grid
points are connected with beam (bending and axial deformations)
elements except_for the diagonal elements at grid 35 which are
modeled with rod (axial deformation only) elements. All of the
elements are modeled with A36 steel properties. The frame F.E.
model was analyzed with NASTRAN, to compute the component
frequencies and mode shapes (Fig. 5). The frequencies were
experimentally verified by using vibration data obtained from an
HP 5423 Dynamic Analyzer. The rotor modal representation was
obtained by measuring the rotor mode shapes in the free boundary
condition. This condition was approximated by hanging the rotor
from bungy cords. The component modal characteristics were
generated from transfer function data obtained from the dynamic
analyzer and impact testing. A total of six rotor modes were
measured (see Fig. 6) including two rigid body and four elastic

modes.

The support frame and rotor were coupled by combining the

physical F.E. model of the frame with the modal representation of
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the rotor. For simplicity the coupled system model was
constrained to motion only in the vertical plane. This
restriction allowed for a reduction in the required number of
degrees of freedom in the system model and allowed for all of the
system testing to be performed in one plane. The coupled system
frequencies fof the six mode rotor representation are plotted
along with the measured frequencies in Fig. 7. The predicted
frequencies were computed for different values of squirrei cage
stiffness to determine the effect that the cages have on the

system frequencies.

To generate these results it was assumed that both squirrel cages
had identical stiffnesses. This was a rational assumption, since
both cages are built to the same specifications. (Subsequent to
this analysis the éage stiffness was measured as 5050 1b/in.

using a static loading test.)

Only the first three computed system frequencies are shown
because only three frequencies were measured. When all three
frequencies are used the cage stiffness is identified as

5750 1b/in. This value is in good agreement with the measured
stiffness (5050), considering that only three system frequencies
were used for fhe parameter identification. In Fig. 7 it is
shown that this_émount of diffefence in cage stiffness doe§ not

have a significant effect on the system frequencies.
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In addition to the six mode rotor representation, a four and two
mode representation were used to determine the effect that the
number of component modes has on the stiffness identification.
The four mode representation identified the same cage stiffness
as the six mode representation. The two mode representation
identified the cage stiffness as about 2300 1b/in. or only

46 percent of the measured stiffness. It was expected that the
two mode representation would be insufficient for identifying the
cage stiffness because this representation is inadequate for
accurately predicting the system modes. It is obvious that the
two mode representation cannot produce very good results because
only rigid body modes are included in the representation, and the
system modes involve elastic bending in the rotor. Although
rules of thumb are available for determining the required number

of modes, additional work is required in this area.
Conclusion

From the two sample problems analyzed in this study it was
determined that the stiffness characteristics of component
connections can be identified using component mode synthesis and
parameter identification procedures. Furthermore, the
characteristics can be identified using experimentally obtained
component modal representation and a minimal quantity of measured

system modal data. In the first sample problem it was found that
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multiple solutions are possible, but that they can be avoided
when system mode shapes are included in the identification
procedure. In the second problem it was found that the rotor for
a rotor/support frame coupled system could be adequately
represented by experimentally obtained modal data. It was also
found that only three system frequencies had to be measured for
the connection characteristics between the frame and rotor to be
identified. From thevresults obtained tﬁus far, it is determined
that the quantity of data required for the component
representations and for the connection characteristic
identification is problem dependent. Therefore, each application

must be treated on an individual basis.



81

References To Chapter III

. Hurty, W.V.: Dynamic Analysis of Structural Systems by
Component\Mode Synthesis. JPL-TR-32-350, NASA CR-53057, 1964.
. Craig, R.R., Jr.: Structural Dynamics. John Wiley and Sons,
New York, 1981.
. Martinez, D.R.; and Gregory, D.L.: A Comparison of Free
Component Mode Synthesis Techniques Using MSC/NASTRAN. SAND
83-0025, 1984.
. Berman, A;; and Flannelly, W.G.: Theory of Incomplete Models
of Dynamic Structures. AIAA J., vol. 9, no. 8, Aug. 1971,

pp. 1481-1487.
.-Berman, A.: and Nagy, E.J.: Improvement of a Large Dynamic
Analytical Model Using Ground Vibration Test Data. 23rd
Structures, Structural Dynamics and Materials Conference,
Part 1, AIAA, New York, 1982, pp. 301-306.
. Isenberg, J.: Progressing from Least Squares in Bayesian
Estimation. ASME Paper 79-WA/DSC-16, Dec. 1979.
. Collins, J.D., et al.: Statistical Identification of

Structures. AIAA J., vol. 12, no. 2, Feb. 1974, pp. 185-190.



82

TABLE I. - COUPLED SYSTEM FREQUENCIES (SAMPLE PROBLEM ONE)

(CONNECTION STIFFNESS K=10x109)

BASELINE FINITE
ELEMENT SOLUTION

COMPONENT MODE SYNTHESIS SOLUTION

NUMBER OF COMPONENT MODES

1

6 4 2
1. 112 Hz 114 Hz (2%) 114 Hz (2%) 145 Hz (29%)
2. 165 177 (7%) 180 (9%) 197 (19%)
3. 421 425 (1%) 426 (1%) 431 (2%)

4. 496 523 (5%) 525 (6%) 561 (13%)
5. 927 932 (1%) 933 (1%) -




TABLE II. - COMPUTED CONNECTION STIFFNESS

NUMBER OF SYSTEM

NUMBER OF COMPONENT MODES

FREQUENCIES
6 4 2
K1=6.5%10%, Ky=7.4x10° K1=6.3%105, K;=7.3x10°
5 and and (a)
K1=3.7x105, K;=13.1x105 | K;=3.6x105, K,=12.5x%10°
K1=6.7x105, Ky=7.4x10% K1=4.1x105, K;=10.8x103
2 and and (b)

Ky=3.7x105, K;=13.4x10°

Kq=5.4%105, K;=8.1x%107

3only four system frequencies available

bgoiution does not converge

£8



FIGURE 1.- THREE COMPONENT SYSTEM.
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FIGURE 2.- COUPLED SYSTEM (SAMPLE PROBLEM ONE).
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FIGURE 3.- ROTATING SYSTEM DYNAMICS RIG.
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CHAPTER 1V
CHARACTERIZATION OF DAMPED STRUCTURAL CONNECTIONS
FOR MULTI-COMPONENT SYSTEMS

Introduction

As discussed in the previous chapters, analytical models of
structural systems normally do not normally possess
characteristics which agree completely with those obtained from
experiments. Although there are many possible explanations for
the discrepancies, the major causes often can be attributed to
inaccuracies in the data used to create the analytical model.
Parameters such.as material and dimensional properties, which are
usually obtained from nominal design specifications, can differ
considerably from the true values, thus causing the analytical
model to be inaccurate. Structural properties such as damping and
connection stiffnesses also are extremely difficult to
predetermine, yet their influence on structural response

predictions is profound.

For large structural systems it is common practice to utilize
substructuring methods to create the analytical system model.
These methods are used to construct the model by partitioning the
structure into components, and then linking the individual
components together with inter-component connections. The

components frequently can be modeled with reasonable accuracy

91
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whereas the connections are difficult, or in many situations
impossible to analytically model. This is especially true when

the connections contain significant amounts of damping.

The objective of the work in this chapter is to investigate the
feasibility of determining the characteristics of viscously damped
connections from test data obtained from the complete coupled
system. It is desirable to be able to determine the connection
stiffness and damping from tests performed on the complete system
so that the difficulties associated with testing individual joints
can be circumvented. The problem with testing individual joints
is that often special test fixtures are required for mounting the
joint. Also, conventional modal tests can not be performed on the
joint because joints normally are very stiff, and thus require
static and cyclic loading tests in determining stiffness and
damping properfies (1>. Furthermore, although several joints may
be nominally identical, their actual properties may vary enough to
require that every joint be tested. When system tests are
performed the difficulties associated with tests on individual
joints are eliminated. Insfead of special fixtures the system can
be tested in ifs,actua] operating environment or hung from flexible
suspenders. Conventional modal tests which are much simpler to
perform than static or cyclic loading tests can generally be used
because the system modes are in a suitable range. Also, the low
frequency modal data contains information about the joints even

though the joints themselves are relatively stiff.
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Several previous studies have addressed the issue of identifying
the stiffness of connections without considering damping. In
Chapter III an attempt was made to identify the stiffness of
connections by using a combination of a weighted least squares
parameter identification and substructuring methods. This work
showed that physical stiffness characteristics can be determined
from experimentally obtained frequency data as long as sufficient
test data aré available. 1In Ref. 2 the stiffness characteristics
of the connections between the Centaur G Prime Launch Vehicle and
the shuttle orbiter were modified based on experimentally obtained
modal data. The connections were altered so that a test-verified
analytical model would be available for subsequent loads analysis.
The modifications, based on engineering intuition and judgement
were deemed satisfactory when the analytical and experimental

frequency data were in agreement.

Previous studies that have addressed connection damping (1,3-7)
have focused on identifying damping properties from tests on
individual joints rather than from coupled system tests. 1In

Ref. 1 a mix of analytical and experimental component models were
combined to characterize the dynamics of a flexible spécecraft.
For this study, joint stiffness and damping were ascertained
before the joints were incorporated into the system model. Data
obtained from cyclic loading tests indicated that the joint

damping was primarily viscoelastic, although it was noted that
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joints in actual space structures may exhibit nonlinearities and
friction damping. Since the system modal properties computed from
the experimenfally derived joint models were in agreement with
test results, there was no need to modify the joint characteristics
by using the cdupled system test data. In Ref. 3 damping and
stiffness characteristics of a representative space truss joint
were studied. ‘In that work results from simplified joint models
were compared to results obtained from a complex model which
included dead bands, large deformations, and friction forces. It
was concluded that simplified models based on linear springs and
viscous dampers could represent the behavior of the more
sophisticated joint model. No actual experimental data was used
in that study. In Ref. 4 nonlinearities in a structural joint
were identified by using an approach termed "force-state mapping".
This approach involved simultaneously measuring the force on a
joint along with its position and velocity. From the shape of the
three dimensional surface generated by plotting force as a
function of displacement and velocity the type and quantitative

description of the joint mechanisms were identified.

In the present work a general procedure for component coupling is
presented. This procedure accommodates components that have been
modeled with either, finite elements or with modal data which has
been obtained from analytical models or experiment. A parameter

identification procedure based on the weighted least squares method
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also is introduced. This procedure utilizes system test data to
find an optimal set of stiffness and viscous damping connection
properties. Finally, two example problems which use simulated
experimental data are presented. For these problems both stiffness
and damping connection properties are identified. A Monte-Carlo
simulation is run to assess the effect of variance in the
experimental data on the identified properties in the first
problem. The effect of friction damping is evaluated in the

second.
Component Coupling Procedure

The approach used for developing the coupled system equations of
motion is extrapolated from the procedure of Ref. 8. In this
approach component models are represented through the use of finite
elements or with modal data. Component modal data may be obtained
from experiment, or from a reduced finite element modei. Once the
component models are obtained, they are coupled at physical
boundary degrees of freedom through physical connecting elements.
In the present work both stiffness and viscous dampingbis
accommodated in the connecting elements. Residual flexibility,

which is discussed in Ref. 8 also is included.

Consider the system shown in Fig. 1. This system is comprised of

two components which are coupied by a single connecting element.
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The damped equation of motion for the uncoupled system is written

as:

Ml
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where the component degrees of freedom {u} are partitioned into
internal {uj} and physical boundary {xp} degrees of freedom.
For components modeled with finite elements, all of the degrees of
freedom are physical. For modal components, the boundary degrees
of freedom are physical while the internal, {uj}, degrees of

freedom are represented in terms of modal coordinates.

When modal data is used to characterize components, physical
degrees -of freedom at the component boundary must be derived from
the modal data before the component can be input into Eq. (2).
These degrees of freedom are obtained by transforming a subset of
the modal coordinates into physical coordinates. The equation of
motion for an undamped component in terms of physical coordinates,

X, 1s:

[MI{X} + [KI{X} = {0} ' (3)
The physical displacement x can be approximated by:

{(x} = (& {q,} + (G I{ay} (4)

where K is the number of measured or retained modes, q are
generalized coordinates, and Gp is the residual flexibility matrix
contains the flexibility which is not included in the component modal
characterization. Normally, the component characterization is
incomplete because the component model is constructed from a
truncated set of component modes. The residual flexibility is used

to supplement the truncated set of modes.
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Analytically, the matrix Gp, containing the component residual
flexibility is computed by summing all of the missing modal data (m
+ 1, N) at each of the boundary degrees of freedom, Beginning with:

(017 (KI0e] = [~ ] (5)

Then solving for K:

-1

(K] = [0]"  [~?

e’ (6)

The total component flexibility matrix is obtained by inverting K:
T

[F1 = (K1 = [ol0~wal1"'[0] (7)
In summation form:
k
¢i¢iT . 4’14’1T
F = >+ j{: > (8)
. W. . W.
i=1 j i=k+1 j

where Kk is the number of kept modes and N s the total number

of modes (For ;omponents modeled by F.E. N equals the total number
of degrees of freedom whereas for actual components N = ). The
term on the r.h.s. of Eq. (8) is termed the residual flexibility,

G. From Eq. (8) it is evident that G is comprised of the
"left-over" flexibility which is not included in the truncated set
of modal data. Experimentally, the entries in the residual
flexibility matrix are obtained by determining the differences
between the curve fit and the experimentally measured frequency

response functions (9).

The residual fléxibility is implemented so that flexibility which

is not contained in the truncated set of component modes is
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included in the component model. The values of the residuals at
the boundary degrees of freedom are required because they provide
information necessary for accurate component coupling and for the
creation of a precise system model. Only the diagonal terms in
the matrix are used here becayse it was determined that the
off-diagonal terms, which related the cross coupling between
boundary degrees of freedom, have a negligible effect on the

fidelity of the model (8).

Returning to Eq. (4) and partitioning {x} into internal. o, and

boundary degrees of freedom:

o] ¢ok
{X} = = d (9
Xo) 1%k Gpof L %
T
where T s the transformation which relates the physical coordinates

to the generalized coordinates. Pre- and post multiplying Eq. (3)

by T (and knowing ¢ and g are orthogonal):

(T1TIMITTI(q} + (T1TCKICTI(q) = {0} Q10)

which leads to the equation of motion:
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where [Ixk] s the identity matrix, [wgk?] 1is the matrix of

component frequercies, and {bed] is the diagonal matrix of

SO
residual flexibilities, ZE: —19—%9— at the boundary, b degrees
j=ks1 M
of freedom.

Using the transformation:

X Pk 0 Ay
i} (12a)
d

Xp Ppk Gpb %
leads to:
A I 0 119
. (12b)
-1 1
9B} |G 4 G %

Using the above transformation and Eq. 3, the component equations
of motion in terms of modal and physical boundary coordinates are

derived as:

. 2 T - T -1
I a ek + Op G by = Py G Gy
+ R R = {0} 13
ol & G G X,

b ok
After the compcnent equations are transformed into the coordinate
system used in Fyg. (5), the component can then be incorporated into
the system equations in the same manner as are the finite element

components.

Once the system equations of motion are constructed, they can be

used to predict the system frequencies and mode shapes. This modal
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data is then used in conjunction with the experimentally measured
modal parameters to identify the connection properties. Because
the system is damped, the frequencies will be complex; the real
part corresponding to the modal damping and the imaginary part to
the modal frequency. The mode shapes also will be complex but for
most damped systems (including the present research) the imaginary

part can be disregarded.

Parameter Identification Procedure

Several methods are available for parameter identification (10).
The methods which incorporate optimization strategies can be
classified into three groups; least squares, weighted least
squares, and Bayesian estimation. MWith the least squares method
the set of parameters which minimizes the difference between the
measured and predicted response is computed. The weighted least
squares method is similar except that a "weight," corresponding to
the relative confidence in the measured data, is incorporated. The
Bayesian method permits specification of the randomness of the
parameters that are being computed as well as the confidence in the
measured data. Since in practice the randomness of the connection
parameters may be difficult to quantify the Bayesian method
normally is not useful. The weighted least squares method will be
used in the present study because it is feasible and useful to

quantify the confidence levels in the measured data.
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Assuming that the component characterizations are accurate, and
that an appropriate set of component modes has been used to
represent the overall system response, a search can be initiated
for a set of connection parameters which better predicts the
system frequencies and mode shapes. The assumption that the
component representation is accurate may require that experimental
verification be performed on the component models before they are
used in the system characterization. Although this approach may
require additional effort in that verified component models are
required, it greatly simplifies the parameter identification by
limiting the location of possible inaccuracies to the connections.
The requirement that an appropriate set of component modes be used
normally can be met by including the lower modes, and by utilizing
a number of degrees of freedom in the system model that is at least
twice the number of modes of interest (a mode equates to 1 degree
of freedom). This requirement is comparable to the modeling
guidelines used for conventional finite elements. By including

residual flexibilities, the requirement can be relaxed.

The parameter identification (PID) discussed in Chapter III is

used here to find an improved set of connection parameters that
better predict the measured system data. The difference between
this work and the work in Chapter III is that in this work modal

damping is included in the identification.
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The improved set of connection parameters are computed fteratively
from:

r} = {r}est + (ASITINICSD-TISITINIC(E) - {cYesT) (14)
where {r} is the vector of improved connection parameters
(physical stiffness and damping coefficients), {c} and {clesT
are the measured and computed system modal parameters, [W] 1is a
weighting matrix for the measured data, and (S] is a sensitivity

matrix containing the partial derivatives, d{c}/d{r}.

The vector of measurements, {c}, can contain both complex frequency
(frequency and damping), and/or mode shape data. For the mode
shape data it is sensible to use a measure of the overall fit
between the predicted and experimental mode shape inztead of using
values of the mode shapes at individual Tocations. & iogical
measure of the overall fit is the least squares difference between
mode shape data points. The Mode Shape Correlation Coefficient
(11) provides this kind of measure. The Mode Shape Correlation
Coefficient is advantageous because it provides a gquantitative
measure of the fit between the entire analytical and experimental
mode shape, and furthermore, it does not require the experimental

and computed mode shapes to be normalized in the same manner,

The weighting matrix, [W], is used for specifying the confidence
levels as well as for scaling the system modal parameters. For

example, to specify that the modal damping has equal importance to
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the frequency, a larger weight may need to be placed on the damping
parameter. This is due to the fact that the order of magnitude of
modal damping is less than that of frequency. Also, a kigher
weight may be warranted for parameters that are more significant,

or that have been measured with greater accuracy.

The sensitivity matrix, [S], although relatively latorious, is
straightforward to compute. In the present study the sensitivity
matrix is computed by perturbing the system with small changes in
the connecticn parameters, {r}, and then recording the resulting
changes in the system modal parameters, {c}gsT. A new sensitivity

matrix is computed for each iteration of Eq. (14).
Sample Problem One: Coupled System

The first sample problem is presented to demonstrate the parameter
identification prccedures and to assess the feasibility of
identifying physical connection properties from coupled system
modal data. Ffor this problem a finite element mode} was used to
generate simulated experimental data. The model (Fig. 2) consists
of three planar eiastic beams connected at their ends with revolute
(pinned) connecticns. Each connection is attached to ground by a
linear, translaticnal, spring, and viscous damper. The properties
of the connecticns are varied by changing the value of 'm' and 'n'

which are shown in the figure. Each of the beam compcnents is



105
discretized into five beam elements with the beam mass lumped at
the ends of the elements. The complex eigenvalue extraction
capabilities (Sol 28) of MSC NASTRAN (12) were used to compute the
simulated experimental frequencies, modal damping, and mode shapes
for the coupled system. NASTRAN also was used for computing the
free-free modes for the individual beam components. These modes
are used for creating the modal components for the analytical
model. Four modes, two rigid body and two elastic, were used for

the component representations.

Figure 3 shows the effect that the grounded springs have on the
system's undamped ra2sonant frequencies. The results in this figure
are generated from the experimental model. For n = C, the first
four modes resemble rigid body modes, reflecting the suftness of
the springs. As 'n' is increased the system becomes stiffer, the
frequencies increzse, and the system behaves more like a series of
simply supported peams. For 'n' greater than eight, the grounded
springs act as rigid supports. In the subsequent parameter
identification, a range of 'n' values is investigated so that a
performance assessment can be made for both very flexible, and

relatively rigid, connections.

In Fig. 4, a comparison is made between resonant frequencies from
the modal model {residual flexibilities not included) and those

from the experimental model. Since four modes were used to
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represent each component, and there are three components, the
system modal mode! had twelve degrees of freedom. Based on this
number of degrees of freedom it was expected that the first four
or five modes could be predicted with reasonable accuracy. For
low 'n' values there is very good agreement between the
experimental and component mode models for the first five modes.
This is expected since the component mode model is generated from
free-free component modes. For low 'n', each component behaves as
if it were freely supported. For larger 'n' values the system
behaves like a series of simply supported beams, creating greater
disagreement between the frequencies predicted by the experimental
and modal models. This also is expected because the truncated
component mode rapresentation is better suited for predicting rigid
body type motions, and has a more difficult time with the bending
type behavior of the simply supported components. The mismatch for
high 'n' values is still moderate, especially for the first three
system resonant frequencies. Obviously, when more or less than
four component modes are used the respective mismatch decreases and
increases. In general, the modal model utilizing four component
modes produced very reasonable results. When residual flexibility
was included there almost was perfect agreement over the entire

range of 'n' values.

_In Fig. 5, the differences between the experimental and identified

connection stiffnesses are plotted as a function of 'n' value. The
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connection values were identified by minimizing the differences
betweeh the first seven system resonant frequencies. Mode shape
data was not utilized. It was preferable not to have to use any
mode shape data because shape data is considerably more difficult
to measure experimentally than are frequencies. To initiate the
parameter identification (Eq. (6)), initial estimates are required
for the connection parameters. In creating the data shown in this
figure, zero stiffness values were used for the initial estimates
of the connecticn parameters. When the connection properties are
better known, the initial estimates can be improved, and

convergence is accelerated.

The strongest agreement between experiment and computed connection
parameters is at 'n' = 4. This is in contrast to the highest
frequency match (Fig. 4) which was at 'n' = 0. Even at ‘n' = 0,
where the difference is as large as thirty percent, the match is
still fairly good considering the prevalent difficulties associated
with determining connection properties. In many situations it is
adequate merely to be able to determine the order of maanitude of
the connection properties. For 'n' = 6, converged parameters could
not be computed without including residual flexibilities, although
the order of magnitude of the connection properties was determined
correctly. HWith the inclusion of residuals, the connection

stiffnesses were computed to within forty percent accuracy.
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There are two reasons why disparities between the identified and
experimental connection values may occur, even though the
analytical model accurately predicts the system frequencies (e.g.,
at 'n' =0,2,4). The first reason is that when the frequencies
are relatively insensitive to the connection stiffnesses, a high
degree of precision in the experimental data is required for
" accurate identification. In practice, this required degree of
precision may not be attainable and only an order of magnitude
estimate of the connection properties may be realized. The second
explanation involves the existence of multiple solutions. For mény
systems, including the one presented in this paper, more than one
set of connection properties exists which satisfies the objective
of eliminating the differences between the measured and predicted
modal parameters. MWhen this is the case, the resulting set of
connection properties is dependent on the initial estimates for the
connections and on the step size used for computing the sensitivity
matrix. Normally, the number of solutions can be minimized by
utilizing additional frequencies and/or mode shapes in the
identification. The number of possible solutions and the required
quantity of experimental data can be determined beforehand by
performing simulation studies with varying step sizes and initial

estimates for. the connection properties.

The data in Figs. 6(a) and (b) were created to assess the effect

of damping on the identification of connection properties. For
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these figures, the connection stiffnesses were held constant at
‘n' = 4, and the damping was varied from 'm' = 0 to 1.4 (critical
damping is near ‘m' = 1.6). In Fig. 6(a) the flatness of the
curves demonstrate the insensitivity of the stiffness computations
to damping. Even for large damping, 'm' = 1.4, the connection
stiffnesses are computed accurately. 1In Fig. 6(b) the effect of
damping on the identified connection damping is displayed. Similar
to the stiffness results, the identified damping also is fairly
insensitive to the level of the damping. In general, when the
level of damping is low, and hence frequency is unaffected by
damping, there will not be any coupling between damping and
stiffness, and the connection stiffness and damping properties may

be identified independently.

A Monte Carlo simulation was used to assess the accuracy of the
parameter identification for various degrees of experimental error.
Normally, the level of experimental error in frequency is smaltl,
while the error in damping and mode shapes is relatively large.
Based on this assumption, the coefficient of variation in the
frequency measurements was set at 1 percent and the damping
coefficient of variation was varied from 1 to 15 percent. For
simplicity, mode shape data was not utilized. Simulated data was
generated by makirg forty runs at 'n' =4, 'm' = 1.2, and using a
random number generator to select the experimental modal

frequencies and damping (normal distributions were ass:umed). Plots
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displaying the brobabi1ity of achieving a precision level for the
various degrees of measurement coefficient of variation are shown
in Figs. 7¢a) and {(b). In these figures it is shown that as the
coefficient of variation in the measured data increases, the
probability of achieving a given level of precision decreases.
For example, the probability of identifying the damping to within
20 percent of tne actual damping is nearly 80 percent for a damping
coefficient of variation of 1 percent, while it is less than
40 percent for a coefficient of variation of 15 percent.
Obviously, as the required precision level is relaxed, the

probability of reaching that level is increased.

From Fig. 7(b) it is evident that regardless of the damping
coefficient of variation, the identified stiffness properties are
reasonably precise. For example, the probability of attaining a
30 percent precision is very good (greater than 80 percent) for all
three levels of damping coefficient of variation. These results
were expected since for the mean damping used for the simulation
('m' = 1.2) the stiffness is fairly independent of damping. It
should be noted that the results from the Monte Carlo simulation
are problem depencent and can only be used for providing insight
into the degree of accuracy that might be expected for other

problems.
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Sample Problem Two: Coupled System With Friction

The connections in many structural systems contain nonlinearities
such as friction or gaps. For multi-degree of freedom systems it
is virtually impossible to identify and characterize all of the
complexities that may exist in connections. Often, a simplifying
assumption is made that the connection damping can be adequately
described by linéar viscous dampers even though other types of
damping exist in the connection. With this assumption the
identification process and subsequent analysis are greatly
simplified. In the second sample problem the effects of the
viscous damping assumption are assessed by adding ffiction damping
into the system. First, the effect of friction damping on the
identified viscous damping connection properties is determined.
Subsequently, a comparison is made between the actual response of
the system with friction damping and the response of ths identified

system with the friction damping approximated by viscous damping.

The structure utilized for the second sample problem is identical
to the first except that friction dampers have been szdded at each
of the connection locations (Fig. 8). The friction dampers at each
of the four connections were identical. The viscous dampers and
grounded springs which were used in the first sample problem also
were used here. "The parameters for these elements (Fig. 2) were

fixed at m=1and n = 4.
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MSC/NASTRAN Solution 99 was used to compute the modal damping for
the coupled system. The damping was computed by exciting the
system and then allowing it to decay (Fig. 9). The rate of free
decay then was used to compute an equivalent modal damping for each
of the first seven modes at different levels of friction damping.
To obtain the free decay response each mode was individually
excited by applying a distributed sinusoidal load at the modal
frequency with the same distribution as the mode shape. The
magnitude of the sinusoidal load was set so that the resulting
displacements were on the order of the system span/100. The
excitation frequency and distribution was determined by assuming
that the modal frequencies and mode shapes would be unchahged from

the system without friction damping.

Equivalent viscous damping ratios were computed for four levels of
friction damping. The friction ratio was defined as the ratio of
the friction force at each of the four connection locations to the
maximum value of the distributed sinusoidal excitation.b Damping
ratios were computed at friction ratios of r = 0.0, r = 0.02,

r =0.10, and r = 0.50. The resulting modal damping values are
given in Table I. As expected, the equivalent modal damping
increases with an increase in friction force. The damping ratios
from this table n2xt were used in the parameter identification to
compute equivalert viscous dampers. The identified viscous dampers

are given in Table II. MWithout friction damping, r = 0.00, the
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identified dampers are very close in value to the actual dampers.
When friction is present, the identified dampers do not appear to
follow any patterr, but they do enable the predicted frequencies

and modal damping to match the experimental data closely.

The performance of the identified models was assessed by comparing
transient responses of the identified models to those from the
experimental models at each of the four levels of friction damping.
The models were excited by applying a step function input load at
the center of the system. The effect of the step input is to
excite all of the system modes, with a greater emphasis on the
lower modes. The resulting system response, shown in Fig. 10,
reaches a peak displacement just after the step load is applied and
then decays while oscillating about a steady state displacement.
The responses from the identified and experimental models were
evaluated by compering peak response, settling time, and RMS error
(see Table III). At all four friction levels there was very little
error in peak response (e.g., only 2 percent error at r = 0.50).
The settling time error, which is defined as the error in time to
reach 10 percent of the steady state displacement, increased
considerably from the lower to higher levels of friction damping.

~ For example, at 1 = 0.50 the time it took for the identified model
to reach steady state displacement was twice that of the

experimental model (122 percent error).
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The Fourier transforms of the displacement responses were computed
for r = 0.10 and r = 0.50 (Figs. 11¢a) and (b)). To clarify these
transforms, the steady state displacements were subtracted from
the displacement responses. From the Fourier transforms it is
seen that most of the discrepancy between the experimental and
identified model responses can be attributed to the difference in
contribution of the first mode. For both r = 0.10 and r = 0.50
transforms there is minimal difference, except for the first mode

where the difference is extreme.

In Fig. 12, the amnlitude and settling time errors are compared at
three magnitudes of input load while the friction force was held
constant at r = 0.10. Since the friction damping is amplitude
dependent (inversely proportional to displacement and frequency),
it was expected that the identified model would accurately match
the experimental model response only at the same excitation levels
and distributions as were used to compute the equivaleht viscous
'damping ratios. Considering that the equivalent viscous dampers
were derived by using sinusoidal excitation, and the responses in
the figure are the result of a step input excitation, the
identified model does a fairly reasonable job of predicting the
experimental response for a broad range of excitation ievels and
distributions. As expected, the identified model over-estimates

the system damping at high amplitudes. This is because the
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equivalent viscous damping is inversely proportional to amplitude
and therefore would have to be decreased for higher ampiitude

response.
Conclusion

A method for coupling multi-component systems, and for identifying
connection stiffness and damping characteristics was developed and
verified with simulated data. In the first sample problem
component connection properties were determined for a three
component planar beam model. From this analysis it was found that
properties could be accurately identified for a broad range of
connection stiffnesses and damping using relatively minimal
measured data. The connection properties were identified using
frequency data alone. Mode shape data was not required. By
performing a Monte-Carlo simulation it was determined that
connection damping and stiffness can be identified even in the

presence of experimental error.

In the second sample problem equivalent viscous connection démping
was identified for a model actually having friction and viscous
damping. A cbmﬁarison between the experimental and identified
model showed that for particular ranges of input excitation the
identified model could reliably predict peak response and settling

time. However, at high levels of friction damping, the identified
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model did not perform as well. Since many systems include
connections with nonlinearities, it is important that unrealistic
predictions concerning the in-service response of the system are
not made. Instead, the extent of any nonlinearity should be
determined by inspection of the measured data, and then the
subsequent effect cf any identified nonlinearity on system

response should be explored.
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TABLE I. - EQUIVALENT VISCOUS DAMPING RATIOS, &

Mode r=20 r =0.02 r =0.10 r = 0.50

94.9 Hz | 0.024 0.031 0.048 0.082
[REA .027 .035 .051 .100
145 .031 .032 .042 .080
208 .040 .036 .045 110
307 .040 041 .054 .100
408 .032 .035 .037 .080

484 .060 .063 .067 .140
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TABLE II. - IDENTIFIED EQUIVALENT
VISCOUS DAMPERS

O | ¢ | T,

0.009 9.4 | 21 27 37
0.02 20.6 7.7 |1 23.3 { 43.6
0.10 26.2 7.7 | 45.3 | 34.6
6.50 25.1 | 52 54 53

R I A
TR TNTINT]

3Actual values are Cy = 10, C, = 20,
C3 = 30, and C4 = do.
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TABLE III. - EVALUATION OF IDENTIFIED MODELS

Peak amplitude | Peak amplitude | Settling® RMS
(experimental) error, time error, error
percent percent
r=0.00 0.755 0 0 0.00
r = 0.02 .754 2 13 .07
r=0.10 .750 3 44 R
r = (.50 731 2 122 .24

*Settling time =
displacement.

time to reach #10 percent of steady state
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U = PHYSICAL AND/OR MODAL DEGREES OF 1RIEDOM
X = PHYSICAL DIGREES OF [RILDOM
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FIGURE 1. - THREE COMPONENT SYSTEM.
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CHAPTER V

CONCLUSION AND RECOMMENDATIONS
In the present research methods for linking substructuring methods
with Parameter Identification techniques are developed. It was
demonstrated that the identification of structural dynamic systems
can then be effectively performed by this combination of
substructuring and Parameter Identification. With substructuring
methods, component and connection properties can be identified
independently. Irndependent identification of the structural
properties was found to be advantageous because the identification
problem is reduced to a collection of smaller order problems. For
each of these problems the complexity of obtaining the experimental
data, and the required quantity of data, is less than if the entire
system were to be identified as a whole. Furthermore, the
experimental data which is used to verify the component models
also can be used to characterize the component in the system

equations of motion.

In the present research it is shown that modal test data is
effective for identifying both modeling problems in structural
components, and fcr determining the stiffness and damping
properties of inter-component connections. Identification methods
which use modal, rather than time domain, test data are favorable
for linear systems because the test apparatus for obtaining the

modal data is readily available. Furthermore, the same test

134
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equipment and post-processing software can be used for a wide
range of structural dynamic systems. Modal testing also has
advantages over time domain tests in that the modal data, which
normally includes resonant frequencies and mode shapes, provides
global system information which is useful for identifying overall,
as well as specific, system characteristics (e.g., existence of

rigid body modes, system flexibility).

The present research also demonstrates that the quality of the
identified properties is dependent on both the quality and quantity
of the experimental data. In general, parameter identification is
improved when both the quality and quantity of experimental data
are increased. In Chapter III it was found that several combinations
of connection properties matched the initial test data, and it was
not until additional experimental data was provided that the actual
properties could be determined. For relatively simple systems,
only a limited amount of test data may be required, while for
larger, more complex systems, the required quantity of test data
may become prohibitive. For most situations the quantity of test
data required for an accurate identification can be predetermined
by performing trail runs on approximate models. In Chapter IV the
effecf which the guality of test data has on the identified
properties was assessed by using simulated data which contained
experimental error. From these results it was found that the
identified properties can be determined with reasonable accuracy,

even in the presence of limited experimental error.
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It also is shown in the present research that it is relatively
easy to generate models which duplicate the test data, but that it
can be difficult to generate physically accurate models.
Therefore, an important issue to consider when evaluating the
effectiveness of the identification is whether the resulting model
is a better representation of the real system, or whether the model
merely reproduces the available test data. The present research
emphasizes this concern, whereas previous studies have stressed

the formulation of models which merely match the test data.

A point of concern involves the identified model's capability to
accurately predict in-service structural response. Since the
fidelity of the identified model varies with the quantity and
quality of the experimental data, methods for assessing the

overall fidelity of the identified model are required. HWhile the
identified modei maybe able to simulate situations that are similar
to the test conditions, it may not be able to reliably simulate
situations where the loading conditions or response levels differ
from the test conditions. Statistical methods which ascertain the
effects of uncertainty in the identified parameters could be

useful in these circumstances.

Based on the system studied in Chapters III and IV it was found
that connection properties normally can be determined by using

only measured resonant frequencies. Mode shape data normally are
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not required. This situation is favorable because mode shape data
are more difficult to obtain experimentally, and when available,

may be of questionable accuracy.

In Chapter IV the effects of nonlinearity were assessed for a
friction damped system; it was found that small amounts of
friction can be approximated with viscously damped models. Since
many structural systems, particulary systems with complex
connections (e.g., space structures), contain at least some amount
of nonlinearity, it is important that general identification
methods be developed which are capable of predicting both the type
of nonlinearity and it's characteristic parameters. As presented
in this research, several investigators have attempted to identify
nonlinearities in individual structural connections, but none have
confronted the problems associated with multicomponent/connected
systems. Parameter Identification methods which use time domain
based test data may be applicable for identifying structural
systems containing nonlinearities but, clearly, additional work is

required in this area.



APPENDIX A
Evaluation of Shepard's Method for Identifying

Modeling Errors

Introduction

A limitation of the procedures developed in the previous chapters
is that often both frequency and mode shape data is required for
the identification of the component or connection structural
properties. Since mode shape data is relatively difficult to
obtain, and when it is available from tests it's accuracy is
questionable, it is desirable to be able to identify the
properties using frequency data alone. In this chapter a method
proposed by Shepard (1) which is based on using discrepancies
between measured and predicted frequencies for identifying
modeling errors is evaluated.

Formulation Of Equations
Although the details of this method appear in (1) a summary of the
procedure is outlined here for clarity. The objective of the
derivation is to velate the differences between predicted and
measured modal frequencies to discrepancies in mass and stiffness
properties. The derivation begins by using Rayleigh's quotient to

relate frequency to energy:

Woo= T (N
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In this relation w is the modal frequency, and V and T are
the total potential and kinetic energy for the mode. 'm' 1is the
mode number. Taking the natural logarithmic of both sides of (1)

and differentiating:

et

(dvi dti)
—_— - — (2)
T v T m

where dw is taken as the difference between the predicted and

n
1=

measured frequencies, and dvj and dt; are the differences
between the predicted and actual potential and kinetic energies
for each of the system elements. The summation is over all

elements, n.

By assuming that the variation between predicted and actual mode
shapes is small, the energy differentials can be related to

stiffness and mass differentials, and Eg. (2) is rewritten as:

(@)JZ(&"J&_Q".’E) .
Ly 2 v k1 T M1 m

where Kj and mj are element stiffness and mass parameters.
Equation (3) can further be simplified when the mass properties of
the elements are known, or when massless connections are
considered. When this is the situation dmj 1is equal to zero and

Eq. (3) can be written in matrix form as:
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(" dv )
V]]/V] VZ]/V] e Vn]/V1 dk /K, "
i . : { : ? (4)
V]r;_,/Vm e e e e e e e e T Vnn.']/Vm dkn/kn dWm
W
L

The matrix on the 1.h.s. is referred to by Shepard as the modal
reference matrix. This is a square matrix containing the ratios
of the element strain energy to the strain energy for the entire
structural system for each mode. The ratios are obtained from
the analytical model. By inverting the modal reference matrix,
and then multipliying the frequency differences by the inverted
matrix, the distribution of stiffness errors or differences,

dkj/kj, is computec.

It is important to note that the modal reference matrix is
square. This is because there is an equal number of measured
modal frequencies as there are elements. This requirement
imposes severe limitations on the procedure because in practice
it is impossible to measure all of the modal frequencies and thus
the system of equations will be incomplete and therefore
unsolvable.

Results
Two alternative approaches that circumvent this limitation were
investigated. The first approach involved substituting dvj/vj

back into Eq. (4} for dkj/kj and then solving for discrepancies
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in terms of differences in component strain energy instead of in
terms of element stiffness. It was believed that by using this
approach differences in the individual elements could still be
identified but with only a limited amount of frequency data. The
procedure for identifying the element differences entails
dividing the structure into as hany substructure components as
there are measured frequencies. Next, strain energy
discrepancies would be identified for each component using the
modified Eq. (4). Then, based on the computed strain energy
differences the structure would be partitioned into a different
bset of domains, a new set of differences would be computed, and
the procedure would be repeated until the desired degree of
precision in the locations of differences was determined. If
desired, an element level of resolution could be obtained (see
Fig. 1). Unfortunately, several attempts at implementing this

approach were unsuzcessful.

The second approach that was investigated for circumventing the
rigid frequency requirements of Shepard's method was based on the
assumption that the component mass and stiffness representations
could be assumed to be accurate and the discrepancies were caused
by differences in connections between components. If the
component representations are accurate then dkj/kj = 0.0 for
all of the elements in the components and the corresponding rows

and columns of the modal reference matrix can be eliminated. By
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reducing the size of the modal reference matrix the required

quantity of measured frequencies is considerably reduced.

As a test case for the second approach the supported beam shown
in Fig. 2 was studied. The objective was to identify the two
connection properties, ky and kp, using two measured
frequencies. The identification of the connections was attempted
using both a "rigid" and “flexible" beam model. The model
stiffness was varied by changing it's modulus of elasticity.
Except for differences in the connection stiffnesses the same
model was used for both the reference and experimental beam. The
connection properties for both models are given in Table I. Once
the models were generated the strain energy from the reference
model and the differences between the frequencies from the
experimental and reference models were used in Eq. (4) to compute

the differences in the connection stiffnesses.

For the rigid model (EI = 10.0x107) there is little deformation
and therefore negligible strain energy in the beam for the first
two modes. Because there is no strain energy in the beam
elements no information is lost by removing the rows and columns
of the modal reference matrix corresponding to the beam elements.
Actually, the rigfd beam system is naturally reduced to a two
degree of freedom system and the complete modal references matrix

can be represented by a two by two matrix. As expected for this
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system the identified difference, shown in Table I, are computed
exactly. For the flexible model (EI = 10.x103) there is
deformation and strain energy in the beam for the first two modes
and some information is lost by eliminating the rows and columns
of the modal reference matrix corresponding to the beam elements.
Similarly to the rigid beam analysis, the connection stiffness

properties were also computed correctly for this model.

The effect of experimental error was assessed for the rigid beam
model by adding a two percent error to the experimental
frequencies. When this error was included in the analysis the
resulting connection stiffnesses were off by 4 percent. For
systems with a larger number of connections the size of the modal
reference matrix would increase and the effect of experimental
error could be amplified even more. Fortunately, in practice,
frequency data normally can be measured well within 2 percent
accuracy.

Conclusion
From the analysis performed on the rigid and flexible beam models
it is concluded that for systems where the component analytical
models are accurate, the connection stiffness properties can be
identified using Shepard's method. By applying this method to
both a rigid and flexible beam model it was determined that the
identification of the connection stiffness properties is

independent of the component flexibility or equivalently, the
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amount of component strain energy for the measured modes. The
computation of the connection properties does require that the
number of connections does not exceed the number of measured

system frequencies.
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TABLE I - SYSTEM PROPERTIES FOR IDENTIFICATION OF

CONNECTION DIFFERENCES

"Rigid" Beam

"flexible" Bean

Reference Model
Connection Stiffness

Reference Model
Frequencies (Hz)

k1=900.,k5=1100.

fl=223-,f2=354.

k1=900.,k3=1100.

£1=152., f,=335,

Experimental Model
Connection Stiffness

Experimental Model
Frequencies (Hz)

k1=850.,k5=1250.

fl=223.,f2=365.

kl=850.,k2=1250.

f1=223.,f2=365.

Actual Difference

Identified Difference

k1=50.,k2=150.

kl=50.,k2=150.

k1=50.,k2=150.

k1=50.,k2=l53.

9v1
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