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PREFACE

TheStructuresTechnologyBibliographycoverstheyearsduringwhichtheStructuresDivision
of theNASALewisResearchCenterhashaditsindividualidentity(1980topresent).During
1980,theMaterialsandStructuresDivisionwassplitintotwodivisions,theMaterialsDivision
and the Structuresand MechanicalTechnologiesDivision(underthe directionof J.A.
Ziemianski).Then, in August1984 a reorganizationoccurredthat gavethedisciplineof
structuresits singleidentityandtitle.Dr. LesterD. Nicholswasappointedto theposition
of DivisionChief.Althoughnotstatedin itsname,the principaltypesof structuresto be
addressedbythedivisionareenginestructures,and,morespecifically,aerospacepropulsion
engines.

Thisextensivebibliographycontainsover1000citationstotechnicalpublicationswrittenby
thedivision'sstaff,itscontractors,anditsgrantees.Thebibliographicalinformationisa printout
of detailedinformationcontainedinthe NASAcomputerizeddata bank.As each NASA
sponsoredtechnicalpublicationisgenerated,pertinentinformationisenteredintothesystem
for futureretrieval.Titles,authors,affiliations,reportingcategories,keywords,andabstracts
areenteredintothesystem.Sortingofstoredinformationcantakeplacebysubject,author,
author'sorganization,contractnumber,andpublicationreportnumber.

Eachyear,theNASALewisbibliographicinformationfromalldivisionsiscollectedandprinted
in a singleNASATechnicalMemorandumcontainingseveralhundredcitations.These
volumeswereinitiatedin1965andhavebeenpublishedforthecalendaryears1965through
1968and1976through1987.Theyhavebeensteadilyimproveduponthroughthededicated
effortsofLewis'GeorgeMandel,Chiefof theTechnicalInformationServicesDivision.The
bibliographicinformationis alsopublishedinthebiweeklyabstractingpublications,STAR
(ScientificandTechnicalAerospaceReports)andIAA(InternationalAerospaceAbstracts).

TheinformationconcerningLewisstructurestechnologycontainedhereinhasbeengleaned
fromLewispublicationsfrom1980through1987.OnlycertainSTARcategorieswerescanned
forstructuresrelatedreports:7, 24,26, 27,37, 38,39,61,and64. Infact,everycitationfrom
categories38 and39 is containedinthe currentcompilation.Owingto the leadtimefor
preparationof thisvolume,few 1988 listingsare included.

We trustthebibliographicinformationwillbehelpfulinidentifyingpublicationsof valueto
yourscientificandengineeringneeds.

G.R. Halford
Chairman, Committee for LST '88
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07 A83-29024"# General ElectricCo., Cincinnati,Ohio.
TURBINE BLADE NONLINEAR STRUCTURAL AND LIFE

AIRCRAFT PROPULSION AND POWER ANALYSIS
R. L. MCKNIGHT, J. H. LAFLEN (General ElectricCo., Aircraft
Engine BusinessGroup,Cincinnati,OH), G. R. HALFORD, and A.

Includesprime propulsionsystemsand systemscomponents,e.g., KAUFMAN (NASA, Lewis Research Center, Structures and
gas turbineenginesand compressors;and onboardauxiliarypower MechanicalTechnologiesDiv.,Cleveland,OH) Journalof Aircraft
plantsfor aircraft. (ISSN 0021-8669), vol. 20, May 1983, p. 475-480. refs

Previously cited in issue 17, p. 2687, Accession no.
A82-34981

A80-35101"# National Aeronautics and Space Administration.
Lewis ResearchCenter,Cleveland, Ohio.
ENGINE ENVIRONMENTAL EFFECTS ON COMPOSITE
BEHAVIOR
C. C. CHAMIS and G. T. SMITH (NASA, Lewis ResearchCenter, A83-29737"# Pratt and WhitneyAircraft Group, East Hartford,
Cleveland,Ohio) In: Structures,StructuralDynamics,and Materials Conn.
Conference, 21st, Seattle, Wash., May 12-14, 1980, Technical STRUCTURAL TAILORING OF ENGINE BLADES (STAEBL)
Papers. Part 2. New York,American Instituteof Aeronauticsand K.W. BROWN, T. K. PRATI" (United TechnologiesCorp., Pratt
Astronautics,Inc., 1980, p. 987-997. refs and WhitneyAircraftGroup, EastHartford, CT), andC. C. CHAMIS
(AIAA 80-0695) (NASA Lewis ResearchCenter, Cleveland, OH) IN: Structures,

The effectsof turbojetengineenvironmentalsaturationmoisture StructuralDynamicsand Materials Conference,24th, Lake Tahoe,
and temperaturesup to 300 F on compositeswere investigated. NV, May 2-4, 1983, Collectionof TechnicalPapers. Part 1 . New
It was found that epoxy resin composites absorbed the most York, AmericanInstituteof Aeronauticsand Astronautics,1983, p.
moisture (2 wt %), while polyimide resin compositesabsorbed 79-88. refs
0.8%. High moisture and 250 F degraded the flexular and (ContractNAS3-22525)
interlaminarshear properties, and the environmentaland impact (AIAA 83-0828)
conditions severely damaged epoxy composites. The impact Mathematicaloptimizationis appliedto the designof gas turbine
damageof fiber compositesin moisture-temperatureenvironments fan blades.The automatedprocedurereplacesthe current manual
can be assessed with finite element and compositemechanics processwhich requiresexperienceand intuitionon the part of the
analyses. Engine operation environmental conditions of 0.8% designer to achieve successful blade designs. The optimization
moisture and 140 F had no discernibleeffect on the fatigue procedure that is developed utilizes the COPES/CONMIN
resistance of composite fan exit guide vanes, which can be optimizationcode. Approximatevibrationand stress analyses are
designed to exceed engine operational requirements using used for the optimization process. Analysis recalibrations are
compositematerials. A.T. achievedthroughthe applicationof more detailed,refinedanalysis.

Optimizationsof a hollowtitaniumfan blade with compositeinlays
and of a superhybridcompositebladeare demonstrated. Author

A83-32791"# Carnegie-MellonUniv., Pittsburgh,Pa.
A81-29940"# National Aeronautics and Space Administration. EFFECTS OF FRICTION DAMPERS ON AERODYNAMICALLY
LewisResearchCenter, Cleveland,Ohio. UNSTABLE ROTOR STAGES
SUPERHYBRID COMPOSITE BLADE IMPACT STUDIES J.H. GRIFFIN (Carnegie-MellonUniversity,Pittsburgh,PA) and A.
C. C. CHAMIS, R. F. LARK, and J. H. SINCLAIR (NASA, Lewis SINHA AIAA, ASME, ASCE, and AHS, Structures, Structural
Research Center, Cleveland, Ohio) American Society of Dynamics and Materials Conference, Lake Tahoe, NV, May 2-4,
Mechanical Engineers, Gas Turbine Conference and Products 1983. 12 p. refs
Show, Houston, Tex., Mar. 9-12, 1981, 8 p. refs (Contract NAG3-231)
(ASME PAPER 81-GT-24) (AIAA PAPER 83-0848)

An investigation was conducted to determine the feasibility of Attention is given to the physical concepts and mathematical
superhybrid composite blades for meeting the mechanical design techniques useful in the analysis of the stabilizing effect of friction
and impact resistance requirements of large fan blades for aircraft on aerodynamically unstable rotor stages. Results are presented
turbine engine applications. Two design concepts were evaluated: for three-, four-, and five-bladed disks. In the present
(1) leading edge spar (TiCom) and (2) center spar (TiCore), both multidegree-of-freedom model of an aerodynamically unstable rotor
with superhybrid composite shells. The investigation was both stage, a harmonic steady state solution due to the friction dampers
analytical and experimental. The results obtained show promise may be either a stability limit, a stable cycle limit, or neither. A
that superhybrid composites can be used to make light-weight, criterion is established in the form of an energy function which
high-quality, large fan blades with good structural integrity. The determines whether the solution is a stabilty limit. In the event
blades tested successfully demonstrated their ability to meet that the initial displacement and velocity exeed those associated
steady-state operating conditions, overspeed, and small bird impact with the steady state solution corresponding to a stability limit,
requirements. (Author) the reponse becomes unbounded. O.C.
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A83-35883"# PrincetonUniv., N.J. which wouldweigh about 70 percentof the state-of-the-artmetal
DESIGN OF DRY-FRICTION DAMPERS FOR TURBINE frame and cost wouldbe about 60 percent. Author
BLADES
W. ANCONA and E. H. DOWELL (PrincetonUniversity,Princeton, A84-22877"# Pratt and Whitney AircraftGroup, East Hartford,
NJ) IN: InternationalSymposiumon Air BreathingEngines,6th, Conn.
Paris, France, June 6-10, 1983, SymposiumPapers . New York, SIMPLIFIED ANALYTICAL PROCEDURES FOR REPRESENTING
American Institute of Aeronautics and Astronautics,1983, p. MATERIAL CYCLIC RESPONSE
708-722. refs V. MORENO (UnitedTechnologiesCorp.,Prattand WhitneyGroup,
(Contract NAG3-221) East Hartford, CT) and A. KAUFMAN (NASA, Lewis Research

A study is conducted of turbine blade forced response, where Center, Cleveland, OH) Auburn University, Southeastern
the blade has been modeled as a cantilever beam with a generally Conference on Theoretical and Applied Mechanics, 12th, Callaway
dry friction damper attached, and where the minimization of blade Gardens, GA, May 10, 11, 1984, Paper. 5 p. refs
root strain as the excitation frequency is varied over a given range Requirements for increased durability of gas turbine hot section
is the criterion for the evaluation of the effectiveness of the dry structural components have made it necessary to place greater
friction damper. Attempts are made to determine the location of emphasis on accurate structural analysis and life prediction. Linear
the damper configuration best satisfying the design criterion, finite-element analysis is generally sufficient for structural analysis
together with the best damping force (assuming that the damper applications. However, for structures in the hot part of the engine,
location has been fixed). Results suggest that there need not be nonlinear structural analysis may be required under certain
an optimal value for the damping force, or an optimal location for conditions for the accurate prediction of the local stress-strain
the dry friction damper, although there is a range of values which response. Nonlinear finite element analysis represents a costly
should be avoided. O.C. effort which is generally incompatible with the iterative nature of

the design process. The present investigation is, therefore,

A83-40864"# General Electric Co., Cincinnati, Ohio. concerned with two simplified procedures for estimating the local
BLADE LOSS TRANSIENT DYNAMIC ANALYSIS OF hysteretic response produced by cyclic thermal loading. These
TURBOMACHINERY proceduresreducethe need for nonlinearfinite-elementanalysis.
M. J. STALLONE, V. GALLARDO, A. F. STORACE, L. J. BACH, G.R.
G. BLACK, and E. F. GAFFNEY (General Electric Co, Aircraft
Engine BusinessGroup, Cincinnati,OH) AIAA Journal (ISSN A84-26959"# National Aeronauticsand Space Administration.
0001-1452), vol. 21, Aug. 1983, p. 1134-1138. refs LewisResearchCenter, Cleveland,Ohio.
(ContractNAS3-22053) THE COUPLED RESPONSE OF TURBOMACHINERY BLADING

Previously cited in issue 17, p. 2687, Accession no. TO AERODYNAMIC EXCITATIONS
A82-34982 D. HOYNIAK (NASA, Lewis Research Center, Cleveland, OH;

Purdue University, West Lafayette, IN) and S. FLEETER (Purdue
University, West Lafayette, IN) (Structures, Structural Dynamics

A83-47970"# Lehigh Univ., Bethlehem, Pa. and Materials Conference, 24th, Lake Tahoe, NV, May 2-4, 1983,
ANALYSIS OF AN AXIAL COMPRESSOR BLADE VIBRATION Collection of Technical Papers. Part 2, p. 137-148) Journal of
BASED ON WAVE REFLECTION THEORY Aircraft (ISSN 0021-8669), vol. 21, April 1984, p. 278-286.
J. A. OWCZAREK (Lehigh University, Bethlehem, PA) American USAF-supported research, refs
Society of Mechanical Engineers, International Gas Turbine Previously cited in issue 12, p. 1742, Accession no.
Conference and Exhibit, 28th, Phoenix,AZ, Mar.27-31, 1983. A83-29822
8p

(Contract NAG3-135) A84-31905"# Carnegie-Mellon Univ., Pittsburgh, Pa.
(ASME PAPER 83-GT-151) MODEL DEVELOPMENT AND STATISTICAL INVESTIGATION

The paper describesapplicationof the theory of wave reflection OF TURBINE BLADE MISTUNING
in turbomachinesto rotor blade vibrationsmeasured in an axial J.H. GRIFFIN (Carnegie-MellonUniversity,Pittsburgh,PA) and T.
compressor stage. The blade vibrationsanalyzed could not be M. HOOSAC ASME, Transactions,Journalof Vibration,Acoustics,
predicted using various flutter prediction techniques. The wave Stress and Reliabilityin Design (ISSN 0739-3717), vol. 106, April
reflectiontheory, first advanced in 1966, is expanded, and more 1984, p. 204-210. refs
general equationsfor the rotor blade excitation frequenciesare (ContractNAG3-231)
derived. The results of the analysis indicate that all examined This paper discussesthe developmentof an efficientalgorithm
rotorbladevibrationscan be explainedbyforcedexcitationscaused which calculatesthe individualblade responseof a bladedturbine
by reflectingwaves (pressurepulses). Wave reflectionsbetween disk,the subsequentstatisticalinvestigationto establishmistuning
the rotor blades and both the upstreamand downstreamstator dependencies,and procedureswhich reduce the increase inblade
vanes had to be considered. Author amplitudescausedby mistuning. Author

A83-48331"# National Aeronauticsand Space Administration. A85-18792"# General ElectricCo., Cincinnati,Ohio.
LewisResearch Center, Cleveland,Ohio. CONSIDERATIONS FOR DAMAGE ANALYSIS OF GAS TURBINE
DESIGN CONCEPTS FOR LOW COST COMPOSITE ENGINE HOT SECTION COMPONENTS
FRAMES T.S. COOK and J. H. LAFLEN (General Electric Co., Cincinnati,
C. C. CHAMIS (NASA, Lewis Research Center, Cleveland, OH) OH) AmericanSocietyof MechanicalEngineers,PressureVessels
AmericanInstituteof Aeronauticsand Astronautics,AircraftDesign, and PipingConferenceand Exhibition,San Antonio,TX, June 17-21,
Systems and TechnologyMeeting, Fort Worth, TX, Oct. 17-19, 1984. 7 p. refs
1983. 16 p. (ContractNAS3-22534)
(AIAA PAPER 83-2445) (ASME PAPER 84-PVP-77)

Design concepts for low-cost, lightweight compositeengine The hot flowpathof a gas turbine engine containsstaticand
frames were appliedto the design requirementsfor the frame of rotatingcomponentsoperatingin a very hostileenvironment.Since
commercial,high-bypassturbineengines.The conceptsconsistof the reliable operationof these componentsis critical to the safe
generic-type components and subcomponents that could be and efficientperformanceof the engine,structurallife analysisof
adapted for use in differentlocationsin the engineand to different thesemembersis carriedoutwithgreatcare. However,the complex
engine sizes. A variety of materialsand manufacturingmethods nature of the strain-temperature-timecycle affecting the engine
were assessedwith a goal of havingthe lowestnumberof parts makes a general analysisproceduredifficultand usuallyleads to
possibleat the lowestpossiblecost. The evaluationof the design separating the damage into regimes where one damage mode
conceptsresultedin the identificationof a hybridcompositeframe dominates. In particular, cycle dependent, time dependent, and

2
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thermomechanicalfatigueregimes have been identifiedand some A85-45715"# Virginia Polytechnic Inst. and State Univ.,
general considerations of each region are discussed. This Blacksburg.
discussionincludesboththe damage modelsthemselvesand the OPTIMIZATION OF CASCADE BLADE MISTUNING. II - GLOBAL
applicationof the models. Specific examples of several models OPTIMUM AND NUMERICAL OPTIMIZATION
are given and importantfactorsaffecting each are presented. E. NISSIM and R. T. HAFTKA (Virginia Polytechnic Institute and

Author State University,Blacksburg) AIAA Journal (ISSN 0001-1452),
vol. 23, Sept. 1985, p. 1402-1410.
(ContractNAG3-347)

The values of the mistuning which yield the most stable
eigenvectors are analyticallydetermined, using the simplified

A85-21866"# PennsylvaniaState Univ., UniversityPark. equationsof motionwhich were developedin Part I of this work.
EFFECTS OF FRICTION DAMPERS ON AERODYNAMICALLY It is shown that randommistunings,if large enough, may lead to
UNSTABLE ROTOR STAGES the maximal stability,whereas the alternate mistuningscannot.
A. SINHA (PennsylvaniaState University,UniversityPark, PA) and The problem of obtainingmaximumstabilityfor minimalmistuning
J. H. GRIFFIN (Carnegie-MellonUniversity,Pittsburgh,PA) AIAA is formulated,basedon numericaloptimizationtechniques.Several
Journal (ISSN 0001-1452), vol. 23, Feb. 1985, p. 262-270. localminimaareobtainedusingdifferent startingmistuningvectors.
Previouslycited in issue 14, p. 1976, Accession no. A83-32791. The startingvectorswhichleadtothe globalminimumare identified.
refs It is analyticallyshownthat all minimaappearin multiplicitieswhich
(ContractNAG3-231) are equal to the number of compressor blades. The effect of

mistuningon the flutter speed is studiedusing both an optimum
mistuningvector and an alternate mistuningvector. Effects of
mistuningsin elasticaxis locationsare shownto have a negligible
effect on the eigenvalues.Finally, it is shown that any general

A85-30378"# National Aeronautics and Space Administration. two-dimensional bending-torsionsystem can be reduced to anLewisResearchCenter, Cleveland,Ohio.
THE EFFECT OF AERODYNAMIC AND STRUCTURAL equivalent uncoupledtorsionalsystem. Author
DETUNING ON TURBOMACHINE SUPERSONIC UNSTALLED
TORSIONAL FLUTTER A85-45854"# National Aeronautics and Space Administration.
D. HOYNIAK (NASA, Lewis ResearchCenter,Cleveland, OH) and LewisResearchCenter, Cleveland,Ohio.
S. FLEETER(PurdueUniversity,WestLafayette, IN) IN: Structures, VIBRATION AND FLUTTER OF MISTUNED BLADED-DISK
StructuralDynamics,and MaterialsConference,26th, Orlando,FL, ASSEMBLIES
April 15-17, 1985, TechnicalPapers.Part 2. New York,American K.R.V. KAZA and R. E. KIELB (NASA, LewisResearchCenter,
Instituteof Aeronauticsand Astronautics,1985, p. 500-514. refs Cleveland, OH) Journal of Propulsion and Power (ISSN
(AIAA PAPER 85-0761) 0748-4658), vol. 1, Sept.-Oct. 1985, p. 336-344. Previouslycited

The effects of alternate-blade structural detuning and in issue 05, p. 602, Accessionno.A85-16095. refs
adjacent-blade alternate-circumferential-spacing aerodynamic
detuningon the supersonicunstalledtorsionalflutter stabilityof a A86-14338" National Aeronautics and Space Administration.
turbomachinerotor are investigated analytically. An unsteady Lewis ResearchCenter, Cleveland,Ohio.
aerodynamicmodelemployinginfluencecoefficientsis constructed VIBRATION ANALYSIS OF ROTATING TURBOMACHINERY
for the case of a flat-plate-airfoilcascade in torsion-modeharmonic BLADES BY AN IMPROVED FINITE DIFFERENCE METHOD
oscillationin a supersonicinviscidisentropicadiabaticirrotational K.B. SUBRAHMANYAM and K. R. V. KAZA (NASA, Lewis
perfect-gas inlet flow with a subsonic leading-edge locus. The Research Center, Cleveland, OH) International Journal for
influence coefficientsand equations of motion are derived;the NumericalMethods in Engineering(ISSN 0029-5981), vol. 21, Oct.
model is verified by applying it to the 12-blade cascade-B flow 1985, p. 1871-1886. refs
geometrystudiedby Verdon and McCune(1975); and the results The problem of calculatingthe naturalfrequencies and mode
are presentedgraphically.It is foundthat the rotorcan be stabilized shapesof rotatingblades is solvedbyan improvedfinite difference
over the entire reducedfrequencyrange byapplyinga combination procedurebased on second-ordercentral differences. Lead-lag,
of structuraland aerodynamicdetuningas the passiveflutter-control flappingand coupledbending-torsionalvibrationcasesof untwisted
mechanism. T.K. blades are considered.Results obtained by using the present

improvedtheory have been observed to be close lower bound
solutions. The convergence has been found to be rapid in
'comparisonwith the classicalfirst-orderfinite difference method.
While the computationalspace and time requiredby the present
approach is observed to be almost the same as that requiredby

A85-42365°# Virginia Polytechnic Inst. and State Univ., the first-ordertheoryfor a givenmeshsize, accuraciesof practical
Blacksburg. interest can be obtained by usingthe improvedfinite difference
OPTIMIZATION OF CASCADE BLADE MISTUNING. I-EQUA- procedurewith a relativelysmaller matrixsize, in contrast to the
TIONS OF MOTIONAND BASIC INHERENT PROPERTIES classicalfinite differenceprocedurewhich requireseither a larger
E. NISSIM (Virginia Polytechnic Instituteand State University, matrixor an extrapolationprocedurefor improvementin accuracy.
Blacksburg) AIAA Journal(ISSN 0001-1452), vol. 23, Aug. 1985, Author
p. 1213-1222. refs

(ContractNAG3-347) A86-14430"# ArmyPropulsionLab., Cleveland,Ohio.
Attentionis givento the derivationof the equationsof motion DEAN - A PROGRAM FOR DYNAMIC ENGINE ANALYSIS

of mistuned compressor blades, interpolating aerodynamic G.G. SADLER(U.S. Army, PropulsionLaboratory,Cleveland,OH)
coefficients by means of quadratic expressionsin the reduced and K. J. MELCHER (NASA, Lewis ResearchCenter, Cleveland,
frequency. If the coefficients of the quadratic expressions are OH) AIAA, SAE, and ASME, Joint PropulsionConference, 21st,
permrttedto assumecomplexvalues,excellentaccuracyis obtained Monterey, CA, July 8-10, 1985. 17 p. Previouslyannounced in
and Pade rationalexpressionsare obviated.On the basis of the STAR as N85-28945. refs
resultingequations,it is shownanalyticallythat the sum of all the (AIAAPAPER 85-1354)
real parts of the eigenvalues is independent of the mistuning The DynamicEngine AnalysisProgram,DEAN, is a FORTRAN
introduced into the system. Blade mistuningis further treated code implementedon the IBM/370 mainframe at NASA Lewis
throughtheaerodynamicenergyapproach,andthe limitingvibration ResearchCenterfor digitalsimulationof turbofanenginedynamics.
modes associatedwithalternative mistuningsare identified. DEAN is an interactiveprogramwhichallows the user to simulate

O.C. engine subsystemsas well as full engine systems with relative
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ease. The nonlinear first order ordinary differential equations which will be the subject of this paper. Specifically, the topics to be
define the engine model may be solved by one of four integration addressed are: the formulation of the aeroelastic problem, including
schemes, a second order Runge-Kutta, a fourth order Runge-Kutta, a summary of the relations necessary to transform various diverse
an Adams Predictor-Corrector, or Gear's method for still systems, structural and aerodynamic models to a consistent notation for
The numerical data generated by the model equations are displayed oscillatory motion; an approximate transformation for arbitrary
a specified intervals between which the user may choose to modify temporal behavior; and a brief review of the applicable solution
various parameters affecting the model equations and transient techniques. Author
execution. Following the transient run, versatile graphics capabilities
allow close examination of the data. DEAN's modeling procedure A86-25743" General Electric Co., Cincinnati, Ohio.
and capabilities are demonstrated by generating a model of simple THE DYNAMICS OF A FLEXIBLE BLADED DISC ON A FLEXIBLE
compressorrig. Author ROTOR IN A TWO-ROTOR SYSTEM

V. C. GALLARDO and M. J. STALLONE (General Electric Co.,
A86-19198" Pennsylvania State Univ., University Park. Aircraft Engine Business Group, Cincinnati, OH) IN: International
STABILITY OF LIMIT CYCLES IN FRICTIONALLY DAMPED AND Conference on Vibrationsin Rotating Machinery, 3rd, Heslington,
AERODYNAMICALLY UNSTABLE ROTOR STAGES England, September 11-13, 1984, Proceedings . London,
A. SINHA (PennsylvaniaState University,UniversityPark) and J. Mechanical EngineeringPublications, Ltd., 1984, p. 383-390.
H. GRIFFIN (Carnegie-MellonUniversity,Pittsburgh,PA) Journal refs
of Soundand Vibration(ISSN 0022-460X), vol. 103, Dec. 8, 1985, (ContractNAS3-23281)
p. 341-356. refs This paper describesthe developmentof the analysis of the
(ContractNAG3-231) transient dynamicresponse of a bladed disk on a flexible rotor.

This paper deals withthe stabilityof limitcycles (Steady-State The rotatingflexible bladed disk is consideredas a module in a
Oscillations)associated with the multi-degree-of-freedommodel complete turbine engine structure. The analysis of the flexible
of a frictionallydamped and aerodynamicallyunstablerotor stage, bladed disk (FBD) module is developed for the non-equilibrated
Byusingthe first orderaveragingtechnique,a generalizedcriterion one-diameter axial mode. The FBD motion is considered as a
has been establishedto sort out those unstable limitcycleswhich sum of two standingaxial waves constrainedto the rotor. The
govern the maximumtransient amplitude beyondwhich the rotor FBD is coupled inertiallyand gyroscopicallyto its rotor support,
stage becomesunstable.Thestabilityof the remainingsteady-state and indirectlythroughconnectingelements, to the adjacent rotor
solutions is analyzed by linearizing the averaged system of and/or other supporting structures.Incorporated in the basic
differentialequations.Numerical resultsare discussedfor three-, Turbine Engine Transient Response Analysis program (TETRA),
four- and five-bladeddisks. Author the FBD module is demonstratedwith a two-rotormodel where

the FBD can be excited into resonanceby an unbalance in the
A86-22068"# PrincetonUniv., N.J. adjacent rotor and at a frequency equal to the differentialrotor
VIBRATION CHARACTERISTICS OF MISTUNED SHROUDED speed. The FBD modulealso allows the analysis of two flexible
BLADE ASSEMBLIES bladed disksin the same rotor. Author
O. O. BENDIKSEN (PrincetonUniversity,NJ) and N. A. VALERO
ASME, InternationalGas Turbine Conference and Exhibit, 30th, A86-26893"# Toledo Univ., Qhio.
Houston,TX, Mar. 18-21, 1985. 7 p. refs THE EFFECTS OF STRONG SHOCK LOADING ON COUPLED
(ContractNAG3-308) BENDING-TORSION FLUTTER OF TUNED AND MISTUNED
(ASME PAPER 85-GT-115) CASCADES

An investigation of the mode localization phenomenon B.C. BUSBEY(ToledoUniversity;TeledyneCAE, OH),T. G. KEITH,
associated with mistuning is presented for shrouded blade JR. (NASA, Lewis ResearchCenter, Cleveland,OH), and K. R. V.
assemblies.The calculationsare basedon a genericfinite element KAZA (Toledo,University,OH) IN: Fluid-structureinteractionand
model, which permits modeling of arbitrary mistuningand both aerodynamics damping; Proceedings of the Tenth Biennial
slippingand nonslippingshroudinterfaces.The resultspresented Conference on Mechanical Vibration and Noise, Cincinnati,OH,
indicatethat interactionsoccur betweenmistuningand slip effects, September 10-13, 1985 . New York, American Society of
with maximummode localizationoccurringwhen the shroudsslip MechanicalEngineers,1985, p. 93-108. refs
freely. Certain modes are found to be very sensitive to shroud (Contract NSG-3139)
slip, and in some cases completely change character when slip This paper presents an investigation of the effects of strong
occurs. Mode localization is most pronounced in the predominantly in-passage shock waves on coupled bending-torsion flutter of both
bending modes, and varies considerably from mode to mode. As tuned and mistuned cascades. The aerodynamic and inertial
the ratio of interblade coupling strength to mistuning strength is coupling between the bending and torsional motions of each blade
increased, the effect of mistuning is observed to decrease are included in the analytical model. Analysis revealed (1) that
significantly. This result has important implications for the flutter the shock loading has a beneficial effect on torsional flutters of
problem, since it suggests that the stabilization effect available both tuned and mistuned cascades and (2) that alternating bending
from mistuning is significantly less for a shrouded rotor as compared mistuning has a beneficial effect on shock load induced bending
to an unshrouded rotor. Author flutter. The latter finding becomes important when shock induced

bending flutter is a problem. Author
A86-24677" Massachusetts Inst. of Tech., Cambridge.
AEROELASTIC FORMULATIONS FOR TURBOMACHINES AND A86-26901" National Aeronauticsand Space Administration.
PROPELLERS LewisResearchCenter, Cleveland,Ohio.
E, F, CRAWLEY(MIT, Cambridge,MA) IN: Unsteadyaerodynamics VIBRATIONS OF BLADES AND BLADED DISK ASSEMBLIES;
of turbomachinesand propellers;Proceedingsof the Symposium, PROCEEDINGS OF THE TENTH BIENNIAL CONFERENCE ON
Cambridge, England, September 24-27, 1984 . Cambridge, MECHANICAL VIBRATION AND NOISE, CINCINNATI, OH,
Cambridge University, 1984, p. 13-28. Navy-supported research. SEPTEMBER 10-13, 1985
refs R.E. KIELB,ED. (NASA, LewisResearchCenter, Cleveland, OH)
(ContractNSG-3079) and N. F. RIEGER, ED. Conference sponsoredby ASME. New

The task of the aeroelastic analysis is to combine the York, American Society of Mechanical Engineers, 1985, 123 p.
formulationsof the structuraldynamicand unsteadyaerodynamic For individualitemssee A86-26902 to A86-26914.
models in a consistentmanner, to solve the resultingaeroelastic The papers presented in this volume providean overview of
model to determine the dynamic behavior (e.g., stability,forced recenttheoreticalandanalyticalresearchinbladeddiskassemblies,
vibration),and to interpretthose resultsfor bothqualitativetrends, with particularattention givento forced response, mistuning,and
and quantitativedetail. A reviewof the variousformulationsof the damping. Specific topics discussed include the response of
aeroelasticproblemand a comparisonof their relativeadvantages mistunedbladed disk assemblies;forced responseanalysisof an
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aerodynamicallydetuned supersonic turbomachine rotor; dynamic A86-32956"# United Technologies Research Center, East
analysis of blade groups using component mode synthesis; and Hartford, Conn.
pendulumdynamic vibrationabsorbers for reducing blade vibration DYNAMIC CHARACTERISTICS OF AN ASSEMBLY OF
in industrialfans. V.L. PROP-FAN BLADES

A. V. SRINIVASAN (United Technologies Research Center, East
Hartford, CT), R. E. KIELB, and C. LAWRENCE (NASA, Lewis
ResearchCenter, Cleveland,OH) ASME, Transactions,Journal

A86-26902"# National Aeronautics and Space Administration. of Engineeringfor Gas Turbines and Power (ISSN 0022-0825),
LewisResearchCenter, Cleveland,Ohio. vol. 108, April 1986, p. 306-312. refs
FORCED RESPONSE ANALYSIS OF AN AERODYNAMICALLY (ASME PAPER 85-GT-134)
DETUNED SUPERSONIC TURBOMACHINE ROTOR In contrastto conventionalpropellers,propfan blades are thin
D. HOYNIAK (NASA, LewisResearchCenter, Cleveland,OH) and and highlyswept-back, thereby giving rise to large bendingand
S. FLEETER(PurdueUniversity,West Lafayette,IN) IN: Vibrations twisting deformations and complex vibratory characteristics.
of blades and bladed disk assemblies;Proceedingsof the Tenth Aerodynamicperformance dependson the extent of steady state
BiennialConferenceon MechanicalVibrationand Noise,Cincinnati, deformation,andthe aeroelasticresponsedependson the vibratory
OH, September 10-13, 1985 . New York, American Society of frequency and mode shape. Attention is presently given to the
Mechanical Engineers,1985, p. 1-13. NASA-supported research, principalresults of structuralanalyses for a five-bladed propfan
refs assembly;these results are compared with test data. The results

The effect of aerodynamic detuning on the supersonicflow encompass both steady deformations and vibratory frequencies
inducedforced responsebehaviorof a turbomachineblade row is and mode shapesin a vacuum centrifugalenvironment. O.C.
analyzed usingan aeroelastic model. The rotor is modeled as a
flat plate airfoil cascade representingan unwrappedrotor annulus; A86-32957"# PennsylvaniaState Univ., UniversityPark.
the aerodynamic detuning is achieved by alternating the INFLUENCE OF FRICTION DAMPERS ON TORSIONAL BLADE
circumferentialspacingof adjacentrotorblades.The total unsteady FLUTTER
aerodynamicloadingon the blading,due to the convectionof the A. SINHA (PennsylvaniaState University, UniversityPark), J. H.
transversegust past the airfoil cascade as well as that resulting GRIFFIN (Carnegie-MellonUniversity, Pittsburgh,PA), and R. E.
from the motionof the cascade, is developedin terms of influence KIELB (NASA, LewisResearch Center, Cleveland, OH) ASME,
coefficients.The model developed here is then used to analyze Transactions,Journalof Engineeringfor Gas Turbinesand Power
the effect of aerodynamicdetuning on the flow induced forced (ISSN 0022-0825), vol. 108, April 1986, p. 313-318. refs
responsebehaviorof a twelve-bladedrotorwithVerdon'sCascade (ASME PAPER 85-GT-170)
B flow geometry. V.L. This paper deals with the stabilizingeffects of dry frictionon

torsional blade flutter. A lumped parameter model with single
degree of freedom per blade has been used to represent the
rotor stage. The well-knowncascade theories for incompressible

A86-26905"# Carnegie-MellonUniv., Pittsburgh,Pa. and supersonicflows have been used to determinethe allowable
THE EFFECT OF LIMITING AERODYNAMIC AND STRUCTURAL increase in fluid velocity relative to the blade. It has been found
COUPLING IN MODELS OF MISTUNED BLADED DISK that the effectivenessof frictiondampersin controllingfluttercan
VIBRATION be substantial. Author
P. BASUand J. H. GRIFFIN (Carnegie-MellonUniversity,Pittsburgh,
PA) IN: Vibrations of blades and bladed disk assemblies; A86-38894"# Purdue Univ.,West Lafayette, Ind.
Proceedings of the Tenth Biennial Conference on Mechanical THREE DIMENSIONAL UNSTEADY AERODYNAMICS AND
Vibrationand Noise,Cincinnati,OH, September10-13, 1985. New AEROELASTIC RESPONSE OF ADVANCED TURBOPROPS
York, American Society of MechanicalEngineers,1985, p. 31-40. M.H. WILLIAMS and C.-C. HWANG (Purdue University, West
refs Lafayette, IN) IN: Structures,StructuralDynamicsand Materials
(Contract NAG3-367) Conference, 27th, San Antonio,TX, May 19-21, 1986, Technical

A modelhas been developedfor studyingthe effect of mistuning Papers.Part 2. New York, American Instituteof Aeronauticsand
on bladed disk vibration which has the unique feature that the Astronautics,1986, p. 116-124. refs
extent of aerodynamicand structuralinteractionwhich it simulates (ContractNAG3-499)
can be readily varied from full couplingof all blades on the disk (AIAA PAPER 86-0846)
to coupling of each blade with only its nearest neighbors. A methodforthe predictionof steadyandunsteadyaerodynamic
Simulations utilizingthe resulting algorithm show that limited loads and aeroelastic response of advanced turboprops is
couplingmodelsmay be used to predictthe statisticaldistribution presented. The aerodynamic analysis uses three dimensional
of blade amplitudesthat characterizesthe mistuningeffect, which unsteadylinearizedcompressibleflow theoryto computethe blade
in turn determinesstage durability.This approachis used to study pressuredistribution.The aeroelasticanalysisisbasedon a normal
the effect of changingvarious system parameters on amplitude mode representationof the structure.The method is applicableto
scatter. Gas density, the number of blades on the disk, disk both conventional and advanced turbo-prop configurations,
stiffness,and the engine order of the excitationare considered, provided that blade stall and transonic shock waves are not
The results are used to draw some conclusionsabout how to importantfactors.Aerodynamicresultsare presentedwhichvalidate
improve laboratorytests and componentdesign. Author the model in variouslimitsby comparisonsto alternativetheories

and experimentaldata. Finally,resultsof a stabilityanalysisof an
advanced turbopropare given,withcomparisonsto measurements
madeat NASA LewisResearchCenter. Author

A86-31595"# National Aeronautics and Space Administration.
LewisResearchCenter, Cleveland, Ohio. A86-48141"# National Aeronautics and Space Administration.
AERODYNAMIC AND STRUCTURAL DETUNING OF LewisResearch Center,Cleveland, Ohio.
SUPERSONIC TURBOMACHINE ROTORS COMPUTATIONAL ENGINE STRUCTURAL ANALYSIS
D. HOYNIAK (NASA, LewisResearchCenter, Cleveland,OH) and C.C. CHAMIS and R. H. JOHNS (NASA, Lewis ResearchCenter,
S. FLEETER (PurdueUniversity,West Lafayette, IN) (Structures, Cleveland, OH) ASME, InternationalGas Turbine Conference
StructuralDynamics,and MaterialsConference,26th, Orlando,FL, and Exhibit, 31st, Duesseldorf,West Germany, June 8-12, 1986.
April 15-17, 1985, Technical Papers. Part 2, p. 500-514) Journal 12 p. Previouslyannouncedin STAR as N86-19663. refs
of Propulsionand Power (ISSN 0748-4658), vol. 2, Mar.-Apr. 1986, (ASME PAPER 86-GT-70)
p. 161-167. Previouslycited in issue 13, p. 1850, Accessionno. A significantresearch activity at the NASA Lewis Research
A85-30378. refs Center is the computationalsimulationof complexmultidisciplinary
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engine structural problems. This simulation is performed using to alternate circumferential spacing aerodynamic detuning of a
computational engine structural analysis (CESA) which consists of turbomachine rotor. The translational and torsional unsteady
integrated multidisciplinary computer codes in conjunction with aerodynamic coefficients are developed in terms of influence
computer post-processingforproblem-specific application. A variety coefficients, with the coupled bending-torsion stability analysis
of the computational simulations of specific cases are described developed by considering the coupled equations of this
in some detail in this paper. These case studies include: (1) aerodynamic detuning on coupled bending-torsion unstalled
aeroelastic behavior of bladed rotors, (2) high velocity impact ,_f supersonic flutter as well as the verification of the modeling are
fan blades, (3) blade-loss transient response, (4) rotor/stator/ then demonstrated by considering an unstable 12 bladed rotor,
squeeze-film/bearing interaction, (5) blade-fragmentJrotor-burstcon- with Verdon's uniformly spaced Cascade B flow geometry as a
tainment, and (6) structural behavior of advanced swept turboprops, baseline. However, with the elastic axis and center of gravity at
These representative case studies are selected to demostrate the 60 percent of the chord, this type of aerodynamic detuning has a
breath of the problems analyzed and the role of the computer includ- minimal effect on stability. For both uniform and nonuniform
ing post-processingand graphical display of voluminous output data. circumferentially space rotors, a single degree of freedom torsion

Author mode analysis was shown to be appropriate for values of the
bending-torsion natural frequency ratio lower than 0.6 and higher

A86-48163"# Massachusetts Inst. of Tech., Cambridge. 1.2.When the elastic axis and center of gravity are not coincident,
ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF THE the effect of detuning on cascade stability was found to be very
COUPLED BLADED DISK/SHAFT WHIRL OF A CANTILEVERED sensitiveto the location of the center of gravity with respect to
TURBOFAN the elasticaxis. In addition,it was determinedthat whenthe center
E. F. CRAWLEY, E. H. DUCHARME, and D. R. MOKADAM (MIT, of gravity was forward of an elastic axis located at midchord,a
Cambridge, MA) ASME, InternationalGas Turbine Conference single degree of freedom torsionmodel did not accuratelypredict
and Exhibit, 31st, Duesseldorf,West Germany, June 8-12, 1986. cascade stability. Author
9 p. refs
(ContractNAG3-200) A87-46228"# National Aeronautics and Space Administration.
(ASME PAPER 86-GT-98) Lewis Research Center,Cleveland,Ohio.

A simple analytical model for the structural dynamics of a INFLUENCE OFTHIRD-DEGREE GEOMETRIC NONLINEARITIES
rotating flexible blade/rigid disk/flexible cantileveredshaft system ON THE VIBRATION AND STABILITY OF PRE]3NISTED, PRE-
yields the equations of motion expressed in the rotating frame, CONED, ROTATINGBLADES
showingthat the blade's one-nodal diameter modes dynamically K.B. SUBRAHMANYAM and K. R. V. KAZA (NASA, Lewis
couple to the rigid body whirling motion of the shaft-disk system. Research Center, Cleveland,OH) IN: International Symposium
This analytical model is correlated with the results of a structural on Air Breathing Engines,8th, Cincinnati, OH, June 14-19, 1987,
dynamic experiment performed on an aeroelastic rotor fan that is Proceedings . New York, American Institute of Aeronautics and
similar to a high bypass ratio shroudlessturbofan.The agreement Astronautics,1987, p. 465-479. Previouslyannouncedin STAR as
between the predicted and experimental natural frequencies is N86-31920. refs
good,and suggestssignificantinteractionof theone-nodaldiameter The governing coupled flapwise bending,edgewise bending,
blade modeswith the shaft-disk modes. O.C. andtorsionalequationsare derivedincludingthird-degreegoemetric

nonlinearelastic terms by making use of the geometric nonlinear
A86-48224"# National Aeronautics and Space Administration. theory of elasticity in which the elongations and shears are
Lewis Research Center, Cleveland,Ohio. negligiblecompared to unity. These equationsare specializedfor
TOWARD IMPROVED DURABILITY IN ADVANCED blades of doubly symmetric cross section with linear variation of
COMBUSTORS AND TURBINES - PROGRESS IN PREDICTION Pretwistover theblade length.The nonlinearsteadystateequations
OF THERMOMECHANICAL LOADS and the linearized perturbationequations are solved by using the
D. E. SOKOLOWSKI and C. R. ENSIGN (NASA, Lewis Research Galerkin method, and by utilizingthe nonrotatingnormal modes
Center, Cleveland, OH) ASME, International Gas Turbine for the shape functions. Parametric results obtained for various
Conference and Exhibit, 31st, Duesseldorf,West Germany,June cases of rotatingblades from the present theoreticalformulation
8-12, 1986. 13 p. refs are compared to those produced from the finite element code
(ASME PAPER 86-GT-172) MSC/NASTRAN, and also to those produced from an in-house

NASA is sponsoringthe TurbineEngineHot SectionTechnology experimentaltest rig. It is shown that the spurious instabilities,
(HOST) Project to address the need for improved durability in observedfor thin, rotatingblades when seconddegree geometric
advanced combustorsand turbines. Analytical and experimental nonlinearities are used, can be eliminated by including the
activitiesaimed at more accurate predictionof the aerothermal third-degreeelasticnonlinearterms.Furthermore,inclusionof third
environment,the thermomechanicalloads, the material behavior degree terms improves the correlationbetween the theory and
and structuralresponsesto such loading,and life predictionsfor experiment. M.G.
high temperaturecyclicoperationhave been underwayfor several
years and are showing promisingresults.Progressis reported in N80-21330"# lit ResearchInst., Chicago, Ill.
the development of advanced instrumentation and in the THERMAL FATIGUE AND OXIDATION DATA FOR
improvementof combustoraerothermaland turbineheat transfer DIRECTIONALLY SOLIDIFIED MAR-M 246 TURBINE BLADES
models that will lead to more accurate prediction of V.L. HILL and V. E. HUMPHREYS Jan. 1980 45 p refs
themomechanicalloads. Author (ContractNAS3-19696)

(NASA-CR-159798; IITRI-M6003-53) Avail: NTIS HC A03/MF
A87-25396*# National Aeronauticsand Space Administration. A01 CSCL 21E
Lewis ResearchCenter, Cleveland,Ohio. Thermalfatigueand oxidationdata were obtainedfor 11 plasma
THE EFFECT OF CIRCUMFERENTIAL AERODYNAMIC spray coated and 13 uncoated directionallysolidified and single
DETUNING ON COUPLED BENDING-TORSION UNSTALLED crystal MAR-M 246 blades. Blade coatingson the airfoil included
SUPERSONIC FLUTTER several metal-oxidethermalbarrierlayersbased on AI203, Cr203,
D. HOYNIAK(NASA, LewisResearch Center,Cleveland, OH) and or ZrO2. The 24 turbine blades were tested simultaneouslyfor
S. FLEETER (Purdue University,West Lafayette, IN) ASME, 3000 cycles in fluidizedbeds maintainedat 950 and 25 C usinga
Transactions,Journal of Turbomachinery(ISSN 0889-504X), vol. symmetrical360 set thermalcycle. In 3000 cycles,only uncoated
108, Oct. 1986, p. 253-260. Previouslyannounced in STAR as turbine blades exhibited crackingon the trailing edge near the
N86-21513. refs platform; 3 of the 13 uncoated blades did not crack. Cracking
(ASME PAPER 86-GT-100) occurredover the range 400 to 2750 cycles, with singlecrystal

A mathematical model developed to predict the enhanced blades indicatingthe poorestthermal fatigue resistance.Oxidation
coupled bending-torsionunstalledsupersonicflutter stability due of the uncoated blades was limited in 3000 cycles. All coatings

6
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indicated microscopicallyvisible spalling at the trailing edge radius N82-33390"# Akron Univ., Ohio. Dept. of Mechanical and Civil
after 3000 cycles. Severe general spalling on the airfoil was Engineering.
observedfor two multilayeredcoatings. Author ENGINE DYNAMIC ANALYSIS WITH GENERAL NONLINEAR

FINITE ELEMENT CODES. PART 2: BEARING ELEMENT

N81-17079"# Pratt and WhitneyAircraft Group, East Hartford, IMPLEMENTATIONOVERALL NUMERICAL CHARACTERISTICS
Conn. AND BENCHMARKING

J. PADOVAN, M. ADAMS, J. FERTIS, I. ZEID, and P. LAM Oct.COMBUSTOR LINER DURABILITY ANALYSIS Final Report
V. MORENO Feb. 1981 84 p refs 1982 229 p refs
(ContractNAS3-21836) (ContractNSG-3283)
(NASA-CR-165250; PWA-5684-19) Avail: NTIS HC A05/MF (NASA-CR-167944; NAS 1.26:167944) Avail: NTIS HC A11/MF
A01 CSCL 21E A01 CSCL 21E

An 18 month combustor liner durabilityanalysisprogram was Finiteelement codes are used in modellingrotor-bearing-stator
conducted to evaluate the use of advanced three dimensional structure common to the turbine industry. Engine dynamic
transient heat transfer and nonlinear stress-strainanalyses for simulationis used by developingstrategieswhich enable the use
modeling the cyclic thermomechanical response of a simulated of available finite element codes, benchmarkingthe elements
combustor liner specimen. Cyclic life predictiontechnology for developed are benchmarked by incorporation into a general
creep/fatigue interactionis evaluatedfor a varietyof state-of-the-art purpose code (ADINA); the numerical characteristics of finite
tools for crack initiationand propagation.The sensitivityof the element type rotor-bearing-statorsimulationsare evaluatedthrough
initiationmodels to a change in the operatingconditions is also the use of various types of explicit/implicitnumerical integration
assessed. A.R.H. operators. Improving the overall numerical efficiency of the

procedureis improved. S.L.

N82-22266"# National Aeronauticsand Space Administration. N82-33391"# Pratt and Whitney Aircraft Group, East Hartford,
LewisResearchCenter, Cleveland, Ohio. Conn. CommercialProductsDiv.
STRUCTURAL DYNAMICS OF SHROUDLESS, HOLLOW FAN STRUCTURAL TAILORING OF ENGINE BLADES (STAEBL)
BLADES WITH COMPOSITE IN-LAYS Interim Report
R. A. AIELLO, M. S. HIRSCHBEIN, and C. C. CHAMIS 1982 C.E. PLATT, T. K. PRATT, and K. W. BROWN Jun. 1982 359
12 p refs Presented at the 27th Ann. Intern. Gas Turbine p refs
Conf., London,18-22 Apr. 1982; sponsoredby ASME (ContractNAS3-22525)
(NASA-TM-82816; E-1163; NAS 1.15:82816) Avail: NTIS HC (NASA-CR-167949; NAS 1.26:167949; PWA-5774-21) Avail:
A02/MF A01 CSCL 21E NTIS HC A16/MF A01 CSCL 21E

Structuraland dynamicanalysesarepresentedfor a shroudless, A mathematicaloptimizationprocedurewas developed for the
hollowtitanium fan bladeproposedfor futureuse inaircraft turbine structuraltailoringof engine blades and was used to structurally
engines.The bladewas modeledand analyzedusingthecomposite tailor two engine fan blades constructedof composite materials
blade structural analysis computer program (COBSTRAN); an withoutmidspan shrouds.The first was a solid blade made from
integrated program consistingof mesh generators, composite superhybridcomposites,and the second was a hollow blade with
mechanics codes, NASTRAN, and pre- and post-processors, metal matrixcompositeinlays.Three majorcomputerizedfunctions
Vibrationandimpact analysesare presented.The vibrationanalysis were needed to complete the procedure: approximate analysis
was conductedwith COBSTRAN. Resultsshow the effect of the with the established input variables, optimizationof an objective
centrifugal force field on frequencies, twist, and blade camber, function,and refinedanalysisfor designverification. S.L.
Bird impact analysis was performed with the multi-mode blade
impactcomputerprogram.This programusesthe geometricmodel N84-13193"# General ElectricCo., Cincinnati,Ohio. Aircraft
and modal analysis from the COBSTRAN vibration analysis to Engine BusinessGroup.
determine the gross impact response of the fan blades to bird BLADE LOSS TRANSIENT DYNAMICS ANALYSIS WITH
strikes.The structuralperformanceof this blade is alsocompared FLEXIBLE BLADED DISK Final Report
to a blade of similar design but with composite in-lays on the V.C. GALLARDO, G. BLACK, L. BACH, S. CLINE, and A.
outer surface. Results show that the composite in-lays can be STORACE Apr. 1983 269 p refs
selected (designed) to substantially modify the mechanical (ContractNAS3-23281)
performanceof the shroudless,hollowfan blade. Author (NASA-CR-168176;NAS 1.26:168176) Avail: NTIS HC A12/MF

A01 CSCL 21E
N82-25257"# UnitedTechnologiesCorp., East Hartford, Conn. The transientdynamicresponseof a flexible bladed disk on a
CommercialProductsDiv. flexiblerotorin a two rotorsystem isformulatedbymodalsynthesis
FRACTURE MECHANICS CRITERIA FOR TURBINE ENGINE anda Lagrangianapproach.Only the nonequilibratedone diameter
HOT SECTION COMPONENTS Final Report flexible mode is consideredfor the flexible bladed disk,while the
G. J. MEYERS May 1982 123 p refs two flexible rotors are represented by their normal modes. The
(Contract NAS3o22550) flexible bladed disk motion is modeled as a combination of two
(NASA-CR-167896; NAS 1.26:167896; PWA-5772-23) Avail: one diameter standing waves, and is coupled inertially and
NTIS HC A06/MF A01 CSCL 21E gyroscopically to the flexible rotors. Application to a two rotor

The application of several fracture mechanics data correlation model shows that a flexible bladed disk on one rotor can be
parameters to predicting the crack propagation life of turbine engine driven into resonance by an unbalance in the other rotor, and at
hot section components was evaluated. An engine survey was a frequency equal to the difference in the rotor speeds. Author
conducted to determine the locations where conventional fracture
mechanics approaches may not be adequate to characterize N84-15152"# General Electric Co., Cincinnati, Ohio. Aircraft
cracking behavior. Both linear and nonlinear fracture mechanics Engine Business Group.
analyses of a cracked annularcombustorliner configurationwere AEROTHERMAL MODELING. EXECUTIVE SUMMARY Final
performed. Isothermaland variabletemperaturecrackpropagation Report
tests were performed on Hastelloy X combustor liner material. M.K. KENWORTHY, S. M. CORREA, and D. L. BURRUS Dec.
The crack growth data was reduced using the stress intensity 1983 55 p refs
factor, the strain intensity factor, the J integral, crack opening (ContractNAS3-23525)
displacement,and Tomkins' model. The parameterwhich showed (NASA-CR°168330;NAS 1.26:168330) Avail: NTIS HC A04/MF
the mosteffectivenessin correlationhightemperatureand variable A01 CSCL 21E
temperature Hastelloy X crack growth data was crack opening One of the significantways in which the performance level of
displacement. S.L. aircraft turbine engines has been improved is by the use of
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advanced materials and cooling concepts that allow a significant fluid medium. The test speed range was from 7000 to 17000 rpm.
increase in turbine inlet temperature level, with attendant Seal tangential speed range was 34.5 to 83.7 m/sec (113 to 274
thermodynamic cycle benefits. Further cycle improvements have ft/sec). Author
been achieved with higher pressure ratio compressors. The higher

turbine inlet temperatures and compressor pressure ratios with N84-16185"# National Aeronautics and Space Administration.
corresponding higher temperature cooling air has created a very Lewis Research Center, Cleveland, Ohio.
hostile environment for the hot section components. To provide DIGITAL COMPUTER PROGRAM FOR GENERATING DYNAMIC
the technologyneeded to reduce the hot section maintenance TURBOFAN ENGINE MODELS (DIGTEM)
costs, NASA has initiated the Hot Section Technology (HOST) C.J. DANIELE, S. M. KROSEL, J. R. SZUCH, and E. J.
program. One key element of this overall program is the WESTERKAMP Sep. 1983 109 p refs
Aerothermal Modeling Program. The overall objective of his (NASA-TM-83446; E-1748; NAS 1.15:83446) Avail: NTIS HC
programis to evolve and validate improvedanalysismethodsfor A06/MF A01 CSCL 21E
use in the design of aircraft turbine engine combustors.The use This report describesDIGTEM, a digitalcomputerprogramthat
of such combustoranalysiscapabilitiescan be expectedto provide simulates two spool, two-stream turbofan engines. The turbofan
significantimprovementin the life and durabilitycharacteristicsof engine modelin DIGTEM containssteady-stateperformancemaps
both combustorand turbine components. B.W. for all of the componentsand has controlvolumeswherecontinuity

and energy balances are maintained. Rotor dynamicsand duct
N84-15153"# Textron Bell Aerospace Co., Buffalo, N.Y. momentumdynamicsare also included.Altogether there are 16
NASTRAN DOCUMENTATION FOR FLU'n'ER ANALYSIS OF state variables and state equations. DIGTEM features a
ADVANCED TURBOPROPELLERS Final Report backward-differnceintegrationschemefor integratingstiff systems.
V. ELCHURI, A. M. GALLO, and S. C. SKALSKI Apr. 1982 It trims the model equationsto match a prescribeddesign point
216 p refs by calculatingcorrectioncoefficientsthat balance out the dynamic
(ContractNAS3-22533) equations. It uses the same coefficientsat off-design pointsand
(NASA-CR-167927; NAS 1.26:167927; D2536-941010) Avail: iterates to a balanced engine condition.Transients can also be
NTIS HC A10/MF A01 CSCL 20K run.They are generatedby defining controlsas a functionof time

An existing capability developed to conduct modal flutter (open-loopcontrol)in a user-writtensubroutine(TMRSP). DIGTEM
analysisof tuned bladed-shroudeddiscswas modifiedto facilitate has run on the IBM 370/3033 computerusingimplicitintegration
investigationof the subsonic unstalled flutter characteristicsof with time steps ranging from 1.0 msec to 1.0 sec. DIGTEM is
advancedturbopropellers.The modificationspertain tothe inclusion generalizedin the aerothermodynamictreatmentof components.
of oscillatorymodal aerodynamic loads of blades with large B.W.
(backwardand forward)varying sweep. Author

N84-15154"# Textron Bell Aerospace Co., Buffalo, N.Y. N84-16186"# National Aeronauticsand Space Administration.
BLADED-SHROUDED-DISC AEROELASTIC ANALYSES: COM- Lewis ResearchCenter, Cleveland,Ohio.
PUTER PROGRAM UPDATESIN NASTRAN LEVEL 17.7 Final Re- DESIGN CONCEPTS FOR LOW-COST COMPOSITE ENGINE

FRAMES
port
A. M. GALLO, V. ELCHURI, and S. C. SKALSKI Dec. 1981 C.C. CHAMIS 1983 28 p refs Presentedat Aircraft Design
348 p Systems and Operations Meeting, Fort Worth, Tex., 17-19 Oct.
(ContractNAS3-22533) 1983; sponsoredby AIAA and AHS Previouslyannounced in
(NASA-CR-165428; NAS 1.26:165428; D2536-941006) Avail: IAA as A83-48331
NTIS HC A15/MF A01 CSCL 21E (NASA-TM-83544; E-1916; NAS 1.15:83544) Avail: NTIS HC

In October 1979, a computer program based on the A03/MFA01 CSCL21E
state-of-the-artcompressorand structuraltechnologiesapplied to Design concepts for low-cost, lightweight compositeengine

frames were applied to the design requirementsfor the frame ofbladed-shrouded-disc was developed. The program was more
operational in NASTRAN Level 16. The bladed disc computer commercial,high-bypassturbineengines.The conceptsconsistof
programwas updated for operationin NASTRAN Level 17.7. The generic-type components and subcomponents that could be
supersonic cascade unsteady aerodynamics routine UCAS, adapted for use in differentlocationsin the engineand to different
deliveredas part of the NASTRAN Level 16 programwas recorded engine sizes. A variety of materials and manufacturingmethods
to improve its execution time. These improvements are were assessedwith a goal of havingthe lowest numberof parts
presented. Author possibleat the lowestpossiblecost. The evaluationof the design

conceptsresultedin the identificationof a hybridcompositeframe

N84-16181"# National Aeronauticsand Space Administration. which wouldweigh about 70 percentof the state-of-the-art metal
LewisResearch Center, Cleveland,Ohio. frame and cost wouldbe about 60 percent. Author (IAA)
DYNAMIC BEHAVIOR OF SPIRAL-GROOVE AND RAYLEIGH-
STEP SELF-ACTING FACE SEALS N84-20562"# National Aeronautics and Space Administration.
E. DIRUSSO Jan. 1984 19 p refs LewisResearchCenter, Cleveland,Ohio.
(NASA-TP-2266;NAS 1.60:2266; E-1754) Avail: NTIS HC FORMULATION OF BLADE-FLUTTER SPECTRAL ANALYSES
A02/MF A01 CSCL 21E IN STATIONARY REFERENCE FRAME

Tests were performed to determinethe dynamicbehaviorand A.P. KURKOV Mar. 1984 32 p refs
establish baseline dynamic data for five self-acting face seals (NASA-TP-2296; E-1888; NAS 1.60:2296) Avail: NTIS HC
employingRayleigh-steplift-padsand inward pumpingas well as A03/MF A01 CSCL 21E
outward-pumpingspiral groovesfor the lift-generatingmechanism. Analytic representationsare developed for the discrete blade
The primaryparametersmeasuredinthe tests were film thickness, deflection and the continuous tip static pressure fields in a
seal seat axial motion,and seal frictionaltorque.The data show stationaryreferenceframe.Consideredare the samplingratesequal
the dynamic responseof the film thickness to the motion of the to the rotationalfrequency,equal to bladepassingfrequency,and
seal seat. The inward-pumpingspiral-grooveseals exhibited a for thepressure,equal to a multipleof the bladepassingfrequency.
high-amplitudefilm thicknessvibratorymode with a frequencyof For the last two rates the expressionsfor determiningthe nodal
four times the shaft speed. This mode was not observed in the diametersfromthe spectra are included.A procedureis presented
otherseals tested. The tests also revealedthat highfilm thickness for transformingthe completeunsteadypressurefield intoa rotating
vibration amplitude produces considerablyhigher average film frame of reference. The determinationof the true flutter frequency
thickness than do low amplitude film thicknessvibrations.The by using two sensors is described. To illustratetheir use, the
seals were tested at a constant face load of 73 N (16.4 Ib) with developedproceduresare used to interpretselectedexperimental
ambientair at roomtemperatureand atmosphericpressureas the results. Author
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N84-24578"# National Aeronautics and Space Administration. requires sound analytical tools and techniques. The utility of
Lewis Research Center, Cleveland, Ohio. advanced structural analysis techniques and advanced life
LEWIS RESEARCH CENTER SPIN RIG AND ITS USE IN prediction techniques in the life assessment of hot-section
VIBRATION ANALYSIS OF ROTATING SYSTEMS components was evaluated. The extend to which a
G. V. BROWN, R. E. KIELB, E. H. MEYN, R. E. MORRIS, and S. three-dimensionalcyclic isoparametricfinite element analysis of a
J. POSTA May 1984 19 p refs hot-sectioncomponentwouldimprove the accuracy of component
(NASA-TP-2304;E-1829; NAS 1.60:2304) Avail: NTIS HC life predictionswas assessed.At the same time, hightemperature
A02/MF A01 CSCL 21E life prediction theories such as strainrange partitioning and the

The Lewis Research Center spin rig was constructedto provide frequency modified approacheswere applied and their efficiency
experimental evaluationof analysismethodsdevelopedunder the judged.A stress analysiswasperformedon a commercialair-cooled
NASA Engine StructuralDynamics Program. Rotors up to 51 cm turbine blade. The evaluation of the life prediction methods
(20 in.) in diameter can be spun to 16,000 rpm in vacuum by an indicated that none of those studied were satisfactory. R.S.F.
air motor. Vibration forcing functions are provided by shakers that
apply oscillatory axial forces or transverse moments to the shaft,
by a natural whirling of the shaft, and by an air jet. Blade vibration

is detected by strain gages and optical blade-tip motion sensors. N85-10955"# National Aeronautics and Space Administration.
A variety of analogy and digital processing equipment is used to Lewis Research Center, Cleveland, Ohio.
display and analyze the signals. Results obtained from two rotors NONLINEAR STRUCTURAL AND LIFE ANALYSES OF A
are discussed. A 56-blade compressor disk was used to check COMBUSTOR LINER
proper operation of the entire spin rig system. A special two-blade A. KAUFMAN In its Turbine Eng. Hot Sect. Technol. (HOST) p
rotor was designed and used to hold flat and twisted plates at 45-53 Oct. 1982
various setting and sweep angles. Accurate Southwell coefficients Avail: NTIS HC A16/MF A01 CSCL 21E
have been obtained for several modes of a flat plate oriented Three-dimensional, nonlinear, finite element structural analyses
parallel to the plane of rotation. Author were performed for a simulated aircraft combustor liner specimen

in order to assess the capability of nonlinear analyses using
N84-24586"# Massachusetts Inst. of Tech., Cambridge. Gas classical inelastic material models to represent the
Turbine and Plasma Dynamics Lab. thermoplastic-creep response of the component. In addition, the
FLUTTER AND FORCED RESPONSE OF MISTUNED ROTORS computed stress-strainhistory at the critical location was input
USING STANDING WAVE ANALYSIS into life predictionmethodsin orderto evaluatethe abilityof these
D. J. BUNDAS and J. DUNGUNDJI Mar. 1983 155 p refs proceduresto predict crack initiationlife, It is concludedthat: (1)
Previouslyannouncedas A83-29823 elastic analysisis adequate for obtainingstrain range and critical
(Contract NAG3-214) location;(2) inelasticanalyses did not accuratelyrepresent cyclic
(NASA-CR-173555; NAS 1,26:173555; GT/PDL-170) Avail: behavior of materials; and (3) none of the crack initiationlife
NTIS HC A08/MF A01 CSCL 21E predictionmethodswere satisfactory. R.S.F.

A standing wave approach is applied to the analysis of the
flutter and forced response of tuned and mistuned rotors. The
traditionaltravelingwave cascadeairforces are recast intostanding

wave arbitrary motion form using Pade approximants, and the N85-10956"# National Aeronautics and Space Administration.
resulting equations of motion are written in the matrix form. Lewis Research Center, Cleveland, Ohio.
Applications for vibration modes, flutter, and forced response are PRE-HOST HIGH TEMPERATURE CRACK PROPAGATION
discussed. It is noted that the standing wave methods may prove T.W. ORANGE In its Turbine Eng. Hot Sect. Technol. (HOST)
to be more versatile for dealing with certain applications, such as p 55-63 Oct. 1982
coupling flutter with forced response and dynamic shaft problems, Avail: NTIS HC A16/MF A01 CSCL 21E
transient impulses on the rotor, low-order engine excitation, bearing The highlights of NASA contract CR-167896, Fracture
motion, and mistuning effects in rotors. V.L. (IAA) Mechanics Criteria for Turbine Engine Hot Section Components,

are presented. The five technical tasks of the program are reviewed.
N85-10951"# National Aeronautics and Space Administration. Results of several tasks are presented. R.S.F.
Lewis Research Center, Cleveland, Ohio.
TURBINE ENGINE HOT SECTION TECHNOLOGY (HOST)
Washington Oct. 1982 356 p refs Workshop held in

Cleveland, 19-20 Oct. 1982 N85-10969"# National Aeronautics and Space Administration.
(NASA-TM-83022; E-1458; NAS 1.15:83022) Avail: NTIS HC Lewis Research Center, Cleveland, Ohio.
A16/MF A01 CSCL 21E STRUCTURAL ANALYSIS

Research and plans concerning aircraft gas turbine engine hot R.H. JOHNS In its Turbine Eng. Hot Sect. Technol. (HOST) p
section durability problems were discussed. Under the topics of 181-184 Oct. 1982
structural analysis, fatigue and fracture, surface protective coatings, Avail: NTIS HC A16/MF A01 CSCL 21E
combustion, turbine heat transfer, and instrumentation specific Hot section components of aircraft gas turbine engines are
points addressed were the thermal and fluid environment around subjected to severe thermal-structural loading conditions, especially
liners, blades, and vanes, material coatings, constitutive behavior, during the start-up and take-off portions of the engine cycle. The
stress-strain response, and life prediction methods for the three most severe and damaging stresses and strains are those induced
components, by the steep thermal gradients induced during the start-up transient.

These transient stresses and strains are also the most difficult to
N85-10954"# National Aeronautics and Space Administration. predict, in part because the temperature gradients and distributions
Lewis Research Center, Cleveland, Ohio. are not well known or predictable, and also because the cyclic
NONLINEAR STRUCTURAL AND LIFE ANALYSES OF A elasto-viscoplastic behavior of the materials at these extremes of
TURBINE BLADE temperature and strain are not well known or predictable. One
A. KAUFMAN In its Turbine Eng. Hot Sect. Technol. (HOST) p element of the structures program will develop improved
39-44 Oct. 1982 time-varyingthermal-mechanicalload modelsfor the entire engine
Avail: NTIS HC A16/MF A01 CSCL21E mission cycle from start-up to shutdown. The thermal model

The most critical structural requirements that aircraft gas turbine refinements will be consistent with those required by the structural
engines must meet result from the diversity of extreme code including considerations of mesh-point density, strain
environmental conditions in the turbine section components, concentrations, and thermal gradients. Models will be developed
Accurate life assessment of the components under these conditions for the burner liner, turbine vane and turbine blade. B.G.
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N85-10971"# National Aeronautics and Space Administration. testing machine for high temperature crack growth; (2) three
Lewis Research Center, Cleveland, Ohio. servocontrolled tension/torsion machines for biaxial studies; (3) a
COMPONENT-SPECIFIC MODELING HOST/satellite computer for data acquisition, processing, storage,
M. S. HIRSCHBEIN In its Turbine Eng. Hot Sect. Technol. (HOST) and retrieval; and (4) HCV/LCF machines for cumulative damage
p 197-202 Oct. 1982 studies. A.R.H.
Avail: NTIS HC A16/MF A01 CSCL 21E

The ability to accurately structurally analyze engine components N85-10975"# National Aeronautics and Space Administration.
to assure that they can survive for their designed lifetime in an Lewis Research Center, Cleveland, Ohio.
increasingly harsh environment is discussed. Under the HOST (HOt CONSTITUTIVE MODEL DEVELOPMENT FOR ISOTROPIC
Section Technology) program, advanced component-specific MATERIALS
modelingmethods,withbuilt-inanalysiscapability,willbe developed A. KAUFMAN /n its Turbine Eng. Hot Sect. Technol. (HOST) p
separately for burner liners, turbine blades and vanes. These 215-221 Oct. 1982
modeling methods will make maximumuse of, but will not rely Avail: NTIS HC A16/MF A01 CSCL 21E
solely on, existing analysis methods and techniques, to analyze The objective is to develop a unified constitutivemodel for
the three identifiedcomponents.Nor will the complete structural finite-element structural analysis of turbine engine hot section
analysis of a component necessarilybe performed as a single components. This effort constitutes a different approach for
analysis.The approachto be taken willdevelopcomplete software nonlinear finite-element computer codes which were heretofore
analysis packages with internal, component-specific,self-adaptive basedon classical inelasticmethods.A unifiedconstitutivetheory
solutionstrategies. Each package will contain a set of modeling will avoidthe simplifyingassumptionsof classicaltheory andshould
and analysis tools. The selection and order of specific methods more accurately represent the behavior of superalloy materials
and techniques within the set to be applied will depend on the undercyclicloadingconditionsandhightemperatureenvironments.
specific-component,the current thermo-mechanical loading, and Model development will be directed toward isotropic, cast
the current state of the component. All modeling and analysis nickel-base alloys used for aircooled turbine blades and vanes.
decisions will be made internally based on developed decision The contractorwill select a base materialfor model development
criteria withinthe solution strategies;minimaluser interventionwill and an alternate material for verificationpurposesfrom a list of
be required. B.W. three alloys specifiedby NASA. The candidate alloys representa

cross-sectionof turbine blade and vane materials of interest to

N85-10972"# National Aeronautics and Space Administration. both large and small size engine manufacturers.Material stock
Lewis Research Center, Cleveland,Ohio. for the base and alternate materials will be supplied to the
THE 3-D INELASTIC ANALYSIS METHODS FOR HOT SECTION Contractorby the government. R.J.F.
COMPONENTS: BRIEF DESCRIPTION
C. C. CHAMIS /n its Turbine Eng. Hot Sect. Technol. (HOST) p N85-10977"# National Aeronautics and Space Administration.
203-208 Oct. 1982 LewisResearchCenter, Cleveland,Ohio.
Avail: NTIS HC A16/MF A01 HOST HIGH TEMPERATURE CRACK PROPAGATION

Advanced 3-D inelastic structural/stressanalysis methodsand T.W. ORANGE /n its Turbine Eng. Hot Sect. Technol. (HOST)
solution strategies for more accurate yet more cost-effective p 227-229 Oct. 1982
analysis of componentssubjectedto severe thermal gradientsand Avail: NTIS HC A16/MF A01 CSCL 21E
loads in the presence of mechanical loads,with steep stressand Methods for characterizing and predicting crack growth at
strain gradients are being developed. Anisotropy, time and elevatedtemperaturesare discussed.Nonlinearbehavior,thermal
temperature dependent plasticity and creep effects are also gradients,and thermomechanicalcyclingare discussed. R.J.F.
addressed. The approach is to develop four different theories,
one linear and three higher order theories (polynomial function, N85-10987"# National Aeronauticsand Space Administration.
special function,general function).The theories are progressively LewisResearchCenter, Cleveland,Ohio.
more complex from linearto general function in order to provide VALIDATION OF STRUCTURAL ANALYSIS METHODS USING
streamlinedanalysiscapabilitywith increasingaccuracy for each THE IN-HOUSE LINER CYCLIC RIGS
hot section component and for different parts of the same R.L. THOMPSON /n its TurbineEng. Hot Sect. Technol. (HOST)
component according to the severity of the local stress, strain p 335-344 Oct. 1982
and temperaturegradientsassociatedwithhot spots, coolingholes Avail: NTIS HC A16/MF A01 CSCL 21E
and surface coatingcracks.To further enhance the computational Test conditionsand variables to be consideredin each of the
effectiveness, the higher order theories will have embedded test rigs and test configurations,and also used in the validation
singularities (cooling passages, for example) in the generic of the structuralpredictive theories and tools, include: thermal
modeling region. Each of the four theories consists of three and mechanical load histories(simulatingan engine missioncycle;
formulation models derivable from independent theoretical different boundary conditions;specimens and components of
formulations. These formulation models are based on: (1) different dimensionsand geometries;differentmaterials; various
mechanicsof materials; (2) special finite elements; and (3) an coolingschemesand coolingholeconfigurations;severaladvanced
advancedformulationto be recommendedby the contractor, burner liner structuraldesign concepts; and the simulationof hot

B.W. streaks. Based on these test conditionsand test variables, the
test matrices for each rig and configurationscan be established

N85-10973"# National Aeronautics and Space Administration. to verifythe predictivetools overas wide a range of test conditions
Lewis Research Center, Cleveland, Ohio. as possible using the simplest possible tests. A flow chart for the
LIFE PREDICTION AND CONSTITUTIVE BEHAVIOR: thermal/structuralanalysisof a burnerliner and howthe analysis
OVERVIEW relates to the tests is shown schematically.The chart showsthat
G. R. HALFORD In its Turbine Eng. Hot Sect. Technol. (HOST) several nonlinear constitutive theories are to be evaluated.
p 209-212 Oct. 1982 A.R.H.
Avail: NTIS HC A16/MF A01 CSCL 21E

The evolution of programs to investigate high temperature N85-10988"# National Aeronautics and Space Administration.
consititutive behavior and develop cyclic life prediction methods is Lewis Research Center, Cleveland, Ohio.
reviewed. Contracts granted for developing and verifying workable HOST LINER CYCLIC FACILITIES: FACILITY DESCRIPTION
engineering methods for the calculation, in advance of service, of D. SCHULTZ In its Turbine Eng. Hot Sect. Technol. (HOST) p
the local stress-strain response at the critical life governing location 345-360 Oct. 1982
in typical hot section components as well as the resultant cyclic Avail: NTIS HC A16/MF A01 CSCL 21E
crack initiation and crack growth lifetimes are listed. The Langley A quartz lamp box, a quartz lamp annular rig, and a low pressure
fatigue facility is being upgraded to include: (1) a servocontrolled liner cyclic can rig planned for liner cyclic tests are described.

10
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Special test instrumentation includes an IR-TV camera system for parameters in order to assess the importance of the interation
measuring liner cold side temperatures, thin film thermocouples between the bladed disk dynamics and the shaft-disk dynamics.
for measuring liner hot side temperatures, and laser and high The correlation between the experimental and predicted natural
temperature strain gages for obtaining local strain measurements, frequencies is reasonable, given the uncertainty involved in
A plate temperature of 2,000 F was obtained in an initial test of determining the stiffness parameters of the system. Author
an apparatus with three quartz lamps. Lamp life, however, appeared

to be limited for the standard commercial quartz lamps available. N85-27868"# Ohio State Univ., Columbus. Dept. of Engineering
The design of vitiated and nonvitiated preheaters required for the Mechanics.
quartz lamp annular rig and the cyclic can test rigs is underway. A STUDY OF INTERNAL AND DISTRIBUTED DAMPING FOR

A.R.H. VIBRAING TURBOMACHINERY BLADES Final Report, 15Apr.
1983 - 15 Apr. 1985

N85-15744"# National Aeronauticsand Space Administration. A.W. LEISSA Jun. 1985 24 p refs
Lewis Research Center, Cleveland, Ohio. (Contract NAG3-424)
ENGINE CYCLIC DURABILITY BY ANALYSIS AND MATERIAL (NASA-CR-175901; NAS 1.26:175901) Avail: NTIS HC A02/MF
TESTING A01 CSCL 21E
A. KAUFMAN and G. R. HALFORD In AGARD Eng. Cyclic Internal and distributeddamping as possible methods for
Durability by Analysis and Testing 12 p Sep. 1984 refs reducing the vibration response of turbomachineblades and
Previouslyannouncedas N84-18683 thenrP.ticalmethodsfor analyzingdamped vibrationwere studied.
Avail: NTIS HC A12/MF A01 CSCL 21E It is demonstratedhowthe Ritz-Galerkinmethodsmay be usedto

The problemof calculatingturbineenginecomponentdurability straightforwardlyanalyze forced vibrationswith damping.This is
is addressed.Nonlinear, finite-elementstructural analyses,cyclic done directly without requiringthe free vibration eigenfunctions.
constitutivebehavior models, and an advanced creep-fatigue life The Galerkin method is an effective techniquefor these types of
prediction method called strainrange partitioning were assessed problems. The Ritz method has the further advantage of not
for their applicability to the solution of durability problems in needing to satisfy the force type boundary conditions, which is
hot-section components of gas turbine engines. Three different particularly important for plates and shells. But proper functionals
component or subcomponent geometries are examined: a stress representing the forcing and damping terms must be developed,
concentration in a turbine disk; a louver lipof a half-scale combustor and this is done. Two types of damping--viscous and material
linear; and a squealer tip of a first-stage high-pressure turbine (hysteretic) are considered. Both distributed and concentrated
blade. Cyclic structural analyses were performed for all three exciting forces are treated. Numerical results are obtained for
problems. The computed strain-temperature histories at the critical cantilevered beams and rectangular plates. Studies showing the
locations of the combustor linear and turbine blade components rates of convergence of the solutions are made. In the case of
were imposed on smooth specimens in uniaxial, strain-controlled, the cantilever beam, approximate solutions from the present
thermomechanical fatigue tests of evaluate the structural and life methods are compared with the exact solutions. R.J.F.
analysis methods. Author

N85-28945"# National Aeronautics and Space Administration.
N85-21165"# Massachusetts Inst. of Tech., Cambridge. Dept. Lewis Research Center, Cleveland, Ohio.
of Aeronautics and Astronautics. DEAN: A PROGRAM FOR DYNAMIC ENGINE ANALYSIS
ADVANCED STRESS ANALYSIS METHODS APPLICABLE TO G.G. SADLER and K. J. MELCHER 1985 18 p refs Proposed
TURBINE ENGINE STRUCTURES Final Report for presentationat the21st Joint PropulsionConf., Monterey,Calif.,
T. H. H. PlAN Mar. 1985 44 p refs 8-10 Jul. 1985; sponsored by AIAA, SAE and ASME Prepared in
(Contract NAG3-33) cooperation with Army Research and Technology Labs.
(NASA-CR-175573; NAS 1.26:175573) Avail: NTIS HC A03/MF (NASA-TM-87033; E-2588; NAS 1.15:87033;
A01 CSCL 21E USAAVSCOM-TR-85-C-10) Avail: NTIS HC A02/MF A01

Advanced stress analysis methods applicable to turbine engine CSCL 21E
structures are investigated.Constructions of special elements which The Dynamic Engine Analysis program, DEAN, is a FORTRAN
containing traction-free circular boundaries are investigated. New code implemented on the IBM/370 mainframe at NASA Lewis
versions of mixed variational principle and version of hybrid stress Research Center for digital simulation of turbofan engine dynamics.
elements are formulated. A method is established for suppression DEAN is an interactive program which allows the user to simulate
of kinematic deformation modes, semiLoof plate and shell elements engine subsystems as well as a full engine systems with relative
are constructed by assumed stress hybrid method. An elastic-plastic ease. The nonlinear first order ordinary differential equations which
analysis is conducted by viscoplasticity theory using the mechanical define the engine model may be solved by one of four integration
subelement model. B.W. schemes, a second order Runge-Kutta, a fourth order Runge-Kutta,

an Adams Predictor-Corrector, or Gear's method for still systems.
N85°22391"# Massachusetts Inst. of Tech., Cambridge. Gas The numerical data generated by the model equations are displayed
Turbine Lab. at specified intervals between which the user may choose to modify
STRUCTURAL RESPONSE OF A ROTATING BLADED DISK TO various parameters affecting the model equations and transient
ROTOR WHIRL Final Report execution.Followingthe transientrun,versatilegraphicscapabilities
E. F. CRAWLEY Apr. 1985 140 p refs allow close examinationof the data. DEAN's modelingprocedure
(ContractNAG3-200) and capabilitiesare demonstratedby generatinga model of simple
(NASA-CR-175605; NAS 1.26:175605) Avail: NTIS HC A07/MF compressorrig. Author
A01 CSCL 21E

A set of highspeed rotatingwhirl experimentswere performed N85-31057"# Pratt and Whitney Aircraft, East Hartford,Conn.
in the vacuumof the MIT BIowdownCompressorFacility on the CommercialProductsDiv.
MIT Aeroelastic Rotor, which is structurally typical of a modern CREEP FATIGUE LIFE PREDICTION FOR ENGINE HOT
highbypassratioturbofanstage.These tests identifiedthe natural SECTION MATERIALS (ISOTROPIC) Annual Report
frequenciesof whirl of the rotor system by forcing its response V. MORENO Aug. 1983 89 p refs
using an electromagnetic shaker whirl excitation system. The (ContractNAS3-23288)
excitationwas slowly swept in frequency at constant amplitude (NASA-CR-168228; NAS 1.26:168228; PWA-5894-17; AR-1)
for several constantrotor speeds in both a forward and backward Avail: NTIS HC A05/MF A0t CSCL 2tE
whirl direction. The natural frequencies of whirl determined by The Hot Section Technology (HOST) program, creep fatigue
these experiments were compared to those predicted by an life prediction for engine hot section materials (isotropic), is
analytical6 DOF model of a flexibleblade-rigiddisk-flexibleshaft reviewed.The program is aimed at improvingthe hightemperature
rotor. The model is also presented in terms of nondimensional crack initiationlife predictiontechnologyfor gas turbinehot section
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components. Significantresults include: (1)cast B1900 and wrought or readily predictable. A broad spectrum of structures related
IN 718 selected as the base and alternative materials respectively; technology programs is underway to address these deficiencies.
(2) fatigue test specimens indicated that measurable surface cracks One element of the structures program is developing improved
appear early in the specimen lives, i.e., 15% of total life at 871 C time varying thermal mechanical load models for the entire engine
and 50% of life at 538 c; (3) observed crack initiation sites are all mission cycle from start up to shutdown. Another major part of
surface initiated and are associated with either grain boundary the program is the development of new and improved nonlinear
carbides or local porosity, transgrannular cracking is observed at 3-D finite elements and associated structural analysis programs,
the initiation site for all conditions tested; and (4) an initial evaluation including the development of temporal elements with time
of two life prediction models, representative of macroscopic dependent properties to account for creep effects in the materials
(Coffin-Mason) and more microscopic (damage rate) approaches, and components. Author
was conducted using limited data generated at 871 C and 538 C.
It is found that the microscopic approach provides a more accurate
regression of the data used to determine crack initiation model
constants, but overpredicts the effect of strain rate on crack N86-11515"# General Electric Co., Cincinnati, Ohio.
initiation life for the conditions tested. E.A.K. COMPONENT-SPECIFIC MODELING

M. L. ROBERTS In NASA. Lewis Research Center Turbine

N85-32119"# General Electric Co., Cincinnati, Ohio. Aircraft Eng. Hot Sect. Technol. (HOST) p 165-173 Oct. 1983
Engine Business Group. (Contract NAS3-23687)
COMPONENT-SPECIFIC MODELING Annual Status Report, 1 Avail: NTIS HC A11/MF A01 CSCL 21E

The overall objective of this program is to develop and verify
Jan. - 31 Dec. 1984 a series of interdisciplinary modeling and analysis techniques which
R. L. MCKNIGHT 1985 131 p have been specialized to address three specific hot section
(Contract NAS3-23687)
(NASA-CR-174925; NAS 1.26:174925; ASR-2) Avail: NTIS HC components. These techniques will incorporate data as well as
A07/MF A01 CSCL 21E theoretical methods from many diverse areas, including cycle and

Accomplishments are described for the second year effort of performance analysis, heat transfer analysis, linear and nonlinear
a 3-year program to develop methodology for component specific stress analysis, and mission analysis. Building on the proven
modeling of aircraft engine hot section components (turbine blades, techniques already available in these fields, the new methods
turbine vanes, and burner liners). These accomplishments include: developed through this contract will be integrated to provide an
(1) engine thermodynamic and mission models; (2) geometry model accurate, efficient, and unified approach to analyzing combustor
generators; (3) remeshing; (4) specialty 3-D inelastic stuctural burner liners, hollow air cooled turbine blades, and air cooled
analysis; (5) computationally efficient solvers, (6) adaptive solution turbine vanes. For these components, the methods developed will
strategies; (7) engine performance parameters/component predict temperature, deformation, stress, and strain histories
response variables decomposition and synthesis; (8) integrated throughout a complete flight mission. Author
software architecture and development, and (9) validation cases
for software developed. Author

N86-24693"# United Technologies Research Center, East
N85-34140"# General Electric Co., Cincinnati, Ohio. Aircraft Hartford, Conn.
Engine Business Group. ADVANCED TURBOPROP VIBRATORY CHARACTERISTICS
COMPONENT-SPECIFIC MODELING Annual Status Report Final Report
R. L. MCKNIGHT May 1985 162 p refs A.V. SRINIVASAN and G. B. FULTON Apr. 1984 104 p refs
(Contract NAS3-23687) (ContractNAS3-23533)
(NASA-CR-174765; NAS 1.26:174765; ASR-1) Avail: NTIS HC (NASA-CR-174708; NAS 1.26:174708; R84-956627-1) Avail:
A08/MF A01 CSCL 21E NTIS HC A06/MF A01 CSCL 21E

A series of interdisciplinarymodelingand analysis techniques The assembly of SR5 advanced turbopropblades to develop
that were specialized to address three specific hot section a structuraldynamicdata base for swept propsis reported. Steady
componentsare presented.These techniqueswill incorporatedata state blade deformation under centrifugal loading and vibratory
as well as theoreticalmethods from manydiverse areas including characteristicsof the rotor assembly were measured. Vibration
cycle and performance analysis,heat transfer analysis, linearand was inducedthrough a system of piezoelectriccrystalsattached
nonlinear stress analysis, and mission analysis. Buildingon the to the blades. Data reduction procedures are used to provide
proven techniques already available in these fields, the new deformation,mode shape, and frequencies of the assembly at
methods developed will be integrated into computer codes to predeterminedspeeds. Author
providean accurate,and unifiedapproachto analyzingcombustor
burner liners, hollow air cooled turbine blades, and air cooled
turbinevanes. For thesecomponents,the methods developedwill
predict temperature, deformation, stress and strain histories N86-27283"# Pratt and Whitney Aircraft, East Hartford, Conn.
throughouta complete flightmission. Author CommercialProductsDiv.

STRUCTURAL TAILORING OF ENGINE BLADES (STAEBL)
N86-11513"# National Aeronauticsand Space Administration. THEORETICAL MANUAL
Lewis Research Center, Cleveland,Ohio. K.W. BROWN Mar. 1985 51 p
HOST STRUCTURAL ANALYSIS PROGRAM OVERVIEW (ContractNAS3-22525)
R. H. JOHNS In its Turbine Eng. Hot Sect. Technol. (HOST) p (NASA-CR-175112; NAS 1.26:175112; PWA-5774-40) Avail:
153-158 Oct. 1983 NTIS HC A04/MF A01 CSCL 21E
Avail: NTIS HC A11/MF A01 CSCL 21E This Theoretical Manual includesthe theories included in the

Hot section components of aircraft gas turbine engines are StructuralTailoringof EngineBlades (STAEBL)computer program
subjectedto severethermalstructuralloadingconditions,especially which was developedto performenginefan and compressorblade
duringthe start up and take off portions of the engine cycle.The numericaloptimizations.These bladeoptimizationsseek a minimum
most severeand damagingstressesand strainsare those induced weight or cost design that satisfies practical blade design
by thesteepthermalgradientsinducedduringthe start up transient, constraints, by controllingone to twenty design variables. The
These transientstresses and strainsare also the most difficult to STAEBL constraint analyses include blade stresses, vibratory
predict, in part because of the temperature gradients and response,flutter,and foreignobjectdamage.Blade designvariables
distributionsare not well known or readily predictable, and also include airfoil thickness at several locations, blade chord, and
because the cyclic elastic viscoplasticbehaviorof the materials constructionvariables:hole size for hollowblades, and composite
at these extremes of temperatureand strain are not well known materiallayup for composite blades. Author
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N86-27284"# Pratt and Whitney Aircraft, East Hartford, Conn. designed to incorporated aerodynamic analyses directly into the
Commercial Products Div. structural tailoring system in order to relax current geometric
STRUCTURAL TAILORING OF ENGINE BLADES (STAEBL) constraints. Author
USER'S MANUAL
K. W. BROWN Mar. 1985 106 p N87-28551"# National Aeronauticsand Space Administration.
(ContractNAS3-22525) LewisResearchCenter, Cleveland,Ohio.
(NASA-CR-175113;NAS 1.26:175113; PWA-5774-39) Avail: TOWARD IMPROVED DURABILITY IN ADVANCED
NTIS HC A06/MF A01 CSCL 21E COMBUSTORS AND TURBINES: PROGRESS IN THE

This User's Manual contains instructionsand demonstration PREDICTION OF THERMOMECHANICAL LOADS
case to prepare input data, run, and modify the StructuralTailoring DANIEL E. SOKOLOWSKI and C. ROBERT ENSIGN 1986 31
of Engine Blades (STAEBL) computer code. STAEBL was p Presented at the 31st International Gas Turbine Conference
developed to perform engine fan and compressor blade numerical and Exhibition, Dusseldorf, West Germany, 8-12 Jun. 1986;
optimizations. This blade optimization seeks a minimum weight or sponsored by ASME Previously announced in IAA as
cost design that satisfies realistic blade design constraints, by A86-48224
tuning one to twenty design variables. The STAEBL constraint (NASA-TM-88932; E-3374; NAS 1.15:88932) Avail: NTIS HC
analyses include blade stresses, vibratory response, flutter, and A03/MF A01 CSCL 21E
foreign object damage. Blade design variables include airfoil NASA is sponsoring the Turbine Engine Hot Section Technology
thickness at several locations, blade chord, and construction (HOST) Project to address the need for improved durability in
variables: hole size for hollow blades, and composite material layup advanced combustors and turbines. Analytical and experimental
for composite blades. Author activities aimed at more accurate prediction of the aerothermal

environment, the thermomechanical loads, the material behavior
N86-32433"# National Aeronautics and Space Administration. and structural responses to such loading, and life predictions for
Lewis Research Center, Cleveland, Ohio. high temperature cyclic operation have been underway for several
STRUCTURAL DYNAMIC MEASUREMENT PRACTICES FOR years and are showing promising results. Progress is reported in
TURBOMACHINERY AT THE NASA LEWIS RESEARCH the development of advanced instrumentation and in the
CENTER improvementof combustoraerothermal and turbineheat transfer
L. J. KIRALY 1986 30 p Presented at the Symposiumon models that will lead to more accurate prediction of
Propulsion Instrumentation, Jiangyou, China, 6-10 Oct. 1986; thermomechanicalloads. Author
sponsoredby NASA and Chinese AeronauticalEstablishment
(NASA-TM-88857; E-3245; NAS 1.15:88857) Avail: NTIS HC
A03/MF A01 CSCL 51C 24

Methodsdevelopedfor measuringbladeand rotor-shaftsystem
responseincludeopticalsystems,transientinstruments,and special
digital data processingequipment. Optical methods offer some COMPOSITE MATERIALS
distinct benefits for blade vibrationmeasurement. Transient and
steadystate measurementsof the responseof rotor-shaftsystems Includesphysical,chemical,andmechanicalpropertiesof laminates
stronglyaffect analyticalmethodsdevelopment. Digitalcomputing and other compositematerials.
systems allow processingof large volumes of high speed data
from rotating blade sets. Also, digital systems develop useful
vibration response signatures from randomlyexcited systems. A80-10036"# National Aeronautics and Space Administration.
Research facilities include the spin rig facility and the transient LewisResearch Center, Cleveland, Ohio.
rotor responselab. Author FATIGUE BEHAVIOR OF SIC REINFORCED TITANIUM

COMPOSITES
N87-11731"# National Aeronautics and Space Administration. R.T. BHATT and H. H. GRIMES (NASA, LewisResearch Center,
LewisResearchCenter, Cleveland,Ohio. Cleveland, Ohio) American Society for Testing and Materials,
STAEBL: STRUCTURAL TAILORING OF ENGINE BLADES, Symposium on Fatigue of Fibrous Composite Materials, San
PHASE 2 Francisco,Calif., May 22, 23, 1979, Paper. 18 p. refs
M. S. HIRSCHBEIN and K.W. BROWN (Prattand WhitneyAircraft, The low cycle axial fatiguepropertiesof 25 and 44 fiber volume
East Hartford,Conn.) In NASA. Langley ResearchCenter Recent percent SiC/Ti(6AI-4V) composites were measured at room
Experiences in MultidisciplinaryAnalysis and Optimization, Part 1 temperature and at 650 C. At room temperature, the S-N curves
13 p 1984 for the composites showed no anticipated improvement over bulk
Avail: NTIS HC A22/MF A01 CSCL 21E matrix behavior. Although axial and transverse tensile strength

The Structural Tailoring of Engine Blades (STAEBL) program results suggest a degradation in SiC fiber strength during composite
was initiated at NASA Lewis Research Center in 1980 to introduce fabrication, it appears that the poor fatigue life of the composites
optimal structural tailoring into the design process for aircraft gas was caused by a reduced fatigue resistance of the reinforced
turbine engine blades. The standard procedure for blade design Ti(6AI-4V) matrix. Microstructural studies indicate that the reduced
is highly iterative with the engineer directly providing most of the matrix behavior was due, in part, to the presence of flawed and
decisions that control the design process. The goal of the STAEBL fractured fibers created near the specimen surfaces by preparation
program has been to develop an automated approach to generate techniques. Another possible contributing factor is the large residual
structurally optimal blade designs. The program has evolved as a tensile stresses that can exist in fiber-reinforced matrices. These
three-phase effort with the developmental work being performed effects, as well as the effects of fatigue testing at high temperature,
contractually by Pratt & Whitney Aircraft. Phase 1 was intended are discussed. (Author)
as a proof of concept in which two fan blades were structurally
tailored to meet a full set of structural design constraints while A80-28954"# National Aeronautics and Space Administration.
minimizing DOC+I (direct operating cost plus interest) for a Lewis Research Center, Cleveland, Ohio.
representative aircraft. This phase was successfully completed and MECHANICAL PROPERTYCHARACTERIZATION OF INTRAPLY
was reported in reference 1 and 2. Phase 2 has recently been HYBRID COMPOSITES
completed and is the basis for this discussion. During this phase, C.C. CHAMIS, R. F. LARK, and J. H. SINCLAIR (NASA, Lewis
three tasks were accomplished: (1) a nonproprietary structural Research Center, Cleveland, Ohio) American Society for Testing
tailoring computer code was developed; (2) a dedicated and Materials, Symposium, Dearborn, Mich., Oct. 2, 3, 1979, Paper.
approximate finite-element analysis was developed; and (3) an 24 p. refs
approximate large-deflection analysis was developed to assess An investigation of the mechanical properties of intraply hybrids
local foreign object damage. Phase 3 is just beginning and is made from graphite fiber/epoxy matrix hybridized with secondary
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S-glass or Kevlar 49 fiber composites is presented. The specimen A80-32069"# National Aeronautics and Space Administration.
stress-strain behavior was determined, showing that mechanical Lewis Research Center, Cleveland, Ohio.
properties of intraply hybrid composites can be measured with FRACTURE MODES OF HIGH MODULUS GRAPHITE/EPOXY
available methods such as the ten-degree off-axis test for ANGLEPLIED LAMINATES SUBJECTED TO OFF-AXIS TENSILE
intralaminarshear, and conventionaltests for tensile, flexure,and LOADS
Izod impactproperties.The resultsalso showedthat combinations J.H. SINCLAIR (NASA, Lewis ResearchCenter, Cleveland,Ohio)
of high modulusgraphite/S-glass/epoxy matrixcomposites exist In: Rising to the challengeof the '80s; Annual Conference and
which yield intraply hybrid laminates with the best 'balanced' Exhibit, 35th, New Orleans, La., February 4-8, 1980, Preprints.
properties, and that the translation efficiency of mechanical New York, Society of the PlasticsIndustry, Inc., 1980, p. 12-C 1
propertiesfrom the constituentcompositesto intraplyhybridsmay to 12-C 8. refs
be assessed with a simple equation. A.T. Anglepliedlaminatesof highmodulusgraphitefiber/epoxywere

examined in several ply configurationsat various tensile loading
angles to the zero ply directionto determine the effects of ply
orientations on tensile properties, fracture modes, and fracture
surface characteristicsof the various plies. Experimental results
consist of stress-straindata, selected plots, fracture stressesand
strains,and scanning electron microscope(SEM) photographsof
fracture surfaces. It was found that the stress-straincurves were

A80-27982"# National Aeronautics and Space Administration. linearto fracture,and that althoughfracturesurfacecharacteristics
Lewis ResearchCenter, Cleveland,Ohio. for a givenfracture modeare similarto those for the same fracture
DYNAMIC RESPONSE OF DAMAGED ANGLEPLIED FIBER mode in uniaxialspecimens, no simple load angle range can be
COMPOSITES associated witha given fracture mode. It was also concludedthat
C. C. CHAMIS, J. H. SINCLAIR, and R. F. LARK (NASA, Lewis SEM results must be supplementedwith ply stress calculationsin
Research Center, Cleveland, Ohio) In: Modern developmentsin order to identifyrangesof fracture modes occurringas a function
composite materials and structures;Proceedings of the Winter of ply orientationwith respect to the load direction. J.P.B.
AnnualMeeting, New York, N.Y., December 2-7, 1979. New York,
AmericanSociety of MechanicalEngineers,1979, p. 31-51.

An investigationwas conducted to determine the effects of
low level damage inducedby monotonicload, cyclic load and/or
residualstresses on the vibrationfrequencies and dampingfactors
of fiber compositeangleplied laminates.Two different composite A80-34764" National Aeronautics and Space Administration.
systems were studied- low modulusfiber and ultra high modulus LewisResearch Center, Cleveland,Ohio.
fiber composites.The resultsobtainedshowedthat the frequencies A REVIEW OF ISSUES AND STRATEGIES IN
and damping factors of angleplied laminates made from low NONDESTRUCTIVE EVALUATION OF FIBER REINFORCED
modulusfiber composites are sensitiveto low level damage while STRUCTURAL COMPOSITES
those made from ultra high moduluscomposites are not. Also, A. VARY (NASA, LewisResearch Center, Materialsand Structures
vibration tests may not be sufficiently sensitive to assess Div.,Cleveland,Ohio) In: New horizons- Materialsand processes
concentrated local damage in angleplied laminates. And for the eighties;Proceedingsof the Eleventh National Conference,
furthermore,dynamicresponsedeterminedfrom low-velocityimpact Boston,Mass., November 13-15, 1979. Azusa, Calif., Society for
coupled with the Fast Fourier Transform and packaged in a the Advancement of Material and ProcessEngineering,1979, p.
minicomputer can be a convenient procedure for assessing 166-177. refs
low-leveldamage in fiber compositeanglepliedlaminates. The need for advanced nondestructive evaluation (NDE)

(Author) techniquesfor quantitativeassessment of the mechanicalstrength
and integrityof fiber composites duringmanufactureand service
and followingrepairoperationsis stressed.The discussioncovers
problemsanddifferentapproachesin regardto acceptancecriteria,
calibration standards, and methods for NDE of composites in
strength critical applications. Finally, it is concluded that
acousto-ultrasonictechniques provide the 'methods of choice' in
this area. M.E.P.

A80-27994"# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland,Ohio.
MICROMECHANICS OF INTRAPLY HYBRID COMPOSITES:
ELASTIC AND THERMAL PROPERTIES
C. C. CHAMIS and J. H. SINCLAIR (NASA, LewisResearch Center,
Cleveland,Ohio) In: Modern developmentsin compositematerials A80-35494"# National Aeronautics and Space Administration.
and structures;Proceedings of the Winter Annual Meeting, New Lewis Research Center, Cleveland,Ohio.
York, N.Y., December 2-7, 1979. New York, AmericanSociety of PREDICTING THE TIME-TEMPERATURE DEPENDENT AXIAL
MechanicalEngineers, 1979, p. 253-267. FAILURE OF B/AL COMPOSITES

Compositemicromechanics are used to derive equations for J.A. DICARLO (NASA, Lewis Research Center, Cleveland, Ohio)
predicting the elastic and thermal properties of unidirectional MetallurgicalSociety of AIME, Symposiumon Fracture Modes in
intraplyhybrid composites. The results predicted using these Metal Metrix Composites, Las Vegas, Nev., Feb. 25-28, 1980,
equationsare compared with those predictedusing approximate Paper.26 p. refs
equations based on the rule of mixtures,linear laminate theory, Theoretical and experimental studies are reviewed whose
finite element analysis and limited experimental data. The objectivewas to gain insightinto and predict the effects of time,
comparisonsfor three different intraply hybrids indicate that all temperature,and stress on the axial failuremodes of boron fibers
four methods predict approximatelythe same elastic properties and B/AI composites.Owing to the inelasticnature of boron fiber
and are in good agreement with measured data. The deformation,it proved possible to develop simple creep functions
micromechanicsequationsand linear laminatetheory predictabout which can be used to describeaccuratelythe creep and fracture
the same values for thermal expansion coefficients. The stress of as-producedfibers. Analysisof dampingand stress data
micromechanicsequationspredictthrough-the-thicknessproperties for B/6061 AI compositesindicatesthat fibercreep andthe effects
which are in good agreementwith the finite element results, of creepof fiber fractureare measurablyreducedbythe composite

(Author) fabricationprocess. V.P.
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A80-44236"# National Aeronautics and Space Administration. A82-37101"# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio. Lewis Research Center, Cleveland, Ohio.
DYNAMIC MODULUS AND DAMPING OF BORON, SILICON SENSITIVITY ANALYSIS RESULTS OF THE EFFECTS OF
CARBIDE, AND ALUMINA FIBERS VARIOUS PARAMETERS ON COMPOSITE DESIGN
J. A. DICARLO (NASA, Lewis Research Center, Cleveland, Ohio) C.C. CHAMIS (NASA, Lewis Research Center, Structures and
and W. WILLIAMS (Lincoln University, Lincoln University, Pa.) Mechanical Technologies Div., Cleveland, OH) In: Reinforced
American Ceramic Society, Annual Conference on Composites and Plastics/Composites Institute, Annual Conference, 37th,
Advanced Materials, 4th, Cocoa Beach, Fla., Jan. 21-24, 1980, Washington, DC, January 11-15, 1982, Preprints. New York,
Paper. 42 p. refs Society of the Plastics Industry, Inc., 1982 (Session 20-B). 8 p.

The dynamic modulus and damping capacity for boron, silicon Sensitivity analysis results are presented to assess the effects
carbide, and silicon carbide-coated boron fibers were measured of a multitude of important parameters on fiber composite design
from -190 to 800 C. The single fiber vibration test also allowed and structural response. These results were obtained by using
measurement of transverse thermal conductivity for the silicon optimum design procedures in conjunction with sensitivity analyses.
carbide fibers. Temperature-dependent damping capacity data for Sensitivity analyses were performed to assess the effects on
alumina fibers were calculated from axial damping results for composite optimum design and structural response of parameters
alumina-aluminum composites. The dynamic fiber data indicate such fiber transverse and shear properties, in situ matrix elastic
essentially elastic behavior for both the silicon carbide and alumina and strength properties, correlation coefficients used in composite
fibers. In contrast, the boron-based fibers are strongly anelastic, micromechanics and in combined strength predictions, processing
displaying frequency-dependent moduli and very high variables, and perturbations of loading conditions. The resultsshow
microstructural damping. The single fiber damping results were that matrix properties, fiber volume ratio and small perturbations
compared with composite damping data in order to investigate of the loading conditions have significant effects on certain
the practical and basic effects of employing the four fiber types composite structural responses. The remaining parameters have
as reinforcement for aluminum and titanium matrices. (Author) negligible effect. (Author)

A81-29411"# National Aeronautics and Space Administration. A83-12414" National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio. Lewis Research Center, Cleveland, Ohio.NONLINEAR LAMINATE ANALYSIS FOR METAL MATRIX FIBER

FATIGUE BEHAVIOR OF SIC REINFORCED TI/6AL-4V/AT 650
COMPOSITES C
C. C. CHAMIS and J. H.SINCLAIR (NASA, Lewis Research Center, R.T. BHATT (U.S. Army, Propulsion Laboratory, Cleveland, OH)
Structures and Mechanical Technologies Div., Cleveland, Ohio) and H. H. GRIMES (NASA, Lewis Research Center, Cleveland,
In: Structures, Structural Dynamicsand Materials Conference, 22nd, OH) Metallurgical Transactions A - Physical Metallurgy and
Atlanta, Ga., April 6-8, 1981, Technical Papers. Part 1. New York, Materials Science, vol. 13A, Nov. 1982, p. 1933-1938. refs
American Institute of Aeronautics and Astronautics, Inc., 1981, p. Axial, low cycle fatigue properties of 25 and 44 fiber vol pct
313-324. refs SiC/Ti(6AI-4V) composites, measured at 650 C, were compared
(AIAA 81-0579) with the fatigue properties of unreinforced Ti(6AI-4V) at the same

A nonlinear laminate analysis is described for predicting the temperature. A prior study of the fatigue behavior of this composite
mechanical behavior (stress-strain relationships)of angle-ply system at room temperature indicated that the SiC fiber
laminates in which the matrix is strained nonlinearly by both the reinforcement did not provide the anticipated improvement ofresidual stress and the mechanical load and in which additional

fatigue resistance of this alloy. At 650 C, the composite fatigue
nonlinearities are induced due to progressive fiber fractures and properties degraded somewhat from those at room temperature.
ply relative rotations. The nonlinear laminate analysis is based on However, these properties degraded more for the unreinforced
linear composite mechanics and a piece-wise linear laminate matrix at 650 C with the result that the composite fatigue strength
analysis to handle the nonlinear responses. Results obtained by was two to three times the fatigue strength of the matrix alloy.
using this nonlinear analysis on boron-fiber/aluminum-matrix The reasons for this reversal are discussed in terms of crack
angle-ply laminates agree well with experimental data. The results

initiation at broken fibers and residual matrix stresses. (Author)shown illustrate the in situ ply stress-strain behavior and synergistic
strength enhancement. (Author)

A83-12734" Northwestern Univ., Evanston, Ill.
A81-44662"# National Aeronautics and Space Administration. COMPOSITES WITH PERIODIC MICROSTRUCTURE
Lewis Research Center, Cleveland, Ohio. T. IWAKUMA and S. NEMAT-NASSER (Northwestern University,
COMPUTER CODE FOR INTRAPLY HYBRID COMPOSITE Evanston, IL) (Symposium on Advances and Trends in Structural
DESIGN and Solid Mechanics, Washington, DC, Oct. 4-7, 1982.) Computers
C. C. CHAMIS and J. H. SINCLAIR (NASA, Lewis Research Center, and Structures, vol. 16, no. 1-4, 1983, p. 13-19. refs
Cleveland, OH) U.S. Department of Defense and NASA, (Contract NAG3-134)
Conference on Fibrous Composites in Structural Design, 5th, New For an elastic body containing periodically distributed
Orleans, LA, Jan. 27-29, 1981, Paper. 13 p. refs inhomogeneities, a general procedure is developed for estimating

A computer program has been developed and is described the overall properties of the composite in terms of several infinite
herein for intraply hybrid composite design (INHYD). The program series which, for the isotropic matrix (but anisotropic inclusions),
includes several composite micromechanics theories, intraply hybrid depend only on the geometry of the inhomogeneities and hence
composite theories and a hygrothermomechanical theory. These can be calculated once and for all for each geometry. These
theories provide INHYD with considerable flexibility and capability infinite series are obtained and tabulated for ellipsoidal
which the user can exercise through several available options, inhomogeneities, and the results are used to estimate the overall
Key features and capabilities of INHYD are illustrated through " elastic moduli of composites which contain spherical or ellipsoidal
selected samples. (Author) voids or elastic inclusions. (Author)
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A83-29886"# National Aeronautics and Space Administration. A84-17444"# National Aeronautics and Space Administration.
Lewis ResearchCenter, Cleveland,Ohio. LewisResearchCenter, Cleveland,Ohio.
LOW CYCLE FATIGUE BEHAVIOR OF ALUMINUM/STAINLESS ENVIRONMENTAL AND HIGH STRAIN RATE EFFECTS ON
STEEL COMPOSITES COMPOSITES FOR ENGINE APPLICATIONS
R. B. BHAGAT (NASA, Lewis Research Center, Cleveland, OH; C.C. CHAMIS and G. T. SMITH (NASA, Lewis ResearchCenter,
Indian Instituteof Technology, Bombay, India) IN: Structures, Cleveland, OH) (Structures,StructuralDynamics and Materials
StructuralDynamicsand Materials Conference, 24th, Lake Tahoe, Conference, 23rd, New Orleans, LA, May 10-12, 1982, Collection
NV, May 2-4, 1983, Collectionof TechnicalPapers.Part 2 . New of Technical Papers, Part 1, p. 405-419) AIAA Journal (ISSN
York, AmericanInstituteof Aeronauticsand Astronautics,1983, p. 0001-1452), vol. 22, Jan. 1984, p. 128-134. refs
744-752. refs Previously cited in issue 13, p. 2034, Accession no.
(AIAA 83-0806) A82-30118

Compositesconsistingof an aluminum matrix reinforcedwith
variousvolume fractionsof stainlesssteel wire were fabricated by A84-27356" Purdue Univ.,West Lafayette, Ind.
hot die pressing under various conditionsof temperature, time, INDENTATION LAW FOR COMPOSITE LAMINATES
and pressure. The composites were tested in plane bending to S.H. YANG and C. T. SUN (Purdue University, West Lafayette,
complete fracture under cycle loading, and the results were IN) IN: Composite materials: Testing and design (Sixth
analyzed on a computer to obtain a statistically valid mathematical Conference) . Philadelphia, PA, American Society for Testing and
relationship between the low-cycle fatigue life and the fiber volume Materials, 1982, p. 425-449.
fraction of the composite. The fractured surfaces of the composites (Contract NSG-3185)
were examined by scanning electron microscopy to identify the Static indentation tests are described for glass/epoxy and
characteristic features of fatigue damage. Fatigue damage graphite/epoxy composite laminates with steel ballsas the indentor.
mechanisms are proposed and discussed. V.L. Beam specimens clamped at various spans were used for the

tests. Loading, unloading, and reloading data were obtained and
fitted into power laws. Results show that: (1) contact behavior is
not appreciably affected by the span; (2) loading and reloading
curves seem to follow the 1.5 power law; and (3) unloading curves

A84-10430" Virginia Polytechnic Inst. and State Univ., are described quite well by a 2.5 power law. In addition, values
Blacksburg. were determined for the critical indentation, alpha sub cr which
CHARACTERIZATION OF COMPOSITE MATERIALS BY MEANS can be used to predictpermanentindentationsin unloading.Since
OF THE ULTRASONIC STRESS WAVE FACTOR alpha sub cr only dependson compositematerial properties,only
J. C. DUKE, JR., E. G. HENNEKE, W. W. STINCHCOMB, and K. the loadingand an unloadingcurve are needed to establishthe
L. REIFSNIDER (VirginiaPolytechnicInstituteand State University, complete loading-unloading-reloading behavior. Previously
Blacksburg,VA) IN: Compositestructures2; Proceedingsof the announcedin STAR as N82-15123 Author
Second InternationalConference, Paisley, Scotland, September
14-16, 1983 . London, Applied Science Publishers, 1983, p. A84-27359" National Aeronautics and Space Administration.
53-60. LewisResearch Center, Cleveland,Ohio.
(ContractNAG3-172; NAG3-323) DURABILITY/LIFE OF FIBER COMPOSITES IN

The usual approachto nondestructivelyevaluatinga composite HYGROTHERMOMECHANICAL ENVIRONMENTS
structure involves inspection and mechanical analysis of the C.C. CHAMIS and J. H. SINCLAIR (NASA, Lewis Research Center,
inspection results. Such an approach has met with only limited Cleveland, OH) IN: Composite materials: Testing and design
success. On the other hand, the ultrasonic stress wave factor (Sixth Conference). Philadelphia, PA, American Society for Testing
technique directly evaluates the material. Despite requiring access and Materials, 1982, p. 498-512. refs
to only one surface of the material, the technique interrogates the Statistical analysis and multiple regression were used to
material in the directions of applied load. Using the stress wave determine and quantify the significant hygrothermomechanical
factor technique it is possible to determine the failure location in variables which influence the tensile durability/life (cycle loading,
the material. The correlation of the stress wave factor with stiffness fatigue) of boron-fiber/epoxy-matrix (B/E) and
is shown. In addition, the use of the technique for determining high-modulus-fiber/epoxy-matrix (HMS/E) composites. The use of
the strength or life of composite material structures is discussed, the multiple regression analysis reduced the variables from fifteen,

Author assumed initially, to six or less with a probability of greater than
0.999. The reduced variables were used to derive predictive models
for compression and intralaminar shear durability/life of B/E and
HMS/E composites assuming isoparametric fatigue behavior. The
predictive models were subsequently generalized to predict the

A84-14285" National Aeronautics and Space Administration. durability/life of graphite/fiber-r generalized model is of simple
Lewis Research Center, Cleveland, Ohio. form, predicts conservative values compared with measured data
PREDICTION OF COMPOSITE HYGRAL BEHAVIOR MADE and shouldbe adequate for use in preliminarydesigns.Previously
SIMPLE announcedin STAR as N82-14287 B.W.
C. C. CHAMIS andJ. H. SINCLAIR (NASA, Lewis ResearchCenter,
Cleveland,OH) (Societyof PlasticsIndustry,AnnualConference, A84-29894" National Aeronautics and Space Administration.
37th, Washington, DC, Jan. 1982) SAMPE Quarterly (ISSN Lewis ResearchCenter, Cleveland,Ohio.
0036-0821), vol. 14, Oct. 1982, p. 30-39. refs COMPRESSIVE BEHAVIOR OF UNIDIRECTIONAL FIBROUS

A convenientprocedure is described to determinethe hygral COMPOSITES
behavior(moistureexpansioncoefficients and moisture stresses) J.H. SINCLAIRand C. C. CHAMIS (NASA, LewisResearchCenter,
of angleplied fiber composites using a pocket calculator. The Cleveland, OH) IN: Compression testing of homogeneous
procedureconsistsof equationsand appropriategraphsfor various materials and composites; Proceedings of the Symposium,
(+ or - theta) ply combinations.These graphs present reduced Williamsburg,VA, March 10, 11, 1982. Philadelphia,PA, American
stiffnessand moistureexpansion coefficientsas functions of (+ Societyfor Testing and Materials,1983, p. 155-174. refs
or - theta) inorderto simplifyandexpeditetheuse of the equations. The longitudinalcompressive behavior of unidirectionalfiber
The procedureis applicable to all types of balanced, symmetric composites was investigated by using the Illinois Institute of
fiber composites including interply and intraply hybrids. The Technology Research Institute (IITRI) test methodwith thick and
versatilityandgeneralityof the procedureis illustratedusingseveral thin test specimens. The test data obtained are interpreted by
step-by-stepnumerical examples. Previouslyannouncedin STAR means of stress/strain curves from back-to-back strain gages,
as N82-16181 Author examinationof fracture surfacesby scanningelectronmicroscope,
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and predictive equations for distinct failure modes including fiber Several numerical examples are worked-outto illustrate ease of
compression failure. Euler buckling, delamination, and flexure. The use and versatility of these equations. These numerical examples
results show that longitudinal compressive fracture is induced by also demonstrate the interrelationship of the various factors
a combination of delamination, flexure, and fiber tier breaks. No (geometric to environmental) and help provide insight into
distinct fracture surface characteristics can be associated with composite behavior at the micromechanistic level. Author
unique failure modes. An equation is described that can be used
to extract the longitudinal compressive strength from the
longitudinal tensile and flexural strengths of the same composite A85-11926" Ohio State Univ., Columbus.
system. Author ULTRASONIC WAVE PROPAGATION IN TWO-PHASE MEDIA -

SPHERICAL INCLUSIONS
A84-33389" IllinoisUniv., Urbana. L.S. FU and Y. C. SHEU (Ohio State University,Columbus,OH)
ELASTICITY SOLUTIONS FOR A CLASS OF COMPOSITE CompositeStructures(ISSN 0263-8223), vol. 2, no. 4, 1984, p.
LAMINATE PROBLEMS WITH STRESS SINGULARITIES 289-303. Previouslyannouncedin STAR as N83-36500. refs
S. S. WANG (Illinois,University,Urbana, IL) IN: Mechanicsof (ContractNAG3-340)
composite materials: Recent advances; Proceedings of the The scattering theory, recently developed via the extended
Symposium, Blacksburg, VA, August 16-19, 1982. New York and method of equivalent inclusion, is used to study the propagation
Oxford, Pergamon Press, 1983, p. 259-281. refs of time-harmonic waves in two-phase media of elastic matrix with
(Contract NSG-3044; N00014-79-C-0579) randomly distributed elastic spherical inclusion materials. The

A study on the fundamental mechanics of fiber-reinforced elastic moduli and mass density of the composite medium are
composite laminates with stress singularities is presented. Based determined as functions of frequencies when given properties and
on the theory of anisotropic elasticity and Lekhnitskii's concentration of the spheres and the matrix. Velocity and
complex-variable stress potentials, a system of coupled governing attenuation of ultrasonic waves in two-phase media are determined
partial differential equations are established. An eigenfunction for cases of distributed spheres and localized damage. An
expansion method is introduced to determine the orders of stress averaging theorem that requires the equivalence of the strain
singularities in composite laminates with various geometric energy and the kinetic energy between the effective medium and
configurations and material systems. Complete elasticity solutions the original matrix with spherical inhomogeneities is employed to
are obtained for this class of singular composite laminate derive the effective moduli and mass density. The functional
mechanics problems. Homogeneous solutions in eigenfunction dependency of these quantities upon frequencies and concentration
series and particular solutions in polynomials are presented for provides a method of data analysis in ultrasonic evaluation of
several cases of interest. Three examples are given to illustrate material properties. Numerical results or moduli, velocity and/or
the method of approach and the basic nature of the singular attenuation as functions of concentration of inclusion material, or
laminate elasticity solutions. The first problem is the well-known porosity, are graphically displayed. Author
laminate free-edge stress problem, which has a rather weak stress
singularity. The second problem is the important composite
delamination problem, which has a strong crack-tip stress A85-15632"# National Aeronautics and Space Administration.
singularity. The third problem is the commonly encountered bonded Lewis Research Center, Cleveland, Ohio.
composite joints, which has a complex solution structure with HYGROTHERMOMECHANICAL EVALUATION OF TRANSVERSE
moderateordersof stresssingularities. Author FILAMENT TAPE EPOXY/POLYESTER FIBERGLASS COMPO-

SITES
A84-41858" National Aeronauticsand Space Administration. R.F. LARK and C. C. CHAMIS (NASA, Lewis ResearchCenter,
Lewis ResearchCenter, Cleveland,Ohio. Cleveland, OH) IN: Reinforced Plastics/CompositesInstitute,
SIMPLIFIED COMPOSITE MICROMECHANICS EQUATIONS FOR Annual Conference, 38th, Houston, TX, February 7-11, 1983,
STRENGTH, FRACTURE TOUGHNESS AND ENVIRONMENTAL Preprints. New York, Society of the PlasticsIndustry,Inc., 1984,
EFFECTS p. 12-C-1 to 12-C-15. refs
C. C. CHAMIS (NASA, Lewis Research Center, Cleveland, OH) Transverse filament tape (TFT) fiberglass/epoxy and TFT
SAMPE Quarterly (ISSN 0036-0821), vol. 15, July 1984, p. 41-55. polyester composites intended for low cost wind turbine blade
refs fabricationhave been subjectedto staticand cyclicload behavior

A unifiedset of compositemicromechanicsequationsof simple tests whose results are presently evaluated on the basis of an
form is summarized and described. This unified set includes integrated hygrothermomechanicalresponse theory. Laminate
compositemicromechanicsequationsfor predicting:(1) plyin-plane testing employed simulated filament winding pPocedures.The
uniaxialstrengths;(2) through-the-thicknessstrength(interlaminar resultsobtained show that the predictedhygrothermornechanical
and flexural);(3) in-plane fracture toughness;(4) in-plane impact environmentaleffects on TFT compositesare in good agreement
resistance;and (5)through-the-thickness(interlaminarand flexural) with measured data for various properties, includingfatigue at
impact resistance. Equationsare also includedfor predictingthe differentR-ratio values. O.C.
hygrothermaleffects on strength, fracture toughnessand impact
resistance.Several numericalexamplesare workedoutto illustrate

the ease of use of the various composite micromechanics A85-15636"# National Aeronauticsand Space Administration.
equations. Author LewisResearchCenter, Cleveland,Ohio.

DESIGN PROCEDURES FOR FIBER COMPOSITESTRUCTURAL
A84-49377" National Aeronauticsand Space Administration. COMPONENTS - RODS, BEAMS, AND BEAM COLUMNS
Lewis ResearchCenter, Cleveland,Ohio. C.C. CHAMIS (NASA, Lewis Research Center, Cleveland, OH)
SIMPLIFIED COMPOSITE MICROMECHANICS EQUATIONS OF IN: Reinforced Plastics/CompositesInstitute,AnnualConference,
HYGRAL, THERMAL, AND MECHANICAL PROPERTIES 38th, Houston, TX, February7-11, 1983, Preprints . New York,
C. C. CHAMIS (NASA, Lewis Research Center, Cleveland, OH) Society of the PlasticsIndustry, Inc., 1984, p. 16-C-1 to 16-C-9.
SAMPE Quarterly(ISSN 0036-0821), vol. 15, April 1984, p. 14-23. Previouslyannouncedin STAR as N83-24559. refs
Previouslyannouncedin STAR as N83-19817. refs Step bystep proceduresaredescribedwhichare usedto design

A unifiedset of compositemicromechanicsequationsof simple structural components (rods, columns, and beam columns)
form is summarizedand described.This unified set can be used subjected to steady state mechanical loads and hydrothermal
to predict unidirectionalcomposite (ply) geometric, mechanical, environments.Illustrativeexamples are presented for structural
thermal and hygral properties using constituent material components designed for static tensile and compressive loads,
(fiber/matrix) properties. This unified set also includes approximate and fatigue as well as for moisture and temperature effects. Each
equations for predicting (1)moisture absorption; (2)glass transition example is set up as a sample design illustrating the detailed
temperature of wet resins; and (3) hygrothermal degradation effects, steps that are used to design similar components. Author
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A85-16040" National Aeronautics and Space Administration. generally negligible effectss on composite structural response and,
Lewis Research Center, Cleveland, Ohio. therefore, structural integrity, unless the interply layer modulus
SELECT FIBER COMPOSITES FOR SPACE APPLICATIONS - A degrades to about 10,000 psi or less. Author
MECHANISTIC ASSESSMENT
C. A. GINTY and C. C. CHAMIS (NASA, Lewis Research Center,
Cleveland, OH) IN: Technology vectors; Proceedings of the
Twenty-ninth National SAMPE Symposium and Exhibition, Reno,
NV, April 3-5, 1984. Covina, CA, Society for the Advancement of A85-29133"# Drexel Univ., Philadelphia, Pa.
Material and Process Engineering, 1984, p. 979-993. Previously USE OF STATICAL INDENTATION LAWS IN THE IMPACT
announcedin STAR as N84-22702. refs ANALYSIS OF LAMINATED COMPOSITE PLATES

Three fiber composites (graphite-fiber epoxy, graphite-fiber T.M. TAN (Drexel University,Philadelphia,PA; Purdue University,
aluminum, and graphite-fiber magnesium) are evaluated for their West Lafayette, IN) and C. T. SUN (Purdue University, West
possibleuse in space applications.Using the compositemechanics Lafayette,IN) ASME, Transactions,Journalof AppliedMechanics
theories for thermomechanical behavior embodied in the ICAN (ISSN 0021-8936), vol. 52, March 1985, p. 6-12.
(IntegratedCompositesAnalyzer)computercode,select composite (ContractNSG-3185)
thermal and mechanical properties are predicted and also their The low-velocityimpact response of graphite/epoxy laminates
response to cryogenictemperatures,resemblingthosewhichoccur was investigated theoretically and experimentally. A nine-node
in space applications. The predicted results are presented in isoparametricplate finiteelement in conjunctionwith an empirical
graphical form as a function of the composite's laminate contact law was used for the theoretical investigation. Theoretical
configuration, fiber volume ratio and the selected use temperature, results are in good agreement with strain-gage experimental data.
These results are suitable for preliminary design purposes only The results of the investigation indicate that the present theoretical
and should serve as an aid in selecting controlled experiments procedure describes the impact response of laminate for low-impact
for obtaining corresponding measured data. Author velocities. Author

A85-16094"# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
ICAN - INTEGRATED COMPOSITES ANALYZER
P. L. N. MURTHY and C. C. CHAMIS (NASA, Lewis Research A85-41127" National Aeronautics and Space Administration.
Center, Cleveland, OH) AIAA, ASME, ASCE, and AHS, Structures, Lewis Research Center, Cleveland, Ohio.
Structural Dynamics and Materials Conference, 25th, Palm Springs, A STUDY OF INTERPLY LAYER EFFECTS ON THE FREE EDGE
CA, May 14-16, 1984. 24 p. Previously announced in STAR as STRESS FIELD OF ANGLEPLIED LAMINATES
N84-26755. refs P.L.N. MURTHY and C. C. CHAMIS (NASA, Lewis Research
(AIAA PAPER 84-0974) Center, Cleveland, OH) (George Washington University and NASA,

The ICAN computer program performs all the essential aspects Symposium on Advances and Trends in Structures and Dynamics,
of mechanics/analysis/design of multilayered fiber composites. Washington, DC, Oct. 22-25, 1984) Computers and Structures
Modular, open-ended and user friendly, the program can handle a (ISSN 0045-7949), vol. 20, no. 1-3, 1985, p. 431-441. Previously
variety of composite systems having one type of fiber and one announced in STAR as N85-15822. refs
matrix as constituents as well as intraply and interply hybrid The general-purpose finite-element program MSC/NASTRAN
composite systems. It can also simulate isotropic layers by is used to study the interply layer effects on the free-edge stress
considering a primary composite system with negligible fiber volume field of symmetric angleplied laminates subjected to uniform tensile
content. This feature is specifically useful in modeling thin interply stress. The free-edge region is modeled as a separate substructure
matrix layers. Hygrothermal conditions and various combinations (superelement) which enables easy mesh refinement and provides
of in-plane and bending loads can also be considered. Usage of the flexibility to move the superelement along the edge. The results
this code is illustrated with a sample input and the generated indicate that the interply layer reduces the stress intensity
output. Some keyfeatures of output are stress concentration factors significantly at the free edge. Another important observation of
around a circular hole, locations of probable delamination, a the study is that the failures observed near free edges of these
summary of the laminate failure stress analysis, free edge stresses, types of laminates could have been caused by the interlaminar
microstresses and ply stress/strain influence coefficients. These shear stresses. Author
features make ICAN a powerful, cost-effective tool to
analyze/design fiber composite structures and components.

A.R.H.

A85-16096"# National Aeronautics and Space Administration. A85-46543" National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio. Lewis Research Center, Cleveland, Ohio.
INTERPLY LAYER DEGRADATION EFFECTS ON COMPOSITE IMPACT RESISTANCE OF FIBER COMPOSITES
STRUCTURAL RESPONSE ENERGY-ABSORBING MECHANISMS AND ENVIRONMENTAL
C. C. CHAMIS (NASA, Lewis Research Center, Cleveland, OH) EFFECTS
and G. C. WILLIAMS (Arizona, University, Tucson, AZ) AIAA, C.C. CHAMIS and J. H. SINCLAIR (NASA, LewisResearch Center,
ASME, ASCE, and AHS, Structures, Structural Dynamics and Cleveland, OH) IN: Recent advances in composites in the United
Materials Conference, 25th, Palm Springs, CA, May 14-16, 1984. States and Japan; Proceedings of the Symposium, Hampton, VA,
29 p. Previously announced in STAR as N84-26756. June 6-8, 1983 . Philadelphia, PA, ASTM, 1985, p. 326-345.
(AIAA PAPER 84-0849) Previously announced in STAR as N84-24712. refs

Recent research activities at NASA Lewis Research Center to Energy absorbing mechanisms were identified by several
computationally evaluate the effects of interply layer progressive approaches. The energy absorbing mechanisms considered are
weakening (degradation) on the structural response of a composite those in unidirectional composite beams subjected to impact. The
beam are summarized. The structural responses of interest include: approaches used include: mechanic models, statistical models,
(1) bending, (2) buckling, (3) free vibrations, (4) periodic excitation, transient finite element analysis, and simple beam theory. Predicted
and (5) impact. Finite element analysis was used for the results are correlated with experimental data from Charpy impact
computational evaluations. The interply layer degradation effects tests. The environmental effects on impact resistance are
on the various structural responses were determined and assessed evaluated. Working definitions for energy absorbing and energy
as a function of the interply layer modulus varying from 1 million releasing mechanisms are proposed and a dynamic fracture
psi down to 1000 psi and even lower for some limiting cases, progression is outlined. Possible generalizations to angle-plied
The results obtained show that the interply layer degradation has laminates are described. E.A.K.

18



24 COMPOSITE MATERIALS

A85-47022"# National Aeronautics and Space Administration. are included for placing back-to-back strain gages to measure the
Lewis Research Center, Cleveland,Ohio. presence/absence of possible end-attachment and eccentricity
TEN YEAR ENVIRONMENTAL TEST OF GLASS FIBER/EPOXY effects. Author
PRESSURE VESSELS
J. R. FADDOUL (NASA, Lewis ResearchCenter, Cleveland,OH)
AIAA, SAE, ASME, and ASEE, Joint PropulsionConference, 21st,
Monterey, CA, July 8-10, 1985. 10 p. Previouslyannounced in
STAR as N85-30034. refs A86-27734" National Aeronautics and Space Administration.
(AIAA PAPER 85-1198) Lewis Research Center, Cleveland,Ohio.

By the beginning of the 1970's composite pressure vessels DESIGNING FOR FIBER COMPOSITE STRUCTURAL
had received a significantamount of development effort, and DURABILITY IN HYGROTHERMOMECHANICAL ENVIRON-
applicationswere beginningto be investigated.One of the first MENTS
applicationsgrew out of NASA Johnson Space Center efforts to C.C. CHAMIS (NASA, Lewis Research Center, Cleveland, OH)
developa superioremergencybreathingsystemfor firemen.While IN: ICCM - V; Proceedingsof the Fifth International Conference
the new breathingsystem providedimprovedwearer comfort and on CompositeMaterials,San Diego, CA, July29-August 1, 1985.
an improved mask and regulator, the primary feature was low Warrendale, PA, MetallurgicalSociety, Inc., 1985, p. 1101-1113.
weight which was achieved by using a glass fiber reinforced Previouslyannouncedin STAR as N85-27978. refs
aluminumpressurevessel. Part of the developmenteffort was to A methodology is described which can be used to
evaluate the long term performanceof the pressure vessel and design/analyze fiber composite structuressubjected to complex
as a consequence, some 30 bottles for a test program were hygrothermomechanicalenvironments.This methodologyincludes
procured. These bottles were then provided to NASA Lewis composite mechanicsand advanced structuralanalysis methods
Research Center where they were maintained in an outdoor (finite element). Select examples are described to illustratethe
environmentin a pressurizedconditionfor a periodof up to 10 yr. applicationof the available methodology.The examples include:
During this period, bottles were periodicallysubjectedto cyclic (1) compositeprogressivefracture; (2) compositedesign for high
and burst testing.There was no protectivecoatingappliedto the cycle fatigue combined with hot-wet conditions;and (3) general
fiberglass/epoxy composite, and significantloss in strengthdid laminatedesign. Author
occuras a result of the environment.Similarbottlesstored indoors
showedlittle, if any, degradation.This report containsa description
of the pressurevessels, a discussionof the test program,data
for each bottle, and appropriate plots, comparisons, and
conclusions. Author A86-35809" National Aeronauticsand Space Administration.

LewisResearch Center, Cleveland, Ohio.
PROGRESSIVE FRACTURE OF FIBER COMPOSITES

A85-47970" Martin Marietta Aerospace, Denver,Colo. T.B. IRVINE and C. A. GINTY (NASA, Lewis Research Center,
FIBERGLASS EPOXY LAMINATE FATIGUE PROPERTIES AT Cleveland,OH) Journalof CompositeMaterials(ISSN 0021-9983),
300 AND 20 K vol. 20, March 1986, p. 166-184. refs
J. M. TOTH, JR., W. J. BAILEY,and D. A. BOYCE (MartinMarietta Refined modelsand proceduresare describedfor determining
Aerospace, Denver, CO) IN: Fatigue at low temperatures; progressivecomposite fracture in graphite/epoxy angleplied
Proceedingsof the Symposium, Louisville,KY, May 10, 1983 . laminates. UniqueLewis ResearchCenter capabilitiesare utilized
Philadelphia,PA, ASTM, 1985, p. 163-172. includingthe Real-Time UltrasonicC-San (RUSCAN) experimental
(ContractNAS3-23245) facility and the Composite Durability Structural Analysis

A subcritical liquid hydrogen orbital storage and supply (CODSTRAN) computer code. CODSTRAN is used to predictthe
experimentis beingdesigned for flight in the Space Shuttle cargo fractureprogressionbasedon compositemechanics,finite element
bay.The CryogenicFluidManagementExperiment(CFME) includes stress analysis,and fracturecriteriamodules.The RUSCAN facility,
a liquid hydrogen tank supported in a vacuum jacket by two CODSTRAN computer code, and scanning electron microscope
fiberglass epoxy composite trunnion mounts. The ability of the are used to determine durabilityand identify failure mechanisms
CFME to last for the requiredseven missions depends primarily in graphite/epoxy coomposites. Results indicate that
on the fatigue life of the composite trunnions at cryogenic RUSCAN/CODSTRAN is an effective method of Studying
temperatures. To verify the trunnion design and test the progressivefracture of composites. Author
performanceof the composite material, fatigue property data at
300 and 20 K were obtainedfor the specificE-glass fabric/S-glass
unidirectionallaminate that will be used for the CFME trunnions.
The fatigue life of this laminate was greater at 20 K than at 300
K, and was satisfactory for the intendedapplication. Author A86-40596"# National Aeronautics and Space Administration.

Lewis Research Center, Cleveland,Ohio.
A86-19999" National Aeronautics and Space Administration. COMPUTATIONAL COMPOSITE MECHANICS FOR AEROSPACE
LewisResearch Center, Cleveland,Ohio. PROPULSION STRUCTURES
LONGITUDINAL COMPRESSIVE FAILURE MODES IN FIBER C.C. CHAMIS (NASA, Lewis Research Center, Cleveland, OH)
COMPOSITES END ATTACHMENT EFFECTS ON IITRI TYPE IN: Space Systems TechnologyConference,San Diego,CA, June
TEST SPECIMENS 9-12, 1986, Technical Papers . New York, American Instituteof
C. C. CHAMIS (NASA, Lewis Research Center, Cleveland, Ol-t) Aeronauticsand Astronautics, 1986, p. 145-155. refs
and J. H. SINCLAIR Journal of Composites Technology and (AIAA PAPER 86-1190)
Research, vol. 7, Winter1985, p. 129-135. Specialty methods are presented for the computational

The end-attachment effects on longitudinal compressive simulation of specific composite behavior. These methods
strength of IITRI type specimen unidirectionalfiber composites encompass all aspects of composite mechanics, impact,
are formally assessed using finite-element analysis (FEA) in progressivefracture and componentspecific simulation.Some of
conjunction with composite mechanics. Sixteen different cases these methods are structured to computationallysimulate, in
were analyzedto evaluateend-attachmenteffects (suchas degree parallel, the composite behavior and history from the initial
of misalignment, type of misalignment, progressive end-tab fabrication throughseveral missionsand even to fracture. Select
debonding,and specimen thickness)on stress distribution,peak methods and typical results obtained from such simulationsare
stresses, buckling loads, and bucklingmode shapes. The results described in detail in order to demonstrate the effectiveness of
obtained from the FEA and comparisonswith fractured specimens computationally simulating (1) complex composite structural
show that eccentricitiesinduce bending-typestresseswhich peak behavioringeneraland (2) specificaerospacepropulsionstructural
near the end-tabsand cause flexuraltype fracture.Also, guidelines componentsin particular. Author
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A86-41070" National Aeronautics and Space Administration. A87-19123" National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio. Lewis Research Center, Cleveland, Ohio.
DYNAMIC STRESS ANALYSIS OF SMOOTH AND NOTCHED FABRICATION AND QUALITY ASSURANCE PROCESSES FOR
FIBER COMPOSITE FLEXURAL SPECIMENS SUPERHYBRID COMPOSITE FAN BLADES
P. L• N. MURTHY and C. C. CHAMIS (NASA, Lewis Research R.F. LARK and C. C. CHAMIS (NASA, Lewis Research Center,
Center, Cleveland, OH) IN: Composite materials: Testing and Cleveland, OH) Journal of Composites Technology and Research
design; Proceedings of the Seventh Conference, Philadelphia, PA, (ISSN 0885-6804), vol. 8, Fall 1986, p. 98-102. Previously
April 2-4, 1984 • Philadelphia, PA, American Society for Testing announced in STAR as N85-14882. refs
and Materials, 1986, p• 368-391• Previously announced in STAR The feasibility of fabricating full-scale fan blades from
as N84-25770. superhybrid composites (SHC) for use large, commercial gas turbine

A detailed analysis of the dynamic stress field in smooth and engines was evaluated. The type of blade construction selected
notched fiber composite (Charpy-type) specimens is reported in was a metal-spar/SHC-shell configuration, in which the outer shell
this paper• The analysis is performed with the aid of the direct was adhesively bonded to a short, internal, titanium spar• Various
transient response analysis solution sequence of MSC/NASTRAN. aspects of blade fabrication, inspection, and quality assurance
Three unidirectional composites were chosen for the study• They procedures developed in the investigation are described. It is
are S-Glass/Epoxy, Kevlar/Epoxy and T-300/Epoxy composite concluded that the SHC concept is feasible for the fabrication of
systems. The specimens are subjected to an impact load which is prototype, full-scale, metal-spar/SHC-shell fan blades that have
modeled as a triangular impulse with a maximum of 2000 Ib and good structural properties and meet dimensional requirements.
a duration of 1 ms. The results are compared with those of static R.S.F.
analysis of the specimens subjected to a peak load of 2000 lb.
For the geometry and type of materials studied, the static analysis
results gave close conservative estimates for the dynamic stresses.
Another interesting inference from the study is that the impact
induced effects are felt by S-Glass/Epoxy specimens sooner than
Kevlar/Epoxy or T-300/Epoxy specimens. Author

A87-20090"# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
SIMPLIFIED COMPOSITE MICROMECHANICS FOR
PREDICTING MICROSTRESSES

A86-43010" Purdue Univ.,West Lafayette, Ind. CHRISTOS C. CHAMIS (NASA, Lewis Research Center, Cleveland,
DYNAMIC DELAMINATION CRACK PROPAGATION IN A OH) IN: Reinforced Plastics/Composites Institute, Annual
GRAPHITE/EPOXY LAMINATE Conference, 41st, Atlanta, CA, January 27-31, 1986, Preprint .
C• T• SUN (Purdue University, West Lafayette, IN) and J.E. Lancaster,PA, TechnomicPublishingCo., 1986, 11 p. Previously
GRADY IN: Composite materials: Fatigue and fracture; announcedin STAR as N86-24759. refs
Proceedingsof the Symposium,Dallas, TX, October 24, 25, 1984 A unified set of composite micromechanics equations is
• Philadelphia,PA, American Society for Testing and Materials, summarizedand described.This unified set is for predictingthe
1986, p. 5-31. refs ply microstresses when the ply stresses are known. The set
(ContractNAG3-211) consists of equations of simple form for predicting

The dynamic delaminationcrack propagationbehavior during three-dimensional stresses (six each) in the matrix, fiber, and
ballistictests of (90/0)5s T-300/934 graphite/epoxy laminateswith interface. Several numerical examples are included to illustrate
embedded interfacial cracks was investigatedusing high speed use andcomputationaleffectivenessof the equationsinthis unified
photography.The impacton the beam-likespecimenwasproduced set. Numerical results from these examples are discussedwith
with a siliconrubberball, and the crack propagationspeeds and respectto theirsignificanceon microcrackformationand, therefore,
the threshold impact velocitiesrequiredto initiate dynamiccrack damage initiationin fibercomposites. Author
propagationwere determined for several crack positions. The
resultssuggest that the mode of crack propagationdepends on
thespecimengeometryaswellas the loadingcondition.A simplified
finite element analysis of the experimental data obtained from
one of the midplane-crackedspecimenswas used to estimate the
criticalstrain energyrelease rate, which may determinethe onset
of unstablecrack propagation. I.S.

A87-38610" National Aeronautics and Space Administration.
Lewis ResearchCenter, Cleveland,Ohio.
COMPOSITE SPACE ANTENNA STRUCTURES - PROPERTIES
AND ENVIRONMENTAL EFFECTS
C. A. GINTY (NASA, Lewis Research Center, Cleveland,OH) and

A87-19121" National Aeronautics and Space Administration. N.M. ENDRES (Sverdrup Technology, Inc., Middleburg Heights,
Lewis ResearchCenter, Cleveland,Ohio. OH) IN: InternationalSAMPE TechnicalConference,18th, Seattle,
ASSESSMENTOFSIMPLIFIED COMPOSITEMICROMECHANICS WA, Oct. 7-9, 1986, Proceedings . Covina, CA, Society for the
USING THREE-DIMENSIONAL FINITE-ELEMENT ANALYSIS Advancement of Material and Process Engineering, 1986, p.
J. J. CARUSO and C. C. CHAMIS (NASA, LewisResearchCenter, 545-560. Previouslyannouncedin STAR as N87-16880. refs
Cleveland,OH) JournalofCompositesTechnologyand Research The thermal behavior of composite spacecraft antenna
(ISSN 0885-6804), vol. 8, Fall 1986, p. 77-83. refs reflectorshas been investigatedwith the integrated Composites

Three-dimensionalfinite-elementanalyses are used to assess Analyzer (ICAN) computer code. Parametric studies have been
the accuracy of simplified compositemicromechanicsequations conducted on the face sheets and honeycomb core which
(SME) for hygral, thermal, and mechanical properties of constitute the sandwich-typestructures.Selected thermal and
unidirectionalcompositeswith orthotropicfibers. The properties mechanical properties of the composite faces and sandwich
predicted by the SME are in reasonably good agreement with structuresare presented graphicallyas functionsof varying fiber
those predictedby the three-dimensionalfinite-elementanalyses, volume ratio, temperature,and moisturecontent.The coefficients
This correlationdemonstrates that the SME can be used with of thermal expansion are discussedin detail since these are the
confidence in predicting the hygral, thermal, and mechanical criticaldesign parameters. In addition,existingexperimentaldata
behaviorof unidirectionalfibercomposites. Author are presentedand comparedto the ICAN predictions. Author

2O



24 COMPOSITE MATERIALS

A87-38615" National Aeronautics and Space Administration. N80-11145"# National Aeronautics and Space Administration.
Langley Research Center, Hampton, Va. Lewis Research Center, Cleveland, Ohio.
THERMAL EXPANSION BEHAVIOR OF GRAPHITE/GLASS AND DYNAMIC RESPONSE OF DAMAGED ANGLEPLIED FIBER
GRAPHITE/MAGNESIUM COMPOSITES
STEPHEN S. TOMPKINS (NASA, Langley Research Center, C.C. CHAMIS, J. H. SINCLAIR, and R. F. LARK 1979 17 p
Hampton, VA), K. E. ARD (Harris Corp., Aerospace Systems Div., refs Presented at the Winter Ann. Meeting of the Am. Soc. of
Melbourne, FL), and G. RICHARD SHARP (NASA, Lewis Research Mech. Engr., New York, 2-7 Dec. 1979
Center, Cleveland, OH) IN: International SAMPE Technical (NASA-TM-79281; E-182) Avail: NTIS HC A02/MF A01 CSCL
Conference, 18th, Seattle, WA, Oct. 7-9, 1986, Proceedings . 11D
Covina, CA, Society for the Advancement of Material and Process The effects of low level damage induced by monotonic load,
Engineering, 1986, p. 623-637. refs cyclic load and/or residual stresses on the vibration frequencies

The thermal expansion behavior of n (+/- 8)s graphite fiber and damping factors of fiber composite angleplied laminates were
reinforced magnesium laminate and four graphite reinforced investigated. Two different composite systems were studied - low
glass-matrix laminates (a unidirectional laminate, a quasi-isotropic modulus fiber and ultra high modulus fiber composites. The results
laminate, a symmetric low angle-ply laminate, and a random obtained show that the frequencies and damping factors of
chopped-fiber mat laminate) was determined, and was found, in angleplied laminates made from low modulus fiber composites
all cases, to not be significantly affected by thermal cycling, are sensitive to low level damage while those made from ultra
Specimens were cycled up to 100 times between-200 F and 100 high modulus composites are not. Vibration tests may not be
F, and the thermal expansion coefficients determined for each sufficiently sensitive to assess concentrated local damage in
material as a function of temperature were found to be low. Some angleplied laminates. Dynamic response determined from
dimensional changes as a function of thermal cycling, and some low-velocity impact coupled with the Fast Fourier Transform and
thermal-strain hysteresis, were observed. R.R. packaged in a minicomputer can be a convenient procedure for

assessing low-level damage. A.R.H.
N80-11143"# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
MICROMECHANICS OF INTRAPLY HYBRID COMPOSITES:
ELASTIC AND THERMAL PROPERTIES
C. C. CHAMIS and J. H. SINCLAIR Washington 1979 19 p
refs Presented at the Winter Ann. Meeting of the Am. Soc. of
Mech. Engr., New York,2-7 Dec. 1979 N80-12120"# National Aeronauticsand Space Administration.
(NASA-TM-79253; E-164) Avail: NTIS HC A02/MF A01 CSCL Lewis Research Center, Cleveland, Ohio.
11D MECHANICAL PROPERTY CHARACTERIZATION OF INTRAPLY

Composite micromechanics are used to derive equations for HYBRID COMPOSITES
predicting the elastic and thermal properties of unidirectional C.C. CHAMIS, R. F. LARK, and J. H. SINCLAIR 1979 26 p
intraply hybrid composites. The results predicted using these refs Presented at the Am. Soc. for Testing and Materials Symp.,
equations are compared with those predicted using approximate Dearborn, Mich., 2-3 Oct. 1979
equations based on the rule of mixtures, linear laminate theory, (NASA-TM-79306; E-261) Avail: NTIS HC A03/MF A01 CSCL
finite element analysis and limited experimental data. The 11D
comparisons for three different intraply hybrids indicate that all An investigation was conducted to characterize the mechanical
four methods predict approximately the same elastic properties properties of intraply hybrids made from graphite fiber/epoxy matrix
and are in good agreement with measured data. The (primary composites) hybridized with varying amounts of secondary
micromechanics equations and linear laminate theory predict about composites made from S-glass or Kevlar 49 fibers. The tests were
the same values for thermal expansion coefficients. The conducted using thin laminates having the same thickness. The
micromechanics equations predict through-the-thickness properties specimens for these tests were instrumented with strain gages to
which are in good agreement with the finite element results, determine stress-strain behavior. Significant results are included.

Author R.C.T.

N80-11144"# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
TENSILE AND FLEXURAL STRENGTH OF NON-GRAPHITIC
SUPERHYBRID COMPOSITES: PREDICTIONS AND
COMPARISONS
C. C. CHAMIS, J. H. SINCLAIR, and R. F. LARK 1979 27 p N80-16102"# National Aeronautics and Space Administration.
refs Presented at 11th Natl. Tech. Conf., Boston, Mass., 13-15 Lewis Research Center, Cleveland, Ohio.
Nov. 1979; sponsored by Soc. for the Advancement of Material FRACTURE MODES OF HIGH MODULUS GRAPHITE/EPOXY
and Process Engr. ANGLEPLIED LAMINATES SUBJECTED TO OFF-AXIS TENSILE
(NASA-TM-79276; E-203) Avail: NTIS HC A03/MF A01 CSCL LOADS
11D J.H. SINCLAIR 1980 22 p refs Presented at 35th Ann.

Equations are presented and described which can be used to Conf. of the Reinforced Plastics/Composites Inst., New Orleans,
predict bounds on the tensile and flexural strengths of nongraphitic 4-8 Feb. 1980; sponsored by Soc. of Plastics Ind.
superhybrid (NGSH) composites. These equations are derived by (NASA-TM-81405; E-319) Avail: NTIS HC A02/MF A01 CSCL
taking into account the measured stress-strain behavior, the 11D
lamination residual stresses and the sequence of events leading Angelplied laminates of high modulus graphite fiber/epoxy were
to fracture. The required input for using these equations includes studied in several ply configurations at various tensile loading
constituents, properties (elastic and strength), NGSH elastic angles to the zero ply direction in order to determine the effects
properties, cure temperature, and ply stress influence coefficients, of ply orientations on tensile properties, fracture modes, and
Results predicted by these equations are in reasonably good fracture surface characteristics of the various plies. It was found
agreement with measured data for strength and for the apparent that fracture modes in the plies of angleplied laminates can be
knees in the nonlinear stress-strain curve. The lower bound values characterized by scanning electron microscope observation. The
are conservative compared to measured data. These equations characteristics for a given fracture mode are similar to those for
are relatively simple and are suitable for use in the preliminary the same fracture mode in unidirectional specimens. However, no
design and initial sizing of structural components made from NGSH simple load angle range can be associated with a given fracture
composites. Author mode. Author
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N80-16107"# National Aeronautics and Space Administration. N80-20314"# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio. Lewis Research Center, Cleveland, Ohio.
PREDICTION OF FIBER COMPOSITE MECHANICAL BEHAVIOR CALCULATION OF RESIDUAL PRINCIPAL STRESSES IN CVD
MADE SIMPLE BORON ON CARBON FILAMENTS
C. C. CHAMIS 1980 26 p refs Presented at the 35th Ann. D.R. BEHRENDT 1980 15 p refs Prepared for the 4th
Conf. of the Reinforced Plastics/Composites Inst., New Orleans, Ann. Conf. on Composites and Advanced Mater., Cocoa Beach,
4-8 Feb. 1980; sponsored by the Soc. of Plastics Ind. Fla., 21-24 Jan. 1980; sponsored by the Am. Ceram. Soc.
(NASA-TM-81404; E-331) Avail: NTIS HC A03/MF A01 CSCL (NASA-TM-81456; E-386) Avail: NTIS HC A02/MF A01 CSCL
11D 11D

The elastic properties and failure stresses of angleplied fiber A three-dimensional finite element model of the chemical vapor
composite laminates were determined using a pocket calculator, deposition of boron on a carbon substrate (B/C) is developed.
The procedure uses simple equations and appropriate graphs of The model includes an expansion of the boron after deposition
elastic properties versus angle plies, and can handle all types of due to atomic rearrangement and includes creep of the boron
fiber composites including hybrids. The versatility and generality and carbon. Curves are presented showing the variation of the
of the method is illustrated in several step-by-step numerical principal residual stresses and the filament elongation with the
examples. A.R.H. parameters defining deposition strain and creep. The calculated

results are compared with experimental axial residual stress and
elongation measurements made on B/C filaments. For good
agreement between calculated and experimental results, the
deposited boron must continue to expand after deposition, and
the build up of residual stresses must be limited by significant

N80-18106"# National Aeronautics and Space Administration. boron and carbon creep rates. K.L.
Lewis Research Center, Cleveland, Ohio.
APPLICATION OF COMPOSITE MATERIALS TO TURBOFAN
ENGINE FAN EXIT GUIDE VANES
G. T. SMITH 1980 19 p refs Presented at 35th Ann. Conf.
of the Reinforced Plastics/Composite Inst., New Orleans, 4-8 Feb. N80-21452"# National Aeronautics and Space Administration.
1980; sponsored by Soc. of Plastics Industries Lewis Research Center, Cleveland, Ohio.
(NASA-TM-81432; E-356) Avail: NTIS HC A02/MF A01 CSCL PREDICTING THE TIME-TEMPERATURE DEPENDENT AXIAL
11D FAILURE OF B/A1 COMPOSITES

A program was conducted by NASA with the JTgD engine J.A. DICARLO 1980 28 p refs Presented at Symp. on
manufacturerto develop a lightweight,cost effective, composite FailureModes in Composites,Las Vegas, Nev., 25-26 Feb. 1980,
material fan exit guide vane design having satisfactory structural sponsored by Metallurgical Soc. of the Am. Inst. of Mining,
durabilityfor commerical engine use. Based on the results of a Metallurgicaland PetroleumEngr.
previouscompany supported program,eight graphite/epoxy and (NASA-TM-81474; E-408) Avail: NTIS HC A03/MF A01 CSCL
graphite-glass/epoxyguide vane designswere evaluated and four 11D
were selected for fabrication and testing. Two commercial Experimentaland theoretical studieswere conductedin order
fabricatorseach fabricated 13 vanes. Fatiguetests were used to to understand and predict the effects of time, temperature, and
qualifythe selecteddesign configurationsunder nominallydry, 38 stress on the axial failure modes of boron fibers and B/A1
C (100 F) and fully wet and60 C (140 F) environmentalconditions, composites.Due to the anelasticnatureof boronfiber deformation,
Cost estimates for a production rate of 1000 vanes per month it was possible to determinesimplecreep functionswhich can be
ranged from 1.7 to 2.6 times the cost of an all aluminum vane. employed to accurately describe creep and fracture stress of
This cost is 50 to 80 percent less than the initial programtarget as-produced fibers. Analysis of damping and strength data for
cost ratio which was 3 times the cost of an aluminum vane. B/6061 A1 compositesindicates that fiber creep effects of creep
Applicationto the JTgD commercialengine is projectedto provide on fiber fracture are measurably reduced by the composite
a weight savingsof 236 N (53 Ib) per engine. Author fabricationprocess.The creep functionappropriatefor fibers with

B/AI composites was also determined. A fracture theory is
presented for predictingthe time-temperaturedependence of the
axial tensile strength for metal matrixcompositesin general and
B/A1 composites in particular. Author

N80-20313"# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
DYNAMIC MODULUS AND DAMPING OF BORON, SILICON
CARBIDE, AND ALUMINA FIBERS
J. A. DICARLO and W. WILLIAMS 1980 44 p refs Presented N80-23370"# National Aeronautics and Space Administration.
at the 4th Ann. Conf. on Composites and Advanced Mater., Cocoa Lewis Research Center, Cleveland, Ohio.
Beach, Fla. 20-24 Jan. 1980: sponsored by the Am. Ceram. Soc. ENGINE ENVIRONMENTAL EFFECTS ON COMPOSITE
(NASA-TM-81422; E-345) Avail: NTIS HC A03/MF A01 CSCL BEHAVIOR
11D C.C. CHAMIS and G. T. SMITH 1980 20 p refs Presented

The dynamic modulus and damping capacity for boron, silicon at the 21st Struct., Structural Dyn. and Mater. Conf., Seattle, 12-14
carbide, and silicon carbide coated boron fibers were measured May 1980; sponsored by AIAA, ASME, ASCE, and AHS
from-190 to 800 C. The single fiber vibration test also allowed (NASA-TM-81508; E-446) Avail: NTIS HC A02/MF A01 CSCL
measurement of transverse thermal conductivity for the silicon 11D
carbide fibers. Temperature dependent damping capacity data for A series of programs were conducted to investigate and develop
alumina fibers were calculated from axial damping results for the application of composite materials to turbojet engines. A
alumina-aluminum composites. The dynamics fiber data indicate significant part of that effort was directed to establishing the impact
essentially elastic behavior for both the silicon carbide and alumina resistance and defect growth chracteristics of composite materials
fibers. In contrast, the boron based fibers are strongly anelastic, over the wide range of environmental conditions found in
displaying frequency dependent moduli and very high commercial turbojet engine operations. Both analytical and
microstructural damping. Ths single fiber damping results were empirical efforts were involved. The experimental programs and
compared with composite damping data in order to investigate the analytical methodology development as well as an evaluation
the practical and basic effects of employing the four fiber types program for the use of composite materials as fan exit guide
as reinforcement for aluminum and titanium matrices. K.L. vanes are summarized. R.C.T.
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N80-25382"# HamiltonStandard, Windsor Locks, Conn. N80-29432"# George Washington Univ., Washington, D.C°
DIFFUSION BONDED BORON/ALUMINUM SPAR-SHELL FAN School of Engineering and Applied Science.
BLADE Final Report, Jun. 1977 - May 1978 STATISTICAL ASPECTS OF CARBON FIBER RISK
C. E. K. CARLSON, J. L CUTLER, W. J. FISHER, and J. V.W. ASSESSMENT MODELING
MEMMOTT Jun. 1980 114 p refs D. GROSS, D. R. MILLER, and R. M. SOLAND Jul. 1980 127
(ContractNAS3-20407) p refs
(NASA-CR-159571;HSER-7698) Avail: NTIS HC A06/MF A01 (ContractNSG-1556)
CSCL 11D (NASA-CR-159318) Avail: NTIS HC A07/MF A01 CSCL 11D

Designand process development tasks intended to demonstrate The probabilistic and statistical aspects of the carbon fiber
composite blade application in large high by-pass ratio turbofan risk assessment modeling of fire accidents involving commercial
engines are described. Studies on a 3.0 aspect radio space and aircraft are examined. Three major sources of uncertainty in the
shell construction fan blade indicate a potential weight savings modeling effort are identified. These are: (1) imprecise knowledge
for a first stage fan rotor of 39% when a hollow titanium spar is in establishing the model; (2) parameter estimation; and (3)Monte
employed. An alternate design which featured substantial blade Carlo sampling error. All three sources of uncertainty are treated
internal volume filled with titanium honeycomb inserts achieved a and statistical procedures are utilized and/or developed to control
14% potential weight savings over the B/M rotor system. This them wherever possible. A.R.H.
second configuration requires a smaller development effort and
entails less risk to translate a design into a successful product. N81-12171"# National Aeronautics and Space Administration.
The feasibility of metal joining large subsonic spar and shell fan Lewis Research Center, Cleveland, Ohio.
blades was demonstrated. Initialaluminum alloyscreening indicates LAMINATES AND REINFORCED METALS
a distinct preference for AA6061 aluminum alloy for use as a joint C.C. CHAMIS Oct. 1980 47 p refs
material. The simulated airfoil pressings established the necessity (NASA-TM-81591; E-570) Avail: NTIS HC A03/MF A01 CSCL
of rigid air surfaces when joining materials of different compressive 11D
rigidities. The two aluminum alloy matrix choices both were A selective review is presented of the state of the art of metallic
successfully formed into blade shells. A.R.H. laminates and fiber reinforced metals called metallic matrix

laminates (MMLs). Design and analysis procedures that are used
for, and typical structural components that have been made from
MMLs are emphasized. Selected MMLs, constituent materials,
typical material properties and fabrication procedures are briefly
described, including hybrids and superhybrids. Advantages,

N80-25383"# Lehigh Univ., Bethlehem, Pa. Inst. of Fracture disadvantages, and special considerations required during design,
and Solid Mechanics. analysis, and fabrication of MMLs are examined. Tabular and
SUDDEN STRETCHING OF A FOUR LAYERED COMPOSITE graphical data are included to illustrate key aspects of MMLs.
PLATE Interim Report Appropriate references are cited to provide a selective bibliography
G. C. SIH and E. P. CHEN Mar. 1980 42 p refs of a rapidly expanding and very promising research and
(Contract NSG-3197) development field. J.M.S.
(NASA-CR-159870; IFSM-80-102) Avail: NTIS HC A03/MF A01
CSCL 11D N81-16132"# National Aeronautics and Space Administration.

An approximate theory of laminated plates is developed by Lewis Research Center, Cleveland, Ohio.
assuming that the extensioral and thickness mode of vibration are PREDICTION OF COMPOSITE THERMAL BEHAVIOR MADE
coupled. The mixed boundary value crack problem of a four layered SIMPLE
composite plate is solved. Dynamic stress intensity factors for a C.C. CHAMIS 1981 33 p refs Presented at the 36th Ann.
crack subjected to suddenly applied stress are found to vary as a Conf. of the Soc. of the Plastics Ind. (SPI) Reinforced
function of time and depend on the material properties of the Plastics/Composites Inst., Washington, D.C., 16-20 Feb. 1981
laminate. Stress intensification in the region near the crack front (NASA-TM-81618; E-624) Avail: NTIS HC A03/MF A01 CSCL
can be reduced by having the shear modulus of the inner layers 11D
to be larger than that of the outer layers. Author A convenient procedure is described to determine the thermal

behavior (thermal expansion coefficients and thermal stresses) of
angleplied fiber composites using a pocket calculator. The
procedure consists of equations and appropriate graphs for various
( + or - theta) ply combinations. These graphs present reduced
stiffness and thermal expansion coefficients as functions of (-t- or

N80-25384"# Lehigh Univ., Bethlehem, Pa. Inst. of Fracture - theta) in order to simplify and expedite the use of the equations.
and Solid Mechanics. The procedure is applicable to all types of balanced, symmetric
SUDDEN BENDING OF CRACKED LAMINATES Interim Report fiber composites including interply and intraply hybrids. The
G. C. SIH and E. P. CHEN Feb. 1980 53 p refs versatility and generality of the procedure is illustrated using several
(Contract NSG-3197) step-by-step numerical examples. Author
(NASA-CR-159860; IFSM-80-103) Avail: NTIS HC A04/MF A01
CSCL 11D N81-17170" National Aeronautics and Space Administration.

A dynamic approximate laminated plate theory is developed Lewis Research Center, Cleveland, Ohio.
with emphasis placed on obtaining effective solution for the crack METHOD FOR ALLEVIATING THERMAL STRESS DAMAGE IN
configurationwhere the l/square root of r stress singularityand LAMINATES Patent
the conditionof plane strain are preserved.The radialdistance r C.A. HOFFMAN, J. W. WEETON, and N. W. ORTH, inventors(to
is measuredfrom the crack edge. The resultsobtainedshow that NASA) 8 Jul. 1980 6 p Filed 6 Apr. 1978 Supersedes
the crack momentintensitytends to decrease as the crack length N78-22163 (16 - 13, p 1675)
to laminateplate thicknessis increased.Hence, a laminatedplate (NASA-CASE-LEW-12493-1;US-PATENT-4,211,354;
has the desirable feature of stabilizinga through crack as it US-PATENT-APPL-SN-893857;US-PATENT-CLASS-228-118;
increasesits lengthat constantload. Also, the level of the average US-PATENT-CLASS-228-170;US-PATENT-CLASS-228-174;
load intensitytransmitted to a throughcrack can be reducedby US-PATENT-CLASS-228-190;US-PATENT-CLASS-156-292)
making the inner layers to be stiffer than the outer layers. The Avail: US Patent and Trademark Office CSCL 11D
present theory, although approximate, is useful for analyzing A method is provided for alleviatingthe stress damage in
laminate failure to crack propagation under dynamic load metallic matrix composites, such as laminated sheet or foil
conditions. Author composites. Discontinuities are positively introduced into the
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interface between the layers so as to reduce the thermal stress N82-14287"# National Aeronautics and Space Administration.
produced by unequal expansion of the materials making up the Lewis Research Center, Cleveland, Ohio.
composite.Althougha numberof discrete elementscould be used DURABILITY/LIFE OF FIBER COMPOSITES IN HYGROTHER-
to form one of the layers and thus carry out this purpose,the MOMECHANICAL ENVIRONMENTS
discontinuitiesare preferablyproduced by simplydrillingholes in C.C. CHAMIS and J. H. SINCLAIR 1981 28 p refs Presented
the metallicmatrix layer or by forminggroovesin a grid patternin at the Sixth Conf. on Composite Mater.: Testing and Design
thislayer, sponsoredby the Am. Soc. for Testingand Mater., Phoenix,Ariz.,

Official Gazette of the U.S. Patent and Trademark Office 12-13 May 1981
(NASA-TM-82749; E-1065) Avail: NTIS HC A03/MF A01
CSCL 11D

N81-25149"# National Aeronautics and Space Administration. Statistical analysis and multiple regression were used to
Lewis Research Center, Cleveland, Ohio. determine and quantify the significant hygrothermomechanical
NONLINEAR LAMINATE ANALYSIS FORMETAL MATRIX FIBER variables which infuence the tensile durability/life(cycle loading,
COMPOSITES fatigue) of boron-fiber/epoxy-matrix (B/E) and
C. C. CHAMIS andJ. H. SINCLAIR 1981 18 p refs Presented high-modulus-fiber/epoxy-matrix(HMS/E) composites.The use of
at the 22d StructuralDyn. and Mater. Conf.,Atlanta6-8 Apr. 1981; the multipleregressionanalysisreducedthe variablesfrom fifteen,
sponsoredby AIAA; ASME; American Society of Civil Engineers assumed initially,to six or less with a probabilityof greater than
and AHS 0.999. The reducedvariableswere usedto derive predictivemodels
(NASA-TM-82596; E-763) Avail: NTIS HC A02/MF A01 CSCL for compressionan intralaminarshear durability/life of B/E and
11D HMS/E compositesassumingisoparametricfatigue behavior.The

A nonlinear laminate analysis is described for predictingthe predictive models were subsequentlygeneralizedto predict the
mechanical behavior (stress-strain relationships) of angleplied durability/lifeof graphite-fiber-rgeneralizedmodelis of simpleform,
laminates in which the matrix is strained nonlinearlyby both the predicts conservativevalues compared with measured data and
residual stress and the mechanical load and in which additional shouldbe adequate for use in preliminarydesigns. B.W.
nonlinearitiesare induced due to progressivefiber fractures and
ply relative rotations. The nonlinear laminate analysis (NLA) is
based on linear composite mechanics and a piece wise linear
laminate analysis to handle the nonlinear responses. Results
obtainedby usingthisnonlinearanalysison boronfiber/aluminum
matrixanglepliedlaminatesagreewell with experimentaldata. The
resultsshown illustratethe in situ ply stress-strainbehavior and N82-14288"# Wyoming Univ., Laramie. Composite Materials
synergisticstrengthenhancement. Author Research Group.

ANALYSIS OF CRACK PROPAGATION AS AN ENERGY
ABSORPTION MECHANISM IN METAL MATRIX COMPOSITES

N81-25151"# National Aeronautics and Space Administration. Interim Report, Sep. 1979 - Dec. 1980
Lewis ResearchCenter, Cleveland,Ohio. D.F. ADAMS and D. P. MURPHY Feb. 1981 159 p refs
COMPUTER CODE FOR INTRAPLY HYBRID COMPOSITE (ContractNSG-3217)
DESIGN (NASA-CR-165051;UWME-DR-101-102-1) Avail: NTIS HC
C. C. CHAMIS andJ. H. SINCLAIR 1981 15 p refs Presented A08/MF A01 CSCL 11D
at the 5th Conf. on Fibrous Compositesin Struct. Design, New The crack initiationand crack propagation capability was
Orleans,27-29 Jan. 1981; sponsoredby DOD and NASA extended to the previouslydeveloped generalized plane strain,
(NASA-TM-82593; E-841) Avail: NTIS HC A02/MF A01 CSCL finite element micromechanicsanalysis. Also, an axisymmetric
11D analysiswas developed,whichcontainsall of the general features

A computerprogram is describedfor intraplyhybridcomposite of the plane analysis, includingelastoplastic material behavior,
design (INHYD). The program includes several composite temperature-dependentmaterialproperties,and crackpropagation.
micromechanicstheories, intraplyhybridcomposite theories,and These analyseswere used to generate variousexample problems
a hygrothermomechanicaltheory. These theories provide INHYD demonstratingthe inelasticresponse of, and crack initiationand
with considerable flexibility and capability which the user can propagationin, a boron/aluminumcomposite. B.W.
exercise through several available options. Key features and
capabilitiesof INHYD are illustratedthroughselectedsamples.

E.D.K.

N81-26179" National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio. N82-16181"# National Aeronautics and Space Administration.
METHOD FOR ALLEVIATING THERMAL STRESS DAMAGE IN LewisResearchCenter, Cleveland,Ohio.
LAMINATES Patent PREDICTION OF COMPOSITE HYGRAL BEHAVIOR MADE
C. A. HOFFMAN, J. W. WEETON, and N. W. ORTH, inventors(to SIMPLE
NASA) 19 May 1981 5 p Filed 20 Feb. 1980 Divisionof US C.C. CHAMIS and J. H. SINCLAIR 1982 30 p refs Presented
PatentAppl. SN-893857, filed 6 Apr. 1979, US Patent-4,211,354 at the 37th Ann. Conf. of the Soc. of the Plastics Ind. (SPI),
(NASA-CASE-LEW-12493-2;US-PATENT-4,267,953; Washington,D.C., 12-15 Jan. 1982
US-PATENT-APPL-SN-122967;US-PATENT-4,211,354; (NASA-TM-82780; E-1022) Avail: NTIS HC A03/MF A01
US-PATENT-APPL-SN-893857;US-PATENT-CLASS-228-118; CSCL 11D
US-PATENT-CLASS-228-190) Avail: US Patent and Trademark A convenientprocedure is described to determinethe hygral
Office CSCL 11D behavior(moisture expansioncoefficients and moisturestresses)

The methodis for metallicmatrixcomposites,such as laminated of angleplied fiber composites using a pocket calculator. The
sheet or foil composites.Non-intersectingdiscrete discontinuities procedureconsistsof equationsand appropriategraphsfor various
are positivelyintroducedinto the interface between the layersso (+ or - theta) ply combinations.These graphs present reduced
as to reduce the thermal stress produced by unequal expansion stiffnessand moisture expansioncoefficientsas functions of (+
of the materialsmakingup the composite.The discontinuitiesare or - theta) inorderto simplifyand expeditethe use of theequations.
preferablyproduced by drillingholes in the metallic matrix layer. The procedureis applicable to all types of balanced, symmetric
However, a pluralityof discrete elements may be used between fiber composites including interply and intraply hybrids. The
the layersto carry out thispurpose, versatilityand generalityof the procedureis illustratedusingseveral

OfficialGazette of the U.S. Patent and TrademarkOffice step-by-stepnumericalexamples. Author
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N82-18326"# Wyoming Univ., Laramie. Composite Materials knowing the longitudinal tensileand flexural strengths of the same
Research Group. composite system. M.G.
MICROMECHANICAL PREDICTIONS OF CRACK PROPAGA-
TION AND FRACTURE ENERGY IN A SINGLE FIBER BORON/
ALUMINUM MODEL COMPOSITE

D. F. ADAMS and J. M. MAHISHI Feb. 1982 65 p refs N82-24300"# National Aeronautics and Space Administration.
(Contract NSG-3217) Lewis Research Center, Cleveland, Ohio.
(NASA-CR-168550; UWME-DR-201-101-1) Avail: NTIS HC DESIGNING WITH FIGER-REINFORCED PLASTICS (PLANAR
A04/MF A01 CSCL 11D RANDOM COMPOSITES)

Theaxisymmetric finite element model and associated computer C.C. CHAMIS Washington Mar. 1982 26 p refs
program developed for the analysis of crack propagation in a (NASA-TM-82812; E-1155; NAS 1.15:82812) Avail: NTIS HC
composite consisting of a single broken fiber in an annular sheath A03/MF A01 CSCL 11D
of matrix material was extended to include a constant displacement The use of composite mechanics to predict the
boundary condition during an increment of crack propagation. The hygrothermomechanical behavior of planar random composites
constant displacement condition permits the growth of a stable (PRC) is reviewed and described. These composites are usually
crack, as opposed to the catastropic failure in an earlier version, made from chopped fiber reinforced resins (thermoplastics or
The finite element model was refined to respond more accurately thermosets). The hygrothermomechanical behavior includes
to the high stresses and steep stress gradients near the broken mechanical properties, physical properties, thermal properties,
fiber end. The accuracy and effectiveness of the conventional fracture toughness, creep and creep rupture. Properties are
constant strain axisymmetric element for crack problems was presented in graphical form with sample calculations to illustrate
established by solving the classical problem of a penny-shaped their use. Concepts such as directional reinforcement and strip
crack in a thick cylindrical rod under axial tension. The stress hybrids are described.Typical data that can be used for preliminary
intensity factors predicted by the present finite element model are design for various PRCs are included. Several resins and molding
compared with existing continuum results. S.L. compounds used to make PRCs are described briefly. Pertinent

references are cited that cover analysis and design methods,

N82-21259"# National Aeronautics and Space Administration. materials, data, fabrication procedures and applications. Author
Lewis Research Center, Cleveland, Ohio.
TUNGSTEN FIBER REINFORCED SUPERALLOY COMPOSITE
HIGH TEMPERATURE COMPONENT DESIGN CONSIDERA-
TIONS N82-31449"# National Aeronautics and Space Administration.
E. A. WlNSA 1982 23 p refs Presented at the 111th Ann. Lewis Research Center, Cleveland, Ohio.
Meeting of the Am. Inst. of Mining, Met. and Petrol. Engr., Dallas, ENVIRONMENTAL AND HIGH-STRAIN RATE EFFECTS ON
14-18 Feb. 1982 COMPOSITES FOR ENGINE APPLICATIONS
(NASA-TM-82811; E-1152; NAS 1.15:82811) Avail: NTIS HC C.C. CHAMIS and G. T. SMITH 1982 20 p refs Presented
A02/MF A01 CSCL 11D at the 23rd Struct. Dyn. and Mater. Conf., New Orleans, 10-12

Tungsten fiber reinforced superalloy composites (TFRS) are May 1982; sponsored by AIAA, ASME, ASCE, and AHS Previously
intended for use in high temperature turbine components. Current announced in IAA as A82-30118
turbine component design methodology is based on applying the (NASA-TM-82882; NAS 1.15:82882) Avail: NTIS HC A02/MFA01 CSCL11D
experience, sometimes semiempirical, gained from over 30 years
of superalloy component design. Current composite component The Lewis Research Center is conducting a series of programs

intended to investigate and develop the application of compositedesign capability is generally limited to the methodology for low
temperature resin matrix composites. Often the tendency is to materials to structural components for turbojet engines. A significant
treat TFRS as just another superalloy or low temperature part of that effort is directed to establishing resistance, defect
composite. However, TFRS behavior is significantly different than growth, and strain rate characteristics of composite materials over
that of superalloys, and the high environment adds consideration the wide range of environmental and load conditions found in
not common in low temperature composite component design, commercial turbojet engine operations. Both analytical and
The methodology used for preliminary design of TFRS components experimental efforts are involved. Author
are described. Considerations unique to TFRS are emphasized.

Author

N83-13173"# Purdue Univ., West Lafayette, Ind. Composite
N82-22313"# National Aeronautics and Space Administration. Materials Lab.
Lewis Research Center, Cleveland, Ohio. DYNAMIC RESPONSES OF GRAPHITE/EPOXY LAMINATED
COMPRESSION BEHAVIOR OF UNIDIRECTIONAL FIBROUS BEAM TO IMPACT OF ELASTIC SPHERES
COMPOSITE C.T. SUN and T. WANG Sep. 1982 59 p refs
J. H. SINCLAIR and C. C. CHAMIS 1982 20 p refs Presented (Contract NSG-3185)
at Symp. on Compression Testing of Homogeneous Mater. and (NASA-CR-165461; NAS 1.26:165461; CML-82-4) Avail: NTIS
Composites, Williamsburg, Va., 10-11 Mar. 1982; sponsored by HC A04/MF A01 CSCL 11D
Am. Soc. for Testing and Materials Wave propagation in 90/45/90/-45/902s and 0/45/0/-45/02s
(NASA-TM-82833; E-1145; NAS 1.15:82833) Avail: NTIS HC laminates of a graphite/epoxy composite due to impact of a steel
A02/MF A01 CSCL 11D ball was investigated experimentally and also by using a high

The longitudinal compression behavior of unidirectional fiber order beam finite element. Dynamic strain responses at several
composites is investigated using a modified Celanese test method locations were obtained using strain gages. The finite element
with thick and thin test specimens. The test data obtained are program which incorporated statically determined contact laws was
interpreted using the stress/strain curves from back-to-back strain employed to calculate the contact force history as well as the
gages, examination of fracture surfaces by scanning electron target beam dynamic deformation. The comparison of the finite
microscope, and predictive equations for distinct failure modes element solutions with the experimental data indicated that the
including fiber compression failure, Euler buckling, delamination, static contact laws for loading and unloading (developed under
and flexure. The results show that the longitudinal compression this grant) are adequate for the dynamic impact analysis. It was
fracture is induced by a combination of delamination, flexure, and found that for the 0/45/0/-45/02s laminate which has a much
fiber tier breaks. No distinct fracture surface characteristics can larger longitudinal bending rigidity, the use of beam finite elements
be associated with unique failure modes. An equation is described is not suitable and plate finite element should be used instead.
which can be used to extract the longitudinal compression strength Author
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N83-15362"# National Aeronautics and Space Administration. N83-24559"# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio. Lewis Research Center, Cleveland, Ohio.
HYGROTHERMOMECHANICAL EVALUATION OF TRANSVERSE DESIGN PROCEDURES FOR FIBER COMPOSITE STRUCTURAL
FILAMENT TAPE EPOXY/POLYESTER FIBERGLASS COMPONENTS: RODS, COLUMNS AND BEAM COLUMNS
COMPOSITES C.C. CHAMIS 1983 32 p refs Presented at the 38th Ann.
R. L. LARK and C. C. CHAMIS 1983 24 p refs Proposed Conf. of the Soc. of the Plastics Ind. (SPI) Reinforced
for presentation at the 38th Ann. Conf. of the Society of Plastics Plastics/Composites Inst., Houston, Tex., 7-11 Feb. 1983
Industry (SPI) Reinforced Plastics/Composites Inst., Houston, Tex., (NASA-TM-83321; E-1562; NAS 1.15:83321) Avail: NTIS HC
7-11 Feb. 1983 A03/MF A01 CSCL 11D
(NASA-TM-83044; E-1491; NAS 1.15:83044) Avail: NTIS HC Step by step procedures are described which are used to design
A02/MFA01 CSCL11D structural components (rods, columns, and beam columns)

The static and cyclic load behavior of transverse filament tape subjected to steady state mechanical loads and hydrothermal
(TFT) fiberglass/epoxy and TFY fiberglass/polyester composites, environments. Illustrative examples are presented for structural
intended for use in the design of low-cost wind turbine blades, components designed for static tensile and compressive loads,
are presented. The data behavior is also evaluated with respect and fatigue as well as for moisture and temperature effects. Each
to predicted properties based on an integrated example is set up as a sample design illustrating the detailed
hygrothermomechanical response theory. Experimental TFT steps that are used to design similar components. Author
composite data were developed by the testing of laminates made
by using composite layups typical of those used for the fabrication N84-13224"# National Aeronautics and Space Administration.
of TFT fiberglass wind turbine blades. Static properties include Lewis Research Center, Cleveland, Ohio.
tension, compression, and interlaminar shear strengths at ambient INHYD: COMPUTER CODE FOR INTRAPLY HYBRID
conditions and at high humidity/elevated temperature conditions COMPOSITE DESIGN. A USERS MANUAL
after a 500 hourexposure.Cyclicfatigue data were obtainedusing C.C. CHAMIS and J. H. SINCLAIR Dec. 1983 41 p refs
similar environmentalconditionsand a range of cyclic stresses. (NASA-TP-2239; E-1755; NAS 1.60:2239) Avail: NTIS HC
The environmental(temperature and moisture) and cyclic load A03/MF A01 CSCL 11D
effects on composite strength degradation are subsequently A computerprogram(INHYD) was developedfor intraplyhybrid
compared with the predictionsobtained by using the composite composite design. A users manual for INHYD is presented. In
life/durabilitytheory. The results obtainedshowthat the predicted INHYD embodies several composite micror'nechanicstheories,
hygrothermomechanicalenvironmentaleffects on TFT composites intraply hybrid composite theories, and an integrated
are in good agreementwith measured data for variousproperties hygrothermomechanicaltheory. The INHYD can be run in both
includingfatigue at different cyclic stresses. S.L. interactive and batch modes. It has considerable flexibility and

capability, which the user can exercise through several options.
These optionsare demonstratedthroughappropriate INHYD runs

N83-19817"# National Aeronautics and Space Administration. in the manual. S.C.L.
LewisResearchCenter, Cleveland,Ohio.
SIMPLIFIED COMPOSITE MICROMECHANICS EQUATIONS FOR
HYGRAL, THERMAL AND MECHANICAL PROPERTIES N84-22702"# National Aeronautics and Space Administration.Lewis Research Center, Cleveland, Ohio.
C. C. CHAMIS 1983 20 p refs Presented at the 38th Ann.
Conf. of the Society of the Plastics INdustry (SPI) Reinforced SELECT FIBER COMPOSITES FOR SPACE APPLICATIONS: AMECHANISTIC ASSESSMENT
Plastics/CompositesInst., Houston,Tex., 7-11 Feb. 1983
(NASA-TM-83320; E-1561; NAS 1.15:83320) Avail: NTIS HC C.A. GINTY and C. C. CHAMIS 1984 26 p refs Presented
A02/MF A01 CSCL 11D at the 29th SAMPE Symp. and Exhibition,Reno, Nev., 3-5 Apr.

A unifiedset of compositernicromechanicsequationsof simple 1984
form is summarizedand described.This unified set can be used (NASA-TM-83631; E-2069; NAS 1.15:83631) Avail: NTIS HCA03/MFA01 CSCL 11D
to predict unidirectionalcomposite (ply) geometric, mechanical,
thermal and hygral properties using constituent material Three fiber composites (graphite-fiberepoxy, graphite-fiber
(fiber/matrix)properties.This unifiedset also includesapproximate aluminum,and graphite-fibermagnesium)are evaluated for their
equationsfor predicting(1) moistureabsorption;(2) glass transition possibleuse inspace applications.Usingthe compositemechanicstheories for thermomechanical behavior embodied in the ICAN
temperatureof wetresins;and(3) hygrothermaldegradationeffects. (IntegratedCompositesAnalyzer)computercode, selectcomposite
Several numerical examples are worked-outto illustrateease of
use and versatilityof these equations.These numericalexamples thermal and mechanical properties are predictedand also their
also demonstrate the interrelationship of the various factors responseto cryogenictemperatures,resemblingthosewhichoccur
(geometric to environmental) and help provide insight into in space applications. The predicted results are presented in
compositebehaviorat the micromechanisticlevel Author graphical form as a function of the composite's laminateconfiguration,fibervolume ratioand the selected use temperature.

These results are suitable for preliminary design purposes only
N83-22325"# Purdue Univ., West Lafayette, Ind. School of and should serve as an aid in selecting controlled experiments
Aeronauticsand Astronautics. for obtainingcorrespondingmeasureddata. Author
WAVE PROPAGATION IN GRAPHITE/EPOXY LAMINATES DUE
TO IMPACT Interim Report N84-24712"# National Aeronauticsand Space Administration.
T. M. TAN and C. T. SUN Dec. 1982 171 p refs Lewis ResearchCenter, Cleveland,Ohio.
(ContractNSG-3185) IMPACT RESISTANCE OF FIBER COMPOSITES: ENERGY
(NASA-CR-168057; NAS 1.26:168057; CML-82-5) Avail: NTIS ABSORBING MECHANISMS AND ENVIRONMENTAL EFFECTS
HCA08/MFA01 CSCLllD C.C. CHAMISandJ. H. SINCLAIR 1983 25p refs Presented

The low velocity impact responseof graphite-epoxylaminates at the 2nd US/Japan Conf.on CompositeMater.: Mech. Properties,
is investigatedtheoretically and experimentally. A nine-node ProcessingSci. and Technol. and Appl., Hampton, Va., 6-8 Jun.
isoparametricfinite element inconjunctionwithan empiricalcontact 1983
law was used for the theoretical investigation.Flat laminates (NASA-TM-83594; E-1996; NAS 1.15:83594) Avail: NTIS HC
subjected to pendulum impact were used for the experimental A02/MF A01 CSCL 11D
investigation.Theoretical resultsare in good agreementwithstrain Energy absorbing mechanisms were identified by several
gage experimentaldata. The collectiveresults of the investigation approaches.The energy absorbingmechanisms consideredare
indicate that the theoretical procedure describes the impact those in unidirectionalcompositebeams subjectedto impact.The
responseof the laminate up to about 150 in/sec, impactvelocity, approaches used include: mechanic models, statistical models,

S.L. transientfinite elementanalysis,andsimplebeam theory. Predicted
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results are correlated with experimental data from Charpy impact weakening (degradation)on the structuralresponse of a composite
tests. The environmental effects on impact resistance are beam are summarized. The structural responses of interest include:
evaluated. Working definitions for energy absorbing and energy (1) bending, (2) buckling, (3) free vibrations, (4) periodic excitation,
releasing mechanisms are proposed and a dynamic fracture and (5) impact. Finite element analysis was used for the
progression is outlined. Possible generalizations to angle-plied computational evaluations. The interply layer degradation effects
laminates are described. E.A.K. on the various structural responses were determined and assessed

as a function of the interply layer modulus varying from 1 million
N84-25770"# National Aeronautics and Space Administration. psi down to 1000 psi and even lower for some limiting cases.
Lewis Research Center, Cleveland, Ohio. The results obtained show that the interply layer degradation has
DYNAMIC STRESS ANALYSIS OF SMOOTH AND NOTCHED generally negligibleeffects on compositestructuralresponseand,
FIBER COMPOSITE FLEXURAL SPECIMENS therefore, structural integrity, unless the interply layer modulus
P. L. N. MURTHY and C. (3. CHAMIS 1984 27 p refs degradesto about 10,000 psi or less. Author
Presented at the 7th Conf. on Composite Mater.: Testing and
Design,Philadelphia,2-5 Apr. 1984; sponsoredby the American N84-27832"# National Aeronauticsand Space Administration.
Society for Testing and Materials Lewis ResearchCenter, Cleveland,Ohio.
(NASA-TM-83694; E-2152; NAS 1.15:83694) Avail: NTIS HC SIMPLIFIED COMPOSITE MICROMECHANICS EQUATIONS FOR
A03/MF A01 CSCL 11D STRENGTH, FRACTURE TOUGHNESS AND ENVIRONMENTAL

A detailed analysisof the dynamic stressfield in smoothand EFFECTS
notched fiber composite (Charpy-type)specimens is reported in C.C. CHAMIS 1984 27 p refs Presentedat the 39th Ann.
this paper. The analysis is performed with the aid of the direct Conf. of the Soc. of the Plastics Ind. (SPI) Reinforced
transientresponseanalysissolutionsequenceof MSC/NASTRAN. Plastics/CompositesInst., Houston,16-20 Jan. 1984
Three unidirectionalcompositeswere chosen for the study.They (NASA-TM-83696;E-2154; NAS 1.15:83696) Avail: NTIS HC
are S-Glass/Epoxy, Kevlar/Epoxy and T-300/Epoxy composite A03/MF A01 CSCL 11D
systems.The specimensare subjectedto an impact load whichis A unifiedset of compositemicromechanicsequationsof simple
modeled as a triangularimpulsewith a maximumof 2000 Ib and form is summarized and described. This unified set includes
a durationof 1 ms. The resultsare comparedwith those of static compositemicromechanicsequationsfor predicting;(1) ply in plane
analysis of the specimenssubjectedto a peak load of 2000 lb. uniaxialstrengths,(2) throughthe thicknessstrength,(3) in plane
For the geometryand type of materialsstudied,the staticanalysis fracturetoughness,(4) in plane impactresistance,and (5) through
resultsgaveclose conservativeestimatesfor the dynamicstresses, the thickness impact resistance.Equationsare also includedfor
Another interesting inference from the study is that the impact predictingthe hygrothermaleffects on strength,fracturetoughness
inducedeffects are felt by S-Glass/Epoxyspecimenssoonerthan and impact resistance. Several numerical examples are worked
Kevlar/Epoxy or T-300/Epoxy specimens. Author out. The numerical examples are selected to demonstrate the

interrelationshipsof the variousconstituentpropertiesincomposite
N84-26755"# National Aeronauticsand Space Administration. strengthand strengthrelatedbehavior,to make comparisonswith
Lewis ResearchCenter, Cleveland,Ohio. available experimentaldata and to provideinsightinto composite
ICAN: INTEGRATED COMPOSITES ANALYZER strengthbehavior. M.A.C.
P. L. N. MURTHY and C. C. CHAMIS 1984 25 p refs
Presented at the 25th Struct., Struct. Dyn. and Mater. Conf., Palm N84-28918"# National Aeronautics and Space Administration.
Springs, Calif., 14-16 May 1984; sponsored by the AIAA, ASME, Lewis Research Center, Cleveland, Ohio.
ASCE and AHS HYGROTHERMOMECHANICAL FRACTURE STRESS CRITERIA
(NASA-TM-83700; E-2158; NAS 1.15:83700) Avail: NTIS HC FOR FIBER COMPOSITES WITH SENSE-PARITY
A02/MF A01 CSCL 11D C.C. CHAMIS and C. A. GINTY 1983 15 p refs Presented

The ICAN computer program performs all the essential aspects at the 7th Conf. on Composite Mater.: Testing and Design,
of mechanics/analysis/design of multilayered fiber composites. Philadelphia, 2-5 Apr. 1984; sponsored by Am. Soc. for Testing
Modular, open-ended and user friendly, the program can handle a and Mater.
variety of composite systems having one type of fiber and one (NASA-TM-83691; E-2146; NAS 1.15:83691) Avail: NTIS HC
matrix as constituents as well as intraply and interply hybrid A02/MF A01 CSCL 11D
composite systems. It can also simulate isotropic layers by Hygrothermomechanical fracture stress criteria are developed
considering a primary composite system with negligible fiber volume and evaluated for unidirectional composites (plies) with
content. This feature is specifically useful in modeling thin interply sense-parity. These criteria explicity quantify the individual
matrix layers. Hygrothermal conditions and various combinations contributions of applied, hygral and thermal stresses as well as
of in-plane and bending loads can also be considered. Usage of couplings among these stresses. The criteria are for maximum
this code is illustrated with a sample input and the generated stress, maximum strain, internal friction, work-to-fracture and
output. Some key features of output are stress concentration factors combined-stress fracture. Predicted results obtained indicate that
around a circular hole, locations of probable delamination, a first ply failure will occur at stress levels lower than those predicted
summary of the laminate failure stress analysis, free edge stresses, using criteria currently available in the literature. Also, the
microstresses and ply stress/strain influence coefficients. These contribution of the various stress couplings (predictable only by
features make ICAN a powerful, cost-effective tool to fracture criteria with sense-parity) is significant to first ply failure
analyze/design fiber composite structures and components, and attendant fracture modes. Author

A.R.H.

N84-31288"# National Aeronautics and Space Administration.
N84-26756"# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
Lewis Research Center, Cleveland, Ohio. APPLICATION OF FINITE ELEMENT SUBSTRUCTURING TO
INTERPLY LAYER DEGRADATION EFFECTS ON COMPOSITE COMPOSITE MICROMECHANICS M.S.Thesis - Akron Univ., May
STRUCTURAL RESPONSE 1984
C. C. CHAMIS and G. C. WILLIAMS 1983 30 p Presented at J.J. CARUSO Aug. 1984 70 p refs
the 25th Struct., Struct. Dyn. and Mater. Conf., Palm Springs, (ContractNSG-350)
Calif., 14-16 May 1984; cosponsoredby AIAA, ASME, ASCE, and (NASA-TM-83729; E-2203; NAS 1.15:83729) Avail: NTIS HC
AHS A04/MF A01 CSCL 11D
(NASA-TM-83702; E-2160; NAS 1.15:83702) Avail: NTIS HC Finite element substructuringis used to predict unidirectional
A03/MF A01 CSCL 11D fiber composite hygral (moisture), thermal, and mechanical

Recent research activitiesat NASA Lewis Research Center to properties.COSMIC NASTRAN and MSC/NASTRAN are used to
computationallyevaluate the effects of interply layer progressive perform the finite element analysis.The resultsobtainedfrom the
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finite element model are compared with those obtained from the N84-34576"# National Aeronautics and Space Administration.
simplified composite micromechanics equations. A unidirectional Lewis Research Center, Cleveland, Ohio.
composite structure made of boron/HM-epoxy, FRACTURE MODES IN NOTCHED ANGLEPLIED COMPOSITE
S-glass/IMHS-epoxy and AS/IMHS-epoxy are studied. The finite LAMINATES
element analysis is performed using three dimensional T.B. IRVINE and C. A. GINTY 1984 27 p refs Presented
isoparametricbrick elements and two distinct models. The first at Syrup. on Composite Fatigue and Fracture, Dallas, 24-25 Oct.
modelconsistsof a singlecell (one fiber surroundedby matrix) to 1984; sponsoredby AmericanSociety for Testingand Materials
form a square. The second model uses the single cell and (NASA-TM-83802; E-2307; NAS 1.15:83802) Avail: NTIS HC
substructuring to form a nine cell square array. To compare AO3/MFA01 CSCL 11D
computer time and results with the nine cell superelement model, The Composite Durability Structural Analysis (CODSTRAN)
another nine cell model is constructed using conventional mesh computer code is used to determine composite fracture. Fracture
generation techniques. An independent computer program modes in solid and notched, unidirectional and angleplied
consisting of the simplified micromechanics equation is developed graphite/epoxy composites were determined by using CODSTRAN.
to predict the hygral, thermal, and mechanical properties for this Experimental verification included both nondestructive (ultrasonic
comparison. The results indicate that advanced techniques can C-Scanning) and destructive (scanning electron microscopy)
be used advantageously for fiber composite micromechanics, techniques. The fracture modes were found to be a function of

Author ply orientations and whether the composite is notched or
unnotched. Delaminations caused by stress concentrations around
notch tips were also determined. Results indicate that the
composite mechanics, structural analysis, laminate analysis, and
fracture criteria modules embedded in CODSTRAN are valid for

N84-33522"# National Aeronautics and Space Administration. determining composite fracture modes. R.J.F.
Lewis Research Center, Cleveland, Ohio.
FRACTURE SURFACE CHARACTERISTICS OF NOTCHED
ANGLEPLIED GRAPHITE/EPOXY COMPOSITES
C. A. GINTY and T. B. IRVINE 1984 25 p refs Presented
at the Intern. Syrnp. on Composites: Mater. and Eng., Newark,
Del., 24-28 Sep. 1984; sponsored by the Center for Composite
Materials N85-14882"# National Aeronautics and Space Administration.
(NASA-TM-83786; E-2284; NAS 1.15:83786) Avail: NTIS HC LewisResearch Center, Cleveland,Ohio.
A02/MF A01 CSCL 11D FABRICATION AND QUALITY ASSURANCE PROCESSES FOR

Compositefracture surface characteristicsand related fracture SUPERHYBRID COMPOSITE FAN BLADES
modes have been investigated through extensive microscopic R.F. LARK and C. C. CHAMIS 1983 15 p refs Presented
inspections of the fracture surfaces of notched angleplied at the 15th Ann. SAMPE Tech. Conf., Cincinnati, 4-5 Oct. 1983
graphite/epoxy laminates. The investigation involved 4 ply (NASA-TM-83354; E-1611; NAS 1.15:83354) Avail: NTIS HC
laminates of the configuration . or - theta (s) where theta = O A02/MF A01 CSCL 11D
deg, 3 deg, 5 deg, 10 deg, 15 deg, 30 deg, 45 deg, 60 deg, 75 The feasibility of fabricating full-scale fan blades from
deg, and 90 deg. Two-inch wide tensile specimens with 0.25 in. superhybrid composites (SHC) for use large, commercial gas turbine
by 0.05 in. through-slits centered across the width were tested to engines was evaluated. The type of blade construction selected
fracture. The fractured surfaces were then removed and examined was a metal-spar/SHC-shell configuration, in which the outer shell
using a scanning electron microscope. Evaluation of the was adhesively bonded to a short, internal, titanium spar. Various
photomicrographs combined with analytical results obtained using aspects of blade fabrication, inspection, and quality assurance
the CODSTRAN computer code culminated in a unified set of procedures developed in the investigation are described. It is
fracture criteria for determining the mode of fracture in notched concluded that the SHC concept is feasible for the fabrication of
angleplied graphite/epoxy laminates. Author prototype, full-scale, metal-spar/SHC-shell fan blades that have

good structural properties and meet dimensional requirements.
R.S.F.

N84-34575"# Case Western Reserve Univ.,Cleveland, Ohio.
MECHANICAL BEHAVIOR OF CARBON-CARBON COMPOSITES
Final Report
G. A. ROZAK Sep. 1984 31 p refs
(Contract NAG3-464) N88-15822"# National Aeronautics and Space Administration.
(NASA-CR-174767; NAS 1.26:174767) Avail: NTIS HC A03/MF Lewis Research Center, Cleveland, Ohio.
AOl CSCL 11D A STUDY OF INTERPLY LAYER EFFECTS ON THE FREE-EDGE

A generalbackground,testplan, and some resultsof preliminary STRESS FIELD OF ANGLEPLIED LAMINATES
examinationsof a carbon-carboncompositematerialare presented P.L.N. MURTHY and C. C. CHAMIS 1984 31 p refs
with emphasis on mechanical testing and inspectiontechniques. Presented at the Symp. on Adv. and Trends in Struct. Dyn.,
Experiencewith testing and evaluationwas gained throughtests Washington, D.C., 22-25 Oct. 1984; sponsored by NASA and
of a lowmoduluscarbon-carbonmaterial, K-KarbC. The properties GeorgeWashingtonUniv.
examined are the density - 1.55 g/cc; four point flexure strength (NASA-TM-86924; E-2201; NAS 1.15:86924) Avail: NTIS RC
inthe warp - 137 MPa (19,800 psi) and the fill - 95.1 MPa (13,800 A03/MF A01 CSCL 11D
psi,) directions;and the warp interlaminarshear strength - 14.5 The general-purpose finite-elementprogram MSC/NASTRAN
MPa (2100 psi). Radiographic evaluation revealed thickness is used to studythe interply layer effects on the free-edge stress
variationsand the thinner areas of the compositewere scrapped, fieldof symmetricanglepliedlaminatessubjectedto uniformtensile
The ultrasonic C-scan showed attenuation variations,but these stress.The free-edgeregion is modeledas a separate substructure
didnotcorrespondto any of the physicaland mechanicalproperties (superelement)which enables easy mesh refinementand provides
measured.Basedon these initialtests anda surveyof the literature, the flexibilityto movethe superelementalongtheedge. The results
a plan has been devised to examine the effect of stress on the indicate that the interply layer reduces the stress intensity
oxidation behavior, and the strength degradation of coated significantlyat the free edge. Another important observationof
carbon-carboncomposites.This plan will focus on static fatigue the study is that the failuresobserved near free edges of these
tests in the four point flexure mode in an elevated temperature, types of laminates could have been caused by the interlaminar
oxidizing environment. Author shear stresses. Author
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N85-15823"# National Aeronautics and Space Administration. N85-30034"# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio. Lewis Research Center, Cleveland, Ohio.
DESIGN PROCEDURES FOR FIBER COMPOSITESTRUCTURAL TEN YEAR ENVIRONMENTAL TEST OF GLASS FIBER/EPOXY
COMPONENTS: PANELS SUBJECTED TO COMBINED PRESSURE VESSELS
IN-PLANE LOADS J.R. FADDOUL 1985 18 p refs Presentedat the 21st Joint
C. C. CHAMIS 1985 29 p refs Presentedat the 40th Ann. PropulsionConf., Monterey, Calif., 8-10 Jul. 1985; sponsoredby
Conf. of the Society of the Plastics Industry (SPI) Reinforced AIAA, SAE, ASME, and ASEE
Plastics/CompositesInst., Atlanta, 28 Jan. - 1 Feb. 1985 (NASA-TM-87058;E-2625; NAS 1.15:87058) Avail: NTIS HC
(NASA-TM-86909; E-2319; NAS 1.15:86909) Avail: NTIS HC A02/MF A01 CSCL 11D
A03/MF A01 CSCL 11D By the beginningof the 1970's composite pressure vessels

Step by step proceduresare described which can be used to had received a significantamount of development effort, and
design panels made from fiber compositeangleplied laminates applicationswere beginningto be investigated.One of the first
and subjected to combined in plane loads. The proceduresare applicationsgrew out of NASA Johnson Space Center efforts to
set up as a multistepsample design.Steps in the sample design developa superioremergencybreathingsystem for firemen. While
procedure range from selection of the laminate configurationto the new breathingsystemprovided improvedwearer comfort and
the subsequent analyses required to check design requirements an improved mask and regulator, the primary feature was low
for: (1) displacement, (2) ply stresses, and (3) buckling. The sample weight which was achieved by using a glass fiber reinforced
design steps are supplemented with appropriate tabular and aluminum pressure vessel. Part of the development effort was to
graphical data which can be used to expedite the design process, evaluate the long term performance of the pressure vessel and

Author as a consequence, some 30 bottles for a test program were
procured. These bottles were then provided to NASA Lewis
Research Center where they were maintained in an outdoor
environment in a pressurized condition for a period of up to 10 yr.
During this period, bottles were periodically subjected to cyclic

N85-21273"# National Aeronautics and Space Administration. and burst testing. There was no protective coating applied to the
Lewis Research Center, Cleveland, Ohio. fiberglass/epoxy composite, and significant loss in strength did
NONLINEAR ANALYSIS FOR HIGH-TEMPERATURE occur as a result of the environment.Similarbottles stored indoors
MULTILAYERED FIBER COMPOSITE STRUCTURES M.S. showedlittle, if any, degradation.This reportcontainsa description
Thesis of the pressure vessels, a discussionof the test program, data
D. A. HOPKINS Aug. 1984 120 p refs for each bottle, and appropriate plots, comparisons, and
(NASA-TM-83754; E-2242; NAS 1.15:83754) Avail: NTIS HC conclusions. R.J.F.
A06/MF A01 CSCL 11D

A unique upward-integratedtop-down-structuredapproach is N85-30035"# Virginia Polytechnic Inst. and State Univ.,
presented for nonlinearanalysis of high-temperaturemultilayered Blacksburg.
fiber composite structures.Based on this approach, a special A STUDY OF THE STRESS WAVE FACTOR TECHNIQUE FOR
purpose computer code was developed (nonlinear COBSTRAN) THE CHARACTERIZATION OF COMPOSITE MATERIALS Final
which is specifically tailored for the nonlinear analysis of Report
tungsten-fiber-reinforcedsuperalloy (TFRS) composite turbine A. K. GOVADA, J. C. DUKE, JR., E. G. HENNEKE, II, and W. W.
blade/vane componentsof gas turbineengines. Special features STINCHCOMB Feb. 1985 103 p refs
of this computationalcapability includeaccountingof; micro-and (Contract NAG3-172)
macro-heterogeneity,nonlinear(stess-temperature-timedependent) (NASA-CR-174870; NAS 1.26:174870; CCMS-84-13) Avail:
and anisotropic material behavior, and fiber degradation. A NTIS HCA06/MFAOl CSCL 11D
demonstrationproblem is presentedto mainfest the utility of the This study has investigatedthe potential of the Stress Wave
upward-integratedtop-down-structuredapproach, in general, and Factor as an NDT technique for thin composite laminates. The
to illustratethe present capability represented by the nonlinear conventional SWF and an alternate method for quantifyingthe
COBSTRAN code. Preliminaryresults indicate that nonlinear SWF were investigated.Agreement between the initial SWF
COBSTRAN providesthe means for relating the local nonlinear number,ultrasonicC-scan, inplanedisplacementsas obtainedby
and anisotropicmaterial behavior of the compositeconstituents full field moire interferometry,and the failure location have been
to the global responseof the turbineblade/vane structure, observed.The SWF numberwas observed to be the highestwhen

Author measuredalongthe fiberdirectionand the lowestwhen measured
across the fibers. The alternate method for quantifyingthe SWF
used square root of the zeroth moment (square root of M subo)
of the frequency spectrumof the received signalas a quantitative

N85-27978"# National Aeronautics and Space Administration. parameter. From this study it therefore appears that the stress
LewisResearchCenter, Cleveland,Ohio. wave factor has an excellent potential to monitor damage
DESIGNING FOR FIBER COMPOSITE STRUCTURAL developmentinthin compositelaminates. B,Wo
DURABILITY IN HYGROTHERMOMECHANICAL ENVIRON-
MENT N86-10290"# National Aeronautics and Space Administration.
C. C. CHAMIS 1985 23 p refs Proposedfor presentationat Lewis ResearchCenter, Cleveland,Ohio.
the 5th Intern. Conf. on Composite Mater., San Diego, Calif., 30 PROGRESSIVE DAMAGE, FRACTURE PREDICTIONS AND
Jul. - 1 Aug. 1985; sponsored by American Society of Mining POST MORTEM CORRELATIONS FOR FIBER COMPOSITES
Engineers 1985 21 p refs Presented at Intern. Conf.: Post Failure
(NASA-TM-87045; E-2606; NAS 1.15:87045) Avail: NTIS HC Anal. Tech. Fiber Reinforced Composites,Dayton, Ohio, 1-3 Jul.
A02/MF A01 CSCL 11D 1985; sponsoredby Air Force

' A methodology is described which can be used to (NASA-TM-87101; E-2695; NAS 1.15:87101) Avail: NTIS HC
design/analyze fiber compositestructuressubjected to complex A02/MF A01 CSCL 11D
hygrothermomechanicalenvironments.This methodologyincludes Lewis Research Center is involved in the development of
compositemechanicsand advanced structuralanalysis methods computational mechanics methods for predicting the structural
(finite element). Select examples are described to illustratethe behavior and response of composite structures.In conjunction
applicationof the available methodology.The examples include: with the analytical methods development,experimentalprograms
(1) compositeprogressivefracture; (2) compositedesign for high includingpost failure examinationare conductedto studyvarious
cycle fatigue combined with hot-wet conditions;and (3) general factors affecting composite fracture such as laminate thickness
laminatedesign. E.A.K. effects, ply configuration,and notch sensitivity.Results indicate
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that the analytical capabilities incorporated in the CODSTRAN perform a preliminary validation of the equations. Excellent
computer code are effective in predicting the progressive damage agreement between properties predicted using the micromechanics
and fracture of composite structures. In addition, the results being equations and properties simulated by the finite element analyses
generated are establishing a data base which will aid in the are demonstrated. Implementation of the micromechanics
characterization of composite fracture. Author equations as part of an integrated computational capability for

nonlinear structural analysis of high temperature multilayered fiber
N86-21614"# National Aeronautics and Space Administration. composites is illustrated. E.A.K.
Lewis Research Center, Cleveland, Ohio.
INTEGRATED COMPOSITE ANALYZER (lOAN): USERS AND N86-24759"# National Aeronautics and Space Administration.
PROGRAMMERS MANUAL Lewis Research Center, Cleveland, Ohio.
P. L. N. MURTHY and C. C. CHAMIS Mar. 1986 77 p refs SIMPLIFIED COMPOSITE MICROMECHANICS FOR
(NASA-TP-2515; E-2035; NAS 1.60:2515) Avail: NTIS HC PREDICTING MICROSTRESSES
AO5/MF AOl CSCL 11D C.C. CHAMIS 1986 27 p refs Presented at 41st Annual

The use of and relevantequationsprogrammedin a computer Conferenceof the Societyof the PlasticsIndustry(SPI) Reinforced
code designed to carry out a comprehensive linear analysis of Plastics/CompositesInst.,Atlanta, Ga., 27-31 Jan. 1986
multilayered fiber composites is described.The analysis contains (NASA-TM-87295; E-2782; NAS 1.15:87295) Avail: NTIS HC
the essential features required to effectively design structural A03/MF A01 CSCL 11D
components made from fiber composites. The inputs to the code A unified set of composite micromechanics equations is
are constituentmaterialproperties,factorsreflectingthe fabrication summarizedand described.This unified set is for predictingthe
process, and composite geometry. The code performs ply microstresses when the ply stresses are known. The set
micromechanics,macromechanics,and laminateanalysis, including consists of equations of simple form for predicting
the hygrothermalresponse of fiber composites.The code outputs three-dimensionalstresses (six each) in the matrix, fiber, _nd
are the variousply and compositeproperties,compositestructural interface. Several numerical examples are includedto illustrate
response, and composite stress analysis results with details on use andcomputationaleffectivenessof the equationsinthisunified
failure. The code is in Fortran IV and can be used efficiently as a set. Numerical results from these examples are discussed with
package in complexstructuralanalysisprograms.The input-output respectto theirsignificanceon microcrackformationand,therefore,
format is described extensively through the use of a sample damage initiationinfiber composites. Author
problem. The program listingis also included. The code manual
consists of two parts. Author N86-25417"# National Aeronauticsand Space Administration.

Lewis Research Center, Cleveland, Ohio.
N86-24756"# National Aeronautics and Space Administration. FRACTURE CHARACTERISTICS OF ANGLEPLIED LAMINATES
Lewis ResearchCenter, Cleveland,Ohio. FABRICATED FROM OVERAGED GRAPHITE/EPOXY
THERMOVISCOPLASTIC NONLINEAR CONSTITUTIVE PREPREG
RELATIONSHIPS FOR STRUCTURAL ANALYSIS OF HIGH C.A. GINTY and C. C. CHAMIS 1985 22 p refs Presented
TEMPERATURE METAL MATRIX COMPOSITES at Symposium on Fractographyof Modern EngineeringMaterials,
C. C. CHAMIS and D. A. HOPKINS 1985 25 p refs Presented Nashville,Tenn., 18-19 Nov. 1985; SponsoredbyAmericanSociety
at First Symposium on Testing Technologyof Metal Matrix for Testing and Materials
Composites,Nashville,Tenn., 18-20, 1985; sponsoredbyAmerican (NASA-TM-87266; E-2968; NAS 1.15:87266) Avail: NTIS HC
Societyfor Testing Materials A02/MF A01 CSCL 11D
(NASA-TM-87291; E-2998; NAS 1.15:87291) Avail: NTIS HC A series of anglepliedgraphite/epoxylaminateswas fabricated
A02/MF A01 CSCL 11D from overaged prepreg and tested in tension to investigate the

A set of thermoviscoplasticnonlinearconstitutiverelationships effects of overagedor advanced cure materialon the degradation
(1VP-NCR) is presented.The set was developed for application of laminate strength. Results, which include fracture stresses,
to high temperature metal matrix composites (HT-MMC) and is indicate a severe degradationin strength.In addition,the fracture
applicableto thermal and mechanical properties. Formulationof surfaces and microstructuralcharacteristicsare distinctly unlike
the TVP-NCR is based at the micromechanicslevel. The TVP-NCR any featuresobservedin previoustestsof thisprepregandlaminate
are of simple form and readily integratedinto nonlinearcomposite configuration.Photographs of the surfaces and microstructures
structural analysis. It is shown that the set of TVP-NCR is reveal flat morphologiesconsistingof alternate rows of fibers and
computationally effective. The set directly predicts complex hackles. These fracture surface characteristicsare independent
materialsbehavior at all levels of the composite simulation,from of the laminateconfigurations.The photomicrographsarepresented
the constituentmaterials, throughthe several levels of composite and compared with data from similarstudies to show the unique
mechanics, and up to the global response of complex HT-MMC characteristicsproducedby the overageprepreg.Analyticalstudies
structuralcomponents. E.A.K. produced results which agreed with those from the experimental

investigations. Author
N86-24757"# National Aeronauticsand Space Administration.
LewisResearch Center, Cleveland,Ohio. N86-26376"# National Aeronautics and Space Administration.
A UNIQUE SET OF MICROMECHANICS EQUATIONS FOR HIGH Lewis ResearchCenter, Cleveland,Ohio.
TEMPERATURE METAL MATRIX COMPOSITES COMPUTATIONAL SIMULATION OF PROGRESSIVEFRACTURE
D. A. HOPKINS and C. C. CHAMIS 1985 27 p refs Presented IN FIBER COMPOSITES
at the 1st Symposium on Testing Technologyof Metal Matrix C.C. CHAMIS 1986 12 p refs Presentedat the International
Composites, Nashville, Tenn., 18-20 Nov. 1985; sponsored by Conference on ComputationalMechanics, Tokyo, Japan, 25-28
AmericanSociety for Testing and Materials May 1986
(NASA-TM-87154; E-2780; NAS 1.15:87154) Avail: NTIS HC (NASA-TM-87341; E-3090; NAS 1.15:87341) Avail: NTIS HC
A03/MFA01 CSCL 11D A02/MFA01 CSCL 11D

A unique set of micrornechanicequationsis presented for high Computational methods for simulating and predicting
temperaturemetal matrixcomposites.The set includesexpressions progressivefracture in fiber compositestructuresare presented.
to predictmechanicalproperties,thermalpropertiesand constituent These methods are integrated into a computer code of modular
microstresses for the unidirectional fiber reinforced ply. The form. The modules include composite mechanics,finite element
equations are derived based on a mechanics of materials analysis,and fracture criteria.The code is used to computationally
formulationassuminga square array unit cell model of a single simulate progressivefracture in composite laminates with and
fiber, surroundingmatrix and an interphase to account for the without defects. The simulationtracks the fracture progressionin
chemical reaction which commonly occurs between fiber and terms of modes initiatingfracture, damage growth,and imminent
matrix. A three-dimensionalfinite element analysis was used to global (catastrophic)laminatefracture. Author
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N86-31663"# National Aeronautics and Space Administration. stable crack growth, and rapid crack growth regions are easily
Lewis Research Center, Cleveland, Ohio. identified. Graphical results are presented to illustrate the
FIBER COMPOSITE SANDWICH THERMOSTRUCTURAL effectiveness and versatilityof the computationalsimulationfor:
BEHAVIOR: COMPUTATIONAL SIMULATION (1) evaluatingmixed-modeinterlaminarfracture, (2) for identifying
C. C. CHAMIS, R. A. AIELLO, and P. L. N. MURTHY (Cleveland respective dominant parameters, and (3) for selecting possible
State Univ., Ohio) 1986 18 p Presented at the 27th Structures, simple test methods. Author
Structural Dynamics and Materials Conference (SDM), San Antonio,
Tex., 19-21 May 1986; sponsored by AIAA, ASME, ASCE and N87-16880"# National Aeronautics and Space Administration.
AHS Lewis Research Center, Cleveland, Ohio.
(NASA-TM-88787; E-3112; NAS 1.15:88787) Avail: NTIS HC COMPOSITE SPACE ANTENNA STRUCTURES: PROPERTIES
A02/MF A01 CSCL 11D AND ENVIRONMENTAL EFFECTS

Several computational levels of progressive CAROL A. GINTY and NED M. ENDRES (Sverdrup Technology,
sophistication/simplification are described to computationally Inc., Cleveland, Ohio) 1986 22 p Presented at the 18th
simulate composite sandwich hygral, thermal, and structural International SAMPE Technical Conference, Seattle, Wash., 7-9
behavior. The computational levels of sophistication include: (1) Oct. 1986
three-dimensional detailed finite element modeling of the (NASA-TM-88859; E-3225; NAS 1.15:88859) Avail: NTIS HC
honeycomb, the adhesive and the composite faces; (2) A02/MF A01 CSCL 11D
three-dimensional finite element modeling of the honeycomb The thermal behavior of composite spacecraft antenna
assumed to be an equivalent continuous, homogeneous medium, reflectors has been investigated with the integrated Composites
the adhesive and the composite faces; (3) laminate theory Analyzer (ICAN) computer code. Parametric studies have been
simulation where the honeycomb (metal or composite)is assumed conducted on the face sheets and honeycomb core which
to consist of plies with equivalent properties; and (4) derivations constitute the sandwich-type structures. Selected thermal and
of approximate, simplified equations for thermal and mechanical mechanical properties of the composite faces and sandwich
properties by simulating the honeycomb as an equivalent structures are presented graphically as functions of varying fiber
homogeneous medium. The approximate equations are combined volume ratio, temperature, and moisture content. The coefficients
with composite hygrothermomechanical and laminate theories to of thermal expansion are discussed in detail since these are the
provide a simple and effective computational procedure for critical design parameters. In addition, existing experimental data
simulating the thermomechanical/thermostructural behavior of fiber are presented and compared to the ICAN predictions. Author
composite sandwich structures. Author

N87-18614"# National Aeronautics and Space Administration.
N86-31664"# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
Lewis Research Center, Cleveland, Ohio. COMPUTATIONAL COMPOSITE MECHANICS FORAEROSPACE
ICAN: A VERSATILE CODE FOR PREDICTING COMPOSITE PROPULSION STRUCTURES
PROPERTIES CHRISTOS C. CHAMIS 1987 19 p Presented at the 3rd
C. A. GINTY and C. C. CHAMIS 1986 20 p Presented at the Space Systems Technology Conference, San Diego, Calif., 9-12
31st National SAMPE Symposium and Exhibition, Las Vegas, Nev., Jun. 1986; sponsored by the AIAA Previously announced in IAA
7-10 Apr. 1986 as A86-40596
(NASA-TM-87334; E-2017; NAS 1.15:87334) Avail: NTIS HC (NASA-TM-88965; E-3023; NAS 1.15:88965) Avail: NTIS HC
A02/MFA01 CSCL 11D A02/MFA01 CSCL 11D

The Integrated Composites ANalyzer (ICAN), a stand-alone Specialty methods are presented for the computational
computer code, incorporates micromechanics equations and simulation of specific composite behavior. These methods
laminate theory to analyze/design multilayered fiber composite encompass all aspects of composite mechanics, impact,
structures. Procedures for both the implementation of new data in progressive fracture and component specific simulation. Some of
ICAN and the selection of appropriate measured data are these methods are structured to computationally simulate, in
summarized for: (1) composite systems subject to severe thermal parallel, the composite behavior and history from the initial
environments; (2) woven fabric/cloth composites; and (3) the frabrication through several missions and even to fracture. Select
selection of new composite systems including those made from methods and typical results obtained from such simulations are
high strain-to-fracture fibers. The comparisons demonstrate the described in detail in order to demonstrate the effectiveness of
versatility of ICAN as a reliable method for determining composite computationally simulating: (1) complex composite structural
properties suitable for preliminary design. M.G. behavior in general, and (2) specific aerospace propulsion structural

components in particular. Author
N87-13491"# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio. N87-28611"# National Aeronautics and Space Administration.
COMPOSITE INTERLAMINAR FRACTURE TOUGHNESS: Lewis Research Center, Cleveland, Ohio.
THREE-DIMENSIONAL FINITE ELEMENT MODELING FOR DYNAMIC DELAMINATION BUCKLING IN COMPOSITE
MIXED MODE 1, 2 AND 3 FRACTURE LAMINATES UNDER IMPACT LOADING: COMPUTATIONAL
P. L. N. MURTHY (Cleveland State Univ., Ohio) and C.C. SIMULATION
CHAMIS 1986 27 p Presented at the 8th Symposium on JOSEPH E. GRADY, CHRISTOS C. CHAMIS, and ROBERT A.
Composite Materials Testing and Design, Charleston, S. Car., 28-30 AIELLO 1987 14 p Presented at the 2nd Symposium on
Apr. 1986; sponsored by the American Society for Testing and Composite Materials: Fatigue and Fracture, Cincinnati, Ohio, 26-30
Materials Apr. 1987; sponsored by the American Society for Testing and
(NASA-TM-88872; E-3278; NAS 1.15:88872) Avail: NTIS HC Materials
AO3/MF A01 CSCL 71F (NASA-TM-100192; E-3779; NAS 1.15:100192) Avail: NTIS HC

A computational method/procedure is described which can be A02/MF A01 CSCL 11D
used to simulate individual and mixed mode interlaminar fracture A unique dynamic delamination buckling and delamination
progression in fiber composite laminates. Different combinations propagation analysis capability has been developed and
of Modes 1, 2, and 3 fracture are simulated by varying the crack incorporated into a finite element computer program.This capability
location through the specimen thickness and by selecting consists of the following: (1) a modification of the direct time
appropriate unsymmetric laminate configurations. The contribution integration solution sequence which provides a new analysis
of each fracture mode to strain energy release rate is determined algorithm that can be used to predict delamination buckling in a
by the local crack closure methods while the mixed mode is laminate subjected to dynamic loading, and (2) a new method of
determined by global variables. The strain energy release rates modeling the composite laminate using plate bending elements
are plotted versus extending crack length, where slow crack growth, and multipoint constraints. This computer program is used to predict
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both impact induced buckling in composite laminates with initial on sound Astroloy. They influenced fatigue crack initiation and
delaminations and the strain energy release rate due to extension produced a more intergranular mode of propagation but fatigue
of the delamination. It is shown that delaminations near the outer life was not drastically reduced. Fatigue behavior of the porous
surface of a laminate are susceptible to local buckling and material showed typical correlation with tensile behavior. The plastic
buckling-induced delamination propagation when the laminate is strain range-life relation was reduced proportionately with the
subjected to transverse impact loading. The capability now exists reduction in tensile ductility, but the elastic strain range-life relation
to predict the time at which the onset of dynamic delamination was changed little. (Author)
buckling occurs, the dynamic buckling mode shape, and the

dynamic delamination strain energy release rate. Author A81-12266"# Pratt and Whitney Aircraft Group, West Palm Beach,
Fla.

N88-12551"# National Aeronautics and Space Administration. CYCLIC BEHAVIOR OF TURBINE DISK ALLOYS AT 650 C
Lewis Research Center, Cleveland, Ohio. B.A. COWLES, D. L. SIMS, J. R. WARREN (United Technologies
FREE-EDGE DELAMINATION: LAMINATE WIDTH AND Corp. Pratt and Whitney Aircraft Group, West Palm Beach, Fla.),
LOADING CONDITIONS EFFECTS and R. V. MINER, JR. (NASA, Lewis ResearchCenter, Cleveland,
P. L. N. MURTHY (Cleveland State Univ., Ohio.) and C.C. Ohio) ASME, Transactions,Journalof EngineeringMaterialsand
CHAMIS Dec. 1987 28 p Technology,vol. 102, Oct. 1980, p. 356-363. refs
(NASA-TM-100238; E-3862; NAS 1.15:100238) Avail: NTIS HC Five gas turbinedisk alloys representinga range of strengths
A03/MF A01 CSCL 11D and processingmethodswere tested for resistance to both cyclic

The width and loading conditionseffects on free-edge stress crack initiationand propagationat 650 C usinga 0.33 Hz fatigue
fields in composite laminates are investigated using a cycle and a cycle incorporatinga 900 s tensile dwell.At the low
three-dimensionalfinite element analysis.This analysisincludesa strain ranges pertinent to disks, resistance to crack initiation
specialfree-edgeregionrefinementorsuperelementwithprogrssive increasedwith increasingtensileyield strengthamong the alloys,
substructuring(meshrefinement)and finitethicknessinterplylayers, thoughthe advantagewas somewhatsmaller for the creepfatigue
The different loadingconditionsinclude in-plane and out-of-plane cycle. Cyclic crack growth resistance, however, decreased with
bending, combined axial tension and in-plane shear, twisting, increasingstrengthand very markedlyso for the dwellcycle.
uniform temperature and uniform moisture. Results obtained (Author)
indicate that: axial tension causes the smallest magnitude of
interlaminarfree edge stresscomparedto other loadingconditions;
free-edge delaminationdata obtained from laboratory specimens A82-11399" National Aeronautics and Space Administration.
cannot be scaled to structural components; and composite LewisResearchCenter, Cleveland,Ohio.
structuralcomponentsare not likely to delaminate. Author COMPARATIVE THERMAL FATIGUE RESISTANCE OF

SEVERAL OXIDE DISPERSION STRENGTHENED ALLOYS

N88-12552"# National Aeronautics and Space Administration. J.D. WHITTENBERGER and P. T. BIZON (NASA, Lewis Research
Lewis ResearchCenter, Cleveland,Ohio. Center, Cleveland, OH) InternationalJournal of Fatigue,vol. 3,
COMPOSITE MECHANICS FOR ENGINE STRUCTURES Oct. 1981, p. 173-180. refs
CHRISTOS C. CHAMIS 1987 35 p Presented at the 32nd The thermal fatigue resistance of several oxide dispersion
International Gas Turbine Conference and Exhibition,Anaheim, strengthened (ODS) alloys has been evaluated through cyclic
Calif., 31- May - 4 Jun. 1987; sponsoredby ASME exposure in fluidizedbeds. The ODS nickel-base alloy MA 754
(NASA-TM-100176; E-3750; NAS 1.15:100176) Avail:NTIS HC and ODS iron-base alloy MA 956 as well as four experimental
AO3/MF A01 CSCL 11D ODS Ni-16Cr-4.5AI base alloys withand withoutTa additionswere

Recent research activities and accomplishments at Lewis examined. Both bare and coated alloys were subjectedto up to
Research Center on composite mechanics for engine structures 6000 cycleswhere each cycle consistedof a 3 minute immersion
are summarized. The activitiesfocused mainly on developing in a fluidizedbed at 1130 C followedby a 3 minute immersionin
proceduresfor the computationalsimulationof compositeintrinsic a bedat 357 C. Testingrevealed that the thermalfatigue resistance
and structural behavior. The computational simulation of the ODS nickel-basealloys was excellent and about equal to
encompassesall aspects of composite mechanics, advanced that of directionallysolidified superalloys.However, the thermal
three-dimensional finite-element methods, damage tolerance, fatigue resistanceof MA 956 was foundto be poor.Metallographic
compositestructuraland dynamicresponse,and structuraltailoring examination of tested specimens revealed that, in general, the
and optimization. Author post-test microstructures can be rationalized on the basis of

previousdiffusion,mechanicalproperty,and oxidationstudies.
(Author)

26 A82-47398" National Aeronautics and Space Administration.
Lewis ResearchCenter,Cleveland,Ohio.

METALLIC MATERIALS FATIGUE AND CREEP-FATIGUE DEFORMATION OF SEVERAL
NICKEL-BASE SUPERALLOYSAT 650 C

Includesphysical,chemical,and mechanicalpropertiesof metals, R.V. MINER,J. GAYDA (NASA, LewisResearchCenter,Cleveland,
e.g., corrosion;and metallurgy. OH), and R. D. MAIER (Chase Brass and CopperCo., Solon,OH)

MetallurgicalTransactionsA - PhysicalMetallurgy and Materials
Science,vol. 13A, Oct. 1982, p. 1755-1765. refs

A80-35495"# National Aeronautics and Space Administration. Transmissionelectronmicroscopyhas been used to study the
LewisResearchCenter, Cleveland, Ohio. bulk deformationcharacteristicsof seven nickel-base superalloys
EFFECTS OF FINE POROSITY ON THE FATIGUE BEHAVIOR tested in fatigue and creep-fatigue at 650 C. The alloys were
OF A POWDER METALLURGY SUPERALLOY Waspalloy,HIP Astroloy, H plus F Astroloy, H plus F Rene 95, IN
R. V. MINER and R. L. DRESHFIELD (NASA, Lewis Research 100, MERL 76, and NASA lIB-7. The amount of bulk deformation
Center,Cleveland,Ohio) AmericanInstituteof Mining,Metallurgical observed in all the alloys was low. In tests with inelasticstrain
and PetroleumEngineers,Annual Meeting,109th, LasVegas, Nev., amplitudes less than about 0.003, only some grains exhibited
Feb. 25-28, 1980, Paper. 23 p. refs yieldingand the majorityof those had the 110 line near the tensile

Hot-isostatically-pressed powder-metallurgy Astroloy was axis. Deformation occurredon octahedral systems for all of the
obtained which contained 1.4 percent porosity at the grain alloysexcept MERL 76 which also showed abundantprimarycube
boundariesproducedbyargonenteringthepowdercontainerduring slip. Creep-fatiguecycling occasionallyproducedextended faults
pressing.This materialwas testedat 650 C in fatigue,creep-fatigue, between partial dislocations,but othenNisedeformationwas much
tension, and stress-ruptureand the results compared with data the same as for fatigue cycling. V.L.
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A83-21071" General Electric Co., Cincinnati, Ohio. at the surface, except for tests at low strain ranges where larger,
REQUIREMENTS OF CONSTITUTIVE MODELS FOR TWO internal defects often initiated failure. Although fatigue crack
NICKEL-BASE SUPERALLOYS initiationwas transgranular,in those alloyswithgrain sizes of less
J. H• LAFLEN and T. S. COOK (General Electric Co., Aircraft than 15 microns,fatiguecrackgrowthquicklybecame intergranular.
Engine BusinessGroup,Cincinnati,OH) InternationalConference This transitionwas environmentallyassistedand did not occur for
on Constitutive Laws of Engineering Materials: Theory and subsurfacecracksuntilthe crackbroke throughto the atmosphere.
Application,Universityof Arizona,Tucson, AZ, Jan. 1983, Paper. In the creep-fatiguecycle, which includeda 900 s tensile dwell,
3 p• refs crack initiationand propagationwere both intergranular in all
(Contract NAS3-22534) alloys. Author

The constitutivebehaviorof two nickel-basesuperalloys,Rene
'80 and Inconel 718, utilized in gas turbine blade and disk A84-11194"# LouisianaState Univ., Baton Rouge.
components, respectively, is presented. In turbine blade BENCHMARK CYCLIC PLASTIC NOTCH STRAIN
applications,the highhomologoustemperaturesresult instrain-rate MEASUREMENTS
effects dominatingbehavior. In turbine disks, the temperatures W.N. SHARPE, JR. and M. WARD (LouisianaState University,
are cooler so that mean stress effects become important. The Baton Rouge, LA) ASME, Transactions, Journal of Engineering
impact of these two variables on the overall crack initiation lifetime Materials and Technology (ISSN 0094-4289), vol. 105, Oct. 1983,
and analysis methodology is discussed. (Author) -p. 235-241• Research supported by the General Electric Co., and

Louisiana State University. refs
A83-22019" Cincinnati Univ., Ohio• (Contract NAS3-22522)
METALLURGICAL INSTABILITIES DURING THE HIGH Plastic strains at the roots of notched specimensof Inconel
TEMPERATURE LOW CYCLE FATIGUE OF NICKEL-BASE 718 subjected to tension-compression cycling at 650 C are
SUPERALLOYS reported. These strains were measured with a laser-based
S. D. ANTOLOVICH and N. JAYARAMAN (Cincinnati,University, technique over a gage length of 0.1 turn and are intended to
Cincinnati,OH) MaterialsScience and Engineering,vol. 57, Jan. serveas 'benchmark'data for furtherdevelopmentof experimental,
1983, p. L9-L12. refs analytical, and computationalapproaches. The specimens were
(ContractAF-AFOSR-80-0065; NSG-3263) 250 mm by 2.5 mm in the test section withdouble notchesof 4.9

An investigationis made of the microstructuralinstabilitiesthat mm radius subjected to axial loadingsufficient to cause yielding
affect the high temperature low cycle fatigue (LCF) life of at the notch root on the tensile portion of the first cycle. The
nickel-base superalloys.Crack initiationprocesses, provokedby tests were run for 1000 cycles at 10 cprnor until cracks initiated
the formationof carbidesand the coarseningof the grainsof the at the notch root. The experimental techniques are described,
material at high temperaturesare discussed.Experimentalresults and then representativedata for the various load spectra are
are examined, and it is concluded that LCF behavior can be presented. All the data for each cycle of every test are available
understoodmore fullyonly if detailsof the materialandits dynamic on floppy disks from NASA. Author
behaviorat high temperaturesare considered.The effects of high
stress, dislocation debris, and increasingenvironmentaldamage A84-12395"# National Aeronautics and Space Administration.
on the life of the alloy are discussed. M.I.I. Lewis ResearchCenter, Cleveland,Ohio.

THE EFFECT OF MICROSTRUCTURE ON 650 C FATIGUE
A83o36166" CincinnatiUniv., Ohio. CRACK GROWTH IN P/M ASTROLOY
THE EFFECT OF MICROSTRUCTURE ON THE FATIGUE J. GAYDA and R. V. MINER (NASA, Lewis Research Center,
BEHAVIOR OF NI BASE SUPERALLOYS Cleveland, OH) MetallurgicalTransactionsA - PhysicalMetallurgy
S. D. ANTOLOVICH (Cincinnati,University,Cincinnati,OH) and N. and Materials Science (ISSN 0360-2133), vol. 14A, Nov. 1983, p.
JAYARAMAN IN: Fatigue:Environmentand temperatureeffects 2301-2308. refs
• New York, PlenumPress,1983, p. 119-144. refs The effect of rnicrostructureon fatigue crack propagationat
(ContractAF-AFOSR-80-0065; NSG-3263) 650 C has been studiedina P/M nickel-base superalloy,Astroloy.

Nickel-base superalloysare used in jet engine components Crack propagation data were obtained in air and vacuum at 20
such as disks, turbine blades, and vanes. Improvementsin the cpm witha modifiedcompact tensionspecimen.The rate of crack
fatigue behaviorwill allow the life to be extended or the payloads growth,da/dn, was correlatedwith the stressintensity range. Key
to be increased.The first part of the present investigationdeals microstructural variables examined were grain size and the
primarilywith the effects of rnicrostructuralvariationson the fatigue distributionand size of the strengtheninggamma prime phase. A
crack propagation(FCP)behavior of nickel-basealloys, while the fine grain size less than 20 microns always promoted rapid,
second part is concernedwith low-cyclefatigue (LCF) behaviorof intergranular failure, while a large grain size promoted slower,
Ni basesystems.Waspaloyat lowtemperatureisconsidered,taking transgranular failure which decreased as the size and volume
into account material heat treatment and test procedures, a fractionof aging gammaprime was manipulatedso as to increase
composite plot of Waspaloy FCP data, Paris law fatigue crack alloy strength.The rapid, intergranularmode of failure of the fine
propagationconstants,monotonictensile data, and overload FCP grain microstructureswas suppressedin vacuum. Author
test results for Waspaloy. It is found that the FCP and overload
behavior of nickel-basealloysmay be markedlyimprovedby heat A84-14286" National Aeronautics and Space Administration.
treating. Attention is given to effects of cyclic deformation on Lewis Research Center, Cleveland,Ohio.
microstructureand substructure,environmentaldamage, and an HIGH-TEMPERATURE FATIGUE IN METALS - A BRIEF REVIEW
environmental/deformationmodel of high temperatureLCF. G.R. OF LIFE PREDICTION METHODS DEVELOPED AT THE LEWIS

RESEARCH CENTER OF NASA
A83-41199" National Aeronautics and Space Administration. G.R. HALFORD (NASA, Lewis Research Center, Cleveland, OH)
LewisResearchCenter, Cleveland, Ohio. SAMPE Quarterly (ISSN 0036-0821), vol. 14, April 1983, p. 17-25.
FATIGUE CRACK INITIATION AND PROPAGATION IN refs

SEVERAL NICKEL-BASE SUPERALLOYS AT 650 C The presentationfocuses primarilyon the progresswe at NASA
J. GAYDA and R. V. MINER (NASA, Lewis Research Center, Lewis Research Center have made. The understanding of the
Materials Div., Cleveland, OH) InternationalJournal of Fatigue phenomenologicalprocesses of high temperaturefatigue of metals
(ISSN 0142-1123), vol. 5, July 1983, p. 135-143. refs for the purpose of calculating lives of turbine engine hot section

The modes of crack initiationand propagation of several components is discussed. Improvedunderstandingresulted in the
nickel-base superalloys have been examined after fatigue and development of accurate and physically correct life prediction
creep-fatigue testing at 650 C. In fatigue, crack initiationwas methods such as Strain-Range partitioningfor calculating creep
transgranularand frequentlyassociatedwith porosityor inclusions fatigue interactions and the Double Linear Damage Rule for
in the higher strengthalloys.These defects were usually located predicting potentiallysevere interactionsbetween high and low
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cycle fatigue. Examples of other life prediction methods are also A85-11603"# National Aeronautics and Space Administration.
discussed. Previously announced in STAR as A83-12159 Author Lewis Research Center, Cleveland, Ohio.

STRAINRANGE PARTITIONING - A TOTAL STRAIN RANGE
VERSION

A84-18733" Rensselaer Polytechnic Inst.,Troy, N.Y. G.R. HALFORD and J. F. SALTSMAN (NASA, Lewis Research
THE EFFECTSOF FREQUENCYAND HOLD TIMES ON FATIGUE Center, Cleveland,OH) IN: InternationalConferenceon Advances
CRACK PROPAGATION RATES IN A NICKEL BASE in Life Prediction Methods, Albany, NY, April 16-20, 1983,
SUPERALLOY Proceedings . New York, American Society of Mechanical
S. GOLWALKAR, N. S. STOLOFF, and D• J. DUQUEFFE Engineers, 1983, p. 17-26. Previously announced in STAR as
(Rensselaer Polytechnic Institute, Troy, NY) IN: Strength of metals N83-14246. refs
and alloys (ICSMA 6); Proceedings of the Sixth International Procedures are presented for expressing the Strainrange
Conference, Melbourne, Australia, August 16-20, 1982. Volume 2 Partitioning (SRP) method for creep fatigue life prediction in terms
• Oxford, Pergamon Press, 1983, p. 879-885. of total strain range. Inelastic and elastic strain-range - life relations
(Contract NAG3-22) are summed to give total strain-range - life relations. The life

The elevated temperature cyclic crack propagation behavior of components due to inelastic strains are dealt with using
a nickel base superalloy, Astroloy, produced by a hot isostatic conventional SRP procedures while the life components due to
pressing technique has been evaluated. Environment, frequency elastic strains are expressed as families of time-dependent terms
and peak load hold times have been controlled to evaluate the for each type of SRP cycle. Cyclic constitutive material behavior
effects of creep and environment of fatigue crack propagation plays an important role in establishing the elastic strain-range life
rates at several temperatures. Author relations as well as the partitioning of the inelastic strains. To

apply the approach, however, it is not necessary to have to
determine the magnitude of the inelastic strain range. The total

A84-43872" Northwestern Univ., Evanston, III. strain SRP approach is evaluated and verified using two nickel
FINITE ELASTIC-PLASTIC DEFORMATION OF POLYCRYSTAL- base superalloys, AF2-1DA and Rene 95. Excellent agreement is
LINE METALS demonstrated between observedand predicted cyclic lifetimeswith
T. IWAKUMA and S. NEMAT-NASSER (Northwestern University, 70 to 80 percent of the predicted lives falling within factors of
Evanston, IL) Royal Society (London), Proceedings, Series A - two of the observed lives. The total strain-range SRP approach
Mathematical and Physical Sciences (ISSN 0080-4630), vol. 394, should be of considerable practical value to designers who are
no. 1806, July 9, 1984, p. 87-119. refs faced with creep-fatigue problems for which the inelastic strains
(Contract NAG3-134) cannot be calculated with sufficient accuracy to make reliable life

Applying Hill's self-consistent method to finite elastic-plastic predictions by the conventional inelastic strain range SRP
deformations, the overall moduli of polycrystalline solids are approach. Author
estimated. The model predicts a Bauschinger effect, hardening,
and formation of vertex or corner on the yield surface for both
microscopically non-hardening and hardeningcrystals. The changes
in the instantaneous moduli with deformation are examined, and
their asymptotic behavior, especially in relation to possible A85-12098" Max-Planck-lnst. fuer Metallforschung, Stuttgart
localization of deformations, is discussed. An interesting conclusion (West Germany).
is that small second-order quantities, such as shape changes of A STUDY OF FATIGUE DAMAGE MECHANISMS IN WASPALOYFROM 25 TO 800 C
grainsand residualstresses(measuredrelativeto thecrystalelastic B.A. LERCH (Max-Planck-lnstitutfuer Metallforschung,Stuttgart,
moduli),have a first-ordereffect on the overall response,as they
lead to a lossof the overall stabilityby localizeddeformation.The West Germany; Cincinnati, University, Cincinnati, OH), N.
predictedincipienceof localization for a uniaxialdeformation in JAYARAMAN (Cincinnati, University,Cincinnati, OH), and S. D.
two dimensionsdepends on the initialyieldstrain, but the orientation ANTOLOVICH (Georgia Institute of Technology, Atlanta, GA)
of localization is slightly less than 45 deg with respect to the MaterialsScience and Engineering (ISSN 0025-5416),vo1.66, Sept.
tensile direction, although the numerical instability makes it very 15, 1984, p. 151-166. refs
difficult to estimate this direction accurately. Author (Contract NSG-3263)

The objective of the study was to examine the effect of various
microstructures on the fatigue and damage accumulation behavior

A84-48715" National Aeronautics and Space Administration. of Waspaloy, a nickel-base alloycommonly used in aircraft engines.
Lewis Research Center, Cleveland, Ohio. Shearing was the dominant deformation mode in specimens with
EFFECTS OF PROCESSING AND MICROSTRUCTURE ON THE coarse grains and small (50-80 A) gamma prime particles, whereas
FATIGUE BEHAVIOUR OF THE NICKEL-BASE SUPERALLOY Orewan loopingwas dominantin fine-grainedspecimenswith large
RENE95 (about 900 A) gamma prime particles.At temperatures up to 500
R. V. MINER and J. GAYDA (NASA, Lewis Research Center, C, cracksinitiatedtransgranularly,whileat 800 C the failure process
ProcessingScienceSection,Cleveland,OH) InternationalJournal was intergranular for both coarse-grained and fine-grained
of Fatigue(ISSN 0142-1123), voI. 6, July1984, p. 189-193. refs specimens.At temperaturesabove 500 C, a significantdecrease

Formsof the nickel-basesuperalloyRene95 producedby three in the fatigue life was observed for both coarse-grained and
processingmethodswere evaluated in tensile, low cycle fatigue fine-grainedmaterial. V.L.
and fatigue crack propagationtests at 540 and 650 C. Two
powder-metallurgy (PM) forms, hot-isostatically-pressed and
extruded-and-forged,and a conventionallycast-and-wroughtform
were all given the same heat treatment. The extruded-and-forged A85-25835" Ball Aerospace SystemsDiv., Boulder,Colo.
form showed superiorfatigue life in low strain range tests though FRACTURETOUGHNESS OF HOT-PRESSED BERYLLIUM
the two PM forms exhibited nearly identical mechanicalbehavior D.D. LEMON (Ball Corp., Ball Aerospace SystemsDiv., Boulder,
in all other respects. Further, this life difference could not be CO) and W. F. BROWN, JR. (NASA, Lewis Research Center,
explainedby significantdifferences in the types, sizes or shapes Cleveland, OH) Journal of Testing and Evaluation (ISSN
of the defects initiating failure. The cast-and-wroughtRene95, 0090-3973), vol. 13, March 1985, p. 152-161. refs
however, had lower strength,ductility and fatigue life, but higher This paper presents the results of an investigationinto the
fatigue crack propagationresistance because of a larger grain fracture toughness,sustained-loadflaw growth,and fatigue-crack
size. It did not exhibit the environmentally-assistedintergranular propagationresistance of S200E hot-pressed beryllium at room
mode of propagation which occurs in PM Rene95 and other temperature•It also reviewsthe literaturepertainingto the influence
fine-grained superalloys at these test temperatures and of various factors on the fracture toughness of hot-pressed
frequencies. Author beryllium determinedusingfatigue-crackedspecimens. Author
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A85-32399" Rockwell International Corp., Canoga Park, Calif. A85-43979"# Pratt and Whitney Aircraft Group, East Hartford,
THE EFFECT OF MICROSTRUCTURE, TEMPERATURE, AND Conn.
HOLD-TIME ON LOW-CYCLE FATIGUE OF AS HIP P/M RENE APPLICATION OF TWO CREEP FATIGUE LIFE MODELS FOR
95 THE PREDICTION OF ELEVATED TEMPERATURE CRACK
S. BASHIR (Rockwell InternationalCorp., Rocketdyne Div.,Canoga INITIATION OF A NICKEL BASE ALLOY
Park, CA) and S. D.ANTOLOVlCH (Georgia Institute of Technology, V. MORENO, D. M. NISSLEY (United Technologies Corp., Pratt
Atlanta, GA) IN: Superalloys 1984; Proceedings of the Fifth and Whitney Group, East Hartford, CT), G. R. HALFORD, and J.
International Symposium, Champion, PA, October 7-11, 1984 . F. SALTSMAN (NASA, Lewis Research Center, Cleveland, OH)
Warrendale, PA, Metallurgical Society of AIME, 1984, p. 295-307. AIAA, SAE, ASME, and ASEE, Joint Propulsion Conference, 21st,
refs Monterey, CA, July 8-10, 1985. 15 p. refs
(Contract NSG-3147) (Contract NAS3-23288)

The effects of microstructure, temperature, plastic strain range, (AIAA PAPER 85-1420)
and hold time on the low-cycle fatigue (LCF) life were studied for Cyclic Damage Accumulation (CDA) and Total Strain-Strain
Rene 95, an important Ni base superalloy used in jet engine disks. Range Partitioning (TS-SRP) models for predicting the creep-fatigue
It was shown that the life could be varied by approximately an crack initiation life of high temperature alloys are presented. The
order of magnitude at elevated temperatures by simple heat models differ in their fundamental assumptions regarding the
treatments. The life was largest for the microstructure that promoted controlling parameters for fatigue crack initiation and in the amount
the most homogeneous deformation mode. The results are of data required to determine model constants. The CDA model
explained using the concept of a synergistic interaction between represents a ductility exhaustion approach and uses stress
the deformation mode and boundary oxidation. Author quantities to calculate the cyclic fatigue damage. The TS-SRP

model is based on the use of total mechanical strain and earlier
concepts of the Strain Range Partitioning Method. Both models
were applied to a well controlled fatigue data set at a high
temperature nickel base alloy, B1900 -t- HI, tested at 1600 F and
1800 F. The tests were divided into a baseline data set required

A85-32400" Rensselaer Polytechnic Inst., Troy, N.Y. to determine model constants and a verification data set for
THE INFLUENCE OF HOLD TIMES ON LCFAND FCG BEHAVIOR evaluation of the predictive capability of the models. Both models
IN A P/M NI-BASE SUPERALLOY correlated the baseline data set to within factors of two in life,
S. J. CHOE, S. V. GOLWALKER, D. J. DUQUETTE, and N.S. and predicted the verification data set to within a factor of three
STOLOFF (Rensselaer Polytechnic Institute, Troy, NY) IN: or better. In addition, sample calculations to demonstrate the
Superalloys 1984; Proceedings of the Fifth International application of each model and discusions of the predictive
Symposium, Champion, PA, October 7-11, 1984. Warrendale, PA, capabilities and areas requiring further development are
Metallurgical Society of AIME, 1984, p. 309-318. refs presented. Author
(Contract NAG3-22)

The relative importance of creep and environmental interactions A85-47972" Lockheed-California Co., Burbank.
in high temperature fatigue behavior has been investigated for EFFECT OF LOW TEMPERATURE ON FATIGUE AND
as-HIP Rene 95. Strain-controlled low cycle fatigue and FRACTURE PROPERTIES OF TI-5AL-2.SSN(ELI) FOR USE IN
load-controlled fatigue crack growth tests were performed at ENGINE COMPONENTS
elevated temperatures in argon, followedby fractographicanalyses J.T. RYDER (Lockheed-California Co., Burbank) and W. E.
of the fracture surfaces by scanning electron microscopy. Fatigue WITZELL (General Dynamics Corp., Convair Div., San Diego, CA)
lives were drastically reduced and crack growth rates increased IN: Fatigue at low temperatures; Proceedings of the Symposium,
one hundred fold as a result of superposition of hold times on Louisville, KY, May 10, 1983 . Philadelphia, PA, ASTM, 1985, p.
continuous cycling. A change in fracture mode with hold time also 210-237. refs
was noted. Chromium oxide was detected on the fracture surface (Contract NAS3-18896)
by Auger electron spectroscopy. The drastic changes in fatigue Experiments were conducted to evaluate the characteristics of
resistance due to hold times were attributed primarily to theTi-5AI-2.5Sn (ELI) alloy used in a fuel pump impeller at cryogenic
environmental interactions with fatigue processes. Author temperatures. Tension, fracture toughness, and fatigue crack

propagation data were collected determining the effect of frequency
and load ratio on crack propagation. The results revealed that
tensile strength increased significantly at 20 K compared to room
temperature and fracture toughness was reduced at cryogenic
temperatures. The fatigue crack growth rate was not sensitive to

A85-32434" National Aeronautics and Space Administration. experimental conditions and there were only minimal crack
Lewis Research Center, Cleveland, Ohio. orientation effects. Different frequencies produced no effect. At
ON THE FATIGUE CRACK PROPAGATION BEHAVIOR OF various temperatures and frequencies a load ratio increase resulted
SUPERALLOYS AT INTERMEDIATE TEMPERATURES in higher crack growth rates. At low stress intensity levels the
J. GAYDA, R. V. MINER, and T. P. GABB (NASA, Lewis Research fatigue rate for both temperatures was the same; however, at
Center, Cleveland, OH) IN: Superalloys 1984; Proceedings of high stress intensity levels the crack growth rate at 20 K increased
the Fifth International Symposium, Champion, PA, October 7-11, because of the decrease in fracture toughness. The results
1984 . Warrendale, PA, Metallurgical Society of AIME, 1984, p. correlated well with previous data. I.F.
731-740. refs

Two superalloys used in gas-turbine disks, Rene 95 and IN-100 A86-20982" Massachusetts Inst. of Tech., Cambridge.
were tested in several forms at 0.33 Hz in air, and the results THERMAL-MECHANICAL FATIGUE CRACK GROWTH IN
were compared with earlier data on Astroloy to gain a better INCONEL X-750
understanding of the effects of grain size, strength, and alloy N. MARCHAND and R. M. PELLOUX (MIT, Cambridge, MA) IN:
composition on the fatigue crack propagation behavior. In addition, Time-dependent fracture; Proceedings of the Eleventh Canadian
selected forms of Rene 95 were tested at 0.33 Hz in vacuum and Fracture Conference, Ottawa, Canada, June 14, 15, 1984 .
in air using a cycle with a 120-sec tensile dwell to evaluate the Dordrecht, Martinus Nijhoff Publishers, 1985,p. 167-178. Previously
effects of environment and creep. Results of the study emphasize announced in STAR as N85-15877. refs
the beneficial effect of large grain size on the fatigue and (Contract NAG3-280)
crep-fatigue crack growth resistance of the superalloys in the Thermal-mechanical fatigue crack growth (TMFCG)was studied
temperature range corresponding to the operating temperatures in a 'gamma-gamma' nickel base superalloy Inconel X-750 under
of aircraft gas-turbine engine disk rims. V.L. controlled load amplitude in the temperature range from 300 to
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650 C. In-phase (T sub max at sigma sub max), out-of-phase (T inhomogeneous dislocation structures. LCF specimens of various
sub rain at sigma sub max), and isothermal tests at 650 C were orientations had comparable cyclic stress-strain curves and
performed on single-edge notch bars under fully reversed cyclic generally similar somewhat more homogeneous dislocation
conditions. A dc electrical potential method was used to measure structures. Tensile specimens at the higher temperature had
crack length. The electrical potential response obtained for each comparable mechanical response and corresponding similar quite
cycle of a given wave form and R value yields information on homogeneous dislocation structures with gamma' faulting; and LCF
crack closure and crack extension per cycle. The macroscopic specimens had orientation-dependent mechanical response but
crack growth rates are reported as a function of delta k and the comparable homogeneous loose dislocation networks. D.H.
relative magnitude of the TMFCG are discussed in the light of the
potential drop information and of the fractographic observations. A86-45715" National Aeronautics and Space Administration.

R.S.F. Lewis Research Center, Cleveland, Ohio.
THE CYCLIC STRESS-STRAIN BEHAVIOR OF A NICKEL-BASE

A86°28951" ConnecticutUniv., Storrs. SUPERALLOY AT 650 C
FRACTURE MECHANICS APPLIED TO NONISOTHERMAL T.P. GABB (NASA, Lewis Research Center, Cleveland, OH) and
FATIGUE CRACK GROWTH G.E. WELSCH (Case Western Reserve University, Cleveland,
E. H. JORDAN (Connecticut, University, Storrs) and G. J. MEYERS OH) Scripta Metallurgica (ISSN 0036-9748), vol. 20, July 1986,
(McGraw-Edison Co., Worthington Compressors Div., Buffalo, NY) p. 1049-1054. refs
Engineering Fracture Mechanics (ISSN 0013-7944), vol. 23, no. 2, It is pointed out that examinations of the monotonic tensile
1986, p. 345-358. refs and fatigue behaviors of single crystal nickel-base superalloys have
(Contract NAS3-22550) disclosed orientation-dependent tension-compression anisotropies

Twelve nonisothermal fatigue crack growth tests were and significant differences in the mechanical responseof octahedral
performed on Hastelloy-X tubular specimens in which strain and and cube slip at intermediate temperatures. An examination is
temperature varied simultaneously. Conditions were selected to conducted of the cyclic hardening response of the single crystal
include nominally elastic and nominally plastic conditions and superalloy PWA 1480 at 650 C. In the considered case,
temperatures up to 982 C. A number of parameters, including the tension-compression anisotropy is present, taking into account
stress intensity factor, strain intensity factor, and J-integral, were primarily conditions under which a single slip system is operative.
examined for their ability to correlate the data. There was no Aspects of a deformation by single slip are considered along with
decisive difference between the success of the three parameters, cyclic hardening anisotropy in tension and compression. It is found
Each parameter correlated data from different strain ranges to that specimens deforming by octahedral slip on a single slip system
within no worse than a factor of 2.1 on da/dn. The effect of have similar hardening responses in tensile and low cycle fatigue
strain temperature cycle shape was investigated and found to be loading.Cyclic strain hardening is very low for specimens displaying
moderate, while a strain hold of 1 min had very little effect. An single slip. G.R.
attempt was made to predict nonisothermal test results from
isothermal data. These predictions were better than those made A86-48973" National Aeronautics and Space Administration.
by using peak test temperature isothermal data but still not within Lewis Research Center, Cleveland, Ohio.
scatter. Author A STUDY OF SPECTRUM FATIGUE CRACK PROPAGATION IN

TWO ALUMINUM ALLOYS. I - SPECTRUM SIMPLIFICATION. II
A86-30010" Case Western Reserve Univ., Cleveland, Ohio. - INFLUENCE OF MICROSTRUCTURES
THE CRACK LAYER APPROACH TO TOUGHNESS J. TELESMAN (NASA, Lewis Research Center, Cleveland, OH)
CHARACTERIZATION IN STEEL and S. D. ANTOLOVICH (Georgia Institute of Technology,
M. BESSENDORFFand A. CHUDNOVSKY (Case Western Reserve Atlanta) Engineering Fracture Mechanics (ISSN 0013-7944), vol.
University, Cleveland, OH) IN: Advances in fracture research 24, no. 3, 1986, p. 453-459, 461-473, 475-477. Research supported
(Fracture 84). Volume 3. Oxford and New York, Pergamon Press, by Northrop Corp. refs
1986, p. 1663-1670. refs An investigation of the fatigue crack propagation FCP behavior
(Contract NAG3-223) of two aluminum alloys is performed to simulate spectrum loading

In a study of the laws of crack propagation and toughness conditions found at critical locations in high performance fighter
characterization, it is feasible to employ two alternative approaches, aircraft. Negative loads are shown to be eliminated for the
including the fracture mechanics approach and the material science tension-compression spectrum for low to intermediate maximum
approach. The crack layer (CL) theory discussed by Khandogin stress intensities, and load interactions are found to be more
and Chudnovsky (1978) and Chudnovsky (1980) considers the significant at higher stress intensities and with more plasticity at
crack together with the surrounding defects as one system which the crack tip. In the second part, the influence of microstructural
has several degrees of freedom. It is pointed out that the CL features including grain size, inclusions, and dispersoids on
theory defines the relationship between the parameters of fracture constant amplitude and spectrum crack growth behavior in
mechanics and the characteristics of microstructural changes which aluminum alloys is studied. At low stress intensities the I/M alloy
are the subject of material science. Experiments are described, demonstrated better FCP resistance than the P/M 7091 alloy for
taking into account a toughness characterization test and both constant amplitude and spectrum testing, and the
microscopic studies. Attention is giventoaphenomenological study inhomogeneous planar slip and large grain size of 7050 limit
of toughness characterization, the morphology of crack layer, and dislocation interactions, thereby improving FCP performance.
the evaluation of energy stored in the dislocation network. G.R. R.R.

A86-35697" National Aeronautics and Space Administration. A86-49690" National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio. Lewis Research Center, Cleveland, Ohio.
THE TENSILE AND FATIGUE DEFORMATION STRUCTURES IN THE PLASTIC COMPRESSIBILITY OF 7075-T651
A SINGLE CRYSTAL NI-BASE SUPERALLOY ALUMINUM-ALLOY PLATE
T. P. GABB, R. V. MINER, and J. GAYDA (NASA, Lewis Research A.D. FREED (NASA, Lewis Research Center, Cleveland, OH)
Center, Cleveland, OH) Scripta Metallurgica (ISSN 0036-9748), and B. I. SANDOR (Wisconsin, University, Madison) Experimental
voL 20, April 1986, p. 513-518. refs Mechanics (ISSN 0014-4851), vol. 26, June 1986, p. 119-121.

Dislocation structures produced in Rene N4 crystals of various Research supported by the Lockheed-Georgia Co. refs
orientations deformed in tension and low cycle fatigue (LCF) at The change in volume, and therefore the change in mass
760 and 980 degrees C were examined in order to elucidate the density, of an aluminum alloy was measured in uniaxial tension
observed differences in stress-strain behavior. Specimens tensile using clip-on extensometers. The experimental data do not agree
tested at 760 degrees C displayed significant crystallographic with the assumption of plastic incompressibility found in the
orientation dependences in mechanical response but comparable classical theories of plasticity. In fact, the elastic and plastic volume
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changes are of the same order of magnitude. Plastic anisotropy boundaries produced by argon entering the powder container during
is thought to be the prime cause of this plastic compressibility, pressing. This materialwas tested at 650 C in fatigue, creep fatigue,

Author tension, and stress-rupture and the results compared with previous
data on sound Astroloy. The pores averaged about 2 micrometers

A86-50322"# National Aeronautics and Space Administration. diameter and 20 micrometers spacing. They did influence fatigue
Lewis Research Center, Cleveland, Ohio. crack initiation and produced a more intergranular mode of
ORIENTATION AND TEMPERATURE DEPENDENCE OF SOME propagation.However, fatigue life was not drasticallyreduced. A
MECHANICAL PROPERTIES OF THE SINGLE-CRYSTAL large25 micrometerspore inone specimenresultingfrom a hollow
NICKEL-BASE SUPERALLOY RENE N4. II - LOW CYCLE particledid not reduce life by 60 percent.Fatigue behaviorof the
FATIGUE BEHAVIOR porousmaterial showed typical correlationwith tensile behavior.
T. P. GABB,J. GAYDA,and R. V. MINER (NASA, LewisResearch The plastic strain range life relationwas reduced proportionately
Center, Cleveland, OH) MetallurgicalTransactionsA - Physical with the reductionintensileductility,but the elasticstrainrange-life
Metallurgyand Materials Science (ISSN 0360-2133), vol. 17A, relationwas little changed reflectingthe small reductionin sigma
March 1986, p. 497-505. refs sub u/E for the porousmaterial. R.C.T.

The low cycle fatigue (LCF) properties of a single-crystal
nickel-basesuperalloyRene N4, have been examinedat 760 and
980 C in air. Specimens havingcrystallographicorientationsnear
the 001, 011, -111, 023, -236, and -145 lines were tested in fully
reversed, total-strain-controlledLCF tests at a frequency of 0.1
Hz. At 760 C, this alloy exhibited orientation dependent
tension-compressionanisotropiesof yielding which continuedto N80-25415"# liT Research Inst., Chicago, II1. Materials
failure. Alsoat 760 C, orientationsexhibitingpredominatelysingle TechnologyDiv.
slip exhibitedserratedyieldingfor manycycles.At980C, orientation THERMAL FATIGUE AND OXIDATION DATA OF OXIDE
dependencies of yieldingbehavior were smaller. In spite of the DISPERSION-STRENGTHENEDALLOYS
tension-compressionanisotropies,cyclicstress range-strainrange K.E. HOFER, V. L. HILL, and V. E. HUMPHREYS Mar. 1980
behavior was not strongly orientationdependent for either test 42 p refs
temperature. Fatigue life on a total strain range basis was highly (ContractNAS3-17787)
orientationdependent at 760 and 980 C and was related chiefly (NASA-CR-159842;IITRI-M6001-82) Avail: NTIS HC A03/MF
to elastic modulus,low modulusorientationshaving longer lives. A01 CSCL 11F
Stage I crack growth on 111 planes was dominantat 760 C, Thermal fatigueandoxidationdata were obtained24 specimens
while Stage II crack growth occurred at 980 C. Crack initiation representing 9 discrete oxide dispersion-strengthened alloy
generallyoccurredat near-surfacemicropores,but occasionallyat compositionsor fabricating techniques. Double edge wedge
oxidationspikes in the 980 C tests. Author specimens, both bare metal and coated for each systems,were

cycled between fluidizedbeds maintainedat 1130 C with a three
A87-54370" National Aeronautics and Space Administration. minute immersion in each bed. The systems included alloys
Lewis ResearchCenter, Cleveland,Ohio. identifiedas 262 in hardnessof HRC 38; 264 in hardnessof HRC
RESULTS OF AN INTERLABORATORY FATIGUE TEST 38, 40 and 43; 265 HRC 39, 266 of HRC 37 and 40; 754; and
PROGRAM CONDUCTED ON ALLOY 800H AT ROOM AND 956. Specimens in the bare conditionof 265 HRC 39 and 266
ELEVATED TEMPERATURES HRC 37 survived6000 cycleswithoutcrackingon the small radius
J. R. ELLIS (NASA, Lewis Research Center, Cleveland; Akron, of the doubleedge wedge specimen.A coated specimenof 262
University, OH) Journal of Testing and Evaluation (ISSN HRC 38, 266 HRC 37 and 266 HRC40 also survived6000 cycles
0090-3973), vol. 15, Sept. 1987, p. 249-256. Researchsponsored without cracking. A duplicatecoated specimen of 262 HRC 38
by the General Atomic Co. Previouslyannounced in STAR as alloy survived5250 cycles before cracks appeared. All the alloys
N85-32340. showed littleweight change comparedcomparedto alloys tested
(ContractNAG3-379) in prior programs. Authot

The experimentalapproachadopted for lowcycle fatigue tests
of alloy 800H involved the use of electrohydraulictest systems,
hourglassgeometryspecimens,diametralextensometers,and axial
straincomputers.Attemptsto identifypossibleproblemareaswere
complicated by the lack of reliable data for the heat of Alloy
800H under investigation.The methodadopted was to generate
definitive test data in an InterlaboratoryFatigue Test Program. N80-26433"# National Aeronauticsand Space Administration.
The laboratoriesparticipatingin the programwere Argonne National Lewis Research Center, Cleveland, Ohio.
Laboratory, Battelle Columbus, Mar-Test, and NASA Lewis. Fatigue THREE DIMENSIONAL FINITE-ELEMENT ELASTIC ANALYSIS
tests were conducted on both solid and turbular specimens at OF A THERMALLY CYCLED DOUBLE-EDGE WEDGE
temperaturesof 20, 593, and 760 C and strain rangesof 2.0, 1.0, GEOMETRY SPECIMEN Final Report, 1 Jun. 1977 - 1 Jan.
and 0.5 percent. The subject test method can, under certain 1979
circumstances,produce fatigue data which are serious in error. S.K. DRAKE, R. J. HILL,P. T. BIZON, J. L. KLADDEN,and B. P.
This approach subsequentlywas abandoned at General Atomic GUILLIAMS Mar. 1980 49 p refs Prepared in cooperation
Company in favor of parallel gage length specimens and axial with AF WrightAeronauticalLabs.,Wright-PattersonAFB, Ohio
extensometers. F.M.R. (ContractAF PROJ. 3066)

(NASA-TM-80980; AD-A083245; AFWAL-TR-80-2013) Avail:
N80-21493"# National Aeronautics and Space Administration. NTIS HC A03/MF A01 CSCL 11F
LewisResearchCenter, Cleveland,Ohio. An elasticstressanalysiswas performedon a wedge specimen
EFFECTS OF FINE POROSITY ON THE FATIGUE BEHAVIOR (prismatic bar with double-edge wedge cross-section)subjected
OF A POWDER METALLURGY SUPERALLOY to thermal cycles in fluidizeclbeds. Five alloys (IN 100, Mar-M
R. V. MINER, JR. and R. L. DRESHFIELD 1980 25 p refs 200, Mar-M 302, NASA TAZ-8A, and Rene 80) subjected to the
Presented at Ann. Meeting of the Am. Inst. of Mining,Met. and same thermal cyclingconditionwere analyzed.This conditionwas
PetroleumEngr., Las Vegas, Nev., 24-28 Feb. 1980 alternate 3 minute immersionsin fluidizedbeds maintainedat 316
(NASA-TM-81448; E-367) Avail: NTIS HC A02/MF A01 CSCL C and 1088 C (600 and 1990 F). The analyses were performed
11F as a joint effort of two laboratoriesusing different models and

Hot isostaticallypressed powder metallurgy Astroloy was computerprograms(NASTRAN and IS03DQ). Stress, strain, and
obtained which contained 1.4 percent fine porosity at the grain temperatureresultsare presented. GRA
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N80-30482"# Pratt and WhitneyAircraft Group,West Palm Beach, N81-21174"# National Aeronautics and Space Administration.
Fla. LewisResearch Center, Cleveland,Ohio.
EVALUATION OF THE CYCLIC BEHAVIOR OF AIRCRAFT ION BEAM SPUTTER ETCHING OF ORTHOPEDIC IMPLANTED
TURBINE DISK ALLOYS, PART 2 Contractor Report, Jul. 1978 ALLOY MP35N AND RESULTING EFFECTS ON FATIGUE
-Mar. 1980 E.G. WINTUCKY, M. CHRISTOPHER, E. BAHNUIK, and S.
B. A. COWLES and J. R. WARREN Jul. 1980 196 p refs WANG Mar. 1981 35 p refs Presented at 15th Intern.
(ContractNAS3-21379) ElectricPropulsionConf., Las Vegas, 21-23 Apr. 1981; sponsored
(NASA-CR-165123; PWA-FR-13153-PT-2) Avail: NTIS HC by AIAA, Japan Soc. for Aeron.and Space Sci. and DGLR
A09/MF A01 CSCL 11F (NASA-TM-81747; E-782) Avail: NTIS HC AO3/MF A01 CSCL

Several nickel-base aircraft turbine disk superalloys were 11F
evaluated at 650 C for resistance to fatigue crack initiationand The effects of two types of argon ion sputter etched surface
propagationunder cyclic and cyclic/dwell conditions.Controlled structures on the tensile stress fatigue properties of orthopedic
strainlowcycle fatigue(LCF) and controlledload crackpropagation implantalloy MP35N were investigated.One surface structurewas
tests were performed and results utilized to provide a direct a natural texture resulting from direct bombardment by 1 keV
comparisonamong the alloys. Tests were performed on selected argon ions. The other structure was a pattern of square holes
alloys to evaluate the effects of hold times, mean stresses, milled into the surface by a 1 keV argon ion beam througha Ni
stress-dwell cycle types, inert environment,and contractor test screenmask. The etched surfaceswere subjectedto tensilestress
methods. At the lower total strain ranges of interest, the alloys onlyinfatiguetests designedto simulatethe cyclicload conditions
exhibitedgenerallyincreasinginitiation life with increasingtensile experiencedby the stems of artificialhip joint implants.Both types
strength for both cyclic (0.33 Hz) and cyclic/dwell (900-sec hold of sputter etched surface structures were found to reduce the
per cycle) conditions.Rank order of the alloys by LCF initiation fatigue strengthbelowthat of smoothsurface MP35N. Author
life changedsubstantiallyat higherstrainranges, approachingthe
rank order expected from monotonictensile ductilities.The effect
of the 900 sec (15 min) hold time fatigue life varied significantly
from alloy to alloy. Generally, the higher-strength,finer-grained N82-10193"# liT Research Inst., Chicago, II1. Materials
alloys exhibited more significantreductions in fatigue life due to TechnologyDiv.
the dwell. The effects of mean strain were found to be negligible THERMAL FATIGUE AND OXIDATION DATA OF TAZ-8A AND
and the effects of mean stress were pronounced.At high strain M22 ALLOYS AND VARIATIONS Technical Report, 1 Feb. - 30
ranges the mean stress was near zero and did not contributeto Apr. 1980
reductionin life. At low strain ranges, however, mean stresses K.E. HOFER and V. E. HUMPHREYS Sep. 1981 44 p refs
were largeand significantreductionsin LCF lives occurred. (ContractNAS3-17787)

L.F.M. (NASA-CR-165407; IITRI-M06001-89) Avail: NTIS HC A03/MF
A01 CSCL 11F

Thermal fatigue and oxidation data were obtained on 36
specimens,representing18 distinctvariations(includingthe base
systems) of TAZ-8A and M22 alloys. Double-edge wedge
specimensfor these systemswere cycled between fluidizedbeds
maintainedat 1088 C and 316 C witha 180 s immersionin each
bed. The systemsincludedalloysTAZ-8A, M22, and 16 variations
of these alloys. Each alloy variation consisted of a unique
compositionwith an alternation in the percentage of carbon (C1

N80-32486"# National Aeronautics and Space Administration. and C2), molydenum (M1 and M2), tungsten (W1 and W2),
Lewis ResearchCenter, Cleveland,Ohio. columbium(CB1, CB2, and CB3), tantalium (T1, T2, and T3), or
FRACTURE TOUGHNESS OF BRITTLE MATERIALS boron (B1, B2, and B3) present. All of the alloys showed little
DETERMINED WITH CHEVRON NOTCH SPECIMENS weight change due to oxidation compared with other alloys
J. L. SHANNON, JR., R. T. BURSEY, D. MUNZ (KarlsruheUniv.), previouslytested in fluidized beds. Only both C1 alloy variation
and W. S. PIERCE 1980 17 p refs Proposedfor presentation specimens survived 3500 cycles without cracking in the small
at the 5th Intern. Conf. on Fracture,Cannes, France, 29 Mar. - 3 radius, althoughsubstantialcracks were present,emanating from
Apr. 1981; sponsoredby the InternationalCongresson Fracture the end notcheswhichwere used for holdingthe specimens.
(NASA-TM-81607; E-600) Avail: NTIS HC A02/MF A01 CSCL Author
11F

The use of chevron-notchspecimens for determiningthe plane
strain fracturetoughness(K sub Ic)of brittlematerials is discussed.
Three chevron-notchspecimenswere investigated:shortbar, short N82-13281"# National Aeronautics and Space Administration.
rod, and four-point-bend. The dimensionless stress intensity Lewis Research Center, Cleveland,Ohio.
coefficient used in computingK sub Ic is derivedfor the short bar ELEVATED TEMPERATURE FATIGUE TESTING OF METALS
specimen from the superposition of ligament-dependent and M.H. HIRSCHBERG In AGARD FatigueTest Methodology 18
ligament-independentsolutionsfor the straightthroughcrack,and p Oct. 1981 refs
also from experimental compliancecalibrations. Coefficientsfor Avail: NTIS HC A12/MF A01
the four-point-bend specimen were developed by the same Material characterization and evaluation conducted for the
superpositionprocedure,and with additional refinement using the purposeof calculatingfatigue crack initiationlives of components
slice model of Bluhm. Short rod specimen stress intensity operating at elevated temperatures are discussed. The major
coefficients were determined only by experimental compliance technology areas needed to perform a life prediction of an aircraft
calibration. Performance of the three chevron-notch specimens turbine engine hot section component and the steps required for
and their stress intensity factor relations were evaluated by tests life prediction are outlined. These include: the determination of
on hot-pressed silicon nitride and sintered aluminum oxide. Results the operating environment, the calculation of the thermal and
obtained with the short bar and the four-point-bend specimens on mechanical loading of the component, the cyclic stress strain and
silicon nitride are in good agreement and relatively free of specimen creep behavior of the material required for structural analysis, the
geometry and size effects within the range investigated. Results structural analysis to determine the local stress strain temperature
on aluminum oxide were affected by specimen size and time response of the material at the critical location in the
chevron-notch geometry, believed due to a rising crack growth component, and from a knowledge of the fatigue, creep, and failure
resistance curve for the material. Only the results for the short resistance of the material, a prediction of the life of the
bar specimen are presented in detail. M.G. component. E.A.K.
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N82-26436"# Cincinnati Univ.,Ohio. Dept. of Materials Science N83-14246"# National Aeronautics and Space Administration.
and Metallurgical Engineering. Lewis Research Center, Cleveland, Ohio.
HIGH TEMPERATURE LOW CYCLE FATIGUE MECHANISMS STRAINRANGE PARTITIONING: A TOTAL STRAIN RANGE
FOR NICKEL BASE AND A COPPER BASE ALLOY M.S. Thesis VERSION
Final Report G.R. HALFORD and J. F. SALTSMAN 1983 12 p refs
C. I. SHIH Washington NASA Jun. 1982 110 p refs Proposed for presentation at the Intern. Conf. on Advan. in Life
(Contract NSG-3263) Prediction, Albany, N.Y., 18-21 Apr. 1983; sponsored by ASME
(NASA-CR-3543; NAS 1.26:3543) Avail: NTIS HC A06/MF A01 (NASA-TM-83023; E-1459; NAS 1.15:83023) Avail: NTIS HC
CSCL 11F A02/MF A01 CSCL 11F

Damage mechanisms were studied in Rene' 95 and NARIoy Procedures are presented for expressing the Strainrange
Z, using optical, scanning and transmission in microscopy. In Partitioning (SRP) method for creep fatigue life prediction in terms
necklace Rene' 95, crack initiation was mainly associated with of total strain range. Inelastic and elastic strain-range - life relations
cracking of surface MC carbides, except for hold time tests at are summed to give total strain-range - life relations. The life
higher strain ranges where initiation was associated more with a components due to inelastic strains are dealt with using
grain boundary mechanism. A mixed mode of propagation with a conventional SRP procedures while the life components due to
faceted fracture morphology was typical for all cycle characters, elastic strains are expressed as families of time-dependent terms
The dependence of life on maximum tensile stress can be for each type of SRP cycle. Cyclic constitutive material behavior
demonstrated by the data falling onto three lines corresponding plays an important role in establishing the elastic strain-range -
to the three tensile hold times, in the life against maximum tensile life relations as well as the partitioning of the inelastic strains. To
stress plot. In NARIoy Z, crack initiation was always at the grain apply the approach, however, it is not necessary to have to
boundaries. The mode of crack propagation depended on the cycle determine the magnitude of the inelastic strain range. The total
character. The life decreased with decreasing strain rate and with strain SRP approach is evaluated and verified using two nickel
tensile holds. In terms of damage mode, different life prediction base superalloys, AF2-1DA and Rene 95. Excellent agreement is
laws may be applicable to different cycle characters. A.R.H. demonstrated between observed and predicted cyclic lifetimes with

70 to 80 percent of the predicted lives falling within factors of
two of the observed lives. The total strain-range SRP approach
should be of considerable practical value to designers who are
faced with creep-fatigue problems for which the inelastic strains
cannot be calculated with sufficient accuracy to make reliable life

N83-11289"# National Aeronautics and Space Administration. predictions by the conventional inelastic strain range SRP
Lewis Research Center, Cleveland, Ohio. approach. AuthorTHERMAL FATIGUE RESISTANCE OF COBALT-MODIFIED

UDIMET 700 N83-35103"# National Aeronautics and Space Administration.
P. T. BIZON In its COSAM (Conserv. Of Strategic Aerospace Lewis Research Center, Cleveland, Ohio.
Mater.) Program Overview p 77-81 Oct. 1982 THE THERMAL FATIGUE RESISTANCE OF H-13 DIE STEEL
Avail: NTIS HC A11/MF A01 CSCL 11F FOR ALUMINUM DIE CASTING DIES

The determination of comparative thermal fatigue resistances 7 Aug. 1982 22 p refs Presented at Let's Do It Ourselves:
of five cobalt composition modifications of UDIMET 700 from In Sci. and Technol., Baltimore, 2-7 Aug. 1982, sponsored by
fluidized bed tests is described. Cobalt compositional levels of National Technical Association
0.1, 4.3, 8.6, 12.8, 17.0 percent were being investigated in both

(NASA-TM-83331; E-1578; NAS 1.15:83331) Avail: NTIS HC
the bare and coated (NiCrAIY overlay) conditions. Triplicate tests A02/MF A01 CSCL 11F
of each variation including duplicate tests of three control alloys The effects of welding, five selected surface coatings, and
are under investigation. Fluidized beds were maintained at 550 stress relieving on the thermal fatigue resistance of H-13 Die Steel
and 1850 F for the first 5500 cycles at which time the hot bed for aluminum die casting dies were studied using eleven thermalwas increased to 1922 F. Immersion time in each bed is always 3
minutes. Upon the completion of 10,000 cycles, it appears that fatigue specimens. Stress relieving was conducted after each 5,000
the 8.6 percent cobalt level gives the best thermal fatigue life. cycle interval at 1050 F for three hours. Four thermal fatigue
Considerable deformation of the test bars was observed. Author specimens were welded with H-13 or maraging steel welding rods

at ambient and elevated temperatures and subsequently, subjected
to different post-weld heat treatments. Crack patterns were
examined at 5,000, 10,000, and 15,000 cycles. The thermal fatigue
resistance is expressed by two crack parameters which are the
average maximum crack and the average cracked area. The results

N83-11290"# National Aeronautics and Space Administration. indicate that a significant improvement in thermal fatigue resistance
Lewis Research Center, Cleveland, Ohio. over the control was obtained from the stress-relieving treatment.
CREEP-FATIGUE OF LOW GOBALTSUPERALLOYS Small improvements were obtained from the H-13 welded
G. R. HALFORD Inits COSAM (Conserv. Of Strategic Aerospace specimens and from a salt bath nitrogen and carbon-surface
Mater.) Program Overview p 83-88 Oct. 1982 treatment. The other surface treatments and welded specimens
Avail: NTIS HC A11/MF A01 CSCL 11F either did not affect or had a detrimental influence on the thermal

Testing for the low cycle fatigue and creep fatigue resistance fatigue properties of the H-13 die steel. A.R.H.
of superalloys containing reduced amounts of cobalt is described.
The test matrix employed involves a single high temperature N84-10267"# Rensselaer Polytechnic Inst., Troy, N.Y. Dept. of
appropriate for each alloy. A single total strain range, again Materials Engineering.
appropriate to each alloy, is used in conducting strain controlled, FATIGUE CRACK GROWTH AND LOW CYCLE FATIGUE OF
low cycle, creep fatigue tests. The total strain range is based TWO NICKEL BASE SUPERALLOYS Final Report
upon the level of straining that results in about 10,000 cycles to N.S. STOLOFF, D. J. DUQUETTE, S. J. CHOE, and S.
failure in a high frequency (0.5 Hz) continuous strain-cycling fatigue GOLWALKAR 16 Sep. 1983 51 p refs
test. No creep is expected to occur in such a test. To bracket the (Contract NAG3-22)
influence of creep on the cyclic strain resistance, strain hold time (NASA-CR-174534; NAS 1.26:174534) Avail: NTIS HC A04/MF
tests with ore minute hold periods are introduced. One test per A01 CSCL 11F
composition is conducted with the hold period in tension only, The fatigue crack growth and low cycle fatigue behavior of
one in compression only, and one in both tension and compression, two P/M superalloys, Rene 95 and Astrology, in the hot isostatically
The test temperatures, alloys, and their cobalt compositions that pressed (HIP) condition, was determined. Test variables included
are under study are given. J.D. frequency, temperature, environment, and hold times at peak tensile

39



26 METALLIC MATERIALS

loads (or strains). Crack initiation siteswere identified in both alloys. N84-17350"# National Aeronautics and Space Administration.
Crack growth rates were shown to increase in argon with Lewis Research Center, Cleveland, Ohio.
decreasing frequency or with the imposition of hold times. This PRELIMINARY STUDY OF THERMOMECHANICAL FATIGUE OF
behaviorwas attributed to the effect of oxygen in the argon. Auger POLYCRYSTALLINE MAR°M 200
analyses were performed on oxide films formed in argon. Low R.C. BILL (USAAVSCOM Researchand TechnologyLabs.), M. J.
cycle fatigue lives also were degradedby tensile hold, contraryto VERRILLI (Northwestern Univ.), M. A. MCGAW, and G. R.
previousreports in the literature.The role of environmentin low HALFORD Feb. 1984 17 p refs
cycle fatiguebehavioris discussed. M.G. (NASA-TP-2280; E-1795; NAS 1.60:2280; AVSCOM-TR-83-C-6)

Avail: NTIS HC A02/MF A01 CSCL 11F
Thermomechanicalfatigue (TMF) experimentswere conducted

on polycrystallineMAR-M 200 over a cyclictemperaturerange of
500 to 1000 C. Inelasticstrainrangesof 0.03 to 0.2 percentwere
imposed on the specimens. The TMF lives were found to be

N84-10268"# Prattand WhitneyAircraftGroup,West Palm Beach, significantlyshorter than isothermallow-cycle-fatigue(LCF) life at
Fla. GovernmentProductsDiv. the maximumcycle temperature,and in-phase cyclingwas more
LOW STRAIN, LONG LIFE CREEP FATIGUE OF AF2-1DA AND damagingthan out-of-phasecycling. Extensivecrack tip oxidation
INCO 718 appeared to play a role in promotingthe severity of in-phase
A. B. THAKKER and B. A. COWLES Apr. 1983 152 p refs cycling. Carbide particle - matrix interface cracking was also
(ContractNAS3-22387) observed after in-phaseTMF cycling.The applicabilityof various
(NASA-CR-167989; NAS 1.26:167989; FR-15652) Avail: NTIS life predictionmodels to the TMF results obtainedwas assessed.
HC A08/MF A01 CSCL 11F It was concluded that current life prediction models based on

Twoaircraftturbinediskalloys,GATORIZED AF2-DA and INCO isothermaldata as inputmust be modifiedto be applicable to the
718 were evaluated for their low strain long life creep-fatigue TMF results. M.G.
behavior. Static (tensile and creep rupture) and cyclic properties
of both alloys were characterized.The cntrolledstrain LCF tests
were conductedat 760 C (1400 F) and649 C (1200 F) for AF2-1DA N84-20674"# Syracuse Univ., N. Y. Dept. of Chemical
and INCO 718, respectively.Hold times were varied for tensile, Engineeringand MaterialsScience.
compressiveandtensile/compressivestraindwell (relaxation)tests. LITERATURE SURVEY ON OXIDATIONS AND FATIGUE LIVES
Stress (creep) hold behavior of AF2-1DA was also evaluated. AT ELEVATED TEMPERATURES Final Report
Generally, INCO 718 exhibitedmore pronouncedreductionincyclic H.W. LIU and Y. OSHIDA Apr. 1984 52 p refs
life due to hold than .AF2-1DA. The percent reductionin life for (ContractNAG3-348)
both alloysfor strain dwell tests was greater at low strain ranges (NASA-CR-174639; NAS 1.26:174639) Avail: NTIS HC A04/MF
(longer life regime). Changing hold time from 0 to 0.5, 2.0 and A01 CSCL 11F
15.0 rain. resulted in corresponding reductions in life. The Nickel-base superalloysare the most complex and the most
continuouscycleand cyclic/dwell initiationfailure mechanismwas widely used for high temperature applications such as aircraft
predominantly transgranular for AF2-1DA and intergranularfor engine components. The desirable properties of nickel-base
INCO 718. Author superalloys at high temperatures are tensile strength,

thermomechanicalfatigue resistance, low thermal expansion, as
wellas oxidationresistance.At elevatedtemperature,fatiguecracks
are often initiatedby grain boundaryoxidation,and fatigue cracks
often propagatealong grain boundaries,where the oxidationrate
is higher. Oxidation takes place at the interface between metal

N84-13265"# Battelle ColumbusLabs.,Ohio. and gas. Properties of the metal substrate, the gaseous
CREEP FATIGUE OF LOW-COBALT SUPERALLOYS: environment,as well as the oxides formed all interact to make
WASPALLOY, PM U 700 AND WROUGHT U 700 Final Report the oxidation behavior of nickel-base superalloys extremely
B. N. LEIS, R. RUNGTA, and A. 1-.HOPPER 1 Sep. 1983 complicated. The important topics include general oxidation,
61 p refs selective oxidation, internal oxidation, grain boundary oxidation,
(ContractNAS3-23289) multilayer oxide structure, accelerated oxidation under stress,
(NASA-CR-168260; NAS 1.26:168260) Avail: NTIS HC A04/MF stress-generation during oxidation, composition and substrate
A01 CSCL 11F microstructuralchanges due to prolongedoxidation,fatigue crack

The influenceof cobalt contenton the high temperaturecreep initiationat oxidizedgrainboundariesandthe oxidationaccelerated
fatigue crack initiation resistance of three primary alloys was fatiguecrack propagationalonggrain boundaries. S.L.
evaluated. These were Waspalloy, Powder U 700, and Cast U
700, with cobalt contents ranging from 0 up to 17 percent.
Waspalloywas studied at 538 C whereas the U 700 was studied N84-31348"# National Aeronautics and Space Administration.
at 760 C. Constraints of the programrequiredinvestigationat a LewisResearch Center, Cleveland,Ohio.
single strain range using diametral strain control. The approach EVALUATION OF THE EFFECT OF CRACK CLOSURE ON
was phenomenological,using standard low cycle fatigue tests FATIGUE CRACK GROWTH OF SIMULATED SHORT CRACKS
involvingcontinuouscyclingtensionholdcycling,compressionhold J. TELESMAN and D. M. FISHER Aug. 1984 12 p refs
cycling,and symmetricholdcycling.Cycling in the absence of or (NASA-TM-83778; E-2063; NAS 1.15:83778) Avail: NTIS HC
betweenholdswas done at0.5 Hz, whereasholdswhen introduced A02/MF A01 CSCL 11F
lasted 1 minute. The plan was to allocate two specimens to the A test program was performed to determine the influence of
continuous cycling, and one specimen to each of the hold time crack closure on fatigue crack growth (FCG) rates of short cracks.
conditions. Data was taken to document the nature of the cracking By use of the standard compact tension specimen, test procedures
process, the deformation response, and the resistance to cyclic were devised to evaluate closure loads in the wake of the crack
loading to the formation of small cracks and to specimen behind its tip. The first procedure determined the magnitude of
separation. The influence of cobalt content on creep fatigue crack closure as a function of the fatigued crack wave by
resistance was not judged to be very significant based on the incrementally removing the contacting wake surfaces and
results generated. Specific conclusions were that the hold time measuring closure load at each increment. The second procedure
history dependence of the resistance is as significant as the used a low-high loading sequence to simulate short crack behavior.
influence of cobalt content and increased cobalt content does not Based on the results, it was concluded that crack closure is not
produce increased creep fatigue resistance on a one to one the major reason for the more rapid growth of short cracks as
basis. S.L. compared to long crack growth. Author
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N84-32503"# Syracuse Univ., N.Y. crack closure and crack extension per cycle. The macroscopic
CRACK TIP FIELD AND FATIGUE CRACK GROWTH IN crack growth rates are reported as a function of delta k and the
GENERAL YIELDING AND LOW CYCLE FATIGUE Final Report relativemagnitudeof the TMFCG are discussedin the light of the
Z. MINZHONG (AircraftStrengthResearch Inst., Xian, China)and potentialdrop informationand of the fractographicobservations.
H. W. LIU Sep. 1984 94 p refs R.S.F.
(ContractNAG3-348)
(NASA-CR-174686; NAS 1.26:174686) Avail: NTIS HC A05/MF N85-18124"# National Aeronautics and Space Administration.
A01 CSCL 11F Lewis ResearchCenter, Cleveland,Ohio.

Fatigue life consistsof crack nucleationand crackpropagation A STUDY OF SPECTRUM FATIGUE CRACK PROPAGATION IN
periods.Fatiguecrack nucleationperiod is shorter relative to the TWO ALUMINUM ALLOYS. 1: SPECTRUM SIMPLIFICATION
propagationperiod at higher stresses. Crack nucleationperiod of J. TELESMAN and S. D. ANTOLOVICH (Georgia Inst. of
low cycle fatigue might even be shortened by material and Technology) Jan. 1985 16 p refs 2 Vol.
fabricationdefects and by environmentalattack. In these cases, (NASA-TM-86929; E-2348; NAS 1.15:86929) Avail: NTIS HC
fatigue life is largely crack propagationperiod. The characteristic A02/MF A01 CSCL 11F
crack tip field was studiedby the finite element method, and the The fatigue crack propagation behaviorof two commercialAI
crack tip field is relatedto thefar field parameters:the deformation alloyswasstudiedusingspectrumloadingconditionscharacteristics
workdensity,and the productof appliedstress and appliedstrain, of thoseencounteredatcriticallocationsinhighperformancefighter
The cycliccarck growth rates in specimens in general yieldingas aircraft.A tension dominated(TD) and tensioncompression (TC)
measured by Solomon are analyzed in terms of J-integral. A spectrumwere employedfor each alloy.Usinga mechanics-based
generalized crack behavior in terms of delta is developed. The analysis,it was suggestedthat negative loadscouldbe eliminated
relationsbetween J and the far field parameters and the relation for the TC spectrum for low to intermediate maximum stress
for the general cyclic crack growth behavior are used to analyze intensities. The suggestion was verified by subsequent testing.
fatigue lives of specimens under general-yielding cyclic-load. Using fractographic evidence, it was suggested that a further
Fatigue life is related to the appliedstress and strain ranges, the similificationin the spectra could be accomplishedby eliminating
deformationwork density,crack nucleus size, fracture toughness, low and intermediatepeak load points resulting in near or below
fatigue crack growth threshold, Young's modulus,and the cyclic threshold maximumpeak stress intensityvalues. It is concluded
yield stress and strain. The fatigue lives of two aluminumalloys that load interactionsbecome more important at higher stress
correlate well with the deformationwork density as depicted by intensitiesand moreplasticityat thecrack tip.These resultssuggest
the derived theory. The general relation is reduced to that a combined mechanics/fractographicmechanisms approach
Coffin-Mansonlow cycle fatiguelaw in the high strain region, can be used to simplifyother complex spectra. M.G.

Author

N85-18125"# National Aeronautics and Space Administration.
N84-33564"# National Aeronautics and Space Administration. LewisResearch Center, Cleveland,Ohio.
Lewis ResearchCenter, Cleveland,Ohio. A STUDY OF SPECTRUM FATIGUE CRACK PROPAGATION IN
LOW CYCLE FATIGUE BEHAVIOR OF CONVENTIONALLY TWO ALUMINUM ALLOYS. 2: INFLUENCE OF MICROSTRUC-
CAST MAR-M 200 AT 1000 DEG C TURES
W. W. MILLIGAN (Georgia Inst. of Technology) and R. C. BILL J. TELESMAN and S. D. ANTOLOVICH (Georgia Inst. of
Sep. 1984 15 p refs Technology) Jan. 1985 19 p refs 2 Vol.
(NASA-TM-83769; E-2260; NAS 1.15:83769; (NASA-TM-86930; E-2439; NAS 1.15:86930) Avail: NTIS HC
USAAVSCOM-TR-84-C-16; AD-A149178) Avail: NTIS HC A02/MF A01 CSCL 11F
A02/MF A01 CSCL 11F The importantmetallurgicalfactorsthat influencebothconstant

The low cycle fatigue behaviorof the nickel-basedsuperalloy amplitudeand spectrumcrack growth behaviorin aluminum alloys
MAR-M 200 in conventionallycast form was studied at 1000 C. were investigated.The effect of microstructuralfeatures such as
Continuouscyclingtests, withouthold times,were conductedwith grainsize, inclusions,anddispersoidswas evaluated.It was shown
inelasticstrain ranges of from 0.04 to 0.33 percent. Tests were that a lower stress intensities,the I/M 7050 alloy showed better
also conductedwhich includeda hold time at peak strainin either fatigue crack propagation(FCP) resistance than P/M 7091 alloy
tension or compression. For the conditions studied, it was for bothconstantamplitudeand spectrumtesting. Itwas suggested
determinedthat impositionof hold times didnot significantlyaffect that the most important microstructuralvariable accounting for
the fatigue life. Also, for continuouscycling tests, increasingor superior FCP resistance of 7050 alloy is its large grain size. It
decreasing the cycle frequencydid not affect life. Metallographic was furtherpostulatedthat the inhomogenousplanar slipand large
analysis revealed that the most significantdamage mechanism grain size of 7050 limitdislocationinteractionsand thus increase
involvedenvironmentallyassistedintergranularcrack initiationand slip reversibilitywhich improvesFCP performance.The hypothesis
propagation,regardlessof the cycletype. Changes in the gamma was supported by establishingthat the cyclic strain hardening
morphology(rafting and rod formation) were observed, but did exponentfor the 7091 alloyis higher thanthat of 7050. M.G.
not significantlyaffect the failure. Author

N85-19074"# National Aeronautics and Space Administration.
N85-15877"# MassachusettsInst. of Tech., Cambridge. Dept. Lewis ResearchCenter,Cleveland, Ohio.
of MaterialsScience and Engineering. LOW CYCLE FATIGUE OF MAR-M 200 SINGLE CRYSTALS AT
THERMAL-MECHANICAL FATIGUE CRACK GROWTH IN 760 AND 870 DEG C
INCONEL X-750 Final Report W.W. MILLIGAN(Georgia Inst. of Tech., Atlanta), N. JAYARAMAN
N. MARCHAND and R. M. PELLOUX Oct. 1984 17 p refs (CincinnatiUniv.),and R. C. BILL 1984 31 p refs Presented
(Contract NAG3-280) at the TMS-AIME Fall Meeting,Detroit,17-19 Sep. 1984 Prepared
(NASA-CR-174740; NAS 1.26:174740) Avail: NTIS HC A02/MF in cooperation with Army Research and Technology Labs.,
A01 CSCL 11F Cleveland

Thermal-mechanical fatigue crack growth (TMFCG) was studied (Contract DA PROJ. 1L1-61101-AH-45)
in a gamma-gamma' nickel base superalloy Inconel X-750 under (NASA-TM-86933; E-2444; NAS 1.15:86933;
controlled load amplitude in the temperature range from 300 to USAAVSCOM-TR-85-C-1) Avail: NTIS HC A03/MF A01 CSCL
650 C. In-phase (T sub max at sigma sub max), out-of-phase (T 11F
sub min at sigma sub max), and isothermal tests at 650 C were Fully reversed low cycle fatigue tests were conducted on single
performed on single-edge notch bars under fully reversed cyclic crystals of the nickel-base superalloys Mar-M 200 at 760 C and
conditions. A dc electrical potential method was used to measure 870 C. At 760 C, planar slip (octohedral) lead to orientation-depen-
crack length. The electrical potential response obtained for each dent strain hardening and cyclic lives. Multiple slip crystals strain
cycle of a given wave form and R value yields information on hardened the most, resulting in relatively high stress ranges and low
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lives. Single slip crystals strain hardened the least, resulting in rela- howeveramong the other three cycle types there was noconsistent
tively lowstress ranges and higher lives.A preferentialcrack initiation ranking. For all test types failure occurred predominately by multiple
site which was related to slip plane geometry was observed in single internal cracking originating at pores. The strong correlation of life
slip orientated crystals. At 870 C, the trends were quite different, and with delta sigma may reflect a significant crack growth period in
the slip character was much more homogeneous.As the tensile axis the life of the specimens. B.W.
orientation deviated from 001, the stress ranges increased and the
cyclic lives decreased. Twopossible mechanisms were proposed to N86-12292"# National Aeronautics and Space Administration.
explain the behavior; one is based onTakeuchi and Kuramoto'scube Lewis Research Center, Cleveland, Ohio.
cross-slip model, and the other is based on orientation-dependent INFLUENCE OF LOAD INTERACTIONS ON CRACK GROWTH
creep rates. EAK AS RELATED TO STATE OF STRESS AND CRACK CLOSURE

J. TELESMAN Sep. 1985 22 p refs
(NASA-TM-87117; E-2724; NAS 1.15:87117) Avail: NTIS HC

N85-26964"# National Aeronautics and Space Administration. A02/MF A01 CSCL 11F
Lewis Research Center, Cleveland, Ohio. Fatigue crack propagation (FCP) after an application of a
MULTIAXIAL AND THERMOMECHANICAL FATIGUE low-high loading sequence was investigated as a function of
CONSIDERATIONS IN DAMAGE TOLERANT DESIGN specimen thickness and crack closure. No load interaction effects
G. E. LEESE (TRW, Inc., Cleveland) and R. C. BILL 1985 21 were detected for specimensin a predominantplane strainstate.
p refs Presentedat the 60th Meetingof the Struct.and Mater. However, for the plane stress specimens, initiallyhigh FCP rates
Panel, San Antonio, 21-26 Apr. 1985; sponsored by AGARD after transitionto a higher stress intensityrange were observed.
PreparedincooperationwithArmy ResearchandTechnologyLabs., The difference in observed behaviorwas explained by examining
Cleveland the effect of the resultingclosure stress intensity values on the
(NASA-TM-87022; E-2514; NAS 1.15:87022; effective stress intensityrange. Author
USAAVSCOM-TR-85-C-5;AD-A157112) Avail: NTIS HC
AO2/MF A01 CSCL 11F N86-12294"# National Aeronauticsand Space Administration.

Inconsideringdamagetolerantdesign conceptsfor gas turbine Lewis ResearchCenter, Cleveland,Ohio.
hot section components, several challenging concerns arise: FATIGUE CRACK PROPAGATION OF NICKEL-BASE
Complex multiaxial loading situations are encountered; SUPERALLOYS AT 650 DEC C
Thermomechanicalfatigue loading involvingvery wide temperature J. GAYDA, T. P. GABB, and R. V. MINER Oct. 1985 22 p
ranges is imposed on components;Some hot section materials refs Presented at the Symp. on Low-Cycle Fatigue Directions
are extremely anisotropic; and coatings and environmental for the Future, Bolton Landing, N.Y., 30 Sep. - 4 Oct. 1985;
interactionsplayan importantrole incrack propagation.The effects sponsoredby AmericanSocietyfor Testing and Materials
of multiaxialityand thermomechanicalfatigue are consideredfrom (NASA-TM-87150; E-2778; NAS 1.15:87150) Avail: NTIS HC
the standpointof their impacton damagetolerantdesignconcepts. A02/MF A01 CSCL 11F
Recently obtained research results as well as results from the The 650 C fatiguecrackpropagationbehaviorof two nickel-base
open literature are examined and their implicationsfor damage superalloys, Rene 95 and Waspaloy, is studied with particular
tolerant designare discussed.Three importantneeds requiredto emphasisplacedon understandingthe rolesof creep,environment,
advance analyticalcapabilities in support of damage tolerant design and two key grain boundary alloyingadditions, boron and zirconium.
become readily apparent: (1) a theoretical basis to account for Comparison of air and vacuum data shows the air environment to
the effect of nonproportional loading (mechanical and be detrimental over a wide range of frequencies for both alloys.
mechanical/thermal); (2) the development of practical crack growth More in-depth analysis on Rene 95 shows at lower frequencies,
parameters that are applicable to thermomechanical fatigue such as 0.02 Hz, failure in air occurs by intergranular,
situations; and (3) the development of crack growth models that environmentally-assisted creep crack growth, while at higher
address multiple crack failures. Author frequencies, up to 5.0 Hz, environmental interactions are still

evident but creep effects are minimized. The effect of B and Zr in
N86-10311"# National Aeronautics and Space Administration. Waspaloy is found to be important where environmental and/or
Lewis Research Center, Cleveland, Ohio. creep interactions are presented. In those instances, removal of
CREEP-FATIGUE BEHAVIOR OF NICOCRALY COATED PWA B and Zr dramatically increases crack growth and it is therefore
1480 SUPERALLOY SINGLE CRYSTALS plausiblethat effective dilutionof these elements may explaina
R. V. MINER, J. GAYDA, and M. G. HEBSUR 1985 20 p previouslyobserved trend in which crack growth rates increase
refs Presented at the Syrup. on Low-Cycle Fatigue Directions with decreasinggrainsize. Author
for the Future, Bolton Landing, N.Y., 30 Sep. - 4 Oct. 1985;
sponsoredby AmericanSociety for TestingMaterials N86-12295"# National Aeronautics and Space Administration.
(NASA-TM-87110; E-2710; NAS 1.15:87110) Avail: NTIS HC LewisResearchCenter, Cleveland,Ohio.
AO2/MF A01 CSCL 11F AN UPDATE OF THE TOTAL-STRAIN VERSION OF SRP

Single crystal specimensof a Ni base superalloy,PWA 1480, J.F. SALTSMAN and G. R. HALFORD Oct. 1985 27 p refs
witha lowpressureplasmasprayedNiCoCrAIYcoatingweretested Presented at the Symp. on Low Cycle Fatigue: Direc. for the
in various 0.1 Hz fatigue and creep fatigue cycles both at 1015 Future,Lake George, N.Y., 30 Sep. - 4 Oct. 1985; sponsoredby
and 1050 C. Creep fatigue tests of the cp, pc, and cc types were American Society for Testing and Materials, American Inst. of
conductedwithvariousconstanttotalstrainrangesemployingcreep Mining, Metallurgical and Petroleum Engineers, and American
dwellsat variousconstant stresses.Considerablecyclicsoftening Societyfor Metals
occurredas was evidencedparticularlyby rapidlyincreasingcreep (NASA-TP-2499; E-2575; NAS 1.60:2499) Avail: NTIS HC
ratesin the creep fatigue tests.The cycle timein the creep fatigue A03/MF A01 CSCL 11F
tests typicallydecreased by more than 80 percentat 0.5 N sub f. An updatedprocedurefor characterizingan alloyand predicting
Though cyclic life did correlate with delta epsilon sub in a better cyclic life by using the total strain range version of strainrange
correlationexistedwithsub f for both thefatigue and creep fatigue partitioning(TS-SRP) has been developed. The principalfeature
tests,and poor correlationswere observed with either sigma sub of this updateis a new procedurefor determiningthe interceptof
max or the average cycle time. A model containingboth delta time dependent elastic strain range versus cyclic life lines. The
sigma and delta sigma (sub in), N sub f = alpha delta sigma procedure is based on an established relation between failure
(sub in) beta delta sigmagamma,with best fit values of sigma for and the cyclicstress-strainresponseof an alloy.The stress-strain
each cycle type, but the same values of beta and gamam, was responseis characterizedby empiricalequationspresentedin this
found to provide good correlations. Life lines were not greatly report.These equationswere determinedwith the aid of a cyclic
differentamongthe cycle types, differingonly by a factor of about constitutivemodel. The procedurespresented herein reduce the
three. The cp cycle life line was lowestfor bothtest temperatures, testing requiredto characterize an alloy. Failure testing is done
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only in the high strain, lowlife regime; cyclic stress-strain response N86-21661"# National Aeronautics and Space Administration.
is determined from tests conducted in both the high and low Lewis Research Center, Cleveland, Ohio.
strain regimes. These tests are carried out to stability of the VARIABLES CONTROLLING FATIGUE CRACK GROWTH OF
stress-strainhysteresisloop but not to failure. Thus boththe time SHORT CRACKS
and costs requiredto characterize an alloy are greatly reduced. J. TELESMAN, D. M. FISHER, and D. HOLKA (Michigan
This approach was evaluated and verified for two nickel base TechnologicalUniv.,Houghton) Dec. 1985 20 p refs Presented
superalloys,AF2-1DA and Inconel718. Author at the InternationalConference on Fatigue, CorrosionCracking,

Fracture Mechanics, and Failure Analysis, Salt Lake City, Utah,
2-6 Dec. 1985; sponsoredby American Society for Metals
(NASA-TM-87208; E-2865; NAS 1.15:87208) Avail: NTIS HC
A02/MF A01 CSCL 11F

A studywas conducted to evaluate the roles of crack closure
N86-14356"# Texas A&M Univ., College Station. Dept. of and microstructurein the fatigue growth of short cracks. Testing
Aerospace Engineering. was performed at R ratios of 0.1, 0.5, and 0.7. At all R ratios
DEVELOPMENT OF CONSTITUTIVE MODELS FOR CYCLIC short cracks exhibited accelerated growth rates in comparison to
PLASTICITY AND CREEP BEHAVIOR OF SUPER ALLOYS AT long cracks. It was concluded that crack closure could not entirely
HIGH TEMPERATURE Final Report account for the accelerated growth rates of short cracks. The
W. E. HAISLER 30 Sep. 1983 161 p refs accelerated growth rates occurred over crack lengths on the order
(Contract NAG3-31; RESEARCH FOUNDATION PROJ. 4246) of grain size, suggesting a strong influence of microstructure. A
(NASA-CR-176418; NAS 1.26:176418) Avail: NTIS HC A08/MF significant effect of grain boundaries and inclusions on short crack
AOl CSCL 11F FCG behavior was observed. For very short crack lengths, fatigue

An uncoupled constitutive model for predicting the transient growth rates do not appear to be a function of either delta K or
response of thermal and rate dependent, inelastic material behavior R ratio. Author
was developed. The uncoupled model assumes that there is a
temperature below which the total strain consists essentially of N86-22686"# National Aeronautics and Space Administration.
elastic and rate insensitive inelastic strains only. Above this Lewis Research Center, Cleveland, Ohio.
temperature, the rate dependent inelastic strain (creep) dominates. INFLUENCE OF FATIGUE CRACK WAKE LENGTH AND STATE
The rate insensitive inelastic strain component is modelled in an OF STRESS ON CRACK CLOSURE
incremental form with a yield function, blow rule and hardening J. TELESMAN and D. M. FISHER 1986 27 p refs Presented
law. Revisions to the hardening rule permit the model to predict at the International Symposium on Fatigue Crack Closure, 1-2
temperature-dependent kinematic-isotropic hardening behavior, May 1986; sponsored by the American Society for Testing and
cyclic saturation, asymmetric stress-strain response upon stress Materials
reversal, and variable Bauschinger effect. The rate dependent (NASA-TM-87292; E-2999; NAS 1.15:87292) Avail: NTIS HC
inelastic strain component is modelled using a rate equation in A03/MF AOl CSCL 11F
terms of back stress, drag stress and exponent n as functions of The location of crack closure with respect to crack wake and
temperature and strain. A sequence of hysteresis loops and specimen thickness under different loading conditions was
relaxation tests are utilized to define the rate dependent inelastic determined. The rate of increase of K sub CL in the crack wake
strain rate. Evaluation of the model has been performed by was found to be significantly higher for plasticity induced closure
comparison with experiments involving various thermal and in comparison to roughness induced closure. Roughness induced
mechanical load histories on 5086 aluminum alloy, 304 stainless closure was uniform throughout the thickness of the specimen
steel and Hastelloy X. Author while plasticity induced closure levels were 50 percent higher in

the near surface region than in the midthickness. The influence
of state of stress on low-high load interaction effects was also
examined. Load interaction effects differed depending upon the
state of stress and were explained in terms of delta K sub eff.

Author

N86-20542"# Syracuse Univ., N.Y. Dept. of Mechanical and
Aerospace Engineering. N86-24818"# Massachusetts Inst. of Tech., Cambridge. Dept.
GRAIN BOUNDARY OXIDATION AND OXIDATION of Materials Science and Engineering.
ACCELERATED FATIGUE CRACK NUCLEATION AND THERMAL-MECHANICAL FATIGUE BEHAVIOR OF
PROPAGATION NICKEL-BASE SUPERALLOYS Final Report
H. W. LIU and Y. OSHIDA Jan. 1986 19 p refs Presented R.M. PELLOUXand N. MARCHAND Mar. 1986 186 p refs
at the Minnowbrook Conference on Life Prediction for High (Contract NAG3-280)
Temperature Gas Turbine Materials, Blue Mountain Lake, N.Y., (NASA-CR-175048; NAS 1.26:175048; USAAVSCOM-TR-86-C-4)
27-30 Aug. 1985 Sponsored in part by the HOST Program Avail: NTIS HC A09/MF A01 CSCL 11F
(Contract NAG3-348) The main achievements of a 36-month research program are
(NASA-CR-175050; NAS 1.26:175050) Avail: NTIS HC A02/MF presented. The main objective was to gain more insight into the
AOl CSCL 11F problem of crack growth (Jnder thermal mechanical fatigue (TMF)

Fatigue life at elevated temperatures is often shortened by conditions. This program was conducted at M.I.T. for the period
oxidation. Grain boundary oxidation penetrates deeper than the of September 1982 to September 1985. The program was arranged
surface oxidation. Therefore, grain boundary oxide penetration into five technical tasks. Under Task I, the literature of TMF data
could be the primary cause of accelerated fatigue crack nucleation was reviewed. The goal was to identify the crack propagation
and propagation, and the shortened fatigue life at elevated conditions in aircraft engines (hot section) and to assess the validity
temperatures. Grain boundary oxidation kinetics was studied and of conventional fracture mechanics parameters to address TMF
its statistical scatter was analyzed by the Weibull's distribution crack growth. The second task defined the test facilities, test
function. The effects of grain boundary oxidation on shortened specimen and the testing conditions needed to establish the
fatigue life was analyzed and discussed. A model of intermittent effectiveness of data correlation parameters identified in Task I.
microruptures of the grain boundary oxide was proposed for the Three materials (Inconel X-750, Hastelloy-X, and B-1900) were
fatigue crack growth in the low frequency region. The proposed chosen for the program. Task II was accomplished in collaboration
model is consistent with the observations that fatigue crack growth with Pratt & Whitney Aircraft engineers. Under Task III, a
rate in the low frequency region with hold time at K sub max is computerized testing system to measure the TMF behavior (LCF
inversely proportional to cyclic frequency and that crack growth is and CG behaviors) of various alloys systems was built. The software
intergranular. Author used to run isothermal and TMF tests was also developed. Built
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around a conventional servohydraulic machine, the system is N86-28164"# National Aeronautics and Space Administration.
capable of push-pull tests under stress or strain and temperature Lewis Research Center, Cleveland, Ohio.
controlled conditions in the temperature range of 25C to 1050C. MICROMECHANISMS OF THERMOMECHANICAL FATIGUE: A
A crack propagation test program was defined and conducted COMPARISON WITH ISOTHERMAL FATIGUE
under Task IV. The test variables included strain range, strain R.C. BILL 1986 21 p Presented at the internationalSpring
rate (frequency) and temperature. Task V correlated and Conference Fatigue at High Temperatures, Paris, France, 9-11
generalized the Task IV data for isothermal and variable Jun. 1986; sponsoredby the Societe Francaise de Metallurgie
temperature conditions so that several crack propagation Prepared in cooperation with Army Aviation Research and
parameters could be compared and evaluated. The structural TechnologyActivity,Cleveland,Ohio
damage (mode of cracking and dislocationsubstructure)under (NASA-TM-87331; E-3075; NAS 1.15:87331;
TMF cycling was identified and contrasted with the isothermal USAAVSCOM-TR-86-C-7;AD-A180176) Avail: NTIS HC
damage to achieve a sound fundamental mechanistic A02/MF A01 CSCL 11F
understandingof TMF. Author ThermomechanicalFatigue (TMF) experimentswere conducted

on Mar-M 200, B-1900, and PWA-1480 (single crystals) over
temperature ranges representative of gas turbine airfoil
environments. The results were examined from both a
phenomenologicalbasis and a micromechanicalbasis. Depending
on constituents present in the superalloy system, certain
micromechanisms dominated the crack initiation process and
significantlyinfluencedthe TMF lives as well as sensitivityof the
material to the type TMF cycle imposed. For instance, high

N86-25454"# PennsylvaniaState Univ., UniversityPark. Dept. temperature cracking around grain boundary carbides in Mar-M
of EngineeringScience and Mechanics. 200 resulted in short in-phase TMF lives compared to either
AXIAL AND TORSIONAL FATIGUE BEHAVIOR OF WASPALOY out-of-phaseor isothermal lives. In single crystal PWA-1480, the
Final Report type of coating applied was seen to be the controlling factor in
S. ZAMRIK, M. MIRDAMADI, and F. ZAHIRI Apr. 1986 27 p determining sensitivity to the type of TMF cycle imposed.
(Contract NAG3-264) Micromechanisms of deformation were observed over the
(NASA-CR-175052; NAS 1.26:175052; USAAVSCOM-TR-86-C-14) temperature range of interest to the TMF cycles, and provided
Avail: NTIS HCA02/MFA01 CSCL 11F some insight as to the differences between TMF damage

The cyclic flow response and crack growth behavior of mechanisms and isothermal damage mechanisms. Finally, the
Waspaloy at room temperature and 650 C under tensile loading applicability of various life prediction models to TMF results was
and torsional loading was studied, for two conditions of Waspaloy: reviewed. Current life prediction models based on isothermal data
fine grain, large gamma prime size; coarse grain, small gamma must be modified before being generally applied to TMF. Author
prime size. The fine grain material showed 5 to 10 percent
hardening after about 10 percent of life, with sequent softening to N86-31699"# National Aeronautics and Space Administration.
failure at both themperature levels. The coarse grain material Lewis Research Center, Cleveland, Ohio.
showed either stable response or monotonic softening to failure. THE LOW CYCLE FATIGUE BEHAVIOR OF A
Early crack initiationwas observed on planes of maximum shear, PLASMA-SPRAYED COATING MATERIAL
witheventualbranchingto principleplanes undertorsionalloading; J. GAYDA, T. P. GABB, and R. V. MINER, JR. 1986 17 p
cracks were always normal to load axis under tensile loading. Presented at the 1986 TMS-AIME Annual Meeting, New Orleans,
Also, crackpathswere intergranularat 650 C, mostlytransgranular La., 2-6 Mar. 1988
at room temperature. Author (NASA-TM-87318; E-3050; NAS 1.15:87318) Avail: NTIS HC

A02/MF A01 CSCL 11F
Singlecrystalnickel-basesuperalloysemployed inturbineblade

applications are often used with a plasma spray coating for
oxidation and hot corrosionresistance.These coatings may also
affect fatigue life of the superalloysubstrate.As part of a large
program to understandthe fatigue behavior of coated single
crystals, fully reversed, total strain controlled fatigue tests were

N86-25455"# Georgia Inst. of Tech., Atlanta. School of Materials run on a free standing NiCoCrAIY coating alloy, PWA 276, at 0.1
Engineering. Hz. Fatigue tests were conducted at 650 C, where the NiCoCrAIY
YIELDING AND DEFORMATION BEHAVIOR OF THE SINGLE alloy has modest ductility, and at 1050 C, where it is extremely
CRYSTAL NICKEL-BASE SUPERALLOY PWA 1480 ductile, showingtensile elongation in excess of 100 percent. At
W. W. MILLIGAN,JR. May 1986 96 p refs the lower test temperature, deformation induced disordering
(ContractNAG3-503) softenedthe NiCoCrAIYalloy,while at the higher test temperature
(NASA-CR-175100;NAS 1.26:175100; USAAVSCOM-TR-86-C-18; cyclic hardening was observed which was linked to gradual
AD-A171035) Avail: NTIS HC A05/MF A01 CSCL 11F coarsening of the two phase microstructure.Fatigue life of the

Interruptedtensile tests were conductedto fixed plastic strain NiCoCrAIYalloy was significantlylongerat the higher temperature.
levelsin 100 orderedsinglecrystalsof the nickelbased superalloy Further, the life of the NiCoCrAIYalloy exceeds that of coated,
PWA 1480. Testing was done in the range of 20 to 1093 C, at /001/-oriented PWA 1480 singlecrystals at 1050 C, but at 650 C
strain rate of 0.5 and 50%/rain. The yield strengthwas constant the life of the coated crystal is greater than that of the NiCoCrAIY
from 20 to 760 C, above which the strengthdroppedrapidlyand alloyon a total strainbasis. Author
became a stong function of strain rate. The high temperature
data were represented very well by an Arrheniustype equation, N87-14489"# National Aeronauticsand Space Administration.
which resulted in three distinct temperature regimes. The LewisResearchCenter, Cleveland, Ohio.
deformationsubstructuresweregroupedinthe samethree regimes, ESTIMATION OF HIGH TEMPERATURE LOW CYCLE FATIGUE
indicatingthat there was a fundamentalrelationshipbetween the ON THE BASIS OF INELASTIC STRAIN AND STRAINRATE
deformationmechanismsand activation energies. Models of the A. BERKOVITS Sep. 1986 13 p
yieldingprocesswereconsidered,anditwas foundthat no currently (NASA-TM-88841; E-3188; NAS 1.15:88841) Avail: NTIS HC
available model was fully applicable to this alloy. It was also A02/MF A01 CSCL 11F
demonstrated that the initial deformation mechanism (during Fatigue life at elevated temperature can be predicted by
yielding)was frequentlydifferentfrom that which wouldbe inferred introducingparametricvaluesobtainedfrom monotonicconstitutive
by examiningspecimenswhich were testedto failure. Author behavior into the Universal-SlopesEquation. For directionally
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solidified MAR-M200+HF at 975 C, these parameters are the 27
maximum stress achievable under entirely plastic

(time-independent)and purely creep (time-dependent)conditions NONMETALLIC MATERIALS
and the corresponding inelastic strains, as well as the elastic
modulus. For materialswhich exhibit plasticity/creepinteraction,
two more pairs of monotonicparametersmust be evaluated for Includesphysical,chemical,and mechanicalpropertiesof plastics,
fatigue life prediction. This life-predictionmethod based on the elastomers, lubricants,polymers,textiles, adhesives,and ceramic
Universal-SlopesEquation, resulted from a constitutive model materials.
characterizingmonotonicand cyclicdata as inelasticstrainrateas
a functionof inelasticstrain.Characterizingmonotonicdata is this

A80-42085" National Aeronautics and Space Administration.way, permitted distinctionbetween different material responses
LewisResearchCenter, Cleveland, Ohio.such as strain-hardening,strain-softening,and dynamicrecovery

effects. Understandingand definingthe regionof influenceof each FRACTURE TOUGHNESS DETERMINATION OF AL203 USING
of these effects facilitated formulationof the constitutivemodel in FOUR-POINT-BEND SPECIMENS WITH STRAIGHT-THROUGH
relationto the mechanicaland microstructuralprocessesoccurring AND CHEVRON NOTCHES
in the material undercyclic loading. Author D. MUNZ, R. T. BUBSEY,and J. L. SHANNON, JR. (NASA, Lewis

Research Center, Strengthof Materials Section, Cleveland,Ohio)
American Ceramic Society, Journal, vol. 63, May-June 1980, p.
300-305. refs

N87-20408"# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio. A80-50696" Deutsche Forschungs- und Versuchsanstalt fuer
BITHERMAL LOW-CYCLE FATIGUE BEHAVIOR OF A Luft- und Raumfahrt, Cologne (West Germany).
NICOCRALY-COATED SINGLE CRYSTAL SUPERALLOY PERFORMANCE OF CHEVRON-NOTCH SHORT BAR SPECIMEN
J. GAYDA, T. P. GABB, R. V. MINER, and G. R. HALFORD IN DETERMINING THE FRACTURE TOUGHNESS OF SILICON
1987 25 p Presented at the 1987 TMS-AIME Annual Meeting, NITRIDE AND ALUMINUM OXIDE
Denver, Colo.,22-26 Feb. 1987 D. MUNZ (Deutsche Forschungs-und Versuchsanstaltfuer Luft-
(NASA-TM-89831; E-3484; NAS 1.15:89831) Avail:NTIS HC und Raumfahrt, Cologne,West Germany), R. T. BUBSEY, and J.
A02/MF A01 CSCL 20B L. SHANNON, JR. (NASA, Lewis Research Center, Strength of

Specimensof a singlecrystal superalloy,PWA 1480, both bare Materials Section, Cleveland, Ohio) Journal of Testing and
and coated with a NiCoCrAIY alloy, PWA 276, were tested in Evaluation,vol. 8, May 1980, p. 103-107. refs
low-cycle fatigue at 650 and 1050 C, and in bithermal Ease of preparationand testing are advantagesuniqueto the
thermomechanicalfatigue tests. In the two bithermal test types, chevron-notchspecimen used for the determinationof the plane
tensile strain was imposed at one of the two temperaturesand strain fracture toughness of extremely brittle materials. During
reversed in compressionat the other. In the high-strainregime, testing, a crack develops at the notch tip and extends stably as
lives for both bithermaltest types approachedthat for the 650 C the loadisincreased.Fora givenspecimenand notchconfiguration,
isothermaltest on an inelasticstrain basis, all beingcontrolledby maximum load always occurs at the same relativecrack length
the lowductilityof the superalloyat 650 C. In the low-strainregime, independent of the material. Fracture toughness is determined
coating crackingreduced life in the 650 C isothermal test. The fromthe maximumloadwithno needfor cracklengthmeasurement.
bithermal test imposingtension at 650 C, termed out-of-phase, Chevron notch acuity is relatively unimportant since a crack is
also producedrapidsurfacecracking, but in both coated and bare producedduringspecimen loading.In this paper, the authorsuse
specimens. Increased crack growth rates also occurred for the their previouslydeterminedstress intensityfactor relationshipfor
out-of-phasetest. Increasedlives in vacuumsuggestedthat there the chevron-notchshortbar specimento examinethe performance
is a large environmentalcontributionto damage inthe out-of-phase of that specimenin determiningthe plane strainfracturetoughness
test due to the 1050 C exposure followed by tensile strainingat of siliconnitrideand aluminumoxide. (Author)
the low temperature. Author

A81-32545"# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
FRACTURE TOUGHNESS OF BRITTLE MATERIALS

N87-22777"# National Aeronautics and Space Administration. DETERMINED WITH CHEVRON NOTCH SPECIMENS
LewisResearch Center,Cleveland, Ohio. J.L. SHANNON, JR., R. T. BUBSEY,W. S. PIERCE (NASA, Lewis
FATIGUE DAMAGE INTERACTION BEHAVIOR OF PWA 1480 Research Center, Cleveland, Ohio), and D. MUNZ (Karlsruhe,
MICHAEL A. MCGAW In its StructuralIntegrityand Durabilityof Universitat;KernforschungszentrumKarlsruheGmBH, Karlsruhe,
Reusable Space PropulsionSystemsp 83-87 1987 West Germany) Societe Francaise de Metallurgie,International
Avail:NTIS HC A10/MFA01 CSCL 11F Conference on Fracture, 5th, Cannes, France, Mar. 29-Apr. 3,

The fatigue damage interactionbehavior of PWA 1480 single 1981, Paper. 15 p. refs
crystalalloy has been experimentallyestablished for the two-level Short bar, short rod, and four-point-bend chevron-notch
loadingcase inwhicha blockof low-cyclefatigueloadingisfollowed specimens wore used to determine the plane strain fracture
by high-cyclefatigue loadingto failure. A relative life ratio N1/N2 toughnessof hot-pressed silicon nitride and sintered aluminum
(where N1 and N2 are the low- and high-cycle fatigue baseline oxide brittle ceramics. The unique advantages of this specimen
lives, respectively)of approximately0.002 was exploredto assess type are: (1) the productionof a sharp natural crack during the
the interactionbehavior. The experimentalresults thus far show early stage of test loading, so that no precrackingis required,
evidenceof a loadingorder interactioneffect to a similardegree and (2) the load passes through a maximum at a constant,
of detriment as has been observed in polycrystallinematerials, material-independentcrack length-to-width ratio for a specific
Currentgenerationsinglecrystal alloysin general,and PWA 1480 geometry, so that no post-test crack measurement is required.
in particular, contain pores; indeed, it was observed in all cases The plane strainfracturetoughnessis proportionalto the maximum
that specimen failure initiated from pores connected with or test load and functions of the specimen geometry and elastic
immediately below the surface. Detailed fractographic and compliance.Although results obtained for silicon nitride are in
metallographicstudies are currently being made to assess the good mutual agreement and relatively free of geometry and size
nature of the porosityin terms of its effect on fatigue life. effects, aluminumoxideresultswereaffected inboththese respects

Author by the risingcrackgrowth resistancecurve of the material. O.C.
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A83-29734"# National Aeronautics and Space Administration. had a pronounced effect on ultrasonic attenuation. The ultrasonic
Lewis Research Center, Cleveland, Ohio. results are supplemented by low-energy radiography and scanning
RESIN SELECTION CRITERIA FOR TOUGH COMPOSITE laser acoustic microscopy. Author
STRUCTURES
C. C. CHAMIS (NASA, Lewis Research Center, Cleveland, OH)

and G. T. SMITH IN:Structures, Structural Dynamicsand Materials A87-12938" National Aeronautics and Space Administration.
Conference, 24th, Lake Tahoe, NV, May 2-4, 1983, Collection of Lewis Research Center, Cleveland, Ohio.
Technical Papers. Part 1 . New York, American Institute of CORRELATION OF PROCESSINGAND SINTERING VARIABLES
Aeronautics and Astronautics, 1983, p. 45-60. refs WITH THE STRENGTH AND RADIOGRAPHY OF SILICON
(AIAA 83-0801) NITRIDE

Resin selection criteria are derived using a structured W.A. SANDERS (NASA, LewisResearch Center, Cleveland,OH)
methodologyconsistingof an upwardintegratedmechanistictheory and G. Y. BAAKLINI (Cleveland State University,OH) Ceramic
and its inverse (top-down structuredtheory). These criteria are Engineeringand Science Proceedings(ISSN 0196-6219), vol. 7,
expressed in a 'criteria selection space' which can be used to July-Aug.1986, p. 839-859. refs
identifyresin bulk propertiesfor improvedcomposite 'toughness'. A sintered Si3N4-SiO2-Y203 composition,NASA 6Y, was
The resin selectioncriteriacorrelatewith a varietyof experimental developed that reached four-point flexural average
data includinglaminatestrength,elevated temperature effects and strength/standarddeviationvaluesof 857/36, 544/33, and 462/59
impact resistance. Author MPa at roomtemperature,1200 and 1370 C, respectively.These

strengths represented improvementsof 56, 38, and 21 percent
A84-11676" National Aeronautics and Space Administration. over baseline propertiesat the three test temperatures.At room
LewisResearch Center, Cleveland,Ohio. temperaturethe standard deviationwas reduced by over a factor
DEVELOPMENT OF PLANE STRAIN FRACTURE TOUGHNESS of three. These accomplishmentswere realized by the iterative
TEST FOR CERAMICS USING CHEVRON NOTCHED utilizationof conventionalX-radiographyto characterizestructural
SPECIMENS (density)uniformityas affected by systematicchanges in powder
R. T. BUBSEY, J. L. SHANNON, JR. (NASA, Lewis Research processing and sintering parameters. Accompanying the
Center,Cleveland,OH), and D. MUNZ (Deutsche Forschungs-und improvementin mechanicalproperties was a change in the type
Versuchsanstalt fuer Luft- und Raumfahrt, Cologne, West of flaw causingfailure from a poreto a large columnarbeta-Si3N4
Germany) IN: Ceramics for high-performanceapplicationsII1: grain typically40-80 micron long, 10-30 micronwide, and with an
Reliability. New York, PlenumPress, 1983, p. 753-771. refs aspectratio of 5:1. Author

Chevron-notchedfour-point-bendand short-barspecimenshave
been used to determine the fracture toughness of sintered
aluminum oxide and hot-pressed silicon nitride ceramics. The
fracturetoughnessfor Si3N4 is foundto be essentiallyindependent A87-30621" National Aeronautics and Space Administration.
of the specimensize and chevronnotch configuration,withvalues LewisResearch Center, Cleveland,Ohio.
ranging from 4.6 to 4.9 MNm exp -3/2. In contrast, significant FRACTURE TOUGHNESS OF SI3N4 MEASURED WITH SHORT
specimen size and notch geometry effects have been observed BAR CHEVRON-NOTCHED SPECIMENS
for AI203, with the fracture toughness ranging from 3.1 to 4.7 JONATHAN A. SALEM andJOHN L.SHANNON, JR. (NASA, Lewis
MNm exp -3/2. These effects are attributed to a rising crack Research Center, Cleveland, OH) Journal of Materials Science
growthresistance curvefor the AI203 tested. V.L. (ISSN 0022-2461), vol. 22, Jan. 1987, p. 321-324. Previouslyannouncedin STAR as N86-13495. refs

A86-15226" Case Western Reserve Univ.,Cleveland, Ohio. The short bar chevron-notchedspecimen is used to measure
FINITE ELEMENT ANALYSIS OF RESIDUAL STRESS IN the planestrainfracturetoughnessof hotpressedSi3N4. Specimen
PLASMA-SPRAYED CERAMIC proportionsand chevron-notchangle are varied, thereby varying
R. L. MULLEN(Case Western Reserve University,Cleveland,OH), the amount of crack extension to maximum load (upon which K
R. C. HENDRICKS, and G. MCDONALD (NASA, Lewis Research sub IC is based). The measuredtoughness(4.68 + or 0.19 MNm
Center, Cleveland, OH) Ceramic Engineering and Science to the 3/2 power) is independent of these variations, inferring

Proceedings (ISSN 0196-6219), vol. 6, July-Aug. 1985, p. that the materialhas a flat crackgrowth resistancecurve. Author871-879. refs
Residualstress in a ZrO2-Y203 ceramiccoatingresultingfrom

the plasmasprayingoperation is calculated.The calculationswere
cloneusingthe finiteelement method.Boththermaland mechanical N82-14359"# National Aeronautics and Space Administration.
analysis were performed.The resulting residual stress field was Lewis Research Center, Cleveland, Ohio.
compared to the measurements obtained by Hendricks and ULTRASONIC VELOCITY FOR ESTIMATING DENSITY OF
McDonald. Reasonable agreement between the predicted and STRUCTURAL CERAMICS
measuredmomentoccurred.However, the resultingstressfield is S.J. KLIMA, G. K. WATSON, T. P. HERBELL,and T. J. MOORE
not in pure bending. Author 1981 12 p refs Presented at the Automotive Technol.

Develop. ContractorCoord. Meeting, Dearborn, Mich., 26-29 Oct.
A86-37141" National Aeronautics and Space Administration. 1981
Lewis Research Center, Cleveland,Ohio. (ContractDE-AI01-77CS-51040)
NONDESTRUCTIVE CHARACTERIZATION OF STRUCTURAL (NASA-TM-82765; DOE/NASA/51040-35; E-1026-5) Avail:
CERAMICS NTIS HC A02/MF A01 CSCL 11B
S. J. KLIMA and G. Y. BASKLINI (NASA, Lewis Research Center, The feasibility of using ultrasonic velocity as a measure of
Cleveland, OH) SAMPE Quarterly (ISSN 0036-0821), vol. 17, bulk density of sintered alpha silicon carbide was investigated.
April 1986, p. 13-19. Previously announced in STAR as The materialstudiedwas either in the as-sinteredconditionor hot
N86-22970. refs isostaticallypressed in the temperaturerange from 1850 to 2050

Ultrasonic velocity and attenuationmeasurementswere used C. Densitiesvariedfrom approximately2.8 to 3.2 g cu cm. Results
to characterize density and microstructurein monolithic silicon show that the bulk, nominal density of structuralgrade silicon
nitride and silicon carbide. Research samples of these structural carbide articles can be estimated from ultrasonic velocity
ceramics exhibited a wide range of density and microstructural measurementsto within1 percentusing20 MHz longitudinalwaves
variations.It was shownthat bulk densityvariationscorrelate with and a commerciallyavailable ultrasonictime intervalometer.The
and can be estimated by velocity measurements.Variations in ultrasonic velocity measurement technique shows promise for
microstructuralfeatures such as grain size or shape and pore screeningout materialwith unacceptablylow density levels.
morphologyhada minoreffect on velocity.However,thesefeatures Author
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N83-19902"# National Aeronautics and Space Administration. A82°14400" Virginia Univ., Charlottesville.
Lewis ResearchCenter, Cleveland,Ohio. A PAD PERTURBATION METHOD FOR THE DYNAMIC
SPECIMEN SIZE AND GEOMETRY EFFECTS ON FRACTURE COEFFICIENTS OF TILTING-PAD JOURNAL BEARINGS
TOUGHNESS OF AL203 MEASURED WITH SHORT ROD AND P.E. ALLAIRE, J. K. PARSELL, and L. E. BARRETT (Virginia,
SHORT BAR CHEVRON-NOTCH SPECIMENS University,Charlottesville,VA) Wear, vol. 72, Oct. 1, 1981, p.
J. L. SHANNON, JR. and D. G. MUNZ (Karlsruhe Univ.) 1983 29-44. refs
14 p refs Proposed for presentation at the Symp. on (ContractEF-76-5-01-2479; NSG-3105)
Chevron-NotchedSpecimens: Testingand StressAnal., Louisville, A pad assembly method for analyzing tilting-padbearings is
Ky., 21 Apr. 1983; sponsoredby American Society for Testing presented. The method resultsin the completecoefficient matrix
and Materials for a tilting-pad bearing; the matrix is independent of the pad
(NASA-TM-83319; E-1560; NAS 1.15:83319) Avail: NTIS HC inertia, the pitch frequencyand the numberof degrees of freedom
A02/MF A01 CSCL 07C of the pad. A pad assemblymethod is used because it allowsthe

Plane strain fracture toughnessmeasurementswere made on collectionof more bearingdata with less computer time than a
AI203 using short rod and short bar chevron notch specimens brute force iterativeprocedure.The resultsgivenshowthe complete
previouslycalibratedby the authorsfor their dimensionlessstress dynamicalmatricesfor a five-padtilting-padbearingboth including
intensity factor coefficients. The measured toughness varied and ignoringthe dampingeffects of the unloaded (top) pads. For
systematicallywith variations in specimen size, proportions,and a symmetrical tilting-pad bearing the reduced cross-coupling
chevron notch angle apparently due to their influence on the coefficients are zero when the moment of inertia of the pad is
amount of crack extension to maximum load (the measurement ignored. (Author)
point). The toughness variations are explained in terms of a
suspected rising R curve for the material tested, along with a
discussionof an unavoidableimprecisionin the calculationof K
sub Ic for materialswith risingR curveswhen tested with chevron A82-35462"# Akron Univ., Ohio.
notch specimens. Author ENGINE DYNAMIC ANALYSIS WITH GENERAL NONLINEAR

FINITE ELEMENT CODES. II - BEARING ELEMENT IMPLE-

N86-13495"# National Aeronautics and Space Administration. MENTATION, OVERALL NUMERICAL CHARACTERISTICS AND
LewisResearchCenter, Cleveland, Ohio. BENCHMARKING
FRACTURED TOUGHNESS OF SI3N4 MEASURED WITH SHORT J. PADOVAN, M. ADAMS, P. LAM (Akron, University, Akron, OH),
BAR CHEVRON-NOTCHED SPECIMENS D. FERTIS, and I. ZEID (Northeastern University,Boston, MA)
J. A. SALEM and J. L. SHANNON, JR. 1985 19 p refs American Society of Mechanical Engineers, International Gas
Presentedat BasicSci.Meetingof the Am. Ceram.Soc., Baltimore, TurbineConferenceand Exhibit,27th, London,England,Apr. 18-22,
17-19 Nov. 1985 1982, 9 p. refs
(NASA-TM-87153; E-2749; NAS 1.15:87153) Avail: NTIS HC (Contract NSG-3283)
A02/MF A01 CSCL 11G (ASME PAPER 82-GT-292)

The short bar chevron-notchedspecimen is used to measure Second-yearefforts withina three-year study to develop and
the planestrainfracturetoughnessof hot pressedSi3N4. Specimen extend finite element (FE) methodologyto efficiently handle the
proportionsand chevron-notchangle are varied, thereby varying transient/steady state response of rotor-bearing-statorstructure
the amountof crack extension to maximumload (upon which K associatedwith gas turbine engines are outlined.The two main
sub IC is based). The measured toughness (4.68 + or - 0.19 areas aim at (1) implantingthe squeeze filmdamper element into
MNm to the 3/2 power)is independentof these variations,inferring a general purpose FE code for testing and evaluation; and (2)
that the materialhas a flat crackgrowthresistancecurve, determining the numerical characteristicsof the FE-generated

Author rotor-bearing-stator simulationscheme. The governing FE field
equationsare set out and the solutionmethodologyis presented.
The choiceof ADINA as the general-purposeFE code is explained,
and the numerical operational characteristics of the direct

37 integration approach of FE-generated rotor-bearing-stator
simulationsis determined,includingbenchmarking,comparisonof
explicit vs. implicit methodologies of direct integration, and

MECHANICAL ENGINEERING demonstrationproblems. C.D.

Includes auxiliary systems (nonpower); machine elements and
processes;and mechanicalequipment.

A82-48243"# BoeingVertol Co., Philadelphia,Pa.
ON THE AUTOMATIC GENERATION OF FEM MODELS FOR

A81-33867" National Aeronautics and Space Administration. COMPLEX GEARS - A WORK-IN-PROGRESS REPORT
Lewis Research Center, Cleveland,Ohio. R.J. DRAGO (Boeing Vertol Co., Philadelphia, PA) American
SELF-ACTING GEOMETRY FOR NONCONTACT SEALS Gear Manufacturers Association,Meeting, San Diego, CA, Feb.
G. P. ALLEN (NASA, Lewis Research Center, Cleveland, Ohio) 1982, Paper. 36 p.
American Society of LubricationEngineers,Annual Meeting,36th, (ContractNAS3-22143)
Pittsburgh,Pa., May 11-14, 1981, 5 p. refs A descriptionis presentedof the development and use of a
(ASLE PREPRINT 81-AM-5B-2) preprocessorto create a NASTRAN finite element model of a

Two hydrodynamicself-actingseal designsfor a LOXturbopump complex spur, helical, or spiral bevel gear quickly,inexpensively,
were analyzed in order to predict performance. A radial face and accurately.The preprocessorcreatesa readyto runNASTRAN
seal-to-seal LOX at 310 N/sq cm and 32,000 rpm (130 m/s) was input deck includingthe executive, case control, and bulk data
analyzed for pressure differentials of 172 to 448 N/sq cm and sections. It generates nodes and solid elements to model spur,
speeds from 98 to 147 m/s. A segmented circumferential helical,or spiral bevel gear teeth with integralshafting.Either a
seal-to-seal helium at 34.5 or 69 N/sq cm and 157 m/s was complete gear shafting model or a symmetric model is created.
analyzed for pressuresof 35 to 86 N/sq cm (10 N/sq cm ambient) The fundamentalbuildingblock of the gear model is the base
and speedsfrom 94 to 189 m/s. Test resultsconfirmednoncontact layer. The base layer is the mesh configurationof one layer of
operationnear the designspeed and pressure,and relativelygood one tooth segment which is in turn duplicated,translated, and
qualitative agreement between test and analysis. The face seal rotated to create the completed model of the gear. Once the
was found to operate with mostly liquid in the pads and mostly base layer is created, the constructionof the finite element model
gas acrossthe dam. E.B. is straightforward. G.R.
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A84-20580" AkronUniv., Ohio. A87-14656"# National Aeronauticsand Space Administration.
NONLINEAR TRANSIENT FINITE ELEMENT ANALYSIS OF LewisResearchCenter, Cleveland,Ohio.
ROTOR-BEARING-STATOR SYSTEMS FACTORS THAT AFFECT THE FATIGUE STRENGTHOF POWER
J. PADOVAN, M. ADAMS, D. FERTIS, I. ZEID, and P. I_AM(Akron, TRANSMISSION SHAFTING AND THEIR IMPACT ON DESIGN
University, Akron, OH) Computers and Structures (ISSN S.H. LEOWENTHAL (NASA, Lewis Research Center, Cleveland,
0045-7949), vol. 18, no. 4, 1984, p. 629-639. refs OH) ASME, Transactions, Journal of Mechanisms, Transmission,
(Contract NSG-3283) and Automation in Design, vol. 108, March 1986, p. 106-114;

This paper extends the finite element scheme to handle the Discussion, p. 115-118; Author's Closure, p. 118. Previously
highly nonlinear interfacial fields generated in the fluid filled annulli announced in STAR as N84-26029. refs
of squeeze film and journal bearings so as to model the transient A long standing objective in the design of power transmission
response of rotor-bearing-stator systems. Since such simulations shafting is to eliminate excess shaft material without compromising
are highly nonlinear, direct numerical integration schemes are operational reliability. A shaft design method is presented which
employed to generate the overall response. In this context, the accounts for variable amplitude loading histories and their influence
paper gives consideration to such items as (1) numerical on limited life designs. The effects of combined bending and
efficiency/stability, (2) comparison of implicit and explicit schemes, torsional loading are considered along with a number of application
(3) determines extent of response nonlinearity as well as (4) factors known to influence the fatigue strength of shafting materials.
extensively benchmarks the overall concept/methodologies. Among the factors examined are surface condition, size, stress

Author concentration, residual stress and corrosion fatigue. Author

A87-37686" National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
EFFECT OF INTERFERENCE FITS ON ROLLER BEARING
FATIGUE LIFE

A84-46893"# Arizona State Univ., Tempe. HAROLD H. COE and ERWIN V. ZARETSKY (NASA, Lewis
A BLADE LOSS RESPONSE SPECTRUMFOR FLEXIBLE ROTOR Research Center, Cleveland, OH) ASLE Transactions (ISSN
SYSTEMS 0569-8197), vol. 30, April 1987, p. 131-140; Discussion,p. 140.
H. D. NELSON (Arizona State University,Tempe, AZ) and M. Previouslyannouncedin STAR as N86-19616. refs
ALAM AmericanSociety of MechanicalEngineers, International An analysiswasperformedto determinethe effectsof inner-ring
Gas Turbine Conference and Exhibit, 29th, Amsterdam, speed and press fits on rollerbearing fatigue life. The effects of
Netherlands,June 4-7, 1984. 8 p. refs the resultant hoop and radial stresses on the principalstresses
(ContractNAG3-6) were considered.The maximumshear stressesbelow the Hertzian
(ASME PAPER 84-GT-29) contactwere determinedfor differentconditionsof inner-ringspeed

A shockspectrumprocedureis developedto estimatethe peak and load, and were appliedto a conventionalroller bearing life
displacement response of linear flexible rotor-bearingsystems analysis.The effect of meanstresswasdeterminedusingGoodman
sugjected to a step change in unbalance (i.e., a blade loss). A diagram approach. Hoop stresses caused by press fits and
progressiveand a retrograderesponsespectrumare established, centrifugalforce can reducebearinglife by as muchas 90 percent.
These blade loss response spectra are expressed in a unique Use of a Goodman diagram predicts life reduction of 20 to 30
non-dimensionalform and are functions of the modal damping percent.The depth of the maximumshear stress remainsvirtually
ratio and the ratio of rotor spin speed to modal damped whirl unchanged. Author
speed. Modal decompositionusing complex modes is utilizedto
make use of the unique feature of the spectra for the calculation N82-28646"# National Aeronauticsand Space Administration.
of the peak blade lossdisplacementresponseof the rotor system. LewisResearchCenter, Cleveland,Ohio.
The procedureis appliedto three examplesystemsusingseveral A FINITE ELEMENT STRESS ANALYSIS OF SPUR GEARS
modal superpositionstrategies.The resultsof each are compared INCLUDING FILLET RADII AND RIM THICKNESS EFFECTS
to true peak displacement obtained by a separate transient S.H. CHANG (CincinnatiUniv.), R. L. HUSTON (CincinnatiUniv.),
responseprogram. Author and J. J. COY 1982 12 p refs Proposedfor presentationat

Ann. Meetingof ASME, Phoenix,Ariz.,14-19 Nov. 1982 Prepared
in cooperation with Army Aviation Research and Development
Command,Cleveland,Ohio
(NASA-TM-82865;E-1234; NAS 1.15:82865;
AVRADCOM-TR-82-C-8) Avail: NTIS HC A02/MF A01 CSCL

A84-47046"# National Aeronauticsand Space Administration. 131
LewisResearchCenter, Cleveland,Ohio. Spur gear stressanalysisresultsare presented for a variety of
ACOUSTIC EMISSION EVALUATION OF PLASMA-SPRAYED loadingconditions,supportconditions,filletradii,and rimthickness.
THERMAL BARRIER COATINGS These resultsare obtainedusingthe SAP IV finite-elementcode.
C. C. BERNDT (NASA, Lewis Research Center, Cleveland, OH) The maximumstresses,occurringat the root surface, substantially
American Society of Mechanical Engineers, International Gas increasewith decreasingrim thicknessfor partiallysupportedrims
Turbine Conference and Exhibit, 29th, Amsterdam, Netherlands, (that is, with loose-fittinghubs).For fully supported rims(that is,
June 4-7, 1984. 5 p. refs with tight-fittinghubs), the root surface stressesslightlydecrease
(ContractNAG3-164; NCC3-27) with decreasingrim thickness.The fillet radius is found to have a
(ASME PAPER 84-GT-292) significanteffect upon the maximumstressesat the root surface.

Acoustic emission techniques have recently been used in a These stressesincreasewithincreasingfillet radius.The fillet radius
number of studies to investigate the performance and failure has littleeffect uponthe internalroot sectionstresses. Author
behavior of plasma-sprayedthermal barrier coatings. Failure of
the coating is a complex phenomena, especially when the N82-29607"# Cincinnati Univ., Ohio. Dept. of Mechanical
compositenatureof thecoatingisconsideredinthe lightof possible Engineering.
failure mechanisms.Thus it can be expected that both the metal ON FINITE ELEMENT STRESS ANALYSIS OF SPUR GEARS
and ceramic components (i.e., the bond coat and ceramic overlay) S.H. CHANG and R. L. HUSTON Jul. 1982 53 p refs
of a composite thermal protection system influence the (Contract NSG-3188)
macroscopic behavior and performance of the coating. The aim (NASA-CR-167938; NAS 1.26:167938) Avail: NTIS HC A04/MF
of the present work is to summarize the 'state-of-the-art' in terms A01 CSCL 131
of this initial work and indicate where future progress may be Spur gear stress analysis results are presented for a variety of
made. Author loading conditions, support conditions, root radii, and rime
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thicknesses. These results are obtained using the SAP-IV finite and specification of a bearing steel is dependent on the integration
element code. The maximum stresses, occurring at the root surface, of all these considerations into the bearing design and application.
substantially increase with decreasing rim thickness for partially The paper reviews rolling-element fatigue data and analysis which
supported rims (that is, with loose fitting hubs). For fully supported can enable the engineer or metallurgist to select a rolling-element
rims (that is, with tight fitting hubs), the root surface stresses bearing steel for critical applications where long life is required.
slightly decrease with decreasing rim thickness. The fillet radius Author
has a significant effect upon the maximum stesses at the root

surface. These stresses increase with decreasing fillet radius. N87-13755"# National Aeronautics and Space Administration.
Finally,the fillet radius has little effect upon the internal root section Lewis Research Center, Cleveland, Ohio.
stresses. S.L. EFFECTOF DESIGN VARIABLES, TEMPERATURE GRADIENTS

AND SPEED OF LIFE AND RELIABILITY OF A ROTATING
N85-27226"# National Aeronauticsand Space Administration. DISK
LewisResearchCenter, Cleveland,Ohio. E.V. ZARETSKY, T. E. SMITH (Sverdrup Technology, Inc.,
FATIGUE CRITERION TO SYSTEM DESIGN, LIFE AND Cleveland,Ohio), and R. AUGUST 1986 26 p Proposedfor
RELIABILITY presentationat the2nd ThermalEngineeringConference,Honolulu,
E. V. ZARETSKY 10 JuL 1985 22 p refs Presentedat the Hawaii,22-27 Mar. 1987; sponsoredby ASME and JSME
21st Joint Propulsion Conf., Monterey, Calif., 8-10 Jul. 1985; (NASA-TM-88883;E-3291; NAS 1.15:88883) Avail:NTIS HC
sponsoredby AIAA, SAE and ASME A03/MF A01 CSCL 940
(NASA-TM-87017; E-2562; NAS 1.15:87017) Avail: NTIS HC A generalized methodologyto predict the fatigue life and
A02/MF A01 CSCL 14D reliabilityof a rotatingdisksuchas used for aircraftengineturbines

A generalizedmethodologyto structurallife prediction,design, and compressorsis advanced. The approach incorporatesthe
and reliabilitybased upon a fatigue criterionis advanced.The life computedlife of elementalstress volumes to predict system life
predictionmethodologyis based in part on work of W. Weibull and reliability.Diskspeed and thermalgradientsas well as design
and G. Lundbergand A. Palmgren. The approach incorporates variablessuch as disk diameterand thicknessand bolt hole size,
the computed life of elemental stress volumes of a complex numberand locationare considered. Author
machine element to predict system life. The results of coupon
fatigue testingcan be incorporatedinto the analysis allowingfor
life prediction and component or structural renewal rates with N87-15467"# National Aeronautics and Space Administration.
reasonable statisticalcertainty. Author Lewis Research Center, Cleveland, Ohio.

LUBRICANT EFFECTS ON BEARING LIFE

N85-30333" National Aeronautics and Space Administration. ERWlN V. ZARETSKY Dec. 1986 22 p Presented at the
Lewis Research Center, Cleveland, Ohio. OEM Design Conference, New York, N.Y., 9-11 Dec. 1986
VARIABLE FORCE, EDDY-CURRENT OR MAGNETIC DAMPER (NASA-TM-88875;E-3253; NAS 1.15:88875) Avail: NTIS HC
Patent A02/MF A01 CSCL 11H

Lubricantconsiderationsfor rolling-elementbearingshavewithinR. E. CUNNINGHAM, inventor (to NASA) 14 May 1985 6 p
Filed 3 Feb. 1983 the last two decades taken on added importance in the design
(NASA-CASE-LEW-13717-1;US-PATENT-4,517,505; and operation of mechanical systems. The phenomenonwhich
US-PATENT-APPL-SN-463456;US-PATENT-CLASS-318-611; limitsthe useful life of bearingsis rolling-elementor surface pitting
US-PATENT-CLASS-310-77;US-PATENT-CLASS-310-93; fatigue. The elastohydrodynamic (EHD) film thickness which
US.PATENT-CLASS-335-100) Avail: US Patentand Trademark separatesthe ball or rollersurfacefrom those of the racewaysof
Office CSCL 131 the bearingdirectlyaffects bearinglife. Chemicaladditivesadded

An object of the inventionis to providevariabledampingfor to the lubricant can also significantlyaffect bearings life and
resonantvibrationswhich may occur at different rotationalspeeds reliability.The interactionof these physicaland chemicaleffects
in the range of rpms in which a rotating machineis operated. A is important to the design engineer and user of these systems.
variable force damper in accordancewiththe inventionincludesa Designmethodsand lubricantselectionfor rolling-elementbearings
rotating mass carried on a shaft which is supported by a bearing are presented and discussed. Author
in a resilient cage. The cage is attached to a support plate whose
rim extends into an annular groove in a housing. Variable damping N87-16336"# National Aeronautics and Space Administration.
is effected by tabs of electrically conducting nonmagnetic material Lewis Research Center, Cleveland, Ohio.
which extend radially from the cage. The tabs at an index position EVALUATION OF A HIGH-TORQUE BACKLASH-FREE ROLLER
lie between the pole face of respective C shaped magnets.The ACTUATOR
magnets are attached by cantilever spring members to the BRUCE M. STEINETZ, DOUGLAS A. ROHN, and WILLIAM
housing. Author ANDERSON (NASTEC, Inc., Cleveland,Ohio) In its The 20th

AerospaceMechanicsSymposium p 205-230 May 1986
N87-11993"# National Aeronauticsand Space Administration. Avail:NTIS HC A14/MF A01 CSCL 131
Lewis ResearchCenter, Cleveland,Ohio. The results are presented of a test program that evaluated
SELECTION OF ROLLING-ELEMENT BEARING STEELS FOR the stiffness, accuracy, torque ripple, frictionallosses, and torque
LONG-LIFE APPLICATION holding capabilityof a 16:1 ratio, 430 N-m (320 ft-lb) planetary
E. V. ZARETSKY 1986 76 p Presented at International rollerdrive for a potentialspace vehicleactuator application.The
Symposiumon the Effect of Steel Manufacturing Processeson drive'splanet rollersupportingstructureand bearingswere found
the Quality of Bearing Steels, Phoenix, Ariz., 4-6 Nov. 1986; to be the largest contributors to overall drive compliance,
sponsoredby AmericanSociety for Testing and Materials accountingfor more than half of the total. In comparison, the
(NASA-TM-88881; E-3288; NAS 1.15:88881) Avail: NTIS HC tractionroller contacts themselves contributedonly 9 percent of
A05/MF A01 CSCL 131 thedrive'scompliancebased on an experimentallyverified stiffness

Nearly four decades of research in bearing steel metallurgy model. The drive exhibited no backlash although 8 arc sec of
and processinghave resultedin improvementsin bearing life by a hysteresisdeflectionwere recorded due to microcreepwithin the
factor of 100 over that obtained in the early 1940's. For critical contact under torque load. Because of these load-dependent
applicationssuch as aircraft, these improvementshave resulted displacements,some form of feedback controlwould be required
in longer lived, more reliable commercialaircraft engines.Material for arc secondpositioningapplications.Torquerippletests showed
factorssuchashardness,retainedaustenite,grainsize and carbide thedrive to be extremelysmooth,actuallyprovidingsome damping
size, number, and area can influence rolling-elementfatigue life. of input torsional oscillations. The drive also demonstrated the
Bearingsteel processingsuchas doublevacuum meltingcan have ability to holdstatic torquewith driftsof 7 arc sec or less over a
a greaterefect on bearinglifethanmaterialchemistry.The selection 24 hr periodat 35 percentof full load. Author
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N87-18820"# National Aeronautics and Space Administration. regime. The speed of wave propagation and energy loss by
Lewis Research Center, Cleveland, Ohio. interaction with material microstructure and geometrical factors
EFFECTS OF SURFACE REMOVAL ON ROLLING-ELEMENT underlie ultrasonic determination of material properties. Two
FATIGUE categoriesof ultrasonicmeasurementsare discussed:thoserelated
ERWIN V. ZARETSKY 1987 20 p Preparedfor presentation to material strengths (e.g., elastic moduli, tensile strength, and
at the InternationalConferenceon Tribology,LubricationandWear; fracture toughness)and those related to morphologyand material
50 Years On, London,England, 1-3 Jul. 1987; sponsoredby Inst. conditions that govern strength and performance (e.g.,
of Mechanical Engineers. microstructure,void content, residualstress,fatiguedamage). It is
(NASA-TM-88871;E-3231; NAS 1.15:88871) Avail: NTIS HC shownthat large-scaleindustrialapplicationof ultrasonicNDE will
A02/MF A01 CSCL 131 depend on advancement in such areas as theory development,

The Lundberg-Palmgrenequation was modifiedto show the instrumentation, system automation, standardization, and
effect on rolling-element fatigue life of removingby grindinga coordinationwith design. V.L.
portionof the stressedvolumeof the racewaysof a rolling-element
bearing.Resultsof thisanalysisshowthat dependingonthe amount A80-51575"# National Aeronautics and Space Administration.
of materialremoved, and depending on the initial runningtime of LewisResearchCenter, Cleveland, Ohio.
the bearingwhen material removal occurs, the 10-percent life of CONCEPTS AND TECHNIQUES FOR ULTRASONIC
the reground bearings ranges from 74 to 100 percent of the EVALUATION OF MATERIAL MECHANICAL PROPERTIES
10-percent life of a brand new bearing.Three bearingtypeswere A. VARY (NASA, LewisResearchCenter, Cleveland,Ohio) Virginia
selected for testing. A total of 250 bearings were reground.Of Polytechnic Institute and State University, Conference on
this matter,30 bearingsfrom each type were endurancetested to Mechanicsof NondestructiveTesting,Virginia PolytechnicInstitute
1600 hr. No bearing failure occurred related to material removal, and State University, Blacksburg,Va., Sept. 10-12, 1980, Paper.
Two bearing failures occurred due to defective rollingelements 19 p. refs
and were typical of those whichmay occur in new bearings. The ultrasonicnondestructiveevaluation techniquesdiscussed

Author inthe presentpaperindicatepotentialsfor materialcharacterization
and property prediction.Stress wave interaction and material

N87-23978"# National Aeronauticsand Space Administration. transferfunction conceptsare examinedas a basisfor explaining
Lewis Research Center, Cleveland, Ohio. correlations between material mechanical behavior and
THE IMPACT DAMPED HARMONIC OSCILLATOR IN FREE ultrasonically measured quantities. It is observed that the effect
DECAY and criticality of any discrete flaw, such as crack, inclusion, or
G. V. BROWN and C. M. NORTH 1987 23 p Prepared for any other stress raiser, is definable only in terms of its material
presentation at the Vibrations Conference, Boston, Mass., 27-30 microstructural environment. This underscores the importance of
Sep. 1987; sponsored by the ASME ultrasonic techniques capable of characterizing the stress wave
(NASA-TM-89897; E-3587; NAS 1.15:89897) Avail: NTIS HC energy transfer properties of a material. V.P.
A02/MF A01 CSCL 131

The impact-damped oscillator in free decay is studied by using A81-19656" National Aeronautics and Space Administration.
time history solutions. A large range of oscillator amplitude is Lewis Research Center, Cleveland, Ohio.
covered. The amount of damping is correlated with the behavior ULTRASONIC MEASUREMENT OF MATERIAL PROPERTIES
of the impacting mass. There are three behavior regimes: (1) a A. VARY (NASA, LewisResearchCenter, Materialsand Structures
low amplitude range with less than one impact per cycle and very Div.,Cleveland, Ohio) In: Researchtechniques in nondestructive
low damping, (2) a useful middle amplitude range with a finite testing.Volume 4. London, Academic Press, 1980, p. 159-204.
numberof impacts per cycle, and (3) a high amplitude range with refs
an infinite number of impacts per cycle and progressively The state-of-the-art of ultrasonic methods is reviewed with
decreasingdamping. For light damping the impact dampingin the reference to the basic measurements, signal acquisition and
middle range is: (1) proportionalto impactor mass, (2) additive to processing, strength property and morphological condition
proportionaldamping, (3) a uniquefunction of vibrationamplitude, measurements,and industrialapplications.The emphasisis placed
(4) proportional to 1-epsilon, where epsilon is the coefficient of on techniques that indicate quantitative ultrasonic correlations with
restitution, and (5) very roughly inversely proportional to amplitude, material strength and morphology relevant to the reliability of
The system exhibits jump phenomena and period doublings. An load-bearing structures. V.L.
impactor with 2 percent of the oscillator's mass can produce a
loss factor near 0.1. Author A81-44660"# National Aeronautics and Space Administration.

Lewis Research Center, Cleveland, Ohio.
ACOUSTO-ULTRASONIC CHARACTERIZATION OF FIBER

38 REINFORCED COMPOSITES
A. VARY (NASA, Lewis Research Center, Cleveland, OH) U.S.
Navy, Conference on a Critical Review: Technique for the

QUALITY ASSURANCE AND RELIABILITY Characterizationof Composite Materials, Cambridge, MA, June
8-10, 1981, Paper. 13 p. refs

Includesproductsampling proceduresand techniques;and quality The acousto-ultrasonictechnique combines advantageous
control, aspects of acoustic emission and ultrasonic methodologies.

Acousto-ultrasonicsoperatesby introducinga repeatingseries of
ultrasonicpulses into a material.The waves introducedsimulate

A80-39641"# National Aeronautics and Space Administration. the spontaneous stress waves that would arise if the material
LewisResearchCenter, Cleveland,Ohio. were put under stress as in the case of acoustic emission
QUANTITATIVE ULTRASONIC EVALUATION OF ENGINEERING measurements. These benign stress waves are detected by an
PROPERTIES IN METALS, COMPOSITES, AND CERAMICS acoustic emission sensor. The physical arrangement of the
A. VARY (NASA, Lewis Research Center, Cleveland, Ohio) ultrasonic(input)transducerand acousticemission(output)sensor
National Research Council of Canada, Seminar on Advanced is such that the resultant waveform carries an imprint of
UltrasonicTechnology, 1st, Longueuil,Quebec, Canada, June 9, morphological factors that govern or contribute to material
10, 1980, Paper. 16 p. refs performance. The output waveform is quite complex, but it can

Ultrasonictechniques that have demonstrated potential for be quantitizedin terms of a 'stresswave factor'. The stresswave
material characterizationare reviewed. These techniquesrely on factor,whichcan be defined in a numberof ways, is essentiallya
physicalacoustic properties of materials and the interactionof relativemeasureof theefficiencyof energydissipationina material.
elastic stress waves with morphologicalfactors in the ultrasonic If flaws or other material anomalies exist in the volume being
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examined, their combined effect will appear in the stress wave metallography and attributed the failure to fatigue induced by a
factor. (Author) banded microstructure. Visual examination by NASA of the failed

shaft plus the knowledge of the torsional load that it carried pointed
A83-22265" Carborundum Co., Niagara Falls, N.Y. to a 100 percent ductile failure with no evidence of fatigue.
COMPARISON OF NDE TECHNIQUES FOR SINTERED-SIC Scanning electron microscopy confirmed this. Previously
COMPONENTS announced in STAR as N82-11184 A.R.H.
M. SRINIVASAN, D. LAWLER (Carborundum Co., Niagara Falls,
NY), L. J. INGLEHART, R. L. THOMAS (Wayne State University, A85-42151"# National Aeronautics and Space Administration.
Detroit, MI), and D. YUHAS (Sonoscan, Inc., Bensenville, IL) Lewis Research Center, Cleveland, Ohio.
Ceramic Engineering and Science Proceedings, vol. 3, Sept.-Oct. THE ROLE OF THE REFLECTION COEFFICIENT IN PRECISION
1982, p. 654-679. Research supported by the U.S. Department of MEASUREMENT OF ULTRASONIC ATTENUATION
Energy E.R. GENERAZIO (NASA, Lewis Research Center, Cleveland,
(Contract DEN3-168; DEN3-167) OH) (DARPA, Annual Review of Progress in Quantitative

High frequency, bulk-wave ultrasonics detected defects in Nondestructive Evaluation, La Jolla, CA, July 8-13, 1984) Materials
manufactured SiC components. In addition, gas-turbine blades and Evaluation (ISSN 0025-5327), vol. 43, July 1985, p. 995-1004.
vanes were examined by scanning laser acoustic microscopy Previously announced in STAR as N84-32849. refs
(SLAM). Comparative results obtained on simple shapes such as Ultrasonic attenuation measurements using contact, pulse-echo
disks and bars by microfocus X-ray radiography, ultrasonics, techniques are sensitive to surface roughness and couplant
scanning photoacoustic spectroscopy, and SLAM are discussed, thickness variations. This can reduce considerable inaccuracies in

(Author) the measurement of the attenuation coefficient for broadband
pulses. Inaccuracies arise from variations in the reflection

A83°25571" Ohio State Univ., Columbus. coefficient at the buffer-couplant-sample interface. The reflection
MECHANICS ASPECTS OF NDE BY SOUND AND coefficient is examined as a function of the surface roughness
ULTRASOUND and corresponding couplant thickness variations. Interrelations with
L. S. FU (Ohio State University, Columbus, OH) Applied Mechanics ultrasonic frequency are illustrated. Reliable attenuation
Reviews, vol. 35, Aug. 1982, p. 1047-1057. refs measurements are obtained only when the frequency dependence
(Contract NSG-3269) of the reflection coefficient is incorporated in signal analysis. Data

Nondestructive evaluation (NDE) is considered as a means to are given for nickel 200 samples and a silicon nitride ceramic bar
detect the energy release mechanism of defects and the interaction having surface roughness variations in the 0.3 to 3.0 microns
of microstructures within materials with sound waves and/or range for signal bandwidths in the 50 to 100 MHz range. Author
ultrasonic waves. Ultrasonic inspection involves the frequency
range 20 kHz-1 GHz with amplitudes depending on the sensitivity A86°13192"# National Aeronautics and Space Administration.
of the test instrumentation. Pulse echo systems are most frequently Lewis Research Center, Cleveland, Ohio.
used in NDE. Information is extracted from the signals through MEASUREMENT OF ULTRASONIC VELOCITY USING
measurements of the signal velocity, attenuation, the acoustic PHASE-SLOPE AND CROSS-CORRELATION METHODS
emission when stress is applied, and calculation of the D.R. HULL, H. E. KAUTZ, and A. VARY (NASA, Lewis Research
acoustoelastic coefficients. Fracture properties, tensile and shear Center, Cleveland, OH) Materials Evaluation (ISSN 0025-5327),
strengths, the interlaminar shear strength, the cohesive strength, vol. 43, Oct. 1985, p. 1455-1460. Previously announced in STAR
yield and impact strengths, the hardness, and the residual stress as N84-34769. refs
can be assayed by ultrasonic methods. Finally, attention is given Computer implemented phase-slope and cross-correlation
to analytical treatment of the derived data, with mention given to methods are introduced for measuring time delays between pairs
transition matrix, integral equation, and eigenstrain approaches, of broadband ultrasonic pulse-echo signals for determining velocity

M.S.K. in engineering materials. The phase-slope and cross-correlation
methods are compared with the overlap method which is currently

A83-39620"# National Aeronautics and Space Administration. in wide use. Comparison of digital versions of the three methods
Lewis Research Center, Cleveland, Ohio. shows similar results for most materials having low ultrasonic
METAL HONEYCOMB TO POROUS WlREFORM SUBSTRATE attenuation. However, the cross-correlation method is preferred
DIFFUSION BOND EVALUATION for highly attenuating materials. An analytical basis for the
A. VARY, P. E. MOORHEAD, and D. R. HULL (NASA, Lewis cross-correlation method is presented. Examples are given for the
Research Center, Nondestructive Evaluation Section, Cleveland, three methods investigated to measure velocity in representative
OH) Materials Evaluation (ISSN 0025-5327), vol. 41, July 1983, materials in the magahertz range. Author
p. 942-945. refs

Two nondestructive techniques were used to evaluate diffusion A86-31745" National Aeronautics and Space Administration.
bond quality between a metal fail honeycomb and porous wireform Lewis Research Center, Cleveland, Ohio.
substrate. The two techniques, cryographics and RADIOGRAPHIC DETECTABILITY LIMITS FOR SEEDED VOIDS
acousto-ultrasonics, are complementary in revealing variations of IN SlNTERED SILICON CARBIDE AND SILICON NITRIDE
bond integrity and quality in shroud segments from an experimental G.Y. BAAKLINI, J. D. KISER, and D. J. ROTH (NASA, Lewis
aircraft turbine engine. Previously announced in STAR as Research Center, Cleveland, OH) Advanced Ceramic Materials
N82-18612 Author (ISSN 0883-5551), vol. 1, Jan. 1986, p. 43-49. Previously

announced in STAR as N85-21674. refs
A84-17546" National Aeronautics and Space Administration. Conventional and microfocus X-radiographic techniques were
Lewis Research Center, Cleveland, Ohio. compared to determine relative detectability limits for voids in green
FAILURE ANALYSIS OF A TOOL STEEL TORQUE SHAFT and sintered SiC and Si3N4. The relative sensitivity of the
J. R. REAGAN (NASA, Lewis Research Center, Cleveland, OH) techniques was evaluated by comparing their ability to detect voids
IN: Technology advances in engineering and their impact on that were artificially introduced by aseeding process. For projection
detection, diagnosis and prognosis methods; Proceedings of the microfocus radiography the sensitivity of void detection at a 90/95
Thirty-sixth Meeting, Scottsdale, AZ, December 6-10, 1982 . probability of detection/confidence level is 1.5 percent of specimen
Cambridge and New York, Cambridge University Press, 1983, p. thickness in sintered SiC and Si3N4. For conventional contact
287-291. radiography the sensitivity is 2.5 percent of specimen thickness. It

A low design load drive shaft used to deliver power from an appears that microfocus projection radiography is preferable to
experimental exhaust heat recovery system to the crankshaft of conventional contact radiography in cases where increased
an experimental diesel truck engine failed during highway testing, sensitivity is required and where the additional complexity of the
An independent testing laboratory analyzed the failure by routine technique can be tolerated. E.A.K.
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A86-35575" National Aeronautics and Space Administration. A86-48143"# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio. Lewis Research Center, Cleveland, Ohio.
NDE OF ADVANCED CERAMICS NONDESTRUCTIVE TECHNIQUES FOR CHARACTERIZING
S. J. KLIMA (NASA, Lewis Research Center, Cleveland, OH) MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS -
Materials Evaluation (ISSN 0025-5327), vol. 44, April 1988, p. AN OVERVIEW
571-576. refs A. VARY and S. J. KLIMA (NASA, Lewis Research Center,

Radiographic, ultrasonic, and scanning laser acoustic Cleveland, OH) ASME, InternationalGas Turbine Conference
microscopy(SLAM) techniques were used to characterizesilicon and Exhibit,31st, Duesseldorf,West Germany,June 6-12, 1986.
nitride and siliconcarbide modulus-of-rupturetest specimens in 10 p. Previouslyannouncedin STAR as N86-19636. refs
various stages of fabrication.Conventionaland microfocusX-ray (ASME PAPER 86-GT-75)
techniques were found capable of detecting minute high-density An overviewof nondestructiveevaluation(NDE) is presented
inclusions in as-received powders, green compacts, and fully to indicatethe availabilityand applicationpotentialsof techniques
densified specimens.Significantdensity gradientsin sintered bars for quantitative characterizationof the mechanical properties of
were observed by radiography, ultrasonic velocity, and SLAM. structuralmaterials. The purpose is to review NDE techniques
Ultrasonic attenuation was found sensitive to microstructural that go beyond the usual emphasis on flow detection and
variationsdue to grain andvoid morphologyand distribution.SLAM characterization. Discussed are current and emerging NDE
was capable also of detecting voids, inclusions,and cracks in techniques that can verify and monitor entrinsicproperties (e.g.,
finishedtest bars.Considerationis givento the potentialfor applying tensile, shear, and yield strengths;fracture toughness, hardness,
thermoacoustic microscopytechniques to green and densified ductility; elastic moduli) and underlying microstructural and
ceramics.Some limitationsand the detection probabilitystatistics morphological factors. Most of the techniques described are, at
of the aforementionednondestructiveevaluation(NDE) processes present, neither widelyapplied nor widely accepted in commerce
are also discussed. Author and industrybecause they are still emergingfrom the laboratory.

The limitationsof the techniquesmay be overcome by advances
in applications research and instrumentation technology and

A86-39027"# National Aeronautics and Space Administration. perhapsby accommodationsfor theiruse in thedesignof structural
LewisResearchCenter, Cleveland,Ohio. parts. Author
RELIABILITY OF VOID DETECTION IN STRUCTURAL

CERAMICS BY USE OF SCANNING LASER ACOUSTIC A86-48298"# National Aeronautics and Space Administration.
MICROSCOPY Lewis Research Center, Cleveland,Ohio.
D. J. ROTH, S. J. KLIMA, J. D. KISER (NASA, Lewis Research NDE OF STRUCTURAL CERAMICS
Center, Cleveland, OH), and G. Y. BAAKLINI (Cleveland State S.J. KLIMA and A. VARY (NASA, Lewis Research Center,
University,OH) Materials Evaluation(ISSN 0025-5327), vol. 44, Cleveland, OH) ASME, International Gas Turbine Conference
May 1986, p. 762-769, 761. Previously announced in STAR as and Exhibit,31st, Duesseldorf,West Germany, June 8-12, 1986.
N85-32337. refs 8 p. Previouslyannouncedin STAR as N86-16598. refs

The reliability of scanning laser acoustic microscopy (SLAM) (ASME PAPER 86-GT-279)
for detecting surface voids in structuralceramic test specimens Radiographic, ultrasonic,scanning laser acoustic microscopy
was statisticallyevaluated. Specimens of sintered silicon nitride (SLAM), and thermo-acousticmicroscopytechniques were used
and sintered silicon carbide, seeded with surface voids, were to characterizesiliconnitrideand siliconcarbidemodulus-of-rupture
examined by SLAM at an ultrasonicfrequencyof 100 MHz in the test specimens in variousstages of fabrication.Conventionaland
as fired conditionand after surface polishing. It was observed microfocus X-ray techniques were found capable of detecting
that polishing substantiallyincreased void detectability.Voids as minute high density inclusionsin as-received powders, green
small as 100 micrometersin diameterwere detected in polished compacts, and fully densified specimens. Significantdensity
specimens with 0.90 probability at a 0.95 confidence level. In gradients in sintered bars were observed by radiography, ultrasonic
addition, inspection times were reduced up to a factor of 10 after velocity, and SLAM. Ultrasonic attenuation was found sensitive to
polishing. The applicability of the SLAM technique for detection of microstructural variations due to grain and void morphology and
naturally occurring flaws of similar dimensions to the seeded voids distribution. SLAM was also capable of detecting voids, inclusions
is discussed. A FORTRAN program listing is given for calculating and cracks in finished test bars. Consideration is given to the
and plotting flaw detection statistics. Author potential for applying thermo-acoustic microscopy techniques to

green and densified ceramics. The detection probability statistics
and some limitations of radiography and SLAM also are

A86-45150"# National Aeronautics and Space Administration. discussed. Author
Lewis Research Center, Cleveland, Ohio.
QUANTITATIVE FLAW CHARACTERIZATION WITH SCANNING
LASER ACOUSTIC MICROSCOPY A87-14300" Cleveland State Univ.,Ohio.
E. R.GENERAZIO and D. J. ROTH (NASA, LewisResearchCenter, PROBABILITY OF DETECTION OF INTERNAL VOIDS IN
Cleveland, OH) Materials Evaluation(ISSN 0025-5327), vol. 44, STRUCTURAL CERAMICS USING MICROFOCUS RADIOG-
June 1986, p. 863-870. Previously announced in STAR as RAPHY
N86-22983. refs G.Y. BAAKLINI (Cleveland State University, OH) and D. J. ROTH

Surface roughness and diffraction are two factors that have (NASA, Lewis Research Center, Cleveland, OH) Journal of
been observed to affect the accuracy of flaw characterization with Materials Research (ISSN 0884-2914), vol. 1, May-June 1986, p.
scanning laser acoustic microscopy. Inaccuracies can arise when 457-467. Previouslyannounced in STAR as N86-13749. refs
the surface of the test sample is acoustically rough. It is shown The reliability of microfocous X-radiography for detecting
that, in this case, Snell's law is no longer valid for determining subsurface voids in structural ceramic test specimens was
the direction of sound propagation within the sample. The statistically evaluated. The microfocus system was operated in
relationship between the direction of sound propagation within the the projection mode using low X-ray photon energies (20 keV)
sample, the apparent flaw depth, and the sample's surface and a 10 micro m focal spot. The statistics were developed for
roughness is investigated. Diffraction effects can mask the acoustic implanted subsurface voids in green and sintered silicon carbide
images of minute flaws and make it difficult to establish their size, and silicon nitride test specimens. These statistics were compared
depth, and other characteristics. It is shown that for Fraunhofer with previously-obtained statistics for implanted surface voids in
diffraction conditions the acoustic image of a subsurface defect similar specimens. Problems associated with void implantation are
corresponds to a two-dimensional Fourier transform. Transforms discussed. Statistical results are given as probability-of-detection
based on simulated flaws are used to infer the size and shape of curves at a 95 precent confidence level for voids ranging in size
the actual flaw. Author from 20 to 528 micro m in diameter. Author

52



38 QUALITY ASSURANCE AND RELIABILITY

A87-32200" Illinois Univ., Urbana. N80-15422"# National Aeronautics and Space Administration.
NONDESTRUCTIVE EVALUATION OF ADHESIVE BOND Lewis Research Center, Cleveland, Ohio.
STRENGTH USING THE STRESS WAVE FACTOR TECHNIQUE PHOTOVOLTAIC POWER SYSTEM RELIABILITY
HENRIQUE L. M. DOS REIS (Illinois, University,Urbana)and CONSIDERATIONS
HAROLD E. KRAUTZ (NASA, Lewis ResearchCenter, Cleveland, V.R. LALLI 1980 9 p refs Presentedat the Ann. Reliability
OH) Journal of Acoustic Emission (ISSN 0730-0050), vol. 5, and Maintainability Symp., San Francisco, 22-24 Jan. 1980
Oct.-Dec. 1986, p. 144-147. refs (Contract DE-AB29-76EI-20370)

Acousto-ultrasonic nondestructive evaluation has been (NASA-TM-79291; DOE/NASA/20370-79/19; E-235) Avail:
conducted to evaluate the adhesive bond strength between rubber NTIS HC A02/MF A01 CSCL 14D
and steel plates using the stress wave factor (SWF) measurement An example of how modern engineering and safety techniques
technique. Specimens with different bond strength were can be used to assure the reliable and safe operation of
manufactured and tested using the SWF technique. Two photovoltaic power systems is presented. This particular application
approaches were used to define the SWF. One approach defines is for a solar cell power system demonstration project designed
the SWF as the signal energy and the other approach defines the to provide electric power requirements for remote villages. The
SWF as the square root of the zero moment of the frequency techniques utilized involve a definition of the power system natural
spectrum of the received signal. The strength of the rubber-steel and operating environment, use of design criteria and analysis
adhesive joint was then evaluated using the destructive peel techniques, an awareness of potential problems via the inherent
strength test method. It was observed that in both approaches reliability and FMEA methods, and use of fail-safe and planned
higher values of the SWF measurements correspond to higher spare parts engineering philosophy. J.M.S.
values of the peel strength test data. Therefore, these results
show that the stress wave factor technique has the potential of
being used in quality assurance of the adhesive bond strength
between rubber and steel substrates. Author

N80-22714"# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
SIMULATION OF TRANSDUCER-COUPLANT EFFECTS ON
BROADBAND ULTRASONIC SIGNALS
A. VARY 1980 36 p refs Presented at Spring Meeting of

A87-48702"# National Aeronautics and Space Administration. the Am. Soc. of Nondestructive Testing, Philadelphia, 24-27 Mar.
Lewis Research Center, Cleveland, Ohio. 1980
NDE RELIABILITY AND PROCESS CONTROL FOR (NASA-TM-81489; E-427) Avail: NTIS HC A03/MF A01 CSCL
STRUCTURAL CERAMICS 14D
G. Y. BAAKLINI (NASA, Lewis Research Center, Cleveland,OH) The increasing use of broadband, pulse-echo ultrasonicsin
ASME, Transactions,Journalof Engineeringfor Gas Turbinesand nondestructiveevaluation of flaws and material properties has
Power (ISSN0022-0825), vol. 109, July 1987,p. 263-266. Previously generated a need for improved understandingof the way signals
announcedin STAR as N87-12910. refs are modified by coupled and bonded thin-layer interfaces
(ASME PAPER 87-GT-8) associatedwith transducers.This understandingis most important

The reliabilityof microfocusX-radiographyand scanninglaser when usingfrequencyspectrumanalysesfor characterizingmaterial
acousticmicroscopyfor detectingmicrovoidsin siliconnitrideand properties. In this type of application,signals emanating from
silicon carbide was statistically evaluated. Materials- and material specimenscan be stronglyinfluencedby couplant and
process-relatedparameters that influencedthe statisticalfindings bond-layersin the acousticpath.Computersynthesizedwaveforms
in research samples are discussed. The use of conventional were used to simulatea range of interfaceconditionsencountered
X-radiography in controlling and optimizing the processing and in ultrasonic transducersystems operating in the 20 to 80 MHz
sinteringof an Si3N4-SiO2-Y203 composition designated NASA regime. The adverse effects of thin-layer multiple reflections
6Y is described. Radiographic evaluation and guidance helped associated with various acoustic impedance conditions are
develop uniform high-densitySi3N4 modulus-of-rupturebars with demonstrated.The informationpresented is relevant to ultrasonic
improved four-point flexural strength (657, 544, and 462 MPa at transducerdesign,specimen preparation,and couplantselection.
room temperature, 1200 C, and 1370 C, respectively)and reduced Author
strengthscatter. Author

N80-24634"# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

A87-51974"# National Aeronautics and Space Administration. CONCEPTS AND TECHNIQUES FOR ULTRASONIC
Lewis Research Center, Cleveland, Ohio. EVALUATION OF MATERIAL MECHANICAL PROPERTIES
QUANTITATIVE VOID CHARACTERIZATION IN STRUCTURAL A. VARY 1980 21 p refs To be presented at the Conf. on
CERAMICS BY USE OF SCANNING LASER ACOUSTIC Mech. of Nondestr,Jctive Testing, Blacksburg, Va., 10-12 Sep.
MICROSCOPY 1980
D. J. ROTH, E. R. GENERAZIO (NASA, Lewis Research Center, (NASA-TM-81523; E-467) Avail: NTIS HC A02/MF A01 CSCL
Cleveland, OH), and G. Y. BAAKLINI (Cleveland State University, 14D
OH) Materials Evaluation (ISSN 0025-5327), vol. 45, Aug. 1987, Ultrasonic methods that can be used for material strength are
p. 958-966. Previously announced in STAR as N86-31913. refs reviewed. Emergency technology involving advanced ultrasonic

The ability of scanning laser acoustic microscopy (SLAM) to techniques and associated measurements is described. It is shown
characterize artificially seeded voids in sintered silicon nitride that ultrasonic NDE is particularly useful in this area because it
structural ceramic specimens was investigated. Using trigonometric involves mechanical elastic waves that are strongly modulated by
relationships and Airy's diffraction theory, predictions of internal morphological factors that govern mechanical strength and also
void depth and size were obtained from acoustic diffraction patterns dynamic failure modes. These aspects of ultrasonic NDE are
produced by the voids. Agreement was observed between actual described in conjunction with advanced approaches and theoretical
and predicted void depths. However, predicted void diameters were concepts for signal acquisition and analysis for materials
generally much greater than actual diameters. Precise diameter characterization. It is emphasized that the technology is in its
predictions are difficult to obtain due to measurement uncertainty infancy and that much effort is still required before the techniques
and the limitations of 100 MHz SLAM applied to typical ceramic and concepts can be transferred from laboratory to field
specimens. Author conditions. A.R.H.
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N80-26682"# National Aeronautics and Space Administration. N82-18612"# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio. Lewis Research Center, Cleveland, Ohio.
QUANTITATIVE ULTRASONIC EVALUATION OF ENGINEERING METAL HONEYCOMB TO POROUS WlREFORM SUBSTRATE
PROPERTIES IN METALS, COMPOSITES AND CERAMICS DIFFUSION BOND EVALUATION
A. VARY 1980 18 p refs Presented at First Seminar on A. VARY, P. E. MOORHEAD, and D. R. HULL 1982 12 p
Advanced Ultrasonic Tech., Longueuil, Quebec, 9-10 Jun. 1980; refs Presented at the Spring Conf. of the Am. Soc. for
sponsored by National Research Council of Canada Nondestructive Testing, Boston, 22-25 Mar. 1982
(NASA-TM-81530; E-482) Avail: NTIS HC A02/MF A01 CSCL (NASA-TM-82793; E-959) Avail: NTIS HC A02/MF A01 CSCL
14D 14D

Ultrasonic technology from the perspective of nondestructive Two nondestructive techniques were used to evaluate diffusion
evaluation approaches to material strength prediction and property bond quality between a metal foil honeycomb and porous wireform
verification is reviewed. Emergent advanced technology involving substrate. The two techniques, cryographics and
quantitative ultrasonic techniques for materials characterization is acousto-ultrasonics, are complementary in revealing variations of
described. Ultrasonic methods are particularly useful in this area bond integrity and quality in shroud segments from an experimental
because they involve mechanical elastic waves that are strongly aircraft turbine engine. S.L.
modulated by the same morphological factors that govern
mechanical strength and dynamic failure processes. It is N82-18613"# Massachusetts Inst. of Tech., Cambridge. Dept.
emphasized that the technology is in its infancy and that much of Mechanical Engineering.
effort is still required before all the available techniques can be ULTRASONIC INPUT-OUTPUT FOR TRANSMITTING AND
transferred from laboratory to industrial environments. E.D.K. RECEIVING LONGITUDINAL TRANSDUCERS COUPLED TO

SAME FACE OF ISOTROPIC ELASTIC PLATE Final Report
J. H. WILLIAMS, JR., H. KARAGULLE, and S. S. LEE Washington,

N81-28458"# National Aeronautics and Space Administration. D.C. NASA Feb. 1982 29 p refs
Lewis Research Center, Cleveland, Ohio. (Contract NSG-3210)
ACOUSTO-ULTRASONIC CHARACTERIZATION OF FIBER (NASA-CR-3506) Avail: NTIS HC A03/MF A01 CSCL 14D
REINFORCED COMPOSITES The quantitative understanding of ultrasonic nondestructive
A. VARY 1981 14 p refs Presented at the Office of Naval evaluation parameters such as the stress wave factor were studied.
Res. Conf. A Critical Rev: Tech. for the Characterization of Ultrasonic input/output characteristics for an isotropic elastic plate
Composite Mater., Cambridge, Mass., 8-10 Jun. 1981 with transmitting and receiving longitudinal transducers coupled to
(NASA-TM-82651; E-910) Avail: NTIS HC A02/MF A01 CSCL the same face were analyzed. The asymptotic normal stress is
14D calculated for an isotropic elastic half space subjected to a uniform

The acousto-ultrasonic technique combines advantageous harmonic normal stress applied to a circular region at the surface.
aspects of acoustic emission and ultrasonic methodologies. The radiated stress waves are traced within the plate by considering
Acousto-ultrasonics operates by introducing a repeating series of wave reflections at the top and bottom faces. The output voltage
ultrasonic pulses into a material. The waves introduced simulate amplitude of the receiving transducer is estimated by considering
the spontaneous stress waves that would arise if the material only longitudinal waves. Agreement is found between the output
were put under stress as in the case of acoustic emission voltage wave packet amplitudes and times of arrival due to multiple
measurements. These benign stress waves are detected by an reflections of the longitudinal waves. E.A.K.
acoustic emission sensor. The physical arrangement of the
ultrasonic (input) transducer and acoustic emission (output) sensor N82-19550"# National Aeronautics and Space Administration.
is such that the resultant waveform carries an imprint of Lewis Research Center, Cleveland, Ohio.
morphological factors that govern or contribute to material EXPERIENCE WITH MODIFIED AEROSPACE RELIABILITY AND
performance. The output waveform is complex, but it can be QUALITY ASSURANCE METHOD FOR WIND TURBINES
quantitized in terms of a 'stress wave factor.' The stress wave W.E. KLEIN 1982 11 p refs Proposed for Presentation at
factor, which can be defined in a number of ways, is a relative 9th Ann. Engr. Conf. on Reliability, Hershey, Penn., 16-18 Jun.
measure of the efficiency of energy dissipation in a material. If 1982 Revised
flaws or other material anomalies exist in the volume being (Contract DE-AI01-76ET-20320)
examined, their combined effect appears in the stress wave (NASA-TM-82803; DOE/NASA/20320-38; E-1142) Avail: NTIS
factor. S.F. HC A02/MF A01 CSCL 14D

The SR&QA approach assures that the machine is not
hazardous to the public or operating personnel, can operate

N81-33492"# National Aeronautics and Space Administration. unattended on a utility grid, demonstrates reliability operation, and
Lewis Research Center, Cleveland, Ohio. helps establish the quality assurance and maintainability
RELIABILITY AND QUALITY ASSURANCE ON THE MOD 2 requirements for future wind turbine projects. The approach
WIND SYSTEM consisted of modified failure modes and effects analysis (FMEA)
W. E. B. MASON and B. G. JONES (Boeing Engineering and during the design phase, minimal hardware inspection during parts
Construction Co., Seattle, Wash.) 1981 16 p refs Presented fabrication, and three simple documents to control activities during
at 5th Biennial Wind Energy Conf. and Workshop, Washington, machine construction and operation. Five years experience shows
5-7 Oct. 1981; sponsored by Solar Energy Res. Inst. and DOE that this low cost approach works well enough that it should be
(Contract DE-AI01-79ET-20305) considered by others for similar projects. T.M.
(NASA-TM-82717; DOE/NASA/20305-6; E-1015) Avail: NTIS
HC A02/MF A01 CSCL 14D N82-20551"# National Aeronautics and Space Administration.

The Safety, Reliability, and Quality Assurance (R&QA) approach Lewis Research Center, Cleveland, Ohio.
developed for the largest wind turbine generator, the Mod 2, is INTERRELATION OF MATERIAL MICROSTRUCTURE,
described. The R&QA approach assures that the machine is not ULTRASONIC FACTORS, AND FRACTURE TOUGHNESS OF
hazardous to the public or to the operating personnel, is operated TWO PHASE TITANIUM ALLOY
unattended on a utility grid, demonstrates reliable operation, and A. VARY and D. R. HULL 1982 25 p refs Presented at the
helps establish the quality assurance and maintainability Spring Conf. of the Am. Soc. for Nondestructive Testing, Boston,
requirements for future wind turbine projects. The significant 22-25 Mar. 1982
guideline consisted of a failure modes and effects analysis (FMEA) (NASA-TM-82810; E-1151; NAS 1.15:82810) Avail: NTIS HC
during the design phase, hardware inspections during parts A02/MF A01 CSCL 14D
fabrication, and three simple documents to control activities during The pivotal role of an alpha-beta phase microstructure in
machine construction and operation. E.A.K. governing fracture toughness in a titanium alloy, Ti-662, is
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demonstrated. The interrelation of microstructure and fracture the eigenstrain expansion,with exact solutions for the layer problem
toughness is demonstrated using ultrasonic measurement and that for a perfect sphere. S.L.
techniques originally developed for nondestructive evaluation and
material property characterization. It is shown that the findings N83-21373"# Massachusetts Inst. of Tech., Cambridge. Dept.
determined from ultrasonic measurements agree with conclusions of Mechanical Engineering.
based on metallurgical, metallographic, and fractographic EFFECTS OF SPECIMEN RESONANCES ON AcogsTIC-UL-
observations concerning the importance of alpha-beta morphology TRASONIC TESTING Final Report
in controlling fracture toughness in two phase titanium alloys. J.H. WILLIAMS, JR., E. B. KAHN, and S. S. LEE Washington

Author NASA Mar. 1983 36 p refs
(Contract NSG-3210)

N83°11506"# Ohio State Univ., Columbus. Dept. of Engineering (NASA-CR-3679; NAS 1.26:3679) Avail: NTIS HC A03/MF A01
Mechanics. CSCL 14D
PHENOMENOLOGICAL AND MECHANICS ASPECTS OF The effects of specimen resonances on acoustic ultrasonic
NONDESTRUCTIVE EVALUATION AND CHARACTERIZATION (AU) nondestructivetesting were investigated. Selected resonant
BY SOUND AND ULTRASOUND OF MATERIAL AND FRACTURE frequenciesand the corresponding normal mode nodal patterns
PROPERTIES Final Report of the aluminumblockare measured up to 75,64 kHz, Prominent
L. S. W. FU Washington NASA Oct, 1982 32 p refs peaks in the pencil lead fracture and sphere impact spectra from
(Contract NSG-3269) the two transducer locations corresponded exactly to resonant
(NASA-CR-3623; NAS 1,26:3623) Avail: NTIS HC A03/MF A01 frequencies of the block. It is established that the resonant
CSCL 14D frequencies of the block dominated the spectral content of the

Developments in fracture mechanics and elastic wave theory output signal. The spectral content of the output signals is further
enhance the understanding of many physical phenomena in a influenced by the transducer location relative to the resonant
mathematical context. Available literature in the material, and frequency nodal lines. Implications of the results are discussed in
fracture characterization by NDT, and the related mathematical relation to AU parameters and measurements. E.A.K.
methods in mechanics that provide fundamental underlying
principles for its interpretation and evaluation are reviewed. N83-23620"# National Aeronautics and Space Administration.
Information on the energy release mechanism of defects and the Lewis Research Center, Cleveland, Ohio.
interaction of microstructures within the material is basic in the ULTRASONIC RANKING OF TOUGHNESS OF TUNGSTEN
formulation of the mechanics problems that supply guidance for CARBIDE
nondestructive evaluation (NDE). A.R.H. A. VARY and D. R. HULL Apr. 1983 11 p refs Presented

at the 14th Symp. on Nondestructive Evaluation, San Antonio,
N83-11507"# Ohio State Univ., Columbus. Dept. of Engineering Tex., 19-21 Apr. 1983
Mechanics. (NASA-TM-83358; E-1619; NAS 1.15:83358) Avail: NTIS HC
FUNDAMENTAL ASPECTS IN QUANTITATIVE ULTRASONIC A02/MF AOl CSCL 14D
DETERMINATION OF FRACTURE TOUGHNESS: THE The feasibilityof usingultrasonicattenuationmeasurementsto
SCATTERING OF A SINGLE ELLIPSOIDAL INHOMOGENEITY rank tungstencarbide alloysaccordingto theirfracture toughness
Final Report was demonstrated.Six samples of cobalt-cemented tungsten
L. S. W. FU Washington NASA Oct. 1981 37 p refs carbide (WC-Co) were examined.These varied in cobalt content
(Contract NSG-3269) fromapproximately2 to 16weightpercent.The toughnessgenerally
(NASA-CR-3625; NAS 1.26:3625) Avail: NTIS HC A03/MF A01 increased with increasing cobalt content. Toughness was first
CSCL 14D determined by the Palmqvist and short rod fracture toughness

The scatteringof a singleellipsoidalinhomogeneityis studied tests. Subsequently,ultrasonic attenuationmeasurements were
via an eigenstrainapproach. The displacement field is given in correlatedwith both these mechanicaltest methods. It is shown
terms of volume integralsthat involveeigenstrainsthat are related that there is a strong increase in ultrasonic attenuation
to mismatch in mass density and that in elastic moduli. The correspondingto increased toughnessof the WC-Co alloys. A
governingequationsfor these unknown eigenstrainsare derived, correlationbetween attenuationand toughnessexists for a wide
Agreement with other approaches for the scattering problem is range of ultrasonicfrequencies.However,the best correlationfor
shown. The formulation is general and both the inhomogeneity theWC-Co alloysoccurswhenthe attenuationcoefficientmeasured
and the host medium can be anisotrophic.The axisymmetric in the vicinity of 100 megahertz is compared with toughness as
scatteringof an ellipsoidalinhomogeneityina linearelasticisotropic determinedby the Palmqvisttechnique. Author
medium is given as an example. The angular and frequency
dependence of the scattered displacementfield, the differential N83-27248"# Virginia Polytechnic Inst. and State Univ.,
and total cross sectionsare formally given in series expansions Blacksburg. Dept. of EngineeringScience and Mechanics.
for the case of uniformlydistributedeigenstrains. Author A STUDY OF THE STRESS WAVE FACTOR TECHNIQUE FOR

THE CHARACTERIZATION OF COMPOSITE MATERIALS Final
N83-16773"# Ohio State Univ.,Columbus. Dept. of Engineering Report
Mechanics. E.G. HENNEKE, II, J. C. DUKE, JR., W. W. STINCHCOMB, A.
THE TRANSMISSION OR SCATTERING OF ELASTIC WAVES GOVADA, and A. LEMASCON Washington Feb. 1983 74 p
BY AN INHOMOGENEITY OF SIMPLE GEOMETRY: A refs
COMPARISON OF THEORIES Final Report (ContractNSG-3172)
Y. C. SHEU and L. S. FU Washington NASA Jan. 1983 91 (NASA-CR-3670;NAS 1.26:3670) Avail: NTIS HC AO4/MF A01
p refs CSCL 14D
(ContractNSG-3269) A testingprogramwas undertakento providean independent
(NASA-CR-3659; E-1394; NAS 1.26:3659; RF-TECH-104) Avail: investigation and evaluation of the stress wave factor for
NTIS HC AO5/MF A01 CSCL 20N characterizingthe mechanical behavior of composite laminates.

The extended method of equivalent inclusionsis applied to Some of the data which was obtained after performing a very
study the specific wave problems:(1) the transmissionof elastic large numberof tests to determinethe reproducibilityof the SWF
waves in an infinite medium containinga layer of inhomogeneity, measurement is presented. It was determined that, with some
and (2) the scattering of elastic waves in an infinite medium optimizingof experimentalparameters, the SWF value can be
containing a perfect spherical inhomogeneity.Eigenstrains are reproducedto within + or - 10%. Results are also givenwhich
expandedas a geometricseriesand a methodof integrationbased show that, after careful calibrationprocedures, the lowest SWF
on the inhomogeneousHelmholtz operatoris adopted.This study value along the lengthof a specimenwill correlate very closelyto
compares results, obtained by using limited numberof terms in the site of final failure when the specimen is loaded in tension.
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Finally, using a moire interferometry technique, it was found that revisionswere formulatedand one revision for detailed evaluation
local regions having the highest in plane strains under tensile was chosen. The selected version modifies the DIA algorithm to
loading also had the lowest SWF values. S.L feedback the actual sensor outputs to the integral portion of the

control for the nofailure case. In case of a failure, the estimates
N83-28466"# Massachusetts Inst. of Tech., Cambridge. Dept. of the failed sensor output is fed back to the integral portion. The
of Mechanical Engineering. estimator outputs are fed back to the linear regulator portion of
ULTRASONIC A'n'ENUATION OF A VOID-CONTAINING the control all the time. The revised algorithm is evaluated and
MEDIUM FOR VERY LONG WAVELENGTHS Final Report comparedto the baseline algorithmdevelopedpreviously. E.A.K.
J. H. WILLIAMS, JR., S. S. LEE, and H. YUECE NASA
Washington Jun. 1983 22 p refs N84-14525"# Ohio State Univ., Columbus.
(ContractNSG-3210) VOLUME INTEGRALS ASSOCIATED WITH THE INHOMOGENE-
(NASA-CR-3693; NAS 1.26:3693) Avail: NTIS HC A02/MF A01 OUS HELMHOLTZ EQUATION. PART 1: ELLIPSOIDAL REGION
CSCL 14D Final Report

Ultrasonic longitudinal through-thicknessattenuation in an L.S. FU and T. MURA Washington NASA Dec. 1983 19 p
isotropicmedium due to scattering by randomlydistributedvoids refs
is considered analytically.The attenuation is evaluated on the (ContractNSG-3269)
assumptionof no interactionbetweenvoids.The scattered power (NASA-CR-3749; NAS 1.26:3749) Avail: NTIS HC A02/MF A01
is assumed to be entirelylost, thus accountingfor the ultrasonic CSCL 14D
attenuation.The scattered powerdue to the presence of a void is Problems of wave phenomena in fields of acoustics,
describedin terms of the scatteringcross sectionof the void. An electromagneticsand elasticityare often reducedto an integration
exact solutionexistsfor the scatteringcrosssectionof a spherical of the inhomogeneousHelmholtzequation.Resultsare presented
void. An approximatesolutionfor the scatteringcross section of for volume integrals associated with the Helmholtz operator,
an ellipsoidalvoid is developed based on the so-called Born nabla(2)to alpha(2), for the case of an ellipsoidalregion. By using
approximation commonly used in quantum mechanics. This appropriateTaylor series expansions and multinomialtheorem,
approximate solution is valid for k sub p a sub i 1, where k sub these volume integrals are obtained in series form for regions r
p is the wave number of the incident longitudinal wave and a sub 4' and r r', where r and r' are distances from the origin to the
i is the largest dimension of the void. It is found that the shape of point of observation and source, respectively. Derivatives of these
the void has negligible effect on the scattering cross section and integrals are easily evaluated. When the wave number approaches
that only the volume of the void is important. Thus, it is noted zero, the results reduce directly to the potentials of variable
that in cases where k sup p a sub i 1, the exact scattering densities. M.G.
cross section of a spherical void having the same volume as an
arbitrarily shaped void can be used for evaluating ultrasonic N84-14526"# Ohio State Univ., Columbus.
attenuation. M.G. VOLUME INTEGRALS ASSOCIATED WITH THE INHOMEGENE-

OUS HELMHOLTZ EQUATION. PART 2: CYLINDRICAL RE-
N83-33180"# Cleveland State Univ.,Ohio. Coil. of Engineering. GION; RECTANGULAR REGION Final Report
THE EFFECT OF STRESS ON ULTRASONIC PULSES IN FIBER W.F. ZHONG and L. S. FU Dec. 1983 22 p refs
REINFORCED COMPOSITES Final Report (ContractNAG3-340)
J. H. HEMANN and G. Y. BAAKLINI Washington NASA Aug. (NASA-CR-3750; NAS 1.26:3750) Avail: NTIS HC A02/MF A01
1983 80 p refs CSCL 20K
(ContractNAG3-106) Resultsare presentedfor volume integralsassociatedwith the
(NASA-CR-3724;NAS 1.26:3724) Avail: NTIS HC A05/MF A01 Helmholtzoperator, nabla(2) -t- alpha(2), for the cases of a finite
CSCL 20K cylindricalregion and a region of rectangular parallelepiped.By

An acoustical-ultrasonictechnique was used to demonstrate using appropriate Taylor series expansions and multinomial
relationshipsexisting between changes in attenuation of stress theorem, these volume integralsare obtained in series form for
wavesand tensilestress for an eight ply Odegree graphite-epoxy regionsr r' and r 4', where r and r' are distances from the
fiber reinforcedcomposite.All tests were conductedin the linear originto the point of observation and source, respectively.When
range of the material for which no mechanical or macroscopic the wave numberapproacheszero, the results reduce directlyto
damage was evident. Changes in attenuationwere measured as the potentialsof variabledensities. M.G.
a function of tensile stress in the frequency domain and in the
time domain. Stress wave propagationin these specimenswas N84-15565"# MassachusettsInst. of Tech., Cambridge. Dept.
dispersive, i.e., the wave speed depends on frequency. Wave of MechanicalEngineering.
speeds varied from 267 400 cm/sec to 680 000 cm/sec as the INPUT-OUTPUT CHARACTERIZATION OF AN ULTRASONIC
frequency of the signal was varied from 150 kHz to 1.9 MHz TESTING SYSTEM BY DIGITAL SIGNAL ANALYSIS Final
which strongly suggests that flexural/lamb wave modes of Report
propagation exist. The magnitude of the attenuation changes H. KARAGUELLE, S. S. LEE, and J. WILLIAMS, JR.
depended stronglyon tensile stress. It was further observed that Washington NASA Jan. 1984 46 p refs
the wave speeds increased slightlyfor all tested frequenciesas (ContractNAG3-328)
the stresswas increased. Author (NASA-CR-3756;E-1873; NAS 1.26:3756) Avail: NTIS HC

A03/MF A01 CSCL 14D
N83-33182"# Pratt and WhitneyAircraft Group, East Hartford, The input/outputcharacteristicsof an ultrasonictestingsystem
Conn. used for stress wave factor measurementswere studied. The
SENSOR FAILURE DETECTION FOR JET ENGINES Final fundamentals of digital signal processing are summarized.The
Report inputsand outputsare digitizedand processedina microcomputer
E. C. BEATTIE, R. F. LAPRAD, M. M. AKHTER (Systems Control using digital signal processing techniques. The entire ultrasonic
Technology), and S. M. ROCK (Systems Control Technology) May test system, including transducers and all electronic components,
1983 152 p refs is modeled as a discrete-time linear shift-invariant system. Then
(Contract NAS3-23282) the impulse response and frequency response of the continuous
(NASA-CR-168190; NAS 1.26:168190; PWA-5891-18) Avail: time ultrasonic test system are estimated by interpolating the
NTIS HC A08/MF A01 CSCL 14D defining points in the unit sample response and frequency response

Revisions to the advanced sensor failure detection, isolation, of the discrete time system. It is found that the ultrasonic test
and accommodation (DiA) algorithm, developed under the sensor system behaves as a linear phase bandpass filter. Good results
failure detection system program were studied to eliminate the were obtained for rectangular pulse inputs of various amplitudes
steady state errors due to estimation filter biases. Three algorithm and durations and for tone burst inputs whose center frequencies
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are within the passband of the test system and for single cycle N85-10371"# National Aeronautics and Space Administration.
inputsof variousamplitudes.The input/outputlimitson the linearity LewisResearchCenter, Cleveland,Ohio.
of the systemare determined. E.A.K. ULTRASONIC NONDESTRUCTIVE EVALUATION, MICRO-

STRUCTURE, AND MECHANICAL PROPERTY INTERRELA-
TIONS

N84-17606"# ClevelandState Univ., Ohio. Coll. of Engineering. A. VARY Washington Oct. 1984 30 p refs
PRELIMINARY INVESTIGATION OF AN ELECTRICAL (NASA-TM-86876; E-2337; NAS 1.15:86876) Avail: NTIS HC
NETWORK MODEL FOR ULTRASONIC SCATTERING Final A03/MF A01 CSCL 14D
Report Ultrasonictechniquesfor mechanicalpropertycharacterizations
J. E. MAISEL Washington NASA Jan. 1984 46 p refs are reviewedand conceptualmodelsare advanced for explaining
(ContractNAG3-362) and interpreting the empirically based results. At present, the
(NASA-CR-3770; E-1895; NAS 1.26:3770) Avail: NTIS HC technologyis generally empiricallybased and is emerging from
A03/MF A01 CSCL 14D the researchlaboratory.Advancementof the technologywill require

establishmentof theoretical foundations for the experimentallyThe behavior of acoustic attenuationin a solid is related to
the electrical transmissionline model where the electrical shunt observed interrelations among ultrasonic measurements,
conductance,which is frequency dependent, representsthe loss mechanicalproperties,and microstructure.Conceptualmodelsare
due to the scatteringsites in the solid. Results indicatethat the appliedto ultrasonicassessmentof fracturetoughnessto illustrate
absolute value of attenuationat a given frequency depends on an approach for predicting correlationsfound among ultrasonic
both the normalized mean square deviationof the density and measurements,microstructure,and mechanicalproperties.
bulk modulusof the scatteringsites from the ambient medium R.S.F.
and the spatialscatteringcorrelationfunction.Besidesestablishing
the absolutevalue of attenuation,the spatialcorrelationfunction
determinesthe attenuationprofileas a functionof frequency.

S.L.

N85-16195"# Ohio State Univ., Columbus.
N84-32849"# National Aeronautics and Space Administration. FUNDAMENTALS OF MICROCRACK NUCLEATION MECHANICS
Lewis ResearchCenter, Cleveland,Ohio. Final Report
THE ROLE OF THE REFLECTION COEFFICIENT IN PRECISION L.S. FU, Y. C. SHEU, C. M. CO, W. F. ZHONG, and H. D. SHEN
MEASUREMENT OF ULTRASONIC ATTENUATION NASA Washington Jan. 1985 86 p refs
E. R. GENERAZIO 1984 30 p refs Presentedat the Ann. (ContractNAG3-340)
Rev. of Progr. in QuantitativeNondestructiveEvaluation,La Jolla, (NASA-CR-3851; E-2296; NAS 1.26:3851; RFP763340/714952)
Calif., 8-13 Jul. 1984; sponsoredby DARPA Avail: NTIS HC A05/MF A01 CSCL 20K
(NASA-TM-83788; E-2185; NAS 1.15:83788) Avail: NTIS HC A foundationfor ultrasonicevaluationof microcracknucleation
A03/MF A01 CSCL 14D mechanicsis identifiedinorderto establisha basis for correlations

Ultrasonicattenuationmeasurementsusingcontact, pulse-echo between plane strain fracture toughness and ultrasonic factors
techniques are sensitive to surface roughness and couplant through the interaction of elastic waves with material
thicknessvariations.This can reduceconsiderableinaccuraciesin microstructures.Sincemicrocrackingis theoriginof (brittle)fracture,
the measurement of the attenuation coefficient for broadband it isappropriateto considerthe roleof stresswavesinthe dynamics
pulses. Inaccuracies arise from variations in the reflection of microcracking.Therefore, the following topics are discussed:
coefficient at the buffer-couplant-sampleinterface.The reflection (1) microstressdistributionswith typical microstructuraldefects
coefficient is examined as a function of the surface roughness locatedin the stress field;(2) elasticwave scatteringfrom various
and correspondingcouplantthicknessvariations.Interrelationswith idealized defects; and (3) dynamic effective-propertiesof media
ultrasonic frequency are illustrated. Reliable attenuation withrandomlydistributedinhomogeneities. R.S.F.
measurementsare obtainedonly when the frequencydependence
of the reflectioncoefficientis incorporatedin signalanalysis.Data
are given for nickel 200 samplesand a siliconnitrideceramicbar
having surface roughnessvariations in the 0.3 to 3.0 microns
range for signal bandwidthsin the 50 to 100 MHz range. Author

N85-20389"# National Aeronautics and Space Administration.
N84-34769"# National Aeronautics and Space Administration. Lewis ResearchCenter, Cleveland, Ohio.
Lewis Research Center, Cleveland,Ohio. NDE FOR HEAT ENGINE CERAMICS
ULTRASONIC VELOCITY MEASUREMENT USING PHASE- S.J. KLIMA 1984 13 p refs Presentedat 22nd Automotive
SLOPE CROSS-CORRELATION METHODS Technol.Develop. ContractorsCoordinationMeeting (ATD/CCM),
D. R. HULL, H. E. KAUTZ, and A. VARY 1984 20 p refs 29 Oct. - 2 Nov. 1984, Dearborn,Mich.;sponsoredby Society of
Presentedat 1984 SpringConf.of the Am. Soc. for Nondestructive AutomotiveEngineers
Testing, Denver,21-24 May 1984 (NASA-TM-86949; E-2470; NAS 1.15:86949) Avail: NTIS HC
(NASA-TM-83794; E-2290; NAS 1.15:83794) Avail: NTIS HC A02/MF A01 CSCL 14B
A02/MF A01 CSCL 14D Radiographic, ultrasonic, and scanning laser acoustic

Computer implemented phase-slope and cross-correlation microscopy(SLAM) techniqueswere used to characterizesilicon
methods are introducedfor measuringtime delays between pairs nitrideandsiliconcarbideMOR barsinvariousstagesof fabrication.
of broadbandultrasonicpulse-echosignalsfor determiningvelocity Conventionaland microfocusx-raytechniqueswere found capable
in engineeringmaterials. The phase-slope and cross-correlation of detectingminutehighdensity inclusionsinas-receivedpowders,
methodsare comparedwith the overlapmethodwhich is currently green compacts,and fully densifiedspecimens.Significantdensity
in wide use. Comparisonof digitalversionsof the three methods gradientsinsinteredbarswere observedby radiography,ultrasonic
shows similar results for most materials having low ultrasonic velocity, and SLAM. Ultrasonic attenuation was found sensitive to
attenuation. However, the cross-correlation method is preferred microstructural variations due to grain and void morphology and
for highly attenuating materials. An analytical basis for the distribution. SLAM was also capable of detecting voids, inclusions,
cross-correlation method is presented. Examples are given for the and cracks in finished test bars. It was determined that
three methods investigated to measure velocity in representative thermoacoustic microscopy techniques have promise for application
materials in the megahertz range. Author to green and densified ceramics. R.J.F.
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N85-20390"# Massachusetts Inst. of Tech., Cambridge. radiography the sensitivity is 2.5% of specimen thickness. It
STRESS WAVES IN AN ISOTROPIC ELASTIC PLATE EXCITED appears that microfocus projection radiography is preferable to
BY A CIRCULAR TRANSDUCER Final Report conventional contact radiography in cases where increased
H. KARAGULLE, J. H. WILLIAMS, JR., and S. S. LEE sensitivityis requiredand where the additionalcomplexityof the
Washington NASA Mar. 1985 52 p refs techniquecan be tolerated. E.A.K.
(ContractNAG3-328)
(NASA-CR-3877; NAS 1.26:3877) Avail: NTIS HC A04/MF A01 N85-29307"# MassachusettsInst. of Tech., Cambridge. Dept.
CSCL 14D of Mechanical Engineering.

Steady state harmonic stress waves in an isotropic elastic plate ULTRASONIC TESTING OF PLATES CONTAINING EDGE
excited on one face by a circular transducer are analyzed CRACKS Final Report
theoretically. The transmitting transducer transforms an electrical J. H. WILLIAMS, JR., H. KARAGULLE, and S. S. LEE
voltage into a uniform normal stress at the top of the plate. To Washington NASA Jun. 1985 37 p refs
solve the boundary value problem, the radiation into a half-space (Contract NAG3-328)
is considered. The receiving transducer produces an electrical (NASA-CR-3904; E-2550; NAS 1.26:3904) Avail: NTIS HC
voltage proportional to the average spatially integrated normal A03/MF A01 CSCL 14D
stress over its face due to an incident wave. A numerical procedure The stress wave factor (SWF) signal is utilized for the
is given to evaluate the frequency response at a receiving point nondestructive evaluation of plates containing perpendicular edge
due to a multiply reflected wave in the near field. Its stability and cracks. The effects of the existence lateral location and depth of
convergence are discussed. Parameterization plots which the crack on the magnitude spectra of individual reflections in the
determine the particular wave whose frequency response has SWF signal are studied. If the reflections in the SWF signal are
maximum magnitude compared with other multiple reflected waves not overlapped the short time Fourier analysis is applied. If the
are given for a range of values of dimensionless parameters. The reflections are overlapped the short time homomorphic analysis
effects of changes in the values of the parameters are discussed. (cepstrum analysis) is applied. Several reflections which have

B.G. average resonant frequencies approximately at 0.9, 1.3, and 1.7
MHz are analyzed. It is observed that the magnitude ratios

N85-21673"# Massachusetts Inst. of Tech., Cambridge. Dept. evaluated at average resonant frequencies decrease more with
of Mechanical Engineering. increasing d/h if the crack is located between the transducers,
APPLICATION OF HOMOMORPHIC SIGNAL PROCESSING TO where h is plate thickness and d is crack depth. Moreover, for
STRESS WAVE FACTOR ANALYSIS the plates, crack geometries, reflections, and frequencies
H. KARAGULLE, J. H. WILLIAMS, JR., and S. S. LEE Feb. considered, the average decibel drop depends mainly on the
1985 48 p refs dimensionless parameter d/h and it is approximately -1 dB per
(Contract NSG-3328) 0.07 d/h. Changes in the average resonant frequencies of the
(NAS 1.26:174871; NASA-CR-174871) Avail: NTIS HC A03/MF magnitude spectra are also observed due to changes in the location
A01 CSCL 14D of the crack. B.W.

The stress wave factor (SWF) signal, which is the output of an
ultrasonic testing system where the transmitting and receiving N85-32337"# National Aeronautics and Space Administration.
transducers are coupled to the same face of the test structure, is Lewis Research Center, Cleveland, Ohio.
analyzed in the frequency domain. The SWF signal generated in RELIABILITY OF VOID DETECTION IN STRUCTURAL
an isotropic elastic plate is modelled as the superposition of CERAMICS USING SCANNING LASER ACOUSTIC
successive reflections.The reflection which is generated by the MICROSCOPY
stress waves which travel p times as a longitudinal(P) wave and D.J. ROTH, S. J. KLIMA, J. D. KISER, and G. Y. BAAKLINI
s times as a shear (S) wave through the plate while reflecting (ClevelandState Univ.) 1985 54 p refs Presented at the
back and forth between the bottom and top faces of the plate is Spring Meeting of the Am. Soc. for Nondestructive Testing,
designatedas the reflection with p, s. Short-time portions of the Washington,D.C., 11-14 Mar. 1985
SWF signal are consideredfor obtaining spectral informationon (NASA-TM-87035; E-2591; NAS 1.15:87035) Avail: NTIS HC
individual reflections. If the significant reflections are not A04/MF A01 CSCL 14D
overlapped, the short-time Fourier analysis is used. A summary of The reliability of scanning laser acoustic microscopy (SLAM)
the elevant points of homomorphic signal processing, which is for detecting surface voids in structural ceramic test specimens
also called cepstrum analysis, is given. Homomorphic signal was statistically evaluated. Specimens of sintered silicon nitride
processing is applied to short-time SWF signals to obtain estimates and sintered silicon carbide, seeded with surface voids, were
of the log spectra of individual reflections for cases in which the examined by SLAM at an ultrasonic frequency of 100 MHz in the
reflections are overlapped. Two typical SWF signals generated in as fired condition and after surface polishing. It was observed
aluminum plates (overlapping and non-overlapping reflections) are that polishing substantially increased void detectability. Voids as
analyzed. M.G. small as 100 micrometers in diameter were detected in polished

specimens with 0.90 probability at a 0.95 confidence level. In
N85-21674"# National Aeronautics and Space Administration. addition, inspection times were reduced up to a factor of 10 after
Lewis Research Center, Cleveland, Ohio. polishing. The applicability of the SLAM technique for detection of
RADIOGRAPHIC DETECTABILITY LIMITS FOR SEEDED VOIDS naturally occurring flaws of similar dimensions to the seeded voids
IN SINTERED SILICON CARBIDE AND SILICON NITRIDE is discussed. A FORTRAN program listing is given for calculating
G. Y. BAAKLINI (Cleveland State Univ.), J. D. KISER, and D.J. and plotting flaw detection statistics. Author
ROTH 1984 19 p refs Presented at the Regional Meeting
of the American Ceramic Society, San Francisco, 28-31 Oct. N86-10561"# National Aeronautics and Space Administration.
1984 Lewis Research Center, Cleveland, Ohio.
(NASA-TM-86945; E-2464; NAS 1.15:86945) Avail: NTIS HC ULTRASONIC EVALUATIONOF MECHANICAL PROPERTIES OF
A02/MF A01 CSCL 14D THICK, MULTILAYERED, FILAMENT WOUND COMPOSITES

Conventional and microfocusX-radiographictechniqueswere H.E. KAUTZ Sep. 1985 36 p refs
comparedto determinerelativedetectabilitylimitsforvoids ingreen (NASA-TM-87088; E-2676; NAS 1.15:87088) Avail: NTIS HC
and sintered SiC and Si3N4. The relative sensitivity of the A03/MF A01 CSCL 14D
techniqueswas evaluatedby comparingtheir ability to detect voids A preliminaryinvestigationis conducted to define capabilities
that wereartificiallyintroducedbya seedingprocess.Forprojection and limitationsof ultrasonicand acousto-ultrasonicmeasurements
microfocusradiographythe sensitivityof void detectionat a 90/95 relatedto mechanicalpropertiesof filament wound graphite/epoxy
probabilityof detection/confidence level is 1.5% of specimen composite structures.The structuresstudied are segments of
thickness in sintered SiC and Si3N4. For conventionalcontact filament wound cylinders formed of multiple layers of hoop and
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helical windings. The segments consist of 24 to 35 layers and 0.90 at a 0.95 confidence level was determined as a function of
range from 3.02 to 3.34 cm in wall thickness. The resultant material, void diameter, and void depth. The statistical results
structures are anisotropic, heterogeneous, porous, and highly presented for void detectability indicate some of the strengths
attenuating to ultrasonic frequencies greater than 1 MHz. The and limitations of SLAM as a nondestructive evaluation technique
segments represent structures to be used for space shuttle booster for structural ceramics. Author
cases. Ultrasonic velocity and acousto-ultrasonic stress wave factor
measurement approaches are discussed. Correlations among N86-19636"# National Aeronautics and Space Administration.
velocity, density, and porosity, and between the acousto-ultrasonic Lewis Research Center, Cleveland, Ohio.
stress wave factor and interlaminar shear strength are presented. NONDESTRUCTIVE TECHNIQUES FOR CHARACTERIZING

Author MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS:
AN OVERVIEW

N86-13749"# National Aeronautics and Space Administration. A. VARY and S. J. KLIMA Dec. 1985 21 p refs Proposed
Lewis Research Center, Cleveland, Ohio. for presentation at the 31st International Gas Turbine Conference,
PROBABILITY OF DETECTION OF INTERNAL VOIDS IN Dusseldorf, West Germany, 8-12 Jun. 1986; sponsored by ASME
STRUCTURAL CERAMICS USING MICROFOCUS (NASA-TM-87203; E-2858; NAS 1.15:87203) Avail: NTIS HC
RADIOGRAPHY A02/MF A01 CSCL 14D
G. Y. BAAKLINI and D. J. ROTH Nov. 1985 23 p refs An overview of nondestructive evaluation (NDE) is presented
(NASA-TM-87164; E-2800; NAS 1.15:87164) Avail: NTIS HC to indicate the availability and application potentials of techniques
A02/MF A01 CSCL 14D for quantitative characterization of the mechanical properties of

The reliability of microfocus x-radiography for detecting structural materials. The purpose is to review NDE techniques
subsurface voids in structural ceramic test specimens was that go beyond the usual emphasis on flaw detection and
statistically evaluated. The microfocus system was operated in characterization. Discussed are current and emerging NDE
the projection mode using low X-ray photon energies (20 keV) techniques that can verify and monitor entrinsic properties (e.g.,
and a 10 micro m focal spot. The statistics were developed for tensile, shear, and yield strengths; fracture toughness, hardness,
implanted subsurface voids in green and sintered silicon carbide ductility; elastic moduli) and underlying microstructural and
and silicon nitride test specimens. These statistics were compared morphological factors. Most of the techniques described are, at
with previously-obtained statistics for implanted surface voids in present, neither widely applied nor widely accepted in commerce
similar specimens. Problems associated with void implantation are and industry because they are still emerging from the laboratory.
discussed. Statistical results are given as probability-of-detection The limitations of the techniques may be overcome by advances
curves at a 95 percent confidence level for voids ranging in size in applications research and instrumentation technology and
from 20 to 528 micro m in diameter. Author perhaps by accommodations for their use in the design of structural

parts. Author
N86-16598"# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio. N86-22962"# National Aeronautics and Space Administration.
NDE OF STRUCTURAL CERAMICS Lewis Research Center, Cleveland, Ohio.
S. J. KLIMA and A. VARY 1986 14 p refs Proposed for ANALYTICAL ULTRASONICS IN MATERIALS RESEARCH AND
presentation at the 31st International Gas Turbine Conference, TESTING
Dusseldorf, West Germany, 8-12 Jun. 1986; sponsred by ASME A. VARY Jan. 1986 357 p refs Conference held in
(NASA-TM-87186; E-2840; NAS 1.15:87186) Avail: NTIS HC Cleveland, Ohio, 13-14 Nov. 1984
A02/MF A01 CSCL 14D (NASA-CP-2383; E-2486; NAS 1.55:2383) Avail: NTIS HC

Radiographic, ultrasonic, scanning laser acoustic microscopy A16/MF A01 CSCL 20A
(SLAM), and thermo-acoustic microscopy techniques were used Research results in analytical ultrasonics for characterizing
to characterize silicon nitride and silicon carbide modulus-of-rupture structural materials from metals and ceramics to composites are
test specimens in various stages of fabrication. Conventional and presented. General topics covered by the conference included:
microfocus X-ray techniques were found capable of detecting status and advances in analytical ultrasonics for characterizing
minute high density inclusions in as-received powders, green material microstructures and mechanical properties; status and
compacts, and fully densified specimens. Significant density prospects for ultrasonic measurements of microdamage,
gradients in sintered bars were observed by radiography, ultrasonic degradation, and underlying morphological factors; status and
velocity, and SLAM. Ultrasonic attenuation was found sensitive to problems in precision measurements of frequency-dependent
microstructural variations due to grain and void morphology and velocity and attenuation for materials analysis; procedures and
distribution. SLAM was also capable of detecting voids, inclusions requirements for automated, digital signal acquisition, processing,
and cracks in finished test bars. Consideration is given to the analysis, and interpretation; incentives for analytical ultrasonics in
potential for applying thermo-acoustic microscopy techniques to materials research and materials processing, testing, and
green and densified ceramics. The detection probability statistics inspection; and examples of progress in ultrasonics for interrelating
and some limitations of radiography and SLAM also are microstructure, mechanical properites, and dynamic response.
discussed. Author

N86-25002"# Massachusetts Inst. of Tech., Cambridge. Dept.
N86-16599"# National Aeronautics and Space Administration. of Mechanical Engineering.
Lewis Research Center, Cleveland, Ohio. STRESS WAVES IN TRANSVERSELY ISOTROPIC MEDIA: THE
RELIABILITY OF SCANNING LASER ACOUSTIC MICROSCOPY HOMOGENEOUS PROBLEM Final Report
FOR DETECTING INTERNAL VOIDS IN STRUCTURAL E.R.C. MARQUES and J. H. WILLIAMS, JR. Washington
CERAMICS NASA May 1986 48 p refs
D. J. ROTH and G. Y. BAAKLINI 1986 36 p refs Presented (Contract NAG3-328)
at the 10th Annual Conference on Composites and Advanced (NASA-CR-3977; E-2949; NAS 1.26:3977) Avail: NTIS HC
Ceramic Materials, Cocoa Beach, Fla., 19-22 Jan. 1986; sponsored A03/MF A01 CSCL 14D
by the American Ceramic Society The homogeneous problem of stress wave propagation in
(NASA-TM°87222; E-2864; NAS 1.15:87222) Avail: NTIS HC unbounded transversely isotropic media is analyzed. By adopting
A03/MF A01 CSCL 14D plane wave solutions, the conditions for the existence of the

The reliability of 100 MHz scanning laser acoustic microscopy solution are established in terms of phase velocities and directions
(SLAM) for detecting internal voids in sintered specimens of silicon of particle displacements. Dispersion relations and group velocities
nitride and silicon carbide was evaluated. The specimens contained are derived from the phase velocity expressions. The deviation
artificially implanted voids and were positioned at depths ranging angles (e.g., angles between the normals to the adopted plane
up to 2 mm below the specimen surface. Detection probability of waves and the actual directions of their propagation) are numerically
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determined for a specific fiber-glass epoxy composite. A graphical establishing the ability of the acousto-ultrasonic method for
method is introduced for the construction of the wave surfaces detecting initial material imperfections that lead to localizeddamage
using magnitudes of phase velocities and deviation angles. The growth and final specimen failure, and (3) characteristics of the
results for the case of isotropic media are shown to be contained NBS/Proctor sensor/receiver for acousto-ultrasonic evaluation of
in the solutions for the transversely isotropic media. Author laminated composite materials. The second project was concerned

with examining the nature of the wave propagation that occurs
N86-25003"# Pratt and Whitney Aircraft, East Hartford, Conn. during acoustic-ultrasonic evaluation of composite laminates and
Engineering Div. demonstrating the role of Lamb or plate wave modes and their
LIFE PREDICTION AND CONSTITUTIVE MODELS FOR ENGINE utilizationfor characterizingcompositelaminates.The third project
HOT SECTION ANISOTROPIC MATERIALS PROGRAM Annual was concerned with the replacement of contact-type receiving
Status Report piezotransducerswith noncontactinglaser-optical sensors for
G. A. SWANSON, 1. LINASK, D. M. NISSLEY, P. P. NORRIS, T. acousto-ultrasonicsignalacquisition. Author
G. MEYER, and K. P. WALKER Feb. 1986 203 p refs
(ContractNAS3-23939) N86-27666"# MassachusettsInst. of Tech., Cambridge. Dept.
(NASA-CR-174952;NAS 1.26:174952; PWA-5968-19) Avail: of MechanicalEngineering.
NTIS HC A09/MF A01 CSCL 14D WAVE PROPAGATION IN ANISOTROPIC MEDIUM DUE TO AN

This report presentsthe results of the first year of a program OSCILLATORY POINT SOURCE WITH APPLICATION TO
designedto develop life predictionand constitutivemodels for UNIDIRECTIONAL COMPOSITES Final Report
two coated single crystal alloys used in gas turbine airfoils. The J.H. WILLIAMS, JR., E. R. C. MARQUES, and S. S. LEE
two alloysare PWA 1480 and Alloy 185. The two oxidation resistant Washington NASA Jul. 1986 59 p
coatings are PWA 273, an aluminide coating, and PWA 286, an (Contract NAG3°328)
overlay NiCoCrAIY coating. To obtain constitutive and/or fatigue (NASA-CR-4001; E-3093; NAS 1.26:4001) Avail: NTIS HC
data, tests were conducted on coated and uncoated PWA 1480 A04/MF A01 CSCL 14D
specimens tensilely loaded in the 100 , 110 , 111 , and 123 The far-field displacements in an infinite transversely isotropic
directions. A literature survey of constitutive models was completed elastic medium subjected to an oscillatory concentrated force are
for both single crystal alloys and metallic coating materials; derived. The concepts of velocity surface, slowness surface and
candidate models were selected. One constitutive model under wave surface are used to describe the geometry of the wave
consideration for single crystal alloys applies Walker's propagation process. It is shown that the decay of the wave
micromechanical viscoplastic formulation to all slip systems amplitudes depends not only on the distance from the source (as
participating in the single crystal deformation. The constitutive in isotropic media) but also depends on the direction of the point
models for the overlay coating correlate the viscoplastic data well. of interest from the source. As an example, the displacement
For the aluminide coating, a unique test method is under field is computed for a laboratory fabricated unidirectional fiberglass
development. LCF and TMF tests are underway. The two coatings epoxy composite. The solution for the displacements is expressed
caused a significant drop in fatigue life, and each produced a as an amplitude distribution and is presented in polar diagrams.
much different failure mechanism. Author This analysis has potential usefulness in the acoustic emission

(AE) and ultrasonic nondestructive evaluation of composite
N86-25812"# National Aeronautics and Space Administration. materials. For example,'the transient localized disturbances which
Lewis Research Center, Cleveland, Ohio. are generally associated with AE sources can be modeled via
CONCEPTS FOR INTERRELATING ULTRASNIC ATTENUATION, this analysis.In which case, knowledgeof the displacementfield
MICROSTRUCUTRE AND FRACTURE TOUGHNESS IN which arrives at a receiving transducer allows inferences regarding
POLYCRYSTALLINE SOLIDS the strength and orientationof the source, and consequently
A. VARY May 1986 30 p refs Presentedat the Symposium perhaps the degree of damage within the composite. Author
on Solid Mechanics Research of Quantitative NDE, Evanston,II1.,
18-20 Sep. 1985 N86o28250"# Aerojet Technical Systems Co., Sacramento,
(NASA-TM-87339; E-3086; NAS 1.15:87339) Avail: NTIS HC Calif.
A03/MF A01 CSCL 14D LONGITUDINAL MODE COMBUSTION INSTABILITIES OF A

Conceptualmodelsare advanced for explainingand predicting HIGH-PRESSURE FUEL-RICH LOX/RP-1 PREBURNER
empiricalcorrelationsfound between ultrasonicmeasurementsand J.J. FANG In JohnsHopkinsUniv.The 22nd JANNAF Combustion
fracture toughness of polycrystalline solids. The models lead to Meeting, Vol. 1 p 429-441 Oct. 1985
insights concerning microstructural factors governing fracture (Contract NAS3-22647)
processes and associated stress wave interactions. Analysis of Avail: CPIA, Laurel, Md. 20707 HC $70.00 CSCL 21B
the empirical correlations suggested by the models indicate that, During the hot-fire testing of a high-pressure fuel-rich LOX/RP-1
in addition to grain size and shape, grain boundary reflections, preburner, longitudinal mode combustion instabilities were
elastic anistropy, and dislocation damping are factors that underly observed. The experimental data showing how the instability varied
both fracture toughness and ultrasonic attenuation. One outcome with the chamber pressure, mixture ratio, chamber length and
is that ultrasonic attenuation can predict the size of crack blunting turbulence ring are given. Technical rationales are given for the
or process zones that develop in the vicinity active cracks in test-to-test hardware configuration changes that eventually led to
metals. This forms a basis for ultrasonic ranking according to the stable result. Author
variations in fracture toughness. Author

N86-28445"# Virginia Polytechnic Inst. and State Univ.,
N86-27665"# Virginia Polytechnic Inst. and State Univ., Blacksburg. Dept. of Engineering Science and Mechanics.
Blacksburg. Dept. of Engineering Science and Mechanics. A STUDY OF THE STRESS WAVE FACTOR TECHNIQUE FOR
ULTRASONIC STRESS WAVE CHARACTERIZATION OF NONDESTRUCTIVE EVALUATION OF COMPOSITEMATERIALS
COMPOSITE MATERIALS Final Report Final Report
J. C. DUKE, JR., E. G. HENNEKE, II, and W. W. STINCHCOMB A. SARRAFZADEH-KHOEE, M. T. KIERNAN, J. C. DUKE, JR.,
Washington NASA May 1986 161 p and E. G. HENNEKE, II Washington NASA Jul. 1986 33 p
(Contract NAG3-323) (Contract NAG3-172)
(NASA-CR-3976; E-2948; NAS 1.26:3976) Avail: NTIS HC (NASA-CR-4002; E-3081; NAS 1.26:4002) Avail: NTIS HC
A08/MF A01 CSCL 14D A03/MF A01 CSCL 14D

The work reported covers three simultaneous projects. The The acousto-ultrasonic method of nondestructive evaluation is
first project was concerned with: (1) establishing the sensitivity of an extremely sensitive means of assessing material response.
the acousto-ultrasonic method for evaluating subtle forms of Efforts continue to complete the understanding of this method. In
damage development in cyclically loaded composite materials, (2) order to achieve the full sensitivity of the technique, extreme care
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must be taken in its performance. This report provides an update predictions are difficult to obtain due to measurement uncertainty
of the efforts to advance the understanding of this method and to and the limitations of 100 MHz SLAM applied to typical ceramic
increase its application to the nondestructive evaluation of specimens. Author
composite materials. Included are descriptions of a novel optical
system that is capable of measuring in-plane and out-of-plane
displacements, an IBM PC-based data acquisition system, an
extensive data analysis software package, the azimuthal variation N86-32764"# National Aeronautics and Space Administration.
of acousto-ultrasonic behavior in graphite/epoxy laminates, and Lewis Research Center, Cleveland, Ohio.
preliminary examination of processing variation in ACOUSTO-ULTRASONIC VERIFICATION OF THE STRENGTH
graphite-aluminum tubes. Author OF FILAMENT WOUND COMPOSITE MATERIAL

H. E. KAUTZ 1986 24 p Presented at the Pressure Vessel
N86-31065"# National Aeronautics and Space Administration. Conference, Chicago, II1., 21-24 Jul. 1986; sponsored by the
Lewis Research Center, Cleveland, Ohio. American Society of Mechanical Engineers
DETERMINATION OF GRAIN SIZE DISTRIBUTION FUNCTION (NASA-TM-88827; E-3201; NAS 1.15:88827) Avail: NTIS HC
USING TWO-DIMENSIONAL FOURIER TRANSFORMS OF TONE A02/MF A01 CSCL 14D
PULSE ENCODED IMAGES The concept of acousto-ultrasonic (AU) waveform partitioning
E. R. GENERAZIO Jun. 1986 24 p was appliedto nondestructiveevaluationof mechanicalproperties
(NASA-TM-88790; E-3125; NAS 1.15:88790) Avail: NTIS HC in filament wound composites (FWC). A series of FWC test
A02/MF A01 CSCL 11F specimens were subjected to AU analysis and the results were

Microstructural images may be tone pulse encoded and compared with destructivelymeasured interlaminarshear strengths
subsequentlyFouriertransformedto determinethe two-dimensional (ISS). AU stress-wavefactor (SWF) measurements gave greater
densityof frequency components.A theory is developed relating than 90 percent correlation coefficient upon regressionagainst
the density of frequency components to the density of length the ISS. This high correlation was achieved by employingthe
components. The density of length components corresponds appropriate time and frequencydomain partitioningas dictatedby
directly to the actual grain size distributionfunction from which wave propagationpath analysis. There is indicationthat different
the mean grain shape,size, and orientationcan be obtained. SWF frequencypartitionsare sensitiveto ISS at different depths

Author belowthe surface. Author

N86-31912"# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland,Ohio.
FACTORS THAT AFFECT RELIABILITY OF NONDESTRUCTIVE N87-10399"# National Aeronauticsand Space Administration.
DETECTION OF FLAWS IN STRUCTURAL CERAMICS LewisResearch Center, Cleveland,Ohio.
S. J. KLIMA, G. Y. BAAKLINI (ClevelandState Univ., Ohio), and ULTRASONIC DETERMINATION OF RECRYSTALLIZATION
D. J. ROTH 1986 11 p Presented at the 2nd International E.R. GENERAZIO 1986 15 p Presented at the Review of
Symposiumon Ceramic Materials and Componentsfor Engines, Progress in Quantitative NDE, La Jolla, Calif. 3-8 Aug. 1986;
Luebeck-Travemuende, West Germany, 14-17 Apr. 1986; sponsoredby Ames Lab. and Iowa State Univ.
sponsored by the German Ceramic Society and the American (NASA-TM-88855; E-3248; NAS 1.15:88855) Avail:NTIS HC
Ceramic Society A02/MF A01 CSCL 14D
(NASA-TM-87348; E-3096; NAS 1.15:87348) Avail: NTIS HC Ultrasonic attenuation was measured for cold worked Nickel
A02/MF A01 CSCL 14D 200 samples annealed at increasing temperatures. Localized

The factors that affect reliabilityof nondestructivedetectionof dislocationdensityvariations,crystallineorder and colume percent
flawsin structuralceramicsbymicrofocusradiographyand scanning of recrystallized phase were determined over the anneal
laser acousticmicroscopy(SLAM) were investigated.Reliabilityof temperature range using transmissionelectron microscopy,X-ray
void detection in siliconnitride and siliconcarbide by microfocus diffraction, and metallurgy. The exponent of the frequency
X-rays was affected by photon energy level, materialchemistry in dependence of the attenuationwas found to be a key variable
the immediate vicinity of the void, and the presence of loose relating ultrasonic attenuation to the thermal kinetics of the
powder aggregatesinside the void cavity. The sensitivityof SLAM recrystallizationprocess. Identificationof this key variable allows
to voids was affected by material microstructure,the level of for the ultrasonicdeterminationof onset, degree, and completion
porosity, and the conditionof the specimen surfaces. Statistical of recrystallization. B.G.
results are presented in the form of probabilityof detectionas a
function of void diameter for green compacts and sintered
materials. Author

N87-12910"# National Aeronauticsand Space Administration.
N86-31913"# National Aeronautics and Space Administration. Lewis ResearchCenter, Cleveland,Ohio.
Lewis ResearchCenter, Cleveland,Ohio. NDE RELIABILITY AND PROCESS CONTROL FOR
QUANTITATIVE VOID CHARACTERIZATION IN STRUCTURAL STRUCTURAL CERAMICS
CERAMICS USING SCANNING LASER ACOUSTIC G.Y. BAAKLINI 1986 17 p Proposed for presentationat the
MICROSCOPY 32nd International Gas Turbine Conference and Exhibition,
D. J. ROTH, E. R. GENERAZIO, and G. Y. BAAKLINI (Cleveland Anaheim, Calif., 31 May - 4 Jun. 1987; sponsoredby ASME
State Univ., Ohio) 1986 23 p Proposedfor presentationat (NASA-TM-88870; E-3276; NAS 1.15:88870) Avail:NTIS HC
the BasicScience, Electronicsand Glass DivisionsJointMeeting, A02/MF A01 CSCL 14D
New Orleans, La., 2-5 Nov. 1986; sponsoredby AmericanCeramic The reliabilityof microfocusx-radiographyand scanning laser
Society acoustic microscopyfor detectingmicrovoidsin silicon nitrideand
(NASA-TM-88797; E-3166; NAS 1.15:88797) Avail: NTIS HC silicon carbide was statistically evaluated. Materials- and
AO2/MF A01 CSCL 14D process-relatedparametersthat influenced the statistical findings

The ability of scanninglaser acoustic microscopy(SLAM) to in research samples are discussed. The use of conventional
characterize artificiallyseeded voids in sintered silicon nitride x-radiography in controllingand optimizingthe processing and
structuralceramicspecimenswas investigated.Usingtrigonometric sintering of an Si3N4-Si02-Y203 compositiondesignated NASA
relationshipsand Airy's diffraction theory, predictionsof internal 6Y is described. Radiographicevaluation and guidance helped
voiddepth andsizewere obtainedfromacousticdiffractionpatterns develop uniform high-densitySi3N4 modulus-of-rupturebars with
produced by the voids.Agreement was observedbetween actual improved four-pointflexural strength (857, 544, and 462 MPa at
and predictedvoiddepths.However,predictedvoiddiameterswere room temperature,1200 C, and 1370 C, respectively)and reduced
generally much greater than actual diameters. Precise diameter strengthscatter. Author
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N87-18109"# National Aeronautics and Space Administration. techniques were evaluated on research samples of green and
Lewis Research Center, Cleveland, Ohio. sintered monolithic silicon nitrides and silicon carbides in the form
NONDESTRUCTIVE EVALUATION OF STRUCTURAL of modulus-of-rupture bars containing deliberately introduced flaws.
CERAMICS Strengths and limitations of the techniques are described with
STANLEY J. KLIMA, GEORGEY. BAAKLINI (Cleveland State Univ., emphasis on statistics of detectability of flaws that constitute
Ohio), and PHILLIP B. ABEL 1987 23 p Presented at the potential fracture origins. Author
24th Automotive Technology Development Contractors
Coordination Meeting, Dearborn, Mich., 27-30 Oct. 1986; sponsored
by DOE
(NASA-TM-88978; E-3446; NAS 1.15:88978) Avail: NTIS HC
A02/MF A01 CSCL 14D

A review is presented on research and development of
techniques for nondestructive evaluation and characterization of
advanced ceramics for heat engine applications. Highlighted in N87-25589"# National Aeronautics and Space Administration.
this review are Lewis Research Center efforts in microfocus Lewis Research Center, Cleveland, Ohio.
radiography, scanning laser acoustic microscopy (SLAM), scanning RAY PROPAGATION PATH ANALYSIS OF ACOUSTO-UL-
acoustic microscopy (SAM), scanning electron acoustic microscopy TRASONIC SIGNALS IN COMPOSITES
(SEAM), and photoacoustic microscopy (PAM). The techniques HAROLD E. KAUTZ 1987 20 p Presented at
were evaluated by applying them to research samples of green Acousto-Ultrasonics: Theory and Application, Blacksburg, Va.,
and sintered silicon nitride and silicon carbide in the form of 12-15 Jul. 1987; sponsored by NASA
modulus-of-rupture bars containing seeded voids. Probabilities of (NASA-TM-100148; E-3706; NAS 1.15:100148) Avail: NTIS HC
detection of voids were determined for diameters as small as 20 A02/MF A01 CSCL 14D
microns for microfucus radiography, SLAM, and SAM. Strengths The most important result was the demonstration that
and limitations of the techniques for ceramic applications are acousto-ultrasonic (AU) energy introduced into a laminated
identified. Application of ultrasonics for characterizing ceramic graphite/resin propagates by two modes through the structure.
microstructures is also discussed. Author The first mode, along the graphite fibers, is the faster. The second

mode, through the resin matrix, besides being slower is also more
N87-20562"# National Aeronautics and Space Administration. strongly attenuated at the higher frequencies. This demonstration
Lewis Research Center, Cleveland, Ohio. was accomplished by analyzing the time and frequency domain of
THE ACOUSTO-ULTRASONIC APPROACH the composite AU signal and comparing them to the same for a
ALEX VARY 1987 30 p Prepared for presentation at the neat resin specimen of the same chemistry and geometry as the
Conference on Acousto-Ultrasonics: Theory and Application, composite matrix. Analysis of the fine structure of AU spectra
Blacksburg, Va., 12-15 Jul. 1987; sponsored in part by NASA and was accomplished by various geometrical strategies. It was shown
American Society for Nondestructive Testing that the multitude of narrow peaks associated with AU spectra
(NASA-TM-89843; E-3504; NAS 1.15:89843) Avail: NTIS HC are the effect of the many pulse arrivals in the signal. The shape
A03/MF A01 CSCL 14D and distribution of the peaks is mainly determined by the condition

The nature and underlying rationale of the acousto-ultrasonic of nonnormal reflections of ray paths. A cepstrum analysis was
approach is reviewed, needed advanced signal analysis and employed which can be useful in detecting characteristic times.
evaluation methods suggested, and application potentials Analysis of propagation modes can be accomplished while ignoring
discussed. Acousto-ultrasonics is an NDE technique combining the fine structure. Author
aspects of acoustic emission methodology with ultrasonic
simulation of stress waves. This approach uses analysis of
simulated stress waves for detecting and mapping variations of
mechanical properties. Unlike most NDE, acousto-ultrasonics is
less concerned with flaw detection than with the assessment of
the collective effects of various flaws and material anomalies.
Acousto-ultrasonics has been applied chiefly to laminated and
filament-wound fiber reinforced composites. It has been used to N87-26362"# National Aeronautics and Space Administration.
assess the significant strength and toughness reducing effects Lewis Research Center, Cleveland, Ohio.
that can be wrought by combinations of essentially minor flaws ULTRASONIC NDE OF STRUCTURAL CERAMICS FOR POWER
and diffuse flaw populations. Acousto-ultrasonics assesses AND PROPULSION SYSTEMS
integrateddefect states and the resultant variationsin properties ALEX VARY, EDWARD R. GENERAZIO, DON J. ROTH, and
such as tensile, shear, and flexural strengths and fracture GEORGE Y. BAAKLINI (ClevelandState Univ., Ohio.) 1987 12
resistance.Matrixcure state,porosity,fiberorientation,fibervolume p Presentedat the 4th EuropeanConferenceon Non-Destructive
fraction, fiber-matrix bonding, and interlaminar bond quality are Testing, London, England, 13-18 Sep. 1987; sponsored by the
underlyingfactors. Author BritishInst.of Non-DestructiveTesting

(NASA-TM-100147; E-3705; NAS 1.15:100147) Avail: NTIS HC
N87-23987"# National Aeronautics and Space Administration. A02/MF A01 CSCL 14D
LewisResearchCenter, Cleveland,Ohio. A review of research investigations of several ultrasonic
APPLICATION OF SCANNING ACOUSTIC MICROSCOPY TO evaluation techniques applicable to structural ceramics for
ADVANCED STRUCTURAL CERAMICS advanced heat engines is presented. This review highlightsrecent
ALEX VARY and STANLEY J. KLIMA Jul. 1987 14 p Prepared work conducted under the sponsorship of and at the Lewis
forpresentationat theSymposiumon Characterizationof Advanced Research Center. Results obtained with scanning acoustic
Materials, Monterey, Calif., 27-28 Jul. 1987; sponsored by microscopy, scanning laser acoustic microscopy,photo acoustic
InternationalMetallographicSociety microscopy, and scanning electron acoustic microscopy are
(NASA-TM-89929; E-3632; NAS 1.15:89929) Avail: NTIS HC compared. In addition to these flaw imaging techniques,
A02/MF A01 CSCL 14D microstructure characterization by analytical ultrasonics is

A review is presented of research investigationsof several described. The techniques were evaluated by application to
acoustic microscopy techniques for application to structural researchsamples of monolithicsiliconnitrideand siliconcarbide
ceramics for advanced heat engines. Results obtained with in the form of discs and bars containingnaturallyoccurringand
scanning acoustic microscopy(SAM), scanning laser acoustic deliberately-introduced flaws and microstructural anomalies.
microscopy (SLAM), scanning electron acoustic microscopy Strengthsand limitationsof the techniquesare discussed.
(SEAM), and photoacousticmicroscopy(PAM) are compared. The Author
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N88-12106"# National Aeronautics and Space Administration. the radius of rotation of the clamped end of the beam is reduced.
Lewis Research Center, Cleveland, Ohio. (Author)
FLAW IMAGING AND ULTRASONIC TECHNIQUES FOR
CHARACTERIZING SINTERED SILICON CARBIDE
GEORGE Y. BAAKLINI (Cleveland State Univ., Ohio.) and PHILLIP A80-27958"# National Aeronautics and Space Administration.
B. ABEL Aug. 1987 21 p Presented at the Conference on Lewis Research Center, Cleveland, Ohio.STRAINRANGE PARTITIONING LIFE PREDICTIONS OF THE
Nondestructive Testing of High-Performance Ceramics, Boston, LONG TIME METAL PROPERTIES COUNCIL CREEP-FATIGUE
Mass., 25-27 Aug. 1987; sponsored in part by American Ceramic TESTS
Society and the American Society for Nondestructive Testing
(NASA-TM-100177; E-3753; NAS 1.15:100177) Avail: NTIS HC J.F. SALTSMAN and G. R. HALFORD (NASA, Lewis Research
A03/MF A01 CSCL 14D Center, Cleveland, Ohio) In: Methods for predicting material life

The capabilities were investigated of projection microfocus in fatigue; Proceedings of the Winter Annual Meeting, New York,
x-radiography, ultrasonic velocity and attenuation, and reflection N.Y., December 2-7, 1979. New York, American Society of
scanning acoustic microscopy for characterizing silicon carbide Mechanical Engineers, 1979, p. 101-132. refs

The method of Strainrange Partitioning is used to predict the
specimens. Silicon carbide batches covered a range of densities cyclic lives of the Metal Properties Council's long time creep-fatigue
and different microstructural characteristics. Room temperature, interspersion tests of several steel alloys. Comparisons are made
four point flexural strength tests were conducted. Fractography
was used to identify types, sizes, and locations of fracture origins, with predictions based upon the Time- and Cycle-Fraction
Fracture toughness values were calculated from fracture strength approach. The method of Strainrange Partitioning is shown to give
and flaw characterization data. Detection capabilities of radiography consistently more accurate predictions of cyclic life than is given
and acoustic microscopy for fracture-causing flaws were evaluated, by the Time- and Cycle-Fraction approach. (Author)
Applicability of ultrasonics for verifying material strength and
toughness was examined. Author A80-32067"# National Aeronautics and Space Administration.

Lewis Research Center, Cleveland, Ohio.
PREDICTION OF FIBER COMPOSITE MECHANICAL BEHAVIOR
MADE SIMPLE

39 c.c. CHAMIS (NASA, Lewis Research Center, Materials and
Structures Div., Cleveland, Ohio) In: Rising to the challenge of
the '80s; Annual Conference and Exhibit, 35th, New Orleans, La.,

STRUCTURAL MECHANICS February 4-8, 1980, Preprints. New York, Society of the Plastics
Industry, Inc., 1980, p. 12-A 1 to 12-A 10.

Includes structural element design and weight analysis; fatigue; A convenient procedure is described for the determination of
and thermal stress, the mechanical behavior (elastic properties and failure stresses of

angleplied fiber composite laminates using a pocket calculator.
The procedure consists of simple equations and appropriate graphs

A80-10832" National Aeronautics and Space Administration. of (plus or minus theta) ply combinations. The procedure can
Lewis Research Center, Cleveland, Ohio. handle all types of fiber composites including hybrids.The versatility
SIMPLE SPLINE-FUNCTION EQUATIONS FOR FRACTURE and generality of the procedure is illustrated using several
MECHANICS CALCULATIONS step-by-step numerical examples. (Author)
T. W. ORANGE (NASA, Lewis Research Center, Cleveland, Ohio)
International Journal of Fracture, vol. 15, Oct. 1979, p.
R161-R163. refs A89-35906"# National Aeronautics and Space Administration.

The paper presents simple spline-function equations for fracture Lewis Research Center, Cleveland, Ohio.
mechanics calculations. A spline function is a sequence of STATUS OF NASA FULL-SCALE ENGINE AEROELASTICITY
piecewise polynomials of degree n greater than 1 whose RESEARCH
coefficients are such that the function and its first n-1 derivatives J.F. LUBOMSKI (NASA, Lewis Research Center, Cleveland,
are continuous. Second-degree spline equations are presented for Ohio) In: Structures, Structural Dynamics, and Materials
the compact, three point bend, and crack-line wedge-loaded Conference, 21st, Seattle, Wash., May 12-14, 1980, Technical
specimens. Some expressions can be used directly, so that for a Papers. Conference sponsored by AIAA, ASME, ASCE, and AHS.
cyclic crack propagation test using a compact specimen, the New York, American Institute of Aeronautics and Astronautics,
equation given allows the cracklength to be calculated from the Inc., 1980. 18 p. refs
slope of the load-displacement curve. For an R-curve test, The paper presents data relevant to several types of aeroelastic
equations allow the crack length and stress intensity factor to be instabilities which have been obtained using several types of
calculated from the displacement and the displacement ratio, turbojet and turbofan engines. Special attention is given to data

A.T. relative to separated flow (stall) flutter, choke flutter, and system
mode instabilities. The discussion covers the characteristics of
these instabilities, and a number of correlations are presented

A80-20149" Army Structures Lab., Hampton, Va. that help identify the nature of the phenomena. M.E.P.
BUCKLING OF ROTATING BEAMS
W. F. WHITE, JR. (U.S. Army, Structures Laboratory, Hampton,
Va.), R. G. KVATERNIK (NASA, Langley Research Center, A80-38142"# Case Western Reserve Univ., Cleveland, Ohio.
Hampton, Va.), and K. R. V. KAZA (NASA, Lewis Research Center, A QUARTER-CENTURY OF PROGRESS IN THE DEVELOPMENT
Cleveland; Toledo, University, Toledo, Ohio) International Journal OF CORRELATION AND EXTRAPOLATION METHODS FOR
of Mechanical Sciences, vol. 21, no. 12, 1979, p. 739-745. refs CREEP RUPTURE DATA

The stability of a beam subjected to compressive centrifugal S.S. MANSON (Case Western Reserve University,Cleveland, Ohio)
forces arising from steady rotation about an axis which does not and C. R. ENSIGN (NASA, Lewis Research Center, Cleveland,
pass through the clamped end of the beam is analyzed to determine Ohio) ASME, Transactions, Journal of Engineering Materials and
the critical rotational speeds for buckling in the inplane and Technology, vol. 101, Oct. 1979, p. 317-325. refs
out-of-plane directions. The differential equations of motion are Developments in the analysis of creep-rupture data are reviewed
solved numerically using an integrating matrix method in with particular reference to time temperature relations for the
combination with an eigenanalysis to determine the eigenvalues correlation and extrapolation of creep and stress rupture data, the
from which stability is assessed. The results clarify several minimum commitment method, and successive regression methods.
differences which have been identified in the literature relating to Some contributions to the development of time-temperature
the proper behavior of the critical rotational speed for buckling as parameters are noted. V.P.
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A80-45364" National Aeronautics and Space Administration. A81-18792" National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio. Lewis Research Center, Cleveland, Ohio.
VIBRATION AND BUCKLING OF RECTANGULAR PLATES ON THE EQUIVALENCE BETWEEN SEMIEMPIRICAL
UNDER IN-PLANE HYDROSTATIC LOADING FRACTURE ANALYSES AND R-CURVES
R. E. KIELB (NASA, Lewis Research Center, Cleveland, Ohio) T.W. ORANGE (NASA, Lewis Research Center, Cleveland, Ohio)
and L. S. HAN (Ohio State University, Columbus, Ohio) Journal In: Fracture mechanics; Proceedings of the Twelfth National
of Sound and Vibration, vol. 70, June 22, 1980, p. 543-555. refs Symposium, Washington University, St. Louis, Mo., May 21-23,

Numerical solutions are presented for the fundamental natural 1979. Philadelphia, Pa., American Society for Testing and
frequency and mode shape of a rectangular plate loaded by in-plane Materials, 1980, p. 478-499. refs
hydrostatic forces for a wide variety of aspect ratios, boundary The relationship between the R-curves and semiempirical
conditions, and load magnitudes. All six possible combinations of fracture analyses (SEFA) is investigated theoretically using a
simply supported and clamped edges are considered. The limiting hypothetical material. Equivalent R-curves (ERC) are developed
conditions of unloaded vibration and buckling are discussed in for real materials using data from the literature. It is shown that
detail, with emphasis on the preferred mode shape. Design curves for each SEFA there is an ERC whose magnitude and shape are
and approximate formulae are presented which provide a simple determined by the SEFA formulation and its empirical parameters.
means of determining the fundamental frequency parameter. The ERC is equivalent in that it predicts exactly the same

(Author) relationship between the fracture stress and the initial crack length
(residual strength) as the SEFA. If the effective R-curve is unique,
then the various empirical parameters cannot be constant, and
vice versa. However, for one of the SEFA examined, Newman's
SEFA, parameter variations are small enough to be within the
range of normal data scatter for real materials. V.L.

A80-46032" National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
COMPLIANCE AND STRESS INTENSITY COEFFICIENTS FOR
SHORT BAR SPECIMENS WITH CHEVRON NOTCHES A81-22526"# National Aeronauticsand Space Administration.
D. MUNZ (NASA, Lewis Research Center, Cleveland, Ohio; Lewis Research Center, Cleveland, Ohio.
Deutsche Forschungs- und Versuchsanstalt fuer Luft- und STABILITY OF LARGE HORIZONTAL-AXIS AXlSYMMETRIC
Raumfahrt, Cologne, West Germany), R. T. BUBSEY, and J.E. WIND TURBINES
SRAWLEY (NASA, Lewis Research Center, Cleveland, Ohio) M.S. HIRSCHBEIN (NASA, Lewis Research Center, Cleveland,
InternationalJournalof Fracture,vol. 16, Aug. 1980, p. 359-374. Ohio)and M. I. YOUNG (Delaware,University,Newark,Del.) Miami
refs InternationalConferenceon AlternativeEnergySources,3rd, Miami,
(ContractEC-77-A-31-1040) Fla., Dec. 15-17, 1980, Paper. 35 p. refs

For the determinationof fracture toughness especially with The stability of large horizontal-axis, axisymmetric,power
brittlematerials,a short barspecimenwithrectangularcrosssection producingwind turbines is examinedwithin the frameworkof an
and chevronnotch can be used. As the crack propagates from analytical model which includes dynamic coupling of the rotor,
the tip of the triangularnotch, the load increases to a maximum tower, and power generatingsystem. The aerodynamicloadingis
then decreases. To obtain the relation between the fracture derivedfrom blade element theory. Stability is determinedby the
toughnessand maximumload, calculationsof Srawley and Gross eigenvaluesof a set of linearizedconstant-coefficientdifferential
for specimenswith a straight-throughcrack were appliedto the equations.All resultspresented are based on a 3-bladed, 300-ft
specimens with chevron notches. For the specimens with a diameter,2.0-MW wind turbine.It is shownthat unstableorweakly
straight-throughcrack,an analyticalexpressionwas obtained.This stable behavior can be caused by aerodynamic forces due to
expressionwas used for the calculationof the fracture toughness motion of the rotor blades and tower in the plane of rotation or
versus maximum load relation under the assumption that the by mechanicalcouplingbetween the rotor systemand the tower.
change of the compliance with crack length for the specimen V.L.
with a chevron notch is the same as for a specimen with a
straight-throughcrack. (Author)

A81-29095"# United Technologies Research Center, East
Hartford,Conn.
EFFECTS OF MISTUNING ON BLADE TORSIONAL FLUTTER
A. V. SRINIVASAN (United Technologies ResearchCenter, East

A81-14162" Battelle ColumbusLabs.,Ohio. Hartford, Conn.) and A. KURKOV (NASA, LewisResearchCenter,
CONTINUOUS ANALYSIS OF STRESSES FROM ARBITRARY Cleveland, Ohio) In: InternationalSymposiumon Air Breathing
SURFACE LOADS ON A HALF SPACE Engines,5th, Bangalore,India, February16-22, 1981, Proceedings.
J. C. BELL (Battelle Columbus Laboratories, Columbus,Ohio) Bangalore, National Aeronautical Laboratory, 1981, p. 59-1 to
InternationalJournal of Solids and Structures,vol. 16, no. 12, 59-8. refs
1980, p. 1069-1091. Research supported by Battelle Memorial (ContractNAS3-21603)
Instituteand Bell AerospaceCo. refs An analytical model for the predictionof fan blade flutter is
(ContractF33615-72-C-1739; NAS3-17760; NAS3-21020) presented and evaluated using data from NASA tests on an

A new form of elemental surface load on a half space is advanced high performance engine. For the cascade conditions
introduced,presuminga quasi-pyramidalvariationof load which is appropriate to the test points studied, the aerodynamic theory
doublylinearineachof fourrectangularpartsof a surface rectangle, cannot predictsubcriticalflutter.Underthe assumptionsof a tuned
Approximationsof arbitrary load distributionsby sums of such assembly, the imaginarypartof the aerodynamiccoefficientsdoes
elements are continuous,piecewise linear in two directionsand indicate flutter for a limited number of interblade phase angles,
welladaptable.The loadsmay be normalor tangential.The explicit but these interbladephase anglesare close to those at which the
solutions obtained for all stress and displacementcomponents acoustic resonance is predicted.Upon using the individualblade
due to each elemental load involveonly elementary functions,are frequencies and solving the mistuned system with aerodynamic
free of the discontinuitieswhich arise with stepwise elements, coupling only, the results show a stable system. Eigenvectors
andare suitablefor computing.Some illustrativestressdistributions calculated for the mistunedsystem demonstrate the presence of
are presented for elemental loads and for multiplepyramidalloads several harmonics in each mistuned mode. Inclusion of both
involvingboth normal and tangential loads.The value of the load mechanical and aerodynamic coupling in the solution of the
continuityin the more complicatedanalyses of surface cracks is eigenprobleminfluencesnotonly the frequenciesbut also damping
also illustrated. (Author) in the systemwith a trend towardstability. L.S.
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A81-29465"# National Aeronautics and Space Administration. components of displacement. Finally, the analytical procedure is
Lewis Research Center, Cleveland, Ohio. demonstrated on rotating twisted blade modes, both without and
EFFECTS OF MISTUNING ON BENDING-TORSION FLUTTER with camber. (Author)
AND RESPONSE OF A CASCADE IN INCOMPRESSIBLEFLOW
K. R. V. KAZA (NASA, Lewis Research Center, Cleveland;Toledo,
University,Toledo, Ohio) and R. E. KIELB (NASA, Lewis Research

Center, Structures Branch, Cleveland, Ohio) In: Structures, A82-32303" Georgia Inst. of Tech., Atlanta.
StructuralDynamicsand MaterialsConference, 22nd, Atlanta,Ca., PATH-INDEPENDENT INTEGRALS IN FINITE ELASTICITY AND
April 6-8, 1981, and AIAA Dynamics Specialists Conference, INELASTICITY, WITH BODY FORCES, INERTIA, AND
Atlanta, Ga., April 9, 10, 1981, Technical Papers. Part 2. New ARBITRARY CRACK-FACE CONDITIONS
York, American Institute of Aeronautics and Astronautics, Inc., S.N. ATLURI (Georgia Institute of Technology, Atlanta, GA)
1981, p. 320-331. refs EngineeringFracture Mechanics, vol. 16, no. 3, 1982, p. 341-364.
(AIAA81-0602) refs

This paper presents an investigationof the effects of blade (Contract N00014-78-C-0636;AF-AFOSR-81-0057; NAG3-38)
mistuning on the aeroelastic stability and response of a cascade (Previouslyannounced in STAR as N81-32547)
in incompressible flow. The aerodynamic, inertial, and structural
coupling between the bending and torsional motions of each blade
and the aerodynamic coupling between the blades are included in
the formulation. A digital computer program was developed to
conduct parametric studies. Results indicate that the mistuning A82-35408"# Ohio State Univ., Columbus.
has a beneficial effect on the coupled bending-torsion and COMPARISON OF BEAM AND SHELL THEORIES FOR THE
uncoupled torsion flutter. The effect of mistuning on forced VIBRATIONS OF THIN TURBOMACHINERY BLADES
response, however, may be either beneficial or adverse, depending A.W. LEISSA (Ohio State University, Columbus, OH) and M. S.
on the engine order of the forcing function. Additionally, the results EWlNG (U.S.Air Force Academy, Colorado Springs,CO) American
illustrate that it may be feasible to utilize mistuning as a passive Society of Mechanical Engineers, International Gas Turbine
control to increase flutter speed while maintaining forced response Conference and Exhibit, 27th, London, England, Apr. 18-22, 1982,
at an acceptable level. (Author) 12 p. refs

(Contract NAG3-36)
A82-11298" Ohio State Univ., Columbus. (ASME PAPER 82-GT-223)
VIBRATIONS OF CANTILEVERED SHALLOW CYLINDRICAL Vibration analysis of turbomachinery blades has traditionally
SHELLS OF RECTANGULAR PLANFORM been carried out by means of beam theory. In recent years
A. W. LEISSA, J. K. LEE, and A. J. WANG (Ohio State University, two-dimensional methods of blade vibration analysis have been
Columbus,OH) Journal of Soundand Vibration,vol. 78, Oct. 8, developed,most of which utilizefinite elements and tend to require
1981, p. 311-328. refs considerable computation time. More recently a two-dimensional
(ContractNAG3-36) method of blade analysis has evolved which does not require

A cantilevered, shallow shell of circular cylindrical curvature finite elements and is based upon shell equations. The present
and rectangular planform exhibits free vibration behavior which investigation hasthe primaryobjectiveto demonstratethe accuracy
differs considerably from that of a cantilevered beam or of a flat and limitations of blade vibration analyses which utilize
plate. Some numerical results can be found for the problem in one-dimensional, beam theories. It is found that beam theory is
the previously published literature, mainly obtained by using various generally inadequate to determine the free vibration frequencies
finite element methods. The present paper is the first definitive and mode shapes of moderate to low aspect ratio turbomachinery
study of the problem, presenting accurate non-dimensional blades. The shallow shell theory, by contrast, is capable of
frequency parameters for wide rangesof aspect ratio, shallowness representing all the vibration modes accurately. However, the
ratio and thickness ratio. The analysis is based upon shallow shell one-dimensional beam theory has an important advantage over
theory. Numerical results are obtained by using the Ritz method, the two-dimensional shell theory for blades and vibration modes.
with algebraic polynomial trial functions for the displacements. It uses fewer degrees of freedom, thus requiring less computer
Convergence is investigated, with attention being given both to time. G.R.
the number of terms taken for each co-ordinate direction and for
each of the three components of displacement. Accuracy of the
results is also established by comparison with finite element results
for shallow shells and with other accurate flat plate solutions. A82-36782" Georgia Inst. of Tech., Atlanta.

(Author) ON A STUDY OF THE /DELTA T/C AND C/ASTERISK/
INTEGRALS FOR FRACTURE ANALYSIS UNDER NON-STEADY

A82-19341"# Ohio State Univ., Columbus. CREEP
VIBRATIONS OF TWISTED ROTATING BLADES R.B. STONESIFER and S. N. ATLURI (Georgia Institute of
A. W. LEISSA, J. K. LEE (Ohio State University, Columbus, OH), Technology, Atlanta, GA) Engineering Fracture Mechanics, vol.
and A. J. WANG American Society of Mechanical Engineers, 16, no. 5, 1982, p. 625-643. refs
Design Engineering Technical Conference, Hartford, CT, Sept. (Contract NAG3-38; AF-AFOSR-81-0057)
20-23, 1981, 8 p. refs Applications of a vector quantity, path-independent integral
(Contract NAG3-36) which has an energy interpretation to the characterization of
(ASME PAPER 81-DET-127) crack-tip fields in the range from fast to slow crack propagation

The literature dealing with vibrations of turbomachinery blades are examined. The crack tip characterization parameter is defined
is voluminous, but the vast majority of it treats the blades as in terms of a conservation integral for an area around the crack
beams. In a previous paper a two-dimensional analytical procedure tip in a two-dimensional cracked body. The actual physical
was developed and demonstrated on simple models of blades interpretation of the parameter is shown to be the difference in
having camber. The procedure utilizes shallow shell theory along crack lengths displayed by two identical bodies which have equal
with the classical Ritz method for solving the vibration problem, load histories. A steady-state value is obtained for the parameter
Displacement functions are taken as algebraic polynomials. In the for cases of steady-state creep and is shown to be related to the
present paper the method is demonstrated on blade models having standard path-independent integral for macroscopic self-similar
camber. Comparisons are first made with results in the literature crack growth under mode I conditions. A finite element model is
for nonrotating twisted plates and various disagreements between developed for viscoplastic material models, using an initial strain
results are pointed out. A method for depicting mode shape approach with steps in a size employed in tangent stiffness
information is demonstrated, permitting one to examine all three methods. M.S.K.
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A82-39514" Akron Univ., Ohio. A82-40358" National Aeronautics and Space Administration.
ON THE SOLUTION OF CREEP INDUCED BUCKLING IN Lewis Research Center, Cleveland, Ohio.
GENERAL STRUCTURE CRACK DISPLACEMENTS FOR J/I/TESTING WITH COMPACT
J. PADOVANand S. TOVlCHAKCHAIKUL (Akron, University, Akron, SPECIMENS
OH) Computers and Structures, vol. 15, no. 4, 1982, p. 379-392. T.W. ORANGE (NASA, Lewis Research Center, Cleveland, OH)
refs International Journal of Fracture, vol. 19, July 1982, p. R59-R61.
(Contract NAG3-54) refs

This paper considers the pre and post buckling behavior of The suggestion is made that the standard compact specimen
general structures exposed to high temperature fields for long (with opening displacement measured at the crack mouth) may
durations wherein creep effects become significant. The solution be entirely suitable for J-integral determinations if a very simple
to this problem is made possible through the use of closed upper conversion factor is used. Experimental determination of J-integral
bounding constraint surfaces which enable the development of a values requires the measurement of displacements at the points
new time stepping algorithm. This permits the stable and efficient of load application. For the compact specimen this is a difficult
solution of structural problems which exhibit indefinite tangent task. On the basis of studies reported by Newman (1979) and
properties. Due to the manner of constraining/bounding successive Fisher and Buzzard (1980), it is suggested that for any J-based
iterates, the algorithm developed herein is largely self adaptive, test the standard compact specimen can be used. A very good
inherently stable, sufficiently flexible to handle geometric material approximation to the load point displacement (within 3.4 percent)
and boundary induced nonlinearity, and can be incorporated into can be obtained by measuring the crack mouth displacement and
either finite element or difference simulations. To illustrate the multiplying by 0.773. G.R.
capability of the procedure, as well as, the physics of creep induced
pre and post buckling behavior, the results of several numerical
experiments are included. (Author)

A82-39852" National Aeronautics and Space Administration.

Lewis Research Center, Cleveland, Ohio. A82-42863"# Ohio State Univ., Columbus.IMPACT RESISTANCE OF FIBER COMPOSITES
C. C. CHAMIS and J. H. SINCLAIR (NASA, Lewis Research Center, ON ULTRASONIC FACTORS AND FRACTURE TOUGHNESS
Cleveland, OH) In: Composite materials: Mechanics, mechanical L.S. FU (Ohio State University, Columbus, OH) In: Symposiumon Nondestructive Evaluation, 13th, San Antonio, TX, April 21-23,
properties and fabrication; Proceedings of the Japan-U.S.
Conference, Tokyo, Japan, January 12-14, 1981. Barking, Essex, 1981, Proceedings. San Antonio, TX, Southwest Research Institute,
England, Applied Science Publishers, 1982, p. 1-11. 1982, p. 149-160. refs

Stress-strain curves are obtained for a variety of glass fiber (Contract NSG-3269)
and carbon fiber reinforced plastics in dynamic tension, over the Recent experimental and theoretical studies on ultrasonics have

shown that the scattering of elastic waves by material defects
stress-strain range of 0.00087-2070/sec. The test method is of yields data which characterize crack properties, such as size and
the one-bar block-to-bar type, using a rotating disk or a pendulum orientation, and also the mechanical properties of the given
as the loading apparatus and yielding accurate stress-strain curves
up to the breaking strain. In the case of glass fiber reinforced material. In the present study, elastodynamic fields due to the
plastic, the tensile strength, strain to peak impact stress, total presence of a pair of inhomogeneities in a material of plate
strain and total absorbed energy all increase significantly as the geometry are investigated by the method of equivalent inclusions.
strain rate increases. By contrast, carbon fiber reinforced plastics The stress amplitude change of the plates during the passage of
show lower rates of increase with strain rate. It is recommended plane time-harmonic waves is found, and the relation between
that hybrid composites incorporating the high strength and rigidity fracture toughness and ultrasonic factors is determined. Theapproach used does not assume the existence of a sharp crack
of carbon fiber reinforced plastic with the high impact absorption in the material. O.C.
of glass fiber reinforced plastics be developed for use in structures
subjected to impact loading. O.C.

A82-49066" Georgia Inst. of Tech., Atlanta.
MOVING SINGULARITY CREEP CRACK GROWTH ANALYSIS
WITH THE/DELTA T/C AND C/ASTERISK/ INTEGRALS
R. B. STONESIFER and S. N. ATLURI (Georgia Institute of A82-45869" Northwestern Univ., Evanston, III.
Technology, Atlanta, GA) Engineering Fracture Mechanics, vol. ON FINITE DEFORMATION ELASTO-PLASTIClTY
16, no. 6, 1982, p. 769-782. refs S. NEMAT-NASSER (Northwestern University, Evanston, IL)
(Contract NAG3-38) International Journal of Solids and Structures, vol. 18, no. 10,

The physical meaning of (Delta T)c and its applicability to creep 1982, p. 857-872. refs
crack growth are reviewed. Numerical evaluation of (Delta T)c (Contract NAG3-134)
and C(asterisk) is discussed with results being given for compact Lee (1969) has proposed a theory based on the decomposition
specimen and strip geometries. A moving crack-tip singularity, creep of the total deformation gradient to an elastic and plastic part,
crack growth simulation procedure is described and demonstrated, and from it has concluded that the additive decomposition of the
The results of several crack growth simulation analyses indicate strain rates holds only approximately. Lubarda and Lee (1981)
that creep crack growth in 304 stainless steel occurs under have declared that Lee's 'exact finite-deformation kinematics shows
essentially steady-state conditions. Based on this result, a simple the almost universal assumption that the total velocity strain or
methodology for predicting creep crack growth behavior is rate of deformation is the sum of elastic and plastic rates to be in
summarized. (Author) error'. Hence questions are raised regarding the validity of

essentially all finite deformation elasto-plasticity theories. The
A82-40357" National Aeronautics and Space Administration. present investigation is concerned with these questions. It is shown
Lewis Research Center, Cleveland, Ohio. that the additive decomposition of the strain rates follows from all
EXTENDED RANGE STRESS INTENSITY FACTOR common finite elasto-plasticity concepts. Lee's theory is examined,
EXPRESSIONS FOR CHEVRON-NOTCHED SHORT BAR AND and it is shown that this theory also leads to an additive strain
SHORT ROD FRACTURE TOUGHNESS SPECIMENS rate decomposition, and therefore, his conclusion stems from
J. L. SHANNON, JR., R. T. BUBSEY, W. S. PIERCE (NASA, Lewis misinterpretation. It is found that the elastic and the plastic strain
Research Center, Cleveland, OH), and D. MUNZ (Karlsruhe, rates considered by Lee do not correspond to the same
Universitaet, Karlsruhe, West Germany) International Journal of configuration. They are, therefore, not compatible measures.
Fracture, vol. 19, July 1982, p. R55-R58. G.R.
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A82-46109" Illinois Univ., Urbana. A83-12048" Lehigh Univ., Bethlehem, Pa.
INTERFACE CRACKS IN ADHESIVELY BOUNDED LAP-SHEAR MOVING CRACKS IN LAYERED COMPOSITES
JOINTS G.C. SIH (LehighUniversity,Bethlehem, PA) and E. P. CHEN
S. S. WANG and J. F. YAU (Illinois, University, Urbana, IL) (Sandia National Laboratory,Albuquerque,NM) International
InternationalJournalof Fracture,vol. 19, Aug. 1982, p. 295-309. Journal of Engineering Science, vol. 20, no. 11, 1982, p.
refs 1181-1192. refs
(ContractNSG-3044) (ContractNSG-3179)

A studyon the elastic behaviorof interfacecracks inadhesively A three-layeredcompositewitha crack spreadingin the center
bonded lap-shear joints is presented.The problem is investigated layer has been analyticallyexamined to evaluate the effect of
by using a recently developed method of analysis based on material nonhomogeneity on a constant velocity crack. Two
conservation laws in elasticity for nonhomogeneoussolids and different loading characteristicsare considered. In the first case,
fundamental relationships in fracture mechanics of dissimilar crack motion is maintained by uniform tensile stresses. In the
materials. The formulation leads to a pair of linear algebraic other, crack deformationis caused by anti-plane shear stresses.
equationsin mixed-modestress intensityfactors.Singularcrack-tip Galilean transformationand Fourier sine and cosine transforms
stress intensity solutionsare determined directly by information are used to determine dynamiccrack tip stress fields. Standard
extractedfrom the far field. Stress intensityfactors and associated Fredholm integral equations yield the dynamic stress intensity
energy release rates are obtained for various cases of interest, factors.The results showthat the intensityof localdynamicstresses
Fundamental nature of the interfacial flaw behavior in lap-shear increasesor decreases with crack lengthto layer thicknessas a
adhesive joints is examinedin detail. (Author) functionof the relativemagnitudesof the adjoininglayer'smaterial

properties.Crack speed tends to increase the effect of material
A82-46806"# IllinoisUniv., Urbana. nonhomogeneity. S.C.S.
BOUNDARY-LAYER EFFECTS IN COMPOSITE LAMINATES. I -
FREE-EDGE STRESS SINGULARITIES. II - FREE-EDGE STRESS A83-12514" IllinoisUniv., Urbana.
SOLUTIONS AND BASIC CHARACTERISTICS EXTENDING THE LASER-SPECKLEGRAM TECHNIQUE TO
S. S. WANG and I. CHOI (Illinois,University,Urbana, IL) ASME, STRAIN ANALYSIS OF ROTATING COMPONENTS
Transactions,Journalof Applied Mechanics, vol. 49, Sept. 1982, C.H. CHIEN (Illinois,University,Urbana, IL), J. L. TURNER, W. F.
p. 541-560. refs SWINSON (Auburn University,Auburn,AL), and W. F. RANSON
(Contract NSG-3044) (South Carolina, University, Columbia, SC) (Society for

The fundamental nature of the boundary-layer effect in ExperimentalStress Analysis, SpringMeeting, Dearborn,MI, May
fiber-reinforcedcomposite laminatesis formulated in terms of the 30-June 4, 1981.) ExperimentalMechanics, vol. 22, Nov. 1982, p.
theory of anisotropic elasticity. The basic structure of the 434-440. refs
boundary-layer field solution is obtained by using Lekhnitskii's stress (Contract NAG3-103)
potentials (1963). The boundary-layer stress field is found to be A technique involving sandwich-speckle interferometry has been
singular at composite laminate edges, and the exact order or investigated for application in making strain measurements on
strength of the boundary layer stress singularity is determined rotating structures. The technique has proven to be effective in
using an eigenfunction expansion method. A complete solution to relaxing stringent timing requirements for recording laser
the boundary-layer problem is then derived, and the convergence photographs and provides extended ranges of displacement
and accuracy of the solution are analyzed, comparing results with measurement. Application of the technique to an experimental
existing approximate numerical solutions. The solution method is rotating specimen has demonstrated the potential of the method
demonstrated for a symmetric graphite-epoxy composite. V.L. for making accurate strain measurements. (Author)

A83-10283" Northwestern Univ., Evanston, II1. A83-12739" Massachusetts Inst. of Tech., Cambridge.
ON COMPOSITES WITH PERIODIC STRUCTURE A NEW FORMULATION OF HYBRID/MIXED FINITE ELEMENT
S. NEMAT-NASSER, T. IWAKUMA, and M. HEJAZI (Northwestern T.H.H. PLAN,D. KANG (MIT, Cambridge, MA), and D.-P. CHEN
University, Evanston, IL) Mechanics of Materials, vol. 1, Sept. (Symposium on Advances and Trends in Structural and Solid
1982, p. 239-267. refs Mechanics, Washington, DC, Oct. 4-7, 1982.) Computers and
(Contract DAAG29-79-C-0168; NAG3-134) Structures, vol. 16, no. 1-4, 1983, p. 81-87. refs

The overall moduli of a composite with an isotropic elastic (Contract NAG3-33)
matrix containing periodically distributed (anisotropic) inclusions or A new formulation of finite element method is accomplished
voids, can be expressed in terms of several infinite series which by the Hellinger-Reissner principle for which the stress equilibrium
only depend on the geometry of the inclusions or voids, and hence conditions are not introduced initially but are brought-in through
can be computed once and for all for given geometries. For solids the use of additional internal displacement parameters. The method
with periodic structures these infinite series play exactly the same can lead to the same result as the assumed stress hybrid model.
role as does Eshelby's tensor for a single inclusion or void in an However, it is more general and more flexible. The use of natural
unbounded elastic medium. For spherical and circular-cylindrical coordinates for stress assumptions leads to elements which are
geometries, the required infinite series are calculated and the less sensitive to the choice of reference coordinates. Numerical
results are tabulated. These are then used to estimate the overall solutions by 3-D solid element indicate that more efficient elements
elastic moduli when either the overall strains or the overall stresses can be constructed by assumed stresses which only partially satisfy
are prescribed, obtaining the same results. These results are the equilibrium conditions. (Author)
compared with other estimates and with experimental data. It is
found that the model of composites with periodic structure yields A83-12746" Akron Univ., Ohio.
estimates in excellent agreement with the experimental ON THE SOLUTION OF ELASTIC-PLASTIC STATIC AND
observations. (Author) DYNAMIC POSTBUCKLING COLLAPSE OF GENERAL

STRUCTURE
A83-10900"# National Aeronautics and Space Administration. J. PADOVAN and S. TOVICHAKCHAIKUL (Akron, University, Akron,
Lewis Research Center, Cleveland, Ohio. OH) (Symposium on Advances and Trends in Structural and
TENSILE BUCKLING OF ADVANCED TURBOPROPS Solid Mechanics, Washington, DC, Oct. 4-7, 1982.) Computers
C. C. CHAMIS and R. A. AIELLO (NASA, Lewis Research Center, and Structures, vol. 16, no. 1-4, 1983, p. 199-205. refs
Cleveland, OH) AIAA, ASME, ASCE, and AHS, Structures, (Contract NAG3-54)
Structural Dynamics and Materials Conference, 23rd New Orleans, Many investigations have considered structural collapse from
LA, May 10-12, 1982, AIAA 23 p. refs strictly the transient point of view. While such an approach is
(AIAA PAPER 82-0776) ideally correct, certain difficulties have to be overcome in its

(Previously announced in STAR as N82-31708) implementation. The present investigation is concerned with the
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development of self-adaptive algorithms which make it possible to A83-18383" Rensselaer Polytechnic Inst., Troy, N.Y.
conduct the analysis of both static elastic and elastic-plastic NATURAL FREQUENCY OF ROTATING BEAMS USING
postbuckling, as well as static loading to the onset of buckling NON-ROTATING MODES
followed by subsequent dynamic postbuckling. The approach R.G. LOEWY (Rensselaer Polytechnic Institute, Troy, NY) and N.
employed to solve the static portion of loading is to extend the KHADER American Helicopter Society, Journal, vol. 27, Apr.
constrained Incremental Newton-Raphson (INR) algorithm by 1982, p. 75-78. refs
incorporating elastic-plastic constitutive characterizations. Large (Contract NAG3-37)
deformation moderate strain theory is adopted to establish the A Lagrangian approach is formulated for predicting the rotating
overall strategy. Attention is given to governing field equations, natural frequencies of a beam from the nonrotating modes and
aspects of algorithmic development, and numerical experiments frequencies. Using the first two nonrotating mode shapes in one
conducted to illustrate the efficiency and stability of the developed case and the first four such modes in the other case the frequencies
schemes. G.R. of the rotating modes are calculated for a short tapered beam

and a typical helicopter blade, respectively. In each case the beam
is represented by lumped parameters. The number of mass points
representing the beam and the accuracy of the calculated slopes

A83-12764" Pratt and Whitney Aircraft Group, East Hartford, of the nonrotating mode shapes at those points are both shown
Conn. to affect the accuracy of the resulting frequencies, but the number
NONLINEAR STRUCTURAL AND LIFE ANALYSES OF A of stations is shown to be more important. (Author)
COMBUSTOR LINER
V. MORENO, G. J. MEYERS (United Technologies Corp., Pratt
and Whitney Group, East Hartford, CT), A. KAUFMAN, and G. R.
HALFORD (NASA, Lewis Research Center, Cleveland, OH)
(Symposium on Advances and Trends in Structural and Solid
Mechanics, Washington, DC, Oct. 4-7, 1982.) Computers and A83-27431"# Virginia Polytechnic Inst. and State Univ.,
Structures, vol. 16, no. 1-4, 1983, p. 509-515. refs Blacksburg.

(Previously announced in STAR as N82-24501) GEOMETRICALLY NONLINEAR ANALYSIS OF LAYERED
COMPOSITE SHELLS
W. C. CHAO and J. N. REDDY (Virginia Polytechnic Institute and

A83-14710" Massachusetts Inst. of Tech., Cambridge. State University, Blacksburg, VA) In: 1982 advances in aerospacestructures and materials; Proceedings of the Winter Annual Meeting,
ALTERNATIVE WAYS FOR FORMULATION OF HYBRID Phoenix,AZ, November 14-19, 1982. New York, American Society
STRESS ELEMENTS of Mechanical Engineers, 1982, p. 25-28. refs
T. H. H. PlAN (MIT, Cambridge,MA) and D.-P.CHEN International (ContractN00014-78-C-0647; NAG3-208)
Journal for NumericalMethodsin Engineering,vol. 18, Nov. 1982, Two kinds of finite-element analyses are developed for the
p. 1679-1684. refs geometricallynonlinearstudyof the large deformationsin laminated
(ContractNAG3-33) composite structures, especially shells. The first kind of

An elementstiffness matrix can be derivedby the conventional finite-element analysis utilizes the general incrementalvariational
potential energy principleand, indirectly, also by generalized formulationas well as the total Lagrangiandescriptionof motion,
variationalprinciples,such as the Hu-Washizuprincipleand the and a three-dimensional degenerate element is adopted. The
Hellinger-Reissner principle. The present investigationhas the
objective to show an approach which is concerned with the secondkindof analysisemploysa forrnulationbased on deformable
formulationof incompatibleelements for solid continuumand for shell theory, and the plate-bending element is used. Numericalresults for bendingare presentedfor five plateand shellstructures
plate bending problems by the Hellinger-Reissnerprinciple.It is
found that the resultingscheme is equivalentto that considered of isotropicas wellas orthotropiccomposition,includingan isotropic
by Tong (1982) for the constructionof hybrid stresselements. In cylindricalpanel with uniform loadingand a laminatedcylindrical
Tong's scheme the inversionof a large flexibilitymatrix can be panel with uniform loading. The results obtained using these
avoided. It is concludedthat the introductionof additional internal analyses are found to be in good agreement withthose availablein the literature. N.B.
displacementmodes in mixed finite element formulations by the
Hellinger-Reissnerprincipleand the Hu-Washizuprinciplecan lead
to element stiffnessmatriceswhich are equivalentto the assumed
stress hybridmethod. G.R.

A83-27432"# Virginia Polytechnic Inst. and State Univ.,
A83-15060" NorthwesternUniv., Evanston,III. Blacksburg.
GROWTH AND STABILITY OF INTERACTING SURFACE FLAWS THREE-DIMENSIONAL FINITE-ELEMENT ANALYSIS OF
OF ARBITRARY SHAPE LAYERED COMPOSITE PLATES
Y. MURAKAMI and S. NEMAT-NASSER (Northwestern University, N.S. PUTCHA and J. N. REDDY (Virginia Polytechnic Institute
Evanston, IL) Engineering Fracture Mechanics, vol. 17, no. 3, and State University, Blacksburg, VA) In: 1982 advances in
1983, p. 193-210. refs aerospace structures and materials; Proceedings of the Winter
(Contract NSF CME-80-06265; NAG3-134) Annual Meeting, Phoenix, AZ, November 14-19, 1982. New York,

Growth regimes of interacting surface flaws of arbitrary shape American Society of Mechanical Engineers, 1982, p. 29-35. refs
are analyzed with the aid of the body force method, and the (Contract N00014-78-C-0647; NAG3-208)
stability of the process is assessed on the basis of the variation Results are presented for an investigation of the
of the load during the growth. It is shown that irregularly shaped three-dimensional, geometrically nonlinear, finite-element analysis
flaws are often associated with very high stress intensity factors of the bending of laminated anisotropic composite plates. The
locally, which tend to change as the flaws grow into more regular individual laminae are treated as homogeneous, transversely
shapes. Several examples of various flaw shapes are worked out isotropic, and linearly elastic. A fully three-dimensional
for illustration, and it is shown that a simple formula seems to isoparametric finite element with eight modes (i.e., linear element)
provide an accurate estimate of the maximum stress intensity factor and 24 degrees of freedom (three displacement components per
for surface flaws of various shapes, which are not very slender, node) is used. The numerical results obtained using this linear
The formula involves the overall maximum tension, as well as the analysis are compared with the exact solutions given in Pagano
area of the projection of the flaw on the plane normal to the (1969, 1970). It is found that the results of the linear analysis
maximum tension. (Author) converge to the exact solution as the mesh is refined. N.B.
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A83-29798"# Texas A&M Univ., College Station. Applications for vibration modes, flutter, and forced response are
AN UNCOUPLED VISCOPLASTIC CONSTITUTIVE MODEL FOR discussed. It is noted that the standingwave methodsmay prove
METALS AT ELEVATED TEMPERATURE to be more versatilefor dealingwith certain applications,such as
W. E. HAISLER and J. CRONENWORTH (Texas A & M University, couplingflutter with forced responseand dynamicshaft problems,
College Station, TX) IN: Structures,Structural Dynamics and transientimpulseson the rotor, low-orderengine excitation,bearing
Materials Conference, 24th, Lake Tahoe, NV, May 2-4, 1983, motions,and mistuningeffects in rotors. V.L.
Collection of Technical Papers. Part 1 . New York, American
Instituteof Aeronauticsand Astronautics,1983, p. 664-673. refs A83-29824"# Textron Bell AerospaceCo., Buffalo,N. Y.
(ContractNAG3-31) FLUTTER ANALYSIS OF ADVANCED TURBOPROPELLERS
(AIAA 83-1016) V. ELCHURI andG. C. C. SMITH (Bell AerospaceTextron,Buffalo,

An uncoupledconstitutivemodel for predicting the transient NY) IN: Structures,StructuralDynamicsand MaterialsConference,
responseof thermaland rate dependent,inelasticmaterialbehavior 24th, Lake Tahoe, NV, May 2-4, 1983, Collection of Technical
is presented. The uncoupled model assumes that there is a Papers.Part 2. New York, AmericanInstitute of Aeronauticsand
temperature below which the total strain consists essentiallyof Astronautics,1983, p. 160-165. refs
elastic and rate insensitive inelastic strains only. Above this (ContractNAS3-22533)
temperature,the rate dependentinelasticstrain(creep) dominates. (AIAA 83-0846)
The rate insensitiveinelastic strain componentis modeled in an The two-dimensionalsubsoniccascade unsteadyaerodynamic
incremental form with a yield function, flow rule and hardening theory of Jones and Rao (1975) has been modified to account
law. Revisionsto the hardeningrule permit the model to predict for the variable sweep angles of the blades of advanced
temperature-dependentkinematic-isotropichardening behavior, turbopropellers.The aerodynamics and the structural modal
cyclic saturation, asymmetric stress-strain response upon stress properties have been formally integrated to determine the
reversal, and variable Bauschinger effect. The rate dependent generalized aerodynamic coefficients matrix for the blade modes.
inelastic strain component is modeled using a rate equation in Modal flutter analysis has been conducted for two SR-5 five- and
terms of back stress, drag stress and exponent n as functions of ten-blade propellers, and analytical results have been found to be
temperature and strain. A sequence of hysteresis loops and in very good agreement with wind tunnel test data. V.L.
relaxation tests are utilized to define the rate dependent inelastic
strain rate. Evaluation of the model is performed by comparison A83-32987"# Massachusetts Inst. of Tech., Cambridge.
with experiments involving various thermal and mechanical load SOME ANALYSIS METHODS FOR ROTATING SYSTEMS WITH
histories on 5086 aluminum alloy, 304 stainless steel and PERIODIC COEFFICIENTS
Hastelloy-X. Author J. DUGUNDJI (MIT, Cambridge, MA) and J. H. WENDELL AIAA

Journal (ISSN 0001-1452), vol. 21, June 1983, p. 890-897. refs
(Contract NSG-3303)

A83-29822"# National Aeronautics and Space Administration. Two of the more common procedures for analyzing the stability
Lewis Research Center, Cleveland, Ohio. and forced response of equations with periodic coefficients are
THE COUPLED AEROELASTIC RESPONSE OFTURBOMACHIN- reviewed: the use of Floquet methods,and the use of multiblade
ERY BLADING TO AERODYNAMIC EXCITATIONS coordinate and harmonic balance methods. The analysis
D. HOYNIAK (NASA, Lewis Research Center, Cleveland, OH; procedures of these periodic coefficient systems are compared
Purdue University,West Lafayette, IN) and S. FLEETER (Purdue with those of the more familiar constant coefficient systems.
University,West Lafayette,IN) IN: Structures,StructuralDynamics Previouslyannouncedin STAR as N82-23702 Author
and Materials Conference,24th, Lake Tahoe, NV, May 2-4, 1983,
Collection of Technical Papers. Part 2 . New York, American A83-36958" Ohio State Univ., Columbus.
Instituteof Aeronauticsand Astronautics,1983, p. 137-148. refs VIBRATIONS OF CANTILEVERED CIRCULAR CYLINDRICAL
(AIAA 83-0844) SHELLS SHALLOW VERSUS DEEP SHELL THEORY

An energy balance technique is developed to predict the J.K. LEE, A. W. LEISSA, and A. J. WANG (OhioState University,
coupled bending-torsionmode aerodynamically forced response Columbus,OH) InternationalJournal of MechanicalSciences
of an airfoil. Inthis technique,the energyinputto the airfoilsystem (ISSN 0020-7403), vol. 25, no. 5, 1983, p. 361-383. refs
per cycle of oscillationis generated by gust forces and moments (ContractNAG3-36)
and, undercertain conditions,the self-inducedaerodynamicforces Free vibrationsof cantileveredcircularcylindricalshells having
and moments.The energydissipationper cycle is associated with rectangular planforms are studied in this paper by means of the
the structuraldamping,the staticmomentterm for coupledmotions, Ritz method.The deep shell theory of Novozhilovand Goldenveizer
and under certain conditions,the self-inducedaerodynamicforces is used and compared with the usual shallow shell theory for a
and moments.The effects of the variousaerodynamicparameters wide range of shell parameters.A thoroughconvergence study is
on the coupledforced responseare then considered.Inparticular, presented along with comparisonsto previouslypublished finite
the effects of the inlet Mach number,the interbladephase angle, element solutions and experimentalresults. Accurately computed
the level of structuraldamping,and the cascade geometry on the frequency parameters and mode shapes for various shell
coupled bending-torsionaerodynamicallyforced response of a flat configurationsare presented. The present paper appears to be
plate airfoil cascade are demonstrated. Author the first comprehensive study presenting rigorouscomparisons

between the two shell theories in dealingwith free vibrations of
A83-29823"# MassachusettsInst.of Tech., Cambridge. cantileveredcylindricalshells. Author
FLUTTER AND FORCED RESPONSE OF MISTUNED ROTORS
USING STANDING WAVE ANALYSIS A83-37388"# Ohio State Univ., Columbus.
J. DUGUNDJI and D. J. BUNDAS (MIT, Cambridge, MA) IN: THE DETERMINATION OF THE ELASTODYNAMIC FIELDS OF
Structures,StructuralDynamics and Materials Conference, 24th, AN ELLIPSOIDAL INHOMOGENEITY
Lake Tahoe, NV, May 2-4, 1983, Collectionof TechnicalPapers. L.S. FU (Ohio State University,Columbus, OH) and T. MURA
Part 2 . New York, American Institute of Aeronautics and (Northwestern University, Evanston, IL) ASME, Transactions,
Astronautics, 1983, p. 149-159. refs Journal of Applied Mechanics (ISSN 0021-8936), vol. 50, June
(Contract NAG3-214) 1983, p. 390-396. refs
(AIAA 83-0845) (Contract NSG-3269)

A standing wave approach is applied to the analysis of the (ASME PAPER 83-APM-19)
flutter and forced response of tuned and mistuned rotors. The The determination of the elastodynamic fields of an ellipsoidal
traditional traveling wave cascade airforces are recast into standing inhomogeneity is studied in detail via the eigenstrain approach. A
wave arbitrary motion form using Pade approximants, and the complete formulation and a treatment of both types of eigenstrains
resulting equations of motion are written in the matrix form. for equivalence between the inhomogeneity problem and the
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inclusion problem are given. This approach is shown to be on the other three. The solution procedure uses the Ritz method
mathematically identical to other approaches such as the direct with algebraic polynomial trial functions. Convergence studies are
volume integral formulation. Expanding the eigenstrains and applied made, and accurate frequencies and contour plots of mode shapes
strains in the polynomial form in the position vector and satisfying are presented for various curvature ratios, including spherical,
the equivalence conditions at every point, the governing circular cylindrical and hyperbolic paraboloidal shells. Particular
simultaneous algebraic equations for the unknown coefficients in emphasis is given to the effect of adding spanwise curvature to
the eigenstrain expansion are derived. The elastodynamic field shells having chordwise curvature; numerous published references
outside an ellipsoidal inhomogeneity in a linear elastic isotropic already exist for the case of zero spanwise curvature. The effects
medium is given as an example. The angular and frequency of changing aspect ratio, thickness ratio and Poisson's ratio are
dependence of the induced displacement field, as well as the also studied. Author
differential and total cross sections are formally given in series
expansion form for the case of uniformly distributed eigenstrains. A83-44050" Purdue Univ., West Lafayette, Ind.

C.D. WAVE PROPAGATION IN A GRAPHITE/EPOXY LAMINATE
C. T. SUN and T. M. TAN (Purdue University, West Lafayette, IN)

A83-37729" Ohio State Univ., Columbus. IN: Engineering science and mechanics; Proceedings of the
ON THE THREE-DIMENSIONAL VIBRATIONS OF THE International Symposium, Tainan, Republic of China, December
CANTILEVERED RECTANGULAR PARALLELEPIPED 29-31, 1981. Part 2 . San Diego, American Astronautical Society,
A. LEISSA (Ohio State University, Columbus, OH) and Z.-D. 1983, p. 1290-1307. refs
ZHANG Acoustical Society of America, Journal (ISSN0001-4966), (Contract NSG-3185)
vol. 73, June 1983, p. 2013-2021. refs Harmonic wave and wave front propagations in a graphite/epoxy
(Contract NAG3-36) laminate are investigated using a plate theory that includes

A solution is presented for the three-dimensional problem of transverse shear deformation. Transient waves produced by impact
determining the free vibration frequencies and mode shapes for a of a steel ball are studied experimentally and by using finite
rectangular parallelepiped which is completely fixed on one face elements. The statically measured law of contact between the
and free on the other five faces. This problem apparently is steel ball and the laminate is used in the finite element program
previously unsolved in the published literature. The Ritz method is to compute the dynamic contact force. It is found that use of this
used, with displacements assumed in the form of algebraic contact law in conjunction with the finite element modeling of the
polynomials. Convergence is studied. Numerical results are given laminate yields excellent agreement with the experimental results.
for the first five frequencies of each of the four symmetry classes Author
of vibration, for five thick parallelepiped configurations, including
the cube. Contour plots are exhibited for the modal displacements A83-47978"# Ohio State Univ., Columbus.
of the cube. The effects of varying Poisson's ratio are also VIBRATIONS OF BLADES WITH VARIABLE THICKNESS AND
observed. Author CURVATURE BY SHELL THEORY

J. K. LEE, A. W. LEISSA, and A. J. WANG (Ohio State University,
A83°38528" Northwestern Univ., Evanston, II1. Columbus, OH) American Society of Mechanical Engineers,
DYNAMIC FIELDS NEAR A CRACK TIP GROWING IN AN International Gas Turbine Conference and Exhibit, 28th, Phoenix,
ELASTIC-PERFECTLY-PLASTIC SOLID AZ, Mar. 27-31, 1983. 6 p. refs
S. NEMAT-NASSER (Northwestern University, Evanston, IL) and (Contract NAG3-36)
Y. C. GAO Mechanics of Materials (ISSN 0167-6636), vol. 2, (ASME PAPER 83-GT-152)
April 1983, p. 47-60. refs A procedure for analyzing the vibrations of rotating
(Contract NAG3-134) turbomachinery blades has been previously developed. This

A full asymptotic solution is presented for the fields in the procedure is based upon shallow shell theory, and utilizes the
neighborhood of the tip of a steadily advancing crack in an Ritz method to determine frequencies and mode shapes. However,
incompressible elastic-perfectly-plastic solid. There are four findings it has been limited heretofore to blades of uniform thickness,
for mode I crack growth in the plane strain condition. The first is uniform curvature, and/or twist and rectangular planform. The
that the entire crack tip in steady crack growth is surrounded by present work shows how the procedure may be generalized to
a plastic region and that no elastic unloading is predicted by the eliminate the aforementioned restrictions. Nonrectangular
complete dynamic asymptotic solution. The second is that, in planforms are dealt with by a suitable coordinate transformation.
contrast to the quasi-static solution, the dynamic solution yields This, as well as variable thickness, curvature and twist, require
strain fields with a logarithmic singularity everywhere near the crack using numerical integration. The procedure is demonstrated on
tip. The third is that whereas the stress field varies throughout four examples of cantilevered blades for which theoretical and
the entire crack tip neighborhood, it does not exhibit behavior experimental data have been previously published: (1) flat plate
that can be approximated by a constant field followed by an with spanwise taper, (2)flat plate with chordwise taper, (3)twisted
essentially centered-fan field and then by another constant field, plate with chordwise taper, and (4) cylindrical shell with chordwise
especially for small crack growth speeds. The fourth finding is taper. Author
that there are two shock fronts emanating from the crack tip
across which certain stress and strain components undergo jump A83-49437" Akron Univ., Ohio.
discontinuities. After reviewing the mode Ill steady-state crack FINITE ELEMENT ANALYSIS OF STEADILY MOVING CONTACT
growth, it is concluded that ductile fracture criteria for nonstationary FIELDS
cracks must be based on solutions that include the inertia effects J. PADOVAN, S. TOVICHAKCHAIKUL (Akron, University, Akron,
and that for this purpose quasi-static solutions may be OH), and I. ZEID (North Eastern University, Boston, MA)
inadequate. C.R. Computers and Structures (ISSN 0045-7949), vol. 18, no. 2, 1984,

p. 191-200. refs
A83-39557" Ohio State Univ., Columbus. (Contract NAG3-54)
VIBRATIONS OF CANTILEVERED DOUBLY-CURVED SHALLOW By introducing a moving updated Lagrangian observer, this
SHELLS paper develops traveling finite elements with the capacity to handle
A. W. LEISSA, J. K. LEE, and A. J. WANG (Ohio State University, the global response resulting from steadily moving contact fields.
Columbus, OH) International Journal of Solids and Structures The generality of the results is such that large deformation
(ISSN 0020-7683), vol. 19, no. 5, 1983, p. 411-424. refs kinematics and kinetics as well as the full compliment of inertial
(Contract NAG3-36) fields can be handled. To streamline the handling of nonlinear

Vibrational characteristics are determined for a previously behavior, an elliptically constrained solution algorithm is also
unsolved class of problems, that of doubly-curved shallow shells developed. Employing this algorithm, the results of several
having rectangular planforms, clamped along one edge and free numerical benchmarking studies are presented which illustrate the
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capacity of the moving updated Lagrangian formulation as well as are essentially independent. After a fairlycomprehensive discussion
the potential effects of nonlinearity. Author of the numerical treatment of the boundary value problem, we

launch into a detailed examination of the numerical treatment of
A84-11039"# National Aeronautics and Space Administration. the initial value problem, covering the topics of efficiency, stability
Lewis Research Center, Cleveland, Ohio. and objectivity. The paper is closed with a set of examples, finite
TENSILE BUCKLING OF ADVANCED TURBOPROPS homogeneous deformation problems, which serve to bring out
C. C. CHAMIS and R• A. AIELLO (NASA, Lewis Research Center, importantaspects of the algorithm. Author
Cleveland, OH) Journal of Aircraft (ISSN 0021-8669), vol. 20,
Nov. 1983, p. 907-912. refs

Previouslycited in issue01, p. 60, Accessionno. A83-10900 A84-16884" Georgia Inst. of Tech., Atlanta.
ANALYSES OF LARGE QUASISTATIC DEFORMATIONS OF

A84-13248"# Georgia Inst. of Tech., Atlanta. INELASTIC BODIES BY A NEW HYBRID-STRESS FINITE
INELASTIC STRESS ANALYSES AT FINITE DEFORMATION ELEMENT ALGORITHM- APPLICATIONS
THROUGH COMPLEMENTARY ENERGY APPROACHES K.W. REED and S. N. ATLURI (Georgia Institute of Technology,
S. N. ATLURI (Georgia Institute of Technology, Atlanta, CA) and Atlanta, GA) Computer Methods in Applied Mechanics and
K. W. REED IN: Computer methods for nonlinear solids and Engineering (ISSN 0045-7825), vol. 40, Oct. 1983, p. 171-198.
structural mechanics; Proceedings of the Applied Mechanics, refs
Bioengineering, and Fluids Engineering Conference, Houston, TX, (Contract NAG3-38)
June 20-22, 1983 . New York, American Society of Mechanical A new hybrid-stress finite element algorithm suitable for
Engineers, 1983, p. 191-226. refs analyzing large quasistatic deformations of inelastic solids is
(Contract NAG3-346) presented and its feasibility and performance are demonstrated

A new hybrid-stress finite element algorithm, suitable for with examples. The algorithm provides extremely accurate
analyses of large, quasistatic, inelastic deformations, is presented, bifurcation analysis which is stable with respect to variation in the
The algorithm is based upon a generalization of de Veubeke's finite element mesh, so long as the same type of element is used
(1972) complementary energy principle. The principal variables in inevery mesh. When the mesh element is varied, the result changes
the formulation are the nominal stress rate and spin, and the in a predictable manner. The method does not necessarily lead
resulting finite element equations are discrete versions of the to an upper or lower bound for the critical load. An explicit forward
equations of compatibility and angular momentum balance. The gradient scheme is used to improve stability and is shown to be
algorithm produces true rates, time derivatives, as opposed to useful also for elongation-dominated deformations. The application
'increments'. There results a boundary value problem (for stress of the method to the onset of necking in plane extension and to
rate and velocity) and an initial value problem (for total stress and deformation and stress in plane extension of an elasticoviscous
deformation). A discussion of the numerical treatment of the fluid with an array of cylindrical voids is given in detail. C.D.
boundary value problem is followed by a detailed examination of
the numerical treatment of the initial value problem, covering the
topics of efficiency, stability, and objectivity. The paper is closed
with a set of examples, finite homogeneous deformation problems, A84-18691" National Aeronautics and Space Administration.
which serve to bring out important aspects of the algorithm. Lewis Research Center, Cleveland, Ohio.

Author ANALYSIS OF AN INTERNALLY RADIALLY CRACKED RING
SEGMENT SUBJECT TO THREE-POINT RADIAL LOADING

A84-13545" Texas Univ.,Austin. B. GROSS and J. E. SRAWLEY (NASA, Lewis Research Center,
COMMENTS ON SOME PROBLEMS IN COMPUTATIONAL Cleveland, OH) Journal of Testing and Evaluation (ISSN
PENETRATION MECHANICS 0090-3973), vol. 11, Nov. 1983, p. 357-359. refs

The boundary collocation method was used to generate Mode
J. T• ODEN (Texas, University, Austin, TX) IN: Computational 1 stress intensity and crack mouth opening displacement
aspects of penetration mechanics; Proceedings of the Workshop,
Aberdeen Proving Ground, MD, April 27-29, 1982 Berlin, coefficients for externally radially cracked ring segments subjected• to three point radial loading. Numerical results were obtained for
Springer-Verlag, 1983, p. 149-165. refs ring segment outer-to-inner radius ratios (R sub o/R sub i) ranging(Contract NAG3-329; F49620-78-C-0083)

Three problem areas in the computer simulation of large-scale from 1.10 to 2.50 and crack length to segment width ratios (a/W)
penetration mechanics problems are briefly discussed. These are ranging from 0.1 to 0.8. Stress intensity and crack mouth
numerical instabilities due to incomplete integration of the displacement coefficients were found to depend on the ratios R
momentum or continuity equations, constitutive modelling, and sub o/R sub i and a/W as well as the included angle between
friction effects. Author the directions of the reaction forces. Previouslyannounced in STARas N83-35413 Author

A84-16874" Georgia Inst. of Tech., Atlanta.
ANALYSES OF LARGE QUASISTATIC DEFORMATIONS OF
INELASTIC BODIES BY A NEW HYBRID-STRESS FINITE
ELEMENT ALGORITHM Aa4-21267" Princeton Univ., N. J.
K. W. REED and S. N. ATLURI (Georgia Instituteof Technology, FORCED RESPONSE OF A CANTILEVER BEAM WITH A DRY
Atlanta, CA) Computer Methods in Applied Mechanics and FRICTION DAMPERATTACHED.I - THEORY.II - EXPERIMENT
Engineering (ISSN 0045-7825), vol. 39, Sept. 1983, p. 245-295. E.H. DOWELL and H. B. SCHWARTZ (Princeton University,
refs Princeton,NJ) Journal of Soundand Vibration(ISSN 0022-460X),
(ContractNAG3-38) vol. 91, Nov. 22, 1983, p. 255-267, 269-291. refs

A new hybrid-stress finite element algorithm, suitable for (ContractNAG3-221)
analysesof large, quasistatie,inelasticdeformations,is presented. A theoretical and experimental study of the forced vibration
The algorithm is base upon a generalizationof de Veubeke's response of a cantilevered beam with Coulomb damping
complementary energy principle.The principal variables in the nonlinearityis described.Viscousdampinginthebeamis neglected.
formulationare the nominalstress rate and spin, and thg resulting Beam and dry friction damper configurations of interest for
finite element equationsare discrete versionsof the equationsof applicationsto turbinebladevibrationsare considered.It is shown
compatibilityand angular momentum balance. The algorithm that the basic phenomena found by Dowell (1983) for a simply
producestrue rates, time derivatives,as opposedto 'increments'. supported beam with an attacheddry frictiondamperof specific
There resultsa completeseparationof the boundaryvalue problem geometry also apply to a cantilevered beam and a more general
(for stress rate and velocity) and the initial value problem (for representationof the dry frictiondamper and its associatedmass
total stress and deformation);hence, their numerical treatments and stiffness. C.D.
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A84-21541" Massachusetts Inst. of Tech., Cambridge. the design point; a computer analysis relates the design variables
ON THE SUPPRESSION OF ZERO ENERGY DEFORMATION at selected points. Then a fast probabilityintegrationtechnique
MODES (i.e., the Rackwitz-Fiessleralgorithm) can be used to estimate
T. H. H. RAN (MIT, Cambridge,MA) and D. CHEN International risk.The capabilityof the proposedmethod is demonstratedin an
Journal for Numerical Methods in Engineering(ISSN 0029-5981), example of a low cycle fatigue problem for which a computer
vol. 19, Dec. 1983, p. 1741-1752. refs analysis is requiredto perform local strain analysis to relate the
(ContractNAG3-33) designvariables.A comparisonof the performanceof thismethod

Based on the Hellinger-Reissnerprincipleand the deformation is made with a far more costly Monte Carlo solution.Agreement
energy due to assumed stresses and displacements,the problem of the proposed method with Monte Carlo is considered to be
of the kinematic deformation modes in assumed stress good. Author
hybrid/mixedfinite elements has been examined. Basic schemes
are developed for the choice of assumed stress terms that will
suppressall kinematicdeformationmodes.Quadrilateralmembrane
and axisymmetric elements, and three-dimensionalhexahedral
elements,are used to illustratethe suggestedprocedure. Author A84-31903"# MassachusettsInst.of Tech., Cambridge.

STAGGER ANGLE DEPENDENCE OF INERTIAL AND ELASTIC
A84-27370" Texas Univ., Austin. COUPLING IN BLADED DISKS
A NUMERICAL ANALYSIS OF CONTACT AND LIMIT-POINT E.F. CRAWLEY and D. R. MOKADAM (MIT, Cambridge, MA)
BEHAVIOR IN A CLASS OF PROBLEMS OF FINITE ELASTIC ASME, Transactions,Journal of Vibration,Acoustics,Stress and
DEFORMATION Reliability in Design (ISSN 0739-3717), vol. 106, April 1984, p.
T. ENDO, J. T. ODEN, E. B. BECKER, and T. MILLER (Texas, 181-188. refs
University, Austin, TX) Computers and Structures (ISSN (ContractNAG3-200; F33615-81-K-2036)
0045-7949), vol. 18, no. 5, 1984, p. 899-910. refs Conditionswhich necessitate the inclusionof disk and shaft
(ContractNAG3-329) flexibility in the analysis of blade response in rotating

Finite element methods for the analysis of bifurcations, blade-disk-shaftsystems are derived in terms of nondimensional
limit-pointbehavior, and unilateral frictionlesscontact of elastic parameters.A simplesemianalyticalRayleigh-Ritzmodel is derived
bodies undergoing finite deformation are presented. Particular in whichthe diskpossessesall six rigidbody degreesof freedom,
attention is givento the developmentand applicationof Riks-type which are elasticallyconstrainedby the shaft. Inertialcouplingby
algorithmsfor the analysis of limit points and exterior penalty the rigidbodymotionof the diskon a flexibleshaft and out-of-plane
methodsfor handlingthe unilateralconstraints.Applicationsfocus elasticcouplingdue to disk flexure are included.Frequencyratios
on the problemof finite axisymmetricdeformations,snap-through, and mass ratios, which depend on the stagger angle, are
and inflationof thick rubbersphericalshells. Author determinedfor three typical rotors:a first stage high-pressurecore

compressor,a highbypass ratiofan, and an advancedturboprop.
A84-29103"# Textron Bell AerospaceCo., Buffalo,N.Y. The staggeranglecontrolsthe degreeof couplingin the blade-disk
NASTRAN FORCED VIBRATION ANALYSIS OF ROTATING system. In the blade-disk-shaft system, the stagger angle
CYCLIC STRUCTURES determines whether blade-diskmotion couples principallyto the
V. ELCHURI, G. C. C. SMITH, and A. M. GALLO (Bell Aerospace out-of-planeor in-plane motionof the diskon the shaft. The Ritz
Textron, Buffalo,NY) AmericanSociety of MechanicalEngineers, analysisshowsexcellentagreementwith experimentalresults.
Design and Production Engineering Technical Conference, J.N.
Dearborn,MI, Sept. 11-14, 1983. 11 p. refs
(ContractNAS3-22533)
(ASME PAPER 83-DET-20)

Theoreticalaspects of a new capability,developedand added
to the general purpose finite element program NASTRAN Level A84-32039" National Aeronauticsand Space Administration.
17.7, to conductforcedvibrationanalysisof turnedcyclicstructures LewisResearchCenter, Cleveland,Ohio.
rotating about their axis of symmetry, are presented.The effects THE STRUCTURAL RESPONSE OF A RAIL ACCELERATION
of Coriolisand centripetal accelerationsas well as those due to S.Y. WANG (NASA, Lewis Research Center, Cleveland, OH)
the translationalaccelerationof the axis of rotation,are included. (Institute of Electricaland ElectronicsEngineers,Symposiumon
The equations of motion are first derived for an arbitrary grid ElectromagneticLaunchTechnology,2nd, Boston,MA, Oct. 10-13,
point of the cyclicsector finite element model and then extended 1983) IEEE Transactions on Magnetics (ISSN 0018-9464), vol.
for the completemodel.The equationsare solvedby four principal MAG-20, March 1984, p. 356-359. refs
steps: (1) transformationof appliedloads at frequency-dependent The transient response of a 0.4 by 0.6 cm rectangular bore
circumferential harmonic components; (2) application of railacceleratorwas analyzedby a three dimensionalfinite element
circumferential harmonic-dependent intersegment compatibility code. The copper rail deflected to a peak value of 0.08 mm in
constraints; (3) solution of frequency-dependentcircumferential compression and then oscillated at an amplitude of 0.02 mm.
harmonic components of displacements;and (4) recovery of Simultaneouslythe insulatingside wall of glassfabric base, epoxy
frequency-dependentresponse in various segments of the total resin laminate (G-10) was compressedto a peak value of 0.13
structure. Five interrelated examples are presented to illustrate mm and reboundedto a steadystate in extension.Projectilepinch
the variousfeatures of the development. C.D. or blowby due to the rail extensionor compression,respectively,

can be identified by examining the time history of the rail
A84-31596" ArizonaUniv., Tucson. displacement.The effect of blowby was most significantat the
ADVANCED RELIABILITY METHOD FOR FATIGUE ANALYSIS side wall characterizedby mm size displacementin compression.
Y.-T. WU and P. H. WIRSCHING (Arizona, University, Tucson, Dynamic stress calculations indicate that the G-10 supporting
AZ) Journal of Engineering Mechanics (ISSN 0733-9399), vol. material behind the rail is subjected to over 21 MPa at which the
110, April 1984, p. 536-553. Research supported by the Cummins G-10 could fail if the laminate was not carefully oriented. Results
Engine Co. refs for a polycarbonate resin (Lexan) side wall show much larger
(Contract NAG3-41) displacements and stresses than for G-10. The tradeoff between

When design factors are considered as random variables and the transparency of Lexan and the mechanical strength of G-10
the failure condition cannot be expressed by a closed form algebraic for sidewall material is obvious. Displacement calculations from
inequality, computations of risk (or probability of failure) may the modal method are smaller than the results from the direct
become extremely difficult or very inefficient. This study suggests integration method by almost an order of magnitude, because the
using a simple and easily constructed second degree polynomial high frequency effect is neglected. Previously announced in STAR
to approximate the complicated limit state in the neighborhood of as N83-35412 E.A.K.
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A84-33701" National Aeronautics and Space Administration. demonstrate the numerical efficiency and stability of the scheme.
Lewis Research Center, Cleveland, Ohio. Additionally, the potential influence of complex creep histories on
EFFECTS OF STRUCTURAL COUPLING ON MISTUNED the buckling characteristics is considered. Author
CASCADE FLUTTER AND RESPONSE
R. E. KIELB and K. R. V. KAZA (NASA, Lewis ResearchCenter,

Cleveland,OH) ASME, Transactions,Journal of Engineeringfor A84-45994" Virginia Polytechnic Inst. and State Univ.,
Gas Turbines and Power (ISSN 0022-0825), vol. 106, Jan. 1984, Blacksburg.
p. 17-24. refs A MIXED SHEAR FLEXIBLE FINITE ELEMENT FOR THE
(ASME PAPER 83-GT-117) ANALYSIS OF LAMINATED PLATES

The effects of structuralcouplingon mistunedcascade flutter N.S. PUTCHA and J. N. REDDY (VirginiaPolytechnic Institute
and response are analytically investigated using an extended typical and State University, Blacksburg, VA) Computer Methods in
section model. This model includes both structural and aerodynamic Applied Mechanics and Engineering (ISSN 0045-7825), vol. 44,
coupling between the blades. The model assumes that the July 1984, p. 213-227. refs
structurally coupled system natural modes were determined and (Contract NAG3-208; AF-AFOSR-81-0142)
are represented in the form of N bending and N torsional uncoupled A mixed shear flexible finite element based on the
modes for each blade, where N is the number of blades and, Hencky-Mindlin type shear deformation theory of laminated plates
hence, is only valid for blade dominated motion. The aerodynamic is presented and their behavior in bending is investigated. The
loads are calculated by using two dimensional unsteady cascade element consists of three displacements, two rotations, and three
theories in the subsonic and supersonic flow regimes. The results moments as the generalized degrees of freedom per node. The
show that the addition of structural coupling can affect both the numerical convergence and accuracy characteristics of the element
aeroelastic stability and frequency. The stability is significantly are investigated by comparing the finite element solutions with
affected only when the system is mistuned. The resonant the exact solutions. The present study shows that reduced-order
frequencies can be significantly changed by structural coupling in integration of the stiffness coefficients due to shear is necessary
both tuned and mistuned systems, however, the peak response is to obtain accurate results for thin plates. Author
significantly affected only in the latter. Previously announced in
STAR as N83-15672 S.L.

A84-33702" National Aeronautics and Space Administration. A84-46937"# Air Force Aero Propulsion Lab., Wright-Patterson
Lewis Research Center, Cleveland, Ohio. AFB, Ohio.
MEASUREMENTS OF SELF-EXCITED ROTOR-BLADE VIBRATIONS OF TWISTED CANTILEVERED PLATES
VIBRATIONS USING OPTICAL DISPLACEMENTS EXPERIMENTAL INVESTIGATION
A. P. KURKOV (NASA, Lewis Research Center, Cleveland, OH) J. C. MACBAIN (USAF, Aero Propulsion Laboratory,
ASME, Transactions, Journal of Engineering for Gas Turbines and Wright-Patterson AFB, OH), R. E. KIELB (NASA, Lewis Research
Power (ISSN 0022-0825), vol. 106, Jan. 1984, p. 44-49. refs Center, Structural and Mechanical Technology Div.,Cleveland, OH),
(ASME PAPER 83-GT-132) and A. W. LEISSA (Ohio State University, Columbus, OH)

The characteristics of optical displacement spectra and their American Society of Mechanical Engineers, International Gas
role of monitoring rotor blade vibrations are discussed. During the Turbine Conference and Exhibit, 29th, Amsterdam, Netherlands,
operation of a turbofan engine at part speed, near stall, and June 4-7, 1984. 10 p. refs
elevated inlet pressure and temperature, several vibratory (ASME PAPER 84-GT-96)
instabilities were excited simultaneously on the first fan rotor. The The experimental portion of a joint
torsional and bending contributions to the main flutter mode were government/industry/university research study on the vibrational
resolved by using casing-mounted optical displacement sensors, characteristics of twisted cantilevered plates is presented. The
Other instabilities in the blade deflection spectra were identified, overall purpose of the research study was to assess the capabilities
Previously announced in STAR as N83-14523 E.A.K. and limitations of existing analytical methods in predicting the

vibratory characteristics of twisted plates. Thirty cantilevered plates

A84-36492"# Bell Aerospace Co., Buffalo, N.Y. were precision machined at the Air Force's Aero Propulsion
FLUTTER ANALYSIS OF ADVANCED TURBOPROPELLERS Laboratory. These plates, having five different degrees of twist,
V. ELCHURI and G. C. C. SMITH (Bell Aerospace Textron, Buffalo, two thicknesses, and three aspect ratios representative of turbine
NY) (Structures, Structural Dynamics and Materials Conference, engine blade geometries, were tested for their vibration mode
24th, Lake Tahoe, NV, May 2-4, 1983, Collection of Technical shapes and frequencies. The resulting nondimensional frequencies
Papers. Part 2, p. 160-165) AIAA Journal (ISSN 0001-1452), vol. and selected mode shapes are presented as a function of plate
22, June 1984, p. 801,802. refs tip twist. The trends of the natural frequencies as a function of
(Contract NAS3-22533) the governing geometric parameters are discussed. The effect of

Previously cited in issue 12, p. 1742, Accession no. support compliance on the plate natural frequency and its impact
A83-29824 on numerically modeling twisted plates is also presented. Author

A84-38480" Akron Univ., Ohio A84-46957"# Carnegie-Mellon Univ., Pittsburgh, Pa.
ALGORITHMS FOR ELASTO-PLASTIG-CREEPPOSTBUCKLING THE INTERACTION BETWEEN MISTUNING AND FRICTION IN
J. PADOVAN (Akron, University, Akron, OH) and S. THE FORCED RESPONSE OF BLADED DISK ASSEMBLIES
TOVICHAKCHAIKUL (IBM, Thailand) Journal of Engineering J.H. GRIFFIN (Carnegie-Mellon University, Pittsburgh, PA) and A.
Mechanics (ISSN 0733-9399), vol. 110, June 1984, p. 911-929. SINHA (Pennsylvania State University, University Park, PA)
refs American Society of Mechanical Engineers, International Gas
(Contract NAG3-54) Turbine Conference and Exhibit, 29th, Amsterdam, Netherlands,

This paper considers the development of an improved June 4-7, 1984. 7 p. refs
constrained time stepping scheme which can efficiently and stably (Contract NAG3-231)
handle the pre-post-buckling behavior of general structure subject (ASME PAPER 84-GT-139)
to high temperature environments. Due to the generality of the This paper summarizes the results of an investigation to
scheme, the combined influence of elastic-plastic behavior can establish the impact of mistuning on the performance and design
be handled in addition to time dependent creep effects. This of blade-to-blade friction dampers of the type used to control the
includes structural problems exhibiting indefinite tangent properties, resonant response of turbine blades in gas turbine engines. In
To illustrate the capability of the procedure, several benchmark addition, it discusses the importance of friction slip force variations
problems employing finite element analyses are presented. These on the dynamic response of shrouded fan blades. Author
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A84-48565" AkronUniv., Ohio. A85-12721"# MassachusettsInst.of Tech., Cambridge.
HIGH TEMPERATURE THERMOMECHANICAL ANALYSIS OF FLU'n'ER AND FORCED RESPONSE OF MISTUNED ROTORS
CERAMIC COATINGS USING STANDING WAVE ANALYSIS
J. PADOVAN, M. J. BRAUN, B. T. F. CHUNG (Akron, University, J. DUGUNDJI and D. J. BUNDAS (MIT, Cambridge, MA)
Akron, OH), D. DOUGHERTY (GeneralTire and Rubber Co., Akron, (Structures, Structural Dynamics and Materials Conference, 24th,
OH), and R. HENDRICKS (NASA, Lewis Research Center, Lake Tahoe, NV, May 2-4, 1983, Collection of Technical Papers.
Cleveland, OH) Journal of Thermal Stresses (ISSN 0149-5739), Part 2, p. 149-159) AIAA Journal (ISSN 0001-1452), vol. 22, Nov.
vol. 7, no. 1, 1984, p. 51-74. refs 1984,p. 1652-1661. Previouslycited in issue 12, p. 1742, Accession
(Contract NAG3-265) no. A83-29823. refs

This paper investigates the thermomechanical response of (Contract NAG3-214)
ceramically coated metal parts in elevated thermal environments.
This is made possible through the development of an improved
finite element algorithm that enables the efficient and stable A85-13942" Babcock and Wilcox Co., New York, N.Y.
solution of the inherently nonlinear elastic-creep (inelastic) type EXTENSION OF CONSTRAINED INCREMENTAL
thermomechanical field equations associated with high temperature. NEWTON-RAPHSON SCHEME TO GENERALIZED LOADING
Based on the improvedalgorithm,the resultsof several numerical FIELDS
experimentsare presented.These illustratethe significantinfluence J. PADOVAN (Akron, University,Akron,OH) and S. PAl (Babcok
of inelastic behaviorin generatingresidualstress fields. Author and Wilcox Co., New York, NY; Akron, University,Akron, OH)

FranklinInstitute,Journal(ISSN 0016-0032), vol. 318, Sept. 1984,
p. 165-186. refs

A85-11125" Texas Univ.,Austin. (ContractNAG3-54)
ANALYSIS OF HOURGLASS INSTABILITIES AND CONTROL IN This paper develops numerical strategies which enable the
UNDERINTEGRATED FINITE ELEMENT METHODS constrained incrementalNewton-Raphsonscheme to handle the
O.-P. JACQUOTTE and J. T. ODEN (Texas, University, Austin, static response of structure to loading fields with completely
TX) Computer Methods in Applied Mechanics and Engineering generalized histories. This is made possible through the use of
(ISSN 0045-7825), vol. 44, Aug. 1984, p. 339-363. refs specially warped hyperelliptic constraint surfaces which control
(Contract NAG3-329) successive or clustered load steps in the vicinity of loading events

Belytschko et al. (1981, 1984) has developed stabilization with specific timing schedules. Such an approach enables improved
methods for the treatment of underintegrated FEM problems; these convergence and stability characteristics. Due to the generality of
methods involve the computation of an underintegrated stiffness the methodology, pre- and postbuckling behavior caused by both
matrix, which is rank-deficient, and the addition of a stabilization kinematic and material nonlinearity can be handled. To demonstrate
matrix which effectively eliminates the spurious modes. An attempt the scheme, the results of several bench-mark problems are also
is presently made to give this a priori stabilization method a presented. These include situations involving nonlinear kinematics
mathematical means of support. Attention is also given to an a as well as highly history-dependent elastic-plastic and
posteriority stabilization method for hourglass control, in which an thermoelastic-plastic material behavior. Author
approximate solution of the underintegrated system is obtained
and then subjected to a special projection in order to eliminate
the hourglass modes. A proof is obtained for the convergence of A85-15893" Massachusetts Inst. of Tech., Cambridge.
this stabilized underintegrated approximation to the exact solution HYBRID SEMILOOF ELEMENTS FOR PLATES AND SHELLS
of a model problem at almost the same rate (as the mesh is BASED UPON A MODIFIED HU-WASHIZU PRINCIPLE
refined)as the fully integratedsolutions. O.C. T.H.H. PlAN (MIT, Cambridge,MA) and K.SUMIHARA Computers

and Structures(ISSN 0045-7949), vol. 19, no. 1-2, 1984, p.
165-173. refs

A85-12029" Massachusetts Inst. of Tech., Cambridge. (ContractNAG3-33)
RATIONAL APPROACH FOR ASSUMED STRESS FINITE HybridSemiLoofelements for plates and shells are developed
ELEMENTS based upon modifiedHu-Washizuprinciple.In the new versionof
T. H. H. PlAN (MIT, Cambridge, MA) and K. SUMIHARA the assumed stress hybridformulation the equilibriumequations
InternationalJournalfor NumericalMethods in Engineering(ISSN are satisfied through the introduction of internal displacement
0029-5981), vol. 20, Sept. 1984, p. 1685-1695. refs parameters as Lagrangemultipliers.The inversionof the resulting
(ContractNAG3-33) H-matrices is simplified particularly when the stresses are

A new method for the formulationof hybridelements by the expressed in terms of natural coordinates.A 24-DOF triangular
Hellinger-Reissner principle is established by expanding the element and a 32-DOF quadrilateralelement based on shallow
essentialterms of the assumed stresses as completepolynomials shell theory are derivedand evaluated. Author
in thenaturalcoordinatesof theelement.The equilibriumconditions
are imposed in a variational sense through the internal
displacementswhichare also expandedinthe naturalco-ordinates. A85-15894" Georgia Inst.of Tech., Atlanta.
The resultingelement possesses all the ideal qualities, i.e. it is HYBRID STRESS FINITE ELEMENTS FOR LARGE
invariant,it is less sensitive to geometric distortion,it containsa DEFORMATIONS OF INELASTIC SOLIDS
minimum number of stress parametersand it provides accurate K.W. REED and S. N. ATLURI (Georgia Instituteof Technology,
stress calculations.For the formulationof a 4-node plane stress Atlanta, CA) Computersand Structures(ISSN 0045-7949), vol.
element, a small perturbation method is used to determine the 19, no. 1-2, 1984, p. 175-182. refs
equilibriumconstraintequations.The element has been provedto (Contract NAG3-38)
be alwaysrank sufficient. Author A new hybrid stress finite element algorithm, based on a

generalization of Fraeijs de Veubeke's complementary energy
principleis presented. Analyses of large quasistatic deformation

A85-12716"# National Aeronautics and Space Administration. of inelastic solids (hypoelastic,plastic, viscoplastic)are within its
LewisResearch Center, Cleveland,Ohio. capability. Principlevariables in the formulation are the nominal
FLUTTER OF TURBOFAN ROTORS WITH MISTUNED BLADES stress rate and spin. A brief account is given of the boundary
K. R. V. KAZA and R. E. KIELB (NASA, Lewis ResearchCenter, value problem in these variables,and the 'equivalent' variational
Cleveland, OH) (Structures,StructuralDynamics and Materials principle.The finite element equation,along with initialpositions
Conference, 23rd, New Orleans, LA, May 10-12, 1982, Collection and stresses,comprisean initial value problem. Factors affecting
of Technical Papers. Part 2, p. 446-461) AIAA Journal (ISSN the choice of time integrationschemes are discussed. Results
0001-1452), vol. 22, Nov. 1984, p. 1618-1625. Previouslycited in found by applicationof the new algorithm are compared to those
issue 13, p. 2111, Accessionno. A82-30175. refs obtainedby a velocitybased finite element algorithm. Author
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A85-16095"# National Aeronautics and Space Administration. results show that the structural warping and pretwist terms have
Lewis Research Center, Cleveland, Ohio. a significant effect on torsional frequency and mode shapes of
VIBRATION AND FLUTTER OF MISTUNED BLADED-DISK short-aspect-ratioblades whereas the inertialwarping terms have
ASSEMBLIES negligibleeffect. Sincethe torsionalfrequenciesand mode shapes
K. RAO, V. KAZA (NASA, Lewis Research Center, Cleveland, OH), are very important in aeroelastic analyses by using modal methods,
and R. E. KIELB AIAA, ASME, ASCE, and AHS, Structures, the structural warping terms should be included in modeling
Structural Dynamics and Materials Conference, 25th, PalmSprings, turbofan, turboprop, compressor, and turbine blades. Author
CA, May 14-16, 1984. 16 p. Previously announced in STAR as
N84-23923. refs

(AIAA PAPER 84-0991) A85-18795"# Battelle Columbus Labs., Ohio.
An analytical model for investigating vibration and flutter of A HISTORY DEPENDENT DAMAGE MODEL FOR LOW CYCLE

mistunedbladeddisk assembliesispresented.Thismodelaccounts FATIGUE
for elastic, inertial and aerodynamic coupling between bending B.N. LEIS (Battelle Columbus Laboratories, Columbus, OH)
and torsionalmotions of each individualblade,elastic and inertial AmericanSocietyof MechanicalEngineers,PressureVessels and
couplings between the blades and the disk, and aerodynamic Piping Conference and Exhibition,San Antonio, TX, June 17-21,
couplingamong the blades. The disk was modeledas a circular 1984. 10 p. Research supported by the Battelle Columbus
plate withconstant thicknessand each blade was representedby Laboratories,and Battelle Memorial Institute. refs
a twisted, slender, straight, nonuniform, elastic beam with a (ContractNAS3-22825)symmetric cross section. The elastic axis, inertia axis, and the
tension axis were taken to be noncoincidentand the structural (ASME PAPER 84-PVP-112)

This paper examines damage assessment and accumulation.
warping of the section was explicitly considered. The blade A nonlinear damage postulate is advanced that embodies the
aerodynamicloading in the subsonic end supersonicflow regimes dependence of the damage rate on cycle-dependentchanges in
was obtained from two-dimensionalunsteady, cascade theories, the bulk microstructureand the surface topography.The postulate
All the possible standingwave modes of the disk and traveling is analytically formulated in terms of the deformation historywave modesof the blades were included.The equationsof motion
were derived by using the energy method in conjunctionwith the dependence of the bulk behavior. This formulation is used in

conjunctionwith baseline data in accordance with the damage
assumed mode shapes for the disk and the blades. Continuities postulateto predictthe lowcycle fatigue resistanceof OFE copper.
of displacement and slope at the blade-disk junction were Close comparisonof the predictions with observed behavior
maintained. The equations were solvedto investigatethe effects
of blade-diskcouplingand blade frequency mistuningon vibration suggests the postulateoffers a viable basis for nonlineardamage
and flutter. Results showed that the flexibilityof practical disks analysis. Author
such as those used for currentgenerationturbufansdid not have
a significant influence on either the tuned or mistuned flutter
characteristics. However, the disk flexibility may have a strong A85-19433" Case Western Reserve Univ., Cleveland,Ohio.
influence on some of the system frequencies and on forced STATISTICS AND THERMODYNAMICS OF FRACTURE
response. Author A. CHUDNOVSKY (Case Western Reserve University,Cleveland,

OH) (Michigan Technological University,Workshop on Media
A85-17039"# Rice Univ., Houston, Tex. withMicrostructureand Wave Propagation,MichiganTechnological
OSCILLATOR RESPONSE TO NONSTATIONARY EXCITATION University,Houghton,MI, Jan. 24, 25, 1983) InternationalJournal
P.-T. D. SPANOS (Rice University, Houston, TX) and G.P. of EngineeringScience(ISSN 0020-7225), vol. 22, no.8-10, 1984,
SOLOMOS ASME, Transactions,Journal of Applied Mechanics p. 989-997. refs
(ISSN 0021-8936), vol. 51, Dec. 1984, p. 907-912. refs (ContractNAG3-223)
(Contract NAG3-210) A probabilistic model of the fracture processes unifying the
(ASME PAPER 84-WA/APM-38) phenomenologicalstudyof longterm strengthof materials,fracture

Analytical solutionsare presented regardingprobabilitydensity mechanicsand statisticalapproachesto fractureis brieflyoutlined.
distributionsof various response parameters of a lightlydamped The generalframeworkof irreversiblethermodynamicsis employed
oscillator.The oscillator is subjected to a broad-band stochastic to model the deterministicside of the failure phenomenon.The
excitation which possesses a time-variant power spectrum. The stochasticcalculus is used to account for thg failure mechanisms
analytical solutions are derived by utilizing appropriate controlledby chance; particularly,the randomroughnessof fracture
Fokker-Planck equations which govern Markovianapproximations surfaces. Author
of the response parameters considered. The reliability of the
approximate analytical solution is tested by using pertinent data
generated by a digitalMonte Carlo study. Author A85-19899" Georgia Inst. of Tech., Atlanta.

DEVELOPMENT AND TESTING OF STABLE, INVARIANT,
A85-17040"# National Aeronauticsand Space Administration. ISOPARAMETRIC CURVILINEAR 2- AND 3-D HYBRID-STRESS
Lewis Research Center, Cleveland, Ohio. ELEMENTS
EFFECTS OF WARPING AND PRETWlST ON TORSIONAL E.F. PUNCH (Georgia Institute of Technology, Atlanta, GA; GM
VIBRATION OF ROTATING BEAMS Research Laboratories, Warren, MI) and S. N. ATLURI (Georgia
K. R. V. KAZA and R. E. KIELB (NASA, Lewis Research Center, Institute of Technology, Atlanta, GA) Computer Methods in Applied
Cleveland, OH) ASME, Transactions, Journal of Applied Mechanics and Engineering (ISSN 0045-7825), vol. 47, Dec. 1984,
Mechanics (ISSN 0021-8936), vol. 51, Dec. 1984, p. 913-920. p. 331-356. refs
refs (Contract NAG3-346)
(ASME PAPER 84-WA/APM-41) Linear and quadratic Serendipity hybrid-stress elements are

The effect of pretwist and warping on the torsional vibration of examined in respect of stability, coordinate invariance, and
short-aspect-ratio rotating beams is examined for application to optimality. A formulation based upon symmetry group theory
the modeling of turbofan, turboprop, and compressor blades. The successfully addresses these issues in undistorted geometries and
equations of motion and the associated boundary conditions by is fully detailed for plane elements. The resulting least-order stable
using both Wagner's hypothesis and Washizu's theory are derived invariant stress polynomials can be applied as astute
and a few minor limitations of the Wagner's hypothesis, as applied approximations in distorted cases through a variety of tensor
to thick blades, are pointed out and discussed. The equations for components and variational principles. A distortion sensitivity study
several special cases are solved in a closed form. Results are for two- and three-dimensional elements provides favorable
presented indicating the effect of warping, pretwist, and rotation numerical comparisons with the assumed displacement method.
on torsional vibration of beams as aspect ratio is varied. The Author
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A85-22069" Ohio State Univ., Cleveland. A85-27935" Materials ResearchLab., Inc.,Glenwood,II1.
VIBRATIONS OF TWISTED CANTILEVERED PLATES FRACTUREOF COMPOSITE-ADHESIVE-COMPOSITESYSTEMS
SUMMARY OF PREVIOUS AND CURRENT STUDIES E.J. RIPLING, J. S. SANTNER, and P. B. CROSLEY (Materials
A. W. LEISSA (Ohio State University, Columbus, OH), J.C. Research Laboratory, Inc., Glenwood, IL) IN: Adhesive joints:
MACBAIN (USAF, Aero PropulsionLaboratory, Wright-Patterson Formation,characteristics,and testing. New York, PlenumPress,
AFB, OH), and R. E. KIELB (NASA, Lewis Research Center, 1984, p. 755-787. refs
Structural and Mechanical Technology Div., Cleveland, OH) (ContractNAS3-21824)
Journalof Soundand Vibration(ISSN 0022-460X), vol. 96, Sept. This programwas undertaken to initiate the developmentof a
22, 1984, p. 159-173. refs test methodfor testingadhesivejointsinmetal-adhesive-composite

This work summarizesa comprehensive study made of the systems. The uniform double cantilever beam (UDCB) and the
free vibrations of twisted, cantilevered plates of rectangular width tapered beam (WTB) specimengeometrieswere evaluated
planform. Numerous theoretical and experimental investigations for measuringMode I fracture toughnessin these systems.The
previouslymade by othershave resultedin frequencyresultswhich WTB specimenis the preferredgeometry in spite of the fact that
disagree considerably. To clarify the problem a joint it is more costlyto machine than the UDCB specimen.The use
industry/government/university research effort was initiated to of loading tabs attached to thin sheets of compositesproved to
obtain comprehensivetheoretical and experimental results for be experimentallyunsatisfactory.Consequently,a new systemwas
models having useful ranges of aspect ratios, thickness ratios developed to load thin sheets of adherends. This system allows
and twist angles. Theoretical data came from 19 independent for the direct measurementof displacementalong the load line.
computeranalyses,includingfinite element, shell theory and beam In well made joints separationoccurredbetween the plies rather
theory idealizations.Two independent sets of experimentaldata than in the adhesive. Author
were also obtained.The theoretical and experimentalresultsare
summarizedand compared. Author

A85-30313"# Pratt and Whitney Aircraft Group, East Hartford,
Conn.

A85-23150"# National Aeronautics and Space Administration. FINITE ELEMENT ENGINE BLADE STRUCTURAL OPTIMIZA-
Lewis Research Center, Cleveland, Ohio. TION
A SIMPLIFIED METHOD FOR ELASTIC-PLASTIC-CREEP K.W. BROWN (United Technologies Corp., Pratt and Whitney
STRUCTURAL ANALYSIS Group, EastHartford, CT), M. S. HIRSCHBEIN,and C. C. CHAMIS
A. KAUFMAN (NASA, Lewis Research Center, Cleveland, OH) (NASA, Lewis ResearchCenter, Cleveland,OH) IN: Structures,
ASME, Transactions,Journalof Engineeringfor Gas Turbinesand StructuralDynamics,and MaterialsConference, 26th, Orlando,FL,
Power(ISSN 0022-0825), vol. 107, Jan. 1985, p. 231-237. refs April 15-17, 1985, TechnicalPapers.Part 1 . New York, American
(ASME PAPER 84-GT-191) Instituteof Aeronauticsand Astronautics,1985, p. 793-803. refs

A simplifiedinelasticanalysiscomputerprogram(ANSYPM)was (ContractNAS3-22525)
developed for predictingthe stress-strainhistory at the critical (AIAA PAPER 85-0645)
locationof a thermomechanicallycycled structurefrom an elastic The StructuralTailoringof Engine Blades (STAEBL) computer
solution.The programuses an iterativeand incrementalprocedure program was developed to perform engine fan blade numerical
to estimate the plastic strains from the material stress-strain optimizations.These blade optimizationsseek a minimumweight
properties and a plasticity hardening model. Creep effects are or cost design that satisfiesrealisticblade design constraints,by
calculated on the basis of stress relaxation at constant strain, tuningone to twenty design variables.The STAEBL system has
creep at constant stress or a combination of stress relaxation been generalized to include both fan and compressor blade
and creep accumulation.The simplifiedmethodwas exercisedon numerical optimizations. The system analyses have been
a number of problemsinvolvinguniaxial and multiaxial loading, significantlyimprovedthroughthe inclusionof an efficient plate
isothermal and nonisothermalconditions,dwell times at various finite element analysis for blade stress and frequency
points in the cycles, different materialsand kinematichardening, determinations.Additionally,a finite element based approximate
Good agreementwas found between these analyticalresultsand severe foreign object damage (FOD) analysishas been included.
nonlinearfinite element solutionsfor these problems. The simplified The new FOD analysis gives very accurate estimates of the full
analysis program used lessthan 1 percent of the CPUtime required nonlinear bird ingestion solution. Optimizations of fan and
for a nonlinear finite element analysis. Author compressor blades have been performed using the system, showing

significant cost and weight reductions, while comparing very
favorably with refined design validation procedures. Author

A85-24532" Northwestern Univ.,Evanston, Ill.
ON STRESS FIELD NEAR A STATIONARY CRACK TIP A85-32343" Indian Inst. of Tech., Madras.
S. NEMAT-NASSER and M. OBATA (Northwestern University, NATURAL FREQUENCIES OF TWISTED ROTATING PLATES
Evanston, IL) Mechanicsof Materials (ISSN 0167-6636), vol. 3, V. RAMAMURTI (Indian Instituteof Technology, Madras, India)
Sept. 1984, p. 235-243. refs and R. KIELB (NASA, Lewis Research Center, Cleveland, OH)
(ContractNAG3-134; DAAG29-82-K-0147) Journal of Sound and Vibration (ISSN 0022-460X), vol. 97, Dec.
(AD-A152863) 8, 1984, p. 429-449. refs

It is well known that the stress and elastic-plasticdeformation A detailed comparison is presented of the predicted
fields near a crack tip have important roles in the corresponding eigenfrequenciesof twisted rotating plates as obtained by using
fracture process. For elastic-perfectly-plastic solids, different two different shape functions. Primarily,rotatingtwisted plates of
solutionsare given in the literature.In thiswork several of these two different aspect ratios and two different thicknessratios are
solutionsare examinedand compared for Mode I (tension),Mode considered.The effects of rotationare includedby usinga 'stress
II (shear), and mixed Modes I and II loadingconditions in plane smoothing' technique when calculatingthe augmented stiffness
strain. By considerationof the dynamicsolution,it is shownthat matrix.In addition,theeffects of Coriolisacceleration,contributions
the assumptionthat the material is yieldingall arounda crack tip from membrane behavior, setting angle and sweep angle are
maynot be reasonable in all cases. By admittingthe existenceof considered. The effects of geometric nonlinearity are briefly
some elastic sectors, continuousstress fields are obtained even discussed.Finally,resultsof a brief studyof cambered plates are
for mixedModes I and I1. Author presented. Author
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A85-32962"# National Aeronautics and Space Administration. method. An example of an in-plane stress problem is included.
Lewis ResearchCenter, Cleveland,Ohio. Author
FLUTTER OF SWEPT FAN BLADES
R. E. KIELB and K. R. V. KAZA (NASA, Lewis ResearchCenter, A85-37440" Akron Univ.,Ohio.
Cleveland,OH) ASME, Transactions,Journalof Engineeringfor PANTOGRAPHING SELF ADAPTIVE GAP ELEMENTS
Gas Turbines and Power (ISSN 0022-0825), vol. 107, April 1985, J. PADOVAN, R. MOSCARELLO (Akron, University,Akron, OH),
p. 394-398. Previouslyannouncedin STAR as N84-16587. refs J. STAFFORD, and F. TABADDOR (B.F. Goodrich Co., Akron,
(ASME PAPER 84-GT-138) OH) Computersand Structures(ISSN 0045-7949), vol. 20, no.

The effect of sweep on fan blade flutteris studiedby applying 4, 1985, p. 745-758. refs
the analytical methods developed for aeroelastic analysis of (ContractNAG3-54)
advance turboprops.Two methods are used. The first method This paper develops a so-called pantographingself adaptive
utilizes an approximate structuralmodel in which the blade is gap element type contact strategy. Due to the manner of
represented by a swept, nonuniformbeam. The second method formulation, the scheme has the capability to handle large
utilizesa finite elementtechniqueto conductmodalflutter analysis, deformationsin the contact zone; contact initiationin structure
For both methodsthe unsteady aerodynamicloads are calculated exhibiting either positive or indefinite stiffness characteristics;
using two dimensional cascade theories which are modified to kinematic and material nonlinearityas well as; self adaptively
accountfor sweep. An advanced fan stage is analyzed with0, 15 adjusts load/time stepping. In this context, contact in pre and
and 30 degreesof sweep. It is shownthat sweep has a beneficial postbucklingstructurecan be treated. To illustratethe scheme,
effect on predominantlytorsional flutter and a detrimentaleffect several benchmark problems are presented. These include
on predominantlybending flutter.This detrimentaleffect is shown contacting structure involving large deformation kinematics,
to be significantlydestabilizingfor 30 degrees of sweep. M.G. inelastic behavior as well as pre and postbuckling stiffness

characteristics. Author
A85-33847" Georgia Inst. of Tech., Atlanta.
ON THE EXISTENCE AND STABILITY CONDITIONS FOR A85-38425"# Technion- Israel Inst. of Tech., Haifa.
MIXED-HYBRID FINITE ELEMENT SOLUTIONS BASED ON THERMODYNAMICALLY CONSISTENT CONSTITUTIVE
REISSNER'S VARIATIONAL PRINCIPLE EQUATIONS FOR NONISOTHERMAL LARGE STRAIN,
L. A. KARLOVITZ, S. N. ATLURI (Georgia Instituteof Technology, ELASTO-PLASTIC, CREEP BEHAVIOR
Atlanta, GA), and W.-M. XUE InternationalJournalof Solidsand R. RIFF (Technion- Israel Institute of Technology,Haifa, Israel;
Structures (ISSN 0020-7683), vol. 21, no. 1, 1985, p. 97-116. Georgia Instituteof Technology,Atlanta, GA), R. L. CARLSON,
refs and G. J. SIMITSES (Georgia Institute of Technology, Atlanta,
(ContractNAG3-346) GA) American Institute of Aeronautics and Astronautics,

The extensionsof Reissner'stwo-field (stressand displacement) Structures,StructuralDynamics and Materials Conference, 26th,
principle to the cases wherein the displacement field is Orlando,FL, Apr. 15-17, 1985. 11 p.
discontinuousand/or the stress field results in unreciprocated (ContractNAG3-534)
tractions,at a finite numberof surfaces ('interelementboundaries') (AIAA PAPER 85-0621)
in a domain(as, for instance,when the domain is discretizedinto The paper is concerned with the developmentof constitutive
finite elements), is considered.The conditionsfor the existence, relations for large nonisothermalelastic-viscoplasticdeformations
uniqueness,and stabilityof mixed-hybridfinite element solutions for metals. The kinematicsof elastic-plasticdeformation,valid for
based on suchdiscontinuousfields,are summarized.The reduction finitestrainsand rotations,is presented.The resultingelastic-plastic
of these global conditions to local ('element') level, and the uncoupledequations for the deformation rate combined with use
attendant conditions on the ranks of element matrices, are of the incremental elasticity law permits a precise and purely
discussed.Two examplesof stable,invariant,least-orderelements deductivedevelopmentof elastic-viscoplastictheory. It is shown
- a four-node square planar element and an eight-node cubic that a phenomenologicalthermodynamictheory inwhichthe elastic
element - are discussedin detail. Author deformationand the temperatureare state variables, includingfew

internalvariables, can be utilized to constructelastic-viscoplastic
A85-35046"# MassachusettsInst. of Tech., Cambridge. constitutiveequations,whichareappropriateformetals.The limiting
EVOLUTION OF ASSUMED STRESS HYBRID FINITE ELEMENT case of inviscidplasticityis examined. Author
T. H. H. PlAN (MIT, Cambridge, MA) World Congressand
Exhibitionon Finite Element Methods,4th, Interlaken,Switzerland, A85-39769"# National Aeronautics and Space Administration.
Sept. 17-21, 1984, Preprint.18 p. refs Lewis Research Center, Cleveland, Ohio.
(Contract NAG3-33; F33615-83-K-5016) UNIFIED CONSTITUTIVE MATERIAL MODELS FORNONLINEAR

Early versionsof the assumed stress hybrid finite elements FINITE-ELEMENT STRUCTURAL ANALYSIS
were based on the a priori satisifaction of stress equilibrium A. KAUFMAN (NASA, Lewis Research Center, Cleveland,OH), J.
conditions. In the new version such conditions are relaxed but H. LAFLEN (General Electric Co., Cincinnati, OH), and U. S.
are introduced through additional internal displacement functions LINDHOLM (Southwest Research Institute, San Antonio, TX) AIAA,
as Lagrange multipliers. A rational procedure is to choose the SAE, ASME, and ASEE, Joint Propulsion Conference, 21st,
displacement terms such that the resulting strains are now of Monterey, CA, July 8-10, 1985. 10 p. Previously announced in
complete polynomials up to the same degree as that of the STAR as N85-24338. refs
assumed stresses. Several example problems indicate that optimal (AIAA PAPER 85-1418)
element properties are resulted by this method. Author Unified constitutive material models were developed for

structural analyses of aircraft gas turbine engine components with
A85-35048" particular application to isotropic materials used for high-pressure
PLASTICITY, VISCOPLASTICITY, AND CREEP OF SOLIDS BY stage turbineblades and vanes.Formsor combinationsof models
MECHANICAL SUBELEMENT MODELS independentlyproposed by Bodnerand Walker were considered.
T. H. H. PlAN IN: Numerical methods in coupled systems. These theories combine time-dependent and time-independent
Chichester,Sussex,England,John Wileyand Sons, Ltd., 1984, p. aspects of inelasticity into a continuous spectrum of behavior.
119-126. refs This is in sharp contrast to previous classical approaches that
(ContractNAG3-33) partition inelastic strain into uncoupled plastic and creep

This paperdiscussesthe modellingbymechanicalsubelements, components.Predictedstress-strainresponsesfrom these models
the general plasticity,the viscoplasticity,and the creep behavior wereevaluatedagainstmonotonicandcyclictest resultsforuniaxial
of solidsundermultiaxialloading conditions.The formulationof a specimensof two cast nickel-basealloys, B1900+Hf and Rene
time-independent elastic-plastic analysis is based on the 80. Previouslyobtained tension-torsiontest resultsfor HastelloyX
viscoplasticity theory and the assumed stress finite element alloywere usedto evaluatemultiaxialstress-straincyclepredictions.
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The unified models,as well as appropriate algorithms for integrating in detail in modeling finitely plastic tension-torsion test. The
the constitutive equations, were implemented in finite-element implementation of rate-type material models in finite element
computer codes. Author algorithms is also discussed. Author

A85-39779"# South Carolina State Coll., Orangeburg.
ON LOCAL TOTAL STRAIN REDISTRIBUTION USING A
SIMPLIFIED CYCLIC INELASTIC ANALYSIS BASED ON AN A85-41109" Massachusetts Inst. of Tech., Cambridge.
ELASTIC SOLUTION AXISYMMETRIC SOLID ELEMENTS BY A RATIONAL HYBRID
S. Y. HWANG (South Carolina State College, Orangeburg, SC) STRESS METHOD
and A. KAUFMAN (NASA, Lewis Research Center, Cleveland, Z. TIAN and T. H. H. PlAN (MIT, Cambridge, MA) (George
OH) AIAA, SAE, ASME, and ASEE, Joint Propulsion Conference, Washington University and NASA, Symposium on Advances and
21st, Monterey, CA, July 8-10, 1985. 10 p. Previously announced Trends in Structures and Dynamics, Washington, DC, Oct. 22-25,
in STAR as N85-21690. refs 1984) Computers and Structures (ISSN 0045-7949), vol. 20, no.
(AIAA PAPER 85-1419) 1-3, 1985, p. 141-149. refs

Strain redistribution corrections were developed for a simplified (Contract NAG3-33)
inelastic analysis procedure to economically calculate material Four-node axisymmetric solid elements are derived by a new
cyclic response at the critical location of a structure for life version of hybrid method for which the assumed stresses are
prediction purposes. The method was based on the assumption expressed in complete polynomials in natural coordinates. The
that the plastic region in the structure is local and the total strain stress equilibrium conditions are introduced through the use of
history required for input can be defined from elastic finite element additional displacements as Lagrange multipliers. A rational
analyses. Cyclic stress-strain behavior was represented by a bilinear procedure is to choose the displacement terms such that the
kinematic hardening model. The simplified procedure has been resulting strains are also of complete polynomials of the same
found to predict stress-strain response with reasonable accuracy order. Example problems all indicate that elements obtained by
for thermally cycled problems but needs improvement for this procedure lead to better results in displacements and stresses
mechanically load cycled problems. This study derived and than that by other finite elements. Author
incorporated Neuber type corrections in the simplified procedure
to account for local total strain redistribution under cyclic

mechanical loading. The corrected simplified method was exercised A85-41983" Akron Univ., Ohio.
on a mechanically load cycled benchmark notched plate problem. QUASI-STATICSOLUTION ALGORITHMS FOR KINEMATICALLY/
Excellent agreement was found between the predicted material MATERIALLY NONLINEAR THERMOMECHANICAL PROBLEMS
response and nonlinear finite element solutions for the problem.
The simplified analysis computer program used 0.3 percent of the J. PADOVAN (Akron, University, OH) and S. S. PAl (Babcock and
CPU time required for a nonlinear finite element analysis. Author Wilcox Co., Akron, OH) Journal of Thermal Stresses (ISSN0149-5739), vol. 7, no. 3-4, 1984, p. 227-257. Research supported

A85-40814"# National Aeronautics and Space Administration. by Babcock and Wilcox Corp. refs
Lewis Research Center, Cleveland, Ohio. (Contract NAG3-54)

This paper develops an algorithmic solution strategy whichFATIGUE CRITERION TO SYSTEM DESIGN, LIFE AND allows the handling of positive/indefinite stiffness characteristicsRELIABILITY
associated with the pre- and post-buckling of structures subject

E. V. ZARETSKY (NASA, Lewis Research Center, Cleveland, OH)
AIAA, SAE, ASME, and ASEE, Joint Propulsion Conference, 21st, to complex thermomechanical loading fields. The flexibility of the
Monterey, CA, July 8-10, 1985.9 p. Previouslyannounced in STAR procedure is such that it can be applied to both finite differenceand element-type simulations. Due to the generality of the
as N85-27226. refs algorithmic approach developed, both kinematic and
(AIAA PAPER 85-1140) thermal/mechanical type material nonlinearity including inelastic

A generalized methodology to structural life prediction, design,
and reliability based upon a fatigue criterion is advanced. The life effects can be treated. This includes the possibility of handling
prediction methodology is based in part on work of Weibull and completely general thermomechanical boundary conditions. To
Lundberg and Palmgren. The approach incorporates the computed demonstrate the scheme, the results of several benchmark
life of elemental stress volumes of a complex machine element problems is presented. Author
to predict system life. The results of coupon fatigue testing can
be incorporated into the analysis allowing for life prediction and
component or structural renewal rates with reasonable statistical
certainty. Author A85-42047" National Aeronautics and Space Administration.

Lewis Research Center, Cleveland, Ohio.
A85-40919* Southwest Research Inst., San Antonio, Tex. FINITE DIFFERENCE ANALYSIS OF TORSIONAL VIBRATIONS
CONSTITUTIVE MODELING AND COMPUTATIONAL OF PRETWlSTED, ROTATING, CANTILEVER BEAMS WITH
IMPLEMENTATION FOR FINITE STRAIN PLASTICITY EFFECTS OF WARPING
K. W. REED (Southwest Research Institute, San Antonio, TX)and K.B. SUBRAHMANYAM and K. R. V. KAZA (NASA, Lewis
S. N. ATLURI (Georgia Institute of Technology, Atlanta ) Research Center, Cleveland, OH) Journal of Sound and Vibration
International Journal of Plasticity (ISSN 0749-6419), vol. 1, no. 1, (ISSN 0022-460X), vol. 99, March 22, 1985, p. 213-224. refs
1985, p. 63-87. refs Theoretical natural frequencies of the first three modes of
(Contract NAG3-346) torsional vibration of pretwisted, rotating cantilever beams are

This paper describes a simple alternate approach to the difficult determined for various thickness and aspect ratios. Conclusions
problem of modeling material behavior. Starting from a general concerning individual and collective effects of warping, pretwist,
representation for a rate-tpe constitutive equation, it is shown by tension-torsion coupling and tennis racket effect (twist-rotational
example how sets of test data may be used to derive restrictions coupling) terms on the natural frequencies are drawn from
on the scalar functions appearing in the representation. It is not numerical results obtained by using a finite difference procedure
possible to determine these functions from experimental data, but with first order central differences. The relative importance of
the aforementioned restrictions serve as a guide in their eventual structural warping, inertial warping, pretwist, tension-torsion and
definition. The implications are examined for hypo-elastic, twist-rotational coupling terms is discussed for various rotational
isotropically hardening plastic, and kinematically hardening plastic speeds. The accuracy of results obtained by using the finite
materials. A simple model for the evolution of the 'back-stress,' in difference approach is verified by a comparison with the exact
a kinematic-hardening plasticity theory, that is entirely analogous solution for specialized simple cases of the equation of motion
to a hypoelastic stress-strain relation is postulated and examined used in this paper. Author
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A85-42566"# Garrett Turbine Engine Co., Phoenix, Ariz. A86-18123" Massachusetts Inst. of Tech., Cambridge.
CREEP-RUPTURE RELIABILITY ANALYSIS FINITE ELEMENTS BASED ON CONSISTENTLY ASSUMED
A. PERALTA-DURAN (Garrett Turbine Engine Co., Phoenix, AZ) STRESSES AND DISPLACEMENTS
and P. H. WlRSCHING (Arizona, University, Phoenix) ASME, T.H.H. PlAN (MIT, Cambridge, MA) Finite Elements in Analysis
Transactions, Journal of Vibration, Acoustics, Stress, and Reliability and Design (ISSN 0168-874X), vol. 1, Aug. 1985, p. 131-140.
in Design (ISSN 0739-3717), vol. 107, July 1985, p. 339-346. refs
Previously announced in STAR as N84-19925. refs (Contract NAG3-33; F33615-83-K-5016)
(Contract NAG3-41) Finite element stiffness matrices are derived using an extended

A probabilistic approach to the correlation and extrapolation of Hellinger-Reissner principle in which internal displacements are
creep-rupture data is presented. Time temperature parameters added to serve as Lagrange multipliers to introduce the equilibrium
(TTP) are used to correlate the data, and an analytical expression constraint in each element. In a consistent formulation the assumed
for the master curve is developed. The expression provides a stresses are initially unconstrained and complete polynomials and
simple model for the statistical distribution of strength and fits the total displacements are also complete such that the
neatly into a probabilistic design format. The analysis focuses on corresponding strains are complete in the same order as the
the Larson-Miller and on the Manson-Haferd parameters, but it stresses. Several examples indicate that resulting properties for
can be applied to any of the TTP's. A method is developed for elements constructed by this consistent formulation are ideal and
evaluating material dependent constants for TTP's. It is shown are less sensitive to distortions of element geometries. The method
that optimized constants can provide a significant improvement in has been used to find the optimal stress terms for plane elements,
the correlation of the data, thereby reducing modelling error. 3-D solids, axisymmetric solids, and plate bending elements.
Attempts were made to quantify the performance of the proposed Author
method in predicting long term behavior. Uncertainty in predicting
long term behavior from short term tests was derived for several A86o20706" Army Armament Research and Development
sets of data. Examples are presented which illustrate the theory Command, Watervliet, N. Y.
and demonstrate the application of state of the art reliability WIDE-RANGE DISPLACEMENT EXPRESSIONS FOR
methods to the design of components under creep. Author STANDARD FRACTURE MECHANICS SPECIMENS

J. A. KAPP (U.S. Army, Benet Weapons Laboratory, Watervliet,
NY), B. GROSS (NASA, Lewis Research Center, Cleveland, OH),
and G. S. LEGER IN: Fracture mechanics . Philadelphia, PA,
American Society for Testing and Materials, 1985, p. 27-44.

A85-47626" National Aeronautics and Space Administration. Wide-range algebraic expressions for the displacement of
Lewis Research Center, Cleveland, Ohio. cracked fracture mechanics specimens are developed. For each
VIBRATIONS OF TWISTED CANTILEVER PLATES A specimen two equations are given: one for the displacement as a
COMPARISON OF THEORETICAL RESULTS function of crack length, the other for crack length as a function
R. E. KIELB (NASA, Lewis Research Center, Cleveland, OH), A. of displacement. All the specimens that appear in ASTM Test for
W. LEISSA(Ohio State University, Columbus), and J. C. MACBAIN Plane-Strain Fracture Toughness of Metallic Materials (E 399) are
(USAF, Aero Propulsion Laboratory, Wright-Patterson AFB, OH) represented in addition to the crack mouth displacement for a
International Journal for Numerical Methods in Engineering (ISSN pure bending specimen. For the compact tension sample and the
0029-5981), vol. 21, Aug. 1985, p. 1365-1380. refs disk-shaped compact tension sample, the displacement at the crack

As a result of significant differences in the published results mouth and at the load line are both considered. Only the crack
for various methods of analysis involving the use of finite element mouth displacements for the arc-shaped tension samples are
techniques, there are now some questions regarding the adequacy presented. The agreement between the displacements or crack
of these methods to predict accurately the vibratory characteristics lengths predicted by the various equations and the corresponding
of highly twisted cantilever plates. In an attempt to help in a numerical data from which they were developed are nominally
resolutionof the arising problems,a joint government/industry/univer- about 3 percent or better. These expressions should be useful in
sity research effort was initiated.The primary objective of the present all types of fracture testing including fracture toughness,
paper is to summarize the theoretical methods used inthe study and K-resistance, and fatigue crack growth. Author
show samples of the obtained results. The study provided 19sets of
theoretical results which are derived from beam theory, shell theory, A86-20709" National Aeronautics and Space Administration.
and fine element methods. G.R. Lewis Research Center, Cleveland, Ohio.

WIDE-RANGE WEIGHT FUNCTIONS FOR THE STRIP WITH A
SINGLE EDGE CRACK
T. W. ORANGE (NASA, Lewis Research Center, Cleveland, OH)
IN: Fracture mechanics . Philadelphia, PA, American Society for
Testing and Materials, 1985, p. 95-105. Previously announced in

A85-48703" Air Force Flight Dynamics Lab., Wright-Patterson STAR as N84-11512. refs
AFB, Ohio. A closed form expression for the weight function for a strip
STRUCTURAL OPTIMIZATION USING OPTIMALITY CRITERIA with a single edge crack is presented. The expression is valid for
METHODS relative crack lengths from zero to unity. It is based on the
N. S. KHOT (USAF, Flight Dynamics Laboratory, Wright-Patterson assumption that the shape of an opened edge crack can be
AFB, OH) and L. BERKE (NASA, Lewis Research Center, approximated by a conic section. The results agree well with
Cleveland, OH) IN: New directions in optimum structural design published values for weight functions, stress intensity factors, and

Chichester, England and New York, Wiley-lnterscience, 1984, p. crack mouth opening displacements. S.L.
47-74.

Optimality criteria methods take advantage of some concepts A86-20710" National Aeronautics and Space Administration.
as those of statically determinate or indeterminate structures, and Lewis Research Center, Cleveland, Ohio.
certain variational principles of structural dynamics, to develop ANALYSIS OF AN EXTERNALLY RADIALLY CRACK RING
efficient algorithmsfor the sizing of structuresthat are subjected SEGMENT SUBJECT TO THREE-POINT RADIAL LOADING
to stiffness-relatedconstraints.Some of the methods and iterative B. GROSS, J. E. SRAWLEY, and J. L. SHANNON, JR. (NASA,
strategiesdeveloped over the last decade for calculationsof the Lewis Research Center, Cleveland, OH) IN: Fracturemechanics
Lagrange multipliersin stressand displacement-limitedproblems, . Philadelphia,PA, American Society for Testing and Materials,
as well as for satisfyingthe appropriateoptimalitycriterion,are 1985, p. 106-112. refs
discussed.The applicationof these methods are illustrated by The boundarycollocationmethodwas used to generate Mode
solvingproblemswithstress and displacementconstraints. O.C. I stress intensity and crack mouth opening displacement
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coefficients for externally radially (through-the-thickness) cracked A86-26896"# Illinois Univ., Urbana.
ring segmentssubjected to three-point radial loading. Numerical THREE-DIMENSIONAL HYBRID-STRESS FINITE ELEMENT
resultswere obtainedfor ringsegment outer-to-innerradiusratios ANALYSIS OF COMPOSITE LAMINATES WITH CRACKS AND
(Ro/Ri) ranging from 1.10 to 2.50 and crack length to segment CUTOUTS
width ratios (a/W) rangingfrom 0.1 to 0.8. Stress intensityand S.S. WANG (Illinois,University,Urbana) IN: Pressurevessel
crack mouth displacementcoefficientswere found to depend on components design and analysis; Proceedings of the Pressure
the ratios Ro/Ri and a/W as well as the included angle between Vessels and Piping Conference, New Orleans, LA, June 23-26,
the directions of the reaction forces. Author 1985. New York, American Society of Mechanical Engineers, 1985,

p. 235-246. refs
(Contract NSG-3044)

A three-dimensional hybrid-stress finite element analysis of
A86-22084"# National Aeronautics and Space Administration. composite laminates containing cutouts and cracks is presented.
Lewis Research Center, Cleveland, Ohio. Fully three-dimensional, hexahedral isoparametric elements of the
NASA LEWIS RESEARCH CENTER/UNIVERSITY GRADUATE hybrid-stress model are formulated on the basis of the
RESEARCH PROGRAM ON ENGINE STRUCTURES Hellinger-Reissner variational principle. Traction-free edges,
C. C. CHAMIS (NASA, Lewis Research Center, Cleveland, OH) cutouts,and crack surfaces are modeled by impositionof exact
ASME, InternationalGas Turbine Conference and Exhibit, 30th, traction boundary conditions along element surfaces. Special
Houston, TX, Mar. 18-21, 1985. 10 p. Previouslyannounced in boundary and surface elements are constructed by introducing
STAR as N85-18375. proper constraintson assumed stress functions.The Lagrangian
(ASME PAPER 85-GT-159) multiplier technique is used to enforce ply-interface continuity

NASA Lewis ResearchCenter establisheda graduateresearch conditionsin hybrid bimaterial compositeelements for modeling
program in support of the Engine StructuresResearch activities, the interface region in a composite laminate. Two examples are
This graduate research programfocuses mainlyon structuraland givento illustratethe capabilityof the presentmethodof approach:
dynamics analyses, computational mechanics, mechanics of (1) the well-knowndelaminationproblemin an angle-plylaminate,
compositesand structuraloptimization.The broad objectives of and (2) the importantproblemof a compositelaminate containing
the program, the specific program, the participatinguniversities a circular hole. Results are presented in detail for each case.
and the programstatus are brieflydescribed. Author Implicationsof interlaminarand intralaminarcrack initiation,growth

and fracture in composites containingcracks and cutouts are
discussed. Author

A86-24219" SyracuseUniv., N.Y. A86-26910"# National Aeronauticsand Space Administration.
SHEAR FATIGUE CRACK GROWTH - A LITERATURE SURVEY Lewis ResearchCenter, Cleveland,Ohio.
H. W. LIU (Syracuse University, NY) Fatigue and Fractureof VIBRATION AND BUCKLING OF ROTATING, PRETWlSTED,
EngineeringMaterials and Structures(ISSN 8756-758X), vol. 8, PRECONED BEAMS INCLUDING CORIOLIS EFFECTS
no. 4, 1985, p. 295-313. refs K.B. SUBRAHMANYAM and K. R. V. KAZA (NASA, Lewis
(ContractNAG3-348) Research Center, Cleveland, OH) IN: Vibrationsof blades and

Recent studiesof shearcrackgrowthare reviewed,emphasizing bladed disk assemblies; Proceedings of the Tenth Biennial
test methodsand data analyses.The combinedmode I and mode Conference on MechanicalVibration and Noise, Cincinnati, OH,
II elasticcrack tip stress fields are considered.The development September 10-13, 1985 . New York, American Society of
and design of the compact shear specimen are described, and Mechanical Engineers, 1985, p. 75-87. Previouslyannounced in
the results of fatigue crack growth tests using compact shear STAR as N85-25893. refs
specimens are reviewed. The fatigue crack growth tests are The effects of pretwist, precone, setting ang!e and Coriolis
discussed and the results of inclined cracks in tensile panels, forces on the vibrationandbucklingbehaviorof rotating,torsionally
center cracks in plates under biaxial loading, cracked beam rigid, cantilevered beams were studied. The beam is considered
specimens with combined bending and shear loading, to be clamped on the axis of rotation in one case, and off the
center-crackedpanelsand doubleedge-crackedplatesundercyclic axis of rotation in the other. Two methods are employedfor the
shear loadingare examinedand analyzed in detail. C.D. solution of the vibration problem: (1) one based upon a

finite-difference approach using second order central differences
for solutionof the equationsof motion,and (2) based upon the
minimumof the total potentialenergy functional with a Ritz type

A86-26689" AkronUniv., Ohio. of solution procedure making use of complex forms of shape
HIERARCHIAL IMPLICIT DYNAMIC LEAST-SQUARE SOLUTION functionsfor the dependentvariables.The individualand collective
ALGORITHM effects of pretwist,precone, setting angle, thickness ratio and
J. PADOVANand J. LACKNEY(Akron,University,OH) Computers Coriolis forces on the natural frequencies and the buckling
and Structures (ISSN 0045-7949), vol. 22, no. 3, 1986, p. boundariesare presented.It is shownthat the inclusionof Coriolis
479-489. refs effects is necessary for blades of moderate to large thickness
(ContractNAG3-54) ratios while these effects are not so importantfor small thickness

This paper develops an implicittype transientsolutionstrategy ratioblades.The possibilityof bucklingdue to centrifugalsoftening
whichpossesseshierarchiallevels of application.In particular,due terms for largevalues of preconeand rotationis shown. Author
to themannerof formulation,stiffnessupdating,assemblyinversion,
solutionconstraint, as well as iteration are all performed at a A86-28653"# NorthwesternUniv., Evanston,II1.
localized level.The level of iterativecalculationsdepends on the PROBABILISTIC FINITE ELEMENTS FOR TRANSIENT
type of hierarchialpartitioningemployed,namelydegreeof freedom, ANALYSIS IN NONLINEAR CONTINUA
nodal, elemental, material/nonlinear group, substructural,and so W.K. LIU,T. BELYTSCHKO,andA. MANI (NorthwesternUniversity,
on. Since the iterative solution process and application of Evanston, IL) IN: Advances in aerospace structural analysis;
constraintsare applied at a local level, the resultingso-called Proceedings of the Winter Annual Meeting, Miami Beach, FL,
hierarchialimplicit solution algorithm possesses very stable and November17-22, 1985. New York,AmericanSocietyof Mechanical
efficient numerical properties and is highly storage efficient. To Engineers,1985, p. 9-24. refs
demonstrate the scheme, the results of several benchmark (ContractNAG3-535)
examples are presented. These enable comparisons with the The probabilisticfinite element method (PFEM), which is a
Newton-Raphsonsolvedimplicittransientsolutionmethod. Overall combination of finite element methods and second-moment
the comparisonsillustratethe superior stabilityand efficiency of analysis, is formulated for linear and nonlinear continua with
the hierarchialscheme. Author inhomogeneousrandomfields. Analogousto the discretizationof
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the displacement field in finite element methods, the random field given to the development status of a NASA-sponsored program
is also discretized. The formulation is simplified by transforming for probabilistic structural analysis methods applicable to current
the correlated variables to a set of uncorrelated variables through and future reusable space propulsion systems. Methodologies for
an eigenvalue orthogonalization. Furthermore, it is shown that a the assessment of structural response by means of integrated
reduced set of the uncorrelated variables is sufficient for the finite element and probabilistic analysis techniques are discussed,
second-moment analysis. Based on the linear formulation of the with illustrative examples. O.C.
PFEM, the method is then extended to transient analysis in
nonlinear continua. The accuracy and efficiency of the method is A86°34257" Virginia Polytechnic Inst. and State Univ.,
demonstrated by application to a one-dimensional, elastic/plastic Blacksburg.
wave propagation problem. The moments calculated compare FACTORS INFLUENCING THE ULTRASONIC STRESS WAVE
favorably with those obtained by Monte Carlo simulation.Also, FACTOR EVALUATION OF COMPOSITE MATERIAL
the procedureis amenableto implementationin deterministicFEM STRUCTURES
basedcomputerprograms. Author C.J. REBELLO (NationalTechnicalSystems, Hartwood,VA) and

J. C. DUKE,JR. (VirginiaPolytechnicInstituteand State University,
A86-28654"# Rice Univ., Houston,Tex. Blacksburg) Journal of CompositesTechnology and Research
NUMERICAL SYNTHESIS OF TRI-VARIATE VELOCITY (ISSN 0885-6804), vol. 8, Spring 1986, p. 18-23. refs
REALIZATIONS OF TURBULENCE (ContractNAG3-323)
P.-T. D. SPANOS (Rice University, Houston, TX) and K.P. To demonstrate that the finite-element model can be used to
SCHULTZ (Lockheed Engineeringand ManagementServicesCo., investigatesome of the factors influencingthe ultrasonicstress
Houston, TX) IN: Advances in aerospace structuralanalysis; wave evaluationof materials,a hypotheticalcase was studied in
Proceedingsof the Winter Annual Meeting, Miami Beach, FL, which classicalvibrationtheory was used. Vibrationanalysisand
November17-22, 1985. NewYork, AmericanSocietyof Mechanical experiments for the undamaged case were conducted on an
Engineers,1985, p. 25-35. refs isotropicaluminumplate and a unidirectionalgraphite-epoxyplate,
(ContractNAG3-210) usinga pointsourceto excitethe plates.The finite-elementsolution

An approachfor synthesizingtrivariateturbulencevelocityfield correlated within eight percent with the exact method. The
spatial realizationsis presented. Some of the spatial frequency frequenciespredictedby the finite-element model were observed
characteristicsof the random velocity field are described by the in the experimentsin both plates,althoughin the compositeplate,
von Karman spectrum. The simulationalgorithm is based on an additionalfrequencieswere observed whichcould not be accounted
efficient autoregressive-movingaverage (ARMA) scheme involving for. Damaged isotropicplates were also considered.The effects
coefficient square matrices of order three. The determinationof of increasingdamage severity with constant damage area, and
the efficient low order ARMA algorithm is preceded by the increasing damage area with constant severity on the resonant
determination of a suitable high order autoregressive (AR) frequencieswere analyzed. I.S.
simulationalgorithm. The numerical results are presented in a
dimensionlessform. Thus, they are applicable for any scale of A86-34444"# UnitedTechnologiesCorp., East Hartford,Conn.
turbulence. Author STRESS ANALYSIS OF GAS TURBINE ENGINE STRUCTURES

USING THE BOUNDARY ELEMENT METHOD
A86-28655"# MARC AnalysisResearchCorp.,PaloAIto, Calif. R.B. WILSON, D. W. SNOW (United Technologies Corp.,
EFFICIENT ALGORITHMS FOR USE IN PROBABILISTIC FINITE EngineeringDiv., Hartaford,CT), and P. K. BANERJEE(New York,
ELEMENT ANALYSIS State University,Buffalo) IN: Advancedtopicsin boundaryelement
J. B. DIAS and J. C. NAGTEGAAL (MARC Analysis Research analysis;Proceedingsof the WinterAnnual Meeting,Miami Beach,
Corp., Palo Alto, CA) IN: Advances in aerospace structural FL, November 17-22, 1985 . New York, American Society of
analysis;Proceedingsof the WinterAnnual Meeting, Miami Beach, Mechanical Engineers,1985, p. 45-63. refs
FL, November 17-22, 1985 . New York, American Society of (ContractNAS3-23697)
Mechanical Engineers, 1985, p. 37-50. refs The theory of the boundary element method is briefly reviewed
(Contract NAS3-24389) with particular reference to the feasibility of elastic and inelastic

This paper investigates the use of Fast Probability Integration three-dimensional stress analysis of complex structures
(FPI) algorithms in a Finite Element environment. A method allowing characteristic of gas turbine engine components. Particular
the representation of correlated fields in terms of a vector of requirements of gas turbine analysis are defined, and examples
uncorrelated transformed variables, based on the spectral of the use of a boundary element code designed for the
decomposition of the variance-covariance matrix is developed. The three-dimensional stress analysis of turbine components are
response of the deterministic model corresponding to selected presented. It is shown that the general-purpose boundary element
perturbations of these uncorrelated variables is then obtained via code can accurately and efficiently analyze many of the gas turbine
a Newton-type iterative scheme. The results of the perturbed engine structures. V.L.
problems are used to construct a local representation of the
model's behavior in the neighborhood of the deterministic state, A86-34445"# State Univ. of New York, Buffalo.
which the FPI algorithm will use to estimate the reliability of the ADVANCED THREE-DIMENSIONAL DYNAMIC ANALYSIS BY
system. Although the proposed strategy has thus far only been BOUNDARY ELEMENT METHODS
applied to linear elastostatics, the extension of the method to a P.K. BANERJEE (New York, State University, Buffalo) and S.
broader class of problems appears to be feasible. Author AHMA IN: Advanced topics in boundary element analysis;

Proceedings of the Winter Annual Meeting, Miami Beach, FL,
A86-28659"# Southwest Research Inst., San Antonio, Tex. November 17-22, 1985. NewYork, American Society of Mechanical
PROBABILISTIC STRUCTURAL ANALYSIS FOR SPACE Engineers, 1985, p. 65-81. refs
PROPULSION SYSTEM COMPONENTS (Contract NAS3-23697)
O. H. BURNSIDE (Southwest Research Institute, San Antonio, Advanced formulations of boundary element method for
TX) IN: Advances in aerospace structural analysis; Proceedings periodic, transient transform domain and transient time domain
of the Winter Annual Meeting, Miami Beach, FL, November 17-22, solution of three-dimensional solids have been implemented using
1985. New York, American Society of Mechanical Engineers, 1985, a family of isoparametric boundary elements. The necessary
p. 87-102. refs numerical integration techniques as well as the various solution
(Contract NAS3-24389) algorithms are described. The developed analysis has been

Probabilistic design and analysis methods for the achievement incorporated in a fully general purpose computer program BEST3D
of greater reliability in structural systems are especially useful in which can handle up to 10 subregions. A number of numerical
those cases where the structure operates in such severe examples are presented to demonstrate the accuracy of the
environments as that of the Space Shuttle. Attention is presently dynamic analyses. Author
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A86-34461"# MARC Analysis Research Corp., Palo Alto, Calif. A86-37799" Akron Univ., Ohio.
ITERATIVE METHODS FOR MIXED FINITE ELEMENT INELASTIC HIGH-TEMPERATURE THERMOMECHANICAL
EQUATIONS RESPONSE OF CERAMIC COATED GAS TURBINE SEALS
S. NAKAZAWA, J. C. NAGTEGAAL (MARC Analysis Research J. PADOVAN (Akron, University, OH), D. DOUGHERTY (General
Corp., PaloAlto, CA), and O. C. ZIENKIEWICZ (Swansea, University Tire and Rubber Co., Akron, OH), and B. HENDRICKS (NASA,
College, Wales) IN: Hybrid and mixed finite element methods; Lewis Research Center, Cleveland, OH) Journal of Thermal
Proceedings of the Winter Annual Meeting, Miami Beach, FL, Stresses (ISSN 0149-5739), vol. 9, no. 1, 1986, p. 31o43. refs
November 17-22, 1985. New York, American Society of Mechanical (Contract NAG3-265)
Engineers, 1985, p. 57-67. refs Through the use of a constrained Newton-Raphson time
(Contract NAS3-23697) stepping finite element scheme, the inelastic thermomechanical

Iterative strategies for the solution of indefinite system of response of ceramic coated gas turbine parts is considered. Due
equations arising from the mixed finite element method are to the generality of the solution procedure developed, the combined
investigated in this paper with application to linear and nonlinear thermoelastic-plastic-creep properties associated with ceramics is
problems in solid and structural mechanics. The augmented treated. This includes the handling of temperature-dependent
Hu-Washizu form is derived, which is then utilized to construct a elastic-plastic creep and thermal material properties. To illustrate
family of iterative algorithms using the displacement method as the procedure, the thermomechanical response of ceramic coated
the preconditioner. Two types of iterative algorithms are outer gas path seals is considered. This includes the evaluation
implemented. Those are: constant metric iterations which does of time-dependent thermal ratcheting and its concomitant residual
not involve the update of preconditioner; variable metric iterations, stress and strain fields. Author
in which the inverse of the preconditioning matrix is updated. A
series of numerical experiments is conducted to evaluate the A86-38838"# Georgia Inst. of Tech., Atlanta.
numerical performance with application to linear and nonlinear BOUNDING SOLUTIONS OF GEOMETRICALLY NONLINEAR
model problems. Author VISCOELASTIC PROBLEMS

J. M. STUBSTAD and G. J. SIMITSES (Georgia Institute of
Technology, Atlanta) IN: Structures, Structural Dynamics and
Materials Conference, 27th, San Antonio, TX, May 19-21, 1986,
Technical Papers. Part 1 . New York, American Institute of

A86-34462"# Massachusetts Inst. of Tech., Cambridge. Aeronautics and Astronautics, 1986, p. 343-352. Previously
HYBRID SOLID ELEMENT WITH A TRACTION-FREE announced in STAR as N86-10860. refs
CYLINDRICAL SURFACE (Contract NAG3-534)
T. H. H. PlAN (MIT, Cambridge, MA) and Z. TIAN (ChineseAcademy (AIAA PAPER 86-0943)
of Sciences, Graduate School, Beijing, People's Republic of Integral transform techniques, such as the Laplace transform,
China) IN: Hybrid and mixed finite element methods; Proceedings provide simple and direct methods for solving viscoelastic problems
of the Winter Annual Meeting, Miami Beach, FL, November 17-22, formulated within a context of linear material response and using
1985. NewYork, American Society of Mechanical Engineers, 1985, linear measures for deformation. Application of the transform
p. 69-75. refs operator reduces the governing linear integro-differential equations
(Contract NAG3-33) to a set of algebraic relations between the transforms of the

An eight node solid element with two parallel faces and one unknown functions, the viscoelastic operators, and the initial and
traction-free cylindrical surface is derived using the assumed stress boundary conditions. Inversion either directly or through the use
hybrid method. Cylindrical coordinates are used so that the of the appropriate convolution theorem, provides the time domain
assumed stresses satisfy the equilibrium equations as well as the response once the unknown functions have been expressed in
traction-free condition over the cylindrical boundary. In the limiting terms of sums, products or ratios of known transforms. When
case of plane stress conditions the assumed stresses also satisfy exact inversion is not possible approximate techniques may provide
the compatibility conditions. Example solutions have demonstrated accurate results. The overall problem becomes substantially more
the advantage of using this special element for analyzing solids complex when nonlinear effects must be included. Situations where
with circular holes. Author a linear material constitutive law can still be productively employed

but where the magnitude of the resulting time dependent
deformations warrants the use of a nonlinear kinematic analysis
are considered. The governing equations will be nonlinear
integro-differential equations for this class of problems. Thus

A86-34464"# Georgia Inst. of Tech., Atlanta. traditional as well as approximate techniques, such as cited above,
EXISTENCE AND STABILITY, AND DISCRETE BB AND RANK cannot be employed since the transform of a nonlinear function
CONDITIONS, FOR GENERAL MIXED-HYBRID FINITE is not explicitly expressible. Author
ELEMENTS IN ELASTICITY
W.-M. XUE and S. N. ATLURI (Georgia Institute of Technology, A86-38842"# National Aeronautics and Space Administration.
Atlanta) IN: Hybrid and mixed finite element methods; Proceedings Lewis Research Center, Cleveland, Ohio.
of the Winter Annual Meeting, Miami Beach, FL, November 17-22, COMPOSITE SANDWICH THERMOSTRUCTURAL BEHAVIOR -
1985. New York, American Society of Mechanical Engineers, 1985, COMPUTATIONAL SliULATION
p. 91-112. refs C.C. CHAMIS, R. A. AIELLO (NASA, Lewis Research Center,
(Contract NAG3-346) Cleveland, OH), and P. L. N. MURTHY (Cleveland State University,

In this paper, all possible forms of mixed-hybrid finite element OH) IN: Structures, Structural Dynamics and Materials Conference,
methods that are based on multi-field variational principles are 27th, San Antonio, TX, May 19-21, 1986, Technical Papers. Part
examined as to the conditions for existence, stability, and 1 . New York, American Institute of Aeronautics and Astronautics,
uniqueness of their solutions. The reasons as to why certain 1986, p. 370-381. refs
'simplified hybrid-mixed methods' in general, and the so-called (AIAA PAPER 86-0948)
'simplified hybrid-displacement method' in particular (based on the Computational methods have been developed for simulating
so-called simplified variational principles), become unstable, are the thermomechanical behavior of composite sandwiches, in which
discussed. A comprehensive discussion of the 'discrete' the analyses with several levels of progressive sophistication were
BB-conditions, and the rank conditions, of the matrices arising in used in conjunction with composite hygrothermomechanical theory.
mixed-hybrid methods, is given. Some recent studies aimed at the The sophistication levels include: (1) three-dimensional detailed
assurance of such rank conditions, and the related problem of finite element modeling of the honeycomb, the adhesive, and the
the avoidance of spurious kinematic modes, are presented, composite faces; (2) three-dimensional finite element modeling

Author assuming a homogeneous core; (3) laminate theory simulation;
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and (4) simple equations for predicting the equivalent properties (2) the definitions of elastic and plastic processes are analogous
of the honeycomb core. These levels have been packaged into a to those in classical plasticity theory; and (3) its computational
procedure embedded in a computer code streamlined for the implementation, via a 'tangent-stiffness' finite element method and
simulation of the composite sandwich hygrothermal and structural a 'generalized-midpoint-radial-return' stress-integration algorithm, is
behavior. It is shown that in order to properly simulate the simple and efficient. Also, using the concept of an internal time,
thermomechanical response of the composite sandwich, all the as related to both the inelastic strains as well as the Newtonian
honeycomb thermal and mechanical properties must be used. time, a constitutive model for creep-plasticity interaction, is

I.S. discussed. The problem of modeling experimental data for plasticity
and creep, by the present analytical relations, as accurately as

A86-38873"# Ohio State Univ., Columbus. desired, is discussed. Numerical examples which illustrate the
COMPUTER AIDED DERIVATION OF EQUATIONS FOR validity of the present relations are presented for the cases of
COMPOSITE MECHANICS PROBLEMS AND FINITE ELEMENT cyclicplasticityand creep. Author
ANALYSES
N. SARIGUL (OhioState University,Columbus)and C. C. CHAMIS A86-43566" National Aeronautics and Space Administration.
(NASA, Lewis Research Center, Cleveland, OH) IN: Structures, Lewis Research Center, Cleveland,Ohio.
StructuralDynamicsand MaterialsConference, 27th, San Antonio, MODE II FATIGUE CRACK GROWTH SPECIMEN
TX, May 19-21, 1986, Technical Papers. Part 1 . New York, DEVELOPMENT
American Institute of Aeronautics and Astronautics, 1986, p. R.J. BUZZARD, B. GROSS, and J. E. SRAWLEY (NASA, Lewis
676-679. refs Research Center, Cleveland, OH) IN: Fracture mechanics;
(AIAA PAPER 86-1016) Proceedingsof the SeventeenthNationalSymposium,Albany, NY,

Explicitequationsare derived for analysisof multilayeredfiber August 7-9, 1984. Philadelphia,PA, AmericanSociety for Testing
composites and for finite element analyses. The equations are and Materials,1986,p. 329-345; Discussion,p. 345, 346. Previously
obtainedusinga symbolicprogramand tested forvariouscomposite announcedin STAR as N84-29248. refs
properties as well as for different fiber orientations,in order to A Mode II test specimenwas developed which has potential
analyzemultilayeredfibercompositestructures,a variablethickness application in understandingphemonena associated with mixed
finite element is formulated. Examples of an airfoil geometry, mode fatigue failures in highperformanceaircraft engine bearing
simulated in a form of a cantilevered beam with various fiber races. The attributes of the specimen are: it contains one single
orientationsare studied. Author ended notch, which simplifiesdata gatheringand reduction;the

fatigue crack grows in-linewiththe directionof load application;a
A86-39485"# Duke Univ., Durham,N.C. single axis test machine is sufficientto perform testing;and the
FREQUENCY DOMAIN SOLUTIONS TO MULTI-DEGREE-OF- Mode I componentis vanishinglysmall. Author
FREEDOM, DRY FRICTION DAMPED SYSTEMS UNDER
PERIODIC EXCITATION A86-43771" Akron Univ., Ohio.
A. A. FERRI and E. H. DOWELL (Duke University,Durham, NC) LOCALLY BOUND CONSTRAINED NEWTON-RAPHSON
IN: Dynamics and control of large structures;Proceedingsof the SOLUTION ALGORITHMS
FifthSymposium,Blacksburg,VA, June 12-14, 1985. Blacksburg, J. PADOVAN and R. MOSCARELLO (Akron, University, OH)
VA, Virginia Polytechnic Institute and State University, 1985, p. Computersand Structures(ISSN 0045-7949), vol. 23, no. 2, 1986,
125-144. refs p. 181-197. refs
(ContractAF-AFOSR-83-0346; NAG3-516) (ContractNAG3-54)

The anticipatedlow damping level in large space structures This paper develops strategies which enable the automatic
(LSS) has been a major concern for the designers of these adjustmentof the constraintsurfaces recentlyused to extend the
structures. Low damping degrades the free response and range and numericalstability/efficiencyof nonlinearfinite-element
complicatesthedesignof shapeandattitudecontrollersfor flexible equation solvers. In addition to handling kinematicand material
spacecraft.Dry frictiondampinghas been consideredas a means inducednonlinearity,both pre- and postbucklingbehaviorcan be
of increasing the passive dampingof LSS, by placing it in the treated. The scheme developed employs localized bounds on
jointsand connectingjuncturesof structures.However,dry friction varioushierarchicalpartitionsof the fieldvariables.These are used
is highlynonlinearand, hence, analytical investigationsare difficult to resize, shape, and orientthe global constraintsurface, thereby
to perform. Here, a multi-harmonic,frequency domain solution enablingessentiallyautomaticload/deflectionincrernentation.Due
technique is developed and applied to a multi-DOF, dry friction to the generalityof the approachtaken, it can be implementedin
dampedsystem,it is seen that the multi-harmonicmethodis much conjunction with constraints of arbitrary functional type. To
more accurate than traditional,one harmonic solution methods, benchmark the method, several numerical experiments are
The method also compares well with time integration. Finally, presented.These includeproblemsinvolvingkinematicandmaterial
comparisonsare made withexperimentalresults. Author nonlinearity,as well as, pre- and postbucklingcharacteristics.

Author
A86-40695"# Georgia Inst.of Tech., Atlanta.
ON THE EQUIVALENCE OF THE INCREMENTAL HARMONIC A86-43774" Akron Univ., Ohio.
BALANCE METHOD AND THE HARMONIC BALANCE-NEWTON CONSTRAINED HIERARCHICAL LEAST SQUARE NONLINEAR
RAPHSON METHOD EQUATION SOLVERS
A. A. FERRI (Georgia Institute of Technology, Atlanta) ASME, J. PADOVANand J. LACKNEY (Akron, University,OH) Computers
Transactions, Journal of Applied Mechanics (ISSN 0021-8936), vol. and Structures (ISSN 0045-7949), vol. 23, no. 2, 1986, p.
53, June 1986, p. 455-457. refs 251-263. refs
(Contract NAG3-516) (Contract NSG-3283)

The current paper develops a constrained hierarchical least
A86-41673" Georgia Inst. of Tech., Atlanta. square nonlinear equation solver. The procedure can handle the
CONSTITUTIVE MODELING OF CYCLIC PLASTICITY AND response behavior of systemswhich possessindefinitetangent
CREEP, USING AN INTERNAL TIME CONCEPT stiffness characteristics.Due to the generalityof the scheme, this
O. WATANABEandS. N. ATLURI (GeorgiaInstituteof Technology, can be achieved at various hierarchical application levels. For
Atlanta) InternationalJournalof Plasticity(ISSN 0749-6419), vol. instance, in the case of finite element simulations, various
2, no. 2, 1986, p. 107-134. refs combinations of either degree of freedom, nodal, elemental,
(Contract NAG3-46) substructural,and global level iterationsare possible.Overall, this

Using the concept of an internal time as related to plastic enables a solutionmethodologywhich is highlystableand storage
strains, a differential stress-strainrelation for elastoplasticityis efficient. To demonstrate the capability of the constrained
rederived,such that (1) the concept of a yield-surfaceis retained; hierarchicalleast squaremethodology,benchmarkingexamplesare
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presented which treat structure exhibiting highly nonlinear pre- and A86-49133"# National Aeronautics and Space Administration.
postbuckling behavior wherein several indefinite stiffness transitions Lewis Research Center, Cleveland, Ohio.
occur. Author UNIFIED CONSTITUTIVE MATERIALS MODEL DEVELOPMENT

AND EVALUATION FOR HIGH-TEMPERATURE STRUCTURAL
ANALYSIS APPLICATIONS
R. L. THOMPSON (NASA, Lewis Research Center, Cleveland, OH)

A86-44339"# Syracuse Univ., N.Y. and M. T. TONG (Sverdrup Technology, Inc., Cleveland, OH) IN:
FATIGUE CRACK GROWTH UNDER GENERAL-YIELDING ICAS, Congress, 15th, London, England, September 7-12, 1986,
CYCLIC-LOADING Proceedings. Volume 2 . New York, American Institute of
Z. MINZHONG and H. W. LIU (Syracuse University, NY) ASME, Aeronautics and Astronautics, Inc., 1986, p. 1505a-1505s. refs
Transactions, Journal of Engineering Materials and Technology Unified constitutive material models were developed for
(ISSN 0094-4289), vol. 108, July 1986, p. 201-205. refs structural analyses of aircraft gas turbine engine hot section
(Contract NAG3-348) components with particular application to an isotropic material used

In low cycle fatigue, cracks are initiated, and propagated under for combustor liners. Differential forms of models independently
general-yielding cyclic loading. For general-yielding cyclic loading, developed were considered in this study. These models combine
Dowling and Begley (1976) have shown that fatigue crack growth the interactions of time-dependent (creep) and time-independent
rate correlates well with the measured Delta J. The correlation of (plasticity) inelastic behavior of a material. Predicted stress-strain
da/dN with Delta J has also been studied by a number of other responses from these models were evaluated against cyclic
investigators. However, none of these studies has correlated da/dN isothermal and nonisothermal test results for uniaxial specimens
with Delta J calculated specifically for the test specimens. Solomon of a nickel-base superalloy. The unified models were implemented
measured fatigue crack growth in specimens in general-yielding in a nonlinear structural analysis code. Two unique NASA Lewis
cyclic loading. The crack tip fields for Solomon's specimens are test facilities were used in the evaluation of the models for complex
calculated, using the finite element method, and the J-values of geometry specimens and evaluation of advanced temperature and
Solomon's tests are evaluated. The measured crack growth rate high-temperature strain measurement instrumentation. Predicted
in Solomon's specimens correlates very well with the calculated nonlinear structural responses from one of the models for a flat
Delta J. Author plate and a segment of a conventional combustor liner are

presented. Author

A87-17799" National Aeronautics and Space Administration.
A86-48245"# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
Lewis Research Center, Cleveland, Ohio. ELASTIC ANALYSIS OF A MODE II FATIGUE CRACK TEST
MASS BALANCING OF HOLLOW FAN BLADES SPECIMEN
R. E. KIELB (NASA, Lewis Research Center, Cleveland, OH) B. GROSS, R. J. BUZZARD, and W. F. BROWN, JR. (NASA,
ASME, International Gas Turbine Conference and Exhibit, 31st, Lewis Research Center, Cleveland, OH) International Journal of
Duesseldorf, West Germany, June 8-12, 1986. 7 p. Previously Fracture (ISSN 0376-9429), vol. 31, June 1986, p. 151-157.
announced in STAR as N86-16611. refs Elastic displacements and stress intensity measurements for a
(ASME PAPER 86-GT-195) mode II specimen have been obtained over a range of a/W values

A typical section model is used to analytically investigate the between 0.500 and 0.900 using the MARC general purpose finite
effect of mass balancing as applied to hollow, supersonic fan element program. Stress intensity factors were experimentally
blades. A procedure to determine the best configuration of an
internal balancing mass to provide flutter alleviation is developed, determined using load point displacement values. Good general
This procedure is applied to a typical supersonic shroudless fan agreement between numerical and experimental results for crack
blade which is unstable in both the solid configuration and when mouth, crack surface, and load point displacements, and for stress
it is hollow with no balancing mass. The addition of an optimized intensity factors, demonstrates the accuracy of the presentmethod. R.R.
balancing mass is shown to stabilize the blade at the design
condition. Author

A87-17988"# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
SCARE - A POSTPROCESSOR PROGRAM TO MSC/NASTRAN

A86-48271"# Princeton Univ., N.J. FOR RELIABILITY ANALYSIS OF STRUCTURAL CERAMIC
AEROELASTIC BEHAVIOR OF LOW ASPECT RATIO METAL COMPONENTS
AND COMPOSITE BLADES J.P. GYEKENYESI (NASA, Lewis Research Center, Cleveland,
J. F. WHITE, III and O. O. BENDIKSEN (Princeton University, NJ) OH) ASME, Transactions, Journal of Engineering for Gas Turbines
ASME, International Gas Turbine Conference and Exhibit, 31st, and Power (ISSN 0022-0825), vol. 108, July 1986, p. 540-546.
Duesseldorf, West Germany, June 8-12, 1986. 10 p. refs Previously announced in STAR as N86-14688. refs
(Contract NAG3-308) (ASME PAPER 86-GT-34)
(ASME PAPER 86-GT-243) A computer program was developed for calculating the statistical

The aeroelastic stability of titanium and composite blades of fast fracture reliabilityand failure probability of ceramic components.
low aspect ratio is examined over a range of design parameters, The program includes the two-parameter Weibull material fracture
using a Rayleigh-Ritz formulation. The blade modes include a strength distribution model, using the principle of independent
plate-type mode to account for chordwise bending. Chordwise action for polyaxial stress states and Batdorf's shear-sensitive as
flexibility is found to have a significant effect on the unstalled well as shear-insensitive crack theories, all for volume distributed
supersonic flutter of low aspect ratio blades, and also on the flaws in macroscopically isotropic solids. Both penny-shaped cracks
stability of tip sections of shrouded fan blades. For blades with a and Griffith cracks are included in the Batdorf shear-sensitive crack
thickness of less than approximately four percent of chord, the response calculations, using Griffith's maximum tensile stress or
chordwise, second bending, and first torsion branches are all critical coplanar strain energy release rate criteria to predict mixed
unstable at moderately high supersonic Mach numbers. For mode fracture. Weibull material parameters can also be calculated
composite blades, the important structural coupling between from modulus of rupture bar tests, using the least squares method
bending and torsion cannot be modeled properly unless chordwise with known specimen geometry and fracture data. The reliability
bending is accounted for. Typically, aft fiber sweep produces prediction analysis uses MSC/NASTRAN stress, temperature and
beneficial bending-torsion coupling that is stabilizing, whereas volume output, obtained from the use of three-dimensional,
forward fiber sweep has the opposite effect. By using crossed-ply quadratic, isoparametric, or axisymmetric finite elements. The
laminate configurations, critical aeroelastic modes can be statistical fast fracture theories employed, along with selected input
stabilized. Author and output formats and options, are summarized. An example
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problem to demonstrate various features of the program is A87-33581"# Sverdrup Technology, Inc., Cleveland, Ohio.
included. Author PROBABILISTIC STRUCTURAL ANALYSIS TO QUANTIFY

UNCERTAINTIES ASSOCIATED WITH TURBOPUMP BLADES
VINOD K. NAGPAL, ROBERT RUBINSTEIN (Sverdrup Technology,
Inc., Cleveland, OH), and CHRISTOS C. CHAMIS (NASA, Lewis
Research Center, Cleveland, OH) IN: Structures, Structural

A87-22128" Case Western Reserve Univ., Cleveland, Ohio. Dynamics and Materials Conference, 28th, Monterey, CA, Apr. 6-8,
RE-EXAMINATION OF CUMULATIVE FATIGUE DAMAGE 1987, Technical Papers. Part 1 . New York, American Institute of
ANALYSIS - AN ENGINEERING PERSPECTIVE Aeronauticsand Astronautics,1987, p. 268-274. refs
S. S. MANSON (Case Western Reserve University,Cleveland,OH) (AIAA PAPER 87-0766)

A probabilisticstudyof turbopump bladeshas been in progressand G. R. HALFORD (NASA, Lewis Research Center, Cleveland,
OH) (IUTAM, Israel Academy of Science and Humanities,U.S. at NASA LewisResearch Center for over the last two years. The
Army, et al., Symposiumon Mechanics of Damage and Fatigue, objectivesof this study are to evaluate the effects of uncertainties
Haifa and Tel Aviv, Israel, July 1-4, 1985) EngineeringFracture in geometry and material properties on the structuralresponseof
Mechanics (ISSN 0013-7944), vol. 25, no. 5-6, 1986, p. 539-571. the turbopumpbladesto evaluatethe tolerance limitson the design.
Previouslyannouncedin STAR as N86-27680. refs A methodology based on probabilistic approach has been

A method which has evolved in the laboratories for the past developed to quantify the effects of the random uncertainties.
20 yr is re-examinedwith the intentof improvingits accuracy and The resultsofthisstudy indicatethat only thevariationsingeometry
simplicity of application to engineering problems. Several have significanteffects. Author
modificationsare introducedboth to the analytical formulation of
the Damage Curve Approach,and to the procedurefor modifying
this approachto achievea Double LinearDamageRule formulation
which immenselysimplifiesthe calculation.Improvementsare also
introducedin the treatment of mean stress for determiningfatigue
life of the individual events that enter into a complex loading A87-33645"# National Aeronauticsand Space Administration.
history. While the procedure is completely consistent with the LewisResearch Center, Cleveland,Ohio.
resultsof numeroustwo level tests that have been conductedon ADVANCES IN 3-D INELASTIC ANALYSIS METHODS FOR HOT
many materials,it is still necessaryto verify applicabilityto complex SECTION COMPONENTS
loadinghistories. Caution is expressed that certain phenomenon CHRISTOSC. CHAMIS (NASA,Lewis Research Center,Cleveland,
can also influence the applicability - for example, unusual OH) IN: Structures,Structural Dynamicsand Materials Conference,
deformation and fracture modes inherent in complex loading 28th, Monterey, CA, Apr. 6-8, 1987, Technical Papers. Part 1 .
especially if stresses are multiaxial. Residual stresses at crack New York, American Institute of Aeronautics and Astronautics,
tips, and metallurgical factors are also important in creating 1987, p. 802-811.
departures from the cumulative damage theories; examples of (AIAA PAPER 87-0719)
departures are provided. Author 3-D Inelastic Analysis Methods are described. These methods

consist of a series of new computer codes embodying a progression
of mathematical models (mechanics of materials, specialty finite
element, boundary element) for streamlined analysis of: (1)
combustor liners, (2) turbine blades, and (3) turbine vanes. These
models address the effects of high temperatures and

A87-25407" National Aeronautics and Space Administration. thermal/mechanical Ioadings on the local (stress/strain) and global
Lewis Research Center, Cleveland, Ohio. (dynamics, buckling) structural behavior of the three selected
DESIGN CONCEPTS/PARAMETERS ASSESSMENT AND components. Three computer codes, referred to as MOMM
SENSITIVITY ANALYSES OF SELECT COMPOSITE (Mechanics of Materials Model), MHOST (MARC-Hot Section
STRUCTURAL COMPONENTS Technology), and BEST (Boundary Element Stress Technology),
C. C. CHAMIS (NASA, Lewis Research Center, Cleveland, OH) have been developedand are briefly describedin this paper.
InternationalJournal of Materials and Product Technology (ISSN Author
0268-1900), vol. 1, Oct. 1986, p. 211-229. refs

Formal approaches are summarized to evaluate design
conceptsand perform sensitivity analyses on design parameters
of composite structural components for vehicles. The formal
approaches include structural analyses coupled with composite
micromechanicsto assess the structuralresponse of beamsmade

A87-33648"# Pratt and Whitney Aircraft Group, East Hartford,
from various intraplyhybrids,finite element analysis in conjunction Conn.
with composite mechanics to assess the structural response of STRUCTURAL TAILORING OF ADVANCED TURBOPROPS
panels made from strip hybrids, and sensitivity analysis through K.W. BROWN, P. R. HARVEY (Pratt and Whitney, East Hartford,
optimization to assess the effects of various design parameters CT), and C. C. CHAMIS (NASA, Lewis ResearchCenter,Cleveland,
on the optimumdesignof a panel made from anglepliedcomposite OH) IN: Structures,StructuralDynamicsand MaterialsConference,
laminates. Resultsobtained from these approachesare presented 28th, Monterey, CA, Apr. 6-8, 1987, Technical Papers. Part 1 .
in graphicaland tabular form to illustrate parametric studies and New York, American Institute of Aeronautics and Astronautics,
acceptableranges of various designparameters. Author 1987, p. 827-837. refs

(AIAA PAPER 87-0753)
A computerprogram has been developed for the performance

of numerical optimizations of highly swept propfan blades by
minimizingan objective function that is defined either as direct

A87-27986"# National Aeronautics and Space Administration. operating cost or the aeroelastic difference betweena blade and
Lewis Research Center, Cleveland,Ohio. its scaled model. Three component analysis categories are
FATIGUE CRITERION TO SYSTEM DESIGN, LIFE, AND employed: an optimization algorithm, approximate analysis
RELIABILITY procedures for objective function and constraint evaluation, and
ERWIN Y. ZARETSKY (NASA, LewisResearchCenter, Cleveland, refined analysis procedures for optimum design validation. The
OH) Journalof Propulsionand Power (ISSN 0748-4658), vol. 3, analyses conducted by the program encompass aerodynamic
Jan.-Feb. 1987, p. 76-83. Previouslycited in issue 19, p. 2818, efficiency evaluation, finite element stress and vibration analysis,
Accessionno. A85-40814. refs acoustics,flutter,and forced response life prediction. O.C.
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A87-33719"# Georgia Inst. of Tech., Atlanta. composite shell have been determined to various orders of
A TECHNIQUE FOR THE PREDICTION OF AIRFOIL FLUTTER approximation and compared with three dimensional solutions.
CHARACTERISTICS IN SEPARATED FLOW These numerical studies indicate the improvements achievable in
JIUNN-CHI WU, L. N. SANKAR (Georgia Institute of Technology, estimating the natural frequencies and the interlaminar shear
Atlanta), and K. R. V. KAZA (NASA, Lewis Research Center, stresses in laminated composite cylinders. Author
Cleveland, OH) IN: Structures, Structural Dynamics and Materials
Conference, 28th, Monterey, CA,Apr. 6-8, 1987 and AIAA Dynamics
Specialists Conference, Monterey, CA, Apr. 9, 10, 1987, Technical
Papers. Part 2B . New York, American Institute of Aeronautics
and Astronautics, 1987, p. 664-673. refs
(Contract NAG3-730)
(AIAA PAPER 87-0910)

A solution procedure is described for determining the
two-dimensional, one- or two-degree-of-freedom flutter A87-39896"# National Aeronautics and Space Administration.
characteristics of arbitrary airfoils at large angles of attack. The Lewis Research Center, Cleveland, Ohio.
same procedure is used to predict stall flutter. This procedure NONLINEAR VIBRATION AND STABILITY OF ROTATING,
requires a simultaneous integration in time of the solid and fluid PRETWlSTED, PRECONED BLADES INCLUDING CORIOLIS
equationsof motion.The fluidequationsof motionare the unsteady EFFECTS
compressible Navier-Stokes equations, solved in a body-fitted K.B. SUBRAHMANYAM, K. R. V. KAZA, G. V. BROWN, and C.
moving coordinate system using an approximate factorization LAWRENCE (NASA, Lewis Research Center, Cleveland, OH)
scheme. The solidequationsof motionare integratedin time using Journalof Aircraft(ISSN 0021-8669), vol. 24, May 1987, p.342-352.
an Euler implicit scheme. Flutter is said to occur if small Previouslyannouncedin STAR as N86-17789. refs
disturbances imposed on the airfoil attitude lead to divergent The coupled bending-bending-torsionalequations of dynamic
oscillatorymotionsat subsequent times. Results for a numberof motionof rotating, linearlypretwistedbladesare derived including
special cases are presented to demonstrate the suitabilityof this largeprecone,seconddegree geometricnonlinearitiesand Coriolis
scheme to predict flutter at large mean angles of attack. Some effects. The equations are solved by the Galerkin method and a
stall flutterapplicationsare also presented. Author linear perturbationtechnique.Accuracy of the present method is

verified by conparisonsof predicted frequenciesand steady state
deflectionswiththose from MSC/NASTRAN and fromexperiments.

A87-33756"# National Aeronautics and Space Administration. Parametric results are generated to establish where inclusionof
Lewis Research Center, Cleveland,Ohio. only the second degree geometric nonlinearitiesis adequate.The
APPROXIMATIONS TO EIGENVALUESOF MODIFIED GENERAL nonlinear terms causing torsional divergence in thin blades are
MATRICES identified.The effects ofCoriolistermsandseveralotherstructurally
DURBHA V. MURTHY (NASA, Lewis Research Center, Cleveland; nonlinear terms are studied, and their relative importance is
Toledo, University, OH) and RAPHAEL T. HAFTKA (Virginia examined. Author
Polytechnic Institute and State University, Blacksburg) IN:
Structures,Structural Dynamicsand Materials Conference, 28th,
Monterey, CA, Apr. 6-8, 1987 and AIAA Dynamics Specialists
Conference, Monterey, CA, Apr. 9, 10, 1987, Technical Papers.
Part 2B . New York, American Institute of Aeronautics and
Astronautics,1987, p. 1032-1045. refs
(ContractNAG3-347; NAG1-224)
(AIAA PAPER 87-0947)

The reanalysis of non-self-adjoint dynamic models is A87-40496"# National Aeronautics and Space Administration.
computationallyvery expensive indesign optimizationapplications. LewisResearch Center, Cleveland,Ohio.
This paper describes several approximationsthat can be applied ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF
to eigenvalues of non-hermitian matrices to reduce that MISTUNING IN PROPFAN FLUTTER
computational cost. Approximations based on eigenvalue KRISHNARAO V. KAZA, ORAL MEHMED (NASA, LewisResearch
derivatives,generalizedRayleighquotient and the trace theorem Center, Cleveland,OH), MARC WILLIAMS (PurdueUniversity,West
are presented and their accuracy and computationalcost are Lafayette, IN), and LARRY A. MOSS (SverdrupTechnology, Inc.,
estimated.The accuracyandcostestimatesare verifiedbyapplying Cleveland,OH) IN: Structures,StructuralDynamicsand Materials
the approximationsto random matrices and matrices arising in Conference,28th, Monterey,CA,Apr. 6-8, 1987 and AIAA Dynamics
flutteranalysisof compressorblades. Recommendationsare made SpecialistsConference, Monterey,CA, Apr. 9, 10, 1987, Technical
for selection of the best approximationwhen the derivativesare Papers.Part 2A. New York,AmericanInstituteof Aeronauticsand
availableand when they are not. In particular,it is concluded that Astronautics, 1987, p. 98-110. Previouslyannouncedin STAR as
the quadraticapproximationfor eigenvaluesshould never be used N87-18116. refs
as higherorderapproximationsare always more accurateas well (AIAA PAPER 87-0739)
as more efficient. Author An analytical and experimental investigationof the effects of

mistuningon propfansubsonicflutterwasperformed.The analytical
A87-35656"# IndianInst. of Science, Bangalore. model is based on the normal modes of a rotating composite
A HIGHER ORDER THEORY OF LAMINATED COMPOSITE blade and a three-dimensionalsubsonic unsteady lifting surface
CYLINDRICAL SHELLS aerodynamic theory. Theoretical and experimental results are
A. V. KRISHNA MURTHY (Indian Instituteof Science, Bangalore, compared for selected cases at different blade pitch angles,
India) and T. S. R. REDDY (NASA, Lewis Research Center, rotationalspeeds, and free-stream Mach numbers.The comparison
Cleveland, OH) Aeronautical Society of India, Journal (ISSN shows a reasonably good agreement between theory and
0001-9267), vol. 38, Aug. 1986, p. 161-171. Research supported experiment.Both theory and experiment showed that combined
by the AeronauticalResearch and DevelopmentBoard. refs mode shape, frequency, and aerodynamicmistuningcan have a

A new higherorder theory has been proposedfor the analysis beneficialor adverseeffect on bladedampingdependingon Mach
of compositecylindricalshells. The formulationallows for arbitrary number.Additionalparametricresultsshowedthat alternativeblade
variation of inplane displacements. Governing equations are frequency mistuningdoes not have enoughpotential for it to be
presented in the form of a hierarchyof sets of partial differential used as a passive flutter control in propfans similar to the one
equations.Each set describesthe shell behaviorto a certaindegree studied. It can be inferred from the results that a laminated
of approximation.The natural frequencies of simply-supported composite propfan blade can be tailored to optimize its flutter
isotropic and laminated shells and stresses in a ring loaded speed by selecting the properply angles. Author
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A87-40497"# National Aeronautics and Space Administration. N80-13503 Syracuse Univ., N. Y.
Lewis Research Center, Cleveland, Ohio. MODELLING OF CRACK TIP DEFORMATION WITH FINITE
ANALYTICAL FLUTTER INVESTIGATION OF A COMPOSITE ELEMENT METHOD AND ITS APLICATIONS Ph.D. Thesis
PROPFAN MODEL C.Y. YANG 1979 125 p
K. R. V. KAZA, O. MEHMED (NASA, Lewis Research Center, Avail: Univ. Microfilms Order No. 7925610
Cleveland, OH), G. V. NARAYANAN (Sverdrup Technology, Inc., A finite element computer program using the initial stress
Cleveland, OH), and D. V. MURTHY (Toledo, University, OH) IN: approach of elastic-plastic analysis was developed. Crack closure
Structures, Structural Dynamics and Materials Conference, 28th, stresses were calculated for three different models. It was
Monterey, CA, Apr. 6-8, 1987 and AIAA Dynamics Specialists concluded that: (1) the closure stress is highest in the strip necking
Conference, Monterey, CA, Apr. 9, 10, 1987, Technical Papers. model, lowest in the plane strain model, and intermediate in the
Part 2A. New York, American Institute of Aeronautics and plane stress model; and (2) the crack closure stress decreases if
Astronautics, 1987, p. 84-97. Previously announced in STAR as the separation occurs before the stress reaches the maximum
N87-18115. refs value. Nonpropagating fatigue cracks in the two phase
(AIAA PAPER 87-0738) martensitic-ferritic steels were also investigated. Unzipping

A theoretical model and an associated computer program for increments were calculated for different crack lengths. At a
predicting subsonic bending-torsion flutter in propfans are prescribed stress intensity level, the shorter the crack length, the
presented. The model is based on two-dimensional unsteady greater the unzipping increment is. This means that the shorter
cascade strip theory and three-dimensional steady and unsteady crack will grow faster than the longer one if both are subjected to
lifting surface aerodynamic theory in conjunction with a finite the same K-level. Dissert. Abstr.
element structural model for the blade. The analytical results
compare well with published experimental data. Additional N80-13513"# National Aeronautics and Space Administration.
parametric studies are also presented illustrating the effects on Lewis Research Center, Cleveland, Ohio.
flutter speed of steady aeroelastic deformations, blade setting COMPARISON TESTS AND EXPERIMENTAL COMPLIANCE
angle, rotational speed, number of blades, structural damping, and CALIBRATION OF THE PROPOSED STANDARD ROUND
number of modes. Author COMPACT PLANE STRAIN FRACTURE TOUGHNESS

SPECIMEN
D. M. FISHER and R. J. BUZZARD Nov. 1979 21 p refs
(NASA-TM-81379; E-284) Avail: NTIS HC A02/MF A01 CSCL

A87-49275" National Aeronautics and Space Administration. 20K
Lewis Research Center, Cleveland, Ohio. Standard round specimen fracture test results compared
SIMPLIFIED COMPOSITE MICROMECHANICS FOR satisfactorily with results from standard rectangular compact
PREDICTING MICROSTRESSES specimens machined from the same material. The location of the
CHRISTOS C. CHAMIS (NASA, Lewis Research Center, Cleveland, loading pin holes was found to provide adequate strength in the
OH) (Society of Plastics Industry, Conference, 41st, Atlanta, CA, load bearing region for plane strain fracture toughness testing.
Jan. 1986) Journal of Reinforced Plastics and Composites (ISSN Excellent agreement was found between the stress intensity
0731-6844), vol. 6, July 1987, p. 268-284. refs coefficient values obtained from compliance measurements and

A unified set of composite micromechanics equations is the analytic solution proposed for inclusion in the standard test
summarized and described. This unified set is for predicting the method. Load displacement measurements were made using long
ply microstresses when the ply stresses are known. The set armed displacement gages and hollow loading cylinders. Gage
consists of equations of simple form for predicting points registered on the loading hole surfaces through small holes
three-dimensional stresses (six each) in the matrix, fiber, and in the walls of the loading cylinders. Author
interface. Several numerical examples are included to illustrate
use and computational effectiveness of the equations in this unified N80-15428"# National Aeronautics and Space Administration.
set. Numerical results from these examples are discussed with Lewis Research Center, Cleveland, Ohio.
respect to their significance on microcrack formation and, therefore, A RELATION BETWEEN SEMIEMPIRICAL FRACTURE
damage initiation in fiber composites. Author ANALYSES AND R-CURVES

T. W. ORANGE Jan. 1980 45 p refs
(NASA-TP-1600; E-9963) Avail: NTIS HC A03/MF A01 CSCL
20K

N80-10515"# Pratt and Whitney Aircraft Group, East Hartford, The relations between several semiempirical fracture analyses
Conn. Commercial Products Div. (SEFA) and the R-curve concept of fracture mechanics are
EFFECT OF TIME DEPENDENT FLIGHT LOADS ON JT9D-7 examined and the conditions for equivalence between a SEFA
PERFORMANCE DETERIORATION and an R-curve are derived. A hypothetical material is employed
A. JAY and B. L. LEWIS 21 Aug. 1979 73 p refs to study the relation analytically. Equivalent R-curves are developed
(Contract NAS3-20632) for several real materials using data from the literature. For each
(NASA-CR-159681; PWA-5512-45) Avail: NTIS HC A04/MF SEFA there is an equivalent R-curve whose magnitude and shape
A01 CSCL01C are determined by the SEFA formulation and its empirical

The results of a modal transient analysis of the engine/aircraft parameters. If the R-curve is indeed unique, then the various
system are presented. The response of the JT9D to analytically empirical parameters cannot be constant, and vice versa. However,
simulated vertical gusts and landings was predicted using a for one SEFA the differences are small enough that they may be
NASTRAN finite element mathematical model of the JT9D/747 within the range of normal data scatter for real materials. Author
propulsion system. The NASTRAN finite element model of the
propulsion system included engine structural models of the fan, N80-22733"# Mechanical Technology, Inc., Latham, N. Y.
low/high pressure compressors, diffuser/turbine cases, and DEVELOPMENT OF PROCEDURES FOR CALCULATING
high/low pressure rotors, as well as nacelle models of the inlet STIFFNESSAND DAMPING OF ELASTOMERSIN ENGINEERING
cowl, tailcone, and wing pylon. The analysis conducted predicts APPLICATIONS, PART 6
that an insignificant level of JT9D-7 performance deterioration A. RIEGER, G. BURGESS, and E. ZORZI Apr. 1980 157 p
would occur due to a typical vertical gust encounter or a typical refs
revenue service landing. Analysis of a high sink rate landing with (Contract NAS3-18546)
a heavy fuel load indicates the possibility of local wear, however, (NASA-CR-159838; MTI-80TR29) Avail: NTIS HC A08/MF A01
the lack of an accurate dynamic rotor/seal interference model CSCL 20K
precludes an accurate quantitative evaluation of performance An elastomer damper was designed, tested, and compared
change for this once-per-airframe-life event. J.MS. with the performance of a hydraulic damper for a power
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transmission shaft. The six button Viton-70 damper was designed other physical properties or material constants than those normally
so that the elastomer damper or the hydraulic damper could be used in a conventional linear damage rule analysis are required
activated without upsetting the imbalance condition of the for application of either of the two cumulative damage methods
assembly. This permitted a direct comparison of damper described. Illustrations and comparisons of both methods are
effectiveness. The elastomer damper consistently performed better discussed. Author
than the hydraulic mount and permitted stable operation of the
power transmission shaft to speeds higher than obtained with the N80-27719"# National Aeronautics and Space Administration.
squeeze film damper. Tests were performed on shear specimens Lewis Research Center, Cleveland, Ohio.
of Viton-79, Buna-N, EPDM, and Neoprene to determine COMPARISON OF ELASTIC AND ELASTIC-PLASTIC
performance limitations imposed by strain, temperature, and STRUCTURAL ANALYSES FOR COOLED TURBINE BLADE
frequency. Frequencies of between 110 Hz and 1100 Hz were AIRFOILS
surveyed with imposed strains between 0.0005 and 0.08 at A. KAUFMAN Jul. 1980 15 p refs
temperaturesof 32 C, 66 C, and 80 C. A set of design curves (NASA-TP-1679;E-241) Avail: NTIS HC A02/MF A01 CSCL
was generated in a unified format for each of the elastomer 20K
materials. E.D.K. Elasticplasticstress strain states in cooledturbineblade airfoils

were calculated by three methods for the initial takeoff transient
N80-22734"# National Aeronautics and Space Administration. of an advanced technology aircraft engine. The three analytical
LewisResearch Center, Cleveland,Ohio. methodscompared were a three dimensional elastic plastic, finite
NONLINEAR, THREE-DIMENSIONAL FINITE-ELEMENT element analysis, a three dimensional, elastic, finite element
ANALYSIS OF AIR-COOLED GAS TURBINE BLADES analysis, and a one dimensional, elastic plastic, beam theory
A. KAUFMAN and R. E. GAUGLER Apr. 1980 22 p refs analysis. Structural analyses were performed for eight cases
(NASA-TP-1669;E-074) Avail: NTIS HC A02/MF A01 CSCL involvingdifferent combinationsof mechanicaland thermal loading
21E on impingementcooled airfoils with and without leading edge film

Cyclic stress-strain states in cooled turbine blades were coolingholes. The yon Mises effective total strains at maximum
calculated for a simulated mission of an advanced-technology takeoff computedfrom the elastic and elastic plasticfinite element
commercial aircraft engine. The MARC, nonlinear, finite-element analysesagreed with 9 percent for rotating airfoils and 28 percent
computerprogramwasused for the analysisof impingement-cooled for stationaryairfoils with the elastic results on the conservative
airfoils,with and without leading-edgefilm cooling.Creep was the side. Author
predominant damage mode (ignoring hot corrosion), particularly
artundfilm-coolingholes.Radiallyangledholesexhibitedlesscreep N80-27720"# Massachusetts Inst. of Tech., Cambridge.
than holeswith axes normalto the surface. Beam-theoryanalyses Aeroelastic and StructuresResearch Lab.
of all-impingement-cooledairfoils gave fair agreement with MARC INSTRUCTIONS FOR THE USE OF THE ClVM-JET 4C
resultsfor initialcreep. Author FINITE-STRAIN COMPUTER CODE TO CALCULATE THE

TRANSIENT STRUCTURAL RESPONSES OF PARTIAL AND/OR
N80-23678"# National Aeronautics and Space Administration. COMPLETE ARBITRARILY-CURVED RINGS SUBJECTED TO
Lewis Research Center, Cleveland,Ohio. FRAGMENT IMPACT
STATUS OF NASA FULL-SCALE ENGINE AEROELASTIClTY J.J.A. RODAL, S. E. FRENCH, E. A. WITMER, and T. R.
RESEARCH STAGLIANO Dec. 1979 38 p refs
J. F. LUBOMSKI 1980 21 p refs Presented at the 21st (Contract NGR-22-009-339)
Struct.,Structural Dyn., and Mater. Conf., Seattle, 12-14 May 1980; (NASA-CR-159873; ASTL-MR-154-1) Avail: NTIS HC A03/MF
sponsored by AIAA, ASME, ASCE and AHS A01
(NASA-TM-81500; E-437) Avail: NTIS HC A02/MF A01 CSCL The CIVM-JET 4C computer program for the 'finite strain'
20K analysis of 2 d transient structural responses of complete or partial

Data relevant to several types of aeroelastic instabilities were rings and beams subjected to fragment impact stored on tape as
obtained using several types of turbojet and turbofan engines. In a series of individual files. Which subroutines are found in these
particular, data relative to separated flow (stall)flutter, choke flutter, files are described in detail. All references to the CIVM-JET 4C
and system mode instabilities are presented. The unique program are made assuming that the user has a copy of NASA
characteristics of these instabilities are discussed, and a number CR-134907 (ASRL TR 154-9) which serves as a user's guide to
of correlations are presented that help identity the nature of the (1) the CIVM-JET 4B computer code and (2) the CIVM-JET 4C
phenomena. R.E.S. computer code 'with the use of the modified input instructions'

attached hereto. L.F.M.
N80-23684"# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio. N80-29762"# Massachusetts Inst. of Tech., Cambridge.
PRACTICAL IMPLEMENTATION OF THE DOUBLE LINEAR FINITE-STRAIN LARGE-DEFLECTION ELASTIC-VISCOPLASTIC
DAMAGE RULE AND DAMAGE CURVE APPROACH FOR FINITE-ELEMENT TRANSIENT RESPONSE ANALYSIS OF
TREATING CUMULATIVE FATIGUE DAMAGE STRUCTURES
S. S. MANSON (Case Western Reserve Univ.) and G.R. J.J.A. RODAL and E. A. WITMER Jul. 1979 567 p refs
HALFORD Apr. 1980 50 p refs (Contract NGR-22-009-339)
(NASA-TM-81517; E-387) Avail: NTIS HC A03/MF A01 CSCL (NASA-CR-159874; ASRL-TR-154-15) Avail: NTIS HC A24/MF
20K A01 CSCL 20K

Simple procedures are presented for treating cumulative fatigue A method of analysis for thin structures that incorporates finite
damage under complex loading history using either the damage strain, elastic-plastic, strain hardening, time dependent material
curve concept or the double linear damage rule. A single equation behavior implemented with respect to a fixed configuration and is
is provided for use with the damage curve approach; each loading consistently valid for finite strains and finite rotations is developed.
event providing a fraction of damage until failure is presumed to The theory is formulated systematically in a body fixed system of
occur when the damage sum becomes unity. For the double linear convected coordinates with materially embedded vectors that
damage rule, analytical expressions are provided for determining deform in common with continuum. Tensors are considered as
the two phases of life. The procedure involves two steps, each linear vector functions and use is made of the dyadic
similar to the conventional application of the commonly used linear representation. The kinematics of a deformable continuum is
damage rule. When the sum of cycle ratios based on phase 1 treated in detail, carefully defining preciselyall quantities necessary
lives reaches unity, phase 1 is presumed complete, and further for the analysis. The finite strain theory developed gives much
Ioadings are summed as cycle ratios on phase 2 lives. When the better predictions and agreement with experiment than does the
phase 2 sum reaches unity, failure is presumed to occur. No traditional small strain theory, and at practically no additional cost.
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This represents a very significant advance in the capabilityfor the N81-12446"# National Aeronautics and Space Administration.
reliable prediction of nonlinear transient structural responses, Lewis ResearchCenter, Cleveland,Ohio.
includingthe reliablepredictionof strainslarge enoughto produce STABILITY OF LARGE HORIZONTAL-AXIS AXlSYMMETRIC
ductilemetal rupture. E.D.K. WIND TURBINES Ph.D. Thesis - Delaware Univ.

M. S. HIRSCHBEIN and M. I. YOUNG (Delaware Univ., Newark)
1980 37 p refs Presentedat 3d Miami Conf. on Alternative
EnergySources,Miami, 15-17 Dec. 1980
(NASA-TM-81623; E-633) Avail: NTIS HC A03/MF A01 CSCL
20K

N80-32753"# National Aeronautics and Space Administration. The stability of large horizontal axis, axi-symmetric,power
LewisResearchCenter, Cleveland,Ohio. producingwind turbineswas examined.The analyticalmodelused
THE METHOD OF LINES IN THREE DIMENSIONAL FRACTURE included the dynamic coupling of the rotor, tower and power
MECHANICS generatingsystem. The aerodynamic loading was derived from
J. GYEKENYESI and L. BERKE Washington 1980 19 p bladeelement theory. Each rotorbladewas permittedtow principal
refs Presentedat the Intern.Syrup.on AbsorbedSpecific Energy elastic bending degrees of freedom, one degree of freedom in
and/or Strain EnergyDensityCriterion,Budapest,17-19 Sep. 1980; torsionand controlledpitch as a rigid body. The rotor hub was
sponsoredby LehighUniv. and the HungarianAcad. of Sci. mountedin a rigidnacellewhich may yaw freely or in a controlled
(NASA-TM-81593; E-576) Avail: NTIS HC A02/MF A01 CSCL manner.The tower can bend in two principaldirectionsand may
20K twist. Also, the rotorspeed can vary and may induce perturbation

A review of recent developmentsin the calculationof design reactions within the power generatingequipment. Stability was
parametersfor fracture mechanicsby the method of lines(MOL) determined by the eigenvalues of a set of linearized constant
is presented. Three dimensional elastic and elasto-plastic coefficientdifferentialequations. All results presentedare based
formulationsare examined and results from previousand current on a 3 bladed, 300 ft. diameter,2.5 megawattwind turbine.Some
research activities are reported. The applicationof MOL to the of the parametersvaried were; wind speed, rotor speedstructural
appropriatepartial differential equations of equilibriumleads to stiffness and damping,the effective stiffnessand dampingof the
coupled sets of simultaneous ordinary differentialequations, power generatingsystem and the principalbending directionsof
Solutionsof these equations are obtained by the Peano-Baker the rotorblades.Unstableorweaklystablebehaviorcan be caused
and by the recurrance relations methods. The advantages and by aerodynamic forces due to motion of the rotor blades and
limitationsof both solution methods from the computational tower in the plane of rotationor by mechanicalcouplingbetween
standpointare summarized. R.K.G. the rotor systemand the tower. Author

N81-16492"# National Aeronautics and Space Administration.
LewisResearchCenter, Cleveland,Ohio.
EXPERIMENTAL COMPLIANCE CALIBRATION OF THE

N81-11412"# National Aeronautics and Space Administration. COMPACT FRACTURE TOUGHNESS SPECIMEN
LewisResearchCenter, Cleveland, Ohio. D.M. FISHER and R. J. BUZZARD Dec. 1980 11 p refs
SUPERHYBRID COMPOSITE BLADE IMPACT STUDIES (NASA-TM-81665; E-685) Avail: NTIS HC A02/MF A01 CSCL
C. C. CHAMIS, R. F. LARK, and J. H. SINCLAIR 1980 16 p 20K
refs Proposed for presentationat the 26th Ann. Intern. Gas Compliancesand stress intensitycoefficientswere determined
TurbineConf., Houston,Tex., 9-12 Mar. 1981 over crack lengthto width ratios from 0.1 to 0.8. Displacements
(NASA-TM-81597; E-580) Avail: NTIS HC A02/MF A01 CSCL were measured at the load points, load line, and crack mouth.
20K Special fixturingwas devisedto permit accurate measurementof

The feasibilityof superhybridcomposite blades for meeting load point displacement. The results are in agreement with the
the mechanicaldesignand impactresistancerequirementsof large currentlyused resultsof boundarycollocationanalyses.The errors
fan bladesfor aircraftturbineengine applicationswas investigated, which occur in stress intensitycoefficients or specimen energy
Two design conceptswere evaluated:leadingedge spar (TiCom) input determinations made from load line displacement
and center spar (TiCore), both withsuperhybridcompositeshells, measurements rather than from load point measurements are
The investigationwas bothanalyticaland experimental.The results emphasized. Author
obtainedshow promise that superhybridcompositescan be used
to make light weight, high quality, large fan blades with good
structuralintegrity. The blades tested successfully demonstrated N81-16494"# National Aeronautics and Space Administration.
their abilityto meet steady state operatingconditions,overspeed, LewisResearchCenter, Cleveland,Ohio.
and small birdimpact requirements. A.R.H. EFFECTS OF MISTUNING ON BENDING-TORSION FLUTTER

AND RESPONSE OF A CASCADE IN INCOMPRESSIBLEFLOW
K. R. V. KAZA (Toledo Univ., Ohio) and R. E. KIELB 1981 20
p refs Proposed for presentation at Dyn. Specialists Conf.,
Atlanta, 9-11 Apr. 1981; sponsoredby AIAA
(ContractEX-76-1-01-1028)

N81-11417"# National Aeronautics and Space Administration. (NASA-TM-81674; DOE/NASA/1028-29; E-699) Avail: NTIS HC
LewisResearchCenter, Cleveland,Ohio. A02/MF A01 CSCL 20K
METHOD FOR ESTIMATING CRACK-EXTENSION RESISTANCE The effect of small differences between the individualblades
CURVE FROM RESIDUAL STRENGTH DATA (mistuning)on the aeroelastic stability and response of a cascade
T. W. ORANGE Nov. 1980 15 p refs were studied. The aerodynamic, inertial, and structural coupling
(NASA-TP-1753; E-439) Avail: NTIS HC A02/MF A01 CSCL between the bending and torsional motions of each blade and
20K the aerodynamiccoupling betweenthe blades was considered.A

A method is presented for estimating the crack extension digital computer program was developed to conduct parametric
resistancecurve (R curve) from residualstrength (maximumload studies.Results indicatethat the mistuninghas a beneficialeffect
againstinitialcracklength)data for precrackedfracturespecimens, on the coupled bending torsionand uncoupled torsion flutter. On
The methodallowsadditionalinformationto be inferredfrom simple forced response, however,the effect may be either beneficial or
test results, and that informationis used to estimate the failure adverse, dependingon the engine order of the forcing function.
loads of more complicated structures. Numerical differentiation of The results also illustrate that it may be feasible to utilize mistuning
the residual strength data is required, and the problems that it as a passive control to increase flutter speed while maintaining
may present are discussed. R.C.T. forced response at an acceptable level. A.R.H.
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N81-17480"# National Aeronautics and Space Administration. N81-19482"# Textron Bell Aerospace Co., Buffalo, N. Y.
Lewis Research Center, Cleveland, Ohio. NASTRAN LEVEL 16PROGRAMMER'S MANUAL UPDATESFOR
COMPOSITE CONTAINMENT SYSTEMS FOR JET ENGINE FAN AEROELASTIC ANALYSIS OF BLADED DISCS
BLADES A.M. GALLO and B. DALE Mar. 1980 88 p refs
G. T. SMITH 1981 18 p refs Presented at the 36th Ann. (ContractNAS3-20382)
Conf. of the ReinforcedPlastics/CompositesInst. of the Soc. of (NASA-CR-159825; D2536-941004) Avail: NTIS HC A05/MF
the PlasticsInd., Inc.,Washington,D.C., 16-20 Feb. 1981 A01 CSCL 20K
(NASA-TM-81675; E-700) Avail: NTIS HC A02/MF A01 CSCL The programmingroutinesfor the NASTRAN Level 16program
21E are presented.Particularemphasisis placed on its applicationto

The use of compositesin fan blade containment systems is aeroelasticanalyses, mode development, and flutter analysis for
investigatedandthe associatedstructuralbenefitsof the composite turbomachineblades. R.C.T.
system design are identified. Two basic types of containment
structures were investigated. The short finned concept was
evaluated using Kevlar/epoxy laminates for fins which were
mounted in a 6061 T-6 aluminum ring.The long fin concept was N81-19483"# Textron Bell Aerospace Co., Buffalo,N. Y.
evaluated with Kevlar/epoxy, 6AI4V titanium, and 2024 T-3 NASTRAN LEVEL 16 DEMONSTRATION MANUAL UPDATES
aluminum fins. The unfinned configurations consisted of the FOR AEROELASTIC ANALYSIS OF BLADED DISCS
base-line steel sheet, a circumferentially oriented aluminum V. ELCHURI and A. M. GALLO Mar. 1980 15 p refs
honeycomb,and a Kevlar cloth filled ring. Resultsobtainedshow (ContractNAS3-20382)
that a substantialreductionin the fan blade containmentsystem (NASA-CR-159826; D2536-941005) Avail: NTIS HC A02/MF
weightis possible.Minimizationof damagewithinthe enginearising A01 CSCL 20K
from impact interaction between blade debris and the engine A computer program based on state of the art compressor
structureis also achieved. M.G. and structuraltechnologiesapplied to bladed shroudeddiscs was

developed and made operational in NASTRAN level 16. The
problemsencompassed includeaeroelastic analyses,modes,and
flutter.The demonstrationmanualupdatesare described. L.F.M.

N81-19479"# Textron Bell Aerospace Co., Buffalo, N. Y.

AEROELASTIC AND DYNAMIC FINITE ELEMENT ANALYSES N81-26492"# National Aeronauticsand Space Administration.
OF A BLADDER SHROUDED DISK Lewis Research Center, Cleveland, Ohio.
G. C. C. SMITH and V. ELCHURI Mar. 1980 152 p refs AEROELASTIC CHARACTERISTICS OF A CASCADE OF
(ContractNAS3-20382) MISTUNED BLADES IN SUBSONIC AND SUPERSONIC FLOWS
(NASA-CR-159728; D2536-941001) Avail: NTIS HC A08/MF R.E. KIELB and K. R. V. KAZA (Toledo Univ.) 1981 18 p
A01 CSCL 20K refs Proposed for presentation at the 8th Biennial Eng. Div.

The deliveryand demonstrationof a computerprogram for the Conf., Hartford, Conn., 20-23 Sep. 1981; sponsoredby the
analysis of aeroelastic and dynamic properties is reported. AmericanSociety of MechanicalEngineers
Approaches to flutter and forced vibrationof mistuneddiscs,and (ContractNSG-3139)
transientaerothermoelasticityare described. R.C.T. (NASA-TM-82631; E-886) Avail: NTIS HC A02/MF A01 CSCL

20K
The effects of mistuningon flutter and forced response of a

cascade in subsonic in subsonic and supersonic flow were
investigated.The aerodynamicand structuralcoupling between

N81-19480"# Textron Bell AerospaceCo., Buffalo,N.Y. the bendingand torsionalmotionsand the aerodynamiccoupling
NASTRAN LEVEL 16 THEORETICAL MANUAL UPDATES FOR between the blades were studied. It is shown that frequency
AEROELASTIC ANALYSIS OF BLADED DISCS mistuningalwayshas a beneficialeffecton flutter.For the cascade
V. ELCHURI and G. C. C. SMITH Mar. 1980 24 p refs considered, the potential for raising flutter speed is greater in
(ContractNAS3-20382) subsonicthan in supersonicflow. Preliminaryresults for structural
(NASA-CR-159823; D2536-941002) Avail: NTIS HC A02/MF dampingmistuningshow that there are no additionalbenefitsover
A01 CSCL 20K adding damping mistuning may have either a beneficial or an

A computer program based on state of the art compressor adverseeffect on forced response,dependingon the engine order
and structuraltechnologiesapplied to bladed shroudeddisc was of the excitationand Mach number. A.R.H.
developed and made operational in NASTRAN Level 16.
Aeroelastic analyses, modes and flutter. Theoretical manual
updatesare included. S.F.

N81-33497"# National Aeronautics and Space Administration.
LewisResearchCenter, Cleveland,Ohio.
STRUCTURAL DYNAMICS VERIFICATION FACILITY STUDY
L. J. KIRALY, M. S. HIRCHBEIN, J. M. MCALEESE, and D. P.

N81-19481"# Textron Bell AerospaceCo., Buffalo,N.Y. FLEMING Aug. 1981 21 p refs
NASTRAN LEVEL 16 USER'S MANUAL UPDATES FOR (NASA-TM-82675; E-958) Avail: NTIS HC A02/MF A01 CSCL
AEROELASTIC ANALYSIS OF BLADED DISCS 20K
V. ELCHURI and A. M. GALLO Mar. 1980 167 p refs The need for a structuraldynamicsverificationfacilityto support
(ContractNAS3-20382) structuresprograms was studied. Most of the industry operated
(NASA-CR-159824; D2536-941003) Avail: NTIS HCA08/MF facilities are used for highly focused research, component
A01 CSCL 20K development,and problemsolving,and are not used for the generic

The NASTRAN aeroelastic and flutter capabilitywas extended understandingof the coupled dynamicresponse of major engine
to solve a class of problems associated with axial flow subsystems.Capabilitiesfortheproposedfacilityinclude:theability
turbomachines. The capabilities of the program are briefly to both excite and measure coupled structuraldynamic response
discussed.The aerodynamicdata pertaining to the bladed disc of elasticblades on elastic shafting,the mechanicalsimulationof
sector, the associated aerodynamic modeling, the steady various dynamical Ioadings representative of those seen in
aerothermoelastic'design/analysis'formulations,and the modal, operating engines, and the measurement of engine dynamic
flutter, and subcritical roots analyses are described. Sample deflections and interface forces caused by alternative engine
problemsand theirsolutionsare included. R.C.T. mountingconfigurationsand compliances. E.A.K.
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N82-11491"# National Aeronautics and Space Administration. N82-17521"# Battelle Columbus Labs., Ohio.
LewisResearch Center, Cleveland,Ohio. STRESS EVALUATIONS UNDER ROLLING/SLIDING
INTEGRATED ANALYSIS OF ENGINE STRUCTURES CONTACTS Final Report
C. C. CHAMIS 1981 24 p refs Presented at the Ann. J.W. KANNEL and J. L. TEVAARWERK 30 Oct. 1981 54 p
Meetingof the ASME, Washington,D.C., 16-21 Nov. 1981 refs
(NASA-TM-82713; E-995) Avail: NTIS HC A02/MF A01 CSCL (Contract NAS3-22808)
20K (NASA-CR-165561; G7782) Avail: NTIS HC A04/MF A01

The need for light, durable, fuel efficient,cost effective aircraft CSCL 20K
requiresthe developmentof engine structureswhich are flexible, The state of stress beneath traction drive type of contacts
made from advacedmaterials(includingcomposites),resisthigher were analyzed.Computingstressesand stressreversalson various
temperatures, maintain tighter clearances and have lower planes for pointsbeneath the surface were examined.The effect
maintenancecosts.The formal quantificationof any or severalof of tangential and axial friction under gross slip conditions is
these requires integrated computer programs (multileveland/or evaluatedwiththe models. Evaluationswere performedon an RC
interdisciplinaryanalysis programs interconnected) for engine (rollingcontact) tester configurationand it is indicated that the
structuralanalysis/design. Several integrated analysis computer classicalfatigue stressesare not altered by frictionforces typical
proramsare under developmentat Lewis ReseachCenter. These of lubricatedcontact. Highervalues of frictioncan result insurface
programs include: (1) COBSTRAN-Composite Blade Structural shear reversalthat exceeds the stresses at the depth of maximum
Analysis,(2) CODSTRAN-CompositeDurabilityStructuralAnalysis, shear reversal under rollingcontact. E.A.K.
(3) CISTRAN-Composite Impact Structural Analysis, (4)
STAEBL-StruTailoringof Engine Blades,and (5) ESMOSS-Engine N82-19563"# Virginia Polytechnic Inst. and State Univ.,
Structures Modeling Software System. Three other related Blacksburg. Dept. of EngineeringScience and Mechanics.
programs,developed under Lewissponsorship,are described. FINITE-ELEMENT MODELING OF LAYERED, ANISOTROPIC

Author COMPOSITE PLATES AND SHELLS: A REVIEW OF RECENT
RESEARCH
J. N. REDDY In Shock and Vibration InformationCenter The
Shock and Vibration Digest, VoI. 13, No. 12 p 3-12 Dec. 1981
refs
(ContractNAG3-208; AF-AFOSR-0142-81)
Avail: SVIC, Code 5804, Naval Research Lab., Washington,D.C.

N82-14531"# Arizona Univ., Tucson. Dept. of Aerospace and 20375; $15.00/set CSCL 20K
MechanicalEngineering. Finite element papers publishedin the open literatureon the
THE APPLICATION OF PROBABILISTIC DESIGN THEORY TO static bending and free vibration of layered, anisotropic,andHIGH TEMPERATURE LOW CYCLE FATIGUE

composite plates and shells are reviewed.A literature review of
P. H. WIRSCHING Nov. 1981 224 p refs large-deflectionbending and large-amplitudefree oscillationsof
(ContractNAG3-41) layered compositeplates and shells is also presented.Non-finite
(NASA-CR-165488) Avail: NTIS HC A10/MF A01 CSCL 20K elementliterature is cited for continuityof the discussion. J.D.H.

Metal fatigue under stress and thermal cycling is a principal

mode of failure in gas turbine engine hot section components N82-20564"# Case Western Reserve Univ., Cleveland,Ohio.such as turbine blades and disks and combustorliners.Designing
for fatigue is subject to considerableuncertainty,e.g., scatter in FATIGUE LIFE PREDICTION IN BENDING FROM AXIALFATIGUE INFORMATION
cycles to failure, available fatigue test data and operating
environmentdata, uncertainties in the models used to predict S.S. MANSON and U. MURALIDHARAN Feb. 1982 38 prefs
stresses,etc. Methodsof analyzingfatiguetest data for probabilistic
design purposes are summarized.The general strain life as well (ContractNAG3-39)
as homo- and hetero-scedastic models are considered. Modern (NASA-CR-165563; NAS 1.26:165563) Avail: NTIS HC A03/MF
probabilisticdesigntheory is reviewedand examplesare presented A01 CSCL 20K
which illustrate application to reliabilityanalysis of gas turbine Bending fatigue in the low cyclic life range differs from axial
engine components. A.R.H. fatigue clue to the plastic flow which alters the linearstress-strain

relation normally used to determine the nominal stresses. An
approach is presented to take into account the plastic flow in
calculatingnominalbendingstress (S sub bending)based on true
surface stress. These functions are derived in closed form for
rectangularand circularcrosssections.The nominalbendingstress
and the axial fatigue stress are plotted as a function of life (N

N82-16419"# National Aeronauticsand Space Administration. sub S) and these curves are shown for several materials of
Lewis Research Center,Cleveland,Ohio. engineeringinterest. S.L.
ELEVATED TEMPERATURE FATIGUE TESTING OF METALS

M. H. HIRSCHBERG Dec. 1981 24 p refs N82-20565"# National Aeronautics and Space Administration.
(NASA-TM-82745; E-1058) Avail: NTIS HC A02/MF A01 Lewis Research Center, Cleveland,Ohio.
CSCL 20K ELASTIC-PLASTIC FINITE-ELEMENT ANALYSES OF

The major technology areas needed to perform a life prediction THERMALLY CYCLED SINGLE-EDGE WEDGE SPECIMENS
of an aircraftturbineengine hot sectioncomponentare discussed A. KAUFMAN Mar. 1982 27 p refs
and the stepsrequiredfor lifepredictionare outlined.These include (NASA-TP-1982; E-687; NAS 1.60:1982) Avail: NTIS HC
the determinationof the operatingenvironment,the calculationof A03/MF A01 CSCL 20K
the thermal and mechanical loadingof the component,the cyclic Elastic-plastic stress-strain analyses were performed for
stress-strain and creep behavior of the material required for single-edgewedge alloys subjectedto thermal cyclingin fluidized
structuralanalysis, and the structural analysis to determine the beds.Three cases (NASA TAZ-8A alloyunderonecyclingcondition
local stress-strain-temperature-timeresponse of the material at and 316 stainless steel alloy under two cyclingconditions)were
the critical locationin the components.From a knowledgeof the analyzed by using the MARC nonlinear, finite-element computer
fatigue, creep, and failure resistance of the material,a prediction program. Elastic solutionsfrom MARC showed good agreement
of the life of the component is made. Material characterization with previouslyreported solutionsthat used the NASTRAN and
and evaluationconducted for the purpose of calculatingfatigue ISO3DQ computer programs.The NASA TAZ-8A case exhibited
crack initiation lives of components operating at elevated no plasticstrains,and the elasticand elastic-plasticanalysesgave
temperaturesare emphasized. J.D.H. identicalresults.Elastic-plasticanalyses of the 316 stainlesssteel
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alloy showed plastic strain reversal with a shift of the mean stresses strain response after only a few loading cycles. The computed
in the compressive direction. The maximum equivalent total strain stress strain history at the critical location was put into two life
ranges for these cases were 13 to 22 percent greater than that prediction methods, strainrange partitioning and a Pratt and Whitney
calculated from elastic analyses. Author combustor life prediction method to evaluate their ability to predict

cyclic crack initiation. It is found that the life prediction analyses
N82-20566"# National Aeronautics and Space Administration. over predicted the observed cyclic crack initiation life. E.A.K.
Lewis Research Center, Cleveland, Ohio.
ELASTIC-PLASTIC FINITE-ELEMENT ANALYSES OF
THERMALLY CYCLED DOUBLE-EDGE WEDGE SPECIMENS

A. KAUFMAN and L. E. HUNT Mar. 1982 31 p refs N82-24502"# National Aeronautics and Space Administration.
(NASA-TP-1973; E-626; NAS 1.60:1973) Avail: NTIS HC Lewis Research Center, Cleveland, Ohio.
AO3/MF A01 CSCL 20K EVALUATION OF INELASTIC CONSTITUTIVE MODELS FOR

Elastic-plastic stress-strain analyses were performed for NONLINEAR STRUCTURAL ANALYSIS
double-edge wedge specimens subjected to thermal cycling in A. KAUFMAN 1982 22 p refs Presented at the Syrup.on
fluidizedbeds at 316 and 1088 C. Four cases involvingdifferent NonlinearConstitutiveRelationsfor HighTemp. Appl.,Akron, Ohio,
nickel-basealloys (IN 100, Mar M-200, NASA TAZ-8A, and Rene 19-20 May 1982; sponsoredby NASA and Akron Univ.
80) were analyzed by using the MARC nonlinear,finite element (NASA-TM-82845; E-1215; NAS 1.15:82845) Avail: NTIS HC
computer program. Elastic solutionsfrom MARC showed good A02/MF A01 CSCL 2OK
agreement with previously reported solutions obtained by using The influence of inelastic material models on computed
the NASTRAN and ISO3DQ computerprograms.Equivalenttotal stress-strainstates, and therefore predicted lives, was studiedfor
strainranges at the criticallocationscalculated by elasticanalyses thermomechanically loaded structures. Nonlinear structural
agreed within 3 percentwith those calculated from elastic-plastic analyses were performed on a fatigue specimenwhich had been
analyses. The elastic analyses always resulted in compressive subjectedto thermalcyclinginfluidizedbeds andon a mechanically
mean stresses at the critical locations. However, elastic-plastic load cycledbenchmarknotchspecimen.Four incrementalplasticity
analyses showed tensile mean stresses for two of the four alloys creep models (isotropic,kinematic,combinedisotropic kinematic,
and an increasein the compressivemean stress for the highest combined plus transientcreep) were exercised using the MARC
plasticstrain case. M.G. program.Of the plasticitymodels, kinematichardeninggave results

most consistent with experimentalobservations.Life predictions
N82-21604"# National Aeronautics and Space Administration. using the computedstrain historiesat the critical location with a
LewisResearchCenter, Cleveland,Ohio. strainrange partitioningapproach considerablyoverpredictedthe
COUPLED BENDING-BENDING-TORSION FLU'n'ER OF A crack initiationlife of the thermal fatigue specimen. S.L.
MISTUNED CASCADE WITH NONUNIFORM BLADES
K. R. V. KAZA (Toledo Univ.) and R. E. KIELB 1982 20 p
refs Presented at the 23rd Struct., Structural Dyn., and Mater.
Conf., New Orleans, 10-12 May 1982
(NASA-TM-82813; E-1156; NAS 1.15:82813) Avail: NTIS HC N82-24503"# Georgia Inst. of Tech., Atlanta. Center for the
A02/MF A01 CSCL 20K Advancementof ComputationalMechanics.

A set of aeroelastic equations describingthe motion of an CREEP CRACK-GROWTH: A NEW PATH-INDEPENDENTT SUB
arbitrarilymistuned cascade with flexible, pretwisted, nonuniform O AND COMPUTATIONAL STUDIES
blades is developed using an extended Hamilton'sprinciple.The R.B. STONESIFER and S. N. ATLURI Dec. 1981 141 p refs
derivationof the equationshas its basisin the geometricnonlinear (ContractNAG3-38)
theory of elasticity in which the elongations and shears are (NASA-CR-168930; NAS 1.26:168930) Avail: NTIS HC AO7/MF
negligible compared to unity. A general expression for A01 CSCL 20K
foreshorteningof a blade is derived and is explicityused in the Two path independentintegral parameters which show some
formulation.The blade aerodynamicloading in the subsonicand degree of promiseas fracturecriteria are the C* and delta T sub
supersonic flow regimes is obtained from two dimensional, c integrals. The mathematicalaspects of these parameters are
unsteady, cascade theories. The aerodynamic, inertial and reviewed.Thisis accomplishedby derivinggeneralizedvectorforms
structural coupling between the bending (in two planes) and of the parameters using conservation laws which are valid for
torsionalmotionsof the blade is included.The equationsare used arbitrary, three dimensional,cracked bodies with crack surface
to investigatethe aeroelasticstabilityand to quantifythe effect of tractions (or applieddisplacements), body forces, inertial effects
frequencymistuningon flutterin turbofans.Results indicatethat a and large deformations. Two principalconclusionsare that delta
moderateamountof intentionalmistuninghas enoughpotentialto T sub c is a valid crack tip parameter during nonsteadyas well
alleviate flutter problems in unshrouded, high aspect ratio as steadystate creep and that delta T sub c has an energy rate
turbofans. S.L. interpretation whereas C* does not. An efficient, small

displacement, infinitestimal strain, displacement based finite

N82-24501"# National Aeronautics and Space Administration. element model is developed for general elastic/plastic material
behavior. For the numericalstudies,this model is specializedtoLewisResearchCenter, Cleveland, Ohio.

NONLINEAR STRUCTURAL AND LIFE ANALYSES OF A two dimensionalplane stress and plane strain and to power law
COMBUSTOR LINER creep constitutiverelations. S.L.
V. MORENO (Pratt and Whitney Aircraft Group, East Hartford,
Conn.), G. J. MEYERS (Pratt and Whitney Aircraft Group, East
Hartford,Conn.), A. KAUFMAN, and G. R. HALFORD 1982 23
p refs Proposed for presentationat the Syrup. on Advances N82-26701"# National Aeronautics and Space Administration.
and Trends in Struct.and Solid Mech., 4-7 Oct. 1982, Washington, Lewis ResearchCenter, Cleveland,Ohio.
D.C.; sponsoredby NASA and GeorgetownUniv. BIRD IMPACT ANALYSIS PACKAGE FOR TURBINE ENGINE
(NASA-TM-82846; E-1216; NAS 1.15:82846) Avail: NTIS HC FAN BLADES
A02/MF A01 CSCL 2OK M.S. HIRSCHBEIN 1982 20 p refs Presented at 23rd

Three dimensional,nonlinearfinite element structuralanalyses Struct. Dyn. and Mater. Conf., New Orleans, 10-12 Previously
were performedfor a simulatedcombustorlinerspecimento assess announcedin IAA as A82-30162 May 1982; Sponsored by AIAA,
thecapabilityof nonlinearanalysesusingclassicalinelasticmaterial ASME, ASCE, and AHS
models to represent the thermoplasticcreep responseof the one (NASA-TM-82831; NAS 1.15:82831) Avail: NTIS HC A02/MF
half scale component.Resultsindicatecontinuedcyclichardening AOl CSCL 20K
and ratchetingwhile experimentaldata suggesteda stable stress For abstract see A82-30162
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N82-26702"# Cincinnati Univ., Ohio. properties of each ply, and the relative thickness of adjacent layers.
MICROSTRUCTURAL EFFECTS ON THE ROOM AND The interlar'ninarthermalstressesare compressivewith increasing
ELEVATED TEMPERATURE LOW CYCLE FATIGUE BEHAVIOR temperature.The correspondingresidual stressesare tensileand
OF WASPALOY M.S. Thesis Final Report may enhance interplydelaminations. A.R.H.
B. A. LERCH May 1982 194 p refs
(ContractNSG-3263) N82-26714"# Illinois Univ., Urbana-Champaign. Dept. of
(NASA-CR-165497; NAS 1.26:165497) Avail: NTIS HC A09/MF Theoreticaland Applied Mechanics.
A01 CSCL 20K ANALYSIS OF CRACKS EMANATING FROM A CIRCULAR HOLE

Longitudinalspecimens of Waspaloy containingeither coarse IN UNIDIRECTIONAL FIBER REINFORCEDCOMPOSITES, PART
grains with small gamma or fine grainswith large gamma were 2 Final Report
tested in air at a frequency of 0.33 Hz or 0.50 Hz. The coarse S.S. WANG and J. F. YAU Feb. 1981 35 p refs 6 Vol.
grained structures exhibited planar slip on (111)planes and (ContractNSG-3044)
precipitateshearingat all temperatures.Cracks initiatedby a Stage (NASA-CR-165433; NAS 1.26:165433) Avail: NTIS HC A03/MF
1 mechanismand propagatedby a striationforming mechanism. A01 CSCL 20K
At 700 C and 800 C, cleavage and intergranular cracking were An analytical method is developed for cracks emanating from
observed. Testing at 500 C, 700 C, and 800 C caused precipitation a circular hole in an off-axis unidirectional fiber-reinforced
of grain boundary carbides. At 700 C, carbides precipitated on composite. The method which is formulated by using conservation
slip bands. The fine grained structures exhibited planar slip on laws of elasticity and fundamental relationships in anisotropic
(111) planes. Dislocations looped the large gamma precipitates, fracture mechanics, provides a convenient and accurate means
This structure led to stress saturation and propagation was to examine the complicated crack behavior, when used in
observed. Increasing temperatures resulted in increased specimen conjunction with a suitable numerical scheme such as the finite
oxidation for both heat treatments. Slip band and grain boundary element method. The formulation is eventually reduced to a system
oxidation were observed. At 800 C, oxidized grain boundaries were of linear algebraic equations of mixed-modestress intensity factors.
cracked by intersecting slip bands which resulted in intergranular Fracture parameters, describing crack-tip deformation and fracture
failure. The fine specimens had crack initiation later in the fatigue in the composite, are obtained explicitly. Effects of material
life, but with more rapid propagation crack propagation. A.R.H. anisotropy and crack/hole geometry are examined also. Of

particular interest are the energy release rates associated with
N82-26706"# Cincinnati Univ., Ohio. Dept. of Materials Science crack extension; their values are evaluated for various cases.
and Metallurgical Engineering. Results show that mixed-mode stress intensity factors and energy
MECHANISMS OF DEFORMATION AND FRACTURE IN HIGH release rates associated with the cracks emanating from a hole
TEMPERATURE LOW CYCLE FATIGUE OF RENE 80 AND IN changevery appreciablywith fiber orientationin the composite.K
100 Final Report sub 1 and G increase monotonicallywith increasingtheta; but K
G. R. ROMANOSKI, JR. Mar. 1982 227 p refs sub 2 reaches its maximumat theta = 45 deg, andthen decreases
(ContractNSG-3263) graduallyas theta increases further. Author
(NASA-CR-165498; NAS 1.26:165498) Avail: NTIS HC A11/MF
A01 CSCL 20K N82-26715"# Illinois Univ., Urbana-Charnpaign. Dept. of

Specimens tested for the AGARD strain range partitioning Theoreticaland AppliedMechanics.
program were investigated. Rene 80 and IN 100 were tested in INTERLAMINAR CRACK GROWTH IN FIBER REINFORCED
air and in vacuum;at 871 C, 925 C, and 1000 C; and in the COMPOSITES DURING FATIGUE, PART 3 Final Report
coated and uncoated condition. The specimens exhibited a S.S. WANG and H. T. WANG Feb. 1981 37 p refs 6 Vol.
multiplicity of high-temperature low-cycle fatigue damage. (ContractNSG-3044)
Observationsof the various forms of damage were consistent (NASA-CR-165434; NAS 1.26:165434) Avail: NTIS HC A03/MF
with material and testing conditions and were generally in A01 CSCL 20K
agreement with previous studies. In every case observations Interlaminar crack growth behavior in fiber-reinforced
supporta contentionthat failure occursat a particularcombination composites subjected to fatigue loading was investigated
of crack length and maximumstress. A failure criterionwhich is experimentally and theoretically. In the experimental phase,
applicable in the regime of testing studied is presented. The inter-laminar crack propagation rates and mechanisms were
predictivecapabilitiesof thiscriterionare straightforward, determined for the cases of various geometries, laminate

Author parametersand cyclicstress levels. A singularhybrid-stressfinite
element method was used in conjuctionwith the experimental

N82-26713"# Illinois Univ., Urbana-Champaign. Dept. of resultsto examine the local crack-tipbehaviorand to characterize
Theoreticaland AppliedMechanics. the crack propagationduring fatigue. Results elucidate the basic
BOUNDARY LAYER THERMAL STRESSES IN ANGLE-PLY nature of the cyclic delamination damage, and relate the
COMPOSITE LAMINATES, PART 1 Final Report interlaminarcrackgrowthrate to the range of mixed-modecrack-tip
S. S. WANG and I. CHOI Feb. 1981 56 p refs 6 Vol. stress intensityfactors.The results show that crack growth rates
(ContractNSG-3044) are directlyrelated to the range of the mixed-mode cyclicstress
(NASA-CR-165412; NAS 1.26:165412) Avail: NTIS HC A04/MF intensityfactors by a power law relationship. Author
A01 CSCL 20K

Thermal boundary-layer stresses (near free edges) and N82-26716"# Illinois Univ., Urbana-Champaign. Dept. of
displacementswere determinedby a an eigenfunctionexpansion Theoreticaland AppliedMechanics.
technique and the establishment of an appropriateparticular ANALYSIS OF INTERFACE CRACKS IN ADHESIVELY BONDED
solution.Currentsolutions in the region away from the singular LAP SHEAR JOINTS, PART 4 Final Report
domain (free edge) are found to be excellent agreement with S.S. WANG and J. F. YAU Feb. 1981 39 p refs 6 Vol.
existingapproximatenumericalresults.As the edge is approached, (ContractNSG-3044)
the singularterm controlsthe near field behaviorof the boundary (NASA-CR-165438;NAS 1.26:165438) Avail: NTIS HC A03/MF
layer. Results are presented for cases of various angle-ply A01 CSCL 20K
graphite/epoxy laminates with (theta/-theta/theta/theta) Conservation laws of elasticityfor nonhomogeneousmaterials
configurations. These results show high interlaminar were developed and were used to study the crack behavior in
(through-the-thickness) stresses. Thermal boundary-layer adhesivelybonded lap shear joints. By using these laws and the
thicknesses of different composite systems are determined by fundamentalrelationshipsin fracturemechanicsof interfacecracks,
examiningthe strain energy densitydistributionin composites. It the problem is reduced to a pair of linear algebraic equations,
is shownthat the boundary-layerthicknessdependson the degree and stress intensity solutions can be determined directly by
of anisotropy of each individual lamina, thermomechanical information extracted from the far field. The numerical results
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obtained show that: (1)in the lap-shear joint with a givenadherend, associated with deformation and stresses. The finite element
the opening-mode stress intensity factor, (K sub 1) is always larger method is used for this purpose. An efficient, small displacement,
than that of the shearing-mode (K sub 2); (2) (K sub 1) is not infinitesimal strain, displacement based finite element model is
sensitive to adherent thickness abut (K sub 2) increases rapidly specialized to two dimensional plane stress and plane strain and
with increasing thickness; and (3) (K sub 1) and (K sub 2) increase to power law creep constitutive relations. A mesh
simultaneously as the interracial crack length increases. Author shifting/remeshing procedure is used for simulating crack growth.

The model is implemented with the quartz-point node technique
N82-26717"# Illinois Univ., Urbana-Champaign. Dept. of and also with specially developed, conforming, crack-tip singularity
Theoretical and Applied Mechanics. elements which provide for the r to the n-(l+n) power strain
EDGE DELAMINATION IN ANGLE-PLY COMPOSITE singularityassociatedwith the HRR crack-tip field. Comparisons
LAMINATES, PART 5 Final Report are made with a variety of analytical solutions and alternate
S. S. WANG Feb. 1981 50 p refs 6 Vol. numericalsolutionsfor a numberof problems. J.D.
(ContractNSG-3044)
(NASA-CR-165439; NAS 1.26:165439) Avail: NTIS HC A03/MF N82-31707"# National Aeronauticsand Space Administration.
A01 CSCL 20K LewisResearchCenter, Cleveland,Ohio.

A theoretical methodwas developed for describingthe edge LARGE DISPLACEMENTS AND STABILITY ANALYSIS OF
delaminationstressintensitycharacteristicsin angle-plycomposite NONLINEAR PROPELLER STRUCTURES
laminates. The method is based on the theory of anisotropic R.A. AIELLO 1982 18 p refs Presented at the 10th
elasticity. The edge delamination problem is formulated using NASTRAN User's Colloq., New Orleans, 13-14 May 1982
Lekhnitskii's complex-variable stress potentials and an especially (NASA-TM-82850; NAS 1.15:82850) Avail: NTIS HC A02/MF
developed eigenfunction expansion method. The method predicts AOl CSCL 20K
exact orders of the three-dimensional stress singularity in a The use of linear rigid formats in COSMIC NASTRAN without
delamination crack tip region. With the aid of boundary collocation, DMAP procedures for the analysis of nonlinear propeller structures
the method predicts the complete stress and displacement fields is described. Approaches for updating geometry and applying
in a finite-dimensional, delaminated composite. Fracture mechanics follower forces for incremental loading are demonstrated.
parameters such as the mixed-mode stress intensity factors and Comparisons are made with COSMIC NASTRAN rigid formats and
associated energy release rates for edge delamination can be other independent finite element programs. Specifically, the
calculated explicity. Solutions are obtained for edge delaminated comparisons include results from the four approaches for updating
(theta/-theta theta/-theta)angle-ply composites under uniform axial the geometry using RIGID FORMAT 1, RIGID FORMATS 4 and
extension. Effects of delamination lengths, fiber orientations, 13, MARC and MSC/NASTRAN. It is shown that 'user friendly'
lamination and geometric variables are studied. Author updating approaches (without DMAPS) can be used to predict the

large displacements and instability of these nonlinear structures.
N82-26718"# Illinois Univ., Urbana-Champaign. Dept. of These user friendly approaches can be easily implemented by the
Theoretical and Applied Mechanics. user and predict conservative results. Author
BOUNDARY-LAYER EFFECTS IN COMPOSITE LAMINATES:
FREE-EDGE STRESS SINGULARITIES, PART 6 Final Report N82-31708"# National Aeronautics and Space Administration.
S. S. WANAG and I. CHOI Apr. 1981 38 p refs 6 Vol. Lewis Research Center, Cleveland, Ohio.
(Contract NSG-3044) TENSILE BUCKLING OF ADVANCED TURBOPROPS
(NASA-CR-165440; NAS 1.26:165440) Avail: NTIS HC A03/MF C.C. CHAMIS and R. A. AIELLO 1982 25 p refs Presented
AOl CSCL 20K at the 23rd Struct., Struct. Dyn. and Mater. Conf., New Orleans,

A rigorous mathematical model was obtained for the 10-12 May 1982; sponsored by AIAA, ASME, ASCE and AHS
boundary-layer free-edge stress singularity in angleplied and (NASA-TM-82896; E-1276; NAS 1.15:82896) Avail: NTIS HC
crossplied fiber composite laminates. The solution was obtained A02/MF A01 CSCL 20K
using a method consisting of complex-variable stress function Theoretical studies were conducted to determine analytically
potentials and eigenfunction expansions. The required order of the tensile buckling of advanced propeller blades (turboprops) in
the boundary-layer stress singularity is determined by solving the centrifugal fields, as well as the effects of tensile buckling on
transcendental characteristic equation obtained from the other types of structural behavior, such as resonant frequencies
homogeneous solution of the partial differential equations, and flutter. Theoretical studies were also conducted to establish
Numerical results obtained show that the boundary-layer stress the advantages of using high performance composite turboprops
singularity depends only upon material elastic constants and fiber as compared to titanium. Results show that the vibration
orientation of the adjacent plies. For angleplied and crossplied frequencies are not affected appreciably prior to 80 percent of
laminates the order of the singularity is weak in general. Author the tensile speed. Some frequencies approach zero as the tensile

buckling speed is approached. Composites provide a substantial
N82-29619"# Georgia Inst. of Tech., Atlanta. Center for the advantage over titanium on a buckling speed to weight basis.
Advancement of Computational Mechanics. Vibration modes change as the rotor speed is increased and
CREEP CRACK-GROWTH: A NEW PATH-INDEPENDENT substantial geometric coupling is present. R.J.F.
INTEGRAL (T SUB C), AND COMPUTATIONAL STUDIES Ph.D.
Thesis Final Report N82-33738"# Dayton Univ., Ohio. Dept. of Aerospace
R. B. STONESIFER and S. N. ATLURI Jul. 1982 112 p refs Mechanics.
(Contract NAG3-38) A PRELIMINARY STUDY OF CRACK INITIATION AND GROWTH
(NASA-CR-167897;NAS 1.26:167897) Avail: NTIS HC A06/MF AT STRESSCONCENTRATION SITES Interim Technical Report,
A01 CSCL 2OK 1 Jan, - 31 Aug, 1982

The developmentof valid creep fracturecriteriais considered. D.S. DAWICKE, J. P. GALLAGHER, G. A. HARTMAN, and A. M.
Two path-independentintegral parameters which show some RAJENDRAN Sep. 1982 30 p refs
degree of promise are the C* and (Delta T)sub c integrals.The (ContractNAG3-246)
mathematicalaspectsof theseparametersare reviewedby deriving (NASA-CR-169358;NAS 1.26:169358; UDR-TR-82-119; ITR-1)
generalizedvector forms of the parameters using conservation Avail: NTIS HC A03/MF A01 CSCL 20K
laws whichare validfor arbitrary,threedimensional,crackedbodies Crack initiation and propagation models for notches are
withcracksurface tractions(or applieddisplacements),body forces, examined.The Dowlingcrack initiationmodel and the E1 Haddad
inertial effects, and large deformations.Two principalconclusions et al. crack propagationmodel were chosen for additionalstudy.
are that (Delta T)sub c has an energyrate interpretationwhereas Existingdata was used to make a preliminaryevaluationof the
C* does not. The developmentand applicationof fracturecriteria crack propagationmodel. The results indicate that for the crack
often involves the solution of boundary/initialvalue problems sizes in the test, the elastic parameter K gave good correlation
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for the crack growth rate data. Additional testing, directed significantly affected by the choice of inelastic constitutive model.
specifically toward the problem of small cracks initiating and The computing time per cycle for the nonlinear analyses was
propagating from notches is necessary to make a full evaluation more than five times that required for the elastic analysis. S.L.
of these initiation and propagation models. S.L.

N82-33744"# National Aeronautics and Space Administration. N83-12451"# General Electric Co., Cincinnati, Ohio. Aircraft
Lewis Research Center, Cleveland, Ohio. Engine Business Group.
NONLINEAR CONSTITUTIVE THEORY FOR TURBINE ENGINE BENCHMARK NOTCH TEST FOR LIFE PREDICTION
STRUCTURAL ANALYSIS P.A. DOMAS, W. N. SHARPE, M. WARD, and J. F. YAU Oct.
R. L. THOMPSON In NASA. Langley Research Center Res. in 1982 212 p refs Prepared in cooperation with Louisiana
Struct. and Solid Mech., 1982 p 67-96 Oct. 1982 refs State Univ., Baton Rouge
Avail: NTIS HC A19/MF A01 CSCL 20K (Contract NAS3-22522)

A number of viscoplastic constitutive theories and a (NASA-CR-165571; NAS 1.26:165571; R82AEB358) Avail: NTIS
conventional constitutive theory are evaluated and compared in HC A10/MF A01 CSCL 20L
their ability to predict nonlinear stress-strain behavior in gas turbine The laser Interferometric Strain Displacement Gage (ISDG)was
engine components at elevated temperatures. Specific application used to measure local strains in notched Inconel 718 test bars
of these theories is directed towards the structural analysis of subjected to six different load histories at 649 C (1200 F) and
combustor liners undergoing transient, cyclic, thermomechanical including effects of tensile and compressive hold periods. The
load histories. The combustor liner material considered in this study measurements were compared to simplified Neuber notch analysis
is Hastelloy X. The material constants for each of the theories predictions of notch root stress and strain. The actual strains
(as a function of temperature)are obtained from existing, published incurred at the root of a discontinuity in cyclically loaded test
experimental data. The viscoplastic theories and a conventional samples subjected to inelastic deformation at high temperature
theory are incorporated into a general purpose, nonlinear, finite where creep deformations readily occur were determined. The
element computer program. Several numerical examples of steady state cyclic, stress-strain response at the root of the
combustor liner structural analysis using these theories are given discontinuity was analyzed. Flat, double notched uniaxially loaded
to demonstrate their capabilities. Based on the numerical fatigue specimens manufactured from the nickel base, superalloy
stress-strain results, the theories are evaluated and compared. Inconel 718 were used. The ISDG was used to obtain cycle by

Author cycle recordings of notch root strain during continuous and hold
time cycling at 649 C. Comparisons to Neuber and finite element

N83-11514"# National Aeronauticsand Space Administration. model analyses were made. The results obtained provide a
Lewis Research Center, Cleveland, Ohio. benchmark data set in high technology design where notch fatigue
BENDING-TORSION FLUTTER OF A HIGHLY SWEPT life is the predominant component service life limitation. S.L.
ADVANCED TURBOPROP
O. MEHMED, K. R. V. KAZA, J. F. LUBOMSKI, and R. E. KIELB
1981 24 p refs Prepared for presentation at the 1982 N83-12460"# National Aeronauticsand Space Administration.
Aerospace Congr. and Exposition,Anaheim, Calif., 25-28 Oct., Lewis Research Center,Cleveland, Ohio.
1982; sponsoredby the Soc. of AutomotiveEngr. LARGE DISPLACEMENTS AND STABILITY ANALYSIS OF
(NASA-TM-82975; E-1404; NAS 1.15:82975) Avail: NTIS HC NONLINEAR PROPELLERSTRUCTURES
A02/MF A01 CSCL 20K R.A. AIELLOand C.C. CHAMIS In GeorgiaUniv. 10th NASTRAN

Experimental and analytical results are presented for a User's Colloq. p 112-132 Nov. 1982
bending-torsionflutterphenomena encounteredduringwind-tunnel Avail: NTIS HC A12/MF A01 CSCL 20K
testing of a ten-bladed, advanced,high-speedpropeller(turboprop) The use of linear rigid formats in COSMIC NASTRAN without
model with thin airfoil sections, high blade sweep, low aspect DMAP proceduresfor theanalysisof nonlinearpropellerstructures
ratio, high solidity and transonic tip speeds. Flutter occurredat is described. Approaches for updating geometry and applying
free-stream Mach numbersof 0.6 and greaterand when the relative follower forces for incremental loading are demonstrated.The
tip Mach number (based on vector sum of axial and tangential COSMIC NASTRAN rigid formats and other independent finite
velocities) reached a value of about one. The experiment also element programsare compared.The comparisonsincluderesults
includedtwo- and five-blade configurations.The data indicatethat from the four approachesfor updatingthe geometry usingRIGID
aerodynamiccascade effects have a strong destabilizinginfluence FORMAT 1, RIGID FORMATS 4 and 13, MARC and
on the flutter boundary. The data was correlated with analytical MSC/NASTRAN. It is shownthat userfriendlyupdatingapproaches
results which include aerodynamiccascade effects and good can be used to predict the large displacementsand instabilityof
agreement was found. Author these nonlinearstructures.The approachesareeasilyimplemented

by the user and predictconservativeresults. E.A.K.
N83-12449"# National Aeronauticsand Space Administration.
Lewis Research Center, Cleveland,Ohio.
MATERIALS CONSTITUTIVE MODELS FOR NONLINEAR N83-14523"# National Aeronautics and Space Administration.
ANALYSIS OF THERMALLY CYCLED STRUCTURES Lewis ResearchCenter, Cleveland,Ohio.
A. KAUFMAN and L. E. HUNT (Arizona Univ., Tucson) Oct. MEASUREMENTS OF SELF-EXCITED ROTOR-BLADE
1982 26 p refs VIBRATIONS USING OPTICAL DISPACEMENTS
(ContractNAG3-45) A.P. KURKOV 1982 13 p refs Proposed for presentation
(NASA-TP-2055; E-1125; NAS 1.60:2055) Avail: NTIS HC at the 28th Ann. Intern. Gas TurbineConf., Phoenix,Ariz., 27-31
A03/MF A01 CSCL 20K Mar. 1983

Effects of inelasticmaterialsmodels on computedstress-strain (NASA-TM-82953; E-1368; NAS 1.15:82953) Avail: NTIS HC
solutionsfor thermallyloadedstructureswere studiedbyperforming A02/MF A01 CSCL 20K
nonlinear (elastoplasticcreep) and elastic structuralanalyses on The characteristicsof optical displacementspectra and their
a prismatic, double edge wedge specimen of IN 100 alloy that role of monitoringrotor bladevibrationsare discussed.During the
was subjectedto thermalcyclingin fluidizedbeds.Four incremental operation of a turbofan engine at part speed, near stall, and
plasticity creep models (isotropic,kinematic,combined isotropic elevated inlet pressure and temperature, several vibratory
kinematic,and combinedplus transient creep)were exercised for instabilitieswere excitedsimultaneouslyon the first fan rotor.The
the problem byusingthe MARC nonlinear,finite elementcomputer torsionaland bendingcontributionsto the main flutter mode were
program.Maximum total strain ranges computed from the elastic resolved by using casing-mountedoptical displacementsensors.
and nonlinear analyses agreed within 5 percent. Mean cyclic Other instabilitiesin the blade deflectionspectrawere identified.
stresses, inelastic strain ranges, and inelastic work were E.A.K.
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N83-15672"# National Aeronautics and Space Administration. N83-21390"# Pratt and Whitney Aircraft Group, East Hartford,
Lewis ResearchCenter,Cleveland, Ohio. Conn. CommercialEngineering.
EFFECTS OF STRUCTURAL COUPLING ON MISTUNED DEVELOPMENT OF A SIMPLIFIED ANALYTICAL METHOD FOR
CASCADE FLUTTER AND RESPONSE REPRESENTING MATERIAL CYCLIC RESPONSE
R. E. KIELB and K. R. V. KAZA (Toledo Univ.) 1983 17 p V. MORENO Jan. 1983 91 p refs
refs Proposed for presentationat the 28th Ann. Intern. Gas (ContractNAS3-22821)
Turbine Conf., Phoenix, Ariz., 27-31 Mar. 1983; sponsored by (NASA-CR-168100; NAS 1.26:168100; PWA-5843-13) Avail:
ASME NTIS HC A05/MF A01 CSCL 20K
(NASA-TM-83049; E-1500; NAS 1.15:83049) Avail: NTIS HC Developmentof a simplifiedmethod for estimating structural
A02/MF A01 CSCL 20K inelasticstress and strain response to cyclic thermal loading is

The effects of structuralcouplingon mistunedcascade flutter presented.The methodassumesthat high temperature structural
and responseareanalyticallyinvestigatedusinganextendedtypical response is the sum of time independent plastic and time
sectionmodel.Thismodelincludesbothstructuralandaerodynamic dependent elastic/creep components.The local structuralstress
coupling between the blades. The model assumes that the and strainresponsepredictedby linearelasticanalysisis modified
structurallycoupled system natural modes were determinedand by the simplifiedmethod to predict the inelastic response. The
are representedinthe form of N bendingandN torsionaluncoupled resultswith simulationsby a nonlinearfinite element analysisand
modes for each blade, where N is the number of blades and, used time independent plasticity and unified time dependent
hence, is onlyvalid for blade dominatedmotion.The aerodynamic materialmodel are compared. E.A.K.
loadsare calculatedby using two dimensionalunsteadycascade

theoriesin the subsonicand supersonicflow regimes.The results N83-23629"# National Aeronauticsand Space Administration.
show that the additionof structuralcouplingcan affect both the Lewis Research Center, Cleveland, Ohio. Dept. of Aerospace
aeroelastic stability and frequency. The stability is significantly Mechanics.
affected only when the system is mistuned. The resonant A TOTAL LIFE PREDICTION MODEL FOR STRESS
frequenciescan be significantlychangedby structuralcouplingin CONCENTRATION SITES Semiannual Engineering Technical
both tuned and mistuned systems, however, the peak response is Report, 1 Sep. 1982 - 31 Mar. 1983
significantlyaffected only in the latter. S.L. G.A. HARTMAN and D. S. DAWICKE 11 Apr. 1983 35 p

refs

N83-19121"# MichiganState Univ., East Lansing. (ContractNAG3-246)
EXPERIMENTAL VERIFICATION OF THE NEUBER RELATION (NASA-CR-170290; NAS 1.26:170290; UDR-TR-83-57; SATR-2)
AT ROOM AND ELEVATED TEMPERATURES M.S. Thesis Avail: NTIS HC A03/MF A01 CSCL 20K
L. J. LUCAS 1982 100 p refs Fatigue crack growth tests were performed on center crack
(ContractNAG3-51) panels and radial crack hole samples. The data were reduced
(NASA-CR-167967; NAS 1.26:167967) Avail: NTIS HC A05/MF and correlated with the elastic parameter-K taking into account
A01 CSCL 20K finite widthand cornercrack corrections.The anomalousbehavior

The accuracy of the Neuber equation at room temperature normallyassociatedwithshort crackswas not observed.Total life
and 1,200 F as experimentally determined under cyclic load estimates for notches were made by coupling an initiationlife
conditionswith hold times. All strains were measured with an estimatewith a propagationlife estimate. E.A.K.
interferometrictechnique at both the local and remote regionsof
notched specimens.At room temperature, strainswere obtained N83-23631"# National Aeronautics and Space Administration.
for the initialresponse at one load level and for cyclicallystable Lewis ResearchCenter, Cleveland,Ohio.
conditionsat four load levels. Stressesin notchedmemberswere ARRAY STRUCTURE DESIGN HANDBOOK FOR STAND ALONE
simulatedby subjectingsmooth specimensto he same strainsas PHOTOVOLTAIC APPLICATIONS
were recorded on the notched specimen. Local stress-strain R.C. DIDELOT Oct. 1980 243 p refs
responsewas then predictedwithexcellentaccuracyby subjecting (ContractDE-AI01-79ET-20485)
a smoothspecimen to limitsestablishedby the Neuber equation. (NASA-TM-82629; E-882; NAS 1.15:82629; DOE/NASA/20485-2)
Data at 1,200 F were obtained with the same experimental Avail: NTIS HC A11/MF A01 CSCL 20K
techniquesbut only in the cyclicallystableconditions.The Neuber Thishandbookwillpermitthe userto designa low-coststructure
predictionat this temperature gave relativelyaccurate results in for a variety of photovoltaicsystem applicationsunder 10 kW.
terms of predictingstress and strain points. S.L. Any presently commerciallyavailable photovoltaicmodules may

be used. Design alternativesare provided for different generic

N83-19246"# National Aeronautics and Space Administration. structuretypes, structuralmaterials, and electric interfaces. The
LewisResearchCenter, Cleveland,Ohio. use of a hand-heldcalculatoris sufficientto performthe necessary
STRUCTURAL FATIGUE TEST RESULTS FOR LARGE WIND calculationsfor the array designs. Author
TURBINE BLADE SECTIONS
J. R. FADDOUL and T. L. SULLIVAN In its Large Horizontal-Axis N83-24874"# National Aeronautics and Space Administration.
Wind Turbines p 303-328 1982 refs LewisResearchCenter, Cleveland, Ohio.
Avail: NTIS HC A99/MF A01 CSCL 20K STRESS INTENSITY AND DISPLACEMENT COEFFICIENTS FOR

In order to providequantitative informationon the operating RADIALLY CRACKED RING SEGMENTS SUBJECT TO
life capabilitiesof wind turbine rotor blade conceptsfor root-end THREE-POINT BENDING
load transfer, a series of cantilever beam fatigue tests was B. GROSS and J. E. SRAWLEY Mar. 1983 19 p refs
conducted. Fatigue tests were conductedon a laminatedwood (NASA-TM-83059; E-1524; NAS 1.15:83059) Avail: NTIS HC
blade with bondedsteel studs,a low cost steel spar (utility pole) A02/MF A01 CSCL 20K
witha welded flange,a utilitypolewithadditionalroot-endthickness The boudary collocationmethod was used to generate Mode
provided by a swaged collar, fiberglassspars with both bonded 1 stress intensityand crack mouth displacement coefficients for
and nonbonded fittings, and, finally, an aluminum blade with a internallyand externally radiallycracked ring segments(arc bend
bolted steel fitting (Lockheed Mod-0 blade). Photographs,data, specimens) subjected to three point radial loading. Numerical
and conclusionsfor each of these tests are presented.In addition, resultswere obtainedfor ringsegment outer to inner radius ratios
the aluminum blade test results are compared to field failure (R subo/ R sub i) rangingfrom 1.10 to 2.50 and crack lengthto
information;theseresultsprovideevidencethatthe cantileverbeam width ratios (a/W) rangingfrom 0.1 to 0.8. Stress intensity and
type of fatigue test is a satisfactorymethodfor obtainingqualitative crack mouth displacementcoefficientswere found to depend on
data on blade life expectancy and for identifying structurally the ratios R sub o/R sub i and a/W as well as the included
underdesignedareas (hot spots). M.G. anglebetween the directionsof the reactionforces. S.L.
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N83-24875"# National Aeronauticsand Space Administration. N83-29731"# Arizona Univ., Tucson. Dept. of Aerospace and
LewisResearch Center, Cleveland,Ohio. MechanicalEngineering.
VAPOR CAVITATION IN DYNAMICALLY LOADED JOURNAL STATISTICAL SUMMARIES OF FATIGUE DATA FOR DESIGN
BEARINGS PURPOSES Final Report
B.O. JACOBSON(Lulea Univ.)and B.J. HAMROCK 1983 14p P.H. WlRSCHING Washington,D.C. NASA Jul. 1983 63 p
refs Proposedfor presentationat the 2d Intern.Conf. on Cavitation, refs
Edinburgh,5-8 Sep. 1983 (ContractNAG3-41)
(NASA-TM-83366; E-1401; NAS 1.15:83366) Avail: NTIS HC (NASA-CR-3697; NAS 1.26:3697) Avail: NTIS HC A04/MF A01
A02/MF A01 CSCL 20K CSCL 20K

High speed motion camera experimentswere performed on Two methods are discussed for constructinga design curve
dynamicallyloaded journal bearings.The lengthto diameterratio on the safe side of fatigue data. Both the tolerance interval and
of the bearing, the speed of the rollerand the tube, the surface equivalentpredictioninterval (EPI) conceptsprovidesuch a curve
material of the roller, and the static and dynamiceccentricityof whileaccountingfor boththe distributionof the estimatorsin small
the bearingwere varied. One hundredand thirty-fourcases were samples and the data scatter. The EPI is also useful as a
filmed. The occurrenceof vapor cavitationwas clearly evident in mechanismfor providingnecessarystatisticson S-N data for a
the films and figures presented. Vapor cavitationwas found to fullreliabilityanalysiswhichincludesuncertaintyinall fatiguedesign
occur when the tensile stress applied to the oil exceeded the factors.Examplesof statisticalanalyses of the general strain life
tensile strengthof the oil or the bindingof the oil to the surface, relationshipare presented.The tolerance limitand EPI techniques
The physicalsituationin which vapor cavitationoccursis during for defining a design curve are demonstrated.Examples usng
the squeezingand slidingmotion withina bearing.Besides being WASPALOY B and RQC-100 data demonstrate that a reliability
able to accuratelycapturethe vapor cavitationon film, an analysis model could be constructedby consideringthe fatigue strength
of the formation and collapse of the cavitation bubbles and and fatigue ductility coefficients as two independent random
characteristicsof the bubble contentare presented. S.L. variables.A technique given for establishingthe fatigue strength

for highcycle lives relies on an extrapolationtechniqueand also
accountsfor 'runners.'A reliabilitymodel or design value can be
specified. Author

N83-27256"# Case Western Reserve Univ., Cleveland,Ohio.
N83-29734"# ArizonaUniv., Tucson. Dept. of Aerospace and

CRACK LAYER MORPHOLOGY AND TOUGHNESS MechanicalEngineering.
CHARACTERIZATION IN STEELS Final Report APPLICATION OF ADVANCED RELIABILITY METHODS TO
A. CHUDNOVSKY and M. BESSENDORF May 1983 41 p LOCAL STRAIN FATIGUE ANALYSIS Final Reportrefs
(ContractNAG3-223) T.T. WU and P. H. WIRSCHING Washington Jul. 1983 52 prefs
(NASA-CR-168154;NAS 1.26:168154) Avail: NTIS HC A03/MF (ContractNAG3-41)
A01 CSCL 20K (NASA-CR-168198; NAS 1.26:168198) Avail: NTIS HC A04/MF

Both the macro studies of crack layer propagation are A01 CSCL 20K
presented. The crack extension resistance parameter R sub 1 When design factors are consideredas randomvariablesand
based on the morphologicalstudy of microdefectsis introduced, the failureconditioncannotbe expressedbya closedformalgebraic
Experimental study of the history dependent nature of G sub c inequality, computationsof risk (or probabilityof failure) might
supports the representationof G sub c as a product of specific become extremelydifficultor very inefficient.This studysuggestsenthalpy of damage (material constant)and R sub 1. The latter

usinga simple,and easily constructed,seconddegree polynomial
accounts for the history dependence. The observation of to approximatethe complicatedlimit state in the neighborhoodof
nonmonotoniccrack growth under monotonicchanges of J as the design point;a computeranalysisrelates the designvariables
well as statistical features of the critical energy release rate at selected points. Then a fast probability integrationtechnique
(varianceof G subc) indicatethe validityof the proposeddamage (i.e., the Rackwitz-Fiessleralgorithm) can be used to estimate
characterization. S.L. risk. The capabilityof the proposedmethodis demonstratedin an

example of a low cycle fatigue problem for which a computer
analysis is requiredto perform local strain analysisto relate the
designvariables.A comparisonof the performanceof this method

N83-28493"# National Aeronautics and Space Administration. is made with a far more costlyMonte Carlo solution.Agreement
LewisResearchCenter, Cleveland, Ohio. of the proposed method with Monte Carlo is considered to be
CONSTITUTIVE RELATIONSHIPS FOR ANISOTROPIC good. Author
HIGH-TEMPERATURE ALLOYS
D. N. ROBINSON 1982 22 p refs Preparedfor Presentation N83-33217"# National Aeronauticsand Space Administration.
at the Intern. Post-Conf.Seminar on InelasticAnalysis and Life LewisResearchCenter,Cleveland,Ohio.
Prediction,Chicago,29-30 Aug. 1983; sponsoredby Commission TEMPERATUREDISTRIBUTION IN AN AIRCRAFT TIRE AT LOW
of EuropeanCommunitiesand Argonne Natl. Lab., Chicago GROUND SPEEDS
(NASA-TM-83437; E-1733; NAS 1.15:83437) Avail: NTIS HC J.L. MCCARTYand J. A. TANNER Aug. 1983 36 p refs
A02/MF A01 CSCL 20K (NASA-TP-2195; L-15605; NAS 1.60:2195) Avail: NTIS HC

A constitutive theory is presented for representing the AO3/MFA01 CSCL20K
anisotropicviscoplasticbehavior of high temperature alloys that An experimentalstudywas conducted to define temperature
possesdirectionalpropertiesresultingfrom controlledgraingrowth profiles of 22 x 5.5, type 7, bias ply aircraft tires subjectedto
or solidification.The theory is an extensionof a viscoplasticmodel freely rolling, yawed rolling, and light braking conditions.
that was applied in structuralanalyses involvingisotropicmetals. Temperaturesalongthe innerwallof freelyrollingtireswere greater
Anisotropyis introducedthrough the definitionof a vector field than those near the outer surface. The effect of increasingtire
that identifiesa preferential(solidification)directionat each material deflection was to increase the temperature within the shoulder
point. Following the development of a full multiaxial theory, and sidewall areas of the tire carcass. The effect of cornering
applicationis made to homogeneouslystressedelements in pure and braking was to increase the treat temperature. For taxi
shear and to a uniaxiallystressedrectangularblock inplanestress operations at fixed yaw angles, temperature profiles were not
with the stress direction oriented at an arbitrary angle with the symmetric.Increasingthe groundspeed producedonly moderate
materialdirection.It is shownthat an additionalmaterialparameter increases in tread temperature, whereas temperatures in the
introducedto characterize the degree of anisotropy can be carcass shoulderand sidewallwere essentiallyunaffected.
determinedon the basis of simplecreep tests. S.L. Author
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N83-33219"# Virginia Polytechnic Inst. and State Univ., N83-34353"# National Aeronautics and Space Administration.
Blacksburg. Dept. of EngineeringScience and Mechanics. LewisResearchCenter, Cleveland,Ohio.
GEOMETRICALLY NONLINEAR ANALYSIS OF LAYERED TENSILE AND COMPRESSIVE CONSTITUTIVE RESPONSE OF
COMPOSITE PLATES AND SHELLS Interim Report 316 STAINLESS STEEL AT ELEVATED TEMPERATURES
W. C. CHAO and J. N. REDDY Feb. 1983 117 p refs S.S. MANSON, U. MURALIDHARAN, and G. R. HALFORD In
(ContractNAG3-208) its NonlinearConstitutiveRelations for High Temp. Appl. p 13-42
(NASA-CR-168182; NAS 1.26:168182;VPI-E-83.10) Avail: NTIS Mar. 1983 refs Prepared in cooperation with Case Western
HC A06/MF A01 CSCL 20K ReserveUniv.

A degeneratedthree dimensionalfinite element, based on the (ContractNAG3-46)
incrementaltotal Lagrangianformulation of a three dimensional Avail: NTIS HC A16/MF A01 CSCL 20K
layered anisotropic medium was developed. Its use in the Creep rate in compressionis lower by factorsof 2 to 10 than
geometrically nonlinear,static and dynamic, analysis of layered in tension if the microstructureof the two specimens is the same
composite plates and shells is demonstrated.A two dimenisonal and are tested at equal temperatures and equal but opposite
finite element based on the Sanders shell theory with the von stresses.Such behavioris characteristicfor monotoniccreep and
Karman (nonlinear)strains was developed. It is shown that the conditionsinvolvingcyclic creep. In the latter case creep rate in
deflectionsobtained by the 2D shell element deviate from those both tensionand compressionprogressivelyincreasesfrom cycle
obtained by the more accurate3D element for deep shells.The to cycle, renderingquestionable the possibilityof expressinga
3D degenerated element can be used to model general shells time stabilizedconstitutiverelationship. The difference in creep
that are not necessarily doubly curved. The 3D degenerated rates in tension and compressionis considerably reduced if the
element is computationallymore demanding than the 2D shell tension specimen is first subjected to cycles of tensile creep
theory element for a givenproblem.It is foundthat the 3D element (reversed by compressive plasticity), while the compression
is an efficient elementfor the analysisof layered compositeplates specimen is first subjected to cycles of compressive creep
and shells undergoinglargedisplacementsand transientmotion. (reversedby tensileplasticity).In both cases, the test temperature

E.A.K. is the same and the stresses are equal and opposite. Such
reduction is a reflection of differences in microstructureof the
specimensresultingfrom different priormechanicalhistory.

Author

N83-34349"# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
RELATION OF CYCLIC LOADING PATTERN TO N83-34355"# Michigan State Univ., East Lansing.
MICROSTRUCTURAL FRACTURE IN CREEP FATIGUE EXPERIMENTAL VERIFICATION OF THE NUMBER RELATION
S. S. MANSON (Case Western Reserve Univ.), G. R. HALFORD, AT ROOM AND ELEVATED TEMPERATURES
and R. E. OLDRIEVE 1983 44 p refs Proposed for L.J. LUCAS and J. F. MARTIN In NASA. Lewis Research
presentationat Fatigue 84 The 2nd Intern. Conf. on Fatigue and Center NonlinearConstitutiveRelationsfor High Temp. Appl. p
Fatigue Thresholds,Birmingham,England,3-7 Sep. 1984 47-68 Mar. 1983 refs
(NASA-TM-83473; E-1787; NAS 1.15:83473) Avail: NTIS HC (ContractNAG3-51)
A03/MF AOl CSCL 20K Avail: NTIS HC A16/MF A01 CSCL 20K

Creep-fatigue-environmentinteraction is discussed using the The accuracyof the Neuber equationfor predictingnotch root
'strainrange partitioning'(SRP) framework as a basis. The four stress-strainbehavior at room temperature and at 650 C was
generic SRP strainrangetypesare studiedwith a viewof revealing experimentallyinvestigated.Strains on notched specimenswere
differences in micromechanisms of deformation and fatigue measured with a non-contacting,interferometrictechnique and
degradation.Eachcombines ina differentmanner the degradation stresses were simulated with smooth specimens. Predictions of
associatedwith slip-planesliding,grain-boundarysliding,migration, notch root stress-strain response were made from the Neuber
cavitation,void developmentand environmentalinteraction;hence Equationand smoothspecimenbehavior.Neuber predictionsgave
the approch is useful in delineatingthe relative importance of very accurate resultsat roomtemperature.However,the predicted
these mechanisms in the different Ioadings. Micromechanistic interaction of creep and stress relaxation differed from
results are shown for a number of materials,including316 SS, experimentallymeasuredbehaviorat 650 C. Author
wroughtheat resistantalloys,several nickel-basesuperalloys,and
a tantalumbase alloy, T-111. Althoughthere is a commonalityof
basic behavior,the differences are useful in delineationseveral
importantprinciplesof interpretation.Some quantitativeresultsare
presented for 316 SS, involvingcrack initiationand early crack N83-34357"# National Aeronautics and Space Administration.
growth,aswellas the interactionof low-cyclefatiguewithhigh-cycle LewisResearchCenter, Cleveland,Ohio.
fatigue. M.G. EVALUATION OF INELASTIC CONSTITUTIVE MODELS FOR

NONLINEAR STRUCTURAL ANALYSIS
A. KAUFMAN In its Nonlinear ConstitutiveRelations for High
Temp. Appl. p 89-106 Mar. 1983 refs
Avail: NTIS HC A16/MF A01 CSCL 20K

The influence of inelastic material models on computed
N83-34351"# National Aeronautics and Space Administration. stress-strainstates,and therefore predictedlives, was studiedfor
LewisResearchCenter, Cleveland, Ohio. thermomechanically loaded structures. Nonlinear structural
NONLINEAR CONSTITUTIVE RELATIONS FOR HIGH analyses were performed on a fatigue specimen which was
TEMPERATURE APPLICATIONS subjectedto thermalcyclinginfluidizedbedsand on a mechanically
Mar. 1983 360 p refs Symp.held in Akron,Ohio, 19-20 May loadcycledbenchmarknotchspecimen.Four incrementalplasticity
1982; sponsoredby Akron Univ. creep models (isotropic,kinematic,combined isotropic-kinematic,
(NASA-CP-2271; E-1541; NAS 1.55:2271) Avail: NTIS HC combined plus transient creep) were exercised.Of the plasticity
A16/MF A01 CSCL 20K models, kinematic hardening gave results most consistent with

The topics of discussionaddressed were material behavior, experimental observations.Life predictionsusing the computed
designanalysis,deformationkinetics,metallurgicalcharacterization, strainhistoriesat the criticallocationwith a StrainrangePartitioning
mechanical subelement models, stress analysis, fracture approachconsiderablyoverpredictedthe crack initiationlife of the
mechanics,viscoplasticity,and thermal loading, thermalfatigue specimen. Author
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N83-34359"# Northwestern Univ.,Evanston, Ill. the superior accuracy of the higher order schemes is noted. In
MICROMECHANICALLY BASED CONSTITUTIVE RELATIONS the course of integration of stress in time, it has been demonstrated
FOR POLYCRYSTALLINE SOLIDS that classicalschemessuch as Euler'sand Runge-Kuttamay lead
S. NEMAT-NASSERand T. IWAKUMA In NASA. LewisResearch to strong frame-dependence.As a remedy, modified integration
Center NonlinearConstitutiveRelations for High Temp. Appl. p schemes are proposedand the potentialof the new schemes for
113-136 Mar. 1983 refs suppressingframe dependence of numericallyintegratedstress is
(ContractNAG3-134) demonstrated.The topicof the developmentof validcreepfracture
Avail: NTIS HC A16/MF A01 CSCL 20K criteriais also addressed. B.W.

A basic method to estimate the overall mechanicalresponse
of solidswhich containperiodicallydistributeddefectsis presented. N83-34372"# National Aeronauticsand Space Administration.
The method estimates the shape and growth pattern of voids Lewis ResearchCenter, Cleveland,Ohio.
periodicallydistributedoverthe grainboundariesinaviscousmatrix. SIMPLIFIED METHOD FOR NONLINEAR STRUCTURAL
The relaxed moduli are obtained for a polycrytallinesolid that ANALYSIS
undergoesrelaxationby grain boundaryslidingwhichaccountsfor A. KAUFMAN Sep. 1983 15 p refs
the interactioneffects. The overall inelasticnonlinearresponseat (NASA-TP-2208;E-1646; NAS 1.60:2208) Avail: NTIS HC
elevated temperatures in terms of a model which considers A02/MF A01 CSCL 20K
nonlinearpower law creep withinthe grains, and linear viscous A simplifiedinelasticanalysiscomputerprogramwas developed
flow in the grain boundariesis discussed. E.A.K. for predictingthe stress-strainhistory of a thermomechanically

cycled structurefrom an elastic solution.The program uses an
N83-34369"# MassachusettsInst.of Tech., Cambridge. iterativeand incrementalprocedureto estimate the plasticstrains
TIME-INDEPENDENT ANISOTROPIC PLASTIC BEHAVIOR BY from the materialstress-strainpropertiesand a simulatedplasticity
MECHANICAL SUBELEMENT MODELS hardeningmodel.The simplifiedmethodwasexercisedon a number
T. H. H. PlAN In NASA. Lewis Research Center Nonlinear of problemsinvolvinguniaxial and multiaxial loading, isothermal
ConstitutiveRelations for High Temp. Appl. p 283-300 Mar. and nonisothermalconditions,and differentmaterialsand plasticity
1983 refs models. Good agreement was found between these analytical
(ContractNAG3-33) resultsand nonlinearfinite element solutionsfor these problems.
Avail: NTIS HC A16/MF A01 CSCL 20K The simplifiedanalysis programused less than 1 percent of the

The paper describesa procedure for modellingthe anisotropic CPU time requiredfor a nonlinearfinite element analysis. Author
elastic-plasticbehavior of metals in plane stress state by the
mechanicalsub-layermodel. In thismodel the stress-straincurves N83-34373"# National Aeronauticsand Space Administration.
along the longitudinaland transverse directionsare represented Lewis ResearchCenter, Cleveland,Ohio.
by short smooth segments which are considered as piecewise A SOLUTION PROCEDURE FOR BEHAVIOR OF THICK PLATES
linear for simplicity.The model is incorporatedin a finite element ON A NONLINEAR FOUNDATION AND POSTBUCKLING
analysis programwhich is based on the assumed stress hybrid BEHAVIOR OF LONG PLATES
element and the iscoplasticity-theory. Author M. STEIN and P. A. STEIN Sep. 1978 40 p refs

(Contract NCCI-15)
N83-34370"# Akron Univ., Ohio. (NASA-TP-2174; L-15587; NAS 1.60:2174) Avail: NTIS HC
CONSTRAINED SELF-ADAPTIVE SOLUTIONS PROCEDURES A03/MF A01 CSCL 20K

FOR STRUCTURE SUBJECT TO HIGH TEMPERATURE Approximate solutions for three nonlinear orthotropic plate
ELASTIC-PLASTIC CREEP EFFECTS problems are presented: (1) a thick plate attached to a pad having
J. PADOVAN and S. TOVICHAKCHAIKUL In NASA. Lewis nonlinear material properties which, in turn, is attached to a
Research Center Nonlinear Constitutive Relations for High Temp. substructure which is then deformed; (2) a long plate loaded in
Appl. p 301-304 Mar. 1983 refs inplane longitudinal compression beyond its buckling load; and (3)
(Contract NAG3-54) a long plate loaded in inplane shear beyond its buckling load. For
Avail: NTIS HC A16/MF A01 CSCL 20K all three problems, the two dimensional plate equations are reduced

This paper will develop a new solution strategy which can to one dimensional equations in the y-direction by using a one
handle elastic-plastic-creep problems in an inherently stable dimensional trigonometric approximation in the x-direction. Each
manner. This is achieved by introducing a new constrained time problem uses different trigonometric terms. Solutions are obtained
stepping algorithm which will enable the solution of creep initiated using an existing algorithm for simultaneous, first order, nonlinear,
pre/postbuckling behavior where indefinite tangent stiffnesses are ordinary differential equations subject to two point boundary
encountered. Due to the generality of the scheme, both monotone conditions. Ordinary differential equations are derived to determine
and cyclic loading histories can be handled. The presentation will the variable coefficients of the trigonometric terms. E.A.K.
give a thorough overview of current solution schemes and their

short comings, the development of constrained time stepping N83-35412"# National Aeronautics and Space Administration.
algorithms as well as illustrate the results of several numerical Lewis Research Center, Cleveland, Ohio.
experiments which benchmark the new procedure. B.W. THE STRUCTURAL RESPONSE OF A RAIL ACCELERATOR

S. Y. WANG 1983 15 p refs Presentedat the 2nd Symp.
N83-34371"# Georgia Inst. of Tech., Atlanta. on Electromagnetic Launch Technol., Boston, 1-14 Oct. 1983;
STRESS AND FRACTURE ANALYSES UNDER sponsored by IEEE
ELASTIC-PLASTIC CREEP CONDITIONS" SOME BASIC (NASA-TM-83491; E-1820; NAS 1.15:83491) Avail: NTIS HC
DEVELOPMENTS AND COMPUTATIONAL APPROACHES A02/MF A01 CSCL 20G
K. W. REED, R. B. STONESIFER, and S. N. ATLURI In NASA. The transient response of a 0.4 by 0.6 cm rectangularbore
Lewis ResearchCenter NonlinearConstitutiveRelationsfor High rail acceleratorwas analyzed by a three dimensionalfiniteelement
Temp. Appl. p 305-366 Mar. 1983 refs code. The copper rail deflected to a peak value of 0.08 mm in
(ContractNAG3-38) compressionand then oscillatedat an amplitude of 0.02 mm.
Avail: NTIS HC A16/MF A01 CSCL 20K Simultaneouslythe insulatingsidewall of glassfabric base, epoxy

A new hybrid-stressfiniteelement algorith,suitablefor analyses resin laminate (G-lo) was compressedto a peak value of 0.13
of largequasi-staticdeformationsof inelasticsolids,is presented, mm and reboundedto a steadystate in extension.Projectilepinch
Principalvariables in the formulationare the nominal stress-rate or blowbydue to the rail extensionor compression,respectively,
and spin. A such, a consistent reformulationof the constitutive can be identified by examining the time history of the rail
equation is necessary, and is discussed. The finite element displacement.The effect of blowby was most significantat the
equations give rise to an initial value problem. Time integration side wall characterizedby mm size displacementin compression.
has been accomplishedby Euler and Runge-Kuttaschemes and Dynamic stress calculations indicate that the G-10 supporting
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material behind the rail is subjected to over 21 MPa at which the N84-10614"# United Technologies Research Center, East
G-10 could fail if the laminate was not carefully oriented. Results Hartford, Conn.
for a polycarbonate resin (Lexan) side wall show much larger RESEARCH AND DEVELOPMENT PROGRAM FOR THE
displacements and stresses than for G-10. The tradeoff between DEVELOPMENT OF ADVANCED TIME-TEMPERATURE
the transparencyof Lexan and the mechanical strengthof G-10 DEPENDENT CONSTITUTIVE RELATIONSHIPS. VOLUME 2"
for sidewall material is obvious.Displacementcalculationsfrom PROGRAMMING MANUAL Final Report
the modal methodare smaller than the results from the direct B.N. CASSENTI Jul. 1983 58 p refs
integrationmethodby almost an order of magnitude,because the (ContractNAS3-23273)
highfrequencyeffect is neglected. E.A.K. (NASA-CR-168191-VOL-2;NAS 1.26:168191-VOL-2;

R83-956077-2) Avail: NTIS HC AO4/MF A01
The resultsof a 10-monthresearchand developmentprogram

N83-35413"# National Aeronautics and Space Administration. for nonlinearstructuralmodelingwith advanced time-temperature
LewisResearchCenter, Cleveland,Ohio. constitutiverelationshipsare presented.The implementationof the
ANALYSIS OF AN EXTERNALLY RADIALLY CRACKED RING theory in the MARC nonlinear finite element code is discussed,
SEGMENT SUBJECT TO THREE-POINT RADIAL LOADING and instructionsfor the computationalapplication of the theory
B. GROSS, J. E. SRAWLWY, and J. L. SHANNON, JR. 1983 are provided. Author
12 p refs Presentedat 16thSymp.on FractureMech.,Columbus,
Ohio, 15-17 Aug. 1983; sponsored by Battelle Columbus Labs.
and ASTM N84-11512"# National Aeronautics and Space Administration.
(NASA-TM-83482; E-1804; NAS 1.15:83482) Avail: NTIS HC LewisResearchCenter, Cleveland,Ohio.
A02/MF A01 CSCL 20K WIDE RANGE WEIGHT FUNCTIONS FOR THE STRIP WITH A

The boundarycollocationmethodwas used to generate Mode SINGLE EDGE CRACK
1 stress intensity and crack mouth opening displacement T.W. ORANGE 1982 12 p refs Presented at the 16th Natl.
coefficientsfor externallyradiallycracked ringsegmentssubjected Symp. on Fracture Mech., Columbus, Ohio, 15-18 Aug. 1983;
to three point radial loading.Numericalresultswere obtainedfor sponsoredby the Am. Soc. for Testing and Mater.
ringsegment outer-to-innerradiusratios(R sub o/R subi) ranging (NASA-TM-83478; E-1794; NAS 1.15:83478) Avail: NTIS HC
from 1.10 to 2.50 and crack length to segmentwidth ratios (a/W) A02/MF A01 CSCL 20K
ranging from 0.1 to 0.8. Stress intensity and crack mouth A closed form expression for the weight function for a strip
displacementcoefficientswere found to depend on the ratios R witha singleedge crack is presented.The expressionis valid for
sub o/R sub i and a/W as well as the included angle between relative crack lengths from zero to unity. It is based on the
the directionsof the reaction forces. Author assumption that the shape of an opened edge crack can be

approximatedby a conic section. The results agree well with
publishedvalues for weightfunctions,stress intensityfactors, and

N84-10612"# DaytonUniv., Ohio. Aerospace MechanicsDiv. crack mouthopeningdisplacements. S.L.
A TOTAL LIFE PREDICTION MODEL FOR STRESS
CONCENTRATION SITES Final Report N84-11513"# Case Western Reserve Univ.,Cleveland, Ohio.
G. A. HARTMAN and D. S. DAWICKE Sep. 1983 33 p refs EFFECT OF CRACK CURVATURE ON STRESS INTENSITY
(ContractNAG3-246) FACTORS FOR ASTM STANDARD COMPACT TENSION
(NASA-CR-168225; NAS 1.26:168225; UDR-TR-83-57) Avail: SPECIMENS Final Report
NTIS HC AO3/MF A01 CSCL 20K J. ALAM and A. MENDELSON Oct. 1983 19 p refs

Fatigue crack growth tests were performed on center crack (ContractNSG-3251)
panels and radial crack hole samples. The data were reduced (NASA-CR-168280; NAS 1.26:168280) Avail: NTIS HC A02/MF
and correlated with the elastic parameter K taking into account A01 CSCL 20K
finite widthand cornercrack corrections.The anomalousbehavior The stress intensity factors (SIF) are calculated using the
normallyassociatedwithshort crackswas not observed. Total life method of lines for the compact tension specimen in tensile and
estimates for notches were made by coupling an initiationlife shear loadingfor curved crack fronts. For the purelyelastic case,
estimate witha propagationlife estimate. Author it was found that as the crack front curvature increases,the SIF

value at the center of the specimen decreases while increasing

N84-10613"# United Technologies Research Center, East at the surface. For the higher values of crack front curvatures,the maximumvalue of the SIF occursat an interiorpoint located
Hartford,Conn. adjacent to the surface. A thicknessaverage SIF was computedRESEARCH AND DEVELOPMENT PROGRAM FOR THE
DEVELOPMENT OF ADVANCED TIME-TEMPERATURE for parabolicallyapplied shear loading.These results were used
DEPENDENT CONSTITUTIVE RELATIONSHIPS. VOLUME 1: to assess the requirementsof ASTM standards E399-71 andE399-81 on the shape of crack fronts. The SIF is assumed to
THEORETICAL DISCUSSION Final Report reflect the average stress environmentnear the crackedge.
B. N. CASSENTI Jul. 1983 127 p refs Author
(ContractNAS3-23273)
(NASA-CR-168191-VOL-1; NAS 1.26:168191-VOL-1;
R83-956077-1) Avail: NTIS HC A07/MF A01 N84-11514"# Textron Bell AerospaceCo., Buffalo,N. Y.

The resultsof a 10-monthresearchand developmentprogram FORCED VIBRATION ANALYSIS OF ROTATING CYCLIC
for the development of advanced time-temperature constitutive STRUCTURES IN NASTRAN Final Report
relationshipsare presented.The programincluded(1) the effect V. ELCHURI, A. M. GALLO, and S. C. SKALSKI Dec. 1981
of rate of change of temperature,(2) the developmentof a term 176 p
to include time independent effects, and (3) improvementsin (ContractNAS3-22533)
computationalefficiency. It was shown that rate of change of (NASA-CR-165429; NAS 1.26:165429; D2536-941007) Avail:
temperature could have a substantial effect on the predicted NTIS HC A09/MF A01 CSCL 20K
material response. A modification to include time-independent A new capability was added to the general purpose finite
effects, applicable to many viscoplastic constitutive theories, was element program NASTRAN Level 17.7 to conduct forced vibration
shown to reduce to classical plasticity. The computation time can analysis of tuned cyclic structures rotating about their axis of
be reduced by a factor of two if self-adaptive integration is used symmetry. The effects of Coriolis and centripetal accelerations
when compared to an integration usingordinary forward differences, together with those due to linear acceleration of the axis of rotation
During the course of the investigation, it was demonstrated that were included. The theoretical, user's, programmer's and
the most important single factor affecting the theoretical accuracy demonstration manuals for this new capability are presented.
was the choice of material parameters. Author Author
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N84-11515"# Textron Bell Aerospace Co., Buffalo,N.Y. N84-14541"# National Aeronautics and Space Administration.
FINITE ELEMENT FORCED VIBRATION ANALYSIS OF Lewis Research Center, Cleveland, Ohio.
ROTATING CYCLIC STRUCTURES Final Technical Report COMPLEXITIES OF HIGH TEMPERATURE METAL FATIGUE:
V. ELCHURI and G. C. C. SMITH Dec. 1981 73 p refs SOME STEPS TOWARD UNDERSTANDING
(ContractNAS3-22533) S.S. MANSON and G. R. HALFORD 1983 47 p refs
(NASA-CR°165430; NAS 1.26:165430; D2536-941008) Avail: Presented at the 25th Ann. Conf. on Aeronautics and Astronautics,
NTIS HC A04/MF A01 CSCL 20K Haifa, Isreal, 23-25 Feb. 1983

A capability was added to the general purpose finite element (NASA-TM-83507; E-1852; NAS 1.15:83507) Avail: NTIS HC
program NASTRAN Level 17.7 to conduct forced vibration analysis A03/MF A01 CSCL 20K
of tuned cyclic structures rotating about their axes of symmetry. After pointing out many of the complexities that attend high
The effects of Coriolis and centripetal accelerations together with temperature metal fatigue beyond those already studied in the
those due to linear acceleration of the axis of rotation were sub-creep range, a description of the micromechanisms of
included. The theoretical development of this capability is deformation and fracture is presented for several classes of
presented. S.L. materials that were studied over the past dozen years. Strainrange

Partitioning (SRP) is used as a framework for interpreting the
results. Several generic types of behavior were observed with
regard both to deformation and fracture and each is discussed in
the context of the micromechanisms involved. Treatment of
cumulative fatigue damage and the possibility of "healing" of

N84-12530"# United Technologies Research Center, East damage in successive loading loops, has led to a new interpretation
Hartford, Conn. of the Interaction Damage Rule of SRP. Using the concept of
AEROELASTIC ANALYSIS FOR PROPELLERS "equivalent micromechanistic damage" -- that the same damage
MATHEMATICAL FORMULATIONS AND PROGRAM USER'S on a microscopicscale is induced if the same hysteresis loops
MANUAL Final Report are generated, element for element -- it turns out the Interaction
R. L. BIELAWA, S. A. JOHNSON, R. M. CHI, and S.T. Damage Rule essentially compounds a number of variants of
GANGWANI Washington NASA Dec. 1983 255 p refs hysteresisloops, all of which have the same damage according
(Contract NAS3-22753) to SRP concepts, into a set of loopseach containingonly one of
(NASA-CR-3729; NAS 1.26:3729; UTRC83-6) Avail: NTIS HC the generic SRP strainranges.Thus the damage associcatedwith
A12/MF A01 CSCL 20K complex loops comprising several types of strainrange is analyzed

Mathematical development is presented for a specialized by considering a combination of loops each containing only one
propeller dedicated version of the G400 rotor aeroelastic analysis, type of strainrange. This concept is expanded to show how several
The G4OOPROP analysis simulates aeroelastic characteristics independent loops can combine to "heal" creep damage in a
particular to propellers such as structural sweep, aerodynamic complex loading history. Author
sweep and high subsonic unsteady airloads (both stalled and
unstalled). Formulations are presented for these expanded propeller N84-14542"# National Aeronautics and Space Administration.
related methodologies. Results of limited application of the analysis Lewis Research Center, Cleveland, Ohio.
to realistic blade configurations and operating conditions which A SIMPLIFIED METHOD FOR ELASTIC-PLASTIC-CREEP
includestable and unstable stall flutter test conditionsare given. STRUCTURAL ANALYSIS
Sections included for enhanced program user efficiencyand A. KAUFMAN 1984 19 p refs Proposedfor presentation at
expanded utilizationincludedescriptionsof: (1) the structuringof the 29th Ann. Intern. Gas Turbine Conf., Amsterdam, 3-7 Jun.
the G400PROP FORTRAN coding; (2) the required input data; 1984; sponsored by ASME
and (3) the output results. General information to facilitate operation (NASA-TM-83509; E-1855-1; NAS 1.15:83509) Avail: NTIS HC
and improve efficiency is also provided. Author A02/MF A01 CSCL 20K

A simplified inelastic analysiscomputer program (ANSYPM) was
developed for predicting the stress-strain history at the critical
location of a thermomechanically cycled structure from an elastic
solution. The program uses an iterative and incremental procedure
to estimate the plastic strains from the material stress-strain

N84-13610"# National Aeronautics and Space Administration. properties and a plasticity hardening model. Creep effects are
Lewis Research Center, Cleveland, Ohio. calculated on the basis of stress relaxation at constant strain,
AN IMPROVED FINITE-DIFFERENCE ANALYSIS OF creep at constant stress or a combination of stress relaxation
UNCOUPLED VIBRATIONS OF TAPERED CANTILEVER and creep accumulation.The simplified method was exercisedon
BEAMS a number of problems involvinguniaxial and multiaxial loading,
K. B. SUBRAHMANYAM (NBKR Inst. of Science and Technology) isothermal and nonisothermalconditions, dwell times at various
and K. R. V. KAZA Sep. 1983 39 p refs points in the cycles, different materials and kinematic hardening.
(NASA-TM-83495; E-1828; NAS 1.15:83495) Avail: NTIS HC Good agreement was found between these analytical results and
A03/MF A01 CSCL 20K nonlinearfinite element solutions for theseproblems.The simplified

An improved finite difference procedure for determiningthe analysisprogramusedless than1 percentof the CPUtime required
naturalfrequenciesand mode shapes of tapered cantileverbeams for a nonlinearfinite element analysis. Author
undergoinguncoupledvibrationsis presented.Boundaryconditions
are derived in the form of simplerecursiverelations involvingthe N84-15589"# Kansas Univ., Lawrence. StructuralEngineering
second order central differences.Results obtained by using the and EngineeringMaterials.
conventionalfirstordercentral differencesand the presentsecond THEORETICAL AND SOFTWARE CONSIDERATIONS FOR
order central differences are compared, and it is observed that NONLINEAR DYNAMIC ANALYSIS Interim Report
the present second order scheme is more efficient than the R.J. SCHMIDT and R. H. DODDS, JR. Feb. 1983 299 p refs
conventional approach. An important advantage offered by the (ContractNAG3-32)
present approach is that the results converge to exact values (NASA-CR-174504; NAS 1.26:174504; SM-8) Avail: NTIS HC
rapidly,and thus the extrapolationof the resultsis not necessary. A13/MF A01 CSCL 20K
Consequently,the basichandicapwiththe classicalfinitedifference In the finite element methodfor structuralanalysis,it isgenerally
method of solution that requires the Richardson'sextrapolation necessary to discretize the structuralmodel into a very large
procedure is eliminated. Furthermore,for the cases considered numberof elements to accurately evaluatedisplacements,strains,
herein, the present approach produces consistent lower bound and stresses.As the complexityof themodel increases,the number
solutions. Author of degrees of freedom can easily exceed the capacity of
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present-day software system. Improvements of structural analysis N84-16589"# National Aeronautics and Space Administration.
software including more efficient use of existing hardware and Lewis Research Center, Cleveland, Ohio.
improved structural modeling techniques are discussed. One BENDING FATIGUE OF ELECTRON-BEAM-WELDED FOILS.
modeling technique that is used successfully in static linear and APPLICATION TO A HYDRODYNAMIC AIR BEARING IN THE
nonlinear analysis is multilevel substructuring. This research CHRYSLER/DOE UPGRADED AUTOMOTIVE GAS TUBINE
extends the use of multilevel substructure modelingto include ENGINE Final Report
dynamic analysis and defines the requirements for a general J.F. SALTSMAN and G. R. HALFORD Jan. 1984 27 p refs
purpose software system capable of efficient nonlinear dynamic (ContractDE-AI01-77CS-51040)
analysis. The multilevelsubstructuringtechnique is presented, the (NASA-TM-83539; DOE/NASA/51040-51; E-1910; NAS
analyticalformulationsand computationalproceduresfor dynamic 1.15:83539) Avail: NTIS HC A03/MF A01 CSCL 20K
analysisand nonlinearmechanicsare reviewed,and an approach A hydrodynamicair bearingwitha complimentsurface is used
to the design and implementationof a general purposestructural in the gas generatorof an upgradedautomotivegas turbineengine.
softwaresystemis presented. E.A.K. In the prototypedesign, the compliantsurface is a thin foil spot

welded at one end to the bearingcartridge.Duringoperation,the
foil failed along the line of spot welds which acted as a seriesof
stress concentrators.Becauseof its higher degree of geometric
uniformity,electronbeam welding of the foil was selected as an
alternative to spot welding. Room temperature bending fatigue
tests were conducted to determine the fatigue resistance of the
electron beam welded foils. Equationswere determined relating

N84-16587"# National Aeronautics and Space Administration. cycles to crack initiation and cycles to failure to nominal total
Lewis Research Center, Cleveland,Ohio. strain range. A scaling procedureis presented for estimatingthe
FLUTTER OF SWEPT FAN BLADES reduction in cyclic life when the foil is at its normal operating
R. E. KIELBand K. R. V. KAZA 1984 12 p refs Proposed temperature of 260 C (500 F). S.L.
for presentationat the 29th Intern.Gas TurbineConf., Amsterdam,

3-7 Jun. 1984; sponsoredby ASME N84-18683"# National Aeronauticsand Space Administration.
(NASA-TM-83547; E-1921; NAS 1.15:83547) Avail: NTIS HC Lewis Research Center, Cleveland,Ohio.
A02/MF A01 CSCL 20K ENGINE CYCLIC DURABILITY BY ANALYSIS AND MATERIAL

The effect of sweep on fan blade flutter is studied by applying TESTING
the analytical methods developed for aeroelastic analysis of A. KAUFMAN and G. R. HALFORD 1983 19 p refs To be
advance turboprops.Two methods are used. The first method presented at the 61st Meeting of the Propulsion and Energetics
utilizes an approximate structural model in which the blade is Panel, Lisse, Netherlands, 30 May - 1 Jun. 1984; sponsored by
represented by a swept, nonuniform beam. The second method AGARD
utilizes a finite element technique to conduct modal flutter analysis. (NASA-TM-83577; E-1964; NAS 1.15:83577) Avail: NTIS HC
For both methods the unsteady aerodynamic loads are calculated A02/MF A01 CSCL 20K
using two dimensional cascade theories which are modified to The problem of calculating turbine engine component durability
account for sweep. An advanced fan stage is analyzed with 0, 15 is addressed. Nonlinear, finite-element structural analyses, cyclic
and 30 degrees of sweep. It is shown that sweep has a beneficial constitutive behavior models, and an advanced creep-fatigue life
effect on predominantly torsional flutter and a detrimental effect prediction method called strainrange partitioning were assessed
on predominantly bending flutter. This detrimental effect is shown for their applicability to the solution of durability problems in
to be significantly destabilizing for 30 degrees of sweep. M.G. hot-section components of gas turbine engines. Three different

component or subcomponent geometries are examined: a stress
concentration in a turbinedisk; a louver lip of a half-scale combustor
liner; and a squealer tip of a first-stage high-pressure turbine blade.
Cyclic structural analyses were performed for all three problems.
The computed strain-temperature histories at the critical locations
of the combustor linear and turbine blade components were

N84-16588"# National Aeronautics and Space Administration. imposed on smooth specimens in uniaxial, strain-controlled,
Lewis Research Center, Cleveland, Ohio. thermomechanical fatigue tests of evaluate the structural and life
IMPROVED FINITE-DIFFERENCE VIBRATION ANALYSIS OF analysis methods. Author
PRETWlSTED, TAPERED BEAMS
K. B. SUBRAHMANYAM and K. R. V. KAZA 1984 13 p refs N84-19925"# Arizona Univ., Tucson. Dept. of Aerospace and
To be presented at the Southeastern Conf. on Theoretical and Mechanical Engineering.
Appl. Mech. (SECTAM 12), Pine Mountain, Ca., 10-11 May 1984 CREEP-RUPTURERELIABILITY ANALYSIS Final Report
(NASA-TM-83549; NAS 1.15:83549; E-1923) Avail: NTIS HC A. PERALTA-DURAN and P. H. WlRSCHING Washington
A02/MF A01 CSCL 20K NASA Mar. 1984 31 p refs

An improved finite difference procedure based upon second (Contract NAG3-41)
order central differences is developed. Several difficulties (NASA-CR-3790; E-1982; NAS 1.26:3790) Avail: NTIS HC
encountered in earlier works with fictitious stations that arise in A03/MF A01 CSCL 20K
using second order central differences, are eliminated by A probabilistic approach to the correlation and extrapolation of
developing certain recursive relations. The need for forward or creep-rupture data is presented. Time temperature parameters
backward differences at the beam boundaries or other similar (TTP) are used to correlate the data, and an analytical expression
procedures is eliminated in the present theory. By using this for the master curve is developed. The expression provides a
improved theory, the vibration characteristics of pretwisted and simple model for the statistical distribution of strength and fits
tapered blades are calculated. Results of the second order theory neatly into a probabilistic design format. The analysis focuses on
are compared with published theoretical and experimental results the Larson-Miller and on the Manson-Haferd parameters, but it
and are found to be in good agreement. The present method can be applied to any of the TTP's. A method is developed for
generally produces close lower bound solutions and shows fast evaluating material dependent constants for TTP's. It is shown
convergence. Thus, extrapolation procedures that are customary that optimized constants can provide a significant improvement in
with first order finite-difference methods are unnecessary, the correlation of the data, thereby reducing modelling error.
Furthermore, the computational time and effort needed for this Attempts were made to quantify the performance of the proposed
improved method are almost the same as required for the method in predicting long term behavior. Uncertainty in predicting
conventional first order finite-difference approach. M.G. long term behavior from short term tests was derived for several
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sets of data. Examples are presented which illustrate the theory N84-21905"# Connecticut Univ., Storrs. Dept. of Mechanical
and demonstrate the application of state of the art reliability Engineering.
methods to the design of components under creep. Author ELEVATED TEMPERATURE BIAXlAL FATIGUE Semiannual

Status Report, 15 Feb. - 15 Aug. 1983
E. H. JORDAN 15 Aug. 1983 21 p
(Contract NAG3-160)
(NASA-CR-173473; NAS 1.26:173473) Avail: NTIS HC AO2/MF

N84-19927"# Akron Univ., Ohio. Dept. of Mechanical A01 CSCL20K
Engineering. Biaxial fatigue is often encountered in the complex
EXPERIMENTAL STUDY OF UNCENTRALIZED SQUEEZE FILM thermo-mechanical Ioadings present in gas turbine engines. Engine
DAMPERS strain histories can involve non-constant temperature, mean stress,
R. D. QUINN Dec. 1983 127 p refs creep, environmental effects, both isotropic and anisotropic
(ContractNSG-3283; NAG3-50) materials and non-proportional loading. Life predictionfor the
(NASA-CR-168317; NAS 1.26:168317; NAUFP-202-2) Avail: general case involvingall the above factors is not a practicable
NTIS HC A07/MF A01 CSCL 20K research project. The current research program is limited to

The vibration response of a rotor system supported by a isothermalfatigue at room temperature and 1200 F of HastaIIoy-X
squeeze filmdamper(SFD) was experimentallyinvestigatedinorder for both proportionaland non-proportionalloading.An improved
tO provide experimental data in support of the Rotor/Stator method for predictingthe fatigue life and deformation response
Interactive Finite Element theoretical development. Part of the under biaxialcycle loading is sought. Author
investigationrequired the designingand buildingof a rotor/SFD
system that could operate with or without end seals in order to N84-22980"# Case Western Reserve Univ., Cleveland, Ohio.
accommodate different SFD lengths. SFD variables investigated Dept.of CivilEngineering.
includedclearance,eccentricitymass, fluidpressure,and viscosity CRACK LAYER THEORY
and temperature. The results show inlet pressure, viscosity and A. CHUDNOVSKY Mar. 1984 43 p refs
clearance have significantinfluence on the damper performance (ContractNAG3-23)
and accompanyingrotorresponse. Author (NASA-CR-174634; NAS 1.26:174634) Avail: NTIS HC A03/MF

A01 CSCL 20K
A damage parameter is introducedin addition to conventional

parameters of continuum mechanics and consider a crack

N84-20878"# National Aeronautics and Space Administration. surrounded by an array of microdefects within the continuum
Lewis ResearchCenter, Cleveland,Ohio. mechanicsframework.A system consistingof the main crack and
DEVELOPMENT OF A SIMPLIFIED PROCEDURE FOR CYCLIC surrounding damage is called crack layer (CL). Crack layer
STRUCTURAL ANALYSIS propagationis an irreversibleprocess. The general framework of
A. KAUFMAN Mar. 1984 20 p refs Proposedfor presentation the thermodynamicsof irreversible processes are employed to
at the 29th ASME Intern. Gas Turbine Conf., Amsterdam, 3-7 identify the driving forces (causes) and to derive the constitutive
Jun. 1984 equationof CL propagation,that is, the relationshipbetween the
(NASA-TP-2243; E-1855; NAS 1.60:2243) Avail: NTIS HC rates of the crack growth and damage disseminationfrom one

side and the conjugated thermodynamicforces from another. The
A02/MF A01 CSCL 20K proposed law of CL propagationis in good agreement with the

Development was extended of a simplifiedinelastic analysis experimentaldata on fatigue CL propagationin various materials.
computerprogram(ANSYMP)for predictingthe stress-strainhistory
at the critical location of a thermomechanicallycycled structure The theory also elaboratesmaterialtoughnesscharacterization.
from an elastic solution.The program uses an iterative and M.A.C.
incremental procedure to estimate the plastic strains from the
material stress-strainpropertiesand a plasticityhardeningmodel. N84-23923"# National Aeronautics and Space Administration.
Creep effects can be calculated on the basis of stress relaxation Lewis Research Center, Cleveland, Ohio.
at constant strain,creep at constant stress, or a combinationof VIBRATION AND FLUTTER OF MISTUNED BLADED-DISK
stress relaxation and creep accumulation.The simplifiedmethod ASSEMBLIES
was exercisedon a number of problems involvinguniaxial and K.R.V. KAZA and R. E. KIELB 1984 17 p refs Presented
multiaxialloading,isothermaland nonisothermalconditions,dwell at the 25th Struct., Struct. Dyn. and Mater. Conf., Palm Springs,
times at various points in the cycles, different materials, and Calif., 14-16 May 1984; sponsored by the AIAA, ASME, ASCE
kinematichardening.Good agreement was found betweenthese and AHS
analytical resultsand nonlinear finite-element solutionsfor these (NASA-TM-83634; E-2074; NAS 1.15:83634; AIAA-84-0991)
problems.The simplifiedanalysisprogramused less than1 percent Avail: NTIS HC A02/MF A01 CSCL 20K
of the CPU time requiredfor a nonlinearfinite-elementanalysis. An analytical model for investigatingvibration and flutter of

Author mistunedbladeddisk assembliesis presented.This modelaccounts
for elastic, inertial and aerodynamic coupling between bending
and torsionalmotions of each individualblade, elastic and inertial
couplings between the blades and the disk, and aerodynamic
couplingamong the blades. The disk was modeledas a circular

N84-21903"# Toledo Univ.,Ohio. Dept.of Civil Engineering. plate with constantthicknessand each bladewas representedby
THERMAL STRESS ANALYSIS FOR A WOOD COMPOSITE a twisted, slender, straight, nonuniform, elastic beam with a
BLADE Report, 5 Dec. 1982- 4 Apr. 1984 symmetriccross section. The elastic axis, inertia axis, and the
K. C. FU and A. HARB 4 Apr. 1984 117 p refs tension axis were taken to be noncoincidentand the structural
(ContractNAG3-373) warping of the section was explicitly considered. The blade
(NASA-CR-173394; NAS 1.26:173394) Avail: NTIS HC A06/MF aerodynamicloading in the subsonicand supersonicflow regimes
A01 CSCL 20K was obtained from two-dimensionalunsteady, cascade theories.

Heat conductionthroughoutthe blade and the distributionof All the possible standing wave modes of the disk and traveling
thermal stresses caused by the temperature distributionwere wave modes of the bladeswere included.The equationsof motion
determined for a laminatedwood wind turbine blade in both the were derived by using the energy method in conjunctionwith the
horizontaland verticalpositions.Resultsshow that blade cracking assumed mode shapes for the disk and the blades. Continuities
is not due to thermal stresses induced by insulation.A method of displacement and slope at the blade-disk junction were
and practicalexampleof thermalstressanalysisfor an engineering maintained.The equationswere solved to investigate the effects
bodyof orthotropicmaterialsis presented. A.R.H. of blade-diskcouplingand blade frequency mistuningon vibration
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and flutter. Results showed that the flexibility of practical disks feature of the rotating structure is used in deriving and solving
such as those used for current generation turbofans did not have the equations of forced motion. Consequently, only one of the
a significant influence on either the tuned or mistuned flutter cyclic sectors is modelled and analyzed using finite elements,
characteristics. However, the disk flexibility may have a strong yielding substantial savings in the analysis cost. Results, however,
influence on some of the system frequencies and on forced are obtained for the entire structure. A tuned twelve bladed disc
response. Author example is used to demonstrate the various features of the

capability. M.G.
N84-29247"# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

A COMPUTER PROGRAM FOR PREDICTING NONLINEAR N84-30329"# National Aeronauticsand Space Administration.
UNIAXlAL MATERIAL RESPONSES USING VISCOPLASTIC Lewis ResearchCenter, Cleveland,Ohio.
MODELS IMPROVED METHODS OF VIBRATION ANALYSIS OF
T. Y. CHANG (Akron Univ., Ohio) and R. L. THOMPSON JuL PRETWlSTED, AIRFOIL BLADES
1984 65 p refs K.B. SUBRAHMANYAM and K. R. V. KAZA 1984 37 p refs
(NASA-TM-83675;E-2120; NAS 1.15:83675) Avail: NTIS HC Presentedatthe 16th Intern.Congr.of TheoreticalandAppLMech.,
A04/MF A01 CSCL 20K Lyngby,Denmark,19-25 Aug. 1984; sponsoredby the International

A computer programwas developed for predicting nonlinear Union of Theoretical and Applied Mechanicsand the Technical
uniaxialmaterial responsesusingviscoplasticconstitutivemodels. Univ. of Denmark
Four specific models, i.e., those due to Miller, Walker, (NASA-TM-83735; E-2175; NAS 1.15:83735) Avail: NTIS HC
Krieg-Swearengen-Rhode,and Robinson,are included.Any other A03/MF A01 CSCL 20K
unified model is easily implementedinto the program in the form Vibration analysis of pretwisted blades of asymmetric airfoil
of subroutines.Analysisfeaturesincludestress-straincycling,creep cross section is performed by using two mixed variational
response,stressrelaxation,thermomechanicalfatigue loop,or any approaches.Numericalresultsobtained from these two methods
combinationof these responses. An outline is given on the are comparedto those obtainedfrom an improvedfinite difference
theoretical background of uniaxial constitutivemodels, analysis method and also to those given by the ordinaryfinite difference
procedure, and numerical integrationmethods for solving the method.The relativemerits,convergencepropertiesandaccuracies
nonlinearconstitutiveequations. In addition,a discussionon the of all four methods are studied and discussed.The effects of
computer program implementationis also given. Finally, seven asymmetryand pretwiston natural frequenciesand mode shapes
numericalexamplesare includedto demonstratethe versatilityof are investigated.The improvedfinite difference method is shown
the computerprogramdeveloped. Author to be far superiorto the conventionalfinite difference method in

several respects. Close lower bound solutionsare provided by
N84-29248"# National Aeronauticsand Space Administration. the improvedfinite difference method for untwistedblades with a
LewisResearchCenter, Cleveland,Ohio. relativelycoarse meshwhile the mixedmethodshavenot indicated
MODE 2 FATIGUE CRACK GROWTH SPECIMEN any specificbound. Author
DEVELOPMENT
R. J. BUZZARD, B. GROSS, and J. E. SRAWLEY 1983 18 p
refs Presentedat the 17th Natl. Symp.on FractureMech.,Albany,
N.Y., 7-9 Aug. 1984; sponsored by Am. Soc. for Testing and N84-31683"# National Aeronauticsand Space Administration.
Mater. LewisResearchCenter, Cleveland,Ohio.
(NASA-TM-83722;E-2108; NAS 1.15:83722) Avail: NTIS HC NONLINEAR DISPLACEMENT ANALYSIS OF ADVANCED
A02/MF A01 CSCL 20K PROPELLER STRUCTURES USING NASTRAN

A Mode II test specimen was developed which has potential C. LAWRENCE and R. E. KIELB Aug. 1984 12 p refs
application in understandingphemonena associatedwith mixed (NASA-TM-83737;E-2222; NAS 1.15:83737) Avail: NTIS HC
mode fatigue failuresin high performanceaircraft engine bearing A02/MF A01 CSCL 20K
races. The attributesof the specimenare: it containsone single The steady state displacements of a rotating advanced
ended notch,which simplifiersdata gatheringand reduction;the turboprop are computed using the geometrically nonlinear
fatigue crack grousin-linewith the directionof load application;a capabilities of COSMIC NASTRAN Rigid Format 4 and MSC
singleaxis test machine is sufficientto perform testing;and the NASTRAN Solution 64. A description of the modified
Mode I componentis vanishinglysmall. Author Newton-Raphsonalgorithmused by Solution64 and the iterative

scheme used by Rigid Format 4 is provided.A representative

N84-29252"# Textron Bell Aerospace Co., Buffalo, N.Y. advanced turboprop,SR3, was used for the study. Displacements
StructuralDynamics. for SR3 are computed for rotational speeds up to 10,000 rpm.
NASTRAN FORCED VIBRATION ANALYSIS OF ROTATING The results show Solution 64 to be superior for computating
CYCLIC STRUCTURES Final Report displacementsof flexible rotating structures.This is attributed to
V. ELCHURI, G. C. C. SMITH, and A. M. GALLO 1983 31 p its ability to update the displacement dependent centrifugal force
refs Presented at the ASME Conf. on Mech. Vibration and Noise, during the solution process. Author
Dearborn, Mich., Sep. 1983
(Contract NAS3-22533)
(NASA-CR-173821; NAS 1.26:173821) Avail: NTIS HC A03/MF N84-31685"# Toledo Univ., Ohio. Dept. of Civil Engineering.
A01 CSCL 20K THERMAL-STRESS ANALYSIS FORWOOD COMPOSITE BLADE

Theoretical aspects of a new capability developed and Report, 5 Dec. 1982- 4 Apr. 1984
implementedin NASTRAN level 17.7 to analyze forced vibration K.C. FU and A. HARB 20 Jul. 1984 117 p refs
of a cyclic structure rotating about its axis of symmetry are (ContractNAG3-373)
presented. Fans, propellers, and bladed shrouded discs of (NASA-CR-173830;NAS 1.26:173830) Avail: NTIS HC A06/MF
turbomachines are some examples of such structures. The A01 CSCL 20K
capability includes the effects of Coriolis and centripetal The thermal-stress induced by solar insolation on a wood
accelerationson the rotating structurewhich can be loaded with: compositebladeof a Mod-OA windturbinewas investigated.The
(1) directlyapplied loadsmovingwiththe structureand (2) inertial temperaturedistributionthroughoutthe blade (a heat conduction
Ioas due to the translationalacceleration of the axis of rotation problem)was analyzed and the thermal-stressdistributionof the
("base' acceleration). Steady-statesinusoidalor general periodic blades caused by the temperaturedistribution(a thermal-stress
loadsare specifiedto represent:(1) the physicalloads on various analysis problem)was then determined.The computer programs
segments of the complete structure,or (2) the circumferential used for both problemsare includedalongwith outputexamples.
harmonic componentsof the loads in (1). The cyclic symmetry A.R.H.
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N84-31687"# National Aeronautics and Space Administration. N84-31692"# Akron Univ., Ohio.
Lewis Research Center, Cleveland, Ohio. NONLINEAR FINITE ELEMENT ANALYSIS OF SHELLS WITH
CYCLIC TORSION TESTING LARGE ASPECT RATIO
G. E. LEESE Aug. 1984 21 p refs Submitted for publication T.Y. CHANGand K. SAWAMIPHAKDI In NASA. Lewis Research
(NASA-TM-83756; E-2232; NAS 1.15:83756) Avail: NTIS HC Center Nonlinear Struct. Anal. p 45-54 Jun. 1984 refs
AO2/MF A01 CSCL 20K (Contract NAG3-317)

Torsional fatigue testing and data analysis procedures are Avail: NTIS HC A08/MF A01 CSCL 20K
described. Since there are no standards governing cyclic torsion A higher order degenerated shell element with nine nodes was
testing that are generally accepted on a widespread basis by the selected for large deformation and post-buckling analysis of thick
technical community, the different approaches that dominate or thin shells. Elastic-plastic material properties are also included.
current experimental activity, and the ramifications of each are The post-buckling analysis algorithm is given. Using a square plate,
discussed. Particular attention is given to the theoretical and it was demonstrated that the none-node element does not have
experimental difficulties that have paced refinement and general shear locking effect even if its aspect ratio was increased to the
acceptance of test procedures. Finally, specific quantities and order 10 to the 8th power. Two sample problems are given to
nomenclature modelled after analagous axial fatigue properties illustrate the analysis capability of the shell element. Author
are suggested as an effective way to communicate torsional fatigue
results until accepted standards are established. Author N84-31693"# Akron Univ., Ohio.

SELF-ADAPTIVE SOLUTION STRATEGIES
J. PADOVAN In NASA. Lewis Research Center Nonlinear

N84-31688"# National Aeronautics and Space Administration. Struct. Anal. p 55-63 Jun. 1984 refs
Lewis Research Center, Cleveland, Ohio. (Contract NAG3-54)
NONLINEAR STRUCTURAL ANALYSIS Avail: NTIS HC A08/MF A01 CSCL 20K
Washington Jun. 1984 168 p Workshop held in Cleveland, The development of enhancements to current generation
19-20 Apr. 1983 nonlinear finite element algorithms of the incremental
(NASA-CP-2297;E-1903; NAS 1.55:2297) Avail: NTIS HC Newton-Raphson type was overviewed.Work was introducedon
A08/MF A01 CSCL 20K alternativeformulationswhich leadto improvealgorithmsthat avoid

Nonlinearstructuralanalysis techniquesfor engine structures the need for global level updating and inversion.To quantifythe
and componentsare addressed.The finite element method and enhanced Newton-Raphson scheme and the new alternative
boundary element method are discussed in terms of stress and algorithm, the results of several benchmarks are presented.
structural analyses of shells, plates, and laminates. Author

N84-31694"# Stanford Univ., Calif.
N84-31689"# Textron Bell Aerospace Co., Buffalo, N.Y. ELEMENT-BY-ELEMENT SOLUTION PROCEDURES FOR
SLAVE FINITE ELEMENTS: THE TEMPORAL ELEMENT NONLINEAR STRUCTURAL ANALYSIS
APPROACH TO NONLINEAR ANALYSIS T.J.R. HUGHES, J. M. WINGET, and I. LEVIT In NASA. Lewis
S. GELLIN In NASA. Lewis Research Center Nonlinear Struct. Research Center Nonlinear Struct. Anal. p 65-84 Jun. 1984
Anal. p 1-16 Jun. 1984 refs refs
(Contract NAS3-23279) (Contract NAG3-319)
Avail: NTIS HC A08/MF A01 CSCL 20K Avail: NTIS HC A08/MF A01 CSCL 20K

A formulation method for finite elements in space and time Element-by-element approximate factorization procedures are
incorporating nonlinear geometric and material behavior is proposed for solving the large finite element equation systems
presented. The method uses interpolation polynomials for which arise in nonlinear structural mechanics. Architectural and
approximating the behavior of various quantities over the element data base advantages of the present algorithms over traditional
domain, and only explicit integration over space and time. While direct elimination schemes are noted. Results of calculations
applications are general, the plate and shell elements that are suggest considerable potential for the methods described.
currently being programmed are appropriate to model turbine Author
blades, vanes, and combustor liners. Author

N84-31695"# Kent State Univ., Ohio. Dept. of Mathematical
Sciences.

N84-31690"# Massachusetts Inst. of Tech., Cambridge. AUTOMATIC FINITE ELEMENT GENERATORS
NEW VARIATIONAL FORMULATIONS OF HYBRID STRESS P.S. WANG In NASA. Lewis Research Center Nonlinear
ELEMENTS Struct.Anal. p 85-94 Jun. 1984 refs
T. H. H. PLAN,K. SUMIHARA, and D. KANG In NASA. Lewis (ContractNAG3-298)
ResearchCenter NonlinearStruct. Anal. p 17-29 Jun. 1984 Avail: NTIS HC A08/MF A01 CSCL 20K
refs The design and implementationof a software system for
(ContractNAG3-33) generatingfinite elementsand related computationsare described.
Avail: NTIS HC A08/MF A01 CSCL 20K Exact symbolic computationaltechniquesare employedto derive

In the variational formulations of finite elements by the strain-displacement matrices and element stiffness matrices.
Hu-Washizuand Hellinger-Reissnerprinciplesthe stressequilibrium Methods for dealing with the excessive growth of symbolic
conditionis maintainedby the inclusionof internaldisplacements expressionsare discussed.Automatic FORTRAN code generation
which function as the Lagrange multipliersfor the constraints, is described with emphasis on improvingthe efficiency of the
These versions permit the use of natural coordinates and the resultantcode. Author
relaxation of the equilibriumconditionsand render considerable
improvements in the assumed stress hybrid elements. These N84-31696"# Texas Univ.,Austin.
include the derivationof invarianthybridelements which possess STABILITY AND CONVERGENCE OF UNDERINTEGRATED
the ideal qualities such as minimum sensitivityto geometric FINITE ELEMENT APPROXIMATIONS
distortions,minimumnumber of independent stress parameters, J.T. ODEN In NASA. LewisResearch Center NonlinearStruct.
rank sufficient,and ability to representconstantstrain states and Anal. p 95-103 Jun. 1984 refs
bending moments. Another application is the formulation of (ContractNAG3-329)
semiLoof thin shell elements which can yield excellent resultsfor Avail: NTIS HC A08/MF A01 CSCL 20K
many severe test cases because the rigid body nodes, the The effects of underintegrationon the numericalstabilityand
momentless membrane strains, and the inextensional bending convergence characteristicsof certain classes of finite element
modes are all represented. Author approximationswere analyzed. Particular attention is given to
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hourglassing instabilities that arise from underintegrating the motion of the macrocrack-microcrack array system has been
stiffness matrix entries and checkerboard instabilities that arise evaluated. Author
from underintegrating constrain terms such as those arising from
incompressibility conditions. A fundamental result reported here is N85-10384"# Stanford Univ., Calif.
the proof that the fully integrated stiffness is restored in some AUGMENTED WEAK FORMS AND ELEMENT-BY-ELEMENT
cases througha post-processingoperation. Author PRECONDITIONERS: EFFICIENT ITERATIVE STRATEGIES FOR

STRUCTURAL FINITE ELEMENTS. A PRELIMINARY STUDY
N84-31697"# Georgia Inst.of Tech., Atlanta. A. MULLER and T. J. R. HUGHES In NASA. LangleyResearch
INELASTIC AND DYNAMIC FRACTURE AND STRESS Center Res. in Struct. and Dyn., 1984 p 95-109 Oct. 1984
ANALYSES refs
S. N. ATLURI In NASA. Lewis Research Center Nonlinear (ContractNAG3-319)
Struct.Anal. p 105-118 Jun. 1984 refs Avail: NTIS HC A18/MF A01 CSCL 20K
(ContractNAG3-346) A weak formulation in structuralanalysis that provides well
Avail: NTIS HC A08/MF A01 CSCL 20K conditionedmatrices suitable for iterative solutionsis presented.

Large deformation inelastic stress analysis and inelastic and A mixed formulation ensures the proper representation of the
dynamic crack propagation research work is summarized. The problem and the constitutive relationsare added in a penalized
salient topics of interest in engine structure analysis that are form. The problem is solved by a double conjugate gradient
discussed herein include: (1) a path-independentintegral (T) in algorithm combined with an element by element approximate
inelastic fracture mechanics, (2) analysis of dynamic crack factorizationprocedure. The double conjugate gradient strategy
propagation,(3) generalizationof constitutiverelationsof inelasticity resembles Uzawa's variable-length type algorithms the main
for finite deformations, (4) complementaryenergy approaches in differenceis the presence of quadratictermsinthe mixedvariables.
inelastic analyses, and (5) objectivityof time integrationschemes In the case of shear deformable beams these terms ensure that
in inelasticstress analysis. Author the proper finite thicknesssolutionis obtained. E.A.K.

N84-31699"# National Aeronauticsand Space Administration. N85-11380"# Arizona Univ., Tucson. Dept. of Aerospace and
Lewis Research Center, Cleveland,Ohio. Mechanical Engineering.
NONLINEAR ANALYSIS FOR HIGH-TEMPERATURE RELIABILITY CONSIDERATIONS FOR THE TOTAL STRAIN
COMPOSITES: TURBINE BLADES/VANES RANGE VERSION OF STRAINRANGE PARTITIONING Final
D. A. HOPKINS and C. C. CHAMIS In its NonlinearStruct.Anal. Report
p 131-147 Jun. 1984 refs P.H. WIRSCHING and Y. T. WU Sep. 1984 85 p refs
Avail: NTIS HC A08/MF A01 CSCL 20K (Contract NAG3-41)

An integrated approach to nonlinear analysis of (NASA-CR-174757; NAS 1.26:174757) Avail: NTIS HC A05/MF
high-temperaturecomposites in turbine blade/vane applicationsis A01 CSCL 20K
presented. The overall strategy of this approach and the key A proposed total strainrangeversionof strainrangepartitioning
elements comprising this approach are summarized. Preliminary (SRP) to enhance the manner in which SRP is applied to life
results for a tungsten-fiber-reinforcedsuperalloy(TFRS) composite predictionis consideredwithemphasison how advanced reliability
are discussed. Author technologycan be applied to perform risk analysisand to derive

safety check expressions. Uncertainties existing in the design
N84-31700"# Pratt and Whitney Aircraft, East Hartford, Conn. factors associated with life prediction of a component which
THREE-DIMENSIONAL STRESS ANALYSIS USING THE experiencesthe combined effects of creep and fatigue can be
BOUNDARY ELEMENT METHOD identified.Examples illustratehow reliability analyses of such a
R. B. WILSON and P. K. BANERJEE (State Univ. of New York, componentcan be performedwhen all designfactors in the SRP
Buffalo) In NASA. Lewis Research Center Nonlinear Struct. model are random variables reflecting these uncertainties. The
Anal. p 149-160 Jun. 1984 refs Rackwitz-Fiesslerand Wu algorithmsare used and estimates of
(ContractNAS3-23697) the safety index and the probablityof failure are demonstratedfor
Avail: NTIS HC A08/MF A01 CSCL 20K a SRP problem. Methods of analysis of creep-fatigue data with

The boundaryelement method is to be extended (as part of emphasis on procedures for producingsynoptic statistics are
the NASA Inelastic Analysis Methods program) to the presented. An attempt to demonstrate the importance of the
three-dimensionalstressanalysisof gas turbineenginehot section contributionof the uncertaintiesassociatedwith smallsamplesizes
components.The analyticalbasis of the method (as developed in (fatique data) to risk estimates is discussed. The procedure for
elasticity)is outlined,its numerical implementationis summarized, derivinga safety check expression for possible use in a design
and the approaches to be followed in extendingthe method to criteriadocumentis presented. A.R.H.
include inelasticmaterial response indicated. Author

N85-15184"# National Aeronautics and Space Administration.
N84-34774"# Case Western Reserve Univ., Cleveland, Ohio. Lewis ResearchCenter, Cleveland,Ohio.
Dept. of Civil Engineering. THE USE OF AN OPTICAL DATA ACQUISITION SYSTEM FOR
ON STRESS ANALYSIS OF A CRACK-LAYER Final Report BLADED DISK VIBRATION ANALYSIS
A. CHUDNOVSKY, A. DOLGOPOLSKY(Delaware Univ., Newark), C. LAWRENCE and E. H. MEYN Dec. 1984 23 p refs
and M. KACHANOV (Tufts Univ., Medford, Mass.) Oct. 1984 (NASA-TM-86891; E-2358; NAS 1.15:86891) Avail: NTIS HC
95 p refs A02/MF A01 CSCL 20K
(ContractNAG3-223) A new concept in instrumentationwas developedby engineers
(NASA-CR-174774; NAS 1.26:174774) Avail: NTIS HC A05/MF at NASA Lewis Research Center to collect vibration data from
A01 CSCL 20K multi-bladedrotors.This new concept, known as the optical data

This work considers the problem of elastic interactionof a acquisitionsystem, uses optical transducersto measure bladed
macrocrack with an array of microcracks in the vicinityof the tip delectionsby reflection lightbeams off the tips of the blades
macrocracktip. Using the double layer potential techniques,the as they pass in front of the optical transducer.By usingan array
solutionto the problemwithinthe frameworkof the plane problem of transducersaroundthe perimeterof the rotor,detailed vibration
of elastostaticshas been obtained. Three particularproblemsof signals can be obtained. In this study,resonant frequenciesand
interestto fracturemechanicshave been analyzed. It followsfrom mode shapes were determined for a 56 bladed rotor using the
analysis that microcrack array can either amplify or reduce the optical system. Frequencydata from the optical system was also
resultingstress field of the macrocrack-microcrackarray system compared to data obtained from strain gauge measurementsand
dependingon the array'sconfiguration.Using the obtainedelastic finite element analysisand was found to be in good agreement.
solutionthe energy release rate associatedwith the translational Author
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N85-16205"# National Aeronautics and Space Administration. N85-21685"# Case Western Reserve Univ., Cleveland, Ohio.
Lewis Research Center, Cleveland, Ohio. Dept. of Civil Engineering.
EXPERIMENTAL COMPLIANCE CALIBRATION OF THE NASA TRANSLATIONAL AND EXTENSIONAL ENERGY RELEASE
LEWIS RESEARCH CENTER MODE 2 FATIGUE SPECIMEN RATES (THE J- AND M-INTEGRALS) FOR A CRACK LAYER
R. J. BUZZARD 1985 11 p refs Proposed for presentation IN THERMOELASTIClTY Final Report
at the 18th Natl. Symp. on Fracture Mech., Boulder, Colo., 24-27 A. CHUDNOVSKY and B. GOMMERSTADT Mar. 1985 9 p
Jun. 1985; sponsored by American Society for Testing and refs
Materials (Contract NAG3-223)
(NASA-TM-86908; E-2398; NAS 1.15:86908) Avail: NTIS HC (NASA-CR-174872; NAS 1.26:174872) Avail: NTIS HC A02/MF
A02/MF A01 CSCL 20K A01 CSCL 20K

Calibration of the mode II aluminum fatigue specimen was A number of papers have been presented on the evaluation of
performed experimentally to provide displacement and stress energy release rate for thermoelasticity and corresponding J
intensity coefficients over crack length to specimen width ratios integral. Two main approaches were developed to treat energy
(a/W) of 0.5 to 0.9. Displacements were measured both at the release rate in elasticity. The first is based on direct calculation of
specimen notch mouth and at the intersection of the notch with the potential energy rate with respect to crack length. The second
the centerline of the loading pin holes. R.S.F. makes use of Lagrangian formalism. The translational and

expansional energy release rates in thermoelasticity are studied
by employing the formalism of irreversible thermodynamics and
the Crack Layer Approach. Author

N85°18375"# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
NASA LEWIS RESEARCH CENTER/UNIVERSITY GRADUATE
RESEARCH PROGRAM ON ENGINE STRUCTURES N85-21686"# Pratt and Whitney Aircraft, East Hartford, Conn.
C. C. CHAMIS 1985 18 p Presented at the 30th Intern. Gas Engineering Div.
Turbine Conf. and Exhibit, Houston, Tex., 17-21 Mar. 1985; 3-D INELASTIC ANALYSIS METHODS FOR HOT SECTION
sponsored by ASME COMPONENTS (BASE PROGRAM) Annual Status Report, 14
(NASA-TM-86916; E-2393; NAS 1.15:86916) Avail: NTIS HC Feb. 1983 - 14 Feb. 1984
AO2/MF A01 CSCL 20K R.B. WILSON, M. J. BAK, S. NAKAZAWA, and P. K. BANERJEE

NASA Lewis Research Center established a graduate research Feb. 1984 167 p refs
program in support of the Engine Structures Research activities. (Contract NAS3-23697)
This graduate research program focuses mainly on structural and (NASA-CR-174700; NAS 1.26:174700; PWA-5940-19; ASR-1)
dynamics analyses, computational mechanics, mechanics of Avail: NTIS HC A08/MF A01 CSCL 20K
composites and structural optimization. The broad objectives of A 3-D inelastic analysis methods program consists of a series
the program, the specific program, the participating universities of computer codes embodying a progression of mathematical
and the program status are briefly described. Author models (mechanics of materials, special finite element, boundary

element) for streamlined analysis of combustor liners, turbine
blades, and turbine vanes. These models address the effects of
high temperatures and thermal/mechanical Ioadings on the local
(stress/strain) and global (dynamics, buckling) structural behavior
of the three selected components. These models are used to
solve 3-D inelastic problems using linear approximations in the

N85-20396"# National Aeronautics and Space Administration. sense that stresses/strains and temperatures in generic modeling
Lewis Research Center, Cleveland, Ohio. regions are linear functions of the spatial coordinates, and solution
LOCAL STRAIN REDISTRIBUTION CORRECTIONS FOR A increments for load, temperature and/or time are extrapolated
SIMPLIFIED INELASTIC ANALYSIS PROCEDURE BASED ON linearly from previous information. Three linear formulationAN ELASTIC FINITE-ELEMENT ANALYSIS

computer codes, referred to as MOMM (Mechanics of Materials
A. KAUFMAN and S. Y. HWANG (South Carolina State Coll., Model), MHOST (MARC-Hot Section Technology), and BEST
Orangeburg) Mar. 1985 14 p refs To be presentedat the (Boundary ElementStress Technology),were developedand are
21st AIAA/SAE/ASME Joint Propulsion Conf., Monterey, Calif., described. Author8-11 Jul. 1985
(NASA-TP-2421;E-2373; NAS 1.60:2421) Avail: NTIS HC
A02/MF A01 CSCL 20K

Strain redistributioncorrectionswere developedfor a simplified
inelastic analysis procedure to economically calculate material
cyclic response at the critical location of a structure for life

predictionproposes. The method was based on the assumption N85-21687"# Massachusetts Inst. of Tech., Cambridge. Dept.
that the plastic regionin the structure is localand the total strain of Aeronauticsand Astronautics.
historyrequiredfor inputcan be defined from elasticfinite-element RECENT ADVANCES IN HYBRID/MIXED FINITE ELEMENTS
analyses.Cyclicstress-strainbehaviorwasrepresentedbya bilinear T.H.H. PlAN 1985 8 p refs
kinematic hardening model. The simplifiedprocedure predicts (ContractNAG3-33)
stress-strainresponse with reasonable accuracy for thermally (NASA-CR-175574; NAS 1.26:175574) Avail: NTIS HC A02/MF
cycled problems but needs improvement for mechanically A01 CSCL 20K
load-cycledproblems.Neuber-type correctionswere derived and In formulations of Hybrid/Mixed finite element methods
incorporatedin the simplifiedprocedureto accountfor localtotal respectivelyby theHellinger-Reissnerprincipleandthe Hu-Washizu
strainredistributionundercyclicmechanicalloading.The corrected principle, the stress equilibrium equations are brought in as
simplified method was used on a mechanically load-cycled conditions of constraint through the introductionof additional
benchmarknotched-plateproblem.The predictedmaterialresponse internaldisplacementparameters.These two approachesare more
agrees well with the nonlinear finite-element solutions for the flexible and have better computingefficiencies.A procedure for
problem. The simplifiedanalysis computerprogramwas 0.3% of the choice of assumed stress terms for 3-D solids is suggested.
the central processor unit time required for a nonlinear Exampleso!utionsaregiven for platesand shells using the present
finite-element analysis. EAK formulations and the idea of semiloof elements. Author
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N85-21690"# National Aeronautics and Space Administration. plates and shells are developed and their finite element models
Lewis Research Center, Cleveland, Ohio. are tested for accuracy and economy in computation. These include
ON LOCAL TOTAL STRAIN REDISTRIBUTION USING A the shear deformation laminate theory and degenerated 3-D
SIMPLIFIED CYCLIC INELASTIC ANALYSIS BASED ON AN elasticity theory for laminates. GRA
ELASTIC SOLUTION
S. Y. HWANG (South Carolina State Coll.) and A. KAUFMAN N85-23096"# Massachusetts Inst. of Tech., Cambridge.
1985 16 p refs Proposed for presentation at the 21st Joint ON HYBRID AND MIXED FINITE ELEMENT METHODS
PropulsionConf., Monterey, Calif., 9-11 Jul. 1985; sponsored by T.H.H. PlAN 1981 19 p refs
the AIAA, SAE and ASME (Contract NAG3-33)
(NASA-TM-86913; E-2406; NAS 1.15:86913) Avail: NTIS HC (NASA-CR-175551; NAS 1.26:175551) Avail: NTIS HC AO2/MF
A02/MF A01 CSCL 20K AOl CSCL 20K

Strain redistribution corrections were developed for a simplified Three versions of the assumed stress hybrid model in finite
inelastic analysis procedure to economically calculate material element methods and the corresponding variational principles for
cyclic response at the critical location of a structure for life the formulation are presented. Examples of rank deficiency for
prediction purposes. The method was based on the assumption stiffness matrices by the hybrid stress model are given and their
that the plastic region in the structure is local and the total strain corresponding kinematic deformation modes are identified. A
history required for input can be defined from elastic finite element discussion of the derivation of general semi-Loof elements for
analyses. Cyclic stress-strain behavior was represented by a bilinear plates and shells by the hybrid stress method is given. It is shown
kinematic hardening model. The simplified procedure has been that the equilibrium model by Fraeijs de Veubeke can be derived
found to predict stress-strain response with reasonable accuracy by the approach of the hybrid stress model as a special case of
for thermally cycled problems but needs improvement for semi-Loof elements. Author
mechanically load cycled problems. This study derived and
incorporated Neuber type corrections in the simplified procedure N85-24338"# National Aeronautics and Space Administration.
to account for local total strain redistribution under cyclic Lewis Research Center, Cleveland, Ohio.
mechanical loading. The corrected simplified method was exercised UNIFIED CONSTITUTIVE MATERIAL MODELS FORNONLINEAR
on a mechanically load cycled benchmark notched plate problem. FINITE-ELEMENT STRUCTURAL ANALYSIS
Excellent agreement was found between the predicted material A. KAUFMAN, J. H. LAFLEN (General Electric Co., Cincinnati),
response and nonlinear finite element solutions for the problem, and U. S. LINDHOLM (Southwest Research Inst., San Antonio)
The simplified analysis computer program used 0.3 percent of the 10 Jul. 1985 16 p refs Proposed for presentation at 21st
CPU time required for a nonlinear finite element analysis. Author Joint Propulsion Conf., Monterey, Calif., 8-10 Jul. 1985; sponsored

by AIAA, SAE and ASME
N85-21691"# Akron Univ., Ohio. Dept. of Civil Engineering. (NASA-TM-86985; E-2529; NAS 1.15:86985) Avail: NTIS HC
VlSCOPLASTIC CONSTITUTIVE RELATIONSHIPS WITH A02/MF AOl CSCL 2OK
DEPENDENCE ON THERMOMECHANICAL HISTORY Final Unified constitutive material models were developed for
Report structural analyses of aircraft gas turbine engine components with
D. N. ROBINSON and P. A. BARTOLOTTA Mar. 1985 42 p particular application to isotropic materials used for high-pressure
refs stage turbine blades and vanes. Forms or combinations of models
(Contract NAG3-379) independently proposed by Bodner and Walker were considered.
(NASA-CR-174836; NAS 1.26:174836) Avail: NTIS HC A03/MF These theories combine time-dependent and time-independent
A01 CSCL 2OK aspects of inelasticity into a continuous spectrum of behavior.

Experimental evidence of thermomechanical history This is in sharp contrast to previous classical approaches that
dependence in the cyclic hardening behavior of some common partition inelastic strain into uncoupled plastic and creep
high-temperature structural alloys is presented with special components. Predicted stress-strain responses from these models
emphasis on dynamic metallurgical changes. The inadequacy of were evaluated against monotonic and cyclic test results for uniaxial
formulating nonisothermal constitutive equations solelY on the basis specimens of two cast nickel-base alloys, B1900+Hf and Rene'
of isothermal testing is discussed. A representation of 80. Previously obtained tension-torsion test results for Hastelloy X
thermoviscoplasticity is proposed that qualitatively accounts for alloy were used to evaluate multiaxial stress-strain cycle predictions.
the observed hereditary behavior. This is achieved by formulating The unified models, as well as appropriate algorithms for integrating
the scalar evolutionary equation in an established viscoplasticity the constitutive equations, were implemented in finite-element
theory to reflect thermomechanical path dependence. To assess computer codes. Author
the importance of accounting for thermomechanical history
dependence in practical structural analyses, two qualitative models N85-24339"# National Aeronautics and Space Administration.
are specified: (1) formulated as if based entirely on isothermal Lewis Research Center, Cleveland, Ohio.
information; (2) to reflect thermomechanical path dependence using CYCLIC STRUCTURAL ANALYSES OF ANISOTROPIC TURBINE
the proposed thermoviscoplastic representation. Predictions of the BLADES FOR REUSABLE SPACE PROPULSION SYSTEMS
two models are compared and the impact the calculated differences J.M. MANDERSCHEID and A. KAUFMAN 12 Apr. 1985 13 p
in deformation behavior may have on subsequent lifetime refs Presented at 1985 JANNAF Propulsion Meeting, San Diego,
predictions is discussed. E.A.K. Calif., 9-12 Apr. 1985; sponsored by JANNAF

(NASA-TM-86990; E-2534; NAS 1.15:86990) Avail: NTIS HC
N85-21720"# Virginia Polytechnic Inst. and State Univ., A02/MFA01 CSCL20K
Blacksburg. Dept. of Engineering Science and Mechanics. Turbine blades for reusable space propulsion systems are
GEOMETRICALLY NONLINEAR ANALYSIS OF LAMINATED subject to severe thermomechanical loading cycles that result in
ELASTIC STRUCTURES Final Report large inelastic strains and very short lives. These components
J. N. REDDY Nov. 1984 107 p refs require the use of anisotropichigh-temperaturealloysto meet the
(ContractNAG3-208) safety and durabilityrequirementsof such systems. To assess
(NASA-CR-175609; NAS 1.26:175609; PB85-127173; the effects on blade life of material anisotropy,cyclic structural
VPI-E-84-36) Avail: NTIS HC A06/MF A01 CSCL 20K analyses are being performed for the first stage high-pressure

Laminatedcomposite plates and shells that can be used to fuel turbopumpblade of the space shuttle main engine.The blade
model automobile bodies, aircraft wings and fuselages, and alloy is directionallysolidifiedMAR-M 246 alloy. The analyses are
pressure vessels among many other were analyzed. The finite based on a typicaltest stand engine cycle. Stress-strainhistories
element method, a numericaltechnique for engineeringanalysis at the airfoil critical location are computed using the MARC
of structures,is used to model the geometry and approximatethe nonlinearfinite-elementcomputer code. The MARC solutionsare
solution. Various alternative formulationsfor analyzinglaminated comparedto cyclicresponsepredictionsfrom a simplifiedstructural
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analysis procedure developed at the NASA Lewis Research N85-26885"# Wyle Labs., Inc., Huntsville, Ala.
Center. Author FLOW DYNAMIC ENVIRONMENT DATA BASE DEVELOPMENT

FOR THE SSME
C. V. SUNDARAM In NASA. Marshall Space Flight Center

N85-25893"# National Aeronautics and Space Administration. Advan. High PressureO2/H2 Technol. p 277-288 Apr. 1985
LewisResearchCenter, Cleveland,Ohio. refs
VIBRATIONAND BUCKLING OF ROTATING,PRETWlSTED, PRE- Avail: NTIS HC A99/MF E03; SOD HC CSCL 20K
CONED BEAMS INCLUDING CORIOLIS EFFECTS The fluid flow-inducedvibration of the Space Shuttle main
k. B. SUBRAHMANYAM and K. R. V. KAZA 1985 21 p refs engine (SSME) components are being studied with a view to
Proposed for presentationat the 10th Bien. Design Eng. Conf. correlatingthe frequencycharacteristicsof the pressurefluctuations
and Exhibiton Mech. Vibrationand Noise, Cincinnati,10-13 Sep. in a rocket engine to its operating conditionsand geometry. An
1985; sponsoredby ASME overviewof thedata basedevelopmentfor SSME test firingresults
(NASA-TM-87004; E-2310; NAS 1.15:87004) Avail: NTIS HC and the interactivecomputer software used to access, retrieve,
A02/MF A01 CSCL 20K and plot or print the results selectively for given thrust levels,

The effects of pretwist, precone, setting angle and Coriolis engine numbers,etc., is presented.The variousstatisticalmethods
forceson thevibrationand bucklingbehaviorof rotating,torsionally available in the computer code for data analysis are discussed.
rigid, cantilevered beams were studied.The beam is considered Plots of test data, nondimensionalizedusing parameterssuch as
to be clamped on the axis of rotation in one case, and off the fluid flow velocities, densities, and pressures, are presented.
axis of rotationin the other. Two methodsare employed for the Results are compared with those available in the literature.
solution of the vibration problem: (1) one based upon a Correlations between the resonant peaks observed at higher
finite-difference approachusing second order central differences frequencies in power spectral density plots with pump geometry
for solutionof the equations of motion,and (2) based upon the and operatingconditionsare discussed.An overviewof the status
minimumof the total potential energy functionalwith a Ritz type of the investigation is presented and future directions are
of solution procedure making use of complex forms of shape discussed. A.R.H.
functionsfor the dependentvariables.The individualand collective
effects of pretwist, precone, setting angle, thicknessratio and N85-26887"# National Aeronautics and Space Administration.
Coriolis forces on the natural frequencies and the buckling Lewis ResearchCenter,Cleveland, Ohio.
boundariesare presented.It is shownthat the inclusionof Coriolis NONLINEAR STRUCTURAL ANALYSIS FOR
effects is necessary for blades of moderate to large thickness FIBER-REINFORCED SUPERALLOY TURBINE BLADES
ratioswhile these effects are not so importantfor smallthickness D.A. HOPKINS and C. C. CHAMIS In NASA. Marshall Space
ratioblades.The possibilityof bucklingdue to centrifugalsoftening Flight Center Advan. High PressureO2/H2 Technol. p 318-340
terms for largevaluesof preconeand rotationis shown. E.A.K. Apr. 1985 refs

Avail: NTIS HC A99/MF E03; SOD HC CSCL 20K
A computational capability for predicting the nonlinear

N85-25894"# Akron Univ.,Ohio. Dept.of CivilEngineering. thermomechanicalstructuralresponseof fiber-reinforcedsuperalloy
ON THERMOMECHANICAL TESTING IN SUPPORT OF (FRS) turbineblades is described.This capability is embedded in
CONSTITUTIVE EQUATION DEVELOPMENT FOR HIGH a specialpurposecomputercode (COBSTRAN) developedat the
TEMPERATURE ALLOYS Final Report NASA Lewis Research Center. Special features of this
D. N. ROBINSON May 1985 32 p refs computational capability include accounting for: fiber/matrix
(Contract NAG3-379) reaction, nonlinear and anisotropicmaterial behavior, complex
(NASA-CR-174879; NAS 1.26:174879) Avail: NTIS HC A03/MF stress distributiondue to local and global heterogeneity, and
A01 CSCL 11F residualstressesdue to initialfabricationand/or inelasticbehavior

Three major categories of testing are identified that are duringsubsequentmissions.Numericalresultsare presentedfrom
necessary to providesupport for the developmentof constitutive analyses of a hypothetical FRS turbine blade subjected to a
equations for high temperature alloys. These are exploratory, fabrication process and subsequentmission cycle. The results
charactrizationand verificationtests. Each category is addressed demonstratethe capabilitiesof this computationaltool to; predict
and specific examples of each are given. An extensive, but not local stress/strain responseand capture trendsof localnonlinear
exhaustive, set of references is provided concerningpertinent and anisotropicmaterial behavior, relate the effects of this local
experimental results and their relationships to theoretical behavior to the global responseof a multilayeredfiber-composite
development.This guideto formulatinga meaningfultestingeffort turbineblade, and trace material history from fabricationthrough
in support of consitutiveequation development can also aid in successivemissions. Author
defining the necessary testing equipmentand instrumentationfor

the establishment of a deformation and structures testing N85-27260"# Akron Univ.,Ohio. Dept. of CivilEngineering.
laboratory. Author SOME ADVANCES IN EXPERIMENTATION SUPPORTING

DEVELOPMENT OF VISCOPLASTIC CONSTITUTIVE MODELS
Final Report

N85-25896"# Georgia Inst. of Tech., Atlanta. J.R. ELLIS and D. N. ROBINSON May 1985 62 p refs
ANALYSIS OF SHELL TYPE STRUCTURES SUBJECTED TO (ContractNAG3-379;W-7405-ENG-26)
TIME DEPENDENT MECHANICAL AND THERMAL LOADING (NASA-CR-174855;NAS 1.26:174855) Avail: NTIS HC A04/MF
Semiannual Status Report, 15 Aug. 1984 - 14 Apr. 1985 A01 CSCL 20K
G. J. SIMITSES, R. L. CARLSON, and R. RIFF May 1985 4 p The development of a biaxial extensometer capable of
(Contract NAG3-534) measuring axial, torsion, and diametral strains to near-microstrain
(NASA-CR-175747; NAS 1.26:175747) Avail: NTIS HC A02/MF resolution at elevated temperatures is discussed. An instrument
A01 CSCL 20K with this capability was needed to provide experimental support

A general mathematical model and solution methodologies for to the development of viscoplastic constitutive models. The
analyzing structural response of thin, metallic shell-type structures advantages gained when torsional loading is used to investigate
under large transient, cyclic or static thermomechanical loads is inelastic material response at elevated temperatures are
considered. Among the system responses, which are associated highlighted. The development of the biaxial extensometer was
with these load conditions, are thermal buckling, creep buckling conducted in two stages. The first involved a series of bench
and ratchetting. Thus, geometric as well as material-type calibration experiments performed at room temperature. The
nonlinearities (of high order) can be anticipated and must be second stage involved a series of in-place calibration experiments
considered in the development of the mathematical model, conducted at room and elevated temperature. A review of the

G.L.C. calibration data indicated that all performance requirements
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regarding resolution, range, stability, and crosstalk had been met The transfer module can handle different elemental mesh densities
by the subject instrument over the temperature range of interest, for the heat transfer analysis and the structural analysis. Author
21 C to 651 C. The scope of the in-place calibration experiments

was expanded to investigate the feasibility of generating stress N85-27952"# National Aeronautics and Space Administration.
relaxation data under torsional loading. B.W. Lewis Research Center, Cleveland, Ohio.

OVERVIEW OF STRUCTURAL RESPONSE: PROBABILISTIC
N85-27261"# General Electric Co., Cincinnati, Ohio. Aircraft STRUCTURAL ANALYSIS Abstract Only
Engine Business Group. C.C. CHAMIS In its Struct. Integrity and Durability of Reusable
COMPONENT-SPECIFIC MODELING Annual Status Report Space Propulsion Systems p 63-66 May 1985
R. L. MCKNIGHT 1984 115 p Avail: NTIS HC A09/MF A01 CSCL 20K
(Contract NAS3-23687) Advanced analysis methods are required to predict accurately
(NASA-CR-174765; NAS 1.26:174765; ASR-1) Avail: NTIS HC the structural response (static, transient, cyclic, etc.) and
A06/MF A01 CSCL 20K accompanying local stresses in space propulsion system

A series of interdisciplinary modeling and analysis techniques components operating in a fatigue environment consisting of
that were specialized to address three specific hot section complex thermal and mechanical load spectra. The probabilistic
components are presented. These techniques will incorporate data approach to structural response consists of the following program
as well as theoretical methods from many diverse areas including elements: (1) composite load spectra, (2) probabilistic structural
cycle and performance analysis, heat transfer analysis, linear and analysis methods development, (3) probabilitic finite element theory,
nonlinear stress analysis, and mission analysis. Building on the (4) probabilistic structural analysis application, (5) structural tailoring
proven techniques already available in these fields, the new of turbopump blades, (6) unified theory of dynamic creep
methods developed will be integrated into computer codes to buckling/ratcheting, (7)creep buckling/ratcheting analyzer, and (8)
provide an accurate, efficient and unified approach to analyzing nonlinear COBSTRAN development. Research activities on all of
combustor burner liners, hollow air-cooled turbine blades and these program elements (except the creep buckling/ratcheting
air-cooled turbine vanes. For these components, the methods analyzer) are under way. G.L.C.
developed will predict temperature, deformation, stress and strain
histories throughout a complete flight mission. Author

N85-27953"# Rockwell International Corp., Canoga Park, Calif.

N85-27263"# Connecticut Univ., Storrs. Dept. of Mechanical COMPOSITE LOADS SPECTRA FOR SELECT SPACE
Engineering. PROPULSIONSTRUCTURAL COMPONENTS Abstract Only
ELEVATED TEMPERATURE BIAXlAL FATIGUE Final Report, J.F. NEWELL In NASA. Lewis Research Center Struct. Integrity
15 Feb. 1981 - 31 Oct. 1984 and Durability of Reusable Space Propulsion Systems p 67-75
E. H. JORDAN 31 Oct. 1984 167 p refs May 1985
(Contract NAG3-160) (Contract NAS3-24382)
(NASA-CR-175795; NAS 1.26:175795) Avail: NTIS HC A09/MF Avail: NTIS HC A09/MF A01 CSCL 20K
A01 CSCL 20K Rocket engine technology continues to demand higher

A three year experimental program for studying elevated performance with lighter weight components that have man-rated
temperature biaxial fatigue of a nickel based alloy Hastelloy-X has reliability requirements. These requirements have yielded higher
been completed. A new high temperature fatigue test facility with operating pressures, temperatures, and transient effects as well
unique capabilities has been developed. Effort was directed toward as markedly increased mechanical vibration and flow-related loads.
understanding multiaxial fatigue and correlating the experimental The difficulty in installation, cost, and potential for destroying an
data to the existing theories of fatigue failure. The difficult task of engine severely limited the required instrumentation and
predicting fatigue lives for non-proportional loading was used as measurements to adequately define loads of key components such
an ultimate test for various life prediction methods being as turbine blades. Also, accurate analytical methodologies for
considered. The primary means of reaching improved undertanding defining internal flow-related loads are just emerging for problems
were through several critical non-proportional loading experiments, typically found in rocket engines. The difficulty of obtained
It was discovered that the cracking mode switched from primarily measured data and verified analysis methodologies has led to the
cracking on the maximum shear planes at room temperature to probabilistic load definition approach. G.L.C.
cracking on the maximum normal strain planes at 649 C. Author

N85-27954"# Battelle Columbus Labs., Ohio.
N85-27264"# National Aeronautics and Space Administration. COMPOSITE LOADS SPECTRA FOR SELECT SPACE
Lewis Research Center, Cleveland, Ohio. PROPULSION STRUCTURAL COMPONENTS: PROBABILISTIC
A COMPUTER ANALYSIS PROGRAM FOR INTERFACING LOAD MODEL DEVELOPMENT Abstract Only
THERMAL AND STRUCTURAL CODES R. KURTH In NASA. Lewis Research Center Struct. Integrity
R. L. THOMPSON and R. J. MAFFEO (GE, Cincinnati) 1985 and Durability of Reusable Space Propulsion Systems p 77-83
17 p refs Proposed for presentation at the Intern. Computers May 1985
in Eng. Conf. and Exhibition, Boston, 4-8 Aug. 1985; sponsored (Contract NAS3-24382)
by ASME Avail: NTIS HC A09/MF A01 CSCL 20K
(NASA-TM-87021; E-2571; NAS 1.15:87021) Avail: NTIS HC This effort is in support of the development of the expert system
A02/MF A01 CSCL 20K of computer codes to predict the loads on select structural

A software package has been developed to transfer components of a space propulsion engine. The development will
three-dimensional transient thermal information accurately, be based primarily on the space shuttle main engine (SSME) test
efficiently, and automatically from a heat transfer analysis code to data base. Because of random variations of the many different
a structural analysis code. The code is called three-dimensional sources of the Ioadings on the selected structural components
TRansfer ANalysis Code to Interface Thermal and Structural codes, and transients, a probabilistic approach to the problems was
or 3D TRANCITS. TRANCITS has the capability to couple finite adopted. The goal of this task is to characterize all of the individual
difference and finite element heat transfer analysis codes to linear sources of loads at critical structural locations, such as the turbine
and nonlinear finite element structural analysis codes. TRANCITS blades, the transfer ducts, and liquid oxygen posts, using
currently supports the output of SINDA and MARC heat transfer state-of-the-art probabilistic methods with varying levels of
codes directly. It will also format the thermal data output directly sophistication. The second phase of this work is the development
so that it is compatible with the input requirements of the NASTRAN of a composite load model based on a probabilistic synthesis of
and MARC structural analysis codes. Other thermal and structural the individual load model previously developed. This model will be
codes can be interfaced using the transfer module with the neutral based on the stochastic combination of the load variables and
heat transfer input file and the neutral temperature output file. not on the physical process for the combination of the individual
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loads to the composite load seen by the selected structural developed, they can easily be adapted to existing general purpose
components. R.J.F. programs. Furthermore, the variational basis for these methods

enables them to be adapted to a wide variety of structural elements
N85-27955"# Southwest Research Inst., San Antonio, Tex. and to provide a consistent basis for incorporating probabilistic
PROBABILISTIC STRUCTURAL ANALYSIS THEORY features in many aspects of the structural problem. Tasks
DEVELOPMENT Abstract Only concluded include the theoretical development of probabilistic
O. H. BURNSIDE In NASA. Lewis Research Center Struct. variationalequationsfor structuraldynamics,the developmentof
Integrityand Durabilityof Reusable Space PropulsionSystems p efficient numerical algorithms for probabilistic sensitivity
85-92 May 1985 displacementand stressanalysis,and integrationof methodologies
(ContractNAS3-24389) into a pilotcomputercode. R.J.F.
Avail: NTIS HC A09/MF A01 CSCL 20K

The objective of the ProbabilisticStructuralAnalysisMethods
(PSAM) project is to develop analysis techniques and computer
programsfor predicting the probabilistic response of critical
structural components for current and future space propulsion
systems.This technologywill play a central role in establishing N85-27959"# Georgia Inst.of Tech., Atlanta.DYNAMIC CREEP BUCKLING: ANALYSIS OF SHELL
systemperformanceanddurability.The firstyear's technicalactivity
is concentratingon probabilisticfinite element formulationstrategy STRUCTURES SUBJECTED TO TIME-DEPENDENT MECHANI-
and code development.Work is also in progressto surveycritical CAL AND THERMAL LOADING Abstract Only
materials and space shuttle mian engine components. The G.J. SIMITSES, R. L. CARLSON, and R. RIFF In NASA. Lewis

Research Center Struct. Integrity and Durability of Reusable Spaceprobabilistic finite element computer program NESSUS (Numerical
Propulsion Systems p 117-120 May 1985

Evaluation of Stochastic Structures Under Stress) is being (Contract NAG3-534)developed. The final probabilistic code will have, in the general
case, the capability of performing nonlinear dynamic of stochastic Avail: NTIS HC A09/MF A01 CSCL 20K

The objective of the present research is to develop a generalstructures. It is the goal of the approximate methods effort to
mathematical model and solution methodologies for analyzing theincrease problem solving efficiency relative to finite element

methods by using energy methods to generate trial solutions which structural response of thin, metallic shell structures under large
satisfy the structural boundary conditions. These approximate transient, cyclic, or static thermomechanical loads. Among the
methods will be less computer intensive relative to the finite element system responses associated with these loads and conditions are
approach. R.J.F. thermal buckling, creep buckling, and ratcheting. Thus geometric

and material nonlinearities (of high order) can be anticipated and
must be considered in developing the mathematical model. A

N85°27956"# MARC Analysis Research Corp., Palo Alto, Calif. complete, true ab-initio rate theory of kinematics and kinetics for
PROBABILISTIC FINITE ELEMENT DEVELOPMENT Abstract continuum and curved thin structures, without any restriction on
Only the magnitude of the strains or the deformations, was formulated.
J. NAGTEGAAL In NASA. Lewis Research Center Struct. The time dependence and large strain behavior are incorporated
Integrity and Durability of Reusable Space Propulsion Systems p through the introduction of the time rates of metric and curvature
93-98 May 1985 in two coordinate systems: fixed (spatial) and convected (material).
(Contract NAS3-24389) The relations between the time derivative and the covariant
Avail: NTIS HC A09/MF A01 CSCL 20K derivative (gradient) were developed for curved space and motion,

The probabilistic finite element computer program known as so the velocity components supply the connection between the
Numerical Evaluation of Stochastic Structures Under Stress equations of motion and the time rates of change of the metric
(NESSUS) is being developed for the analysis of critical structural and curvature tensors. R.J.F.
components for reusable space propulsion systems. First year
efforts involve the formulation of the probabilistic analysis strategy
and the development of a probabilistic linear analysis code. The
ultimate goal of the 3-year program is the development of a finite
element code capable of performing nonlinear dynamic analysis
of structures having stochastic material properties, geometry, and N85-27961"# National Aeronautics and Space Administration.
boundary conditions and subjected to random loading. Three levels Lewis Research Center, Cleveland, Ohio.
of sophistication are envisioned for the stochastic description of INTERACTION OF HIGH-CYCLE AND LOW-CYCLE FATIGUE
the structural problem, namely:(1) homogeneous random variable OF HAYNES 188 ALLOY AT 1400 F DEG Abstract Only
for stiffness, mass, damping,and external loading; (2) stochastic P.T. BIZON, D. J. THOMA, and G. R. HALFORD In its Struct.
characterizationof variables at the element level, with specified Integrity and Durabilityof Reusable Space PropulsionSystems p
interelement correlations; and (3) stochastic interpolationof 129-138 May 1985
variables within a finite element. Two alternative probabilistic Avail: NTIS HC A09/MF A01 CSCL 20K
analysis methods will be developed, allowingfor all three levels The interactionof low-cyclefatigue(LCF)and high-cyclefatigue
of modelingsophistication. R.J.F. (HCF) was evaluated at the NASA Lewis Research Center on

Haynes 188 alloy at 1400 F. Completely reversed, axial-load,
N85-27957"# NorthwesternUniv., Evanston,II1. strain-controlledfatigue tests were performed to determine the
PROBABILISTIC FINITE ELEMENT: VARIATIONAL THEORY baselinedata for this study. Additionalspecimensfor interaction
Abstract Only tests were cycled first at a high strain range for various small
T. BELYTSCHKO and W. K. LIU In NASA. Lewis Research portions of expected LCF life followedby a step change to a low
Center Struct. Integrity and Durability of Reusable Propulsion strain range to failure in HCF. Failure was defined as complete
Systems p 99-107 May 1985 specimenseparation.The resultant lives varied between 10 and
(Contract NAG3-535) 5000 cycles for the low-cycle fatigue tests and between 4500
Avail: NTIS HC A09/MF A01 CSCL 20K and 3 million for the high-cyclefatigue tests. For the interaction

The goal of this research is to provide techniqueswhich are tests the low-cycle-lifeportion ranged from 30 and 1000 applied
cost-effectiveand enable the engineerto evaluate the effect of cycles while the high-frequencylife ranged from 300 and 300,000
uncertaintiesin complex finite element models. Embeddingthe cycles to failure. The step change results showed a significant
probabilisticaspects in a variational formulation is a natural nonlinearinteractionin expected life. Applicationof a small part
approach.In addition,a variationalapproachto probabilisticfinite of the LCF life drasticallydecreased the available HCF life as
elements enables it to be incorporatedwithin standard finite compared with what would have been expected by the classical
element methodologies.Therefore, once the procedures are linear damagerule (LDR). B.W.
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N85-27962"# National Aeronautics and Space Administration. The design was lighter than the four-leg truss-typetower used for
Lewis ResearchCenter, Cleveland,Ohio. the Mod-O and Mod-OA wind turbines. The estimated cost for
REEXAMINATION OF CUMULATIVE FATIGUE DAMAGE LAWS fabricationand erectionof the hyperboloidtower is less than that
Abstract Only for any of the four Mod-OA towers constructed to date. It is
G. R. HALFORD and S. S. MANSON (Case Western Reserve concludedthat the hyperboloid tower concept is a suitable
Univ.) In its Struct. Integrityand Durabilityof Reusable Space alternativeto the truss-typetower for applicationto horizontalaxis
PropulsionSystems p 139-145 May 1985 refs wind turbines. E.A.K.
Avail: NTIS HC A09/MF A01 CSCL 20K

Treatment of accumulated fatigue damage in materials and N85-31530"# National Aeronautics and Space Administration.
structuressubjectedto a historyof nonsimplerepetitiveIoadings LewisResearchCenter, Cleveland,Ohio.
has receiveda largeamountof attentionin recentyears.A method NONLINEAR CONSTITUTIVE RELATIONS FOR HIGH
used for the treatment of complex loading is known as linear TEMPERATURE APPLICATION, 1984
damage rule. It was recognizedthat, this method could result in Jun. 1985 368 p refs Symp. held in Cleveland, 15-17 Jun.
unconservativepredictionsof material and structuralbehavior.An 1984
intense flurry of activity followed in the pursuit of alternative (NASA-CP-2369;E-2368; NAS 1.55:2369) Avail: NTIS HC
methodsof analysisthat would predictbehavior more accurately. A16/MF A01 CSCL 20K
So many methods were introducedthat it became necessary Nonlinearconstitutiverelationsfor hightemperatureapplications
periodicallyto prepare reviewpapersplacingall the new methods were discussed. The state of the art in nonlinearconstitutive
into perspective.The current integratedview regarding the state modelingof high temperature materials was reviewed and the
of the art as it appliesto thiseffort is discussed.The morerecently need for future researchand developmentefforts in this area was
proposedcumulativedamage life predictionmethodsare reviewed, identified.Considerable research efforts are urgently needed in
The double linear damage rule (DLDR), which has evolved over the development of nonlinear constitutive relations for high
the past 20 years, is reexaminedwith the intent of improvingits temperature applicationsprompted by recent advances in high
accuracyand applicabilityto engineeringproblems. Modifications temperature materialstechnologyand new demandson material
are introducedto the analytical formulation to achieve greater and componentperformance.Topicsdiscussedinclude:constitutive
compatibilitybetween the DLDR and the so-called damage curve modeling, numerical methods, material testing, and structural
approach,whichis an alternativecontinuousrepresentationof the applications.
DLDR. B.W.

N85-31531"# SouthwestResearchInst., San Antonio,Tex.
N85-27963"# National Aeronautics and Space Administration. A SURVEY OF UNIFIED CONSTITUTIVE THEORIES
LewisResearchCenter, Cleveland,Ohio. K.S. CHAN, U. S. LINDHOLM, S. R. BODNER (Technion- Israel
CYCLIC STRUCTURAL ANALYSES OF SSME TURBINE Inst. of Tech., Haifa), and K. P. WALKER (EngineeringScientific
BLADES Software, Inc., Smithfield,R.I.) In NASA. LewisResearchCenter
A. KAUFMAN and J. M. MANDERSCHEID In its Struct. Integrity NonlinearConstitutiveRelations for High Temp. Appl., 1984 p
and Durabilityof Reusable Space PropulsionSystems p 147-154 1-23 Jun. 1985 refs
May 1985 refs (ContractNAS3-23925)
Avail: NTIS HC A09/MF A01 CSCL 20K Avail: NTIS HC A16/MF A01 CSCL 20K

The problems of calculating the structural response of The state of the art of time temperature dependent elastic
high-temperaturespace propulsioncomponents such as turbine viscoplasticconstitutivetheorieswhich are based on the unified
blades for the fuel turbopump are addressed. The first approach werre assessed. This class of constitutivetheories is
high-pressure-stage fuel turbine blade (HPFTB) in the characterizedby the use of kineticequationsand internalvariables
liquid-hydrogen turbopump of the space shuttle main engine with appropriateevolutionaryequationsfor treatingall aspects of
(SSME) was selected for this study. In the past these blades inelastic deformation including plasticity, creep, and stress
have cracked in the blade shank region and at the airfoil leading relaxation.More than 10 such unified theorieswhich are shown
edge adjacent to the platform.To achieve the necessary durability, to satisfy the uniquenessand stabilitycriteria imposed by Drucker's
these blades are currently being cast by using directional postulate and Ponter's inequalities are identified. The theories are
solidification. Single-crystal alloys are also being investigated for compared for the types of flow law, kinetic equation, evolutionary
future SSME applications. The study evaluated the utility of equation of the internal variables, and treatment of temperature
advanced structural analysis methods in assessing the low-cycle dependence. The similarities and differences of these theories
fatigue lives of these anisotropic components. The turbine blade are outlined in terms of mathematical formulations and illustrated
airfoil of the high-pressure stage of the SSME fuel turbopump by comparisons of theoretical calculations with experimental results
was analyzed because it has a history of rapid crack initiation, which include monotonic stress-strain curves, cyclic hysteresis

B.W. loops, creep and stress relaxation rates, and thermomechanical
loops. Numerical methods used for integrating these stiff time

N85-30361"# National Aeronautics and Space Administration. temperature dependent constitutive equations are reviewed.
Lewis Research Center, Cleveland, Ohio. E.A.K.
STRUCTURAL ANALYSIS AND COST ESTIMATE OF AN
EIGHT-LEG SPACE FRAME AS A SUPPORT STRUCTURE FOR N85-31533"# AkronUniv., Ohio.
HORIZONTAL AXIS WIND TURBINES Final Report THERMOMECHANICAL DEFORMATION IN THE PRESENCE OF
R. L. SIZEMORE, J. R. WINEMILLER, S. T. YEE, and G.R. METALLURGICAL CHANGES
FREDERICK (ToledoUniv.) Oct. 1983 27 p refs D.N. ROBINSON In NASA. Lewis ResearchCenter Nonlinear
(ContractDEoAI01-76ET-20320) ConstitutiveRelationsfor High Temp. Appl., 1984 p 51-54 Jun.
(NASA-TM-83470; E-1529; DOE/NASA/20320-49; NAS 1985 refs
1.15:83470) Avail: NTIS HC A03/MF A01 CSCL 20K (ContractNAG3-379)

A structuralanalysiswas performed and a cost estimatewas Avail: NTIS HC A16/MF A01 CSCL 20K
preparedto determine if an eight-leg space frame tower in which Nonisothermaltesting that can be used as a basis of a
the legs lie on the surface of a hyperboloidof revolutionwas a nonisothermalrepresentationis discussed.Related tests regarding
suitable alternativeto the truss-type tower for applicationto an metallurgical changes that occur in other high temperature
intermediatesize horizontalaxis windturbine.This tower concept structuralalloys are discussed.A viscoplasticconstitutivemodel
had eight straightpipe elements as its main structuralmembers capable of qualitativelyrepresentingthe behavioral features was
that lieon the surface of a hyperboloidof revolution.The structural formulated.Thismodelis used to assessthe differencesinultimate
analysis included: response to static loads, determination of life predictionin some typical nonisothermalstructuralproblems
vibrationcharacteristics,and investigationof overallframe stability, when the constitutive model does or does not account for
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metallurgicallyinduced thermomechanical history dependence, representing the inelastic behavior of metals at elevated
E.A.K. temperatures. In particular, a class of unified theories (or

viscoplastic constitutive models) have been proposed to simulate
N85-31536"# Texas A&M Univ., College Station. Aerospace material responses such as cyclic plasticity, rate sensitivity, creep
Engineering Dept. deformations, strain hardening or softening, etc. This approach
ON THE USE OF INTERNAL STATE VARIABLES IN differs from the conventional creep and plasticity theory in that
THERMOVISCOPLASTIC CONSTITUTIVE EQUATIONS both the creep and plastic deformationsare treated as unified
D. H. ALLEN and J. M. BEEK /n NASA. LewisResearchCenter time-dependentquantities.Although most of viscoplasticmodels
Nonlinear Constitutive Relations for High Temp. Appl., 1984 p give better material behavior representation, the associated
83-102 Jun. 1985 refs constitutivedifferentialequationshave stiff regimeswhich present
(ContractNAG3-491) numericaldifficultiesintime-dependentanalysis.In this connection,
Avail: NTIS HC A16/MF A01 CSCL 20K appropriatesolutionalgorithmmust be developedfor viscoplastic

The general theory of internal state variables are reviewed to analysis via finite element method. G.L.C.
apply it to inelastic metals in use in high temperature environments.
In this process, certain constraints and clarifications will be made
regarding internal state variables. It is shown that the Helmholtz
free energy can be utilized to construct constitutive equations which
are appropriate for metallic superalloys. Internal state variables
are shown to represent locally averaged measures of dislocation N85-31543"# National Aeronautics and Space Administration.
arrangement, dislocation density, and intergranular fracture. The Lewis Research Center, Cleveland, Ohio.
internal state variable model is demonstrated to be a suitable TWO SIMPLIFIED PROCEDURES FOR PREDICTING CYCLIC
framework for comparisonof several currentlyproposed models MATERIAL RESPONSE FROM A STRAIN HISTORY
for metalsand can thereforebe usedto exhibithistorydependence, A. KAUFMAN and V. MORENO (Pratt and WhitneyAircraft, East
nonlinearity,and rate as well as temperaturesensitivity. E.A.K. Hartford,Conn.) /n its NonlinearConstitutiveRelationsfor High

Temp. Appl., 1984 p 201-219 Jun. 1985 refs
N85-31538"# National Aeronautics and Space Administration. Avail: NTIS HC A16/MF A01 CSCL 20K
LewisResearchCenter, Cleveland,Ohio. Simplified inelastic analysis procedures were developed at
A COMPARISON OF TWO CONTEMPORARY CREEP-FATIGUE NASA Lewis and Pratt & Whitney Aircraft for predicting the
LIFE PREDICTION METHODS Abstract Only stress-strain response at the critical location of a
M. A. MCGAW /n its Nonlinear ConstitutiveRelations for High thermomechanically cycled structure. These procedures are
Temp. AppL, 1984 p 125 Jun. 1985 intended primarilyfor use as economical structuralanalysis tools
Avail: NTIS HC A16/MF A01 CSCL 20K inthe earlydesignstagesof aircraftengine hotsectioncomponents

A comparisonof two contemporaryapproachesto creep fatigue where nonlinear finite-element analyses would be prohibitively
life prediction,the ContinuousDamage Mechanics as developed expensive. Both simplifiedmethods use as input the total strain
at ONERA, andStrainRange Partitioning,is presented.The general historycalculated from a linear elasticanalysis.The elasticresults
frameworkof each of theseapproaches,bothbeingcrack initiation are modified to approximate the characteristicsof the inelastic
life predictiontools, are examined.The basisfor, and implications cycle byincrementalsolutiontechniques.Avon Vises yieldcriterion
of each predictivemethod are discussed,relative to the material is used to determinethe onsetof active plasticity.The fundamental
class(es)for whicheach was developed,as well as to their general assumption of these methods is that the inelastic strain is local
applicability.Evident is a need for criticalexperimentscapable of and constrained from redistributionby the surrounding elastic
discriminatingamong the models; to this end, the question of material G.L.C.
choiceof experimentand material is addressed. Author

N85-31541"# Texas A&M Univ., College Station. Aerospace
EngineeringDept.
NUMERICAL CONSIDERATIONS IN THE DEVELOPMENT AND

IMPLEMENTATION OF CONSTITUTIVE MODELS N85-31545"# Akron Univ., Ohio. Dept. of Civil Engineering.
W. E. HAISLER and P. K. IMBRIE /n NASA. Lewis Research SOME ADVANCES IN EXPERIMENTATION SUPPORTING
Center Nonlinear ConstitutiveRelations for High Temp. Appl., DEVELOPMENT OF VISCOPLASTIC CONSTITUTIVE MODELS
1984 p 169-185 Jun. 1985 refs J.R. ELLIS and D. N. ROBINSON /n NASA. Lewis Research
(Contract NAG3-491) Center Nonlinear Constitutive Relations for High Temp. Appl.,
Avail: NTIS HC A16/MF A01 CSCL 20K 1984 p 237-271 Jun. 1985 refs Previously announced as

Several unified constitutive models were tested in uniaxial form N85-27260
by specifying input strain histories and comparing output stress (Contract NAG3-379; W-7405-ENG-26)
histories. The purpose of the tests was to evaluate several time Avail: NTIS HC A16/MF A01 CSCL 20K
integration methods with regard to accuracy, stability, and The development of a biaxial extensometer capable of
computational economy. The sensitivity of the models to slight measuring axial, torsion, and diametral strains to near-microstrain
changes in input constants was also investigated. Results are resolution at elevated temperatures is discussed. An instrument
presented for In100 at 1350 F and Hastelloy-X at 1800 F. with this capability was needed to provide experimental support

Author to the development of viscoplastic constitutive models. The
advantages gained when torsional loading is used to investigate

N85-31542"# National Aeronautics and Space Administration. inelastic material response at elevated temperatures are
Lewis Research Center, Cleveland, Ohio. highlighted. The development of the biaxial extensometer was
ON NUMERICAL INTEGRATION AND COMPUTER conducted in two stages. The first involved a series of bench
IMPLEMENTATION OF VISCOPLASTIC MODELS calibration experiments performed at room temperature.The
T. Y. CHANG (Akron Univ., Ohio), J. P. CHANG (Akron Univ., secondstage involveda seriesof in-placecalibrationexperiments
Ohio), and R. L. THOMPSON /n its Nonlinear Constitutive performed at room temperature.A reviewof the calibrationdata
Relations for High Temp. Appl., 1984 p 187-200 Jun. 1985 indicatedthat all performancerequirementsregarding resolution,
refs range, stability, and crosstalk had been met by the subject
Avail: NTIS HC A16/MF A01 CSCL 20K instrumentover the temperaturerange of interest,21 C to 651 C.

Due to thestringentdesignrequirementforaerospaceor nuclear The scope of the in-placedcalibrationexperimentswas expanded
structuralcomponents,considerableresearchinterestshave been to investigatethe feasibilityof generating stress relaxation data
generated on the development of constitutive models for undertorsionalloading. B.W. (IAA)
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N85-31546"# Michigan State Univ., East Lansing. Dept. of This approach subsequently was abandoned at General Atomic
Metallurgy, Mechanics, and Materials Science. Company in favor of parallel gage length specimens and axial
A COMPARISON OF SMOOTH SPECIMEN AND ANALYTICAL extensiometers. F.M.R.
SIMULATION TECHNIQUES FOR NOTCHED MEMBERS AT

ELEVATED TEMPERATURES N85-32341"# Akron Univ., Ohio. Dept. of Civil Engineering.
J. F. MARTIN In NASA. Lewis Research Center Nonlinear A CONTINUOUS DAMAGE MODEL BASED ON
Constitutive Relations for High Temp. Appl., 1984 p 273-281 STEPWlSE-STRESS CREEP RUPTURE TESTS Final Report
Jun. 1985 refs D.N. ROBINSON Cleveland Jul. 1985 24 p refs
(Contract NAG3-51) (Contract NAG3-379)
Avail: NTIS HC A16/MF A01 CSCL 20K (NASA-CR-174941; NAS 1.26:174941) Avail: NTIS HC A02/MF

Experimental strain measurements have been made at the A01 CSCL 20K
highly strained regions on notched plate specimens that were made A creep damage accumulation model is presented that makes
of Hastelloy X. Tests were performed at temperatures up to 1,600 use of the Kachanov damage rate concept with a provision
F. Variable load patterns were chosen so as to produce plastic accounting for damage that results from a variable stress history.
and creep strains. Were appropriate, notch root stresses were This is accomplished through the introduction of an additional term
experimentally estimated by subjecting a smooth specimen to the in the Kachanov rate equation that is linear in the stress rate.
measured notch root strains. The results of three analysis Specification of the material functions and parameters in the model
techniques are presented and compared to the experimental data. requires two types of constituting a data base: (1) standard
The most accurate results were obtained from an analysis constant-stress creep rupture tests, and (2) a sequence of two-step
procedure that used a smooth specimen and the Neuber relation creep rupture tests. Author
to simulate the notch root stress-strain response. When a
generalized constitutive relation was used with the Neuber relation, N85-33520"# National Aeronautics and Space Administration.
good results were also obtained, however, these results were not Lewis Research Center, Cleveland, Ohio.
as accurate as those obtained when the smooth specimen was APPLICATION OF TRACTION DRIVES AS SERVO
used directly. Finally, a general finite element program, ANYSIS, MECHANISMS
was used which resulted in acceptable solutions, but, these were S.H. LOEWENTHAL, D. A. ROHN, and B. M. STEINETZ In
the least accurate predictions. Author NASA. Ames Research Center 19th Aerospace Mech. Symp. p

119-139 Aug. 1985 refs
N85-31548"# Cincinnati Univ., Ohio. Dept. of Aerospace Avail: NTIS HC A17/MF A01 CSCL 20K
Engineering and Applied Mechanics. The suitability of traction drives for a wide class of aerospace
FINITE ELEMENT ANALYSIS OF NOTCH BEHAVIOR USING A control mechanisms is examined. Potential applications include
STATE VARIABLE CONSTITUTIVE EQUATION antenna or solar array drive positioners, robotic joints, control
L. T. DAME, D. C. STOUFFER, and N. ABUELFOUTOUH In moment gyro (CMG) actuators and propeller pitch change
NASA. Lewis Research Center Nonlinear Constitutive Relations mechanisms. In these and similar applications the zero backlash,
for High Temp. Appl., 1984 p 297-310 Jun. 1985 refs high torsional stiffness, low hysteresis and torque ripple
(Contract NAS3-23698; NAS3-23927; NAG3-511) characteristics of traction drives are of particular interest, as is
Avail: NTIS HC A16/MF A01 CSCL 20K the ability to run without liquid lubrication in certain cases. Wear

The state variable constitutive equation of Bodner and Partom and fatigue considerations for wet and dry operation are examined
was used to calculate the load-strain response of Inconel 718 at along with the tribological performance of several promising self
649 C in the root of a notch. The constitutive equation was used lubricating polymers for traction contracts. The speed regulation
with the Bodner-Partom evolution equation and with a second capabilities of variable ratio traction drives are reviewed. A torsional
evolution equation that was derived from a potential function of stiffness analysis described suggests that traction contacts are
the stress and state variable. Data used in determining constants relatively stiff compared to gears and are significantly stiffer than
for the constitutive models was from one-dimensional smooth bar the other structural elements in the prototype CMG traction drive
tests. The response was calculated for a plane stress condition analyzed. Discussion is also given of an advanced turboprop
at the root of the notch with a finite element code using constant propeller pitch change mechanism that incorporates a traction
strain triangular elements. Results from both evolution equations drive. Author
compared favorably with the observed experimental response. The
accuracy and efficiency of the finite element calculations also N85-33541"# General Electric Co., Cincinnati, Ohio. Advanced
compared favorably to existing methods. Author Technology Programs Dept.

A REVIEW OF PATH-INDEPENDENT INTEGRALS IN
N85-32340"# Akron Univ.,Ohio. Dept. of Civil Engineering. ELASTIC-PLASTIC FRACTURE MECHANICS, TASK 4 Interim
RESULTS OF AN INTERLABORATORY FATIGUE TEST Report
PROGRAM CONDUCTED ON ALLOY 800H AT ROOM AND K.S. KIM Aug. 1985 33 p refs
ELEVATED TEMPERATURES Final Report (ContractNAS3-23940)
J. R. ELLIS Jul. 1985 38 p refs Sponsored in part by (NASA-CR-174956; NAS 1.26:174956) Avail: NTIS HC A03/MF
General Atomic Co. A01 CSCL 20K
(Contract NAG3-379) The path independent (P-I) integrals in elastic plastic fracture
(NASA-CR-174940; NAS 1.26:174940) Avail: NTIS HC A03/MF mechanics which have been proposed in recent years to overcome
A01 CSCL 20K the limitations imposed on the J integral are reviewed. The P-I

The experimental approach adopted for low cycle fatigue tests integrals considered herein are the J integral by Rice, the
of alloy 800H involved the use of electrohydraulic test systems, thermoelastic P-I integrals by Wilson and Yu and by Gurtin, the
hourglass geometry specimens, diametral extensometers, and axial J* integral by Blackburn, the J sub theta integral by Ainsworth et
strain computers. Attempts to identify possible problem areas were al., the J integral by Kishimoto et al., and the delta T sub p and
complicated by the lack of reliable data for the heat of Alloy delta T* sub p integrals by Atluri et al. The theoretical foundation
800H under investigation. The method adopted was to generate of these P-I integrals is examined with emphasis on whether or
definitive test data in an Interlaboratory Fatigue Test Program. not path independence is maintained in the presence of
The laboratories participating in the program were Argonne National nonproportional loading and unloading in the plastic regime, thermal
Laboratory, Battelle Columbus, Mar-Test, and NASA Lewis. Fatigue gradients, and material inhomogeneities. The similarities,
tests were conducted on both solid and turbular specimens at differences, salient features, and limitations of these P-I integrals
temperatures of 20, 593, and 760 C and strain ranges of 2.0, 1.0, are discussed. Comments are also madewith regard to the physical
and 0.5 percent. The subject test method can, under certain meaning, the possibility of experimental measurement, and
circumstances, produce fatigue data which are serious in error, computational aspects. Author
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N85-34427"# National Aeronautics and Space Administration. approaching the 10,000 to 12,000 psi ultimate strength and 5000
Lewis Research Center, Cleveland, Ohio. psi high cycle fatigue strength of the wood epoxy composite could
NONLINEAR FLAP-LAG-EXTENSIONAL VIBRATIONS OF be achieved. Author
ROTATING, PRETWlSTED, PRECONED BEAMS INCLUDING
CORIOLIS EFFECTS

K. B. SUBRAHMANYAM (NBKR Inst. of Science and Tech.) and N86-10588"# GeorgiaInst. of Tech., Atlanta.
K. R. V. KAZA 1985 35 p refs Presented at the 19th ANALYSIS OF LARGE, NON-ISOTHERMAL ELASTIC-VISCO-
Midwestern Mech. Conf., Columbus, Ohio, 9-11 Sep. 1985; PLASTIC DEFORMATIONS

sponsored by the Ohio State Univ. R. RIFF, R. L. CARLSON, and G. J. SIMITSES 1984 4 p
(NASA-TM-87102; E-2598; NAS 1.15:87102) Avail: NTIS HC refsA03/MF AOl CSCL 20K

The effects of pretwist, precone, setting angle, Coriolis forces (Contract NAG3-534)(NASA-CR-176220; NAS 1.26:176220) Avail: NTIS HC A02/MF
and second degree geometric nonlinearities on the natural A01 CSCL 20K
frequencies, steady state deflections and mode shapes of rotating, The development of a general mathematical model and
torsionally rigid, cantilevered beams were studied. The governing solutions of test problems to analyze large nonisothermal
coupled equations of flap lag extensional motion are derived elasto-visco-plastic deformatisms of structures is discussed.
including the effects of large precone and retaining geometric Geometric and material type nonlinearities of higher order are
nonlinearities up to second degree. The Galerkin method, with present in the development of the mathematical model and in the
nonrotating normal modes, is used for the solution of both steady developed solution methodology. DOE
state nonlinear equations and linear perturbation equations.
Parametric indicating the individualand collective effects of pretwist,
precone, Coriolis forces and second degree geometric
nonlinearities on the steady state deflection, natural frequencies N86-19589"# Southwest Research Inst., San Antonio, Tex.
and mode shapes of rotating blades are presented. It is indicated CONSTITUTIVE MODELING FOR ISOTROPIC MATERIALS
that the second degree geometric nonlinear terms, which vanish (HOST) Annual Status Report
for zero precone,can produce frequency changes of engineering U.S. LINDHOLM, K. S. CHAN, S. R. BODNER, R. M. WEBER, K.
significance.Furtherconfirmationof the validityof includingthose P. WALKER, and B. N. CASSENTI 20 Aug. 1985 185 p refs
generated by MSC NASTRAN. It is indicated that the linear and (ContractNAS3-23925)
nonlinearCorioliseffectsmust be includedinanalyzingthickblades. (NASA-CR-174980; NAS 1.26:174980; SWRI-7576/30; ASR-2)
The Coriolis effects are significant on the first flatwise and the Avail: NTIS HC A09/MF A01 CSCL 20K
first edgewise modes. E.A.K. This report presentsthe resultsof the secondyear of work on

a problem which is part of the NASA HOST Program. Its goals
N86-10579"# National Aeronautics and Space Administration. are: (1) to develop and validate unified constitutivemodels for
Lewis ResearchCenter,Cleveland, Ohio. isotropic materials, and (2) to demonstrate their usefulness for
JOINT RESEARCH EFFORT ON VIBRATIONS OF TWISTED structural analyses of hot section components of gas turbine
PLATES, PHASE 1: FINAL RESULTS engines. The unified models selected for development and
R. E. KIELB,A. W. LEISSA, J. C. MACBAIN, and K. S. CARNEY evaluation are that of Bodner-Partom and Walker. For model
Washington Sep. 1985 100 p refs evaluationpurposes,a large constitutivedata base is generated
(NASA-RP-1150; E-2576; NAS 1.61:1150) Avail: NTIS HC for a B1900 + Hf alloy by performing uniaxial tensile, creep,
A05/MF A01 CSCL 20K cyclic,stress relation,and thermomechanicalfatigue (TMF) tests

The complete theoretical and experimentalresults of the first as well as biaxial (tension/torsion)tests under proportional and
phase of a jointgovernment/industry/universityresearchstudyon nonproportionalloading over a wide range of strain rates and
the vibrationcharacteristicsof twisted cantileverplatesare given, temperatures. Systematic approaches for evaluating material
The study is conductedto generate an experimental data base constants from a small subset of the data base are developed.
and to compare many different theoretical methods with each Correlationsof the uniaxialand biaxialtests data with the theories
other and with the experimentalresults. Plates withaspect ratios, of Bodner-Partom and Walker are performed to establish the
thicknessratios, and twist angles representative of current gas accuracy, range of applicability,and integabilityof the models.
turbineengine bladingare investigated.The theoreticalresultsare Both modelsare implementedinthe MARC finiteelementcomputer
generated by numerousfinite element, shell, and beam analysis code and used for TMF analyses. Benchmark notch round
methods. The experimental results are obtained by precision experiments are conducted and the results compared with
matching a set of twisted plates and testing them at two finite-element analyses using the MARC code and the Walker
laboratories.The secondand final phase of the studywill concern model. Author
the effects of rotation. Author

N86-10582"# National Aeronautics and Space Administration. N86-11495"# National Aeronautics and Space Administration.
LewisResearchCenter, Cleveland,Ohio. LewisResearch Center, Cleveland,Ohio.
IMPROVED STUD CONFIGURATIONS FOR ATTACHING TURBINE ENGINE HOT SECTION TECHNOLOGY (HOST)
LAMINATED WOOD WIND TURBINE BLADES Final Report Oct. 1983 250 p refs Workshop held in Cleveland, Ohio,
J. R. FADOUL Sep. 1985 29 p refs 25-26 Oct. 1983
(ContractDE-AI01-76ET-20320) (NASA-CP-2289;E-1816; NAS 1.55:2289) Avail: NTIS HC
(NASA-TM-87109; DOE/NASA/20320-66; E-2709; NAS A11/MF A01 CSCL 21E
1.15:87109) Avail: NTIS HC A03/MF A01 A two-day workshop on the research and plans for turbine

A series of bonded stud design configurations was screened engine hot section durability problems was held on October 25
on the basis of tension-tension cyclic tests to determine the and 26, 1983, at the NASA Lewis Research Center. Presentations
structural capability of each configuration for joining a laminated were made during six sessions, including structural analysis, fatigue
wood structure (wind turbine blade) to a steel flange (wind turbine and fracture, surface protective coatings, combustion, turbine heat
hub). Design parameters which affected the joint strength (ultimate transfer, and instrumentation, that dealt with the thermal and fluid
and fatigue) were systematically varied and evaluated through environment around liners, blades, and vanes, and with material
appropriate testing. Two designs showing the most promise were coatings, constitutive behavior, stress-strain response, and life
used to fabricate addiate testing. Two designs showing the most prediction methods for the three components. The principal
promise were used to fabricate additional test specimens to objective of each session was to disseminate the research results
determine ultimate strength and fatigue curves. Test results for to date, along with future plans, in each of the six areas. Contract
the bonded stud designs demonstrated that joint strengths and government researchers presented results of their work.
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N86-16615"# National Aeronautics and Space Administration. large precone, second degree geometric nonlinearitiesand Coriolis
Lewis Research Center, Cleveland, Ohio. effects. The equations are solved by the Galerkin method and a
SIMPLIFIED CYCLIC STRUCTURAL ANALYSES OF SSME linear perturbationtechnique.Accuracy of the present method is
TURBINE BLADES verifiedby comparisonsof predictedfrequenciesand steady state
A. KAUFMAN and J. M. MANDERSCHEID 1986 17 p refs deflectionswiththosefrom MSC/NASTRAN and from experiments.
Proposedfor presentationat the Conference on AdvancedHigh Parametricresultsare generated to establishwhere inclusionof
Pressure Oxygen/Hydrogen PropulsionTechnology, Huntsville, only the seconddegree geometricnonlinearitiesis adequate.The
Ala., 14-16 May 1986; sponsoredby NASA Marshall Space Flight nonlinear terms causing torsionaldivergence in thin blades are
Center identified.The effects ofCoriolistermsandseveralotherstructurally
(NASA-TM-87214;E-2873; NAS 1.15:87214) Avail: NTIS HC nonlinear terms are studied, and their relative importance is
A02/MF A01 CSCL 20K examined. Author

Anisotropichigh-temperaturealloysare used to meet the safety
and durabilityrequirements of turbine blades for high-pressure
turbopumpsin reusablespace propulsionsystems.The applicability
to anisotropic components of a simplified inelasticstructural
analysisproceduredevelopedat the NASA LewisResearchCenter
is assessed.The procedureuses as inputthe historyof the total
strain at the criticalcrack initiationlocationcomputed from elastic N86-18750"# National Aeronauticsand Space Administration.
finite-element analyses. Cyclic heat transfer and structural analyses Lewis Research Center, Cleveland, Ohio.
are performed for the first stage high-pressure fuel turbopump ESTIMATING THE R-CURVE FROM RESIDUAL STRENGTH
blade of the space shuttle main engine. The blade alloy is DATA
directionallysolidifiedMAR-M 246 (nickelbase).The analyses are T.W. ORANGE 1985 17 p refs Presentedat the International
based on a typicaltest stand engine cycle. Stress-strainhistories Conferenceand Exhibitionon Fatigue,CorrosionCracking,Fracture
for the airfoil critical locationare computedusingboth the MARC Mechanics and Failure Analysis, Salt Lake City, Utah, 2-6 Dec.
nonlinear finite-element computer code and the simplified 1985; sponsoredby the AmericanSociety for Metals
procedure. Additional cases are analyzed in which the material (NASA-TM-87182; E-2832; NAS 1.15:87182) Avail: NTIS HC
yield strength is arbitrarilyreducedto increase the plastic strains A02/MF A01 CSCL 20K
and, therefore, the severity of the problem. Good agreement is A method is presented for estimating the crack-extension
shown betweenthe predictedstress-strainsolutionsfrom the two resistancecurve (R-curve) from residual-strength(maximum load
methods.The simplifiedanalysisusesabout0.02 percent(5 percent against original crack length) data for precracked fracture
with the requiredelastic finite-elementanalyses)of the CPU time specimens.The methodallowsadditionalinformationto be inferred
used by the nonlinearfinite element analysis. Author from simple test results, and that information can be used to

estimate the failure loads of more complicated structuresof the
N86-17788"# Virginia Polytechnic Inst. and State Univ., same material and thickness. The fundamentalsof the R-curve
Blacksburg. Dept. of EngineeringScienceand Mechanics. concept are reviewed first. Then the analytical basis for the
CLOSURE OF FATIGUE CRACKS AT HIGH STRAINS Final estimationmethodis presented.The estimationmethodhas been
Report verified in two ways. Data from the literature(involvingseveral
N. S. IYYER and N. E. DOWLING Dec. 1985 159 p refs materialsand different types of specimens)are used to showthat
(ContractNAG3-438) the estimated R-curve is in good agreement with the measured
(NASA-CR-175021; NAS 1.26:175021) Avail: NTIS HC A08/MF R-curve. A recent predictiveblind round-robinprogram offers a
A01 CSCL 20K more crucialtest. When the actual failure loadsare disclosed,the

Experimentswere conductedon smoothspecimens to study predictionsare found to be in good agreement. Author
the closure behavior of short cracks at high cyclicstrains under
completelyreversedcycling.Testingproceduresand methodology,
and closuremeasurementtechniques,are described in detail. The
strainlevelschosen for the studycover from predominantlyelastic
to grosslyplastic strains.Crack closure measurementsare made
at different crack lengths.The study reveals that, at highstrains,
cracks close only as the lowest stress level in the cycle is N86-19663"# National Aeronauticsand Space Administration.
approached. The crack opening is observed to occur in the LewisResearchCenter, Cleveland,Ohio.
compressivepart of the loadingcycle.The appliedstress needed COMPUTATIONAL ENGINE STRUCTURAL ANALYSIS
to open a short crack under highstrain is found to be less than C.C. CHAMIS and R. H. JOHNS 1986 20 p refs Proposed
for cracks under small scale yielding. For increased plastic for presentationat the 31st InternationalGas TurbineConference
deformations,the valueof sigmasubop/sigma submax is observed and Exhibit,Dusseldorf,West Germany,8-12 Jun. 1986; sponsored
to decrease and approaches the value of R. Comparisonof the by AmericanSociety of MechanicalEngineers
experimentalresults with existinganalysis is made and indicates (NASA-TM-87231; E-2898; NAS 1.15:87231) Avail: NTIS HC
the limitationsof the small scale yielding approachwhere gross A02/MF A01 CSCL 20K
plasticdeformationbehavioroccurs. Author A significantresearch activity at the NASA Lewis Research

Center is the computationalsimulationof complexmultidisciplinary
N86-17789"# National Aeronautics and Space Administration. engine structuralproblems. This simulation is performed using
LewisResearchCenter, Cleveland, Ohio. computationalenginestructuralanalysis(CESA) which consistsof
NONLINEAR BENDING-TORSIONAL VIBRATION AND integrated multidisciplinarycomputer codes in conjunction with
STABILITY OF ROTATING, PRETWlSTED, PRECONED BLADES computerpost-processingfor problem-specificapplication.A variety
INCLUDING CORIOLIS EFFECTS of the computationalsimulationsof specific cases are described
K. B. SUBRAHMANYAM (Toledo Univ., Ohio), K. R. V. KAZA, G. in some detail in this paper. These case studies include: (1)
V. BROWN, andC. LAWRENCE Jan. 1986 36 p refs Presented aeroelastic behaviorof bladed rotors,(2) highvelocity impact of
at Workshopon Dynamics and Aeroelastic Stability Modeing of fan blades, (3) blade-loss transient response, (4)
Rotor Systems, Atlanta, Ga., 4-5 Dec. 1985; sponsoredby Army rotor/stator/squeeze-film/bearing interaction, (5)
and Georgia Inst.of Technology,Atlanta blade-fragment/rotor-burstcontainment,and (6) structuralbehavior
(NASA-TM-87207; NAS 1.15:87207) Avail: NTIS HC A03/MF of advancedswept turboprops.These representativecase studies
A01 CSCL 20K are selected to demonstratethe breath of the problemsanalyzed

The coupled bending-bending-torsionalequations of dynamic and the role of the computer including post-processing and
motionof rotating, linearlypretwistedbladesare derivedincluding graphicaldisplayof voluminousoutput data. Author
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N86-21909"# Ohio State Univ., Columbus. Dept. of Engineering N86-21952"# Cincinnati Univ., Ohio. Dept. of Aerospace
Mechanics. Engineering and Engineering Mechanics.
EXTENSIONS OF THE RITZ-GALERKIN METHOD FOR THE ANISOTROPIC CONSTITUTIVE MODEL FOR NICKEL BASE
FORCED, DAMPED VIBRATIONS OF STRUCTURAL SINGLE CRYSTAL ALLOYS: DEVELOPMENT AND FINITE
ELEMENTS ELEMENT IMPLEMENTATION Final Report
A. W. LEISSAand T. H, YOUNG In AFWAL VibrationDamping L.T. DAME and D, C. STOUFFER Mar, 1986 130 p refs
1984 WorkshopProceedings 21 p Nov, 1984 (ContractNAG3-511)
(Contract NAG3-424) (NASA-CR-175015;NAS 1.26:175015) Avail: NTIS HC A07/MF
Avail: NTIS HC A99/MF A01 CSCL 20K A01 CSCL 20K

The Ritz-Galerkin methods were used to obtain approximate A tool for the mechanical analysis of nickel base single crystal
solutions for free undamped, vibration problems. It is demonstrated superalloys, specifically Rene N4, used in gas turbine engine
that these same methods may be used straightforwardly to analyze components is developed. This is achieved by a rate dependent
forced vibrations with damping without requiring the free vibration anisotropic constitutive model implemented in a nonlinear three
eigenfunctions. It was shown that the Galerkin method is an dimensional finite element code. The constitutive model is
effective technique for these types of problems. The Ritz method developed from metallurigical concepts utilizing a crystallographic
has the advantage that it does not need to satisfy the force-type approach. A non Schmid's law formulation is used to model the
boundary conditions, which is particularly important for plates and tension/compression asymmetry and orientation dependence in
shells. Proper functionals representing the forcing and damping octahedral slip. Schmid's law is a good approximation to the
terms were developed. Two types of damping--viscous and material inelastic response of the material in cube slip. The constitutive
(hysteretic) are discussed. Distributed and concentrated exciting equations model the tensile behavior, creep response, and strain
forces are treated. Numerical results are obtained for cantilevered rate sensitivity of these alloys. Methods for deriving the material
beams and rectangular plates. The rates of convergence of the constants from standard tests are presented. The finite element
solutions are shown. Approximate solutions from the present implementation utilizes an initial strain method and twenty noded
methods are compared with the exact solutions for the cantilever isoparametric solid elements. The ability to model piecewise linear
beam. E.A.K. load histories is included in the finite element code. The constitutive

equations are accurately and economically integrated using a
second order Adams-Moulton predictor-corrector method with a
dynamic time incrementing procedure. Computed results from the
finite element code are compared with experimental data for tensile,
creep and cyclic tests at 760 deg C. The strain rate sensitivity

N86-21932"# General Electric Co., Cincinnati, Ohio. Aircraft and stress relaxation capabilities of the model are evaluated.
Engine Business Group. Author
BURNER LINER THERMAL-STRUCTURAL LOAD MODELING
R. MAFFEO 1986 205 p N86-25822"# National Aeronautics and Space Administration.
(ContractNAS3-23272) Lewis ResearchCenter, Cleveland,Ohio.
(NASA-CR-174892; NAS 1.26:174892) Avail: NTIS HC A10/MF CYCLIC CREEP ANALYSIS FROM ELASTIC FINITE-ELEMENT
A01 CSCL 20K SOLUTIONS

The software package Transfer Analysis Code to Interface A. KAUFMAN and S. Y. HWANG (South Carolina State COIL,
Thermal/Structural Problems (TRANCITS) was developed. The Orangeburg) 1986 21 p refs Presentedat the Southeastern
TRANCITS code is used to interface temperature data between Conferenceon TheoreticalandAppliedMechanics,Columbia,S.C.,
thermal and structuralanalyticalmodels.The use of this transfer 17-18 Apr. 1986
moduleallowsthe heat transferanalystto selectthe thermalmesh (NASA-TM-87213; E-2872; NAS 1.15:87213) Avail: NTIS HC
densityand thermalanalysiscode best suitedto solve the thermal A02/MFA01 CSCL 20K
problemand givesthesame freedomsto thestressanalyst,without A uniaxialapproachwas developedfor calculatingcycliccreep
the efficiencypenalties associatedwithcommon meshes and the and stressrelaxationat thecriticallocationof a structuresubjected
accuracypenaltiesassociatedwiththe manual transferof thermal to cyclic thermomechanical loading. This approach was
data. E.A.K. incorporatedinto a simplifiedanalytical procedure for predicting

the stress-strainhistory at a crack initiationsite for life prediction
purposes.An elastic finite-element solutionfor the problem was
used as input for the simplifiedprocedure. The creep analysis
includes a self-adaptive time incrementing scheme. Cumulative
creep is the sum of the initialcreep, the recovery from the stress

N86-21951"# Syracuse Univ., N. Y. Dept. of Mechanicaland relaxationand the incrementalcreep. The simplifiedanalysiswas
AerospaceEngineering. exercised for four cases involving a benchmark notched plate
FATIGUE CRACK GROWTH UNDER GENERAL-YIELDING problem. Comparisons were made with elastic-plastic-creep
CYCLIC-LOADING solutionsfor these cases using the MARC nonlinearfinite-element
Z. MINZHONG and H. W. LIU Feb. 1986 28 p refs computercode. Author
(ContractNAG3-348)

(NASA-CR-175049; NAS 1.26:175049) Avail: NTIS HC A03/MF N86-25850"# Michigan State Univ., East Lansing. Dept. of
A01 CSCL 20K Metallurgy,Mechanicsand MaterialsScience.

In low cycle fatigue, cracksare initiatedand propagatedunder EXPERIMENTAL EVALUATION CRITERIA FOR CONSTITUTIVE
general yieldingcyclicloading. For generalyieldingcyclicloading, MODELS OF TIME DEPENDENT CYCLIC PLASTICITY Final
Dowling and Begley have shown that fatigue crack growth rate Report, 1 Jun. 1980 - 30 Sep. 1983
correlateswellwith the measureddelta J. The correlationof da/dN J.F. MARTIN 1986 13 p
with delta J was also studiedby a numberof other investigators. (ContractNAG3-51)
However, none of thse studieshave correlated da/dN with delta (NASA-CR-176821; NAS 1.26:176821) Avail: NTIS HC A02/MF
J calculatedspecificallyfor the testspecimens.Solomonmeasured A01 CSCL 20K
fatigue crackgrowth inspecimensingeneralyieldingcyclicloading. Notchedmemberswere tested at temperaturesfar above those
The crack tips fields for Solomon'sspecimensare calculatedusing recorded till now. Simulationof the notch root stress response
the finite element method and the J values of Solomon's tests was accomplishedto establishnotchstress-strainbehavior.Cyclic
are evaluated. The measured crack growth rate in Solomon's stress-strainprofiles across the net-section were recorded and
specimenscorrelates very wellwith the calculateddelta J. on-line direct notch strain control was accomplished.Data are

Author compared to three analysis techniques with good results. The
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objective of the study is to generate experimental data that can N86-27680"# National Aeronautics and Space Administration.
be used to evaluate the accuracy of constitutive models of time Lewis Research Center, Cleveland, Ohio.
dependent cyclic plasticity. Author RE-EXAMINATION OF CUMULATIVE FATIGUE DAMAGE

ANALYSIS: AN ENGINEERING PERSPECTIVE
S. S. MANSON and G. R. HALFORD 1986 71 p Presented

N86o25851"# Case Western Reserve Univ., Cleveland, Ohio. at the Symposium on Mechanics of Damage and Fatigue, Haifa-Tel
FATIGUE CRACK LAYER PROPAGATION IN SILICON-IRON Aviv, Israel, 1-5 Jul. 1985; sponsored by the International Union
Final Report of Theoretical and Applied Mechanics
Y. BIROL, G. WELSCH, and A. CHUDNOVSKY May 1986 47 (NASA-TM-87325; E-3066; NAS 1.15:87325) Avail: NTIS HC
p refs A04/MF A01 CSCL 20K
(Contract NAG3-223) A method which has evolved in our laboratories for the past
(NASA-CR-175115; NAS 1.26:175115) Avail: NTIS HC A03/MF 20 yr is re-examined with the intent of improving its accuracy and
A01 CSCL 20K simplicity of application to engineering problems. Several

Fatigue crack propagation in metal is almost always modifications are introduced both to the analytical formulation of
accompanied by plastic deformation unless conditions strongly the Damage Curve Approach, and to the procedure for modifying
favor brittle fracture. The analysis of the plastic zone is crucial to this approach to achieve a Double Linear Damage Rule formulation
the understanding of crack propagation behavior as it governs which immensely simplifies the calculation. Improvements are also
the crack growth kinetics. This research was undertaken to study introduced in the treatment of mean stress for determining fatigue
the fatigue crack propagation in a silicon iron alloy. Kinetic and life of the individual events that enter into a complex loading
plasticity aspects of fatigue crack propagation in the alloy were history. While the procedure is completely consistent with the
obtained, including the characterization of damage evolution, results of numerous two level tests that have been conducted on

Author many materials, it is still necessary to verify applicability to complex
loading histories. Caution is expressed that certain phenomena
can also influence the applicability - for example, unusual

N86-26651"# National Aeronautics and Space Administration. deformation and fracture modes inherent in complex loading -
Lewis Research Center, Cleveland, Ohio. especially if stresses are multiaxial. Residual stresses at crack
LOW-CYCLE THERMAL FATIGUE tips, and metallurgical factors are also important in creating
G. R. HALFORD Feb. 1986 114 p refs departures from the cumulative damage theories; examples of
(NASA-TM-87225; E-2890; NAS 1.15:87225) Avail: NTIS HC departures are provided. Author
A06/MF A01 CSCL 20K

A state-of-the-art review is presented of the field of thermal
fatigue. Following a brief historical review, the concept is developed
that thermal fatigue can be viewed as processes of unbalanced
deformation and cracking. The unbalances refer to dissimilar
mechanisms occurring in opposing halves of thermal fatigue loading
and unloading cycles. Extensive data summaries are presented
and results are interpreted in terms of the unbalanced processes
involved. Both crack initiation and crack propagation results are N86-27689"# Argonne National Lab., II1.
summarized. Testing techniques are reviewed, and considerable EFFECTS OF A HIGH MEAN STRESS ON THE HIGH CYCLE
discussion is given to a technique for thermal fatigue simulation, FATIGUE LIFE OF PWA 1480 AND CORRELATION OF DATA
known as the bithermal fatigue test. Attention is given to the use BY LINEAR ELASTIC FRACTURE MECHANICS
of isothermal life prediction methods for the prediction of thermal S. MAJUMDAR and R. KWASNY Nov. 1985 28 p
fatigue lives. Shortcomings of isothermally-based life prediction (Contract NASA ORDER C-91113-D; W-31-109-ENG-38)
methods are pointed out. Several examples of analyses and thermal (NASA-CR-175057; NAS 1.26:175057; ANL-85-74) Avail: NTIS
fatigue life predictions of high technology structural components HC A03/MF A01 CSCL 20K
are presented. Finally, numerous dos and don'ts relative to design High-cycle fatigue tests using 5-mm-diametersmooth specimens
against thermal fatigue are presented. Author were performed on the single crystal alloy PWA 1480 (001 axis)

at 70F (room temperature) in air and at 100F (538C) in vacuum
(10 to the -6 power torr). Tests were conducted at zero mean

N86-26652"# Battelle Columbus Labs., Ohio. stress as well as at high tensile mean stress. The results indicate
NONLINEAR DAMAGE ANALYSIS: POSTULATE AND that, although a tensile mean stress, in general, reduces life, the
EVALUATION Final Report, 30 Sep. 1981 - 6 Apr. 1983 reductionin fatigue strength, for a given mean stress at a life of
B. N. LEIS and T. P. FORTE 6 Apr. 1983 101 p refs one million cycles, is much less than what is predicted by the
(ContractNAS3-22825) usual linear Goodman plot. Further, the material appears to be
(NASA-CR-168171; NAS 1.26:168171) Avail: NTIS HC A06/MF significantlymore resistantto mean stress effects at 1000F than
A01 CSCL 20K at 70F. Metallographicexaminationsof failed specimens indicate

The objective of this program is to assess the viability of a that failures in all cases are initiated from micropores of sizes of
damage postulate which asserts that the fatigue resistance curve the order of 30 to 40 microns. Since the macroscopic stress-strain
of a metal is history dependent due to inelastic action. The study response in all cases was observed to be linear elastic, linear
focusses on OFE copper because this simple model material elastic fracture mechanics (LEFM) analyses were carried out to
accentuates the inelastic action central to the damage postulate, determine the crack growth curves of the material assuming that
Data relevant to damage evolution and crack initiation are crack initiation from a micropore (a sub o = 40 microns) occurs
developed via a study of surface topography. The effects of surface very early in life. The results indicate that the calculated crack
layer residual stresses are explored via comparative testing as growth rates at an R (defined as the ratio between minimum stress
were the effects in initial prestraining. The results of the study to maximum stress) value of zero are approximately the same at
very clearly show the deformation history dependence of the fatigue 70F as at 1000F. However, the calculated crack growth rates at
resistance of OFE copper. Furthermore the concept of deformation other R ratios, both positive and negative, tend to be higher at
history dependence is shown to qualitatively explain the fatigue 70F than at 1000F. Calculated threshold effects at large R values
resistance of all histories considered. Likewise quantitative tend to be independent of temperature in the temperature regime
predictions for block cycle histories are found to accurately track studied. They are relatively constant with increasing R ratio up to
the observed results. In this respect the assertion that damage a value of about 0.6, beyond which the calculated threshold stress
per cycle for a given level of the damage parameter is deformation intensity factor range decreases rapidly with increasing R ratios.
history dependent appears to be physically justified. Author Author

118



39 STRUCTURAL MECHANICS

N86-28455"# Texas A&M Univ., College Station. Dept. of N86-28464"# National Aeronauticsand Space Administration.
AerospaceEngineering. Lewis ResearchCenter, Cleveland,Ohio.
INTEGRATED RESEARCH IN CONSTITUTIVE MODELLING AT THERMAL-FATIGUE AND OXIDATION RESISTANCE OF
ELEVATED TEMPERATURES, PART 2 Final Report COBALT-MODIFIED UDIMET 700 ALLOY
W. E. HAISLER and D. H. ALLEN Jun. 1986 224 p P.T. BIZON and B. J. BARROW Apr. 1986 15 p
(Contract NAG3-491) (NASA-TP-2591; E-2704; NAS 1.60:2591) Avail: NTIS HC
(NASA-CR-177233; NAS 1.26:177233; MM-4998-86-13-PT-2) A02/MF A01 CSCL 20K
Avail: NTIS HC A10/MF A01 CSCL 20K Comparative thermal-fatigue and oxidation resistances of

Four current viscoplastic models are compared experimentally cobalt-modified wrought Udimet 700 alloy (obtained by reducing
with Inconel 718 at 1100 F. A series of tests were performed to the cobalt level by direct substitution of nickel) were determined
create a sufficient data base from which to evaluate material from fluidized-bed tests. Bed temperatures were 1010 and 288 C
constants. The models used include Bodner's anisotropic model; (1850 and 550 C) for the first 5500 symmetrical 6-min cycles.
Krieg, Swearengen, and Rhode's model; Schmidt and Miller's From cycle 5501 to the 14000-cycle limit of testing, the heating
model; and Walker's exponential model, bed temperature was increased to 1050 C (1922 F). Cobalt levels

between 0 and 17 wt% were studied in both the bare and NiCrAIY
overlay coated conditions. A cobalt level of about 8 wt% gave
the best thermal-fatigue life. The conventional alloy specification
is for 18.5% cobalt, and hence, a factor of 2 in savings of cobalt

N86-28461"# National Aeronautics and Space Administration. could be achieved by using the modified alloy. After 13500 cycles,
Lewis Research Center, Cleveland, Ohio. all bare cobalt-modified alloys lost 10 to 13 percent of their initial
STRUCTURAL ANALYSIS OF TURBINE BLADES USING weight.Application of the NiCrAIYoverlay coating resulted in weight
UNIFIED CONSTITUTIVE MODELS losses of 1/20 to 1/100 of that of the correspondingbare alloy.A. KAUFMAN, M. TONG, J. F. SALTSMAN, and G. R. HALFORD
1986 12 p Proposedfor presentation at the International Author
Conference on Computers in Engine Technology, Cambridge,
England, 24-27 Mar. 1987; sponsored by the Institution of N86-28467"# Virginia Polytechnic Inst. and State Univ.,
MechanicalEngineers Blacksburg. Dept.of EngineeringScience and Mechanics.
(NASA-TM-88807; E-3155; NAS 1.15:88807) Avail: NTIS HC J-INTEGRAL ESTIMATES FOR CRACKS IN INFINITE BODIES
A02/MF A01 CSCL 20K Final Report

The utility of advanced constitutive models and structural N.E. DOWLING Jul. 1986 42 p
analysismethodsinpredictingthe cycliclifeof an air-cooledturbine (ContractNAG3-438)
blade is assessed.Fivestructuralanalysismethodswere exercised (NASA-CR-179474; NAS 1.26:179474) Avail: NTIS HC A03/MF
in calculatingthe cyclicstress-strainresponseat the airfoilcritical A01 CSCL 20K
location.The methodsstudiedwere a cyclic elastic finite-element An analysis and discussionis presentedof existingestimates
analysis, nonlinear finite-element analyses based on classical of the J-integral for cracks in infinite bodies. Equations are
inelastic models and the unified models of Bodner and Walker, presented which provide convenient estimates for
and a simplified inelastic procedure. These analyses were Ramberg-Osgoodtype elastoplastic materials containingcracks
compared in terms of computingtimes and of predicted crack and subjected to multiaxialloading. The relationshipbetween J
initiationlivesusingthe StrainrangePartitioningmethod. Author and the strain normal to the crack is noted to be only weakly

dependent on state of stress. But the relationshipbetween J and
the stress normal to the crack is stronglydependent on state of
stress. A plasticzone correctionterm often employedis found to
be arbitrary,and its magnitudeis seldom significant. AuthorN86-28462"# Georgia Inst. of Tech., Atlanta. School of

EngineeringScienceand Mechanics.
FORMULATION OF THE NONLINEAR ANALYSIS OF N86-29271"# National Aeronauticsand Space Administration.
SHELL-LIKE STRUCTURES,SUBJECTED TO TIME-DEPENDENT LewisResearchCenter, Cleveland,Ohio.
MECHANICAL AND THERMAL LOADING Interim Technical EXPERIMENTALCLASSICAL FLUTTER RESULTSOF A COMPO-
Report, 15 Apr. 1984 - 14 Apr. 1986 SITE ADVANCEDTURBOPROP MODEL

G. J. SIMITSES, R. L. CARLSON, and R. RIFF 28 Jul. 1986 O. MEHMED and K. R. V. KAZA Jul. 1986 18 p Presented
178 p at the BisplinghoffMemorial Symposiumon Recent Trends in
(ContractNAG3-534) Aeroelasticity,Structuresand StructuralDynamics,Gainesville,Fla.,
(NASA-CR-177194; NAS 1.26:177194) Avail: NTIS HC A09/MF 6-7 Feb., 1986; sponsoredby Fla. Univ.
A01 CSCL 20K (NASA-TM-88792; E-3127; NAS 1.15:88792) Avail:NTIS HC

A general mathematicalmodel and solutionmethodologiesfor A02/MF A01 CSCL 20K
analyzingthe structuralresponseof thin, metallicshell structures Experimental results are presented that show the effects of
underlarge transient,cyclic,or staticthermomechanicalloadswas blade pitch angle and number of blades on classical flutter of a
sought.Amongthe systemresponsesassociatedwith these loads composite advanced turboprop (propfan) model. An increase in
and conditionsare thermalbuckling,creepbuckling,and ratcheting, the number of blades on the rotor or the blade pitch angle is
Thus geometricand material nonlinearities(of highorder) can be destablizingwhich shows an aerodynamiccoupling or cascade
anticipatedand mustbe consideredindevelopingthe mathematical effect between blades.The fluttercame in suddenlyandall blades
model. A complete, true ab-initio rate theory of kinematicsand vibrated at the same frequency but at different amplitudesand
kinetics for continuum ad curved thin structures,without any with a common predominantphase angle between consecutive
restriction on the magnitudeof the strains or the deformations, blades. This further indicates aerodynamic coupling between
was formulated.The time dependence and large strain behavior blades. The flutter frequency was between the first two blade
are incorporatedthroughthe introductionof the timeratesof metric normal modes, signifyingan aerodynamiccoupling between the
and curvature in two coordinate systems: fixed (spatial) and normal modes. Flutter was observed at all blade pitch angles
convected (material). The relations between the time derivative from small to large angles-of-attackof the blades.A strongblade
and the covariant derivative (gradient)was developed for curved response occurred,for four blades at the two-per-revolution(2P)
space and motion, so the velocity components supply the frequency, when the rotor speed was near the crossingof the
connectionbetween the equationsof motion and the time rates flutter mode frequencyand the 2P order line.This is becausethe
of change of the metric and curvature tensors. A time and damping is low near the flutter conditionand the interbladephase
temperature dependent viscoplasticitymodel was formulatedto angle of the fluttermode and the 2P responseare the same.
accountfor finite strainsand rotations. Author Author
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N86-30227"# Texas A&M Univ., College Station. Dept. of of thermal and fluid flow phenomena, structural analysis, fatigue
Aerospace Engineering. and fracture, surface protective coatings, constitutivebehavior,
INTEGRATED RESEARCH IN CONSTITUTIVE MODELLING AT stress-strainresponse,and life predictionmethods.
ELEVATED TEMPERATURES, PART 1 Final Report
W. E. HAISLER and D. H. ALLEN Jun. 1986 332 p N87-11183"# National Aeronauticsand Space Administration.
(ContractNAG3-491) LewisResearchCenter, Cleveland,Ohio.
(NASA-CR-177237; NAS 1.26:177237; MM°4998-86-13-PT-1) FATIGUE AND FRACTURE: OVERVIEW
Avail:NTIS HC A15/MF A01 CSCL 2OK G.R. HALFORD In its Turbine Engine Hot SectionTechnology,

Topics covered include: numerical integration techniques; 1984 4 p Oct. 1984
thermodynamics and internal state variables; experimental lab Avail:NTIS HC A17/MF AOl CSCL 20K
development; comparison of models at room temperature; A brief overview of the status of the fatigue and fracture
comparisonof models at elevated temperature;and integrated programs is given. The programs involve the development of
softwaredevelopment, appropriate analytic material behavior models for cyclic

stress-strain-temperature-time/cycliccrack initiation, and cyclic
N86-30236"# Cleveland State Univ., Ohio. Dept. of Civil crackpropagation.The underlyingthrustof these programsis the
Engineering. developmentand verificationof workableengineeringmethodsfor
COMPLIANCE MATRICES FOR CRACKED BODIES Final the calculation, in advance of service, of the local cyclic
Report stress-strainresponseat the critical life governinglocationin hot
R. BALLARINI Jul. 1986 8 p section compounds,and the resultant crack initiationand crack
(ContractNCC3-46) growth lifetimes. B.G.
(NASA-CR-179478; E-3158; NAS 1.26:179478) Avail: NTIS HC
A02/MF A01 CSCL 2OK N87-11209"# National Aeronautics and Space Administration.

An algorithm is presented which can be used to develop Lewis ResearchCenter, Cleveland,Ohio.
compliance matrices for cracked bodies. The method relies on HIGH TEMPERATURE STRESS-STRAIN ANALYSIS
the numerical solution of singular integral equations with R.L. THOMPSON In its TurbineEngine Hot SectionTechnology,
Cauchy-typekernels and provides an efficient and accurate 1984 14 p Oct. 1984
procedure for relating applied Ioadings to crack opening AvaiI:NTISHCA17/MFAOl CSCL20K
displacements. The algorithm should be of interest to those The objectivesare threefold:to assist in developingpredictive
performingrepetitive calculationsin the analysis of experimental tools needed to improve design analyses and proceduresfor the
resultsobtainedfrom fracture specimens. Author efficient and accurate prediction of burner liner structural

performance and response;to calibrate, validate, and evaluate
N86-31920"# National Aeronautics and Space Administration. these predictivetools by comparingthe predictedresultswith the
Lewis ResearchCenter,Cleveland,Ohio. experimental data; and to evaluate existingas well as advanced
INFLUENCE OFTHIRD-DEGREE GEOMETRIC NONLINEARITIES temperatureand strainmeasurementinstrumentation,throughboth
ON THE VIBRATION AND STABILITY OF PRETWlSTED, PRE- contact and noncontact efforts, in a simulated turbine engine
CONED, ROTATING BLADES combustorenvironment.As the predictivetool, tests,test methods,
K. B. SUBRAHMANYAM and K. R. V. KAZA May 1986 43 p instrumentation,and data acquisitionand reductionmethods are
(NASA-TM-87307; E-2988; NAS 1.15:87307) Avail:NTIS HC developedand evaluated,a proven,integratedanalysis/experiment
A03/MF A01 CSCL 20K methodwill be developedthat will permit the accurateprediction

The governing coupled flapwise bending, edgewise bending, of the cycliclife of a burner liner. Author
and torsionalequationsare derivedincludingthird-degreegeometric
nonlinearelastic terms by makinguse of the geometric nonlinear N87-12017"# National Aeronautics and Space Administration.
theory of elasticity in which the elongationsand shears are Lewis ResearchCenter, Cleveland,Ohio.
negligiblecomparedto unity.These equationsare specializedfor CONCENTRATED MASS EFFECTS ON THE FLU'n'ER OF A
blades of doubly symmetriccross sectionwith linear variationof COMPOSITE ADVANCED TURBOPROP MODEL
pretwistoverthe blade length.The nonlinearsteadystateequations J.K. RAMSEY and K. R. V. KAZA Oct. 1986 22 p
and the linearizedperturbationequationsare solved by usingthe (NASA-TM-88854; E-3247; NAS 1.15:88854) Avail:NTIS HC
Galerkin method, and by utilizingthe nonrotatingnormal modes A02/MF A01 CSCL 20K
for the shape functions. Parametric results obtained for various The effects on bending-torsionflutter due to the addition of a
cases of rotating blades from the present theoretical formulation concentratedmass to an advanced turbopropmodel blade with
are compared to those produced from the finite element code rigid hub are studied. Specifically the effects of the magnitude
MSC/NASTRAN, and also to those produced from an in-house and location of added mass on the natural frequencies, mode
experimentaltest rig. It is shown that the spuriousinstabilities, shapes, critical interbladephase angle, and flutter Mach number
observed for thin, rotating blades when second degree geometric are analytically investigated. The flutter of a propfan model is
nonlinearities are used, can be eliminated by including the shown to be sensitive to the change in mass distribution. Static
third-degree elastic nonlinear terms. Furthermore, inclusion of third unbalance effects, like those for fixed wings, were shown to occur
degree terms improves the correlation between the theory and as the concentrated mass was moved from the leading edge to
experiment. M.G. the trailing edge with the exception of one mass location. Mass

balancing is also inferred to be a feasible method for increasing
N87-11180"# National Aeronautics and Space Administration. the flutter speed. Author
Lewis Research Center, Cleveland, Ohio.
TURBINE ENGINE HOT SECTION TECHNOLOGY, 1984 N87-12924"# National Aeronauticsand Space Administration.
Oct. 1984 400 p Conferenceheld in Cleveland, Ohio, 23-24 LewisResearchCenter, Cleveland, Ohio.
Oct. 1984 A CONSTITUTIVE LAW FOR FINITE ELEMENT CONTACT
(NASA-CP-2339; E-2267; NAS 1.55:2339) Avail:NTIS HC PROBLEMS WITH UNCLASSICAL FRICTION
A17/MF A01 CSCL 20K M.E. PLESHA and B. M. STEINETZ Nov. 1986 19 p

Presentations were made concerning the hot section (NASA-TM-88838; E-3181; NAS 1.15:88838; ICOMP°86-1) Avail:
environmentand behavior of combustionliners, turbine blades, NTIS HC A02/MF A01 CSCL 20K
and waves. The presentationswere divided into six sessions: Techniques for modelingcomplex, unclassicalcontact-friction
instrumentation,combustion, turbine heat transfer, structural problemsarisingin solid and structuralmechanicsare discussed.
analysis,fatigue and fracture, and surface properties.The principal A constitutive modeling concept is employed whereby analytic
objectiveof each session was to disseminateresearchresultsto relations between increments of contact surface stress (i.e.,
date, alongwith future plans.Topics discussedincludedmodeling traction) and contact surface deformation (i.e., relative
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displacement) are developed. Because of the incremental form of N87-17087"# National Aeronautics and Space Administration.
these relations, they are valid for arbitrary load-deformation LewisResearchCenter, Cleveland,Ohio.
histories.The motivationfor the developmentof sucha constitutive SURFACE FLAW RELIABILITY ANALYSIS OF CERAMIC
law is that more realisticfrictionidealizationscan be implemented COMPONENTS WITH THE SCARE FINITE ELEMENT
in finite element analysissoftware in a consistent,straightforward POSTPROCESSOR PROGRAM
manner. Of particular interest is modeling of two-body (i.e., JOHN P. GYEKENYESI and NOEL N. NEMETH (WLT Corp.,
unlubricated) metal-metal, ceramic-ceramic,and metal-ceramic Cleveland, Ohio) 1987 17 p Proposedfor presentationat the
contact. Interfaces involving ceramics are of engineering 32nd InternationalGas Turbine Conferenceand Exhibit,Anaheim,
importanceand are beingconsideredfor advancedturbineengines Calif., 31 May - 4 Jun. 1987; sponsoredby ASME
in which higher temperature materials offer potential for higher (NASA-TM-88901; E-3229; NAS 1.15:88901) Avail: NTIS HC
engine fuel efficiency. Author A02/MF A01 CSCL 20K

The SCARE (Structural Ceramics Analysis and Reliability
Evaluation)computerprogramon statisticalfast fracturereliability
analysis with quadratic elements for volume distributed

N87-13794"# National Aeronautics and Space Administration. imperfections is enhanced to include the use of linear finite
Lewis ResearchCenter, Cleveland, Ohio. elementsandthe capabilityof designingagainstconcurrentsurface
PROBABILISTIC STRUCTURAL ANALYSIS METHODS FOR flaw induced ceramic component failure. The SCARE code is
SPACE PROPULSION SYSTEM COMPONENTS presently coupled as a postprocessorto the MSC/NASTRAN
C. C. CHAMIS 1986 25 p Presented at the 3rd Space general purpose, finite element analysis program.The improved
SystemsTechnologyConference,San Diego,Calif.,9-12 Jun. 1986; version now includes the Weibull and Batdorf statistical failure
sponsored by the American Institute of Aeronautics and theoriesfor bothsurface and volumeflaw based reliabilityanalysis.
Astronautics The program uses the two-parameter Weibull fracture strength
(NASA-TM-88861; E-3015; NAS 1.15:88861) Avail:NTIS HC cumulativefailure probabilitydistributionmodel with the principle
A02/MF AOl CSCL 46E of independent action for poly-axialstress states, and Batdorf's

The development of a three-dimensional inelastic analysis shear-sensitiveas wellas shear-insensitivestatisticaltheories.The
methodologyfor the Space Shuttlemain engine (SSME) structural shear-sensitive surface crack configurationsinclude the Griffith
componentsis described. The methodologyis composedof: (1) crackand Griffithnotch geometries,usingthe total criticalcoplanar
composite load spectra, (2) probabilistic structural analysis strainenergyrelease rate criterionto predictmixed-modefracture.
methods, (3) the probabilistic finite element theory, and (4) Weibull material pa,ameters based on both surface and volume
probabilisticstructuralanalysis. The methodology has led to flaw induced fracture can also be calculated from modulus of
significant technical progress in several important aspects of rupture bar tests, using the least squares method with known
probabilisticstructuralanalysis.The programand accomplishments specimengeometryand groupedfracturedata. The statisticalfast
to date are summarized. Author fracturetheoriesfor surfaceflawinducedfailure,alongwith selected

inputandoutputformatsand options,are summarized.An example
problem to demonstrate various features of the program is
included. Author

N87-14730"# National Aeronautics and Space Administration.
Lewis ResearchCenter, Cleveland,Ohio.

A LOW-COST OPTICAL DATA ACQUISITION SYSTEM FOR N87-18112"# National Aeronautics and Space Administration.
VIBRATION MEASUREMENT LewisResearch Center, Cleveland, Ohio.
S. J. POSTA and G. V. BROWN Dec. 1986 21 p THE EFFECT OF NONLINEARITIES ON THE DYNAMIC
(NASA-TM-88907;E-3330; NAS 1.15:88907) Avail: NTIS HC RESPONSE OF A LARGE SHU'n'LE PAYLOAD
A02/MF A01 CSCL 20K TIMOTHY L. SULLIVAN and KELLY S. CARNEY 1987 31 p

A low cost optical data acquisitionsystem was designed to Proposed for presentation at the 28th Structures, Structural
measuredeflectionof vibratingrotorblade tips.The basicprinciple Dynamics and Materials Conference, Monterey, Calif., 6-8 Apr.
of the new design is to recordraw data, which is a set of blade 1987; sponsoredby AIAA
arrivaltimes, in memory and to perform all processingby software (NASA-TM-88941; E-3387; NAS 1.15:88941) Avail:NTIS HC
following a run. This approach yields a simple and inexpensive A03/MF A01 CSCL 20K
system with the least possible hardware. Functionalelements of The STS Centaur was designedto be a high energy upper
the systemwere breadboardedand operated satisfactorilyduring stage for use with the Space Shuttle.Two versionswere designed
rotor simulationson the bench, and duringa data collectionrun under development when the program was cancelled. The first
with a two-bladed rotor in the Lewis Research Center Spin Rig. version, designated G-prime, was for planetary missions. The
Software was written to demonstratethe sorting and processing second version, designated G, was to place spacecraft in
of data storedin the system controlcomputer,after retrievalfrom geosynchronousorbit. As a part of the STS Centaur finite-element
the data acquisition system. The demonstrationproduced an model verification effort, test articles of both versionswere
accurategraphicaldisplayof deflectionversus time. Author subjectedto a seriesof statictests. In additionthe CentaurG-prime

test article was subjectedto a seriesof dynamictests includinga
modal survey. Both the static and dynamic tests showed that
nonlinearitiesexisted in the Centaurand its supportsystem. The

N87-16321"# National Aeronautics and Space Administration. supportsystemincludedflight-likelatches. The nonlinearitieswere
Lewis ResearchCenter, Cleveland, Ohio. particularlyapparent in tests that loaded the forward support
THE 20TH AEROSPACE MECHANICS SYMPOSIUM structureof the Centaur. These test resultswere used to aid in
May 1986 316 p Symposiumheld in Cleveland,Ohio, 7-9 May the developmentof two improvedfinite-element models.The first
1986; sponsored by NASA, the California Inst. of Tech. and was a linearmodel,whilethe secondcontainednonlinearelements
LMSC at the boundaries.Resultsfrom both modelswere comparedwith
(NASA-CP-2423-REV; E-2904; NAS 1.55:2423-REV) Avail: NTIS the transient response obtained from a step-relaxationor twang
HC A14/MF A01 CSCL 20K test. The linear model was able to accurately match the low

Numerous topics related to aerospace mechanismswere frequency response found in the test data. However, only the
discussed. Deployable structures, electromagnetic devices, nonlinear model was able to match higher frequency response
tribology, hydraulicactuators, positioning mechanisms, electric that was presentin someof the test data. In additionthe nonlinear
motors, communication satellite instruments, redundancy, model was able to predict other nonlinearbehavior such as the
lubricants, bearings, space stations, rotating joints, and dynamicjumpthat occursin systemswith nonlinearstiffness.
teleoperatorsare amongthe topicscovered. Author
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N87-18115"# National Aeronautics and Space Administration. fracture loads and alter the direction of crack propagation.
Lewis Research Center, Cleveland, Ohio. Author
ANALYTICAL FLUTTER INVESTIGATION OF A COMPOSITE

PROPFAN MODEL N87-18882"# National Aeronauticsand Space Administration,
K. R. V. KAZA, O. MEHMED, G. V. NARAYANAN (Sverdrup Lewis Research Center, Cleveland, Ohio.
Technology, Inc., Cleveland, Ohio), and D. V. MURTHY (Toledo FATIGUE FAILURE OF REGENERATOR SCREENS IN A HIGH
Univ., Ohio) 1987 24 p Proposed for presentation at the FREQUENCY STIRLING ENGINE
28th Structures, Structural Dynamics and Materials Conference, DAVID R. HULL, DONALD L. ALGER, THOMAS J. MOORE, and
Monterey, Calif., 6-8 Apr. 1987; sponsored by AIAA, ASME, AHS COULSON M. SCHEUERMANN Mar. 1987 22 p
and ASEE (NASA-TM-88974; E-3443; NAS 1.15:88974) Avail: NTIS HC
(NASA-TM-88944; E-3392; NAS 1.15:88944; AIAA-87-0738) A02/MF A01 CSCL 10B
Avail: NTIS HC A02/MF A01 CSCL 20K Failure of Stirling Space Power Demonstrator Engine (SPDE)

A theoretical model and an associated computer program for regenerator screens was investigated. After several hours of
predicting subsonic bending-torsion flutter in propfans are operation the SPDE was shut down for inspection and on removing
presented. The model is based on two-dimensional unsteady the regenerator screens, debris of unknown origin was discovered
cascade strip theory and three-dimensional steady and unsteady along with considerable cracking of the screens in localized areas.
lifting surface aerodynamic theory in conjunction with a finite Metallurgical analysis of the debris determined it to be
element structural model for the blade. The analytical results cracked-off-deformed pieces of the 41 micron thickness Type 304
compare well with published experimental data. Additional stainless steel wire screen. Scanning electron microscopy of the
parametric studies are also presented illustrating the effects on cracked screens revealed failures occurring at wire crossovers
flutter speed of steady aeroelastic deformations, blade setting and fatigue striations on the fracture surface of the wires. Thus,
angle, rotational speed, number of blades, structural damping, and the screen failure can be characterized as a fatigue failure of the
number of modes. Author wires. The crossovers were determined to contain a 30 percent

reduction in wire thickness and a highly worked microstructure
N87-18116"# National Aeronautics and Space Administration. occurring from the manufacturing process of the wire screens.
Lewis Research Center, Cleveland, Ohio. Later it was found that reduction in wire thickness occurred because
ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF the screen fabricator had subjected it to a light cold-roll process
MISTUNING IN PROPFAN FLUTTER after weaving. Installationof this screen left a clearance in the
KRISHNA RAO V. KAZA, ORAL MEHMED, MARC WILLIAMS regeneratorallowingthe screens to move. The combined effects
(Purdue Univ., West Lafayette, Ind.), and LARRY A. MOSS of the reduction in wire thickness, stress concentration (caused
(Sverdrup Technology, Inc., Cleveland, Ohio) 1987 21 p by screen movement), and highlyworked microstructureat the
Proposed for presentation at the 28th Structures, Structural wire crossoversled to the fatigue failure of the screens. Author
Dynamics and Materials Conference, Monterey, Calif., 6-8 Apr.
1987; sponsoredby AIAA, ASME, AHS and ASEE N87-18883"# National Aeronauticsand Space Administration.
(NASA-TM-88959; E-3412; NAS 1.15:88959; AIAA-87-0739) Lewis ResearchCenter, Cleveland, Ohio.
Avail: NTIS HC A02/MF A01 CSCL 20K A COMPARATIVE STUDY OF SOME DYNAMIC STALL

An analytical and experimental investigationof the effects of MODELS
mistuningon propfansubsonicflutter wasperformed.The analytical T.S.R. REDDY (Toledo Univ., Ohio) and K. R. V. KAZA Mar.
model is based on the normal modes of a rotating composite 1987 79 p
blade and a three-dimensinalsubsonicunsteady lifting surface (NASA-TM-88917; E-3342; NAS 1.15:88917) Avail: NTIS HC
aerodynamic theory. Theoretical and experimental results are A05/MF A01 CSCL 20K
compared for selected cases at different blade pitch angles, Three semi-empiricalaerodynamicstall models are compared
rotationalspeeds,and free-streamMach numbers.The comparison with respect to their lift and moment hysteresisloop prediction,
shows a reasonably good agreement between theory and limit cycle behavior, easy implementation, and feasibility in
experiment.Both theory and experiment showed that combined developing the parameters required for stall flutter prediction of
mode shape, frequency,and aerodynamicmistuningcan have a advanced turbines. For the comparisonof aeroelastic response
beneficialor adverse effect on bladedampingdependingon Mach prediction includingstall, a typical section model and a plate
number.Additionalparametricresultsshowedthat alternativeblade structuralmodel are considered.The response analysis includes
frequency mistuningdoes not have enough potentialfor it to be both plungingand pitchingmotionsof the blades. In model A, a
used as a passive flutter control in propfans similar to the one correctionto the angle of attack is applied when the angle of
studied. It can be inferred from the results that a laminated attack exceeds the static stall angle. In model B, a synthesis
composite propfan blade can be tailored to optimize its flutter procedure is used for angles of attack above static stall angles
speed by selectingthe properply angles. Author and the time history effects are accountedthrough the Wagner

function.In both modelsthe life and momentcoefficientsfor angle
N87-18881"# National Aeronauticsand Space Administration. of attack below stall are obtained from tabular data for a given
LewisResearchCenter, Cleveland,Ohio. Mach numberand angle of attack. In modelC, referred to an the
THE EFFECTS OF CRACK SURFACE FRICTION AND ONERA model, the life and moment coefficientsare given in the
ROUGHNESS ON CRACK TIP STRESS FIELDS form of two differential equations,one for anglesbelow stall, and
ROBERTO BALLARINI (Case Western Reserve Univ., Cleveland, the other for angles above stall. The parametersof those equations
Ohio) and MICHAEL E. PLESHA (Wisconsin Univ., Madison) Feb. are nonlinear functions of the angle of attack. Author
1987 19 p
(Contract NCC3-46; NASA ORDER C-99066-G; N87-20565"# National Aeronautics and Space Administration.
DAAL03-86-K-0134) Lewis Research Center, Cleveland, Ohio.
(NASA-TM-88976; ICOMP-87-1; E-3445; NAS 1.15:88976) Avail: CALCULATION OF THERMOMECHANICAL FATIGUE LIFE
NTIS HC A02/MF A01 CSCL 20K BASED ON ISOTHERMAL BEHAVIOR

A model is presented which can be used to incorporatethe GARY R. HALFORD and JAMES F. SALTSMAN 1987 22 p
effects of friction and tortuosity along crack surfaces througha Preparedfor presentationat the 5thNationalCongresson Pressure
constitutivelaw appliedto the interface between opposingcrack Vessel and PipingTechnology,San Diego,Calif., 28 Jun. - 2 Jul.
surfaces. The problem of a crack with a saw-tooth surface in an 1987; sponsoredby ASME
infinitemedium subjectedto a far-fieldshear stress is solvedand (NASA-TM-88864; E-2940; NAS 1.15:88864) Avail: NTIS HC
the ratios of Mode-I stress intensityto Mode-II stressintensityare A02/MF A01 CSCL 20K
calculatedfor variouscoefficientsof frictionand materialproperties. The isothermal and thermomechanicalfatigue (TMF) crack
The resultsshow that tortuosityand frictionleadto an increase in initiationresponse of a hypothetical material was analyzed.
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Expected thermomechanical behavior was evaluated numerically shapes; (3) steady stresses; and (4) aeroelastic stability.
based on simple, isothermal, cyclic stress-strain time State-of-the-art methods were used to analyze the blades including
characteristics and on strainrange versus cyclic life relations that a large deflection, finite element structural analysis, and an
have been assigned to the material. The attempt was made to aeroelastic analysis including interblade aerodynamic coupling
establish basic minimum requirements for the development of a (cascade effects). The study found the blade to be structurally
physically accurate TMF life-prediction model. A worthy method sound and aeroelastically stable. However, it clearly indicated that
must be able to deal with the simplest of conditions: that is, advanced turboprop blades are much less robust than conventional
those for which thermal cycling, per se, introduces no damage blades and must be analyzed and fabricated much more carefully
mechanisms other than those found in isothermal behavior. Under in order to assure that they are structurally sound and
these assumed conditions, the TMF life should be obtained uniquely aeroelastically stable. Author
from known isothermal behavior. The ramifications of making more

complex assumptions will be dealt with in future studies. Although N87-22779"# National Aeronautics and Space Administration.
analyses are only in their early stages, considerable insight has Lewis Research Center, Cleveland, Ohio.
been gained in understanding the characteristicsof several existing NONLINEAR HEAT TRANSFER AND STRUCTURAL ANALYSES
high-temperature life-prediction methods. The present work OF SSME TURBINE BLADES
indicatesthat the most viable damage parameter is basedon the A. ABDUL-AZIZ (SverdrupTechnology, Inc., MiddleburgHeights,
inelasticstrainrange. Author Ohio.)and A. KAUFMAN In its StructuralIntegrityand Durability

of ReusableSpace PropulsionSystemsp 95-104 1987
N87-20566"# National Aeronauticsand Space Administration. Avail:NTIS HC A10/MF A01 CSCL 20K
LewisResearchCenter, Cleveland,Ohio. Three-dimensional nonlinear finite-element heat transfer and
SHOT PEENING FOR TI-6AL-4V ALLOY COMPRESSOR structuralanalyseswere performedfor the first stage high-pressure
BLADES fuel turbopumpblade of the space shuttle main engine (SSME).
GERALD A. CAREK Apr. 1987 9 p Directionallysolidified(DS) MAR-M 246 material propertieswere
(NASA-TP-2711; E-3430; NAS 1.60:2711) Avail:NTIS HC consideredfor the analyses.Analyticalconditionswere based on
A01/MFA01 CSCL20K a typical test stand engine cycle. Blade temperature and

A text program was conducted to determine the effects of stress-strainhistorieswere calculated using MARC finite-element
certainshot-peeningparameterson the fatigue life of the Ti-6AI-4V computercode. The studywas undertakento assess the structural
alloysas wellas theeffect of ademarcationline on a test specimen, response of an SSME turbine blade and to gain greater
This demarcationline, caused by an abruptchange from untreated understandingof blade damage mechanisms,convectivecooling
surface to shot-peened surface,was thoughtto have caused the effects, and the thermal-mechanicaleffects. Author
failure of several blades in a multistagecompressorat the NASA
Lewis ResearchCenter. The demarcationline had no detrimental
effect uponbendingfatigue specimenstested at roomtemperature. N87-23010"# National Aeronautics and Space Administration.
Procedures for shot peening Ti-6AI-4V compressor blades are LewisResearch Center, Cleveland,Ohio.
recommendedfor future applications. Author FINITE ELEMENT IMPLEMENTATION OF ROBINSON'S UNIFIED

VISCOPLASTIC MODEL AND ITS APPLICATION TO SOME

N87-21375"# National Aeronautics and Space Administration. UNIAXlAL AND MULTIAXlAL PROBLEMS
LewisResearchCenter, Cleveland,Ohio. V.K. ARYA and A. KAUFMAN Jun. 1987 20 p
A NASTRAN PRIMER FOR THE ANALYSIS OF ROTATING (NASA-TM-89891; E-3583; NAS 1.15:89891) Avail: NTIS HC
FLEXIBLE BLADES A02/MF A01 CSCL 20K
CHARLESLAWRENCE,ROBERT A. AIELLO,MICHAELA. ERNST, A descriptionof the finite elementimplementationof Robinson's
and OLIVER G. MCGEE (Ohio State Univ., Columbus) May unifiedviscoplasticmodel into the General PurposeFiniteElement
1987 23 p Program(MARC) is presented.To demonstrateits application,the
(NASA-TM-89861; E-3528; NAS 1.15:89861) Avail: NTIS HC implementationis appliedto some uniaxialand multiaxialproblems.
A02/MF A01 CSCL 20K A comparisonof the results for the multiaxialproblemof a thick

This primerprovidesdocumentationfor usingMSC NASTRAN internallypressurizedcylinder, obtained using the finite element
in analyzingrotatingflexible blades. The analysisof these blades implementationand an analytical solution,is also presented. The
includes geometrically nonlinear (large displacement) analysis excellent agreement obtainedconfirmsthe correct finite element
undercentrifugalloading,and frequency and mode shape (normal implementationof Robinson'smodel. Author
modes) determination.The geometricallynonlinearanalysisusing
NASTRAN Solution sequence 64 is discussed along with the N87-24006"# National Aeronautics and Space Administration.
determinationof frequencies and mode shapes using Solution Lewis ResearchCenter, Cleveland,Ohio.
Sequence 63. A sample problem with the complete NASTRAN IDENTIFICATION OF STRUCTURAL INTERFACE
input data is included. Items unique to rotating blade analyses, CHARACTERISTICS USING COMPONENT MODE SYNTHESIS
such as setting angle and centrifugal softening effects are A.A. HUCKELBRIDGE (Case Western Reserve Univ., Cleveland,
emphasized. Author Ohio.) and C. LAWRENCE 1987 14 p Prepared for presentation

at the Vibrations Conference, Boston, Mass., 27-30 Sep. 1987;
N87-22273"# National Aeronautics and Space Administration. sponsored by ASME
Lewis Research Center, Cleveland, Ohio. (NASA-TM-88960; E-3415; NAS 1.15:88960) Avail: NTIS HC
STRUCTURAL AND AEROELASTIC ANALYSIS OF THE SR-7L A02/MF A01 CSCL 20K
PROPFAN The inability to adequately model connectionshas limited the
MURRAY HIRSCHBEIN, ROBERT KIELB, ROBERT AIELLO, ability to predict overall system dynamic response. Connections
MARSHA NALL, and CHARLES LAWRENCE Mar. 1985 31 p between structuralcomponentsare often mechanicallycomplex
(NASA-TM-86877;E-2338; NAS 1.15:86877) Avail: NTIS HC and difficult to accuratelymodel analytically.Improvedanalytical
A03/MF A01 CSCL 20K models for connectionsare needed to improvesystem dynamic

A structuraland aeroelasticanalysisof a large scale advanced predictions. This study explores combiningComponent Mode
turboproprotor blade is presented.This 8-blade rotor is designed synthesis methods for coupling structural components with
to operate at Mach 0.8 at an altitudeof 35,000 ft. The bladesare Parameter Identificationproceduresfor improvingthe analytical
highlyswept and twisted and of spar/shell construction.Due to modeling of the connections.Improvements in the connection
the complexityof the blade geometryand its highperformance,it propertiesare computedin terms of physical parametersso the
is subjected to much higher loads and tends to be much less physical characteristics of the connections can be better
stable than conventional blades. Four specific analyses were understood,in additionto providingimprovedinput for the system
conducted:(1)steady deflection;(2)natural frequenciesand mode model. Two sample problems, one utilizingsimulateddata, the
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other using experimental data from a rotor dynamic test rig are N87-26399"# National Aeronautics and Space Administration.
presented. Author Lewis Research Center, Cleveland, Ohio.

A HIGHTEMPERATURE FATIGUE AND STRUCTURES TESTING
FACILITY

N87-24007"# National Aeronautics and Space Administration. PAUL A. BARTOLOTTA and MICHAEL A. MCGAW Aug. 1987
Lewis Research Center, Cleveland, Ohio. 24 p
ENVIRONMENTAL DEGRADATION OF 316 STAINLESS STEEL (NASA-TM-100151; E-3712; NAS 1.15:100151) Avail:NTIS HC
IN HIGH TEMPERATURE LOW CYCLE FATIGUE A02/MF A01 CSCL 20K
SREERAMESH KALLURI, S. STANFORD MANSON, and GARY As man strives for higher levels of sophistication in air and
R. HALFORD Apr. 1987 17 p Presented at the 3rd International space transportation, awareness of the need for accurate life and
Conference on Environmental Degradation of Engineering material behavior predictions for advanced propulsion system
Materials, University Park, Pa., 13-15 Apr. 1987; sponsored by the components is heightened. Such sophistication will requirecomplex
Pennsylvania State Univ. operating conditions and advanced materials to meet goals in
(Contract NAG3-337; NAG3-553) performance, thrust-to-weight ratio, and fuel efficiency. To
(NASA-TM-89931; E-3636; NAS 1.15:89931) Avail: NTIS HC accomplish these goals will require that components be designed
A02/MF A01 CSCL 20K using a high percentage of the material's ultimate capabilities.

Procedures based on modification of the conventional This serves only to complicate matters dealing with life and material
Strainrange Partitioning method are proposed to characterize the behavior predictions. An essential component of material behavior
time-dependent degradation of engineering alloys in model development is the underlying experimentation which must
high-temperature, low-cycle fatigue. Creep-fatigue experiments occur to identify phenomena. To support experimentation, the
were conducted in air using different waveforms of loading on NASA Lewis Research Center's High Temperature Fatigue and
316 stainless steel at 816 C (1500 F) to determine the effect of Structures Laboratory has been expanded significantly. Several
exposure time on cyclic life. Reductions in the partitioned cyclic new materials testing systems have been added, as well as an
lives were observed with an increase in the time of exposure (or extensive computer system. The intent of this paper is to present
with the corresponding decrease in the steady-state creep rate) an overview of the laboratory, and to discuss specific aspects of
for all the waveforms involving creep strain. Excellent correlations the test systems. A limited discussion of computer capabilities will
of the experimental data were obtained by modifying the also be presented. Author
Conventional Strainrange Partitioning life relationships involving
creep strain using a power-law term of either: (1) time of exposure, N87-27268"# National Aeronautics and Space Administration.
or (2) steady-state creep rate of the creep-fatigue test. Lewis Research Center, Cleveland, Ohio.
Environmental degradation due to oxidation, material degradation SINDA-NASTRAN INTERFACING PROGRAM THEORETICAL
due to the precipitationof carbides along the grain boundaries DESCRIPTION AND USER'S MANUAL
and detrimentaldeformationmodes associatedwith the prolonged STEVEN R. WINEGAR Aug. 1987 31 p
periods of creep were observed to be the main mechanisms (NASA-TM-100158; E-3720; NAS 1.15:100158) Avail: NTIS HC
responsiblefor life reductionsat longexposuretimes. Author A03/MF A01 CSCL 20K

The task of convertingSINDA finite difference thermalmodel
temperatureresults into NASTRAN finite element model thermal

N87-24722"# National Aeronautics and Space Administration. loads can be very labor intensiveif there is not one node-to-one
LewisResearch Center, Cleveland,Ohio. element, or systematic node-to-element, correlation between
HUB FLEXIBILITY EFFECTS ON PROPFAN VIBRATION models. This paper describes the SINDA-NASTRAN Interfacing
MICHAEL A. ERNST and CHARLES LAWRENCE Jul. 1987 16 Program (SNIP), a FORTRAN computer code that generates
p NASTRAN structuralmodel thermal load cards given by SINDA
(NASA-TM-89900; E-3596; NAS 1.15:89900) Avail: NTIS HC (or similarthermal model) temperatureresultsand thermal model
A02/MF A01 CSCL 20K geometricdata. SNIP generates NASTRAN thermal load cardsfor

The significanceof hub flexibilityin the nonlinearstatic and NASTRAN plate, shell, bar, and beam elements. The paper
dynamicanalysesof advancedturbopropblades is assessed. The describesthe interfacingproceduresused by SNIP, and discusses
chosenblade is the 0.175 scale model of the GE-A7-B4 unducted set-up and operation of the program.Sample cases are included
fan blade. A procedure for coupling the effective hub stiffness to demonstrate use of the program and show its performance
matrix to an MSC/NASTRAN finite element model is definedand under a variety of conditions.SNIP can providestructuralmodel
verified. A series of nonlinear static and dynamic analyses are thermal loads that accuratelyreflect thermal model results while
conducted on the blade for both rigid and flexible hug reducing the time required to interface thermal and structural
configurations.Results indicatethat hub flexibility is significantin modelswhen comparedto other methods. Author
the nonlinear static and dynamic analyses of the GE-A7-B4. In
orderto insureaccuracyinanalyses of otherblades, hub flexibility N87-27269"# National Aeronautics and Space Administration.
shouldalways be considered. Author Lewis ResearchCenter, Cleveland, Ohio.

FRACTURE MECHANICS CONCEPTS IN RELIABILITY
ANALYSIS OF MONOLITHIC CERAMICS

N87-26385"# National Aeronauticsand Space Administration. JANE M. MANDERSCHEID and JOHN P. GYEKENYESI Aug.
Lewis ResearchCenter, Cleveland,Ohio. 1987 16p Presentedat theTestingHigh PerformanceCeramics,
FINITE ELEMENT ANALYSIS OF FLEXIBLE, ROTATING Boston, Mass., 25-27 Aug. 1987; sponsoredin part by American
BLADES Ceramic Society, and the American Society for Nondestructive
OLIVER G. MCGEE Jul. 1987 40 p Testing.
(NASA-TM-89906; E-3674; NAS 1.15:89906) Avail:NTIS HC (NASA-TM-100174; E-3743; NAS 1.15:100174) Avail: NTIS HC
A03/MF A01 CSCL 20K A02/MF A01 CSCL 20K

A reference guide that can be used when using the finite Basicdesignconceptsfor high-performance,monolithicceramic
element method to approximate the static and dynamic behavior structuralcomponentsare addressed.The designof brittleceramics
of flexible, rotatingblades is given. Important parameters such as differsfromthat of ductilemetalsbecauseof the inabilityof ceramic
twist, sweep, camber, co-planar shell elements, centrifugalloads, materials to redistributehigh local stresses caused by inherent
and inertiaproperties are studied.Comparisonsare made between flaws. Randomflaw sizeand orientationrequiresthat a probabilistic
NASTRAN elementsthroughpublishedbenchmarktests.The main analysis be performed in order to determinecomponentreliability.
purpose is to summarize blade modeling strategies and to The current trend in probabilisticanalysis is to combine linear
documentcapabilitiesand limitations(for flexible, rotatingblades) elasticfracturemechanicsconceptswith the two parameterWeibull
of variousNASTRAN elements. Author distributionfunctionto predictcomponentreliabilityundermultiaxial
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stress states. Nondestructive evaluation supports this analytical environment and the behavior of combustion liners, turbine blades,
effort by supplying data during verification testing. It can also help and turbine vanes.
to determine statistical parameters which describe the material
strength variation, in particular the material threshold strength (the
third Weibull parameter), which in the past was often taken as N88-11170"# National Aeronautics and Space Administration.
zero for simplicity. Author Lewis Research Center, Cleveland, Ohio.

HIGH TEMPERATURE STRESS-STRAIN ANALYSIS
N87-28058"# National Aeronautics and Space Administration. ROBERT L. THOMPSON In its Turbine Engine Hot Section
Lewis Research Center, Cleveland, Ohio. Technology, 1985 p 287-301 Oct. 1985
A COMPUTATIONAL PROCEDURE FORAUTOMATED FLUTTER Avail:NTIS HC A19/MF A01 CSCL 20K
ANALYSIS The objectivesof the high temperaturestructuresprogramare
DURBHA V. MURTHY (Toledo Univ., Ohio.) and KRISHNA RAO threefold:to assist in the developmentof analyticaltools needed
V. KAZA Aug. 1987 17 p to improvedesign analysis and proceduresfor the efficient and
(NASA-TM-100171; E-3736; NAS 1.15:100171) Avail:NTIS HC accurate prediction of the nonlinear structural response of
A02/MF A01 CSCL 20K hot-sectioncomponents;to aid in the calibration,validation,and

A direct solution procedure for computingthe flutter Mach evaluation of the analytical tools by comparingpredictionswith
number and the flutter frequency is applied to the aeroelastic experimentaldata; and to evaluate existingas well as advanced
analysis of propfans using a finite element structuralmodel and temperatureand strainmeasurementinstrumentation. Author
an unsteadyaerodynamic model based on a three-dimensional
subsoniccompressibleliftingsurface theory. An approximationto
the Jacobian matrix that improves the efficiency of the iterative N88-11177"# National Aeronauticsand Space Administration.
process is presented. The Jacobian matrix is indirectly Lewis ResearchCenter, Cleveland,Ohio.
approximatedfrom approximatederivatives of the flutter matrix. LEWIS' ENHANCED LABORATORY FOR RESEARCH INTO THE
Examples are used to illustratethe convergenceproperties.The FATIGUE AND CONSTITUTIVE BEHAVIOR OF HIGH
direct solutionprocedurefacilitates the automatedflutter analysis TEMPERATURE MATERIALS
in additionto contributingto the efficient use of computertime as MICHAEL A. MCGAW In its Turbine Engine Hot Section
well as the analyst'stime. Author Technology,1985 p 361-371 Oct. 1985

Avail: NTIS HC A19/MF A01 CSCL 20K
N87-28944"# National Aeronauticsand Space Administration. Lewis Research Center's high temperature fatigue laboratory
LewisResearchCenter, Cleveland,Ohio. has undergone significantchanges resulting in the addition of
EXPOSURE TIME CONSIDERATIONS IN HIGH TEMPERATURE several new experimental capabilities. New materials testing
LOW CYCLE FATIGUE systemshave been installedenabling research to be conducted
S. KALLURI, S. S. MANSON (Case Western Reserve Univ., in multiaxialfatigue and deformationat high temperature,as well
Cleveland, Ohio.), and G. R. HALFORD Jun. 1987 12 p as cumulative creep-fatigue damage wherein the relative failure-life
Presented at the 5th International Conference on Mechanical levels are widely separated. A key component of the new
Behaviour of Materials, Beijing, China, 3-6 Jun. 1987; sponsored high-temperature fatigue and structures laboratory is a local,
in part by the Chinese Society of Metals, and the Chinese Society distributed computer system whose hardware and software
of Mechanics architecture emphasizes a high degree of configurability, which in
(Contract NAG3-337; NAG3-553) turn, enables the researcher to tailor a solution to the problem at
(NASA-TM-88934; E-3375; NAS 1.15:88934) Avail: NTIS HC hand. Author
A02/MF A01 CSCL 20K

The Conventional Strainrange Partitioning (CSRP) method for

High-Temperature, Low-Cycle Fatigue (HTLCF) life prediction has N88-12825"# National Aeronautics and Space Administration.
its origins in the modeling of first-order, creep-fatigue waveform Lewis Research Center, Cleveland, Ohio.
effects while treating as second-order effects, the influence of CREEP LIFE PREDICTION BASED ON STOCHASTIC MODEL
metallurgicalor environmentaltime dependencies.Proceduresare OF MICROSTRUCTURALLY SHORT CRACK GROWTH
proposed to include the latter explicitly in the inelastic TAKAYUKIKITAMURAand RYUlCHI OHTANI (KyotoUniv.,Japan)
strainrange--liferelations.For brevity,only the CP life relationwill 1988 23 p Proposedfor presentationto the SummerAnnual Meet-
be presented in detail. The exposure-time effect within the CP ing of the American Society of Mechanical Engineers,Berkeley,
inelastic strainrange (tensile creep reversed by compressive Calif., 20-22 Jun. 1988
plasticity)was determined by tensile stresshold-timeexperiments (NASA-TM-100245; E-3867; NAS 1.15:100245) Avail:NTIS HC
for 316 SS at 816 C. Reductionsin CP cyclic life of a factor of A03/MF A01 CSCL 20K
about two were observed with an increase in exposuretime or a A nondimensionalmodelof microstructurallyshortcrackgrowth
correspondingdecrease in creep rate by a factor of about 100. in creep is developed based on a detailed observation of the
The CP life relation has been modifiedto be expressed in terms creep fracture process of 304 stainless steel. In order to deal
of either Steady State Creep Rate (SSCR)or ExposureTime (ET). with the scatter of small crack growth rate data caused by
The applicability and accuracy of the time-dependentCP life microstructuralinhornogeneity,a randomvariabletechniqueis used
relations is demonstratedby conductingverificationexperiments in the model. A cumulativeprobabilityof the crack length at an
involving complex hysteresis loops. Metallographicexamination arbitarytime, G(bar a, bar t), and that of the time when a crack
r6vealedtime-dependentdegradationattributableto oxideformation reachesan arbitarylength,F(bar t, bar a), are obtainednumerically
and precipitationof carbidesalonggrain boundaries. Author by means of a Monte Carlo method.G(bar a, bar t), and F(bar t,

bar a) are the probabilitiesfor a single crack. However, multiple
N88-11140"# National Aeronautics and Space Administration. cracks generally initiate on the surface of a smooth specimen
Lewis ResearchCenter,Cleveland, Ohio. from the early stage of creep life to the final stage. TAking into
TURBINE ENGINE HOT SECTION TECHNOLOGY, 1985 account the multiple crack initiations, the actual crack length
Oct. 1985 443 p Conference held in Cleveland, Ohio, 22-23 distribution observed on the surface of a specimen is predicted
Oct. 1985 by the combination of probabilities for a single crack. The prediction
(NASA-CP-2405; E-2727; NAS 1.55:2405) Avail: NTIS HC shows a fairly good agreement with the experimental result for
A19/MF A01 CSCL 20K creep of 304 stainless steel at 923 K. The probability of creep life

The Turbine Engine Section Technology (HOST) Project Office is obtained from an assumption that creep fracture takes place
of the Lewis Research Center sponsored a workshop to discuss when the longest crack reaches a critical length. The observed
current research pertinent to turbine engine hot section durability and predicted scatter of the life is fairly small for the specimens
problems. Presentations were made concerning hot section tested. Author
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61 COMPUTER PROGRAMMING AND SOFTWARE

61 CALLY CONSTRAINED INCREMENTAL NEW3"ON-RAPHSONAL-
GORITHMS

COMPUTER PROGRAMMING AND SOFTWARE J. PADOVAN (Akron, University,Akron, OH) and T. ARECHAGA
InternationalJournalof EngineeringScience,vol. 20, no. 10, 1982,
p. 1077-1097. refs

Includescomputerprograms,routines,and algorithms,and specific (ContractNAG3-54)
applications,e.g., CAD/CAM.

Variousaspectsof the convergence,uniqueness,and existence
propertiesassociated with solutionsgenerated via the elliptically

A86-36861"# National Aeronauticsand Space Administration. constrained incrementalNewton-Raphson(ECINR) algorithmare
LewisResearchCenter, Cleveland,Ohio. analyzed.Severaltheoremsare developed,and the formalbehavior
A COMPUTER ANALYSIS PROGRAM FOR INTERFACING of theellipticallyconstrainedschemedevelopedby Padovan(1981)
THERMAL AND STRUCTURAL CODES is discussedin detail. Considerationis given to global and local
R. L. THOMPSON (NASA, LewisResearch Center, Cleveland, OH) rates of convergence, to the determination of the occurrence of
and R. J. MAFFEO (General Electric Co., Cincinnati, OH) IN: safety zones wherein the algorithm yields inherently convergent
Computers in engineering 1985; Proceedings of the International results, to formal limitations on the class of functions which the
Computers in Engineering Conference and Exhibition, Boston, MA, scheme can be applied to solve, and to single and multidimensional
August 4-8, 1985. Volume 2 . New York, American Society of formalisms on existence uniqueness and convergence. Special
Mechanical Engineers, 1985, p. 289-295. Previously announced in attention is given to functions whose Jacobian matrix exhibit
STAR as N85-27264. positive, negative, semi and indefinite properties. Several significant

A software package has been developed to transfer advantages of ECINR over the classical INR are mentioned.
three-dimensional transient thermal information accurately, C.D.
efficiently, and automatically from a heat transfer analysis code to
a structural analysis code. The code is called three-dimensional
TRansfer ANalysis Code to Interface Thermal and Structural codes,
or 3D TRANCITS. TRANCITS has the capability to couple finite
difference and finite element heat transfer analysis codes to linear

and nonlinear finite element structural analysis codes. TRANCITS A85-21979" Akron Univ., Ohio.
currently supports the output of SINDA and MARC heat transfer ON THE DEVELOPMENT OF HIERARCHICAL SOLUTION
codes directly. It will also format the thermal data output directly STRATEGIES FOR NONLINEAR FINITE ELEMENT
so that it is compatible with the input requirements of the NASTRAN FORMULATIONS
and MARC structural analysis codes. Other thermal and structural J. PADOVAN and J. LACKNEY (Akron, University, Akron, OH)
codes can be interfaced using the transfer module with the neutral Computers and Structures (ISSN 0045-7949), vol. 19, no. 4, 1984,
heat transfer input file and the neutral temperature output file. p. 535-544. refs
The transfer module can handle different elemental mesh densities (Contract NSG-3283)
for the heat transfer analysis and the structural analysis. Author This paper develops a hierarchical type solution scheme which

can handle the field equations associated with nonlinear finite
element simulations. The overall procedure possesses various
levels of application namely degree of freedom, nodal, elemental,
substructural as well as global. In particular iteration, updating,

A87-33614"# University of Western Michigan, Kalamazoo. assembly and solution control occurs at the various hierarchical
OPTIMIZATION AND ANALYSIS OF GAS TURBINE ENGINE levels. Due to the manner of formulation,the degree of matrix
BLADES inversiondependson the sizeof thevarioushierarchicalpartitioned
D. J. VANDENBRINK (Western Michigan University,Kalamazoo, groups.In this context, degree of freedom partitioningrequiresno
MI) and D. A. HOPKINS (NASA, LewisResearchCenter,Cleveland, inversion.To benchmarkthe overallscheme, the resultsof several
OH) IN: Structures,StructuralDynamicsand MaterialsConference, numericalexamplesare presented. Author
28th, Monterey, CA, Apr. 6-8, 1987, Technical Papers. Part 1 .
New York, American Institute of Aeronauticsand Astronautics,
1987, p. 535-537. refs
(AIAA PAPER 87-0827)

A gas turbineengine bladedesign is optimizedusingSTAEBL.
To validate the STAEBL analysis, the optimizedblade design is
analyzed using MARC, MHOST and BEST3D. The resultsshow
good agreement between STAEBL, MARC, and MHOST. The A86-30814" Cleveland State Univ.,Ohio.
conclusionis that STAEBL can be used to optimize an engine AN EMBEDDING METHOD FOR THE STEADY EULER
bladedesign. Author EQUATIONS

S.-H. CHANG (Cleveland State University, OH) and G. M.
JOHNSON (Institutefor ComputationalStudies, Fort Collins,CO)
Journalof ComputationalPhysics(ISSN 0021-9991), vol. 63, March
1986, p. 191-200. refs

64 (Contract NAG3-339)
Certain difficulties arise in connection with the numerical solution

of a direct finite difference representation of the steady Euler
NUMERICAL ANALYSIS equations.Johnson (1979, 1981, 1982) has, therefore,proposed

a surrogate-equationtechnique,inwhichthe first-ordersteadyEuler
Includes iteration, difference equations, and numerical equations are embedded in a certain second-ordersystem of
approximation, equations.The present paper is concerned with the theoretical

justificationfor such an embeddingapproach. For the numerical
solutionof the two-dimensionalsteadyEulerequations,it is shown

A83-10273" AkronUniv., Ohio. that, under a continuity restriction, it is possible to solve a
FORMAL CONVERGENCE CHARACTERISTICS OF ELLIPTI- second-order embedded system together with appropriate

additionalboundaryconditions.The result indicatesthat a more
direct and potentially more efficient approach to the steady
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64 NUMERICAL ANALYSIS

solutions exists than the alternative of solving the unsteady size grid in the physical plane. The separation of channel flow is
equations. G.R. examined at different Reynolds numbers over the range 25 to

229 with both equal and unequal size grids in the physical plane.
N83-23087# Iowa Univ., Iowa City. Inst. of Hydraulic Research. For problems with complex geometries, flow past an airfoil and
THE FINITE ANALYTIC METHOD, VOLUME 3 Final Report convective heat transfer in tube bundles, both are solved with the
C. J. CHEN, M. Z. SHEIKHOLESLAMI, B. KHALIGHI, and K. FA method for the boundary-fitted coordinate system. The FA
SINGH Aug. 1981 391 p refs 5 Vol. results are compared with the experimental data, the theoretical
(Contract NSG-3305) calculation, and predictions by other numerical schemes. In
(NASA-CR-170186; NAS 1.26:10186; IIHR-232-111-VOL-3)Avail: addition, the FA numerical solution for two dimensional
NTIS HC A17/MF A01 CSCL 12A incompressible flows over an arbitrary body shape is discussed.

The finite analytic (FA) method is applied to the numerical M.G.
solution of two-point boundary value problems of ordinary
differential equation. Convergence, stability, and accuracy of the N83-34656"# Virginia Polytechnic Inst. and State Univ.,
method are examined and a comparison of the finite analytic Blacksburg. Dept. of Mechanical Engineering.
solution with solutions obtained from the finite difference method THEORETICAL INVESTIGATION OF THE FORCE AND
is given for several numerical examples. In addition, the FA method DYNAMICALLY COUPLED TORSIONAL-AXIAL-LATERAL
is used to solve the two-dimensional Poisson and Laplace DYNAMIC RESPONSE OF EARED ROTORS Annual Status
equations. Finally a general 9-point finite analytic formula is Report
developed for the Navier-Stokesequationin a finite element.The J.W. DAVID and L. D. MITCHELL 1982 33 p
Navier-Stokes equations are formulated using the primitive (ContractNSG-3239)
variables.An iterativeschemewhichsolves thecontinuityequation, (NASA-CR-173013; NAS 1.26:173013) Avail: NTIS HC A03/MF
Poissonpressure equationand the momentumequations for the A01 CSCL 12A
three primitivevariables is devised. The FA numericalsolution is Difficulties in solutionmethodologyto be usedto deal with the
first obtainedfor stagnationpoint flow and a comparisonwith the potentiallyhigher nonlinearrotor equationswhen dynamiccoupling
exact solutionis made. Then the formula is used to obtain the is included. A solution methodology is selected to solve the
numerical solution for a flat plate-wake combined problem and nonlineardifferentialequations.The selected method was verified
also for a square driven cavity flow. The results are obtained for to give good results even at large nonlinearitylevels. The transfer
Reynolds numbers100, 400, and 800. M.G. matrix methodology is extended to the solution of nonlinear

problems. Author

N83-23088# Iowa Univ., Iowa City. Inst. of HydraulicResearch.
THE FINITE ANALYTIC METHOD, VOLUME 4 Final Report
C.J. CHENandH. C. CHEN Aug. 1982 424p refs 5Vol.
(Contract NSG-3305)
(NASA-CR-170187; NAS 1.26:170187; IIHR-232-1V-VOL-4) Avail:
NTIS HC A18/MF A01 CSCL 12A

Unsteady 1D, 2D, and 3D incompressible Navier-Stokes
equationsare numericallyanalyzed by a numericalscheme called
the finite analytic method. The basic idea of the finite analytic
method is the incorporationof a local analytic solution in the
numerical solution of linear and nonlinear partial differential
equations.The local analytic solutions for unsteady1D, 2D and
3D convective transport equations are obtained from locally
linearized governing equations by specifying suitable initial and
boundaryconditionsfor each local element.When the localanalytic
solutionis evaluatedat a given nodal point, it gives an analytic
algebraicrelationshipbetween a nodalvalue in a local elementto
its neighboringnodal points.The solutionof the problem is then
achievedby solvingthe systemof algebraicequations.Depending
on the boundaryand initial functions chosen to represent the
boundaryand initial conditionsfor each local element, a number
of local analytic solutionsare derived. The resultsshow that the
boundaryapproximationbased on the combinationof exponential
and linear function is the best one since the boundary function
thus constructedis the natural solutionof the governingequation.
The finite analytic coefficients thus obtained are shown to be
relativelysimple and do give the correct asymptoticbehaviorfor
both diffusionand convectiondominatedcases. M.G.

N83-23089# Iowa Univ., Iowa City. Inst. of HydraulicResearch.
THE FINITE ANALYTIC METHOD, VOLUME 5 Final Report
C. J. CHEN, K. S. HO, and W. S. CHENG Oct. 1982 438 p
refs 5 Vol.
(Contract NSG-3305)
(NASA-CR-170188; NAS 1.26:170188; IIHR-232-V-VOL-5) Avail:
NTIS HC A19/MF A01 CSCL 12A

Inorderto solvepracticalengineeringproblems,a finite analytic
(FA) methodcapable of solvingflow and heat transfer problems
involvingcomplex geometries is developed. The boundary-fitted
coordinatetransformationis incorporatedinto the FA method.The
FA method is employed to solve several flow and heat transfer
problems. The problem of convective heat transfer in a cavity is
studiedwith the Reynoldsnumberrangingfrom 100 to 2,000 and
the Peclet number rangingfrom 10 to 20,000 by using an equal
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Turbine EngineHot SectionTechnology,1985 deformations p 83 A86-43774 fracturemechanicsspecimens p 79 A86-20706

[NASA-CP-2405] p 125 N88-11140 CONTROL MOMENT GYROSCOPES Creep crack-growth:A newpath-independentT sub o
CONSTITUTIVE EQUATIONS Applicationof tractiondrivesas servo mechanisms and computationalstudies

Nonlinear structuraland life analysesof a combustor p 114 N85-33520 [NASA-CR-168930] p 92 N82-24503
liner p 68 A83-12764 CONVECTIVE HEAT TRANSFER Effectof crack curvatureon stressintensityfactors for

Requirementsofconstitutivemodelsfortwo nickel-base The finiteanalytic method,volume 5 ASTM standardcompacttensionspecimens
superalloys p 33 A83-21071 [NASA-CR-170188] p 127 N83-23089 [NASA-CR-168280] p 100 N84o11513

An uncoupledviscoplasticconstitutivemodelfor metals CONVERGENCE Crack layer theory
at elevated temperature Formal convergence characteristics of ellipticaIly [NASA-CR-174634] p 103 N84-22980
[AIAA 83o1016] p 69 A83-29798 constrainedincrementalNewton-Raphsonalgorithms CRACK INITIATION

Thermodynamicallyconsistentconstitutiveequationsfor p126 A83-10273 Cyclicbehaviorof turbinediskalloys at 650 C
nonisothermallarge strain,elasto-plastic,creep behavior COOLING p 32 A81-12266
[AIAA PAPER 85-0621] p 77 A85-38425 Aerothermalmodeling. Executivesummary RequirementsofconstitutJvemodelsfortwonickel-base

Unified constitutive material models for nonlinear [NASA-CR.168330] p 7 N84.15152 superalloys p 33 A83-21071
finite-element structuralanalysis ... gas turbine engine COPPER Turbineblade nonlinearstructuraland lifeanalysis
blades and vanes Nonlinear damage analysis:Postulate and evaluation p 1 A83-29024
[AIAA PAPER 85.1418] p77 A85-39769 [NASA.CR.168171] p 118 N86-26652 Fatigue crack initiation and propagation in several

Constitutive modeling and computational COPPER ALLOYS nickel-basesuperalloysat 650 C p33 A83-41199
implementationfor finitestrainplasticity High temperature low cycre fatigue mechanisms for Applicationof two creep fatigue life models for the

p 78 A85-40910 nickel base and a copperbase alloy prediction of elevated temperature crack initiationof a
Unified constitutivematerials model developmentand [NASA-CR-3543] p 39 N82-26436 nickel base alloy

evaluation for high-temperature structural analysis CORIOLIS EFFECT [AIAA PAPER 85-1420] p 35 A85-43979
applications--- for aircraftgas turbineengines Vibrationand buckringof rotating,pretwisted,preconed Three-dimensionalhybrid-stressfiniteelement analysis

p 84 A86-49133 beams includingCorioliseffects p 80 A86-26910 of compositelaminateswith cracks and cutouts
Nonlinearstructural and life analysesof a combustor p 80 A86-26896

liner Nonlinearvibrationand stabilityof rotating,pretwisted, Practical implementationof the doublelinear damage
[NASA-TM-82846] p 92 N82-24501 preconedblades includingCorioliseffects rule and damage curve approachfor treating cumulative

Nonlinearconstitutivetheoryforturbineenginestructural p 86 A87-39896 fatiguedamage
analysis p 95 N82-33744 Forced vibrationanalysis of rotatingcyclic structures [NASA-TM-81517] p 88 N80-23684

Materials constitutivemodelsfor nonlinearanalysisof in NASTRAN Analysisof crack propagationas an energy absorption
thermallycycledstructures [NASA-CR-t65429] p 100 N84-11514 mechanismin metal matrixcomposites
[NASA-TP.2055] p 95 N83-12449 Vibrationand bucklingof rotating,pretwisted,preconed [NASA-CR-165051] p 24 N82-14288

Research and development program for the beams includingCoorioliseffects Elevatedtemperaturefatigue testingof metals
development of advanced.t_'le.temperaturedependent [NASA.TM-87004] p 109 N85-25893 [NASA-TM-82745] p 91 N82-16419
constitutive relationships. Volume 1: Theoretical Nonlinear flap-lag.extensional vibrationsof rotating, Mechanisms of deformation and fracture in high
discussion pretwisted, preconed beams including Corioliseffects temperaturelow cycle fatigue of Rene 80 and IN 100
[NASA-CR-168191-VOL-1] p 100 N84-10613 [NASA-TM-87102] p 115 N85-34427 [NASA-CR-165498] p 93 N82-26706
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CRACK PROPAGATION SUBJECT INDEX

A prelimina_ studyofcrackinitiationandgrowthat stress The cracklayerapproachtotoughnesscharacterization Creep-fatiguebehaviorof NiCoCrAIYcoated PWA 1480
concentration sites in steel p 36 A86-30010 superalloy single crystals
[NASA-CR.169358] p 94 N82-33738 Dynamic delamination crack propagation in a [NASA-TM-87tt0] p 42 N86-10311

Creep fatigue of low-cobaltsuperalloys: Waspanoy, PM graphite/epoxylaminate p20 A86-430t0 Influence of load interactions on crack growthas related
U 700 and wrought U 700 Mode II fatigue crack growth specimen development to state of stress and crack closure
[NASA-CR-t68260] p 40 N84-t3265 p 83 A86-43566 [NASA-TM-87117] p 42 N86-12292

Literature survey on oxidations and fatigue lives at Fatigue crack growth under general-yielding Fatigue crack propagation of nickel-basesuperalloysat
elevated temperatures cyclic-loading p 84 A86-44339 650 deg C
[NASA-CR-t74639] p 40 N84-20674 A study of spectrum fatigue crack propagation in two [NASA-TM-87150] p 42 N86-t2294

Crack layer theory aluminum alloys. I - Spectrum simplification. II - Influence Fractured toughness of Si3N4 measured with short bar
[NASA-CR-174634] p 103 N84-22980 of microstructures p 36 A86-48973 chevron-notched specimens

Cracktipfieldandfatiguecraekgrowthiogeneralyielding Orientation and temperature dependence of some [NASA-TM-87153] p 47 N86-13495
and lowcycle fatigue mechanical properties of the single-crystal nickel-base Closure of fatigue cracks at high strains
[NASA-CR-174686] p 41 N84-32503 superanoyRene N4. II - Low cycle fatigue behavior [NASA-CR-175021 ] p 116 N86-17788

Nonlinear structural and life analyses of a combustor p 37 A86-50322 Estimating the R-curve from residual strength data
liner p9 N85-10955 Elastic analysis of a mode II fatigue crack test [NASA-TM-87182] p 116 N86-18750

Pre-HOST high temperature crack propagation specimen p 84 A87-17799 Grain boundary oxidation and oxidation accelerated
p 9 N85-19956 Simplified composite mieromechanics for predicting fatigue crack nucleation and propagation

Life prediction and constitutive behavior: Overview microstresses p 20 A87-20090 [NASA-CR-175050] p 43 N86-20542
p 10 N85-10973 Fracture toughness of Si3N4 measured with short bar Variables controlling fatigue crack growth of short

Constitutive model development for isotropie materials chevron-notched specimens p 46 A87-30621 cracks
p 10 N85-10975 Comparison tests and experimental compliance [NASA-TM-87208] p 43 N86-21661

Creep fatigue life prediction for engine hot section calibration of the proposed standardround compact plane Fatigue crack growth under general-yielding
materials (isotropic) strain fracture toughness specimen cyclic-loading
[NASA-CR-168228] p 11 N85-31057 [NASA-TM-81379] p 87 N80-13513 [NASA-CR-175049] p 117 N86-21951

Fatigue crack propagation of nickel-base superalloys at Sudden bending of cracked laminates Simplified composite micromechanics tor predicting
650 deg C [NASA-CR.159860] p 23 N80-25384 microstresses
[NASA-TM-87159] p 42 N86-12294 Evaluation of the cyclic behavior of aircraft turbine disk [NASA-TM-87295] p 30 N86-24759

Simplified cyclic structural analyses of SSME turbine alloys, part 2 Thermal-mechanical fatigue behavior of nickel-base
blades [NASA-CR-165123] p 38 N80-30482 superalloys
[NASA-TM-87214] p 116 N86-16615 Analysis of crack propagation as an energy absorption [NASA-CR-175948] p 43 N86-24818

Fatigue crack growth under general-yielding mechanism in metal matrix composites Axial and torsional fatigue behavior of Waspaloy
cyclic-loading [NASA-CR-165051] p 24 N82-t4288 [NASA-CR-175052] p 44 N86-25454
[NASA-CR-t75049] p 117 N86-21951 Micromechanical predictions of crack propagation and Fatigue crack layer propagation in silicon-iron

Cyclic creep analysis from elastic finite-element fracture energy in a single fiber boron/aluminum model [NASA-CR.175115] p 118 N86-25851
solutions composite Low-cycle thermal fatigue
[NASA-TM-87213] p 117 N86-25822 NASA-CR-168550] p 25 N82-18326 [NASA-TM-87225] p 118 N86-26651

Low-cycle thermal fatigue Creep crack-growth: A new path-independent T sub o Effects of a high mean stress on the high cycle fatigue
[NASA-TM-87225] p 118 N86-26651 and computational studies life of PWA 1480 and correlation of data by linear elastic

Nonlinear damage analysis: Postulate and evaluation NASA-CR-168930] p 92 N82-24503 fracture mechanics
[ NASA-CR-168171] p t 18 N86-26652 Fracturemechanics criteria for turbineengine hot section [ NASA-CR-175057] p 118 N86-27689

Structural analysis of turbine blades using unified components Creep life prediction based on stochastic model of
constitutive models NASA-CR-167896] p 7 N82-25257 microstructurally short crack growth
[NASA.TM-88807] p 119 N86-28461 Interlaminar crack growth in fiber reinforced composites [NASA-TM-100245] p 125 N88-12825

Compliance matrices for cracked bodies duringfatigue, part 3 CRACK TIPS
[NASA-CR-179478] p120 N86-30236 NASA-CR-165434] p93 N82-26715 Dynamic fields near a crack tip growing in an

Flaw imaging and ultrasonic techniques for Creep crack-growth: A new path-independentintegral elastic-perfectly-plasticsolid p 70 A83-38528
characterizingsinteredsiliconcarbide (T sub c), andcomputationalstudies On stressfield neara stationarycracktip
[NASA-TM-100177] p 63 N88-12106 [NASA-CR-167897] p 94 N82-29619 [AD-At52863] p 76 A85-24532

Creep life prediction based on stochastic model of Apreliminarystudyofcrackinitiationandgrowthatstress Analysis of an externally radially crack ring segment
microstructurallyshort crackgrowth concentrationsites subjectto three-pointradialloading p 79 A86-207t0
[NASA-TM-100245] p 125 N88-12825 NASA-CR-t69358] p 94 N82-33738 Re-examinationof cumulative fatiguedamage analysis

CRACK PROPAGATION A total life predictionmodel for stress concentration - An engineeringperspective p 85 A87-22128
Simplespline-functionequationsfor fracturemechanics sites Cracktipfieldandfatiguecrackgrowthingeneralyielding

calculations p 63 A80-10832 NASA-CR-170290] p 98 N83-23829 and low cycle fatigue
Fracture toughness determination of AI203 using Crack layermorphologyandtoughnesscharacterization [NASA-CR-t74686] p 41 N84.32503

four-point-bendspecimens with straight-through and in steels Re-examinationof cumulativefatiguedamageanalysis:
chevronnotches p 45 A80-42085 NASA-CR-168154] p 97 N83-27256 An engineeringperspective

Performance of Chevron-notchshort bar specimenin Fatiguecrackgrowth and lowcycle fatigueof two nickel [NASA-TM-87325] p 118 N86-27680
determiningthe fracture toughnessof siliconnitrideand base superalloys The effectsof crack surfacefriction and roughnesson
aluminumoxide p 45 A80-50896 NASA-CR-t74534] p 39 N84-10267 crack tipstressfields

On the equivalence between semiempiricalfracture A total life prediction model for stress concentration [NASA-TM-88976] p 122 N87-t888tanalysesand R-curves p 64 A81-18792 sites
Ona studyof the/Delta T/c and C/asterisk/integrals NASA-CR-168225] p 100 N84-10612 CRACKING (FRACTURING)

Interface cracks in adhesively bounded lap-shear
for fractureanalysis undernon-steadycreep Crack layertheory joints p 67 A82-46109p 85 A82-36782 [NASA-CR-174634] p 103 N84-22980

Moving singularitycreep crack growth analysis with the Mode 2 fatigue crack growth specimen development SCARE - A postprocessor program to MSC/NASTRAN
/Delta T/c and C/asterisk/integrals --- path-independent [NASA-TM-83722] p 104 N84-29248 for reliability analysis of structural ceramic components
vector and energy rate line integrals p 66 A82-40066 Evaluation of the effect of crack closure on fatigue crack [ASME PAPER86-GT-34] p 84 A87-t7988

Crack displacements for J/I/ testing with compact growth of simulated short cracks Method for estimatingcrack-extensionresistancecurve
specimens p 66 A82-40358 [NASA-TM-83778] p 40 N84-31348 from residual strength data

Moving cracks in layered composites Inelastic and dynamic fracture and stress analyses [NASA-TP-1753] p 89 N81-11417
p 67 A83-12048 p 106 N84-31697 Experimental compliance calibration of the compact

Growth and stability of interacting surface flaws of Cracktipfieldandfatiguecrackgrowthingeneralyielding fracture toughnessspecimen
arbitrary shape p 68 A83-15060 and low cycle fatigue [NASA-TM-81665] p 89 N81-16492

The effect of microstructure on the fatigue behavior of [NASA-CR-174686] p 41 N84-32503 Stressintensityanddisplacementcoefficientsforradially
Ni base superalloys p 33 A83-36166 On stress analysis of a crack-layer cracked ring segments subject to three-point bending

Dynamic fields near a crack tip growing in an [NASA-CR-174774] p 106 N84-34774 [NASA-TM-83059] p96 N83-24874
elastic-perfectly-plastic solid p 70 A83-38528 Pre-HOST high temperature crack propagation Crack layer theory

Fatigue crack initiation and propagation in several p 9 N85-10956 [NASA-CR-174634] p 103 N84-22980
nickel-base superalloys at 650 C p 33 A83-41199 HOST hightemperature crack propagation Compliance matricesfor cracked bodies

The effect of microstructure on 650 C fatigue crack p 10 N85-10977 [NASA-CR-179478] p 120 N86-30236
growth in P/M Astroloy p 33 A84-12395 Thermal-mechanical fatigue crack growth in Inconel CRACKS

The effects of frequency and hold timeson fatigue crack X-750 Analysis of an internally radially cracked ring segment
propagation rates in a nickel base superalloy [NASA-CR-174740] p 41 N85-15877 subject to three-point radial loading p 71 A84-18691p 34 A84-18733 A study of spectrum fatigue crack propagation in two

Fracture toughness of hot-pressed beryllium aluminum alloys. 1: Spectrum simplification Wide-range weight functions for the strip with a single
p 34 A85-25835 [NASA-TM-86929] p 41 N85-18124 edge crack p 79 A86-20709

On the fatigue crackpropagation behavior of superalloys A study of spectrum fatigue crack propagation in two Modelling of crack tip deformation with finite element
at intermediatetemperatures p 35 A85-32434 aluminumalloys. 2: Influence of microstructures method and its aplications p 87 N80-13503

Thermal-mechanical fatigue crack growth in Inconel [NASA-TM-86930] p 41 N85-18125 Analysis of cracks emanating from a circular hole in
X-750 p 35 A86-20982 Translational and extensional energy release rates (the unidirectional fiber reinforced composites, part 2

Shear fatigue crack growth. A literature survey J. and M-integrals) for a crack layer in thermoelasticity [NASA-CR-165433] p 93 N82-26714
p 80 A86-24219 [NASA-CR-t74872] p 107 N85-21685 Analysis of interface cracks in adhesively bonded lap

Fracture mechanics applied to nonisothermal fatigue Ultrasonic testing of plates containing edge cracks shear joints, part 4
crack growth p 36 A86-28951 [NASA-CR-3904] p 58 N85-29307 [NASA-CR-165438] p 93 N82-26716
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SUBJECT INDEX CYCLIC LOADS

Analysis of an externallyradiallycracked ring segment An updateof the total-strainversionof SRP Mode II fatigue crack growth specimendevelopment
subject to three-point radial loading [NASA-TP-2499] p 42 N86-12295 p 83 A86-43566
[NASA-TM-83482] p 100 N83-35413 Development of constitutive models for cyclic plasticity Fatigue crack growth under general-yielding

Wide range weight functions for the strip with a single and creep behavior of super alloys at high temperature cyclic-loading p 84 A86-44339
edge crack [NASA-CR-176418] p 43 N86-14356 Results of an interlaboratory fatigue test program
[NASA-TM-83478] p 100 N84-11512 Integratedresearchinconstitutivemodellingat elevated conducted on alloy 800H at room and elevated

On stressanalysisof a crack.layer temperatures,part2 temperatures p 37 A87-54370
[NASA-CR-174774] p 106 N84-34774 [NASA-CR-177233] p 119 N86-28455 Hygrothermomechanical evaluation of transverse

Ultrasonic testing of plates containing edge cracks Finite element implementationof Robinson's unified filamenttape epoxy/polyesterfiberglasscomposites
[NASA-CR-3904] p 56 N85-29307 viscoplasticmodelandits applicationtosomeuniaxialand [NASA-TM-83044] p 26 N83-15362

multiaxialproblems Experimentalverificationof the Neuber relation at room
J-integral estimates for cracks in infinite bodies [NASA-TM-89891] p 123 N87-23010

[NASA-CR-179474] p 119 N86-28467 Creep life prediction based on stochastic model of and elevated temperatures --- to predict stress-strainbehavior in notched specimens of hastelloy x
Surface flaw reliability analysis of ceramic components microstructurally short crack growth [NASA-CR-167967] p 96 N83-19121

with the SCARE finite element postprocessor program [NASA-TM-100245] p 125 N88-12825
[NASA-TM-88901] p 121 N87-17087 CREEP RUPTURE STRENGTH Development of a simplified analytical method for

CREEP ANALYSIS A quarter-centuryof progress in the development of representingmaterialcyclic response
Moving singularitycreep crackgrowth analysiswith the correlationand extrapolationmethods for creep rupture [NASA-CR-168100] p 96 N83-21390

/Delta T/c andC/asterisk/integrals---path-independent data p 63 A80-38142 Relation of cyclic loading pattern to microstructural
vector and energy rate line integrals p 66 A82-40066 Creep-rupturereliabilityanalysis p 79 A85-42566 fracture increep fatigue

Strainrange partitioning- A total strainrange version Creep-rupturereliabilityanalysis [NASA-TM-83473] p 98 N83-34349
-- for creep fatigue life predictionby summinginelastic [NASA-CR-3790] p 102 N84.19925 Simplifiedmethodfor nonlinearstructuralanalysis
and elastic strain-range-liferelations for two Ni base CREEP STRENGTH [NASA-TP-2208] p 99 N83-34372
superalloys p 34 A85-11603 Advancedstressanarysismethodsapplicableto turbine Development of a simplified procedure for cyclic

Thermodynamicallyconsistentconstitutiveequationsfor engine structures structuralanalysis
nonisothermallarge strain,elasto-plastic,creep behavior [NASA-CR-175573] p 11 N85-21165 [NASA.TP-2243] p 103 N84-20878
[AIAA PAPER 85-0621] p 77 A85-38425 Exposuretime considerationsin high temperature low Mode 2 fatigue crack growth specimendevelopment

Creep crack-growth: A new path-independentintegral cycle fatigue [NASA-TM-83722] p 104 N84-29248
(T sub c), andcomputationalstudies [NASA-TM-88934] p 125 N87-28944 Cyclictorsiontesting
[NASA-CR-167897] p 94 N82-29619 CREEP TESTS [NASA-TM-83756] p 105 N84-31687

Strainrange partitioning: A total strain rangeversion Strainrangepartitioninglife predictionsof the longtime Nonlinear structuraland life analyses of a combustor
[NASA-TM-83023] p 39 N83-14246 Metal PropertiesCouncilcreep-fatiguetests liner p 9 N85°10955

Fatiguecrack propagationof nickel-basesuperalloysat p 63 A80-27958 Design procedures for fiber composite structural
650 deg C Fatigue and creep.fatigue deformation of several components: Panels subjected to combined in-plane
[NASA-TM-87150] p 42 N86-12294 nickel-basesuperalloysat 650 C p 32 A82-47398 loads

Cyclic creep analysis from elastic finite-element A continuousdamage modelbased on stepwise-stress [NASA-TM-86909] p 29 N85-15823
solutions creep rupturetests Lowcycle fatigueof MAR-M 200 singlecrystalsat 760
[NASA.TM-87213] p 117 N86-25822 [NASA-CR-174941] p 114 N85-32341 and 870 deg C

CREEP BUCKLING Constitutivemodeling for isotropicmaterials(HOST) [NASA-TM-86933] p 41 N85-19074
On the solutionof creep inducedbucklingin general [NASA-CR-174980] p 115 N86-10589 Local strain redistributioncorrectionsfor a simplified

structure p 66 A82-39514 CROSS CORRELATION inelastic analysis procedure based on an elastic
Algorithmsfor elasto-plastic-creeppostbuckling Measurementof ultrasonicvelocity using phase-slope finite-element analysis

p 73 A84-38480 and cross-correlationmethods p 51 A86-13192 [NASA-TP-2421] p 107 N85-20396
Dynamic creep buckling: Analysis of shell structures Ultrasonicvelocitymeasurement using phase-slope Onlocaltotalstrainredistributionusingasimplifiedcyclic

subjected to time-dependent mechanicaland thermal cross-correlationmethods inelasticanalysisbasedon an elastic solution
loading p 111 N85-27959 [NASA-TM-83794] p 57 N84-34769 [NASA-TM-86913] p 108 N85-21690

CREEP PROPERTIES CRYOGENICS Cyclicstructuralanalysesof anisotrepicturbineblades
On a studyof the/Delta Tic and C/asterisk/integrals Select fiber composites for space applications. A for reusable space propulsion systems --- ssme fuel

for fractureanalysisundernon-steadycreep mechanisticassessment p 18 A85-16040 turbopump
p 65 A82-36782 Select fiber composites for space applications: A [NASA-TM-86990] p 108 N85-24339

The influenceof holdtimes on LCF and FCG behavior mechanisticassessment Analysis of shell type structuressubjected to time
ina P/M Ni-basesuperalloy--- Low CycleFatigue/Fatigue [ NASA.TM-83631] p 26 N84-22702 dependentmechanicaland thermal loading
Crack Growth p 35 A85-32400 CRYSTAL DISLOCATIONS [NASA-CR-175747] p 109 N85-25896

Plasticity, viscoplasticity, and creep of solids by On finite deformationelasto-plasticity Interactionofhigh-cycleandlow-cyclefatigueofHaynes
mechanicalsubefementmodels p 77 A85-35048 p 66 A82-45869 188 alloyat 1400 F deg p 111 N85-27961

Constitutivemodelingofcyclicplasticityandcreep,using CUMULATIVE DAMAGE Thermomechanical deformation in the presence of
an internaltime concept p 83 A86-41673 Considerationsfor damageanalysisof gas turbinehot metallurgicalchanges p 112 N85-31533

Creep crack-growth: A new path-independentT sub o sectioncomponents Results of an interlaboratory fatigue test program
and computationalstudies [ASMEPAPER84-PVP-77] p2 A85 18792 conducted on alloy 800H at room and elevated
[NASA-CR-168930] p 92 N82-24503 A history dependent damage model for low cycle temperatures

Relation of cyclic loadingpatternto microstructural fatigue [NASA-CR-174940] p 114 N85-32340
fractureincreep fatigue [ASME PAPER64-PVP-112] p 75 A85-18795 Closureof fatiguecracks at highstrains
[NASA-TM-83473] p 98 N83-34349 The crack layerapproachto toughnesscharacterization [NASA-CR-175021] p 1t 6 N86-17788

Constrained self-adaptive solutions proceduresfor insteel p 36 A86-30010 Fatigue crack growth under general-yielding
structure subjectto high temperature elastic-plastic creep Progressivefracture of fiber composites cyclic-loading
effects p 99 N83-34370 p 19 A86-35809 [NASA-CR-175049] p 117 N86-21951

Stress and fracture analyses underelastic-plastic creep Practical implementation of the double linear damage Cyclic creep analysis from elastic finite-element
conditicns: Some basic developments and computational rule and damage curve approach for treating cumulative solutions
approaches p 99 N83-34371 fatigue damage [NASA-TM-87213] p 117 N86-25822

Fatigue crackgrowth and low cycle fatigue of two nickel [NASA-TM-81517] p 88 N80-23684 Experimental evaluation criteria for constitutive models
base superalloys CYCLIC LOADS of timedependent cyclicplasticity
[NASA-CR-174534] p 39 N84-I0267 Strainrangepartitioninglifepredictionsof the longtime [NASA-CR-176821] p 117 N86-25850

Low strain,longlifecreep fatigueof AF2-1DAandINCO Metal PropertiesCouncilcreep-fatiguetests Low-cyclethermal fatigue
718 p 63 A80-27958 [NASA-TM-87225] p 118 N86-26651
[NASA-CR-167989] p 40 N84-10268 Cyclicbehaviorof turbinediskalloys at 650 C Ultrasonicstress wave characterizationof composite

Research and development program for the p 32 A81-12266 materials
development of advanced time-temperaturedependent Requirementsof constitutivemodelsfor twonickel-base (NASA-CR-3976] p 60 N86-27665
constitutive relationships. Volume 2: Programming superalloys p 33 A83-21071 Effectsof a highmean stresson the highcycle fatigue
manual Low cyclefatigue behaviorof aluminum/stainlesssteel life of PWA 1480 and correlationof databy linear elastic
[NASA-CR-168191-VOL-2] p 100 N84-10614 composites fracturemechanics

Creep fatigueof low-cobaltsuperalloys:Waspalloy,PM [AIAA 83-0806] p 16 A83-29886 NASA-CR-175057] p 118 N86-27689
U 700 and wroughtU 700 Benchmarkcyclicplasticnotchstrainmeasurements Structural analysis of turbine blades using unified
[NASA-CR-168260] p 40 N84-13265 p 33 A84-11194 constitutivemodels

Nonlinear structural and life analysesof a combustor Hygrothermomechanical evaluation of transverse NASA-TM-88807] p 119 N86-28461
liner p 9 N85-10955 filamenttape epoxy/polyesterfiberglasscomposites Estimationof hightemperaturelowcycle fatigueonthe

Reliability considerations for the total strain range p 17 A85-15632 basisof inelasticstrainand strainrate
versionof strainrangepar'dtioning A history dependent damage model for low cycle NASA-TM-88841] p 44 N87-14489
[NASA-CR-174757] p 106 N85-11380 fatigue Bithermal low-cycle fatigue behavior of a

Creep fatigue life prediction for engine hot section [ASME PAPER 84-PVP-112] p 75 A85-18795 NiCoCrAIY.coatedsinglecrystalsuperalloy
materials(isotropic) Onlocaltotalstrainredistributionusingasimplifiedcyclic NASA-TM-89831] p 45 N87-20408
[NASA-CR-168228] p 11 N85-31057 inelasticanalysisbasedon an elasticsolution Environmentaldegradationof 316 stainlesssteel inhigh

A compadsonof two contemporarycreep-fatigue life [AIAA PAPER85-1419] p 78 A85-39770 temperaturelow cycle fatigue
predictionmethods p 113 N85-31538 Applicationof two creep fatigue life models for the NASA-TM-89931] - p 124 N87-24007

Creep-fatiguebehaviorof NiCoCrAIYcoatedPWA 1480 prediction of elevated temperature crack initiationof a Exposuretime considerationsin high temperaturelow
superalloysinglecrystals nickelbase alloy cycle fatigue ,,
[NASA-TM-87110] p 42 N86-10311 [AIAA PAPER85-1420] .p 35 A85-43979 NASA-TM-88934] p 125 N87.28944
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CYLINDRICAL COORDINATES SUBJECT INDEX

CYLINDRICAL COORDINATES Bounding solutions of geometrically nonlinear DETECTION
Hybrid solid element with a traction-free cylindrical viscoelasticproblems Radiographic detectability limitsfor seeded voids in

surface p 82 A86-34462 [AIAA PAPER 86-0943] p 82 A86-38838 sinteredsiliconcarbideand siliconnitdde
CYLINDRICAL SHELLS Re-examinationof cumulativefatiguedamage analysis p 51 A86-31745

Vibrationsof cantileveredshallow cylindricalshells of - An engineeringperspective p 85 A87-22128 Radiographicdetectability limits for seeded voids in
rectangularplanform p65 A82-11298 Stressandfractureanalysesunderelastic-plasticcreep sinteredsiliconcarbide and siliconnitride

Vibrationsof cantilevered circular cylindrical shells conditions:Somebasicdevelopmentsand computational [NASA-TM-86945] p 58 N85-21674
Shallowversusdeep shell theory p 69 A83-36958 approaches p 99 N83-34371 Reliability of scanninglaser acousticmicroscopyfor

Ahigherordertheoryof laminatedcompositecylindrical Inelasticand dynamicfractureand stressanalyses detectinginternalvoids instructuralceramics
shells p 86 A87-35656 p 106 N84-31697 [NASA-TM-87222] p 59 N86-16599

Advancedstressanalysismethodsapplicableto turbine DIES

O enginestructures The thermal fatigue resistance of H-13 Die Steel for
[NASA-CR-175573] p 11 N85-21165 aluminumdie castingdies

On Hybridand mixedfiniteelementmethods [NASA-TM-83331] p 39 N83-35103
DAMAGE [NASA-CR-175551] p 108 N85-23096 DIFFERENTIAL EQUATIONS

Dynamic response of damaged angleplied fiber Yieldingand deformationbehaviorof the singlecrystal The finite analyticmethod,volume 3
composites nickel-basesuperalloyPWA 1480 [NASA-CR-170186] p 127 N83-23087
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On the use of internal state variables in Preliminaryinvestigationof an electricalnetwork model element codes. II - Bearing element implementation,
thermoviscolPlasticconstitutiveequations for ultrasonicscattering overall numericalcharactedstJcsand benchmarking

p 113 N85-31536 [NASA-CR-3770] p 57 N84-17606 [ASME PAPER 82-GT-292] p 47 A82-35462
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Computationalenginestructuralanalysis [ NASA-TM-81747] p 38 N81.21 t 74 Predictionof fibercompositemechanicalbehaviormade
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[ASME PAPER 84-GT-138] p 77 A85-32962 An update of the total-strain version of SRP High temperature low cycle fatigue mechanisms for
Dynamic characteristics of an assembly of prop-fan [NASA-TP-2499] p 42 N86-12295 nickel base and a copper base alloy

blades Closure of fatigue cracks at high strains [NASA-CR-3543] p 39 N82-26436
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[ASME PAPER 86-GT-195] p 84 A86-48245 fatigue crack nucleation and propagation The thermal fatigue resistance of H-13 Die Steel for

Fabrication and quality assurance processes for [NASA-CR-175050] p43 N86-20542 aluminum die casting dies
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[ASME PAPER 83-GT-152] p 70 A83-47978 Growth and stability of interacting surface flaws of [NASA-CR-168191-VOL-1] p 100 N84.10613
NASTRAN forced vibration analysis of rotatingcyclic arbitraryshape p 68 A83-15060 A surveyof unifiedconstitutivetheories

structures SURFACE FINISHING p 112 N85-31531

[ASME PAPER 83-DET-20] p 72 A84-29103 Reliability of void detection in structuralceramics byuse The low cycle fatigue behavior of a plasma-sprayedcoating material
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[NASA-TM-88974] p 122 N87-18882 p 33 A83-22019 finite-elementstructuralanalysis

HUMPHREYS, V.E. The effect of microstructureon the fatigue behaviorof [AIAA PAPER 85-141B] p 77 A65-39769
Thermal fatigue and oxidationdata for directionally Nibase superalloys p33 A83-36166 Onlocaltotalstrainredistributionusingasimplifiedcyclio

solidifiedMAR-M 246 turbineblades A study of fatiguedamage mechanismsin Waspaloy inelasticanalysisbasedon an elastic solution
[NASA-CR-159798] p 6 N80-21330 from 25 to 800 C p 34 A85-12098 [AIAA PAPER 85-1419] p 78 A85-39770

Thermal fatigue and oxidation data of oxide Low cycle fatigueof MAR-M 200 singlecrystalsat 760 Nonlinear,three.dimensionalfinite-elementanalysisof
dispersion-strengthenedalloys and 870 deg C air-cooledgas turbineblades
[NASA-CR-159842] p 37 N80-25415 [NASA-TM-86933] p 41 N85-19074 NASA-TP-1669] p 88 N80-22734

Thermal fatigueand oxidationdataof TAZ-8A and M22 JOHNS, R.H. Comparisonof elastic and elastic-plastic structural
alloysand variations Computationalengine structuralanalysis analyses for cooled turbineblade airfoils
[NASA-CR-165407] p 38 N82-10193 [ASME PAPER86-GT-70] p 5 A86-48141 NASA-TP-1679] p 88 N80-27719

HUNT, L E. Structural analysis p 9 N85-I0969 Elastic-plastic finite-element analyses of thermally
Elastic-plastic finite-element analyses of thermally HOST structural analysis program overview cycled single-edge wedge specimens

cycled double-edge wedge specimens p 12 N86-11513 NASA-TP-1982] p 91 N82-20565
[NASA.TP-1973] p 92 N82-20566 Computational engine structural analysis Elastic-plastic finite-element analyses of thermally

Materials constitutive models for nonlinear analysis of [NASA-TM-87231] p116 N86-19663 cycled double-edge wedge specimens
thermallycycled structures JOHNSON, G.M. NASA-TP-1973] p 92 N82-20566
[NASA-TP-2055] p 95 N83-12449 An embedding method for the steady Euler equations Nonlinear structural and life analyses of a combustor

HUSTON, R.L. p 126 A86-30814 liner
A finite element stressanalysisof spur gears including JOHNSON, S.A. NASA-TM-82846] p 92 N82-24501

fillet radii and rim thicknesseffects Aeroelastic analysis for propellers - mathematical Evaluationof inelasticconstitutivemodelsfor nonlinear
[NASA.TM-82865] p 48 N82-28646 formulations and program user's manual structural analysis

On finite element stress analysis of spur gears [NASA-CR-3729] p 101 N84-12530 NASA-TM-82845] p 92 N82-24502
[NASA-CR-167938] p 48 N82-29607 JONES, B.G. Materials constitutive models for nonlinear analysis of

HWANG, C.-C. Reliability and quality assurance on the MOD 2 wind thermally cycled structures
Three dimensional unsteady aerodynamics and system NASA-TP-2055] p 95 N83-12449

aeroelasticresponseof advancedturboprops [NASA-TM-82717] p 54 N81-33492 Evaluationof inelasticconstitutivemodelsfor nonlinear
[AIAA PAPER 86-0846] p 5 A86-38894 JORDAN, E.H. structuralanalysis p 98 N83-34357

HWANG, S.Y. Fracture mechanicsapplied to nonisothermalfatigue Simplifiedmethod for nonlinearstructuralanalysis
Onlocaltotalstrainredistributionusingasimplifiedcyclic crack growth p36 A86-28951 [NASA-TP-2208] p99 N83-34372

inelastic analysis based on an elastic solution Elevated temperature biaxial fatigue A simplified method for elastic-plastic-creepstructural
[AIAA PAPER 85-1419] p 78 A85-39770 [NASA-CR-173473] p 103 N84-21905 analysis

Local strain redistribution corrections for a simprified Elevated temperature biaxial fatigue [NASA-TM-83509] p 101 N84-14542
inelastic analysis procedure based on an elastic [NASA-CR-175795] p 110 N85-27263 Engine cyclic durability by analysis and materialtesting
finite-element analysis [NASA-TM-83577] p 102 N84-18683
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On localtotalstrainredistributionusingasimplifiedcycric structuralanalysis
inelasticanalysisbasedon an elasticsolution KACHANOV, M. [NASA-TP-2243] p 103 N84-20878
[NASA-TM-86913] p 108 N85-21690 On stressanarysisof a crack-layer Nonlinearstructural and life analyses of a turbine

Cyclic creep analysis from elastic finite-element [NASA-CR-174774] p 106 N84-34774 blade p9 N85-10954
solutions KAHN, E.B. Nonlinearstructuraland life analysesof a combustor
[NASA-TM-87213] p 117 N86-25822 Effectsof specimenresonanceson acoustic-ultrasonic liner p 9 N85-10955

testing Constitutivemodeldevelopmentfor isotropicmaterials

i [NASA-CR-3679] p 55 N83-21373 p 10 N85-10975KALLURI, S. Engine cyclic durability by analysis and material
Exposuretime considerationsin high temperaturelow testing p 11 N85-15744

IMBRIE, P.K. cycrefatigue Local strain redistributioncorrectionsfor a simplified
Numerical considerations in the development and [NASA-TM-88934] p 125 N87-28944 inerastic analysis procedure based on an elastic

implementation of constitutive models KALLURt, SREERAMESH finite-element analysis
p 113 N85-31541 Environmental degradation of 316 stainless steel in high [ NASA-TP-2421] p 107 N85-20395

INGLEHART, L J. temperature low cycle fatigue On local total strainredistribution usinga simplified cyclic
Comparison of NDE techniques for sintered-SiC [NASA-TM-89931] p 124 N87-24007 inerasticanalysisbased on an elastic solution

components p 51 A83-22265 KANG, D° [NASA-TM-86913] p 108 N85-21690
IRVINE, T.B. A new formulation of hybrid/mixed finite element Unified constitutive material models for nonlinear
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[NASA-TM-83786] p 28 N84-33522 Stressevaluationsunderrolling/slidingcontacts [NASA-TM-86990] p 108 N85-24339

[NASA-CR-165561] p 91 N82-17521 Cyclicstructuralanalysesof SSME turbine blades
Fracture modes in notched angleplied composite KAPP, J.A. p 112 N85-27963laminates
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p 67 A83-10283 system by digital signal analysis [NASA-TM-87214] p 116 N86-16615
Composites withperiodicmicrostructure [NASA-CR-3756] p56 N84-15565 Cyclic creep analysis from elastic finite-element
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Finite elastic-plastic deformation of polycrystarline Ultrasonicinput-outputfor transmittingand receiving [NASA-TM-87213] p 117 N86-25822
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[NASA-TM-88827] p 61 N86-32764 A comparative study of some dynamic stall models Lewis Research Center spin rig and its use in vibration

KAU'IT., HAROLD E. [NASA-TM-88917] p 122 N87-18883 analysisof rotatingsystems
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[ASME PAPER84-WA/APM-41] p75 A85-17040 The effects of strong shock loading on coupled KIM, K.S.
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Finite difference analysis of torsional vibrations of KENWORTHY, M.K. [NASA.CR-174956] p 114 N85-3354t
pretwisted, rotating, cantilever beams with effects of Aerothermal modeling. Executive summary KIRALY, L J.
warping p 78 A85-42047 [NASA-CR-168330] p 7 N84-15152 Structuraldynamics verificationfacility study

Vibration and flutter of mistuned bladed*disk KHADER, N. [NASA.TM-82675] p 90 N8t-33497
assemblies p 3 A85-45854 Naturalfrequency of rotatingbeams usingnon-rotating Structural dynamic measurement practices for
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The effects of strong shock loading on coupled The finite analytic method,volume3 KISER, J. D.
bending-torsionflutterof tunedand mistunedcascades [NASA-CR-170186] p 127 N83-23087 Radiographicdetectability limits for seeded voids in

p 4 A86-26893 KHOT, N.S. sintered siliconcarbide and siliconnitride
Vibrationand bucklingof rotating,pretwisted,preconed Structural optimization using optimality criteria p 51 A86-31745

beamsinciudingCorioliseffects pS0 A86-26910 methods p79 A85-48703 Reliabilityof void detectionin structuralceramicsby use
A technique for the prediction of airfoil flutter KIELB, R. of scanninglaser acoustic microscopy

characteristicsinseparated flow Natural frequencies of twisted rotatingplates p 52 A86-39027
[AIAA PAPER 87-O910] p 86 A87-33719 p 76 A85-32343 Radiographic detectability limits for seeded voids in

Nonlinear vibration and stability of rotating, pretwisted, KIELB, R.E. sintered silicon carbide and silicon nitride
preconed blades including Corioliseffects Vibration and buckling of rectangular plates under [NASA-TM-86945] p 58 N85-21674

p 86 A87-39896 in.plane hydrostatic loading p 64 A89-45364 Reliabilityof void detection in structural ceramics using
Analytical flutter investigation of a composite propfan Effects of mistuning on bending.torsion flutter and scanning laser acoustic microscopy

model response of a cascadein incompressibleflow [NASA-TM-87035] p 58 N85-32337
[AIAA PAPER 87-0738| p 87 A87-40497 [AIAA 81-0602] p 65 A81-29465 KITAMURA, TAKAYUKI

Influenceof third-degreegeometricnonlinearitieson the Effectsofstructuraloouplingonmistunedcascadeflutter Creep life prediction based on stochastic model of
vibration and stability of pretwisted, preconed, rotating and response microstructurally short crack growth
blades p 6 A87-46228 [ASME PAPER 83-GT-117] p 73 A84-33701 [NASA-TM-100245] p 125 N88-12825

Effects of mistuning on bending-torsion flutter and Vibrations of twisted cantilevered plates - Experimental KLADDEN, J. L
response of a cascadein incompressible flow investigation Three dimensional finite-element elastic analysis of a
[NASA-TM-81674 p 89 N81-16494 [ASME PAPER 84-GT-96] p 73 A84-46937 thermally cycled double-edge wedge geometry specimen

Aeroelastic charactedsties of a cascade of mistuned Flutter of turbofan rotors withmistuned blades [NASA-TM-80980] p 37 N80-26433
bladesin subsonicand supersonicflows KLEIN, W. E.
[NASA-TM-82631 p 90 N81-26492 p 74 A85-12716 Experience with modified aerospace reliability and

Coupled bendiog-bending-torsionf/utter of a mistuned Vibration and flutter of mistuned bladed-disk qualityassurance method for windturbines
cascadewith nonuniformblades assemblies [NASA-TM-82803] p 54 N82-19550
[NASA-TM-82813 p 92 N82-21604 [AIAA PAPER 84-0991] p 75 A85-16095 KLIMA, S. J.

Bending.torsionflutter of a highly swept advanced Effects of warping and pretwiston torsional vibration NDE of advancedceramics p 52 A86-35575
turboprop of rotatingbeams Nondestructivecharacterizationof structuralceramics
[NASA-TM-82975 p 95 N83-11514 [ASME PAPER84-WA/APM-41] p 75 A85-17040 p 46 A86-37141

Effectsofstructuralcouplingonmistunedcascadeflutter Vibrationsof twisted cantileveredplates - Summaryof Reliabilityof voiddetectioninstructuralceramicsbyuse
and response previousand currentstudies p 76 A85-22069 of scanninglaser acousticmicroscopy
[NASA°TM-83049 p 96 N83-15672 Flutter ofswept fan blades p 52 A86-39027

An improved finite-difference analysisof uncoupled [ASME PAPER84-GT-138] p 77 A85-32962 Nondestructive techniques for characterizing
vibrationsof taperedcantileverbeams Vibration and flutter of mistuned bladed-disk mechanical properties of structural materials - An
[NASA-TM-83495 p 101 N84-t36t0 assemblies p 3 A85-45854 overview

Flutter of sweptfan blades Vibrationsof twistedcantilever plates- A comparison [ASME PAPER 86-GT-75] p 52 A86-48143
[NASA-TM-83547 p 102 N84-16587 of theoreticalresults p 79 A85-47626 NDE of structuralceramics

Improved finite-difference vibration analysis of Vibrations of blades and bladed disk assemblies; [ASME PAPER 86-GT.279] p 52 A86-48298
Ultrasonicvelocity for estimatingdensity of structuralpretwisted,tapered beams Proceedings of the Tenth Biennial Conference on

[NASA-TM-83549 p 102 N84-16588 Mechanical Vibration and Noise, Cincinnati, OH, ceramics
Vibration and flutter of mistuned bladed-disk September10-13, 1985 p 4 A86-26901 [NASA-TM-82765] p 46 N82-14359

assemblies Dynamiccharacteristicsof an assembly of prop-fan NDE for heatengineceramics
[NASA-TM-83634 p 103 N84-23923 [NASA-TM-86949] p 57 N85-20389

Improvedmethods of vibration analysisof pretwisted, blades Reliabilityof voiddetectionin structuralceramicsusing
airfoilblades [ASME PAPER 85-GT.134] p 5 A86-32956 scanninglaser acousticmicroscopy
[NASA-TM-83735 p 104 N84-30329 Influenceof friction damperson torsional blade flutter [NASA-TM-87035] p 58 N85-32337

Vibrationand bucklingof rotating,pretwisted,preconed [ASME PAPER 85-GT-170] p5 A86-32957 NDE of structuralceramics
beams includingCoorioliseffects Mass balancingof hollowfan blades [NASA-TM-87186] p 59 N86-16598
[NASA-TM-87004] p 109 N85-25893 [ASME PAPER 86-GT-195] p 84 A86-48245 Nondestructive techniques for characterizing

Nonlinearflap-lag-extensionalvibrations of rotating, Effects of mistuning on bending-torsionflutter and mechanical properties of structural materials: An
pretwfsted, preconed beams including Corioliseffects responseof a cascadein incompressibleflow overview
[NASA-TM-87102 p 115 N85-34427 [NASA-TM-81674] p 89 N81-16494 [NASA-TM-87203] p 59 N86-19636
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[NASA-TM-89929] p62 N87-23987 Dynamic response of damaged angleplied fiber fatigue
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LAFLEN, J.H. Vibrationsof cantireveredshallow cylindricalshells of LEOWENTHAL, S. H.

Requirementsofconstitutivemodelsfortwonickel-base rectangularplanform p 65 A82-11298 Factors that affect the fatigue strength of power
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Burner linerthermal-structuralload modeling simulationtechniques for notched members at elevated components
[NASA-CR-174892] p 117 N86-21932 temperatures p 114 N85-31546 [NASA-CR-167896] p 7 N82-25257
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A computeranalysisprogramfor interfacingthermaland of time dependentcyclicplasticity Lewis ResearchCenter spinrig and its use in vibrationstructuralcodes p 126 A86-36861 [NASA-CR-176821] p 117 N86-25850
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Simplified cyclic structural analyses of SSME turbine Lewis' enhanced laboratory for researchinto the fatigue powder metallurgy superalloy p 32 A80-35495
blades and constitutive behavior of high temperature materials Fatigue and creep-fatigue deformation of several
[NASA-TM-87214] p 116 N86-16615 p 125 N88-11177 nickel-base superalloys at 650 C p 32 A82-47398
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ceramics MURALIDHARAN, U. On compositeswithperiodic structure
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[ASME PAPER 84-GT-96} p 73 A84-46937 metallurgicalchanges p 112 N85-31533 Extensionof constrainedincrementalNewton-Raphson

Vibrationsof twisted cantileveredplates - Summaryof Some advances in experimentation supporting scheme to generarizedloadingfields p 74 A85-13942
previousand currentstudies p 76 A85-22069 developmentof viscoplasticconstitutivemoders Ball Aerospace Systems Biv., Boulder, Colo.

Vibrationsof twisted cantileverplates - A comparison p 113 N85-31545 Fracture toughnessof hot-pressedberyllium
of theoretical results p 79 A85-47626 Results of an interlaboratory fatigue test program p 34 A85-25835

Air Force Flight Dynamics Lab., Wright-Patterson AFB, conducted on alloy 800H at room and elevated Battelle Columbus Labs., Ohio.
Ohio. temperatures Continuousanalysis of stressesfrom arbitrary surface

Structural optimization using optimality criteria [NASA-CR-174940} p 114 N85-32340 loads ona half space p 64 A81.f4162
methods p 79 A85-48703 A continuousdamage modelbased on stepwise-stress A history dependent damage model for low cycle

Air Force Wright Aeronautical Labs.,Wright-Patterson creep rupturetests fatigue
AFB, Ohio. [NASA-CR-174941 ] p 114 N85-32341 [ASME PAPER84-PVP-112} p 75 A85-18795

Three dimensionalfinite-element elastic analysis of a Argonne National Lab., II1. Stress evaluationsunderrolling/slidingcontacts
thermally cycled double-edge wedge geometry specimen Effects of a high mean stress on the high cycle fatigue I NASA-CR-165561] p 91 N82-17521
[NASA-TM-80980] p 37 N80-26433 life of PWA 1480 and correlation of data by linear elastic Creep fatigue of low-cobalt superalroys: Waspalloy, PM

fracture mechanics U 700 and wrought U 700
Akron Univ., Ohio. [NASA-CR-175057] p 118 N86-27689 [NASA-CR-168260] p 40 N84-13265

Engine dynamicanalysiswith generar nonlinear finite Arizona State Univ.,Tempe.
element codes. II - Bearingelement implementation, A brade loss response spectrum for flexible rotor Composite loads spectra for select space propulsion
overallnumericalcharacteristicsand benchmarking systems structural components: Probabilistic load model
[ASME PAPER 82-GT-2921 p 47 A82-35462 [ASME PAPER84-GT-291 p 48 A84-46893 development p 110 N85-27954

On the solutionof creep induced bucklingin general Arizona Univ., Phoenix. Nonlinear damage analysis: Postulateand evaluation
structure p 66 A82-39514 Creep-rupturereliabilityanalysis p 79 A85-42566 [NASA-CR-168171] p 118 N86-26652

Formal convergence characteristics of elliptically Arizona Univ.,Tucson. Bell Aerospace Co., Buffalo, N. Y.
constrainedincrementalNewton-Raphsonalgorithms Advanced reliabilitymethodforfatigue analysis Flutteranalysisof advancedturbopropellers

p 126 A83-10273 p 72 A84-31596 p 73 A84-36492
On the solution of erastic-plastic static and dynamic Interply layer degradation effects on composite Boeing Vertol Co., Philadelphia, Pa.

postbucklingcollapse of generalstructure structuralresponse On theautomaticgenerationof FEMmodelsforcomplex
p 67 A83-12746 [AIAA PAPER84-08491 p 18 A85-16096 gears - A work-in-progressreport p 47 A82-48243
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CarborundumCo., Niagara Falls, N.Y. CORPORATESOURCE

C _ Composite sandwich thermostructural behavior . Component-specificmodeling
Computationalsimulation [NASA-CRot74765] p 110 N85-27261

Carborundum Co., Niagara Falls, N.Y. [AIAA PAPER 86-0948] p 82 A86-38842 Component-specificmodeling
Comparison of NDE techniques for sintered-SiC Reliabilityof voiddetectioninstructuralceramicsby use [NASA-CR-174925] p 12 N85-32t 19

components p 51 A83-22265 of scanning laseracoustic microscopy A reviewof path-independent integralsinelastic-plastic
Carnegie-Mellon Univ.,Pittsburgh, Pa. p 52 A86-39027 fracturemechanics,task 4

Effects of frictiondampersonaerodynamicallyunstabfe Correlationof processingand sinteringvariables with [NASA-CR-174956] p 114 N85-33541
rotor stages the strengthand radiographyof siliconnitride Component-specificmodeling
[AIAA PAPER 83-0848] p 1 A83-3279t p 46 A87-12938 [NASA-CR-174765] p 12 N85-3414g

Model development and statistical investigationof Probabilityof detectionof internalvoids in structural
turbineblade mistuning p 2 A84-31905 ceramicsusingmicrofocusradiography Component-specificmodeling p 12 N86-11515

p 52 A87-14300 Burnerlinerthermal-structuralloadmodeling
The interactionbetween mistuningand friction in the Quantitativevoidcharacterizationin structuralceramics [NASA-CR-174892] p 117 N86-21932

forcedresponseof bladeddiskassemblies by use of scanninglaser acousticmicroscopy General Motors Research Labs., Warren, Mich.
[ASME PAPER 84-GT-139] p 73 A84-45957 p 53 A87-51974 Development and testing of stable, invariant,

Effectsof friction dampers onaerodynamicallyunstable The effect of stress on ultrasonic pulses in fiber isoparametric cu_'ilinear 2- and 3-D hybrid-stress
rotor stages p3 A85-21866 reinforced composites elements p75 A85-19899

Stability of limit cycles in frictionally damped and [NASA-CR-3724] p 56 N83-33180 General Tire and Rubber Co., Akron, Ohio.
aerodynamically unstable rotor stages p 4 A86-19198 Preliminary investigation of an electrical network model Hightemperature thermomechaniealanalysisof ceramic

The effect of limiting aerodynamic and structural for ultrasonic scattering coatings p 74 A84-48565
coupling in models of mistuned bladed disk vibration [NASA-CR-3770] p 57 N84-17606 Inelastic high-temperature thermomechanical response

p 5 A86-26905 Compliance matrices for cracked bodies of ceramic coated gas turbine seals p 82 A86-37799
Influenceof frictiondampers on torsionalblade flutter [NASA-CR-179478] p 120 N86-30236 George Washington Univ., Washington, D.C.

[ASME PAPER85-GT-170] p 5 A86-32957 Connecticut Univ.,Storrs. Statistical aspects of carbon fiber risk assessment
Case Western Reserve Univ., Cleveland, Ohio. Fracture mechanics applied to nonisothermalfatigue modeling

A quarter-century of progressin the development of crack growth p 36 A86-28951 [NASA-CR-159318] p 23 N80-29432
correlationand extrapolationmethodsfor creep rupture Elevatedtemperaturebiaxial fatigue Georgla Inst. of Tech., Atlanta.
data p 63 A80-38142 [NASA-CR-173473] p 103 N84-21905 Path-independent integrals in finite elasticity and

Statisticsand thermodynamicsof fracture Elevated temperaturebiaxial fatigue inelasticity, with body forces, inertia, and arbitrary
p 75 A85-19433 [NASA-CR-175795] p 110 N85-27263 crack-face conditions p 65 A82-32303

Finite element analysis of residual stress in On a study of the/Delta T/c and C/asterisk! integrals
plasma-sprayedceramic p46 A86-15226 D for fracture analysis undernon-steady creep

The crack layer approach to toughness characterization p 65 A82-36782
in steel p 36 A86-30010 Dayton Univ., Ohio. Moving singularity creep crack growth anarysiswith the

The cyclic stress-strain behavior of a nickel-base Apreliminarystudyofcrackinitiationandgrowthatstress /Delta T/c and C/asterisk/integrals p66 A82-40066
superalloy at 650 C p 36 A86-45715 concentration sites Inelastic stress analyses at finite deformation throughcomplementary energy approaches p 71 A84-13248

Re-examination of cumulative fatigue damage analysis [NASA-CR-169358] p 94 N82-33738 Analyses of large quasistatic deformations of inelastic
- An engineering perspective p 85 A87-22128 A total life prediction model for stress concentration bodies by a new hybrid-stress finite element algorithm

Fatigue life prediction in bending from axial fatigue sites p 71 A84-16874
information [NASA-CR-168225] p 100 N84-10612 Analyses of large quasistatic deformations of inelastic
[NASA-CR-165563] p 91 N82-20564 Delaware Univ., Newark. bodies by a new hybrid-stressfinite element algorithm-

Cracklayermorphologyandtoughnesscharacterization Stability of large horizontal-axis axisymmetricwind Applications p 71 A84-16884
in steels turbines p 64 A81-22526 A study of fatiguedamage mechanismsin Waspaloy
[NASA-CR-168154] p 97 N83-27256 Deutsche Forschungs- und Versuchsanstalt fuer Lull- from 25 to 800 C p 34 A85-12098

Tensileand compressiveconstitutiveresponseof 316 und Raumfahrt, Cologne (West Germany). Hybridstress finite elements for large deformationsof
stainlesssteel at elevated temperatures Complianceand stress intensitycoefficientsfor short inelasticsolids p 74 A85-15894

p 98 N83-34353 bar specimenswith chevronnotches p 64 A80-46032 Development and testing of stable, invariant,
Effect of crack curvatureon stressintensityfactorsfor Performance of Chevron-notchshort bar specimen in isoparametric eurvilinear 2- and 3-D hybrid-stress

ASTM standardcompacttensionspecimens determiningthe fracture toughnessof silicon nitrideand elements p 75 A85-19899
[NASA-CR-168280] pl00 N84-11513 aluminumoxide p45 A80-50696 The effectof microstructure,temperature,andhold-time

Cracklayer theory Developmentof planestrainfracture toughnesstest for on low-cyclefatigue of As HIP P/M Rene 95
[NASA-CR-174634] p 103 N84-22980 ceramicsusingChevronnotchedspecimens p 35 A85-32399

Mechanical behavior of carbon-carboncomposites p46 A84-11676 Ontheexistenceandstabilityconditionsformixed-hybrid
[NASA-CR-174767] p 28 N84-34575 Drexel Univ., Philadelphia, Pa. finite element solutionsbased on Reissner's variationar

On stressanalysisof a crack-layer Use of statical indentationlaws in the impactanalysis principle p 77 A85-33847
[NASA-CR-174774] p 106 N84-34774 of laminatedcompositeplates p t8 A85-29133 Thermodynamicallyconsistentconstitutiveequationsfor

Translationalandextensionalenergy reTeaserates (the Duke Univ., Durham,N.C. nonisothermallarge strain,elasto-plastic,creep behavior
J- and M-integrals) for a crack layer in thermoelasticity Frequencydomainsolutionstomulti-degree-of-freedom, [AIAA PAPER 85-0621] p 77 A85-38425
[NASA-CR-174872] p 107 N85-21685 dry frictiondamped systemsunderperiodicexcitation Constitutive modeling and computational

Fatiguecrack layer propagationin silicon-iron p 83 A86-39485 implementationfor finite strainplasticity
[NASA-CR-175115] p 118 N86-25851 p 78 A85-40910

Environmentaldegradationof 316 stainlesssteelin high G Existence and stability, and discrete BB and rank
temperature low cycle fatigue conditions, for general mixed-hybrid finite erements in

[NASA-TM-89931] p 124 N87-24007 Garrett Turbine Engine Co., Phoenix, Ariz. elasticity p 82 A86-34464
Chinese Academy of Sciences, Peking. Creep-rupturereliabilityanalysis p 79 A85-42566 Bounding solutions of geometrically nonlinear

Hybrid solid element with a traction-free cylindrical viscoelasticproblems
surface p 82 A86-34462 General Dynamics/Convair, San Diego, Calif. [AIAA PAPER86-0943] p 82 A86-38838

Cincinnati Univ., Ohio. Effect of low temperature on fatigue and fracture On theequivaleneeoftheincrementalharmoniebalance
MetaIlurgicalinstabilitiesduringthehightemperaturelow properties of Ti-5AI-2.5Sn(ELI) for use in engine method and the harmonic balance-Newton Raphson

cycle fatigueof nickel-basesuperalloys components p 35 A85-47972 method p 83 A86-40695
p 33 A83-22019 General Electric Co., Cincinnati, Ohio. Constitutivemodelingofcyclicplasticityandcreep,using

The effect of microstructureon the fatiguebehaviorof Requirementsofconstitutivemodelsfortwo nickel-base an internal time concept p 83 A86-41673
Ni basesuperalloys p33 A83-36166 superalloys p33 A83-21071 A study of spectrum fatiguecrack propagationin two

A study of fatigue damage mechanismsin Waspaloy Turbine bladenonlinearstructuraland lifeanalysis aluminumalloys.I - Spectrumsimplification.II - Influence
from 25 to 800 C p 34 A85-12098 p 1 A83-29024 of microstructures p 36 A86-48973

High temperature low cycle fatigue mechanisms for Blade loss transient dynamic analysis of A technique for the prediction of airfoil flutter
nickelbase and a copper base alloy turbomachinery p 2 A83-40864 characteristicsin separated flow
[NASA-CR-3543] p 39 N82-26436 Considerations for damage analysis of gas turbine hot [AIAA PAPER 87-0910] p 86 A87-33719

Microstructural effects on the room and elevated section components Creep crack-growth: A new path-independent T sub o
temperature low cycle fatigue behavior of Waspaloy [ASME PAPER 84-PVP-77] p 2 A85-18792 and computational studies
[NASA-CR-165497] p 93 N82-26702 Unified constitutive material models for nonlinear [NASA-CR-168930] p 92 N82-24503

Mechanisms of deformation and fracture in high finite-elementstructuralanalysis Creep crack-growth: A new path-independentintegral
temperature low cycle fatigue of Rene 80 and IN 100 [AfAA PAPER 85-1418] p 77 A85-39769 (T sub c), and computational studies
[NASA-CR-165498] p 93 N82-26706 The dynamicsof a flexiblebladed disc on aflexible rotor [NASA-CR-167897] p 94 N82-29619

On finite element stress analysis of spur gears in a two-rotor system p 4 A86-25743 Stress and fracture analyses under elastic-plastic creep
[NASA-CR-167938] p 48 N82-29607 conditions: Some basic developments and computational

Finite element analysis of notch behavior using a state A computer analysis programfor interfacingthermal and approaches p 99 N83-34371
variable constitutiveequation p 114 N85-31548 structuralcodes p 126 A86-36861 Inelasticand dynamic fracture and stress analyses

Anisotropic constitutive model for nickel base single Benchmark notch test for life prediction p 106 N84-31697
crystal alloys: Development and finite element [NASA-CR-165571] p 95 N83-12451 Analysis of shell type structures subjected to time
implementation Blade loss transient dynamics analysis with flexible dependent mechanical and thermal loading
[NASA-CR-175015] p 117 N86-21952 bladed disk [NASA-CR-175747] p 109 N85-25896

Cleveland State Univ., Ohio. [NASA-CR-168176] p 7 N84-13193 Dynamiccreep buckling: Analysisof shell structures
An embeddingmethodfor the steady Euler equations Aerothermalmodeling.Executivesummary subjected to time-dependent mechanical and thermal

p 126 A86-30814 [NASA-CR-168330] p 7 N84-15152 loading p 111 N85-27959
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CORPORATESOURCE NASA. Langley ResearchCenter, Hampton, Va.

Analysis of large, non-isothermal elastic-visco-plastic K Analytical and experimental investigationof the coupled
deformations bladeddisk/shaftwhirl of a cantileveredturbofan
[NASA-CR-f76220] p 115 N86-10588 Kansas Univ., Lawrence. [ASME PAPER 86-GT-98] p 6 A86-48163

Yieldingand deformationbehavior of the singlecrystal Theoretical and software considerationsfor nonlinear Instructionsfor the use of the CIVM-Jet 4C finite-strain
nickel-basesuperalloyPWA 1480 dynamicanalysis computer code to calculate the transient structural
[NASA-CR-175100] p 44 N86-25455 [NASA-CR-t74504] p 101 N84-15589 responses of partial and/or complete arbitrarily-curved

Formulationof the nonlinear analysis of shell-like Karlsruhe Univ. (West Germany). ringssubjectedto fragmentimpact
structures,subjectedto time-dependentmechanicaland Fracturetoughnessof brittlemateriarsdeterminedwith [NASA-CR-159873] p 88 N80-27720
thermalloading chevronnotchspecimens p 45 A81-32545 Finite-strain large-deflection elastic-viscoplastic
[NASA-CR.t77194] p 119 N86-28462 Extended rangestress intensityfactor expressionsfor finite-element transient response anarysisof structures

Goodrich (B. F.) Co., Akron, Ohio. chevron-notched short bar and short rod fracture [NASA-CR-159874] p 88 N80-29762
Pantographingself adaptivegap elements toughnessspecimens p 66 A82-40357 Ultrasonicinput-outputfor transmittingand receiving

longitudinaltransducerscoupledtosame face of isotropic
p 77 A85-37440 Kent State Univ., Ohio. elastic plate

H Automaticfiniteelement generators [NASA-CR-3506] p 54 N82-18613
p 105 N84-31695 Effectsof specimenresonanceson acoustic-ultrasonic

Kernforschungszentrum, Karlsruhe (West Germany). testing
Hamilton Standard, Windsor Locks, Conn. Fracturetoughnessof brittlematerialsdeterminedwith [NASA-DR-3679] p 55 N83-21373

Diffusionbondedboron/aluminumspar-shellfan blade chevronnotchspecimens p 45 A81-32545 Ultrasonicattenuationof a void-containingmedium for
[NASA-CR-159571] p 23 N80-25382 very longwavelengths

Harris Corp., Melbourne, Fla. L [NASA-CR-3693] p 56 N83-28466Thermal expansion behavior of graphite/glass and Time-independent anisotropic plastic behavior by
graphite/magnesium p 21 A87-38615 mechanicalsubelementmodels p 99 N83-34369

Lehigh Univ., Bethlehem, Pa. Input-outputcharacterizationof an ultrasonictesting

i Movingcracksin layered composites system by digitalsignal analysisp 67 A83-12048 [NASA-CR-3756] p 56 N84-15565
Analysis of an axial compressor blade vibration based Flutter and forced response of mistuned rotors using

liT Research Inst., Chicago, III. on wave reflection theory standing wave analysis
Thermal fatigue and oxidation data for directionaIly [ASME PAPER83-GT-151] p 2 A83-47970 [NASA-CR-173555] p 9 N84-24586

solidified MAR-M 246 turbine blades Sudden stretching of a four layered composite plate New variational formulations of hybrid stress elements
[NASA-CR-f59798] p 6 N80-21330 [NASA-CR-159870] p 23 N80-25383 p 105 N84-31690

Thermal fatigue and oxidation data of oxide Sudden bending of cracked laminates Thermal-mechanical fatigue crack growth in Inconel
dispersion-strengthened alloys [NASA-CR-159860] p 23 N80-25384 X-750
[NASA-CR-t59842] p 37 N80-25415 Lincoln Univ., Pa. [NASA-CR-174740] p 41 N85-15877

Stress waves in an isotropic elastic plate excited by aThermal fatigue andoxidation data of TAZ-8A and M22 Dynamicmodulus and damping of boron, siliconcarbide,
alloysand variations and aluminafibers p 15 A80-44236 circular transducer
[NASA-CR-165407 p 38 N82-10193 Lockheed-Canfornla Co., Burbank. [NASA-CR-3877] p 58 N85-20390

Illinois Univ., Urbana. Effect of low temperature on fatigue and fracture Advanced stressanalysismethods applicable to turbine
Interface cracks in adhesively bounded lap-shear properties of Ti-5AI-2.5Sn(ELI) for use in engine enginestructures

joints p 67 A82-46109 components p 35 A85-47972 [NASA-DR-t75573] p 11 N85-21165
Boundary-layereffects in composite laminates. I - Lockheed Engineering and Management Services Co., Applicationof homomorphicsignal processingto stress

Free-edge stress singularities. II - Free-edge stress Inc., Houston, Tex. wave factor anarysis
solutionsand basiccharacteristics p 67 A82-46806 Numericalsynthesisof tri-variatevelocityrealizationsof [NAS 1.26:174871] p 58 N85-2t 673

Extending the laser-specklegramtechnique to strain turbulence p 81 A86-28654 Recent advancesin hybrid/mixedfiniteelements
analysisof rotatingcomponents p 67 A83-12514 Louisiana State Univ., Baton Rouge. [NASA-CR-175574] p 107 N85-21687

Elasticity solutionsfor a class of composite laminate Benchmarkcyclicplasticnotchstrainmeasurements Structural responseof a rotatingbladed disk to rotor
p 33 A84-t t t 94 whirl

problemswith stresssingularities p 17 A84-33389 Benchmarknotchtest for lifeprediction [NASA-CR-175605] p 11 N85-22391
Three-dimensionalhybrid-stressfiniteelement analysis [NASA-CR-165571] p 95 N83-1245t On Hybridand mixed finite elementmethods

of compositelaminateswith cracks and Cutouts [NASA-CR-17555t ] p 108 N85-23096
p 80 A86-26896 Ultrasonic tesling of plates containingedge cracks

Nondestructive evaluationof adhesive bond strength M [NASA-CR-3904] p 58 N85-29307
usingthe stresswave factor technique Thermal-mechanicalfatigue behavior of nickel-base

p 53 A87-32200 MARC Analysis Research Corp., Palo Alto, Calif. superanoys
Illinois Univ., Urbana-Champalgn. Efficientalgorithmsfor use inprobabilisticfinite element [NASA-CR-175048] p 43 N86-24818

Boundarylayerthermalstressesin angle-plycomposite analysis p 81 A86-28655 Stress waves in transversely isotropic media: The
laminates,part 1 Iterative methodsfor mixedfinite element equations homogeneousproblem
[NASA-CR-165412_ p 93 N82-26713 p 82 A86-34461 [NASA-CR-3977] p 59 N86-25002

Analysis of cracks emanatingfrom a circularhole in Probabilisticfinite elementdevelopment Wave propagationin anisotropicmedium due to an
unidirectionalfiber reinforcedcomposites,part 2 p 111 N85-27956 oscillatorypointsource with applicationto unidirectional
[NASA-CR-165433] p 93 N82-26714 Martin Marietta Aerospace, Denver, Colo. composites

Fiberglassepoxylaminatefatiguepropertiesat300 and [NASA-CR-4001 ] p 60 N86-27666
Interlaminarcrack growthin fiber reinforcedcomposites 20 K p 19 A85-47970 Materials Research Lab., Inc., Glenwood, IlL

duringfatigue, part Massachusetts Inst. of Tech., Cambridge. Fracture of composite-adhesive-compositesystems
[NASA-CR-165434 p 93 N82-26715 A new formulationof hybrid/mixedfiniteelement p 76 A85-27935

Analysisof interface cracks in adhesivelybonded lap p 67 A83-12739 Max-Planck-lnst. fuer Metallforschung, Stuttgart (West
shearjoints,part4 Alternative ways for formulation of hybrid stress Germany).
[NASA.CR.165438] p 93 N82-26716 elements p 68 A83-14710 A study of fatigue damage mechanismsin Waspaloy

Edge delaminationin angle-ply composite laminates, Flutter and forced response of mistuned rotors using from 25 to 800 C p 34 A85-12098
part5 standingwave analysis McGraw-Edison Co., Buffalo, N.Y.
[NASA.CR.165439 p 94 N82-26717 [AIAA 83-0845] p 69 A83-29823 Fracture mechanics applied to nonisothermalfatigue

Boundary-layer effects in composite laminates: Some analysis methods for rotating systems with crackgrowth p 36 A86-28951
Free-edgestresssingularities,part6 periodiccoefficients p 69 A83-32987 Mechanical Technology, Inc., Latham, N. Y.
[NASA-CR-165440 p 94 N82-26718 On the suppression of zero energy deformation Developmentofproceduresforcalculatingstiffnessand

Indian InsL of Science, Bangalore. modes p 72 A84-21541 damping of elastomers in engineering applications,part
A higherordertheory of laminatedcompositecylindrical Stagger angle dependence of inertial and elastic 6

shells p 86 A87-35656 couplingin bladeddisks p 72 A84-31903 [NASA-CR-159838] p 87 N80-22733

Indian Inst. of Tech., Bombay. Rationalapproachfor assumedstressfinite elements Michigan State Univ., East Lansing.
Lowcycle fatigue behaviorof aluminum/stainlesssteel p 74 A85-12029 Experimentalverificationof the Neuberrelationat room

composites Flutter and forced responseof mistuned rotors using and elevatedtemperatures
[AIAA 83-0806] p 16 A83-29886 standingwave analysis p 74 A85-1272t [NASA-CR-167967] p 96 N83-19121

Indian InsL of Tech., Madras. HybridSemiloof elements for plates and shells based Experimentalverificationof the numberrelationat room
Naturalfrequenciesof twistedrotatingplates upona modifiedHu-Washizuprinciple and erevatedtemperatures p 98 N83-34355

p 76 A85-32343 p 74 A85-t5893 A comparisonof smooth specimen and analytical
International Business Machines Corp., Bangkok Evolutionof assumedstresshybridfiniteelement simulationtechniquesfor notchedmembers at elevated

p 77 A85-35046 temperatures p 114 N85-31546
('rhaltand). Axisymmetricsolid elements by a rationalhybrid stress Experimental evaluationcriteria for constitutive models

Algorithmsfor elasto-plastic-creeppostbuckling method p78 A85-4t t 09 of time dependentcyclicplasticity
p 73 A84-38480 Finiteelementsbasedonconsistentryassumedstresses [ NASA-CR-t76821 ] p 1t 7 N86-25850

Iowa Univ, Iowa City. and displacements p79 A86.18123
The finite analytic method,volume3 Thermal-mechanicalfatigue crack growth in Inconel

[NASA-CR-170186] p 127 N83-23087 X-750 p 35 A86-20982 a
The finiteanalyticmethod,volume4 Aeroelastic formulations for turbomachines and

[NASA-CR-170187] p 127 N83-23088 propellers p 4 A86-24677 National Aeronautlca and Space Administration.
The finiteanalytic method,volume5 Hybrid solid element with a traction-freecylindrical Langley Research Center, Hampton, Va.

[NASA-CR-170188] p 127 N83-23089 surface p 82 A86-34462 Bucklingof rotatingbeams p 63 A80-20149
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NASA. Lewis Research Center, Cleveland, Ohio. CORPORATESOURCE

Thermal expansionbehavior of graphite/glass and Fatiguebehavior of SiC reinforcedTi/6AI-4V/ at 650 Effects of warping and pretwist on torsionalvibration
graphite/magnesium p 21 A87-38615 C p 15 A83-12414 of rotatingbeams

National Aeronautics and Space Administration. Lewis Nonlinearstructuraland life analyses of a combustor [ASME PAPER 84-WA/APM-41] p 75 A85-17040
Research Center, Cleveland, Ohio. liner p 68 A83-12764 Vibrationsof twistedcantileveredplates - Summary of

Fatigue behavior of SiC reinforced titanium Turbineblade nonlinearstructuraland life analysis previousand currentstudies p 76 A85-22069
composites p 13 A80-10036 p 1 A83-29024 A simplifiedmethod for elastic-plastic-creepstructural

Simplespline-functionequationsfor fracturemechanics Resin selectioncriteriafor tough compositestructures analysis
calculations p 63 A80-10832 [AIAA 83-0801] p 46 A83-29734 [ASME PAPER84-GT-191] p 78 A85-23150

Sucklingof rotatingbeams p 63 A80-20149 Structuraltailoringof engineblades(STAEBL) Fracture toughnessof hot-pressedberyllium
[AIAA 83-0828] p 1 A83-29737 p 34 A85-25835

Mechanicalpropertycharacterizationof intraplyhybrid The coupled aeroelasticresponseof turbomachinery Finite element engine blade structuraloptimization
composites p 13 A80-20954 bladingto aerodynamicexcitations [AIAA PAPER85-0645] p 76 A85-30313

Strainrangepartitioninglife predictionsof the longtime [AIAA 63-0644] p 69 A83-29822 The effect of aerodynamicand structuraldetuningon
Metal PropertiesCouncilcreep-fatiguetests Low cycle fatiguebehaviorof aluminum/stainlesssteel turbomachinesupersonicunstalledtorsionalflutter

p 63 A80-27958 composites [AIAA PAPER85-0761] p 3 A85-30378
Dynamic response of damaged angleplied fiber [AIAA 83-0806] p 18 A83-29886 Naturalfrequenciesof twisted rotatingplates

composites p14 A80-27982 Metalhoneycombtoporouswireformsubstratediffusion p76 A85-32343
Micromechanicsof intraplyhybrid composites:Elastic bond evaluation p 51 A83-39620 Onthefatiguecrackpropagationbehaviorof superalloys

and thermalproperties p 14 A80-27994 Fatigue crack initiation and propagation in several at intermediatetemperatures p 35 A85-32434
Predictionoffibercompositemechanicalbehaviormade nickel-basesuperalloysat 650 C p 33 A83-41199 Flutterof swept fan blades

simple p63 A80-32067 Design concepts for low cost composite engine [ASME PAPER84-GT-138] p77 A85-32962
Fracture modes of high modulus graphite/epoxy frames Unified constitutive material models for nonlinear

anglepliedlaminatessubjectedto off-axistensile loads [AIAA PAPER83-2445] p 2 A83-46331 finite-elementstructuralanalysis
p 14 A80-32069 Tensile bucklingof advancedturboprops [AIAA PAPER 85-1418] p 77 A85-39769

A review of issues and strategies in nondestructive p 71 A84-11039 Onlocaltotalstrainredistributionusingasimplifiedcyclic
evaluationof fiber reinforcedstructuralcomposites Developmentofplane strainfracturetoughnesstestfor inelasticanalysisbasedon an elasticsolution

p 14 A80-34764 ceramics usingChevronnotchedspecimens [AIAA PAPER 85-1419] p 78 A85-39770
Engine environmentaleffects on compositebehavior p 46 A84-11676 Fatigue criterion to system design, life and reliability

[AIAA 80-0695] p 1 A80-35101 The effect of microstructureon 650 C fatigue crack [AIAA PAPER 85-1140] p 78 A85-40814
Predictingthe time-temperaturedependentaxial failure growthinP/M Astroloy p33 A84-12395 A studyof interplylayer effectson the free edge stress

of B/AI composites p 14 A60-35494 Predictionof compositehygralbehaviormade simple field of anglepriedlaminates p 18 A85-41127
Effects of fine porosity on the fatigue behavior of a p 16 A84-14285 Finite difference analysis of torsional vibrations of

powder metallurgysuperalloy p 32 A80-35495 High-temperaturefatiguein metals - A brief review of pretwisted, rotating, cantilever beams with effects of
Status of NASA full-scale engine aeroelasticity lifepredictionmethodsdevelopedat the LewisResearch warping p 78 A85-42047

research p63 A80-35906 Centerof NASA p 33 A84.14286 The role of the reflection coefficient in precision
A quarter-century of progress in the development of Environmentalandhighstrain rateeffects oncomposites measurementof ultrasonicattenuation

correlation and extrapolation methods for creep rupture for engine applications p 16 A84-17444 p 51 A85-42151
data p 63 A80-38142 Failure analysis of a tool steel torque shaft Application of two creep fatigue life models for the

Quantitative ultrasonic evaluation of engineering p 51 A84-17546 prediction of elevated temperature crack initiation of a
properties in metals, composites, and ceramics Analysis of an internally radially cracked ring segment nickel base alloy

p 50 A80-39641 subject to three-point radial loading p 71 A84-18691 [AIAA PAPER 85-1420] p 35 A85-43979
Fracture toughness determination of AI203 using Simplified analytical procedures for representing Vibration and flutter of mistuned bladed-disk

four-point-bend specimens with straight-through and material cyclic response p 2 A84-22877 assemblies p 3 A85-45854
chevron notches p 45 A80-42085 The coupled response of turbomachinery blading to Impact resistance of fiber composites

Dynamic modulusanddamping of boron, silicon carbide, aerodynamic excitations p 2 A84-26959 Energy-absorbing mechanisms and environmental
and arumina fibers p15 A80-44236 Durability/life of fiber composites in effects p18 A85-46543

Vibration and buckling of rectangular plates under hygrothermomechanical environments Ten year environmental test of glass fiber/epoxy
in-plane hydrostatic loading p 64 A80-45364 p 16 A84-27359 pressure vessels

Compliance and stress intensity coefficients for short Compressive behavior of unidirectional fibrous [AIAA PAPER 85-1198] p 19 A85-47022
bar specimenswith chevron notches p 64 A80-46032 composites p 16 A84-29894 Vibrations of twisted cantilever plates - A comparison

Performance of Chevron-notch short bar specimen in The structural response of a rail acceleration of theoretical results p 79 A85-47626
determining the fracture toughness of silicon nitride and p 72 A84-32039 Structural optimization using optimality criteria
aluminum oxide p45 A80-50696 Effectsofstructuralcouplingonmistunedcascadeflutter methods p79 A85-48703

Concepts and techniques for ultrasonic evaluation of and response Measurement of ultrasonic velocity using phase-slope
material mechanical properties p 50 A80-51575 [ASME PAPER 83-GT-117] p 73 A84-33701 and cross-correlation methods p 51 A86-13192

Cyclic behavior of turbine disk alloys at 659 C Measurements of self-excited rotor-blade vibrations Vibration analysis of rotating turbomachinery blades by
p 32 A81-t2266 using optical displacements an improved finite difference method p 3 A86-14338

On the equivalence between semiempirical fracture [ASME PAPER 83-GT-132] p73 A84-33702 DEAN-A program for Dynamic Engine ANalysis
analyses and R-curves p 64 A81-18792 Simplified composite micromechanics equations for [AIAA PAPER 85-1354] p 3 A86-14430

Ultrasonic measurement of material properties strength, fracture toughness and environmental effects Finite element analysis of residual stress in
p 50 A81-19656 p 17 A84-41858 plasma-sprayed ceramic p 46 A86-15226

Stability of large horizontal-axis axisymmetric wind Vibrations of twisted cantilevered plates- Experimental Longitudinal compressive fairure modes in fiber
turbines p 64 A81-22526 investigation composites End attachment effects on IITRI type test

Effects of mistuning on blade torsional flutter [ASME PAPER 84-GT-96] p 73 A84-46937 specimens p 19 A86-19999
p 64 A81-29095 Acousticemissionevaluationofplasma-sprayedthermal Wide-range displacement expressions for standard

Nonlinear laminate analysis for metal matrix fiber barrier coatings fracture mechanics specimens p 79 A88-20706
composites [ASME PAPER 84-GT-292] p 48 A84-47046 Wide-range weight functions for the strip with a single
[AIAA81-0579] p15 A81-29411 Hightemperaturethermomechanicalanalysisofceramic edgecrack p79 A86-20709

Effects of mistuning on bending-torsion flutter and coatings p 74 A84-48565 Analysis of an externally radially crack ring segment
response of a cascade in incompressible flow Effects of processing and microstructure on the fatigue subject to three-point radial loading p 79 A86-20710
[AIAA 81-0602] p 65 A81.29465 behaviour of the nickel-base superanoy Rene95 NASA Lewis Research Center/university graduate

Superhybridcomposite blade impact studies p 34 A84-48715 research program on engine structures
[ASME PAPER 81-GT°24] p 1 A81-29940 Simplified composite micromechanics equations of [ASME PAPER85-GT.159] p 89 A86-22084

Fracture toughness of brittle materials determined with hygral, thermal, and mechanical properties The effects of strong shock loading on coupled
chevron notch specimens p 45 A8t-32545 p 17 A84-49377 bending-torsion flutter of tuned and mistuned cascades

Self-acting geometry for noncontact seals Strainrange partitioning - A total strain range version p 4 A86-26893
[ASLE PREPRINT 81-AM-5B-2} p 47 A8t-33867 p 34 A85-11603 Vibrations of blades and bladed disk assemblies;

Acousto-ultrasonic characterization of fiber reinforced Flutter of turbofan rotors with mistuned blades Proceedings of the Tenth Biennial Conference on
composites p50 A8t-44660 p74 A85-12716 Mechanical Vibration and Noise, Cincinnati, OH,

Computer code for intraply hybrid composite design Hygrothermomechanical evaluation of transverse September 10-13, 1985 p 4 A86-26901
p15 A81-44662 filament tape epoxy/polyester fiberglass composites Forced response analysis of an aerodynamically

Comparative thermal fatigue resistanceof several oxide p 17 A85-15632 detuned supersonic turbomachine rotor

dispersion strengthened alloys p32 A82-11399 Design procedures for fiber composite structural p5 A86-26902
Sensitivity analysis results of the effects of various components - Rods, beams, and beam columns Vibration and buckling of rotating, pretwisted, preconed

parameters on composite design p 16 A82-37101 p 17 A85-15636 beams including Coriolis effects p 89 A86-26910
Impact resistance of fiber composites Designing for fiber composite structural durability in

p 66 A82-39852 Select fiber composites for space applications - A hygrothermomechanical environments
Extended range stress intensity factor expressions for mechanistic assessment p18 A85-16040 p19 A86-27734

chevron-notched short bar and short rod fracture ICAN - Integrated composites analyzer Aerodynamic and structural detuning of supersonic
toughness specimens p 66 A82-40357 [AIAA PAPER 84-0974] p 18 A85-16094 turbomachine rotors p 5 A86-31595

Crack displacements for J/I/ testing with compact Vibration and flutter of mistuned bladed-disk Radiographic detectability limits for seeded voids in
specimens p 66 A82-40358 assemblies sintered silicon carbide and silicon nitdde

Fatigue and creep-fatigue deformation of several [AIAA PAPER 84-0991] p 75 A85-t6095 p 51 A86-31745
nickel-base superalloys at 650 C p 32 A82-47398 Interply layer degradation effects on composite Dynamic characteristics of an assembly of prop-fan

Tensile buckling of advanced turboprops structural response blades
[AIAA PAPER82-0776] p 67 A83-t0900 [AIAA PAPER 84-0849] p 18 A85-16096 [ASME PAPER85-GT-t34] p 5 A86-32956
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CORPORATESOURCE NASA. Lewis Research Center, Cleveland, Ohio.

Influenceof friction dampers on torsional blade flutter Probabilisticstructuralanalysisto quantifyuncertainties Engine environmental effects on compositebehavior
[ASME PAPER85-GT-170] p 5 A86-32957 associated with turbopump blades [NASA-TM-81508] p 22 N80-23370

NDE of advanced ceramics p 52 A86-35575 [AIAA PAPER87-0766] p 85 A87-33581 Status of NASA full-scale engine aeroelasticity
The tensile and fatigue deformation structures in asingle Optimization and analysis of gas turbine engine blades research

crystal Ni-base superalloy p 36 A86-35697 [AIAA PAPER87-0827] p 126 A87-33614 [NASA-TM-81500] p 88 N80-23678
Progressive fracture of fiber composites Advances in 3-D Inelastic Analysis Methods for hot Practical implementation of the double linear damage

p 19 A86-35809 section components rule and damage curve approach for treating cumulative
A computer analysis program for interfacing thermal and [AIAA PAPER87-0719] p85 A87-33645 fatigue damage

structuralcodes p126 A86-36861 Struotural tailoring of advanced turboprops NASA-TM-81517] p88 N80-23684
Nondestructive characterization of structural ceramics [AIAA PAPER 87-0753] p 85 A87-33648 Concepts and techniques for ultrasonic evaluation of

p 46 A86-37141 materiel mechanical properties
Inelastic high-temperaturethermomechanicalresponse A technique for the prediction of airfoil flutter NASA-TM-81523] p53 N80-24634

of ceramic coated gas turbine seals p 82 A86-37799 characteristics in separated flow Three dimensional finite-element elastic analysis of a
Composite sandwich thermostructural behavior - [AIAA PAPER 87-0910] p86 A87-33719 thermally cycled double-edge wedge geometry specimen

Computational simulation Approximations to eigenvalues of modified general NASA-TM-80980] p 37 N80-26433
[AIAA PAPER86-0948] p 82 A86-38842 matrices Quantitative ultrasonic evaluation of engineering

Computer aided derivation of equations for composite [AIAA PAPER 87-0947] p 86 A87-33756 properties in metals, composites and ceramics
mechanics problems and finite element analyses A higher order theory of laminated composite cylindrical NASA-TM-81530] p 54 N80-26682
[AIAA PAPER86-1016] p83 A86-38873 shells p86 A87-35656 Comparison of elastic and elastic-plastic structural

Reliabilityof voiddetection in structuralceramics by use Effect of interferencefitson roller bearing fatigue life analysesfor cooled turbineblade airfoils
of scanning laser acoustic microscopy p 48 A87-37686 NASA.TP.1679] p 88 N80-27719

p 52 A86-39027 Composite space antenna structures - Properties end Fracture toughness of brittle materials determined with
Computational composite mechanics for aerospace environmental effects p 20 A87-38610 chevron notch specimens

propulsion structures Thermal expansion behavior of graphite/glass and NASA.TM-81607] p 38 N80-32486
[A1AA PAPER86-1190] p 19 A86-40596 graphite/magnesium p 21 A87-38615 The method of lines in three dimensional fracture

Dynamic stress anarysis of smooth end notched fiber Nonlinear vibration and stability of rotating, pretwisted, mechanics
composite flexural specimens p 20 A86-41070 preconed blades including Corioliseffects NASA-TM-81593] p 89 N80-32753

Mode II fatigue crack growth specimen development p 86 A87-39896 Superhybrid composite blade impact studies
p 83 A86-43566 Analytical and experimental investigation of mistuning [NASA-TM-81597] p 89 N81-11412

Quantitative flaw characterization with scanning laser in propfan flutter Method for estimating crack-extension resistance curve
aeousticmicroscopy p52 A86-45150 [A1AAPAPER87-0739J p86 A87-40496 from residuel strength data

The cyclic stress-strain behavior of a nickel-base Analytical flutter investigation of a composite propfan [NASA-TP-1753] p 89 N81-11417
superalloy at 650 C p36 A86-45715 model Laminates and reinforced metals

Computational engine structural analysis [AIAA PAPER87-0738] p 87 A87-40497 [NASA-TM-81591] p 23 N81-12171
[ASME PAPER 86-GT-70] p5 A86-48141 Influenceofthird-degreegeometricnonlinearitiesonthe Stability of large horizontal.axis axisymmetric wind

Nondestructive techniques for characterizing vibration and stability of pretwisted, preconed, rotating turbines
mechanical properties of structural materials - An blades p6 A87-46228 [NASA-TM-81623] p89 N81-12446
overview NDE reliability end process control for structural Prediction of composite thermal behavior made simple
[ASME PAPER86-GT-75] p 52 A86-48143 ceramics NASA-TM-81618] p 23 N81-16132

Towardimproveddurabilityinadvancedcombustorsend [ASME PAPER87-GT-8] p 53 A87-48702 Experimental compliance calibration of the compact
turbines - Progress in prediction of thermomechanieal Simplified composite micromeehanics for predicting fracture toughness specimen
loads miorostresses p 87 A87.49275 NASA-TM-81665] p 89 N81-t6492
[ASME PAPER 86-GT.172] p 6 A86-48224 Quantitativevoid characterization in structuralceramics Effects of mistuning on bending-torsion flutter and

Mass balancing of hollow fan blades by use of scanning laser acoustic microscopy response of a cascade in incompressible flow
[ASME PAPER 86-GT-195] p 84 A86-48245 p 53 A87-51974 NASA-TM-81674] p 89 N81.16494

NDE of structural ceramics Results of an interlaboratory fatigue test program
[ASME PAPER86-GT-279] p52 A86-48298 conducted on alloy 800H at room and elevated Method for alleviating thermal stress damage in

A study of spectrum fatigue crack propagation in two temperatures p 37 A87-54370 laminates
aluminum alloys, I - Spectrum simplification. II - Influence Micromeehanics of intraply hybrid composites: Elastic NASA-CASE-LEW.12493-1] p 23 N81-17170
of mierostruetures p 36 A86-48973 and thermal properties Composite containment systems tor jet engine fan

Unified constitutive materials model development and [NASA-TM-79253] p 21 N8O.t1143 blades
evaluation for high-temperature structural analysis Tensileendflexuralstrengthofnoe-graphiticsuperhybrid [NASA-TM-81675] p 90 N81-17480
applications p 84 A86-49133 composites: Predictions and comparisons Ion beam sputter etching of orthopedic implanted alloy

The plastic compressibility of 7075-T651 aluminum-alloy [ NASA-TM-79276] p 21 N80-11144 MP35N and resulting effects on fatigue
plate p 36 A86-49690 Dynamic response of damaged angleplied fiber NASA-TM-81747] p 38 N81-21174

Orientation and temperature dependence of some composites Nonlinear laminate analysis for metal matrix fiber
mechanical properties of the single-crystal nickel-base [NASA-TM-79281] p 21 N80-11145 composites
superalloy Rene N4, II - Low cycle fatigue behavior Mechanical property characterization of intrapry hybrid NASA-TM-82596] p 24 N81-25149

p 37 A86-50322 composites Computer code for intreply hybrid composite design
Correlation of processing and sintering variables with [NASA-TM-79306] p 21 N80-12120 [NASA-TM-82593] p 24 N81-25151

the strength end radiography of silicon nitride Comparison tests end experimental compliance Method for alleviating thermal stress damage in
p 46 A87-t2938 calibration of the proposed standard round compact plane laminates

Probability of detection of internal voids in structural strain fracture toughness specimen [NASA-CASE-LEW-t2493-2] p 24 N81-26179
ceramics using microfocus radiography [NASA-TM-81379] p 87 N80-13513 Aeroelastic characteristics of a cascade of mistuned

p 52 A87.14300 Photovoltaie power system reliability considerations blades in subsonic and supersonic flows
Factors that affect the fatigue strength of power [NASA-TM-79291] p 53 N80-15422 [NASA-TM-82631] p 90 N81-26492

transmission shafting and their impact on design A relation between semiempirical fracture analyses and
p 48 A87-14656 R-curves Acousto-ultresonic characterization of fiber reinforced

Elastic analysis of a mode II fatigue crack test NASA-TP-1600] p87 N80-15428 composites
specimen p84 A87-17799 Fracture modes of high modulus graphite/epoxy [NASA-TM-8265t] p54 N81-28458

SCARE - A postprocessorprogramto MSC/NASTRAN engleplied laminates subjected to off-axis tensile loads Reriability and quality assuranceon the MOD 2 wind
for reliability analysis of structural ceramic components NASA-TM-81405] p 21 N80-16102 system
[ASME PAPER 86-GT-34] p 84 A87-t7988 Prediction of fiber composite mechanicalbehavior made [NASA-TM-82717] p 54 N81-33492

Assessment of simplified composite micromechanics simple Structural dynamics verification facility study
using three-dimensional finite-element analysis NASA-TM-81404 p 22 N80-16107 [NASA-TM-82675] p 90 N81.33497

p 20 A87-19121 Application of composite materials to turbofan engine Integrated analysis of engine structures
Fabrication and quality assurance processes for fan exitguidevanes [NASA-TM-82713] p91 N82-t1491

superhybrid composite fan blades p 20 A87-19123 NASA-TM-81432 p 22 N80-18106 Elevated temperature fatigue testing of metals
Simprified composite micromechanics for predicting Dynamic modulusand damping of boron, silicon carbide, p 38 N82-13281

microstresses p 20 A87-20090 and arumina fibers Durability/life of fiber composites in
Re-examination of cumulative fatigue damage analysis NASA-TM-81422 p 22 N80-20313 hygrothermomechanical environments

- An engineering perspective p 85 A87-22128 Calculation of residual principal stresses in CVD boron [NASA-TM-82749] p 24 N82-14287
The effect of circumferential aerodynamic detuning on on carbon filaments Ultrasonic velocity for estimating density of structural

coupled bending-torsion unstalled supersonic flutter NASA-TM-81456 p 22 N80-20314 ceramics
[ASME PAPER86-GT-100] p 6 A87-25396 Predicting the time-temperature dependent axial failure [NASA-TM-82765] p 46 N82-14359

_ B/At composites
Design concepts/parameters assessment and [NASA-TM-81474 p 22 N80-21452 Prediction of composite hygral behavior made simple

sensitivity analyses of select composite structural Effects of fine porosity on the fatigue behavior of a [NASA-TM-82780] p 24 N82-16181
components p 85 A87-25407 powder metallurgy superalloy Elevated temperature fatigue testing of metals

Fatigue criterion to system design, life, and reliability [NASA-TM-81448 p 37 N80-21493 [NASA-TM-82745] p 91 N82-16419
p 85 A87-27986 Simurationof transducer-couplant effects on broadband Metal honeycomb to porouswireform substrate diffusion

Fracture toughness of Si3N4 measuredwith short bar ultrasonic signals bond evaluation
chevron-notched specimens p 46 A87-30621 [NASA-TM-81489 p 53 N80-22714 [NASA-TM-82793] p 54 N82-18612

Nondestructive evaluation of adhesive bond strength Nonlinear, three-dimensional finite-element analysis of Experience with modified aerospace reliability and
using the stress wave factor technique air-cooled gas turbine blades quality assurance method for wind turbines

p 53 A87-32200 [NASA-TP-1669] p 88 N80-22734 [NASA-TM-82803] p 54 N82-19550
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NASA. Lewis Research Center, Cleveland, Ohio. CORPORATE SOURCE

Interrelation of material microstructure, ultrasonic Constitutive relationships for anisotropic Simplified composite micromechanicsequations for
factors, and fracture toughnessof two phase titanium high-temperaturealloys strength,fracture toughness and environmentaleffects
alloy [NASA-TM-83437] p 97 N83-28493 [NASA-TM-83696] p 27 N84-27832
NASA.TM-82810] p 54 N82-20551 Temperaturedistributioninan aircrafttire at lowground Hygrothermomechanicalfracture stresscriteriafor fiber

Elastic-plasticfinite-element analyses of thermally speeds compositeswith sense-parity
cycledsingle-edgewedge specimens [NASA-TP-2195] p 97 N83-33217 [NASA-TM-83691] p 27 N54-28918
NASA-TP-1982] p 91 N82-20565 Rerationof cyclic loadingpattern to microstructural A computer program for predictingnonlinear uniaxial

Elastic-plastic finite-element analyses of thermally fracture in creep fatigue material responsesusing viscoplasticmodels
cycled double-edge wedge specimens [NASA-TM-83473] p 98 N83-34349 [NASA-TM-83675] p 104 N84-29247
NASA-TP-1973] p 92 N82-20566 Nonlinear Constitutive Relations for High Temperature Mode 2 fatigue crack growth specimen development
Tungsten fiber reinforced superalloy composite high Applications [NASA-TM-83722] p 104 N84-29248

temperature component design considerations [NASA-CP-2271] p 98 N83-34351 Improved methods of vibration analysis of pretwisted,
NASA-TM-828t 1] p 25 N82-21259 Tensile and compressive constitutive response of 316 airfoil blades

Coupled bending-bending-torsion flutter of a mistuned stainresssteel at erevated temperatures [NASA-TM*83735) p 104 N84-30329
cascadewith nonuniformblades p 98 N83-34353 Applicationof finiteelement substruoturingto composite
NASA°TM-82813 p 92 N82-21604 Evaluation of inelastic constitutive models for nonlinear micromechanics

Structural dynamics of shroudless, hollow fan blades structural analysis p 98 N83-34357 [NASA-TM-83729] p 27 N84-31288
with composite in-lays Simplified method for nonlinear structural analysis Evaluation of theeffect of crack closure on fatigue crack
NASA-TM-82816 p 7 N82-22266 [NASA-TP-2208] p 99 N83-34372 growth of simulated short cracks

Compression behavior of unidirectional fibrous A solution procedure for behavior of thick plates on a [NASA-TM-83778] p 40 N84-31348
composite nonlinear foundation and postbuckling behavior of long Nonlinear displacement analysis of advanced propeller
NASA-TM-82833 p 25 N82-22313 plates structures using NASTRAN

Designing with tiger-reinforced plastics (planar random [NASA-TP-2174] p 99 N83-34373 [NASA-TM-83737] p 104 N84-31683
composites) The thermal fatigue resistance of H-13 Die Steel for Cyclictorsion testing
NASA-TM-82812 p 25 N82-24300 aruminumdie casting dies [NASA-TM-83756] p 105 N84-31687

Nonrinear structural and life analyses of a combustor [NASA-TM-83331] p 39 N83-35103 Nonlinear Structural Analysis
liner The structural response of a rail accelerator [NASA-CP-2297] p 105 N84-31688
NASA°TM-82846 p 92 N82-24501 NASA-TM-83491] p 99 N83-35412 Nonlinear analysis for high-temperature composites:

Evaluation of inelastic constitutive models for nonlinear Analysis of an externally radiarly cracked ring segment Turbine blades/vanes p 106 N84-31699
structural analysis subject to three-point radial loading The role of the reflection coefficient in precision
NASA-TM-82845 p 92 N82-24502 NASA-TM-83482] p 100 N83-35413 measurement of ultrasonic attenuation

Bird impact analysis package for turbine engine fan Wide range weight functions for the strip with a single [NASA-TM-83788] p 57 N84-32849
blades edge crack Fracturesurface characteristics of notched angleplied
NASA-TM-82831 p 92 N82-26701 NASA-TM-83478] p 100 N84-11512 graphite/epoxy composites
A finite element stress analysis of spur gears including INHYD: Computer code for intraply hybrid composite [NASA-TM-83786] p 28 N84-33522

fillet radii and rimthickness effects design. A users manual Low cycle fatigue behavior of conventionally cast
NASA-TM-82865 p 48 N82-28646 NASA-TP-2239] p 26 N84-13224 MAR-M 200 AT 1000 deg C

Environmental and High-Strain Rate effects on An improved finite-difference analysis of uncoupled [NASA-TM-83769] p 41 N84-33564
composites for engine applications vibrations of tapered cantilever beams Fracture modes in notched angleplied composite
NASA-TM-82882 p 25 N82-31449 NASA-TM-83495] p 101 N84-13610 laminates
Large displacementsand stability analysis of nonlinear Complexities of high temperature metal fatigue: Some [NASA-TM-83802] p 28 N84-34576

propeller structures steps toward understanding Ultrasonic velocity measurement using phase-slope
[NASA-TM-82850 p 94 N82-31707 NASA-TM-83507] p 101 N84-14541 cross-correlation methods

Tensile buckling of advanced turboprops A simplified method for elastic-plastic-creep structural [NASA-TM-83794] p 57 N84-34769
[NASA-TM-82896] p 94 N82-31708 analysis Ultrasonic nondestructive evaluation, microstructure,

Nonlinearconstitutivetheoryforturbineenginestructural NASA-TM-83509] p 101 N84-14542 and mechanical property interrelations
analysis p 95 N82-33744 Dynamic behavior of spiral-groove and Rayleigh-Step [NASA-TM-86876] p 57 N85-10371

Thermal fatigue resistance of cobalt-modified UDIMET serf-actingface seats Turbine Engine Hot Section Technology (HOST)
700 p 39 N83-11289 NASA-TP-2266] p 8 N84-16181 [NASA-TM-83022] p 9 N85-10951

Creep-fatigueof low cobalt superalloys Digital computer program for generating dynamic Nonlinear structural and life analyses of a turbine
p 39 N83-11290 turbofan engine models (DIGTEM) blade p 9 N85-10954

Bending-torsion flutter of a highly swept advanced NASA-TM-83446] p 8 N84-16185 Nonlinear structural and life analyses of a combustor
turboprop Design concepts for low-cost composite engine liner p 9 N85-10955
[NASA-TM-82975] p 95 N83-t 1514 frames Pre-HOST high temperature crack propagation

Materials constitutive models for nonlinear analysis of NASA-TM-83544] p 8 N84-16186 p 9 N85-10956
thermally cycled structures Flutter of swept fan blades Structural analysis p 9 N85-10969
[NASA-TP-2055] p 95 N83-12449 [NASA-TM-83547] p 102 N84-16587 Component-specific modeling p 10 N85-10971

Large displacements and stability analysis of nonlinear Improved finite-difference vibration analysis of The 3-D inerastic analysis methods for hot section
propeller structures p 95 N83-12460 pretwisted, tapered beams components: Brief description p 10 N85-10972

Strainrange partitioning: A total strain range version [NASA-TM-83549] p 102 N84-16588 Life prediction and constitutive behavior: Overview
[NASA-TM-83023] p 39 N83-t4246 Bending fatigue of electron-beam-welded foils, p 10 N85-10973

Measurements of self-excited rotor-blade vibrations Application to a hydrodynamic air bearing in the Constitutive model development for isotropic materials
using optical dispacements Chrysler/DOE upgraded automotive gas tubine engine p 10 N85-10975
[NASA-TM-82953] p 95 N83-14523 [NASA-TM-83539] p 102 N84-16589 HOST high temperature crack propagation

Hygrothermomechanical evaluation of transverse Preliminary study of thermomechanical fatigue of p 10 N85-10977
filamenttape epoxy/polyester fibergrasscomposites polycrystallineMAR-M 200 Validation of structuraranalysis methods using the
[NASA-TM-83044] p 26 N83-15362 NASA-TP-2280] p 40 N84-17350 in-house liner cyclic rigs p 10 N85-10987

Effectsofstructuralcouplingonmistunedcascadeflutter Engine cyclic durability by analysis and material HOST liner cyclic facirities: Facility description
and response testing p 10 N85-10988
[NASA-TM-83049] p96 N83-t5672 NASA-TM-83577] p 102 N84-18683 Fabrication and quality assurance processes for

Structural fatigue test resultsforlargewindturbineblade Formuration of blade-flutter spectral anaryses in superhybridcomposite fan blades
sections p 96 N83-19246 stationary reference frame [NASA-TM-83354] p 28 N85-14882

Simplified composite micromechanics equations for NASA-TP-2296] p 8 N84-20562 The use of an optical data acquisition system for bladed
hygral, thermal and mechanicalproperties Development of a simplified procedure for cyclic disk vibration analysis
[NASA-TM-83320] p 26 N83-19817 structural analysis [NASA-TM-86891] p 106 N85-15184

Specimen size and geometry effects on fracture NASA-TP-2243] p103 N84-20878 Engine cyclic durability by analysis and material
toughness of AI203 measured with short rod and short Serect fiber composites for space applications: A testing p 11 N85-15744
bar chevron-notch specimens mechanistic assessment A study of interply layer effects on the free-edge stress
[NASA-TM-83319] p 47 N83-19902 NASA-TM-83631] p 26 N84-22702 field of angleplied laminates

Ultrasonic ranking of toughness of tungsten carbide Vibration and flutter of mistuned bladed-disk [NASA-TM-86924] p 28 N85-15822
[NASA-TM-83358] p55 N83-23620 Lssemblies Design procedures for fiber composite structural

A total life prediction model for stress concentration NASA-TM-83634] p 103 N84-23923 components: Panels subjected to combined in-plane
sites Lewis Research Center spin rig and its use in vibration loads
[NASA-CR-t70290] p 96 N83-23629 analysis of rotating systems [NASA-TM-86909] p 29 N85-15823

Array structure design handbook for stand alone NASA-TP-2304] p9 N84-24578 Experimental compliance calibration of the NASA Lewis
photovoltaic applications Impact resistanceof fiber composites: Energyabsorbing Research Center Mode 2 fatigue specimen
[NASA-TM-82629] p96 N83-23631 mechanisms and environmental effects [NASA-TM-86908] p107 N85-16205

Design procedures for fiber composite structural NASA-TM-83594] p 26 N84-24712 A study of spectrum fatigue crack propagation in two
components: Rods,columns and beam columns Dynamic stress analysis of smooth and notched fiber aluminum alloys. 1: Spectrum simplification
[NASA.TM-83321] p 26 N83-24559 composite flexural specimens [NASA.TM-86929] p 41 N85o18124

Stressintensityand displacement coefficientsfor radially NASA-TM-83694] p 27 N84-25770 A study of spectrum fatigue crack propagation in two
cracked ring segments subject to three-point bending ICAN: Integrated composites analyzer aluminum alloys. 2: Influence of microstructures
[NASA-TM-83059] p 96 N83-24874 [NASA-TM-83700] p 27 N84-26755 [NASA-TM-86930] p 41 N85-18125

Vapor cavitation in dynamically loaded journal Interply layer degradation effects on composite NASA Lewis Research Center/University Graduate
bearings structuralresponse Research Programon Engine Structures
[NASA-TM-Sg366] p 97 N83-24875 [NASA-TM-83702] p 27 N84-26756 [NASA-TM-86916] p 107 N85-18375
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CORPORATESOURCE NASA. Lewis Research Center, Cleveland, Ohio.

Lowcycle fatigue of MAR-M 200 singlecrystals at 760 Influenceof load interactionson crack growthas related The low cycle fatigue behavior of a plasma-sprayed
and 870 deg C to state of stressand crackcrosure coating material
[NASA-TM-86933] p 41 N85-19074 [NASA-TM-87117] p 42 N86-12292 [NASA-TM-87318] p 44 N86-31699

NDE for heatengine ceramics Fatiguecrack propagationof nickel-basesuperalloysat Factorsthat affect reliabilityof nondestructivedetection
[NASA-TM-86949] p 57 N85-20389 650 deg C of flaws in structuralceramics

Local strain redistributioncorrectionsfor a simplified [NASA-TM-87150] p 42 N86-12294 [NASA-TM-87349] p 61 N86-31912
inelastic analysis procedure based on an elastic An updateof the total-strainversionof SRP Quantitativevoidcharacterizationin structuralceramics
finite-elementanalysis [NASA.TP.2499] p 42 N86-12295 usingscanninglaseracoustic microscopy
[NASA-TP-2421 p 107 N85-20396 FracturedtoughnessofSi3N4 measured with shortbar [NASA.TM-88797] p 61 N86-31913

Nonlinear analysisfor high-temperature multilayered chevron-notchedspecimens Influenceof third-degreegeometric nonlinearitieson the
fiber composite structures [NASA-TM-87153] p47 N86-13495 vibration and stability of pretwisted, preconed, rotating
[NASA-TM-83754" p 29 N85-21273 Probability of detection of internal voids in structural blades

Radiographic detectability limits for seeded voids in ceramics using microfocus radiography [NASA-TM-87307] p 120 N86-31920
sinteredsilicon carbide and silicon nitride [NASA°TM-87164] p 59 N86-13749 Structural dynamic measurement practices for
[NASA-TM-86945 p 58 N85-21674 NDE of structural ceramics turbomachinery at the NASA Lewis Research Center

Onlocaltotalstrainredistributionusingasimplifiedcyclic [NASA-TM-87186] p 59 N86-16598 [NASA-TM-88857] p 13 N86-32433
inelastic analysis based on an elastic solution Reliabirity of scanning laser acoustic microscopy for Acousto-ultrasonicverificationofthestrengthoffilament
[NASA-TM-86913 p 108 N85-21690 detecting internal voids in structural ceramics wound composite material

Unified constitutive material models for nonlinear [NASA-TM-87222] p 59 N86-16599 [NASA-TM-88827] p 61 N86-32764
finite-element structural analysis Simplified cyclic structural analyses of SSME turbine Ultrasonic determination of recrystallization
[NASA-TM-86985 p 108 N85-24338 blades [NASAoTM-88855] p 61 N87-10399

Cyclic structural analyses of anisotropic turbine blades [NASA-TM-87214] p 116 N86-16615 Turbine Engine Hot Section Technology, 1984
for reusable space propulsionsystems Nonlinear bending-torsional vibration and stability of [NASA-CP-2339] p 120 N87.11180
[NASA-TM-86990 p 108 N85-24339 rotating, pretwisted, preconed blades including Coriolis Fatigue and fracture: Overview p 120 N87-11183

Vibration and buckling of rotating, pretwisted, preconed effects High temperature stress-strain analysis
beams including Cooriolis effects [NASA-TM-87207] p 116 N86o17789 p 120 N87-t1209
[NASA-TM-87004 p 109 N85-25893 Estimating the R-curve from residual strength data STAEBL: Structural tailoring of engine blades, phase 2

Nonlinear structural analysis for fiber-reinforced [NASA°TM-87182] p 116 N86-18750 p 13 N87-11731
superalloy turbine blades p 109 N85-26857 Nondestructive techniques for characterizing Selection of rolling-element bearing steels for long-life

Multiaxial andthermomechanical fatigue considerations mechanical properties of structural materials: An application
in damage tolerant design overview [NASA-TM-88881] p 49 N87-11993
[NASA-TM-87022] p 42 N85-26964 [NASA-TM-87203] p 59 N86-19636 Concentrated mass effects on the flutter of a composite

Fatigue criterion to system design, life and reliability Computational engine structural analysis advanced turboprop model
[NASAoTM-87017] p 49 N85-27226 [NASA-TM-8723t] p 116 N86-19663 [NASA°TM-88854] p 120 N87-12017

A computeranalysis program for interfacing thermal and Integrated Composite Analyzer (1CAN): Users and NDE reliability and process control for structural
structuralcodes programmers manual ceramics
[NASA-TM-87021] p 110 N85-27264 [NASA-TP-2515] p 30 N86-21614 [NASA-TM-88870] p 61 N87-12910

Overview of structural response: Probabilisticstructural Variables controlling fatigue crack growth of short A constitutive law for finite element contact problems
analysis p tl0 N85-27952 cracks with unclassieal friction

Interactionof high-cycleand low-cyclefatigue of Haynes [ NASA.TM-87208] p 43 N86-21661 [NASA-TM-88838] p 120 N97.12924
188 alloy at 1400 F dog p 111 N85-27961 Influence of fatigue crack wake length and state of stress Composite interlaminar fracture toughness:

Reexamination of cumulativefatigue damage laws on crack crosure Three-dimensionalfinite element modeling for mixed mode
p 112 N85-27962 [NASA-TM-87292] p 43 N86-22686 1, 2 and 3 fracture

Cyclic structural analyses of SSME turbine blades Analytical Ultrasonics in Materials Research and [NASA-TM-88872] p 31 N87-13491
p 112 N85-27963 Testing Effect of design variables, temperature gradients and

Designing for fiber composite structural durability in [NASA-CP-2383] p 59 N86-22962 speed of life and reliability of a rotating disk
hygrothermomechanical environment Thermoviscoplastic nonlinear constitutive relationships [NASA-TM-88883] p 49 N87.13755
[NASA.TM-87045] p 29 N85-27978 for structural analysis of high temperature metal matrix Probabilistic structural analysis methods for space

DEAN: A program for dynamic engine analysis composites propulsion system components
[NASA-TM-87033] p 11 N85-28945 [NASA-TM-87291] p 30 N86-24756 [NASA-TM-88861] p 121 N87-13794

Ten year environmental test of glass fiber/epoxy A unique set of micromechanies equations for high Estimation of high temperature low cycle fatigue on the
pressure vessels temperature metal matrix composites basis of inelastic strain and strainrate
[NASA-TM-87058] p 29 N85-30034 [NASA-TM-87154] p 30 N86-24757 [NASA-TM-88841] p 44 N87-14489

Variable force, eddy-current or magnetic damper Simplified composite micromechanics for predicting A low-cost optical data acquisition system for vibration
[NASA-CASE-LEW°13717-1] p 49 N85-30333 microstresses measurement

Structural analysis and cost estimate of an eight-leg [NASA-TM-87295] p 30 N86-24759 [NASA-TM-88907] p 121 N87.14739
spaceframeasa supportstructurefor horizontalaxiswind Fracture characteristics of angleplied laminates Lubricanteffects on bearing life
turbines fabricated from overaged graphite/epoxy prepreg [NASA°TM-88875] p 49 N87°15467
[NASA-TM-83470] p 112 N85-30361 [NASA-TM-87266] p 30 N86-25417 The 20th Aerospace Mechanics Symposium

Nonlinear Constitutive Relations for High Temperature Concepts for interrelating ultrasnic attenuation, [NASA-CP-2423-REV] p 121 N87-t6321
Application, 1984 microstrucutre and fracture toughness in polycrystalline Evaluation of a high-torque backlash-free roller
[NASA-CP-2369] p 112 N85-31530 solids actuator p 49 N87.16336

A comparison of two contemporary creep-fatigue life [NASA-TM-87339] p 60 N86-25812 Composite space antenna structures: Properties and
predictionrnethods p113 N85-31538 Cyeric creep analysis from elastic finite-element environmental effects

On numerical integration and computer implementation solutions [NASA-TM-88859] p 31 N87-16880
of viscoplastic models p 113 N85-31542 [NASA-TM-87213] p 117 N86-25822 Surface flaw reliability analysis of ceramic components

Two simplified procedures for predicting cyclic material Computational simurationof progressive fracture in fiber with the SCARE finite element postprocessor program
response from a strain history p 113 N85-31543 composites [NASA.TM-88901] p 121 N87.17087

Reliability of void detection in structuralceramics using [NASA-TM-87341 ] p 30 N86-26376 Nondestructive evaluation of structural ceramics
scanning laser acoustic microscopy Low-cycle thermal fatigue [NASA-TM-88978] p 62 N87-18109
[NASA-TM-87035] p 58 N85-32337 [NASA-TM-87225] p 118 N86-26651 The effect of nonrinearitieson the dynamic response

Applicationof tractiondrives as serve mechanisms Re-examination of cumulativefatigue damageanalysis: of a large shuttle payload
p 114 N85-33520 An engineering perspective [NASA.TM-88941] p 121 N87-18112

Nonlinear flap-lag-extensional vibrations of rotating, [NASA-TM-87325] p 118 N86-27680 Analytical flutter investigation of a composite propfan
pretwisted, preconed beams including Coriolis effects Micromechanisms of thermomechanical fatigue: A model
NASA-TM-87102] p 115 N85-34427 comparison with isothermal fatigue [NASA.TM-88944] p 122 N87.18115

Progressive damage, fracture predictions and post [NASA.TM-87331] p 44 N86-28164 Analytical and experimental investigation of mistuning
mortemcorrelationsfor fiber composites Structural analysis of turbine blades using unified in propfan flutter
NASA-TM-87101] p29 N86-10290 constitutive models [NASA-TM-88959] p122 N87.18116

Creep-fatigue behavior of NiCoCrAIYcoated PWA 1480 [NASA-TM-88807] p 119 N86-28461 Computational composite mechanics for aerospace
superalloy single crystals Thermal-fatigue and oxidation resistance of propulsion structures
NASA-TM-87110] p 42 N86-10311 cobalt-modified Udimet 700 alloy [NASA-TM-88965] p 31 N87-18614

Ultrasonic evaluation of mechanical properties of thick, [NASA-TP-2591] p 119 N86-28464 Effects of surface removal on rolling-element fatigue
Experimental classical flutter reesults of a composite [NASA-TM-88871] p 50 N87-18820

multilayered, filament wound composites advanced turboprop model
NASA-TM-87088] p 58 N86-t0561 [NASA-TM-88792] p t 19 N86-29271 The effects of crack surface friction and roughness on

Joint research effort on vibrationsof twisted plates, Determinationof grain size distribution function using crack tip stress fields
phase 1: Final results two-dimensionalFouriertransformsof tonepulseencoded [NASA-TM-88976] p t 22 N87-18881
[NASA-RP-1150] p 115 N86-10579 images Fatiguefailureofregeneratorscreensinahighfrequency

Improved stud configurationsfor attaching laminated [NASA-TM-88790] p 61 N86-31065 Stirlingengine
woodwindturbine blades Fiber compositesandwichthermostructuralbehavior: [NASA-TM-88974] p 122 N87.18682
NASA-TM-87109] p 115 N86-10582 Computationalsimulation A comparative study of some dynamic stall moders

TurbineEngine Hot SectionTechnology(HOST) [NASA-TM-88787] p 31 N86-31663 [NASA-TM-88917] p 122 N87-18883
[NASA-CP-2289] p115 N86-11495 ICAN: A versatile code for predicting composite Bithermal Iow-cycre fatigue behavior of a

HOST structuralanalysisprogramoverview properties NiCoCrAIY-coatedsinglecrystalsuperalloy
p 12 N86-11513 [NASA-TM-87334] p 31 N86-31664 [NASA-TM-8983t ] p 45 N87-20408
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National TechnicalSystems, Hartwood, Va. CORPORATESOURCE

The acousto-ultrasonicapproach Compositeswith periodicmicrostructure P
[NASA-TM-89843] p 62 N87-20562 p 15 A83-12734

Calculationof thermomechanicalfatigue life based on Growth and stability of interacting surface flaws of PennsylvaniaState Univ., University Park.
isothermalbehavior arbitraryshape p68 A83-15060 The interactionbetween mistuningand frictionin the
[NASA-TM-88864] p 122 N87-20565 The determination of the elastodynamicfields of an forced responseof bladed diskassemblies

Shot peening for Ti-6AI-4V alloy compressorblades ellipsoidalinhomogeneity [ASME PAPER 84-GT-139] p 73 A84-46957
[NASA-TP.2711] p123 N87-20566 [ASMEPAPER83-APM-19] p69 A83-37388 Effectsof frictiondampersonaerodynamicallyunstable

A NASTRANprimerfor the analysisof rotatingflexible Dynamic fields near a crack tip growing in an rotorstages p 3 A85-21866
blades elastic-perfectly-plasticsolid p 70 A83-38528 Stability of limit cycles in frictionally damped and
[NASA°TM-89861] p 123 N87-21375 Finite elastic-plastic deformation of polycrystalline aerodynamicallyunstablerotorstages p 4 A86°19198

Structural and aeroelastic analysis of the SR-7L metals p 34 A84-43872 Influence of frictiondampers on torsionalblade flutter
propfan [ASME PAPER 85-GT-170] p 5 A86-32957
[NASA-TM-86877] p 123 N87-22273 On stressfield neara stationarycracktip Axial and torsionalfatiguebehaviorof Waspaloy

Fatiguedamage interactionbehaviorof PWA 1480 [AD-A152863] p 76 A85-24532 [NASA-CR-175052] p 44 N86-25454
p 45 N87-22777 Probabilistic finite elements for transient analysis in Pratt and Whitney Aircraft, East Hartford, Conn.

Nonlinearheattransferand structuralanalysesof SSME nonlinearcontinua p 80 A86-28653 Three*dimensionalstress analysisusing the boundary
turbine blades p 123 N87-22779 Micromechanicallybased constitutive relations for element method p 106 N84-31700

Finite element implementationof Robinson's unified polycrystallinesolids p 99 N83-34359 3-D inelastic analysis methods for hot section
viscoplasticmodeland itsapplicationto someuniaxialand Probabilisticfiniteelement: Variationaltheory components(base program)
multiaxialproblems p 111 N85-27957 [NASA-CR-174700] p 107 N85-21686
[NASA-TM-89891] p 123 N87-23010 Creep fatigue life prediction for engine hot section

The impact damped harmonicoscillatorin free decay materials(isotropic)
[NASA-TM-89897] p 50 N87-23978 O [NASA-CR-168228] p 11 N85-31057

Application of scanning acoustic microscopy to Life prediction and constitutivemodels for engine hot
advancedstructuralceramics Ohio State Univ., Cleveland. sectionanisotropicmaterialsprogram
[NASA-TM-89929] p 62 N87-23987 Vibrationsof twisted cantileveredplates - Summary of [NASA-CR.174952] p 60 N86-25003

Identificationof structuralinterfacecharacteristicsusing previousand currentstudies p 76 A85-22069 Structural tailoring of engine blades (STAEBL)
componentmode synthesis Ohio State Univ., Columbus. theoreticalmanual
[NASA-TM-88960] p 123 N87-24006 Vibration and buckling of rectangular plates under [NASA-CR-175112] p 12 N86-27283

Environmentaldegradationof 316 stainlesssteelinhigh in-planehydrostaticloading p64 A80-45364 Structuraltailoringof engine blades (STAEBL) user's
temperaturelow cyclefatigue Vibrations of cantileveredshallow cylindricalshells of manual
[NASA-TM-89931] p124 N87-24007 rectangularplanform p65 A82-11298 [NASA-CR-175113] p13 N86-27284

Hub flexibilityeffects onpropfan vibration Pratt and Whitney Aircraft Group, East Hartford, Conn.
[NASA-TM-89900] p 124 N87-24722 Vibrationsof twisted rotatingblades Nonlinearstructuraland life analysesof a combustor

Ray propagation path analysisof acousto-ultrasonic [ASME PAPER8f-DET-127] p 65 A82-19341 liner p 68 A83-12764
signalsincomposites Comparisonofbeamand shelltheoriesforthe vibrations Structuraltailoringof engine blades(STAEBL)
[NASA-TM-100148] p 62 N87-25589 of thin turbomachineryblades [AIAA 83-0828] p 1 A83-29737

Ultrasonic NDE of structural ceramics for power and [ASME PAPER82-GT-223] p 65 A82-35408 Simplified analytical procedures for representing
propulsion systems On ultrasonic factors and fracture toughness material cyclic response p 2 A84.22877
[NASA-TM-100147] p62 N87-26362 p66 A82-42863 Finite element engine blade structural optimization

Finite element analysis of flexibre,rotating blades Mechanics aspects of NDE by sound and ultrasound [AIAA PAPER85-0645] p76 A85-30313
[NASA-TM-89906] p 124 N87-26385 p 51 A83-25571 Application of two creep fatigue life models for the

A high temperature fatigue and structures testing Vibrations of cantilevered circular cylindrical shells prediction of elevated temperature crack initiation of a
facility Shallow versus deep shell theory p 69 A83-36958 nickel base alloy
[NASA-TM-t00t5t ] p 124 N87-26399 [AIAA PAPER85-t420] p 35 A85-43979

SINDA-NASTRAN interfacing program theoretical The determination of the elastodynamic fields of an Structural tailoring of advanced turboprops
description and user's manual ellipsoidal inhomogeneity [AIAA PAPER87-0753] p 85 A87-33648
[NASA-TM-t00158] p 124 N87o27268 [ASMEPAPER 83-APM-19] p69 A83-37388 Effect of time dependent flight loads on JT9D-7

Fracture mechanics concepts in reliability analysis of On the three-dimensional vibrations of the cantirevered performance deterioration
monolithic ceramics rectangularparallelepiped p70 A83-37729 [NASA-CR-15968t] p87 N80-t0515

[NASA-TM-100174] p 124 N87-27269 Vibrations of cantilevered doubly-curved shallow shells Combustor liner durability analysis
A computational procedure for automated flutter p7O A83-39557 [NASA-CR-165250] p7 N81-17079

analysis Structuraltairoringof engine blades (STAESL)
[NASA.TM-100171] p125 N87-28058 Vibrations of blades with variable thickness and [NASA-CR-167949] p7 N82-3339t

Toward improved durability in advanced combustors and curvature by shell theory Development of a simplified analytical method for
turbines: Progress in the prediction of thermomechanical [ASME PAPER83-GT-152] p 70 A83-47978 representing material cyclic response
loads Vibrations of twisted cantilevered plates - Experimental [NASA-CR-168100] p 96 N83-21390
[NASA-TM-88932] p 13 N87-2855t investigation Sensor failure detection for jet engines

Dynamic delamination buckling in composite laminates [ASME PAPER84-GT-96] p 73 A84-46937 [NASA-CR-168190] p 56 N83-33182
under impact loading: Computationalsimulation Ultrasonic wave propagation in two-phase media - Pratt and Whitney Aircraft Group, West Palm Beach,
[NASAoTMo100192] p 31 N87-2861t Sphericalinclusions p 17 A85-11926 Fla.

Exposuretime considerationsin high temperaturelow Vibrationsof twisted cantileverplates - A comparison Cyclicbehaviorof turbinedisk alloysat 650 C
cycle fatigue of theoreticalresults p 79 A85-47626 p 32 A81.12266
[NASA-TM-88934] p 125 N87-28944 Evaluationof the cyclicbehaviorof aircraft turbinedisk

TurbineEngine Hot SectionTechnology, 1985 Computeraided derivationof equationsfor composite alloys,part2
[NASA-CP-2405] p 125 N88°11140 mechanicsproblemsand finite elementanalyses [NASA-CR-165123] p 38 N80-30482

High temperaturestress-strainanarysis [AIAA PAPER86-t016] p83 A86-38873 Lowstrain,longlifecreepfatigueof AF2-1DA and INCO
p t25 N88-11170 Phenomenological and mechanics aspects of 718

Lewis'enhancedlaboratoryfor researchintothe fatigue nondestructiveevaluationand characterizationby sound [NASA-CR-t 67989] p 40 N84.10268
and constitutivebehaviorof hightemperaturematerials and ultrasoundof materialand fractureproperties Princeton Univ., N. J.

p 125 N88-11177 [NASA-CR-3623] p 55 N83-11506 Designof dry-frictiondampers for turbineblades
Flaw imaging and ultrasonic techniques for Fundamental aspects in quantitative ultrasonic p 2 A83-35883

characterizingsinteredsiliconcarbide determinationof fracture toughness:The scatteringof a Forcedresponseof a cantileverbeamwith adry friction
[NASA-TM-100177] p 63 N88-12106 singleellipsoidalinhomogeneity damperattached. I - Theory. II - Experiment

Free-edge delamination: Laminatewidth and loading [NASA-CR-3625] p 55 N83-11507 p 71 A84-21267
conditionseffects Vibration characteristicsof mistunedshrouded blade
[NASA-TM-100238] p 32 N88-12551 The transmissionor scattering of elasticwaves by an assemblies

Compositemechanicsfor engine structures inhomogeneity of simple geometry: A comparisonof [ASME PAPER 85-GT-115] p 4 A86-22068theories
[NASA-TM-100176] p 32 N88-12552 Aeroelastic behavior of low aspect ratio metal and

Creep life prediction based on stochasticmodel of [NASA-CR-3659] p 55 N83-16773 compositeblades
microstructurallyshortcrack growth Volume integrals associatedwith the inhomogeneous [ASME PAPER 86-GT-243] p 84 A86-48271
[NASA-TM-t00245] p 125 N88-12825 Helmholtzequation. Part 1: Ellipsoidalregion Purdue Univ., West Lafayette, Ind.

National Technical Systems, Hartwood, Va. [NASA-CR-3749] p 56 N84-14525 Wave propagationin a graphite/epoxy laminate
Factors influencing the ultrasonic stress wave factor Volume integrals associatedwith the inhomegeneous p 70 A83-44050

evaluationof compositematerial structures Helmholtzequation.Part 2: Cylindricalregion;rectangular The coupled response of turbomachinery bladingto
p 81 A86-34257 region aerodynamicexcitations p 2 A84-26959

Northeastern Univ., Boston, Mass. [ NASA-CR-3750] p56 N84°14526 Indentationlaw for compositelaminates
Engine dynamic analysiswith general nonlinear finite Fundamentars of microcrack nucreationmechanics p 16 A84-27356

element codes. II - Bearing element implementation, {NASA-CR-3851] p 57 N85-16195 Use of statical indentationlaws inthe impactanalysis
overallnumericalcharacteristicsand benchmarking of laminatedcompositeplates p 18 A85-29133
[ASME PAPER 82-GT-292] p 47 A82-35462 A studyof internaland distributeddamping for vibrating The effect of aerodynamicand structuraldetuningon

Northwestern Univ., Evanston, III. turbomachinerblades turbomachinesupersonicunstalledtorsionalflutter
On finitedeformationelasto-plasticity [NASA-CR-175901] p 11 N85-27868 [AIAA PAPER85-0761] p 3 A85-30378

p 66 A82-45869 Extensionsof the Ritz-Galerkinmethodfor the forced, Forced response analysis of an aerodynamically
On compositeswith periodicstructure damped vibrationsof structuralelements detunedsupersonicturbomachinerotor

p 67 A83-10283 p 117 N86-21909 p 5 A86-26902
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CORPORATESOURCE Virginia Polytechnic Inst. and State Univ., Blacksburg.

Aerodynamic and structural detuning of supersonic Probabilisticstructuralanalysisto quantifyuncertainties Forced vibrationanalysis of rotating cyclic structures
turbomachinerotors p 5 A86-31595 associatedwithturbopumpblades in NASTRAN

Three dimensional unsteady aerodynamics and [AIAA PAPER 87-0766] p 85 A87-33581 [NASA-CR-165429] p 100 N84-11514
aeroefasticresponseof advancedturboprops Compositespace antenna structures- Propertiesand Finiteelementforcedvibrationanalysisofrotatingcyclic
[AIAA PAPER 86-0846| p 5 A86-38894 environmentaleffects p 20 A87-38610 structures

Dynamic delamination crack propagation in a AnaTyticaland experimentalinvestigationof mistuning [NASA-CR-165430] p 101 N84-11515
graphite/epoxy laminate p 20 A86-43010 in propfanflutter NASTRAN documentation for flutter analysis of

The effect of circumferentialaerodynamicdetuningon [AIAA PAPER87-0739] p 86 A87-40496 advancedturbopropellers
coupledbending-torsionunstalledsupersonicflutter Analytical flutter investigationof a compositepropfan [NASA-CR-167927| p 8 N84-15153Bladed-shrouded-discaeroelasticanalyses: Computer
[ASME PAPER86-GT.100] p 6 A87-25396 model programupdatesin NASTRAN level 17.7

Analytical and experimental investigationof mistuning [AIAA PAPER87-0738] p 87 A87-40497 [NASA-CR-165428] p 8 N84-15154
in propfanflutter Environmentaldegradationof 316 stainlesssteelinhigh
[AIAA PAPER 87-0739] p 86 A87-40496 temperaturelow cycle fatigue NASTRAN forced vibration analysisof rotating cyclicstructures

Dynamicresponsesof graphite/epoxylaminatedbeam [NASA-TM-89931] p 124 N87-24007 [NASA-CR-173821] p 104 N84-29252
to impactof elasticspheres Syracuse Univ., N.Y. Slave finite elements: The temporalelement approach
[NASA-CR-165461 ] p 25 N83-t3173 Shearfatigue crackgrowth- A literaturesurvey

Wave propagationin graphite/epoxy laminatesdue to p 80 A86-24219 to nonlinearanalysis p 105 N84-31689
impact Fatigue crack growth under general-yielding Toledo Univ., Ohio.
[NASA-CR-168057] p 26 N83-22325 cyclic-loading p 84 A86-44339 Effects of mistuningon bending-torsion flutter andresponseof a cascade inincompressibleflow

Modellingof crack tip deformationwith finiteelement [AIAA 81-0602] p 65 A81-29465
R methodanditsaplications p87 N80-13503 The effects of strong shock loading on coupred

Literaturesurvey on oxidations and fatigue lives at bending-torsionflutter of tunedand mistunedcascades
Rensselaer Polytechnic Inst., Troy, N.Y. elevated temperatures p 4 A86-26893

Naturalfrequencyof rotatingbeams usingnon-rotating [NASA-CR-174639] p 40 N84-20674 Approximations to eigenvalues of modified general
modes p 68 A83-18383 Cracktipfieldandfatiguecrackgrowthingeneralyielding matrices

Theeffects of frequencyand holdtimeson fatigue crack and low cycle fatigue [AIAA PAPER 87-0947] p86 A87-33756
propagationrates in a nickel base superalloy [NASA-CR-174686] p 41 N84-32503 Analytical flutter investigationof a compositepropfan

p 34 A84-18733 Grain boundary oxidation and oxidationaccelerated model
The influenceof hordtimeson LCF and FCG behavior fatigue crack nucleationand propagation [AIAA PAPER87-0738] p 87 A87-40497

in a P/M Ni-base superalloy p 35 A85-32400 [NASA-CR-175050] p 43 N86-20542 Thermal stress analysis for a wood compositeblade
Fatiguecrackgrowthand lowcyclefatigueof twonickel Fatigue crack growth under general-yielding [NASA-CR-173394] p 103 N84-21903

base superalloys cyclic-loading Thermal-stressanalysisfor woodcompositeblade
[NASA-CR-174534] p 39 N84-10267 [NASA-CR-175049] p 117 N86-21951 [NASA-CR-173830] p 104 N84-31685

Rice Univ., Houston, Tex.

Oscillator response to nonstationary excitation T U[ASME PAPER84-WA/APM-38] p 75 A85-17039

Numericarsynthesis of tri-variatevelocityrealizations of Technlon - Israel Inst. of Tech., Haifa.
turbulence p 81 A86-28654 Thermodynamicallyconsistentconstitutiveequationsfor United Technologies Corp., East Hartford, Conn.

Rockwell International Corp., Canoga Park, Calif. nonisothermallarge strain,elasto-plastic,creep behavior Stressanalysisof gas turbine enginestructuresusing
Theeffect ofmicrostructure,temperature,andhold-time [AIAA PAPER 85-0621) p 77 A85-38425 the boundaryelement method p 81 A86-34444

on low-cyclefatigueof As HIP P/M Rene 95 Teledyne CAE, Toledo, Ohio. Fracturemechanicscriteriaforturbineenginehotsectioncomponents
p35 A85-32399 The effects of strong shock loading on coupled [NASA-CR-167896] p7 N82-25257

Composite loads spectra for select space propulsion bending-torsionflutter of tuned and mistuned cascades
structuralcomponents p 110 N85-27953 p 4 A86-26893 United Technologies Research Center, East Hartford,Conn.

Rose-Hulman Inst. of Teeh., Terre Haute, Ind. Texas A&M Univ., College Station. Effectsof mistuningon bladetorsionalflutter
The impact damped harmonic oscillatorin free decay An uncoupledviscoplastieconstitutivemodelfor metals p 64 A81-29095

[NASA-TM-89897) p 50 N87-23978 at elevated temperature Dynamiccharacteristicsof an assembly of prop.fan
[AIAA 83-1016] p 69 A83-29798

S On the use of internal state variables in brades
thermoviscoplasticconstitutiveequations [ASME PAPER85-GT-134] p 5 A86-32956Research and development program for the

Sandia National Labs., Albuquerque, N. Mex. p 113 N85-31536
Movingcracks in layeredcomposites Numerical considerations in the development and development of advanced time-temperaturedependentconstitutive relationships. Volume 1: Theoretical

p 67 A83-12048 implementation of constitutive models discussion
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Advanced three-dimensional dynamic analysis by NASTRAN level 16 programmer'smanual updatesfor Factors influencingthe ultrasonicstress wave factor

boundaryelement methods p 81 A86-34445 aeroelastic anarysisof bladed discs evaluation of compositematerialstructures
Sverdrup Technology, Inc., Cleveland, Ohio. [NASA-CR-159825] p 90 N81-19482 p 81 A86-34257

Unified constitutive materials model development and NASTRAN level 16 demonstration manual updates for Approximations to eigenvalues of modified general
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characterizationof compositematerials
[NASA-CR-174870] p 29 N85-30035
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Analysisof crack propagationas an energyabsorption
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Micromechanicalpredictionsof crack propagationand
fractureenergy in a singlefiber boron/aluminummodel
composite
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p 59 N86-19636
p 60 N66-25812
p 60 N86-27665
p 60 N86-28445

506-55-22 ..............................................p 99 N83-35412
506-60-12 ..............................................p 107 N85-20396

p 108 N85-24339
p 42 N86-12295
p 116 N86-16615

506-63-1B ..............................................p 125 N88-12825
506-63-11 ..............................................p 50 N87-18820
533-04.1A ..............................................p 104 N84-29247

p 9 N85-10951
p 107 N85-21686
p 108 N85-24338
p 12 N85-32119
p 12 N85-34140
p 115 N86.10589
p 115 N86-11495
p120 N87-11180

533-04-11 ..............................................p 117 N86-21952
p 119 N86-28461
p 124 N87-26399
p 13 N87-28551

533-04-12 ..............................................p 108 N85-21691

D-3





REPORT/ACCESSIONNUMBERINDEX

lypical Report Number
Index Listing AR-1 .................................................p 11 N85-31057 * # E-1065 .........................................:.,. p 24 N82-14287 * #

E-1125 .............................................p 95 N83-12449 * #

ASLE PREPRINT 81-AM-5B-2 ..... p47 A81-33867 * E-1142 .............................................p 54 N82-19550" #

I El145.............................................p25.82°22313"#

I I E-1151..............................................82-20551"#
NASA ON ASME PAPER81-DET-127 p 65 A82-19341 #|ACCESSION| MICROFICHE ........... E-1152 .............................................p25 N82-21259 * #

I NUMBER _ ASME PAPER81-GT-24 ............... p 1 A81-29940 # E-1155 .............................................p 25 N82-24300 " #
ASME PAPER82-GT-223 ............. p 65 A82-35408 # E-1156 .............................................p 92 N82-21604 * #

I I ASME PAPER82-GT-292 ............. p 47 A82-35462 # E-1163 .............................................p 7 N82-22266 * #
AD-A083245 ...................................p 37 N80-26433 ° ASME PAPER83-APM-19 ............ p 69 A83-37388 # E-1215 .............................................p 92 N82-24502 * #

ASME PAPER 83-GT-117 ............. p 73 A84-33701 E-1234 .............................................p 48 N82-28646 " #
ASME PAPER 83-GT-132 ............. p 73 A84-33702 E-1276 .............................................p 94 N82-31708 ° #
ASME PAPER 83-GT-151 ............. p 2 A83-47970 # E-1368 .............................................p 95 N83-14523 * #

SP D ASME PAPER 83-GT-152 ............. p 70 A83-47978 # E-1394 .............................................p 55 N83o16773 " #
ASME PAPER 84-GT-138 ............. p 77 A85-32962 # E-1401 .............................................p 97 N83-24875 * #
ASME PAPER 84-GT-139 ............. p 73 A84-46957 # E-1404 .............................................p 95 N83-11514 * #

Listings in this index are arranged alpha-numeri- ASME PAPER 84-GT-191 ............. p 76 A85-23150 # E-1458 .............................................p 9 N85-10951 " #
ASME PAPER 84-GT-292 ............. p 48 A84-47046 # E-1459 .............................................p 39 N83-14246 * #

cally by report number.The page number indicates ASME PAPER 84-GT-29 ............... p 48 A84-46893 # E-1491 .............................................p 26 N83-15362 * #
the page on which the citation is located. The ASME PAPER 84-GT-96 ............... p 73 A84-46937 # E-1500 .............................................p 96 N83-15672 * #
accession number denotes the number by which ASME PAPER 84-PVP-112 ........... p 75 A85-18795 # E-1524 .............................................p 96 N83-24874 * #
the citation is identified. An asterisk (*) indicates ASME PAPER 84-PVP-77 ............. p 2 A85-18792 # E-1529 .............................................p 112 N85-30361 #

ASME PAPER 84-WA/APM-38 .... p 75 A85-17039 # E.1541 .............................................p 98 N83-34351 #
that the item is a NASA report. A pound sign (#) ASME PAPER 84-WA/APM-41 .... p 75 A85-17040 # E-1560 .............................................p 47 N83-19902 #
indicatesthattheitemisavailableonmicrofiche. ASMEPAPER85-GT-115 ............. p4 A86-22068 # E-1561 .............................................p26 N83-19817 #

ASME PAPER 85-GT-134 ............. p 5 A86-32956 # E-1562 .............................................p 26 N83-24559 #
J ASME PAPER 85-GT-159 ............. p 80 A86-22084 # E-1578 .............................................p 39 N83-35103 #

AD-A083245 ...................................p 37 N80-26433 * # ASME PAPER 85-GT-170 ............. p 5 A86-32957 # E-1611 .............................................p 28 N85-14882 #
AD-A149178 ...................................p 41 N84-33564 * # ASME PAPER 86-GT-100 ............. p 6 A87.25396 # E-1619 .............................................p 55 N83-23620 #
AD-A152863 ...................................p 76 A85-24532 * ASME PAPER 86-GT-172 ............. p 6 A86-48224 # E-1646 .............................................p 99 N83-34372 #
AD-A157112 ...................................p 42 N85-26964 * # ASME PAPER 86-GT-195 ............. p 84 A86-48245 # E.164 ...............................................p 21 N80-11143 #
AD-A171035 ...................................p 44 N86-25455 ° # ASME PAPER 86-GT-243 ............. p 84 A86-48271 # E-1733 .............................................p 97 N83-28493 #
AD-A180176 ...................................p 44 N86-28164 * # ASME PAPER 86-GT-279 ............. p 52 A86-48298 * # E-1748 .............................................p 8 N84-16185 #

ASME PAPER 86-GT-34 ............... p 84 A87-17988 ° # E-1754 .............................................p 8 N84-16181 #
AFWAL-TR-86-2013 .......................p 37 N80-26433 * # ASME PAPER 86-GT-70 ............... p 5 A86-48141 * # E-1755 .............................................p 26 N84-13224 #

ASME PAPER 86-GT-75 ............... p 52 A86-48143 * # E-1787 .............................................p 98 N83.34349 " #
AIAA PAPER82-0776 ................... p 67 A83-10900 # ASME PAPER 86-GT-98 ............... p 6 A86-48163 * # E.1794 .............................................p 100 N84-11512 * #
AIAA PAPER83-0848 ................... p 1 A83-32791 # ASME PAPER 87-GT.8 ................. p 53 A87-48792 * # E-1795 .............................................p 40 N84-17350 * #
AIAA PAPER83-2445 ................... p 2 A83-48331 # E-1804 .............................................p 100 N83-35413 * #
AIAA PAPER84-0849 ................... p 18 A85-16096 # ASR-1 ..............................................p 107 N85-21686 * # E-1816 .............................................p 115 N86-11495 " #
AIAA PAPER84-0974 ................... p 18 A85-16094 # ASR-1 ..............................................p 110 N85-27261 ° # E-1820 .............................................p 99 N83-35412 * #
AIAA PAPER84-0991 ................... p 75 A85-16095 # ASR-1 ..............................................p 12 N85-34140 * # E-1828 .............................................p 191 N84-13610 * #
AIAA PAPER85-0621 ................... p 77 A85-38425 # ASR-2 ..............................................p 12 N85-32119 * # E-1829 .............................................p 9 N84-24578 * #
AIAA PAPER85-0645 ................... p 76 A85-30313 # ASR-2 ..............................................p 115 N86.10589 ° # E-182 ...............................................p 21 N80-11145 ° #
AIAA PAPER85-0761 ................... p 3 A85-30378 # E-1852 .............................................p 101 N84.14541 ° #
AIAA PAPER85-1140 ................... p 78 A85-40814 # ASRL-TR-154o15 ............................p 88 N80-29762 ° # E-1855-1 ..........................................p 101 N84-14542 * #
AIAA PAPER85-1198 ................... p 19 A85-47022 # E-1855 .............................................p 103 N84-20878 ° #
AIAA PAPER 85-1354 ................... p 3 A86-14430 # ASTL-MR-154.1 ..............................p 88 N80-27720 ° # E.1873 .............................................p 56 N84.15565 " #
AIAA PAPER 85-1418 ................... p 77 A85-39769 # E-1888 .............................................p 8 N84-20562 * #
AIAA PAPER 85-1419 ................... p 78 A85-39770 # AVRADCOM-TR-82-C-8 ................ p 48 N82-28646 ° # E-1895 .............................................p 57 N84.17606 * #
AIAA PAPER 85-1420 ................... p 35 A85-43979 # E-1903 .............................................p 105 N84-31688 * #
AIAA PAPER 86-0846 ................... p 5 A86.38894 # AMSCOM-TR-83-C-6 ......................p 40 N84-17350 " # E-1910 .............................................p 102 N84-16589 * #
AIAA PAPER 86-0943 ................... p 82 A86-38838 # E-1916 .............................................p 8 N84-16186 * #
AIAA PAPER 86-0948 ................... p 82 A86-38842 # CCMS-84-13 ...................................p 29 N85-30035 ° # E-1921 ............................................._ 102 N84-16587 * #
AIAA PAPER 86-1016 ................... p 83 A86-38873 # E-1923 ............................................._ 102 N84-16588 * #
AIAA PAPER 86-1190 ................... p 19 A86-40596 * # CML-82-4 .........................................p 25 N83-13173 * # E-1964 ............................................._ 102 N84-18683 * #
AIAA PAPER 87-0719 ................... p 85 A87-33645 * # CML-82-5 .........................................p 26 N83-22325 * # E-1982 ............................................._ 102 N84-19925 * #
AIAA PAPER 87-0738 ................... p 87 A87-40497 * # E-1996 ............................................._ 26 N84-24712 " #
AIAA PAPER 87-0739 ................... p 86 A87-40496 * # DOE/NASA/1028-29 ..................... p 89 N81.16494 # E-2017 ............................................._ 31 N86-31664 * #
AIAA PAPER 87-0753 ................... p 85 A87-33648 * # DOE/NASAl20305-6 ..................... p 54 N81-33492 # E-2035 ............................................._ 30 N86-21614 * #
AIAA PAPER 87-0766 ................... p 85 A87-33581 * # DOE/NASA/20320-38 ...................p 54 N82-19550 # E-203 ..............................................._ 21 N80-11144 " #
AIAA PAPER 87-0827 ................... p 126 A87-33614 ° # DOE/NASAl20320-49 ...................p 112 N85-39361 # E-2063 ............................................._ 40 N84-31348 ° #
AIAA PAPER 87-0910 ................... p 86 A87-33719 * # DOEINASA/20329-66 ...................p 115 N86-10582 # E-2069 ............................................._ 26 N84-22702 " #
AIAA PAPER 87-0947 ................... p 86 A87-33756 * # DOE/NASA/20370-79/19 ............ p 53 N80-15422 # E-2074 ............................................._ 103 N84-23923 ° #

DOE/NASA/20485-2 ..................... p 96 N83-23631 # E-2108 ............................................. 104 N84-29248 * #
AIAA 80-0695 .................................p 1 A80-35101 * # DOE/NASA/51040-35 ...................p 46 N82-14359 # E-2120 ............................................. 104 N84.29247 ° #
AIAA 81-0579 .................................p 15 A81-29411 ° # DOE/NASA/51040-51 ...................p 102 N84-16589 # E-2146 ............................................. 27 N84-28918 * #
AIAA 81-0602 .................................p 65 A81-29465 * # E-2152 ............................................. 27 N84-25770 * #
AIAA 83-0801 ................................p 46 A83-29734 * # D2536-941001 ................................p 90 N81-19479 * # E-2154 ............................................. 27 N84-27832 " #
AIAA 83-0806 .................................p 16 A83-29886 " # D2536-941002 ................................p 90 N81-19480 ° # E-2158 ............................................. 27 N84-26755 * #

D2536-941003 ................................p 90 N81-19481 ° # E-2160 ............................................. 27 N84-26756 #
AIAA 83-0828 .................................p 1 A83-29737 * # D2536-941004 ................................p 90 N81.19482 ° # E-2175 ............................................. 104 N84-30329 #
AIAA 83-0844 .................................p 69 A83-29822 * # D2536-941005 ................................p 90 N81-19483 ° # E-2185 ............................................. 57 N84-32849 #
AIAA 83-0845 .................................p 69 A83-29823 * # D2536-941006 ................................p 8 N84.15154 * # E-2201 ............................................. 28 N85-15822 #
AIAA83-0846 .................................p69 A83-29824 ° # D2536-941007 ................................p 100 N84-11514 * # E-2203 ............................................. 27 N84-31288 #
AIAA83-1016 .................................p69 A83-29798 * # D2536-941008 ................................p 101 N84.11515 ° # E-2222 ............................................. 104 N84-31683 #

D2536-941010 ................................p 8 N84-15153 " # E-2232 ............................................. 105 N84-31687 #
AIAA-84-0991 .................................p 103 N84-23923 * # E-2242 ............................................. 29 N85-21273 #

E-074 ...............................................p 88 N80-22734 * #
AIAA-87-0738 .................................p 122 N87-18115 * # Eo1015 .............................................p 54 N81o33492 * # E-2260 ............................................. 41 N84-33564 #
AIAA-87-0739 .................................p 122 N87-18116 * # E-1022 .............................................p 24 N82.16181 * # E-2267 ............................................. 120 N87-11180 #

E-1026-5 ..........................................p 46 N82-14359 * # E-2284 ............................................. 28 N84-33522 #
ANL-85-74 ................................... p 118 N86-27689 " # E-1058 .............................................p 91 N82-16419 " # E-2290 ............................................. 57 N84-34769 #

E-1



E-2296 REPORTNUMBER INDEX

E-2296 .............................................p 57 N85-16195 ° # E-3330 .............................................p 121 N87-14730 ° # MTI-80TR29 ....................................p 87 N80-22733 * #
E-2307 .............................................p 28 N84-34576 ° # E.3342 .............................................p 122 N87-18883 ° #

E-2310 .............................................p 109 N85-25893 * # E-3374 .............................................p 13 N87-28551 * # NAS 1.15:100147 ...........................p 62 N87-26362 * #
E-2319 .............................................p 29 N85-15823 * # E-3375 .............................................p 125 N87-28944 * # NAS 1.15:100148 ...........................p 62 N87-25589 * #
E-2337 .............................................p 57 N85-10371 * # E-3387 .............................................p 121 N87-18112 ° # NAS 1.15:100151 ...........................p 124 N87-26399 * #
E-2338 .............................................p 123 N87-22273 * # E-3392 .............................................p 122 N87-18115 * # NAS 1.15:100158 ...........................p 124 N87-27268 * #
E-2348 .............................................p 41 N85-18124 ° # E-3412 .............................................p 122 N87-18116 * # NAS 1.15:100171 ...........................p 125 N87-28058 ° #
E-2358 .............................................p 106 N85-15184 ° # E-3415 .............................................p 123 N87-24006 * # NAS 1.15:100174 ...........................p 124 N87-27269 * #
E-235 ...............................................p 53 N80-15422 * # E-3430 .............................................p 123 N87-20566 * # NAS 1.15:100176 ...........................p 32 N88-12552 * #
E-2368 .............................................p 112 N85-31530 * # E-3443 .............................................p 122 N87-18882 * # NAS 1.15:160177 ...........................p 63 N88-12106 * #
E-2373 .............................................p 107 N85-20396 * # E-3445 .............................................p 122 N87-18881 * # NAS 1.15:100192 ...........................p 31 N87-28611 * #
E-2393 .............................................p 107 N85o18375 * # E-3446 .............................................p 62 N87-18109 * # NAS 1.15:100238 ...........................p 32 N88-12551 * #
E-2398 .............................................p 107 N85-16205 ° # E-345 ...............................................p 22 N80-20313 * # NAS 1.15:100245 ...........................p 125 N88-12825 * #
E-2406 .............................................p 108 N85-21690 # E-3484 .............................................p 45 N87-20408 * # NAS 1.15:82629 .............................p 96 N83-23631 * #
E-241 ...............................................p 88 N80-27719 # E-3504 .............................................p 62 N87-20562 * # NAS 1.15:82810 .............................p 54 N82-20551 * #
E-2439 .............................................p 41 N85-18125 # E-3528 .............................................p 123 N87-21375 * # NAS 1.15:82811 .............................p 25 N82-21259 ° #
E-2444 .............................................p 41 N85-19074 # E-356 ...............................................p 22 N80-18106 ° # NAS 1.15:82812 .............................p 25 N82-24300 * #
E-2464 .............................................p 58 N85-21674 # E-3583 .............................................p 123 N87-23010 * # NAS 1.15:82813 .............................p 92 N82-21604 * #
E-2470 .............................................p 57 N85-20389 # E-3587 .............................................p 50 N87-23978 ° # NAS 1.15:82816 .............................p 7 N82-22266 * #
E-2486 .............................................p 59 N86-22962 # E-3596 .............................................p 124 N87-24722 * # NAS 1.15:82831 .............................p 92 N82-26701 * #
E-2514 .............................................p 42 N85-26964 # E-3632 .............................................p 62 N87-23987 * # NAS 1.15:82833 .............................p 25 N82-22313 * #
E-2529 .............................................p 108 N85-24338 # E-3636 .............................................p 124 N87-24007 * # NAS 1.15:82845 .............................p 92 N82-24502 * #
E-2534 .............................................p 108 N85-24339 # E-3674 .............................................p 124 N87-26385 * # NAS 1.15:82846 .............................p 92 N82-24501 * #
E-2550 .............................................p 58 N85-29307 # E-367 ...............................................p 37 N80-21493 * # NAS 1.15:82850 .............................p 94 N82-31707 * #
E-2562 .............................................p 49 N85-27226 # E-3705 .............................................p 62 N87-26362 * # NAS 1.15:82865 .............................p 48 N82-28646 * #
E-2571 .............................................p 110 N85-27264 # E-3706 .............................................p 62 N87-25589 * # NAS 1.15:82882 .............................p 25 N82-31449 * #
E-2575 .............................................p 42 N86-12295 # E-3712 .............................................p 124 N87-26399 * # NAS 1.15:82896 .............................p 94 N82-31708 * #
E-2576 .............................................p 115 N86-10579 # E-3720 .............................................p 124 N87-27268 * # NAS 1.15:82953 .............................p 95 N83-14523 * #
E-2588 .............................................p 11 N85-28945 # E-3736 .............................................p 125 N87-28058 * # NAS 1.15:82975 .............................p 95 N83-11514 * #
E-2591 .............................................p 58 N85-32337 # E-3743 .............................................p 124 N87-27269 * # NAS 1.15:83022 .............................p 9 N85-10951 ° #
E-2598 .............................................p 115 N85-34427 # E-3750 .............................................p 32 N88-12552 * # NAS 1.15:83023 .............................p 39 N83-14246 * #
E-2606 .............................................p 29 N85-27978 # E-3753 .............................................p 63 N88-12106 * # NAS 1.15:83044 .............................p 26 N83-15362 * #
E-261 ...............................................p 21 N80-12120 # E-3779 .............................................p 31 N87-28611 * # NAS 1.15:83049 .............................p 96 N83-15672 * #
E-2625 .............................................p 29 N85-30034 # E-3862 .............................................p 32 N88-12551 * # NAS 1.15:83059 .............................p 96 N83-24874 * #
E-2676 .............................................p 58 N86-10561 # E-3867 .............................................p 125 N88-12825 ° # NAS 1.15:83319 .............................p 47 N83-19902 * #
E-2695 .............................................p 29 N86-10290 # E-386 ...............................................p 22 N80-20314 ° # NAS 1.15:83320 .............................p 26 N83-19817 * #
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E-2864 .............................................p 59 N86-16599 ° # E-633 ...............................................p 89 N81-12446 # NAS 1.15:83509 .............................p 101 N84-14542 * #
E-2865 .............................................p 43 N86-21661 # E-685 ...............................................p 89 N81-16492 # NAS 1.15:83539 .............................p 102 N84-16589 * #
E-2872 .............................................p 117 N86-25822 # E-687 ...............................................p 91 N82-20565 # NAS 1.15:83544 .............................p 8 N84-16186 * #
E-2873 .............................................p 116 N86-16615 # E-699 ...............................................p 89 N81-16494 # NAS 1.15:83547 .............................p 102 N84-16587 * #
E-2890 .............................................p 118 N86-26651 # E-700 ...............................................p 90 N81-17480 # NAS 1.15:83549 .............................p 102 N84-16588 * #
E-2898 .............................................p 116 N86-19663 # E-763 ...............................................p 24 N81-25149 # NAS 1.15:83577 .............................p 102 N84-18683 * #
E-2904 .............................................p 121 N87o16321 # E-782 ...............................................p 38 N81-21174 # NAS 1.15:83594 .............................p 26 N84-24712 * #
E-2940 .............................................p 122 N87-20565 # E-841 ...............................................p 24 N81-25151 # NAS 1.15:83631 .............................p 26 N84-22702 * #
E-2948 .............................................p 60 N86-27665 # E-882 ...............................................p 96 N83-23631 # NAS 1.15:83634 .............................p 103 N84-23923 * #
E-2949 .............................................p 59 N86-25002 # E-886 ...............................................p 90 N81-26492 # NAS 1.15:83675 .............................p 104 N84-29247 * #
E-2968 .............................................p 30 N86-25417 # E-910 ...............................................p 54 N81o28458 # NAS 1.15:83691 .............................p 27 N84-28918 * #
E-2988 .............................................p 120 N86-31920 # E-958 ...............................................p 90 N81-33497 # NAS 1.15:83694 .............................p 27 N84-25770 * #
E-2998 .............................................p 30 N86-24756 # E-959 ...............................................p 54 N82-18612 # NAS 1.15:83696 .............................p 27 N84-27832 * #
E-2999 .............................................p 43 N86-22686 # E-995 ...............................................p 91 N82-11491 # NAS 1.15:83700 .............................p 27 N84-26755 * #
E-3015 ............................................. _121 N87-13794 # E-9963 .............................................p 87 N80-15428 # NAS 1.15:83702 .............................p 27 N84-26756 * #
E-3023 ............................................._ 31 N87-18614 # NAS 1.15:83722 .............................p 104 N84-29248 ° #
E-3050 ............................................._44 N86-31699 # FR-15652 ........................................p 40 N84-10268 * # NAS 1.15:83729 .............................p 27 N84-31288 ° #
E-3066 ............................................. _118 N86-27680 # NAS 1.16:83735 .............................p 104 N84-30329 * #
E-3075 .............................................;_44 N86-28164 # GT/PDL-170 ...................................p 9 N84-24586 * # NAS 1.15:83737 .............................p 104 N84-31683 * #
E-3081 .............................................;_60 N86-28445 * # NAS 1.15:83754 .............................p 29 N85-21273 * #
Eo3086 .............................................;_60 N86-25812 * # G7782 ..............................................p 91 N82-17521 * # NAS 1.15:83756 .............................p 105 N84-31687 * #
E-3090 ............................................._30 N86-26376 ° # NAS 1.15:83769 .............................p 41 N84-33564 * #
E-3093 ............................................._60 N86-27666 * # HSER-7698 .....................................p 23 N80-25382 ° # NAS 1.15:83778 .............................p 40 N84-31348 * #
E-3096 ............................................._61 N86-31912 * # NAS 1,15:83786 .............................p 28 N84-33522 * #
E-3112 ............................................._31 N86-31663 * # ICOMP-86-1 ....................................p 120 N87-12924 ° # NAS 1.15:83788 .............................p 57 N84-32849 ° #
E-3125 ............................................._61 N86-31065 * # ICOMP-87-1 ....................................p 122 N87-18881 * # NAS 1,15:83794 .............................p 57 N84-34769 * #
E-3127 ............................................._ 119 N86-29271 * # NAS 1.15:83802 .............................p 28 N84-34576 * #
E-3155 ............................................._ 119 N86-28461 * # IFSM-80-102 ...................................p 23 N80-25383 * # NAS 1.15:86876 .............................p 57 N85-10371 #
E-3158 ............................................._ 120 N86-30236 ° # IFSM-80-103 ...................................p 23 N80-25384 * # NAS 1.15:86877 .............................p 123 N87-22273 #
E-3166 ............................................._61 N86-31913 * # NAS 1.15:86891 .............................p 106 N85-15184 #
E-3168 ............................................._44 N87-14489 * # IIHR-232-111-VOL-3..........................p 127 N83-23087 # NAS 1.15:86908 .............................p 107 N85-16205 #
E-3181 ............................................._ 120 N87-12924 * # IIHR-232-1V-VOL-4 .........................p 127 N83-23088 # NAS 1.15:86909 .............................p 29 N85-15823 #
E-319 ..............................................._21 N80-16102 ° # IIHR-232-V-VOL-5 ..........................p 127 N83-23089 # NAS 1.15:86913 .............................p 108 N85-21690 #
E-3201 ............................................._61 N86-32764 ° # NAS 1.15:86916 .............................p 107 N85-18375 #
E-3225 .............................................:_31 N87-16880 * # IITRI-M06001-89 ............................p 38 N82-10193 * # NAS 1.15:86924 .............................p 28 N85-15822 #
E-3229 .............................................:) 121 N87-17087 * # IITRI-M6001-82 ...............................p 37 N80-25415 * # NAS 1.15:86929 .............................p 41 N85-18124 #
E-3231 ............................................._50 N87-18820 * # IITRI-M6003-53 ...............................p 6 N80-21330 * # NAS 1,15:86930 .............................p 41 N85-18125 #
E-3245 ............................................._ 13 N86-32433 ° # NAS 1.15:86933 .............................p 41 N85-19074 #
E-3247 ............................................._ 120 N87-12017 ° # ITR-1 ................................................p 94 N82-33738 * # NAS 1.15:86945 .............................p 58 N85-21674 #
E-3248 ............................................._61 N87-10399 ° # NAS 1.15:86949 .............................p 57 N85-20389 #

E-3253 ............................................._49 N87-15467 * # L-15587 ...........................................p 99 N83-34373 * # NAS 1.15:86985 .............................p 108 N85-24338 #
E-3276 ............................................. 61 N87-12910 * # NAS 1.15:86990 .............................p 108 N85-24339 #
E-3278 ............................................. 31 N87o13491* # L-15605 ...........................................p 97 N83-33217 * # NAS 1.15:87004 .............................p 109 N85-25893 #
E-3288 ............................................. 49 N87-11993 * # NAS 1.15:87017 .............................p 49 N85-27226 #
E-3291 ............................................. 49 N87-13755 * # MM-4998-86-13-PT-1 ..................... p 120 N86-30227 * # NAS 1.15:87021 .............................p 110 N85-27264 #
E-331 ............................................... 22 N80-16107 * # MM-4998-86-13-PT-2 ..................... p 119 N86-28455 * # NAS 1.15:87022 .............................p 42 N85-26964 #

E-2
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NAS 1.15:87033 ............................. 11 N85-28945 * # NAS 1.26:167938 ...........................p 48 N82-29607 * # NAS 1.26:3750 ...............................p 56 N84-14526 " #
NAS 1.15:87035 ............................. 58 N85-32337 * # NAS 1.26:167944 ...........................p 7 N82-33390 * # NAS 1.26:3756 ...............................p 56 N84-15565 * #
NAS 1.15:87045 ............................. 29 N85-27978 * # NAS 1.26:167949 ...........................p 7 N82-33391 * # NAS 1.26:3770 ...............................p 57 N84-17606 * #
NAS 1.15:87058 ............................. 29 N85-30034 * # NAS 1.26:167967 ...........................p 96 N83-19121 * # NAS 1.26:3790 ...............................p 102 N84-19925 * #
NAS 1.15:87088 ............................. 58 N86-10561 * # NAS 1.26:167989 ...........................p 40 N84-10268 * # NAS 1.26:3851 ...............................p 57 N85-16195 * #
NAS 1.15:87101 ............................. 29 N86-10290 * # NAS 1.26:168057 ...........................p 26 N83-22325 * # NAS 1.26:3877 ...............................p 58 N85-20390 * #
NAS 1.15:87102 ............................. 115 N85-34427 * # NAS 1.26:168100 ...........................p 96 N83-21390 ° # NAS 1.26:3904 ...............................p 58 N85-29307 * #
NAS 1.15:87109 ............................. 115 N86-10582 * # NAS 1.26:168154 ...........................p 97 N83-27256 ° # NAS 1.26:3976 ...............................p 60 N86-27665 ° #
NAS 1.15:87110 ............................. 42 N86-10311 * # NAS 1.26:168171 ...........................p 118 N86-26652 * # NAS 1.26:3977 ...............................p 59 N86-25002 * #
NAS 1.15:87117 ............................. 42 N86-12292 * # NAS 1.26:168176 ........................... p 7 N84-13193 ° # NAS 1.26:4001 ...............................p 60 N86-27666 * #
NAS 1.15:87150 ............................. 42 N86-12294 * # NAS 1.26:168182 ........................... p 98 N83-33219 ° # NAS 1.26:4002 ...............................p 60 N86-28445 * #
NAS 1.15:87153 ............................. 47 N86-13495 * # NAS 1.26:168190 ........................... p 56 N83-33182 * # NAS 1.55:2271 ...............................p 98 N83-34351 * #
NAS 1.15:87154 ............................. 30 N86-24757 " # NAS 1.26:168191-VOL-1 ............... p 100 N84-10613 ° # NAS 1.55:2289 ...............................p 115 N86-11495 * #
NAS 1.15:87164 ............................. 59 N86-13749 * # NAS 1.26:168191-VOL-2 ............... p 100 N84-10614 ° # NAS 1.55:2297 ...............................p 105 N84-31688 * #
NAS 1.15:87182 ............................. 116 N86-18750 * # NAS 1.26:168198 ........................... p 97 N83-29734 * # NAS 1.55:2339 ...............................p 120 N87-11180 * #
NAS 1.15:87186 ............................. 59 N86-16598 * # NAS 1.26:168225 ........................... p 100 N84-10612 ° # NAS 1.55:2369 ...............................p 112 N65-31530 * #
NAS 1.15:87203 ............................. 359 N86-19636 * # NAS 1.26:168228 ........................... p 11 N85-31057 * # NAS 1.55:2383 ...............................p 59 N86-22962 ° #
NAS 1.15:87207 ............................. :}116 N86-17789 ° # NAS 1.26:168260 ........................... p 40 N84-13265 * # NAS 1.55:2405 ...............................p 125 N88-11140 * #
NAS 1.15:87208 ............................. _43 N86-21661 * # NAS 1.26:168280 ........................... p 100 N84-11513 ° # NAS 1.55:2423-REV ......................p 121 N87-16321 * #
NAS 1.15:87213 ............................. :}117 N86-25822 * # NAS 1.26:168317 ........................... p 103 N84-19927 ° # NAS 1.60:1973 ...............................p 92 N82-20566 * #
NAS 1.15:87214 ............................. _116 N86-16615 * # NAS 1.26:168330 ...........................p 7 N84-15152 * # NAS 1.60:1982 ...............................p 91 N82-20565 * #
NAS 1.15:87222 ............................. :_59 N86-16599 ° # NAS 1.26:168930 ...........................p 92 N82-24503 ° # NAS 1.60:2055 ...............................p 95 N83-12449 * #
NAS 1.15:87225 ............................. _118 N86-26651 ° # NAS 1.26:169358 ...........................p 94 N82-33738 * # NAS 1.60:2174 ...............................p 99 N83-34373 ° #
NAS 1.15:87231 ............................. _116 N86-19663 * # NAS 1.26:170187 ...........................p 127 N83-23088 # NAS 1.60:2195 ...............................p 97 N83-33217 * #
NAS 1.15:87266 ............................. _30 N86-25417 ° # NAS 1.26:170188 ...........................p 127 N83-23089 # NAS 1.60:2208 ...............................p 99 N83-34372 * #
NAS 1.15:87291 ............................. _30 N86-24756 * # NAS 1.26:170290 ...........................p 96 N83-23629 * # NAS 1.60:2239 ...............................p 26 N84-13224 * #
NAS 1.15:87292 ............................. 343 N86-22686 * # NAS 1.26:173013 ...........................p 127 N83-34656 * # NAS 1.60:2243 ...............................p 103 N84-20878 " #
NAS 1.15:87295 ............................. _30 N86-24759 * # NAS 1.26:173394 ...........................p 103 N84-21903 ° # NAS 1.60:2266 ...............................p 8 N84-16181 ° #
NAS 1.15:87307 ............................. :_120 N86-31920 * # NAS 1.26:173473 ...........................p 103 N84-21905 ° # NAS 1.60:2280 ...............................p 40 N84-17350 * #
NAS 1.15:87318 ............................. 344 N86-31699 ° # NAS 1.26:173555 ...........................p 9 N84-24586 * # NAS 1.60:2296 ...............................p 8 N84-20562 * #
NAS 1.15:87325 ............................. _ 118 N86-27680 * # NAS 1.26:173821 ...........................p 104 N84-29252 * # NAS 1.60:2304 ...............................p 9 N84-24578 * #
NAS 1.15:67331 ............................. :_44 N86-28164 * # NAS 1.26:173630 ...........................p 104 N84-31685 * # NAS 1.60:2421 ...............................p 107 N85-20398 * #
NAS 1.15:87334 ............................. _31 N86-31664 * # NAS 1.26:174504 ...........................p 101 N84-15589 # NAS 1.60:2499 ...............................p 42 N86-12295 * #
NAS 1.15:87339 ............................. _60 N86-25812 * # NAS 1.26:174534 ...........................p 39 N84-10267 # NAS 1.60:2515 ...............................p 30 N86-21614 * #
NAS 1.15:87341 ............................._30 N86-26376 * # NAS 1.26:174634 ...........................p 103 N84-22980 # NAS 1.60:2591 ...............................p 119 N86-28464 * #
NAS 1.15:87348 ............................._61 N86-31912 * # NAS 1.26:174639 ...........................p 40 N84-20674 # NAS 1.60:2711 ...............................p 123 N87-20566 * #
NAS 1.15:88787 ............................._31 N86-31663 * # NAS 1.26:174686 ...........................p 41 N84-32503 # NAS 1.61:1150 ...............................p 115 N86-10579 ° #
NAS 1.15:88790 ............................._61 N86-31065 * # NAS 1.26:174700 ...........................p 107 N85-21686 #
NAS 1.15:88792 ............................. _119 N86-29271 * # NAS 1.26:174708 ...........................p 12 N86-24693 # NASA-CASE-LEW-12493-1 ........... p 23 N81-17170 °
NAS 1.15:88797 .............................p 61 N86-31913 * # NAS 1.26:174740 ...........................p 41 N85-15877 # NASA-CASE-LEW-12493-2 ........... p 24 N81-26179 *
NAS 1.15:88807 .............................p 119 N86-28461 * # NAS 1.26:174757 ...........................p 106 N85-11380 # NASA-CASE-LEW-13717-1 ........... p 49 N85-30333 *
NAS 1.15:88827 .............................p 61 N86-32764 ° # NAS 1.26:174765 ...........................p 110 N85-27261 #
NAS 1.15:88838 .............................p 120 N87-12924 * # NAS 1.26:174765 ...........................p 12 N85-34140 # NASA-CP-2271 ...............................p 98 N83-34351 * #
NAS 1.15:88841 .............................p 44 N87-14489 ° # NAS 1.26:174767 ...........................p 28 N84-34575 ° # NASA-CP-2289 ...............................p 115 N86-11495 * #
NAS 1.15:88854 .............................p 120 N87-12017 # NAS 1.26:174774 ...........................p 106 N84-34774 * # NASA-CP-2297 ...............................p 105 N84-31688 * #
NAS 1.15:88855 .............................p 61 N87-10399 # NAS 1.26:174836 ...........................p 108 N85-21691 * # NASA-CP-2339 ...............................p 120 N87-11180 ° #
NAS 1.15:88857 .............................p 13 N86-32433 # NAS 1.26:174855 ...........................p 109 N85-27260 * # NASA-CP-2369 ...............................p 112 N85-31530 * #
NAS 1.15:88859 .............................p 31 N87-16880 # NAS 1.26:174870 ...........................p 29 N85-30035 ° # NASA-CP-2383 ...............................p 59 N86-22962 * #
NAS 1.15:88861 .............................p 121 N87-13794 # NAS 1.26:174871 ........................... p 58 N85-21673 ° # NASA-CP-2405 ...............................p 125 N88-11140 ° #
NAS 1.15:88864 .............................p 122 N87-20565 # NAS 1.26:174872 ........................... p 107 N85-21685 * # NASA-CP-2423-REV ...................... p 121 N87-16321 * #
NAS 1.15:88870 .............................p 61 N87-12910 # NAS 1.26:174879 ........................... p 109 N85-25894 * #
NAS 1.15:88871 .............................p 50 N87o18820 # NAS 1.26:174892 ........................... p 117 N86-21932 * # NASA-CR-159318 ..........................p 23 N80-29432 #
NAS 1.15:88872 .............................p 31 N87-13491 # NAS 1.26:174925 ........................... p 12 N85-32119 * # NASA-CR-159571 ..........................p 23 N80-25382 #
NAS 1.15:88875 .............................p 49 N87-15467 # NAS 1.26:174940 ........................... p 114 N85-32340 * # NASA-CR-159681 ..........................p 87 N80-10515 #
NAS 1.15:88881 .............................p 49 N87-11993 # NAS 1.26:174941 ........................... p 114 N85-32341 * # NASA-CR-159728 ..........................p 90 N81-19479 #
NAS 1.15:88883 .............................p 49 N87-13755 # NAS 1.26:174952 ........................... p 60 N86-25003 ° # NASA-CR-159798 ..........................p 6 N80-21330 #
NAS 1.15:88901 .............................p 121 N87-17087 # NAS 1,26:174956 ........................... p 114 N85-33541 * # NASA-CR-159823 ..........................p 90 N81-19480 #
NAS 1.15:88907 .............................p 121 N87-14730 # NAS 1.26:174980 ........................... p 115 N86-10589 ° # NASA-CR-159824 ..........................p 90 N81-19481 #
NAS 1.15:88917 .............................p 122 N87-18883 # NAS 1.26:175015 ........................... p 117 N86-21952 * # NASA-CR-159825 ..........................p 90 N81-19482 #
NAS 1.15:88932 .............................p 13 N87-28551 # NAS 1.26:175021 ........................... p 116 N86-17788 * # NASA-CR-159826 ..........................p 90 N81-19483 ° #
NAS 1.15:88934 .............................p 125 N87-28944 # NAS 1.26:175048 ........................... p 43 N86-24818 * # NASA-CR-159838 ..........................p 87 N80-22733 * #
NAS 1.15:88941 .............................p 121 N87-18112 # NAS 1.26:175049 ........................... p 117 N86-21951 * # NASA-CR-159842 ..........................p 37 N80-25415 * #
NAS 1.15:88944 .............................p 122 N87-18115 # NAS 1.26:175050 ........................... p 43 N86-20542 * # NASA-CR-159860 ..........................p 23 N80-25384 ° #
NAS 1.15:88959 .............................p 122 N87-18116 * # NAS 1.26:175052 ........................... p 44 N86-25454 ° # NASA-CR-159870 ..........................p 23 N80-25383 * #
NAS 1.15:88960 .............................p 123 N87-24006 * # NAS 1.26:175057 ........................... p 118 N86-27689 * # NASA-CR-159873 ..........................p 88 N80-27720 * #
NAS 1.15:88965 .............................p 31 N87-18614 * # NAS 1.26:175100 ........................... p 44 N86-25455 ° # NASA-CR-159874 ..........................p 88 N80-29762 * #
NAS 1.15:88974 .............................p 122 N87-18882 * # NAS 1.26:175112 ........................... p 12 N86-27283 * # NASA-CR-165051 ..........................p 24 N82-14288 * #
NAS 1.15:88976 .............................p 122 N87-18881 * # NAS 1.26:175113 ........................... p 13 N86-27284 * # NASA-CR-165123 ..........................p 38 N80-30482 ° #
NAS 1.15:88978 .............................p 62 N87-18109 ° # NAS 1,26:175115 ........................... p 118 N86-25851 * # NASA-CR-165250 ..........................p 7 N81-17079 * #
NAS 1.15:89831 .............................p 45 N87-20408 * # NAS 1.26:175551 ........................... p 108 N85-23096 * # NASA-CR-165407 ..........................p 38 N82-10193 ° #
NAS 1.15:89843 .............................p 62 N87-20562 * # NAS 1.26:175573 ........................... p 11 N85-21165 * # NASA-CR-165412 ..........................p 93 N82-26713 ° #
NAS 1.15:89861 .............................p 123 N87-21375 * # NAS 1.26:175574 ........................... p 107 N85-21687 * # NASA-CR-165428 ..........................p 8 N84-15154 * #
NAS 1.15:89891 .............................p 123 N87-23010 * # NAS 1,26:175605 ...........................p 11 N85-22391 * # NASA-CR-165429 ..........................p 100 N84-11514 * #
NAS 1.15:89897 .............................p 50 N87-23978 * # NAS 1.26:175609 ...........................p 108 N85-21720 * # NASA-CR-165430 ..........................p 101 N84-11515 ° #
NAS 1.15:89900 .............................p 124 N87-24722 * # NAS 1.26:175747 ...........................p 109 N85-25896 ° # NASA-CR-165433 ..........................p 93 N82-26714 * #
NAS 1.15:89906 .............................p 124 N87-26385 * # NAS 1.26:175795 ...........................p 110 N85-27263 ° # NASA-CR-165434 ..........................p 93 N82-26715 ° #
NAS 1.15:89929 .............................p 62 N87-23987 * # NAS 1.26:175901 ...........................p 11 N85-27868 * # NASA-CR-165438 ..........................p 93 N82-26716 ° #
NAS 1.15:89931 .............................p 124 N87-24007 * # NAS 1.26:176220 ...........................p 115 N86-10588 * # NASA-CR-165439 ..........................p 94 N82o26717 #
NAS 1.26:10186 .............................p 127 N83-23087 # NAS 1.26:176418 ...........................p 43 N86-14356 ° # NASA-CR-165440 ..........................p 94 N82-26718 #
NAS 1.26:165412 ...........................p 93 N82-26713 * # NAS 1.26:176821 ...........................p 117 N86-25850 ° # NASA-CR-165461 ..........................p 25 N83-13173 #
NAS 1,26:165428 ...........................p 8 N84-15154 * # NAS 1.26:177194 ...........................p 119 N86-28462 * # NASA-CR-165488 ..........................p 91 N82-14531 #
NAS 1.26:165429 ...........................p 100 N84-11514 ° # NAS 1.26:177233 ...........................p 119 N86-26455 * # NASA-CR-165497 ..........................p 93 N82-26702 #
NAS 1.26:165430 ...........................p 101 N84-11515 * # NAS 1.26:177237 ...........................p 120 N86-30227 * # NASA-CR-165498 ..........................p 93 N82-26706 #
NAS 1.26:165433 ...........................p 93 N82-26714 * # NAS 1.26:179474 ...........................p 119 N86-28467 * # NASA-CR-165561 ..........................p 91 N82-17521 #
NAS 1.26:165434 ...........................p 93 N82-26715 * # NAS 1.26:179478 ...........................p 120 N86-30236 ° # NASA-CR-165563 ..........................p 91 N82-20564 #
NAS 1.26:165438 ...........................p 93 N82-26716 * # NAS 1.26:3543 ...............................p 39 N82-26436 * # NASA-CR-165571 ..........................p 95 N83-12451 #
NAS 1.26:165439 ...........................p 94 N82-26717 * # NAS 1.26:3623 ...............................p 55 N83-11506 * # NASA-CR-167896 ..........................p 7 N82-25257 #
NAS 1.26:165440 ...........................p 94 N82-26718 * # NAS 1.26:3625 ...............................p 55 N83-11507 ° # NASA-CR-167897 ..........................p 94 N82-29619 #
NAS 1.26:165461 ...........................p 25 N83-13173 * # NAS 1.26:3659 ...............................p 55 N83-16773 ° # NASA-CR-167927 ..........................p 8 N84-15153 #
NAS 1.26:165497 ...........................p 93 N82-26702 * # NAS 1.26:3670 ...............................p 55 N83-27248 ° # NASA-CR-167938 ..........................p 48 N82-29607 #
NAS 1.26:165498 ...........................p 93 N82-26706 ° # NAS 1.26:3679 ...............................p 55 N83-21373 * # NASA-CR-167944 ..........................p 7 N82-33390 #
NAS 1,26:165563 ...........................p 91 N82-20564 * # NAS 1.26:3693 ...............................p 56 N83-28466 * # NASA-CR-167949 ..........................p 7 N82-33391 #
NAS 1.26:165571 ...........................p 95 N83-12451 °# NAS 1.26:3697 ...............................p 97 N83-29731 *# NASA-CR-167967 ..........................p 96 N83-19121 #
NAS 1.26:167896 ...........................p 7 N82-25257 ° # NAS 1.26:3724 ...............................p 56 N83-33180 * # NASA-CR-167989 ..........................p 40 N84-10268 #
NAS 1,26:167897 ...........................p 94 N82-29619 ° # NAS 1.26:3729 ...............................p 101 N84-12530 * # NASA-CR-168057 ..........................p 26 N83-22325 ° #
NAS 1.26:167927 ...........................p 8 N84-15153 * # NAS 1.26:3749 ...............................p 56 N84-14525 * # NASA-CR-168100 ..........................p 96 N83-21390 ° #
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NASA-CR-168154 ..........................p 97 N83-27256 * # NASA-CR-3851 ...............................p 57 N85-16195 * # NASA-TM-83478 ............................p 100 N84-11512 * #
NASA-CR-168171 ..........................p 118 N86-26652 ° # NASA-CR-3877 ...............................p 58 N85-20390 * # NASA-TM-83482 ............................p 100 N83-35413 * #
NASA-CR-168176 ..........................p 7 N84-13193 ° # NASA-CR-3904 ...............................p 58 N85-29307 * # NASA-TM-83491 ............................p 99 N83-35412 ° #
NASA-CR-168182 ..........................p 98 N83-33219 ° # NASA-CR-3976 ...............................p 60 N86-27665 * # NASA-TM-83495 ............................p 101 N84-13610 * #
NASA-CR-168190 ..........................p 56 N83-33182 • # NASA-CR-3977 ...............................p 59 N86-25002 * # NASA-TM-83507 ............................p 101 N84-14541 * #
NASA-CR-168191-VOL-1 .............. p 100 N84-10613 • # NASA-CR-4001 ...............................p 60 N86-27666 * # NASA-TM-83509 ............................p 101 N84-14542 * #
NASA-CR-168191-VOL-2 .............. p 100 N84-10614 • # NASA-CR-4002 ...............................p 60 N86-28445 * # NASA-TM-83539 ............................p 102 N84-16589 • #
NASA-CR-168198 ..........................p 97 N83-29734 • # NASA-TM-83544 ............................p 8 N84-16186 • #
NASA-CR-168225 ..........................p 100 N84-10612 • # NASA-RP-1150 ...............................p 115 N86-10579 * # NASA-TM-83547 ............................p 102 N84-16587 * #
NASA-CR-168228 ..........................p 11 N85-31057 • # NASA-TM-83549 ............................p 102 N84-16588 * #
NASA-CR-168260 ..........................p 40 N84-13265 • # NASA-TM-100147 ..........................p 62 N87-26362 # NASA-TM-83577 ............................p 102 N84-18683 * #
NASA-CR-168280 ..........................p 100 N84-11513 • # NASA-TM-100148 ..........................p 62 N87-25589 # NASA-TM-83594 ............................p 26 N84-24712 * #
NASA-CR-168317 ..........................p 103 N84-19927 • # NASA-TM-100151 ..........................p 124 N87-26399 # NASA-TM-83631 ............................p 26 N84-22702 * #
NASA-CR-168330 ..........................p 7 N84-15152 • # NASA-TM-100158 ..........................p 124 N87-27268 # NASA-TM-83634 ............................p 103 N84-23923 * #
NASA-CR-168550 ..........................p 25 N82-18326 • # NASA-TM-100171 ..........................p 125 N87-28058 # NASA-TM-83675 ............................p 104 N84-29247 ° #
NASA-CR-168930 ..........................p 92 N82-24503 * # NASA-TM-100174 ..........................p 124 N87-27269 # NASA-TM-83691 ............................p 27 N84-28918 ° #
NASA-CR-169358 ..........................p 94 N82-33738 * # NASA-TM-100176 ..........................p 32 N88-12552 # NASA-TM-83694 ............................p 27 N84-25770 * #
NASA-CR-170186 ..........................p 127 N83-23087 # NASA-TM-100177 ..........................p 63 N88-12106 # NASA-TM-83696 ............................p 27 N84-27832 * #
NASA-CR-170187 ..........................p 127 N83-23088 # NASA-TM-100192 ..........................p 31 N87-28611 # NASA-TM-83700 ............................p 27 N84-26755 • #
NASA-CR-170188 ..........................p 127 N83-23089 # NASA-TM-100238 ..........................p 32 N88-12551 # NASA-TM-83702 ............................p 27 N84-26756 ° #
NASA-CR-170290 ..........................p 96 N83-23629 ° # NASA-TM-100245 ..........................p 125 N88-12825 # NASA-TM-83722 ............................p 104 N84-29248 * #
NASA-CR-173013 ..........................p 127 N83-34656 * # NASA-TM-79253 ............................p 21 N80-11143 # NASA-TM-83729 ............................p 27 N84-31288 * #
NASA-CR-173394 ..........................p 103 N84-21903 ° # NASA-TM-79276 ............................p 21 N80-11144 # NASA-TM-83735 ............................p 104 N84-30329 * #
NASA-CR-173473 ..........................p 103 N84-21905 • # NASA-TM-79281 ............................p 21 N80-11145 # NASA-TM-83737 ............................p 104 N84-31683 * #
NASA-CR-173555 ..........................p 9 N84-24586 ° # NASA-TM-79291 ............................p 53 N80-15422 * # NASA-TM-83754 ............................p 29 N85-21273 * #
NASA-CR-173821 .......................... ) 104 N84-29252 ° # NASA-TM-79306 ............................p 21 N80-12120 * # NASA°TM-83756 ............................p 105 N84-31687 * #
NASA-CR-173830 .........................._ 104 N84-31685 ° # NASA-TM-80980 ............................p 37 N80-26433 * # NASA-TM-83769 ............................p 41 N84-33564 * #
NASA-CR-174504 .......................... ) 101 N84-15589 • # NASA-TM-81379 ............................p 87 N80-13513 * # NASA-TM-83778 ............................p 40 N84-31348 * #
NASA-CR-174534 .......................... ) 39 N84-10267 " # NASA-TM-81404 ............................p 22 N80-16107 * # NASA-TM-83786 ............................p 28 N84-33522 • #
NASA-CR-174634 .........................._ 103 N84-22980 * # NASA-TM-81405 ............................p 21 N80-16102 * # NASA-TM-83788 ............................p 57 N84-32849 * #
NASA-CR-174639 .........................._ 40 N84-20674 • # NASA-TM-81422 ............................p 22 N80-20313 # NASA-TM-83794 ............................p 57 N84-34769 * #
NASA-CR-174686 .......................... ) 41 N84-32503 * # NASA-TM-81432 ............................p 22 N80-18106 # NASA-TM-83802 ............................p 28 N84-34576 * #
NASA-CR-174700 .........................._ 107 N85-21686 * # NASA-TM-81448 ............................p 37 N80-21493 # NASA-TM-86876 ............................p 57 N85-10371 ° #
NASA-CR-174708 ..........................3 12 N86-24693 * # NASA-TM-81456 ............................p 22 N80-20314 # NASA-TM-86877 ............................p 123 N87-22273 ° #
NASA-CR-174740 ..........................3 41 N85-15877 * # NASA-TM-81474 ............................p 22 N80-21452 # NASA-TM-86891 ............................p 106 N85-15184 * #
NASA-CR-174757 .........................._ 106 N85-11380 * # NASA-TM-81489 ............................p 53 N80-22714 # NASA-TM-86908 ............................p 107 N85-16205 * #
NASA-CR-174765 ..........................3 110 N85-27261 * # NASA-TM-81500 ............................p 88 N80-23678 # NASA-TM-86909 ............................p 29 N85-15823 * #
NASA-CR-174765 .........................._ 12 N85-34140 * # NASA-TM-81508 ............................p 22 N80-23370 # NASA-TM-86913 ............................p 108 N85-21690 * #
NASA-CR-174767 ..........................3 28 N84-34575 * # NASA-TM-81517 ............................p 88 N80-23684 # NASA-TM-86916 ............................p 107 N85-18375 * #
NASA-CR-174774 ..........................3 106 N84-34774 * # NASA-TM-81523 ............................p 53 N80-24634 # NASA-TM-86924 ............................p 28 N85-15822 * #
NASA-CR-174836 ..........................3 108 N85-21691 * # NASA-TM-81530 ............................p 54 N80-26682 # NASA-TM-86929 ............................p 41 N85-18124 * #
NASA-CR-174855 ..........................3 109 N85-27260 ° # NASA-TM-81591 ............................p 23 N81-12171 # NASA-TM-86930 ............................p 41 N85-18125 * #
NASA-CR-174870 .........................._ 29 N85-30035 * # NASA-TM-81593 ............................p 89 N80-32753 # NASA-TM-86933 ............................p 41 N85-19074 * #
NASA-CR-174871 .........................._ 58 N85-21673 * # NASA-TM-81597 ............................p 89 N81-11412 # NASA-TM-86945 ............................p 58 N85-21674 * #
NASA-CR-174872 .........................._ 107 N85-21685 ° # NASA-TM-81607 ............................p 38 N80-32486 # NASA-TM-86949 ............................p 57 N85-20389 * #
NASA-CR-174879 .........................._ 109 N85-25894 ° # NASA-TM-81618 ............................p 23 N81-16132 # NASA-TM-86985 ............................p 108 N85-24338 * #
NASA-CR-174892 .......................... 117 N86-21932 ° # NASA-TM-81623 ............................p 89 N81-12446 # NASA-TM-86990 ............................p 108 N85-24339 * #
NASA-CR-174925 .......................... 12 N85-32119 ° # NASA-TM-81665 ............................p 89 N81-16492 # NASA-TM-87004 ............................p 109 N85-25893 * #
NASA-CR-174940 .......................... 114 N85-32340 * # NASA-TM-81674 ............................p 69 N81o16494 # NASA-TM-87017 ............................p 49 N85-27226 * #
NASA-CR-174941 .......................... 114 N85-32341 * # NASA-TM-81675 ............................p 90 N81-17480 # NASA-TM-87021 ............................p 110 N85-27264 * #
NASA-CR-174952 .......................... 60 N86-25003 * # NASA-TM-81747 ............................p 38 N81-21174 # NASA-TM-87022 ............................p 42 N85-26964 * #
NASA-CR-174956 .......................... 114 N85-33541 * # NASA-TM-82593 ............................p 24 N81-25151 # NASA-TM-87033 ............................p 11 N85-28945 ° #
NASA-CR-174980 .......................... 115 N86-10589 * # NASA-TM-82596 ............................p 24 N81-25149 * # NASA-TM-87035 ............................p 58 N85-32337 * #
NASA-CR-175015 .......................... 117 N86-21952 ° # NASA-TM-82629 ............................p 96 N83-23631 * # NASA-TM-87045 ............................p 29 N85-27978 * #
NASA-CR-175021 .......................... 116 N86-17788 • # NASA-TM-82631 ............................p 90 N81-26492 ° # NASA-TM-87058 ............................p 29 N85-30034 * #
NASA-CR-175048 .......................... 43 N86-24818 • # NASA-TM-82651 ............................p 54 N81-28458 ° # NASA-TM-87088 ............................p 58 N86-10561 * #
NASA-CR-175049 .......................... 117 N86-21951 ° # NASA-TM-82675 ............................p 90 N81-33497 * # NASA-TM-87101 ............................p 29 N86-10290 ° #
NASA-CR-175050 .......................... 43 N86-20542 ° # NASA-TM-82713 ............................p 91 N82-11491 ° # NASA-TM-87102 ............................p 115 N85-34427 * #
NASA-CR-175052 .......................... 44 N86-25454 • # NASA-TM-82717 ............................p 54 N81-33492 • # NASA-TM-87109 ............................p 115 N86-10562 * #
NASA-CR-175057 .......................... 118 N86-27689 • # NASA-TM-82745 ............................p 91 N82-16419 • # NASA-TM-87110 ............................p 42 N86-10311 * #
NASA-CR-175100 .......................... 44 N86-25455 ° # NASA-TM-82749 ............................p 24 N62-14287 • # NASA-TM-87117 ............................p 42 N86-12292 * #
NASA-CR-175112 .......................... 12 N86-27283 ° # NASA-TM-82765 ............................p 46 N82-14359 • # NASA-TM-87150 ............................p 42 N86-12294 • #
NASA-CR-175113 .......................... 13 N86-27284 * # NASA-TM-82780 ............................p 24 N82-16181 • # NASA-TM-87153 ............................p 47 N86-13495 • #
NASA-CR-175115 .......................... 118 N86-25851 ° # NASA-TM-82793 ............................p 54 N82-18612 ° # NASA-TM-87154 ............................p 30 N86-24757 • #
NASA-CR-175551 .......................... 108 N85-23096 ° # NASA-TM-82803 ............................p 54 N82-19550 ° # NASA-TM-87164 ............................p 59 N86-13749 • #
NASA-CR-175573 .......................... 11 N85-21165 * # NASA-TM-82810 ............................p 54 N82-20551 ° # NASA-TM-87182 ............................p 116 N86-18750 * #
NASA-CR-175574 .......................... 107 N85-21687 * # NASA-TM-82811 ............................p 25 N82-21259 * # NASA-TM-87186 ............................p 59 N86-16598 * #
NASA-CR-175605 .......................... 11 N85-22391 ° # NASA-TM-82812 ............................p 25 N82-24300 * # NASA-TM-87203 ............................p 59 N86-19636 * #
NASA-CR-175609 .......................... 108 N85-21720 * # NASA-TM-82813 ............................p 92 N82-21604 * # NASA-TM-87207 ............................p 116 N86-17789 * #
NASA-CR-175747 .......................... 109 N85-25896 * # NASA-TM-82816 ............................p 7 N82-22266 ° # NASA-TM-87208 ............................p 43 IN86-21661 • #
NASA-CR-175795 .......................... 110 N85-27263 * # NASA-TM-82831 ............................p 92 N82-26701 ° # NASA-TM-87213 ............................p 117 N86-25822 • #
NASA-CR-175901 .......................... 11 N85-27868 # NASA-TM-82833 ............................p 25 N82-2231 " # NASA-TM-87214 ............................p 116 N86-16615 #
NASA-CR-176220 .......................... 115 N86-10588 # NASA-TM-82845 ............................p 92 N82-2450; *# NASA-TM-87222 ............................p 59 N86-16599 #
NASA-CR-176418 .......................... 43 N86-14356 # NASA-TM-82846 ............................p 92 N82-24501 °# NASA-TM-87225 ............................p 118 N86-26651 #
NASA-CR-176821 .......................... 117 N86-25850 # NASA-TM-82850 ............................p 94 N82-31707 * # NASA-TM-87231 ............................p 116 N86-19663 #
NASA-CR-177194 .......................... 119 N86-28462 # NASA-TM-82865 ............................p 48 N82-28646 ° # NASA-TM-87266 ............................p 30 N86-25417 #
NASA-CR-177233 .......................... 119 N86-28455 # NASA-TM-82882 ............................p 25 N82-31449 * # NASA-TM-87291 ............................p 30 N86-24756 #
NASA-CR-177237 .......................... 120 N86-30227 # NASA-TM-82896 ........................... p 94 N82-31708 ° # NASA-TM-87292 ............................p 43 N86-22686 #
NASA-CR-179474 .......................... 119 N86-28467 # NASA-TM-82953 ............................p 95 N83-14523 ° # NASA-TM-87295 ............................p 30 N86-24759 #
NASA-CR-179478 .......................... 120 N86-30236 # NASA-TM-82975 ............................p 95 N83-11514 ° # NASA-TM-87307 ............................p 120 N86-31920 #
NASA-CR-3506 ............................... 54 N82-18613 # NASA-TM-83022 ............................p 9 N85-10951 *# NASA-TM-87318 ............................p 44 N86-31699 #
NASA-CR-3543 ............................... 39 N82-26436 # NASA-TM-83023 ............................p 39 N83-14246 * # NASA-TM-87325 ............................p 118 N86-27680 #
NASA-CR-3623 ............................... 55 N83-11506 # NASA-TM-83044 ............................p 26 N83-15362 ° # NASA-TM-87331 ............................p 44 N86-28164 #
NASA-CR-3625 ............................... 55 N83-11507 # NASA-TM-83049 ............................p 96 N83-15672 ° # NASA-TM-87334 ............................p 31 N86-31664 #
NASA-CR-3659 ............................... 55 N83-16773 # NASA-TM-83059 ............................p 96 N83-24874 * # NASA-TM-87339 ............................p 60 N86-25812 #
NASA-CR-3670 ............................... 55 N83-27248 # NASA-TM-83319 ............................p 47 N83-19902 * # NASA-TM-87341 ............................p 30 N86-26376 #
NASA-CR-3679 ............................... 55 N83-21373 # NASA-TM-83320 ............................p 26 N83-19817 # NASA-TM-87348 ............................p 61 N86-31912 #
NASA-CR-3693 ............................... 56 N83-28466 # NASA-TM-83321 ............................p 26 N83-24559 # NASA-TM-88787 ............................p 31 N86-31663 * #
NASA-CR-3697 ............................... 97 N83-29731 # NASA-TM-83331 ............................p 39 N83-35103 # NASA-TM-88790 ............................p 61 N86-31065 * #
NASA-CR-3724 ............................... 56 N83-33180 # NASA-TM-83354 ............................p 28 N85-14882 # NASA-TM-88792 ............................p 119 N86-29271 • #
NASA-CR-3729 ............................... 101 N84-12530 # NASA-TM-83358 ............................p 55 N83-23620 # NASA-TM-88797 ............................p 61 N86-31913 • #
NASA-CR-3749 ............................... 56 N84-14525 # NASA-TM-83366 ............................p 97 N83-24875 # NASA-TM-88807 ............................p 119 N86-28461 ° #
NASA-CR-3750 ............................... 56 N84-14526 # NASA-TM-83437 ............................p 97 N83-28493 # NASA-TM-88827 ............................p 61 N86-32764 * #
NASA-CR-3756 ............................... 56 N84-15565 # NASA-TM-83446 ............................p 8 N84-16185 # NASA-TM-88838 ............................p 120 N87-12924 ° #
NASA-CR-3770 ............................... 57 N84-17606 # NASA-TM-83470 ............................p 112 N85-30361 # NASA-TM-88841 ............................p 44 N87-14489 • #
NASA-CR-3790 ............................... 102 N84-19925 # NASA-TM-83473 ............................p 98 N83-34349 # NASA-TM-88854 ............................p 120 N87-12017 • #
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NASA-TM-88855 ............................p 61 N87-10399 ° # US°PATENT-APPL-SN-893857 ..... p 24 N81-26179 °
NASA-TM-88857 ............................p 13 N86-32433 * #
NASA-TM-88859 ............................p 31 N87-16880 ° # US-PATENT-CLASS-156-292 ....... p 23 N81-17170 °
NASA-TM-88861 ............................p 121 N87-13794 " # US-PATENT-CLASS-228-118 ....... p 23 N81-17170 "
NASA-TM-88864 ............................p 122 N87-20565 * If US-PATENT-CLASS-228-118 ....... p 24 N81-26179 °
NASA-TM-88870 ............................p 61 N87-12910 ° # US.PATENT-CLASS-228-170 ....... p 23 N81-17170 *
NASA-TM-88871 ............................ 50 N87-18820 " # US-PATENT-CLASS-228-174 ....... p 23 N81-17170 °
NASA-TM-88872 ............................ 31 N87-13491 ° # US-PATENT-CLASS-228-190 ....... p 23 N81-17170 °
NASA-TM-88875 ............................ ) 49 N87-15467 " # US-PATENT-CLASS-228-190 ....... p 24 N81o26179 *
NASA-TM-88881 ............................ 49 N87-11993 ° # US-PATENT..CLASS-310-77......... p 49 N85-30333 "
NASA-TM-88883 ............................ 49 N87-13755 * # US-PATENT-CLASS-310-93 ......... p 49 N85-30333 *
NASA-TM-88901 ............................ 121 N87-17087 " # US-PATENT-CLASS-318-611 ....... p 49 N85-30333 *
NASA-TM-88907 ............................ 121 N87-14730 * # US-PATENT-CLASS-335-100 ....... p 49 N85-30333 *
NASA-TM-88917 ............................ 122 N87-18883 ° #
NASA-TM-88932 ............................ 13 N87-28551 " # US-PATENT-4,211,354 .................. p 23 N81-17170 "
NASA-TM-88934 ............................ 125 N87-28944 ° # US-PATENT-4,211,354 .................. p 24 N81-26179 °
NASA-TM-88941 ............................ 121 N87-18112 " # US-PATENT-4,267,953 .................. p 24 N81-26179 *
NASAoTM-88944 ............................ 122 N87-18115 ° # US-PATENT-4,517,505 .................. p 49 N85-30333 "
NASA-TM-88959 ............................ 122 N87-18116 ° # •
NASAoTM-88960 ............................ 123 N87-24006 " # USAAVSCOM-TR-84-C-16 ............ p 41 N84-33564 ° #
NASA-TM-88965 ............................ 31 N87-18614 * If USAAVSCOM-TR-85-C-10 ............ p 11 N85-28945 ° #
NASA-TM-88974 ............................ 122 N87-18882 " # USAAVSCOM-TR-85-C-1 .............. p 41 N85-19074 * #
NASA-TM-88976 ............................ 122 N87-18881 ° If USAAVSCOM-TR-85_,-5 .............. p 42 N85-26964 ° #
NASA-TM-88978 ............................ 62 N87-18109 ° # USAAVSCOM-TR-86-C-14 ............ p 44 N86-25454 " #
NASA-TM-89831 ............................ 45 N87-20408 * # USAAVSCOM-TR-86-C-18 ............ p 44 N86-25455 " #
NASA-TM-89843 ............................ 62 N87-20562 * # USAAVSCOM-TR-86-C-4 .............. p 43 N86-24818 * #
NASA-TM-89861 ............................ _ 123 N87-21375 * # USAAVSCOM-TR-86-C-7 .............. p 44 N86-28164 " #
NASA-TM-89891 ............................ } 123 N87-23010 ° #
NASA-TM-89897 ............................ _ 50 N87-23978 ° # UTRC83-6 .......................................p 101 N84-12530 " #
NASA-TM-89900 ............................ _ 124 N87-24722 * #
NASA-TM-89906 ............................ } 124 N87-26385 ° if UWME-DR-101-102-1 ....................p 24 N82-14288 * #
NASA-TM-89929 ............................:_62 N87-23987 * # UWME-DR-201-101-1 ....................p 25 N82-18326 ° #
NASA-TM-89931 ............................_ 124 N87-24007 " #

VPI-E-83.10 .....................................p 98 N83-33219 " #
NASA-TP-1600 ..............................._ 87 N80-15428 ° # VPI-E-84-36 .....................................p 108 N85-21720 " #
NASA-TP-1669 ...............................:) 88 N80-22734 * #
NASA-TP-1679 ...............................:_88 N80-27719 " #
NASA-TP-1753 ..............................._ 89 N81-11417 * #
NASA-TP-1973 ..............................._ 92 N82-20566 ° #
NASA-TP-1982 ...............................) 91 N82-20565 ° #
NASA-TP-2055 ..............................._ 95 N83-12449 ° #
NASA-TP-2174 ..............................._ 99 N83-34373 ° #
NASA-TP-2195 ..............................._ 97 N83-33217 ° #
NASA-TP-2208 ..............................._ 99 N83-34372 ° #
NASA-TP-2239 ...............................:) 26 N84-13224 * #
NASA-TP-2243 ...............................:) 103 N84-20878 ° #
NASA-TP-2266 ...............................p 8 N84-16181 "#
NASA-TP-2280 ...............................p 40 N84-17350 " #
NASA-TP-2296 ...............................p 8 N84-20562 ° #
NASA-TP-2304 ...............................p 9 N84-24578 ° #
NASA-TP-2421 ...............................p 107 N85-20396 ° #
NASA-TP-2499 ...............................p 42 N86-12295 ° #
NASA-TP-2515 ...............................p 30 N86-21614 ° #
NASA-TP-2591 ...............................p 119 N86-28464 * #
NASA-TP-2711 ...............................p 123 N87-20566 ° #

NAUFP-202-2 ..................................p 103 N84-19927 * #

PB85-127173 ..................................p 108 N85-21720 ° #

PWA-FR-13153-PT-2 ..................... p 38 N80-30482 " #

PWA-5512-45 ..................................p 87 N80-10515 ° #
PWA-5684-19 ..................................p 7 N81-17079 ° #
PWA-5772-23 ..................................p 7 N82-25257 ° #
PWA-5774-21 ..................................p 7 N82-33391 ° #
PWA-5774-39 ..................................p 13 N86-27284 * #
PWA-5774-40 ..................................p 12 N86-27283 ° #
PWA-5843-13 ..................................p 96 N83-21390 ° #
I:_VA-5891-18 ..................................p 56 N83-33182 ° #
I:_/A-5894-17 ..................................p 11 N85-31057 ° #
PWA-5940-19 ..................................p 107 N85-21686 ° #
PWA-5968-19 ..................................p 60 N86-25003 ° #

RF-TECH-104 .................................p 55 N83-16773 * #

RFP763340/714952 ...................... p 57 N85-16195 ° #

R82AEB358 ....................................p 95 N83-12451 ° #
R83-956077-1 .................................p 100 N84-10613 ° #
R83-956077-2 .................................p 100 N84-10614 ° #
R84-956627-1 .................................p 12 N86-24693 ° #

SATR-2 ............................................p 96 N83-23629 ° #

SM-8 ................................................p 101 N84-15589 * #

SWRI-7576/30 ................................p 115 N86-10589 " #

UDR-TR-82-119 ..............................p 94 N82-33738 ° #
UDR-TR-83-57 ................................p 96 N83-23629 ° #
UDR-TR-83-57 ................................p 100 N84-10612 ° # !

US-PATENT-APPL-SN-122967 ..... p 24 N81-26179 °
US-PATENT-APPL-SN-463456 ..... p 49 N85-30333 *
US-PATENT-APPL-SN-893857 ..... p 23 N81-17170 °
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