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Preface

As proven in this work, all orthogonal matrices solve a first order differential equation. The straightfor-
ward solution of this equation requires n2 integrations to obtain the elements of the n-th order matrix. There
are, however, only n(n-1)/2 independent parameters which determine an orthogonal matrix. The questions
of choosing them, finding their differential equation and expressing the orthogonal matrix in terms of these
parameters are considered in this work. Several possibilities which are based on attitude determination in

three dimensions (3-D) are examined. It is shown that not all 3-D methods have useful extensions to higher
dimensions. It is also shown why the rate of change of the matrix elements, which are the elements of the

angular rate vector in 3-D, are the elements of a tensor of the second rank (dyadic) in spaces other than
three dimensional. It is proven that the 3-D Gibbs vector (or Cayley Parameters) are extendible to other
dimensions. An algorithm is developed employing the resulting parameters, which are termed Extended Rod-

rigues Parameters, and numerical results are presented of the application of the algorithm to a fourth order
matrix.
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I. INTRODUCTION

In a recent paper [I] a new algorithm for solving the matrix Riccati equation was introduced. The algo-

rithm requires the solution of two matrix differential equations. The solution of one of the equations yields a

diagonal matrix of the eigenvalues of P, the solution matrix of the Riccati equation. The other equation is

_r(t) = W(t)V(t) (1)

where V is a matrix of the eigenvectors of P. Since P is a real symmetric matrix its eigenvectors are or-

thonormal, consequently V is an orthonormal matrix. (In the ensuing we will refer to an orthonormal matrix

as an orthogonal one). The matrix W is a skew-symmetric matrix. (Note that in [1] the order of V and W

on the right-hand side of (1) is reversed. This difference should cause no difficulty since V is the transpose

of the corresponding matrix in [1] and W is the negative of its corresponding matrix).

Let n be the order of the square matrix V. The number of scalar integrations implied by (1) is n2;

however, the orthogonality of V invokes n(n+ 1)/2 relations among its elements. Therefore there are really

only m=n(n-1)/2 independent elements in V. The superfluous computational burden involved in the solution

of (1) can, then, be reduced by properly defining the m independent parameters of V, solving a differential

equation only for them and then performing an algebraic computation in order to transform these m elements
into V.

We observe that (1) is identical to the famous differential equation of the transformation matrix in the

three dimensional Euclidean space which is solved on-line for attitude determination of navigation and satel-
lite systems. That matrix, of course, is also orthogonal, and W is a skew-symmetric matrix whose entries

are the three components of the angular velocity vector at which the body rotates with respect to some refer-

ence coordinates. One question that comes immediately to mind is: does (1) always yield a solution which is

orthogonal? and conversely, do all orthogonal matrices solve such a differential equation?

The answer to these two questions is formulated in the following two theorems.

Theorem I.l: Given equation (1) for to < t < tl where

wr(t) = -W(t) (2)

then:

(I) the matrix VT(t)V(t) is a constant matrix.

(II) if the initial matrix V(to) is orthogonal, then V(t) is orthogonal too.



Proof:

d
dt [VT(t)V(t)] = VT(t)V(t) + VT(t)_r(t) (3)

substituting (1) into (3) yields

d
dt [VT(t)V(t)] ----VT(t)WT(t)V(t) + VT(t)W(t)V(t) (4)

and when (2) is substituted into (4), it is seen that

d
dt [VT(t)V(t)] = 0 (5)

Consequently

VT(t)V(t) = Const. (6)

and thus (I) has been proven.

Now when V(to) is orthogonal, then

VT(to)V(to) = I

(where I denotes the identity matrix) and due to (6) also

VT(t)V(t) = I

which proves assertion (II). •

Theorem 1.2: Any time varying orthogonal matrix, V(t), satisfies the matrix differential equation

V(t) = W(t)V(t) (7)

where

WY(t) = -W(t) (8)

Proof: Since V(t) is orthogonal

"v'(t) = '_(t)VT(t)V(t) (9)

Denote

W(t) = V(t)VT(t)

2



then (9) can be written as

V(t) = W(t)V(t) (10)

which is (7).

Using (10) we write

VT(t)V(t) + VT(t)_'(t) = VT(t)WT(t)V(t) + VT(t)W(t)V(t) = VT(t) [WT(t) + W(t)] V(t) (11)

The left-hand side of (10) is the time derivative of VT(t)V(t) hence (10) can be written as

d

dt [VT(t)V(t)] = Vr(t) [WT(t) + W(t)] V(t) (12)

But

VT(t)V(t) = I

hence the left-hand side of (11) is zero which implies that

WT(t) = -W(t)

as stated in (8). This completes the proof. •

In view of the preceding, it is realized that the problem we are concerned with is an extension of the

three dimensional attitude determination problem and conversely, the latter is a special case of the problem

at hand. It is interesting to investigate the correspondence of the various elements involved in three dimen-

sional attitude determination with the eventual solution and features of our present problem. For this reason

the pertinent background material of attitude determination will be reviewed in Section HI following a for-

mal definition of the problem in the next section. In Section IV we discuss a possible solution using Extend-

ed Euler Angles followed, in Section V, by an introduction of the chosen Extended Rodrigues Parameters

solution. In Section VI we probe the issue of presenting angular rate in n-D and in Section VII we discuss

numerical issues involved in the implementation of the solution. Numerical results are then presented and
conclusions are drawn in Section VIII.

I1. PROBLEM STATEMENT

We state our problem as follows. Given the matrix differential equation

V(t) = W(t)V(t)

in which W is a skew symmetric matrix and for which the initial matrix V(to) is known to be orthogonal,

find the following:

a) m=n(n-1)/2 parameters which unambiguously define V,



b) the differential equation needed to be solved in order to compute these parameters,

c) the functional relations between the parameters and V which will enable the computation of V based
on the parameters, and

d) a simple algorithm to implement the solution of the differential equation as well as the computation
of V.

HI. BACKGROUND IN THREE DIMENSIONAL SPACE

Euler Angles

The best known parameters describing a 3-D rotation and the resulting transformation matrix are Euler

Angles [2-6]. Three such angles are necessary and sufficient to describe any transformation from one Car-
tesian coordinate system to any other one. There are 12 sequences of 3 right-hand Euler Angle rotation
sequences. If for example one chooses the sequence z-y-x rotations by the respective angles p, t and f, then
the corresponding differential equations of the Euler Angles are:

[) = (Wy sin f + Wzcos f)/cos t (13.a)

= Wy cos f - Wz sin f (13.b)

i' = Wx + tan t (Wy sin f + Wzcos f) (13.c)

where Wx, Wy and Wzare the three components of the angular rate vector at which the final coordinate sys-

tem turns with respect to the initial one when this vector is resolved in the final system. The transformation

matrix, D, which transforms vectors from the initial coordinate system into the rotated one is computable

using the solution of (13) in the following expression

i cptst st]D = -sp cf +cp st sf cp cf +sp st sf ct sf

spsf +spstcf -cpsf+spstcf ctcf

where s denotes the sine and c denotes the cosine function.

We note two shortcomings of this method. First, we run into a singularity problem as t approaches 90 °
or -90 ° and, secondly we need to compute trigonometric functions. For this reason the use of Quaternions

is usually preferred.

Quaternlon

Quaternions consist of 4 elements; that is, the Quaternion is a 4 parameter rotation specifier [2,5,6].
One parameter is, of course, superfluous but this is acceptable since, using Quaternions, the two aforemen-

tioned shortcomings, involved in the usage of Euler Angles, are eliminated. Denote the 4 elements of the

Quaternion of rotation by q0, ql, q2 and q3 then the differential equation of the Quaternion elements is



-q0- - 0 -w x -Wy -Wz" -q0-

ql wx 0 Wz -Wy ql
d 1
-- = - (14)
dt q2 2 Wy --W z 0 Wx q2

-q3- _W z Wy --Wx 0_ -q3-

The solution of (14) yields the components of the Quaternion which can be used to compute D as follows

iqoqlqq q0qqqlq0q1D = 2(qlq2 + qoq3) qo2 - ql2 + q22 - q32 2(qEq3 - qoql)

2(q3ql qoq2) 2(q2q3 + qoql) qo2 - ql2 - q22 + q32

The Quaternion of rotation is based on Euler's theorem which states that any orientation of a 3-D Cartesian

coordinate system with respect to any reference system can be obtained by a single rotation of the initial

coordinate system about an axis fixed in both systems. Let the positive direction (according to the right-hand
rule) of this axis be denoted by a unit vector f and the rotation angle by f, then the components and the

A

magnitude of the rotation vector ff (also known as Euler Vector) are used to define the Quaternion as
follows

q0 = cos(f/2) ; ql = sin(f/2)fx/f

q2 = sin(f/2)fy/f ; q3 = sin(f/2)fz/f

where fi, i =x,y,z, are the 3 components of the rotation vector. The Quaternion is, then, a 4 component ele-

ment constructed on a 3 component vector.

Rodrigues Parameters

Another 3 parameter representation of 3-D rotations is due to Rodrigues [7]. Denote the parameters by

gb g2 and g3, then the differential equation which these parameters satisfy is [7,8,6]

[11ix 31llEWX1d 1
g2 = _ -g3 + glg2 1 + g22 gl + g2g3 Wy (15)

g3 g2 + glg3 --gl + g2g3 1 + g32 Wz

The solution of (15) can, then, be used to compute D as follows

d = 1 + gl 2 + gEE + g32

D = _ 2(gig2 + g3) 1 - gl 2 + g2 2 - g3 2 2(g2g3 - gl)

2(gig3 - g2) 2(g2g3 + gl) 1 - gl 2 - g2 2 + g32

5



The relationship between the Rodrigues Parameters and the rotation vector are

gl = tan(f/2)fx/f ; g2 = tan(f/2)fy/f ; g3 = tan(f/2)fz/f

Since both the Quaternion of rotation and Rodrigues Parameters are based in a similar manner on the rota-

tion vector, there is a rather simple relationship between them; namely, gi = qi/qo for i= 1,2,3.

The preceding equations for the time change of the Rodrigues Parameters and for converting the
parameters into D can be cast in matrix form as follows [9,10]. Define a G matrix such that

1G = -g3 0 gl (16)

g2 -gl 0

and, similarly a W matrix

f°w:l
--W 2

W = -w3 0 1 (17)

W 2 --W 1

then

!

G = - 2(1 + G)W(I - G) (18)

D = (I - G) (I + G) -1 (19)

where I is the identity matrix. Like with the 3 parameter Euler Angle representation, here too, singularity
may occur whenever the size of the rotation vector reaches a magnitude of 180 °.

After having discussed the possible solutions to the problem in 3-D we will consider, next, the possibili-
ty of extending these solutions to n-D (whenever mentioning n dimensional spaces we mean Euclidean
spaces whose dimension n4:3).

IV. POSSIBLE SOLUTIONS

Extended Euler Angles

When trying to solve our problem (as defined in Section II) the first question that comes to mind is: can

the Euler Angle parametrization presented in the preceding section be extended to higher dimensional Eu-

clidean spaces? As it turns out [11], Euler himself showed that this was possible. This was also shown later
by Lagrange [12]. (See also Jacobi's observation on their and other's work [13]). However, the use of the

Extended Euler Angles for n > 3 is cumbersome since, for calculating V, the sine and cosine functions of

6



m=n(n-1)/2 angles must be computed, these functions have to be multiplied through in a long string of

multiplications, and the resultant products have to be added and subtracted. For n=4, for example, the 1,1
element of V is

Vl, 1 = COSal cos a3 cos a5 + sin al sin a4 sin as

and there are 16 elements, all equally long, in V. When compared with the simplicity of the solution which

we will eventually choose the complexity of the present one will be striking. Moreover, to complete the al-
gorithm it is necessary to find the differential equations governing the Extended Euler Angles and solve

them. Merely finding the equations, let alone solving them, is a formidable task. As an example for the

work involved in deriving those equations, consider the following approach. Let the Extended Euler Angles

be denoted by al, a2....... am. Denote the column vector whose elements are these angles by a. We
may express V as a product of the individual matrices V(ai) of the transformation matrix related to a single
angle ai, thus

in

V(a) = H V(ai) (20)
i=l

Differentiation of (20) yields

V ai
On the other hand (20) and (1) yield

nl

V(a) = W H V(ai) (22)
i=l

equating the right-hand sides of (21) and (22) yields m equations in fij. After cumbersome manipulations we

obtain the required m differential equations for aj, j = 1,2 ..... m whose solution yields a, the elements
of which are needed in order to compute V. We conclude that finding the differential equations for the

Extended Euler Angles, solving them, and then using the solutions to compute the corresponding V matrix,

while possible, is indeed a formidable task which we reject in favor of the method which we will eventually
select.

Extended Quaternion

The use of the quaternion of rotation in 3-D is motivated by the following considerations. It does not

suffer from singularities, it does not require the computation of trigonometric functions, it has a simple

linear differential equation and a simple geometric interpretation related to the rotation vector. Finally, the
only price paid for using it, is the need to deal with 4 (rather than 3) parameters. Because of these merits,

one is motivated to try to extend the notion of quaternions to n-D. This approach though does not seem to

yield a non-singular parametrization even if one is willing to use m+ 1 parameters to define an extended
quaternion.

7



Of the three 3-D parametrization methods reviewed in Section HI only the Rodrigues Parameters are ex-

tendible to a compact easily implementable algorithm. This will be shown in the next section.

V. EXTENDED RODRIGUES PARAMETERS

We start the presentation of this parametrization method in n-D with two lemmas which will be helpful

in the ensuing.

Lemma V.l: Let A be an nxn matrix, then the matrix (I + A) is invertible if none of the eigenvalues of A

is equal to -1.

Proof:

The eigenvalues bi , i = 1,2 ..... n of (I + A) are the roots of the polynomial

I(I+A)-bII =0 (23)

which can be written as

[A- (b - 1)I[ = 0 (24)

or

[A - aI I = 0 (25)

where

a = b - 1 (26)

The condition for (I + A) to be invertible is bi :_ 0, i = 1,2,...,n or, in view of (26), ai =/: - 1,
i = 1,2 ..... n., But in view of (25), ai are the eigenvalues of A. This ends the proof. []

Lemma V.2: Let (1 + A) -1 exist and let

B = (I - A) (I + A) -1

then (1 + B) is invertible.

Proof:

(I + B) = I + (I -A) (I + A)-I

= (I + A) (I + A) -1 + (I - A) (I + A) -_

= 2(I + A) -1



Obviously, (I + A)-I has an inverse which is (1 + A), thus

(I + B) -1 = (I + A)/2. •

With these lemmas on hand we can proceed and prove the following theorem.

Theorem V.I: Let V be an n-th order orthogonal matrix with none of its eigenvalues equal to - 1; then

I) there exists a matrix G defined as follows

G = (I -V) (I + V) -l (27)

II) G is skew-symmetric

III) V is the following function of G

V = (1 - G) (1 + G) -1 (28)

IV) The rate of change of G is given by

= - 1(I + G) W(I + G)T (29)
d

where W is the matrix defined by (1).

Proof: From lemma V. 1 the matrix (I + V) has an inverse; thus G as defined in (27) exists. To show that

G is skew-symmetric use (27) to write

Gv = (I + V) -T (I - V) T

where -T is the inverse of the transpose (or vice-versa). Using the last equation and the orthogonality of V
we observe that

GT = (I + VT)-I(I -- VT) = (VTV + VT)-I(VTV -- V T)

= [VTfV+ DI-_VT(V- I)

= (I + V)-IVVT(V -- I) = (1 + V)-I(V - I)

= -(1 + v)-112I - (1 + v)] = - 2(1 + V) -1 + I (30)

Now

-2(1 + V)-1 + I = --2(1 + V)-1 + (1+ V) (I + V) -1

= [-2I + (1 + v)] (1 + v) -_

= - (I - V) (1 + V) -1 = -G (31)

9



Substitution of (31) into (30) yields the result GT = -G, i.e. G is skew-symmetric.

From lemma V.2, (I + G) is invertible which gives legitimacy to the right-hand side of (28). To prove

the truth of (28) re-write (30) as

GT = I- 2(1+ V) -1

hence

G = I - 2(1 + VT) -1

from which we obtain

I - G = 2(I + VT) -1 (32)

and

I + G = 2I - 2(1 + VT) -: (33)

We can further write

21 - 2(I + VT) -1 = 2(1 + VT) (I + VT) -1 -- 2(1 + VT) -1

= 2VT(I + VT) -l

thus

I + G = 2V T(I + VT)-:

and

(I + G) -_ = 1(I + VT)V
(34)

Substitution of (32) and (34) in the right-hand side of (28) yields the proof of III.

To prove (29) differentiate (27)

= -V(I + V) -1 - (I - V) (I + V)-IV(I + V) -1

= -[I + (I - V) (I + V)-t]V(I + V) -1

Substitute (27) in the last equation to obtain

= -(I + G)V(I + V) -1

10



Using (1) the last equation can be written as

= -(I + G)WV(I + V) -1

Substitution of (28) into the last equation yields

(; = -(I + G)W(I - G) (I + G)-I[I + (I - G) (I + G)-_] -1 (35)

The expression in the brackets can be written as follows

I + (I - G) (I + G) -1 = (I + G) (I + G) -1 + (I - G) (I + G) -1 = 2(1 + G) -_

therefore (35) can be written as

(3 = -(I + G)W(I -G) (I + G)-l[2(I + G)-l] -l = - _(I + G)W(I - G)

and since G is skew-symmetric the last equation can be written also as

= - l(I + G)W(I
6 + G)T

which ends the proof. []

Note, from lemma V. 1, that the condition for the invertibility of (I + G) is that it has no eigenvalues at

-1, which is analogous to the condition for (I + V) to be invertible, i.e. that V has no eigenvalues at -1.

However while V always exists, G does not exist when V has an eigenvalue at -1. The parametrization of

V by G fails when the latter is the case. However this can be overcome as will be shown in Section VII.

The parametrization of V by the Extended Rodrigues Parameters is n-dimensional since the foregoing

proofs were not restricted to any value of n, nor did they hinge on a rotation vector or any other geometric

quality in n-D. In fact, the Extended Rodrigues Parameters, which are the elements of G, are the answer to

the first three parts of our problem as posed in Section II. That is, we found m parameters which define the

n-dimensional orthogonal matrix, V. We also found a first order differential equation for G, and we showed
how to calculate V, once G is found.

What is needed to fully answer our problem is a simple algorithm to implement the solution; this will

be presented in Section VII. For now, after having obtained a parametrization in n-D, we are prepared to

discuss the meaning of the skew-symmetric matrix, W, its geometric interpretation, and the difference be-
tween W in 3 and in n-D.

11



VI. ANGULAR RATE IN n-D

Recall (1)

V(t) = W(t)V(t) (1)

The matrix V can be viewed as a transformation matrix which transforms vector components in an n-D Eu-

clidean space. In particular it transforms a set of unit vectors, which form a Cartesian coordinate system, to
another such set. Let us denote the former as the initial coordinate system and the latter as the final one.
The rows of V are components of unit vectors of the initial set resolved in the final Cartesian coordinate

system such that vi,j is the i-th component in the final system of the j-th unit vector of the initial coordinate
system. From (1)

II

"_/i,j----- _ Wi,kVk,j
k=l

hence wi, k is the relative weight that the k-th component in the final system, of a unit vector in the initial

system, has on the rate of change of the i-th component in the final system of the same unit vector in the

initial system. Note that this weight is independent of j; i.e. of which unit vector in the initial system we

consider. To give Wi, j a more descriptive interpretation and to see the role of W more clearly, consider the
3-D case where, for example

_'3,1 = W3,1VI,1 + W3,2V2,1 (36)

(note that the term W3,3V3,1 was dropped since W3, 3 = 0 for skew-symmetric W). In 3-D (36) can be written as

x'3,1 = w2vl,1 - WlV2,1 (37)

where wl and w2 are the respective angular rates at which the final coordinate system instantaneously rotates

about its 1 and 2 axes. The components wi, i=1,2,3, are those of the 3-D angular rate vector describing the

instantaneous rotation of the final system. In 3-D wi is also the angular rate at which the j axis turns

towards the k axis, and so on in a cyclic manner for wj and Wk. Indeed a comparison between (36) and (37)
reveals that

W2 = W3,1

--W 1 = W3, 2

We conclude that the following can be said about W in 3-D

(A) The elements of W are angular rates.

03) Each components of W is a rate of turn of one coordinate axis towards another

such that Wp,qis the angular rate at which axis p turns towards axis q. Obviously,
Wp,q = --Wq,p.

12



(C) Both the p and the q axes turn at the angular rate Wp,q about the third axis r.

(D) The elements of W are components of an angular rate vector.

When we turn now to n-D, we realize that the preceding observation cannot be fully extended from 3 to

n-D. In n-D, W has m = n(n - 1)/2 independent components such that the elements of W cannot be com-

ponents of a rate vector whose number is necessarily only n. We cannot, therefore, consider the elements of

W as angular rates about (coordinate) axes. Consequently, of the four features of the elements of W in 3-D,
mentioned above, the only ones which also prevail in n-D are (A) and 03).

Realizing that the angular rates in n-D cannot be described by a vector, one is motivated to examine the

possibility of expressing the angular rate by a tensor. To accomplish that, choose one, say the i-th, column
of V(t) and the i-th column of V(t) and denote them correspondingly by v and v such that v - [vl, v2.......

Vn]r and v = [Vl, v2, •..... Vn]r. Using their components express them as vectors in the same arbitrarily

chosen coordinate system such that

v ----_Vl + i2v2 + ...... + inVn

where il, i2, ..., in are unit vectors along the coordinate axes 1, 2, ..., n respectively. Similarly

v = ilvl + i2v2 + ...... + inVn

Define a tensor of the second rank, W, using the elements of W as follows

W = ilil0 + ili2wl,2 + ...... + ilinwl,n

+ i2ilw2A + i2i20 + ...... + i2inW2,n

+ inilWn,1 + ini2Wn,2+ ...... + inin0

then obviously

v= v

that is, when the angular rate components are treated as elements of a tensor of the second rank, (1) is fully
satisfied. A tensor of the second rank is also known as dyadic [14].

The fact that the angular rate in 3-D is basically a tensor is known [8,15] but is not reflected in the

applied literature. The reason for it stems, perhaps, from the unique possibility of expressing angular rates

in 3-D by a vector such that its description as a tensor might have been perceived merely as a philosophical
formalism. (Even when treated as a tensor, the angular rate is usually that of a 3-D coordinate system). In-

deed, the creation, in 3-D, of the so called "vector cross-product matrix" based on the angular velocity

vector is conceived as a useful gimmick rather than a restoration of the true mathematical description of the

13



angular rate. So far, the consideration of angular rates in dimensions higher than 3 probably was not re-

quired nor known. Thus it was not recognized that in higher dimensions the angular rate cannot be described

by a vector but must be described as another entity, and that the ability to describe it in 3-D by a vector is

just a matter of good fortune. (In fact, even in 2-D the angular rate is not truly expressible as a vector. This

is evident when we note that the expression of rotation in a plane by a vector normal to it is necessarily a
3-D expression. The correct and only 2-D expression is

v = ( ili2w -- i2ilw )v

or

where the first expression is in a tensor form and the second is in a matrix form). Another possible cause
for the disregard of the fact that angular rate is a tensor stems from the fact that the tensor of the second

rank; that is, the dyadic, is replaceable by a matrix (as demonstrated in the last 2-D representation and in

equation 1). Therefore all practical work in any dimension can be carried out without resorting to the tensor
concept.

After having cleared the issue of angular rate representation we are prepared to consider the implemen-

tation of the algorithm for solving (1) using the Extended Rodrigues Parameters, thereby solving our
problem in its entirety.

VII. NUMERICAL IMPLEMENTATION

Recall the differential equation (1)

Q = WV (1)

in which W is given. We wish to solve (1) using the extended Rodrigues Parameters. The solution process
requires first the solution of

d = - 1(I + G)W(I + G) T (29)

and then the computation of V according to (28)

V = (I - G) (I + G) -1 (28)

There are two caveats which we have to be alerted to. One of them is the non-existence of G when V has

an eigenvalue at -1, and the other is the need to invert the matrix (I + G), which may be so burdensome

as to render the whole approach inefficient in comparison with the direct solution of (1). The first problem

can be easily avoided if we can keep the elements of G small, for then, as can be readily seen from (28), V

is close to I whose eigenvalues are all equal to + 1. That is, if we are free to control its size, we can always
choose G so small as to make the eigenvalues of V as close to + 1 (and thus as far from -1) as we wish.
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Indeed, we are able to control the magnitude of G. The ability to do it is based on the following propo-
sition.

Proposition: Given the differential equation of (1)

V(t) = W(t)V(t) (1)

with the initial condition V(to) where V(to) is orthogonal, then V(t), the solution of

(1) at time t > to, can be written as a product of two matrices as follows

V(t) = V(t,to)V(to) (38)

where V(t,to) is the solution of (1) at time t given the initial condition V(to,to) = I.

Proof: Since V(to) is orthogonal it always has an inverse. Therefore one can always compute a matrix

V(t,to) = V(t)VX(to) (39)

such that (38) holds. Now if (38) is differentiated with respect to time the following is obtained.

V(t) = V(t,to)V(to)

Equating the right-hand side of the last equation to that of (1) and using (38) results in

V(t,to)V(to) = W(t)V(t,to)V(to)

Since V(to) is invertible, the last equation yields •

V(t,to) = W(t)V(t,to) (40)

hence V(t,to) solves (1). Finally setting t in (39) to to results in

V(to,to) = I

which ends the proof

In computing V(t) we make use of the last proposition and instead of computing V(t) directly we com-

pute V(t,to) from time to to t and then use (40) to compute V(t). Actually instead of computing V(t,to) we

use (29) to compute G, the parametrization of V(t,to), from time to to t with the initial condition G(to) = 0

which corresponds to V(t,to) = I. The computation of G is stopped periodically at, say, tl and V(h) is com-

puted according to (28) yielding

V(tl,to) = [I - G(tl)][I + G(tl)] -1

15



and then V(tl) is computed using (38) as follows

V(t0 = V(h,to)V(to)

Next the computation of V(t) proceeds into the following time interval using the same algorithm that
produced V(tl) once V(to) was given. We start, of course, with the initial condition G(h) = 0 which cor-

responds to V(t,tl) = I. Using this algorithm we proceed to compute G and V at times t2, t3, •..... tk. By
properly choosing the size of the intervals t2 - tl, t3 - t2...... tk - tk-l we can impose an upper bound

on G which can practically be as small as we wish. We term the operation of resetting the value of V and G

at the beginning of an interval reset operation.

The foregoing policy rids us of the singularity problem. In fact, if singularity were the only issue, one

can choose the time intervals ti - ti-1 quite large and still not encounter singularity. However, we are still
left with the second problem mentioned before; namely, the inversion of [I + G(ti)]. We overcome this

problem by approximately the inverse without really performing any matrix inversion. Before discussing the

options for approximating this inverse we list without proof two well known theorems (e.g. Ref. 16 p. 129)

needed in the ensuing.
oo

Theorem VII.l: Let G be a square matrix then the series E (- 1)iGi converges to
i=0

(I + G)-I if all the eigenvalue of G lie inside the unit circle about the ori-

gin of the complex plane.

Theorem VII.2: Denote the elements of the nxn matrix G by gi,j. If the sums

n

E I gi,j I i = 1,2, ...,n
j=l

are all less than 1, or if

n

_ IgijI j=l, 2 ..... n
i=l

are all less than 1, then all the eigenvalues of G lie inside the unit circle
about the origin of the complex plane.

The algorithm we use to approximate the inverse of (I - G) is based on the fact that if the matrix Xi is

a good approximation of the inverse of some matrix A then a better approximation, Xi + l, can be obtained

using the Newton-Raphson-type iteration [16 p. 52, 17]

Xi + 1 = Xi (21 - AXi) (41)

This algorithm converges if and only if the eigenvalues of I - AXi are all of absolute value less than 1 [16,

p. 52]. If indeed Xi is almost the inverse of A then this condition is met. If now V is computed without

reset taking place at the end of the previous time increment, then we use as a first approximation of
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[I + G(t)]-1, the value used as an inverse at the previous time point. This is based on the presumption that

the time increments of the integration are small enough such that the change of the inverse is small too,

hence its previous accurate value can serve now as an approximate value. If, however, reset did take place
at the previous time point then G was set to zero and the previous inverse of I + G is simply I. For the

sake of computation reduction it is desired to keep at minimum the number of iterations used to compute an

accurate inverse. Normally one iteration is sufficient. However, when reset takes place and consequently the
previous inverse of I + G (i.e. the inverse of I + Go for Go = 0) is taken as I then a single iteration
produces

(I + G1) -1 - I - G1 (42)

where Gl is G at the present time. If, however, we enter the iteration with the value Xo = I - GI then,

due to the quadratic convergence characteristic of the process, a single iteration produces

(I + G1) -1 - I - GI + G12 - G13 (43)

obviously the approximate inverse given in (43) is more accurate than that of (42) since it contains more

terms of the series which expresses the inverse of (I + G1). Note that the series generated by (41) con-
verges since due to the reset operation, G is kept at a very small value such that the condition of theorem

VII.2 is met. Thus the eigenvalues of G are in the unit circle which, in view of theorem VII. 1, assures
convergence.

Another point of interest is the ability to use an alternate equation for computing G. From (31) it is ob-
vious that

2(1 + V) -1 = I + G

which yields

V = 2(1 + G) -1 - I (44)

The computation of V using (44) is simpler than when (28) is used. However, if the reset operation took

place at the previous time point then the use of (28) at the present time point yields better results. This is

evident in particular when the previous inverse, (I + Gi - 1)-1, is approximated by I. In this case the use of

(41) yields the approximation of (42) for which the use of (44) yields

V(ti,ti- l) = I - 2Gi

whereas the use of (28) yields

V(ti,ti- 1) = I - 2Gi + Gi2

which is more accurate than the preceding result. Even when the approximation of (43) is used, the use of

(28) yields better results than that obtained using (44). Then, however, the difference is smaller since the

term of the series which is being added is smaller than the added term in the previous case which was Gi2.

If, of course, an exact inverse is used then the use of (44) rather than (28) is preferable since then the com-

putation of V(ti, ti - 1) is simplified without the penalty of accuracy degradation.
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The algorithm which results from the preceding considerations is shown in Table I. Note that (28) rather
than (44) is implemented for the reasons discussed above.

Table I

Given: V(to) = Vo and W(t)

(1) Set the initial conditions G(to) = 0 and i= 1. Consider to as a reset point.

(2) Solve G(t) = -1[I + G(t)]W(t)[I + G(t)] T from ti-1 to ti.

(3) Initialize Xi as follows:

(a) If reset took place at the end of the preceding cycle, compute Xi = I - G(ti).

(b) If reset didn't take place at the preceding cycle compute Xi = X*i - 1

(4) Compute Ai = I + G(ti) and Xi* = Xi (21 - AiXi)

(5) If reset is requested or if current time is equal to the final time perform a reset as follows (other-
wise go to 6):

(a) V(ti,ti_l) = [I - G(ti)]Xi*

(b) V(ti) = V(ti,ti- 1)V(ti- 1)

(6) If the current time is equal to the final time go to step (8).

(7) If reset was performed in this cycle go to (1). Otherwise increase i by 1 and go to (2).

(8) Stop.

If one chooses to perform reset after each integration step of G then the computation of V(ti,to) as given
in Table I produces

V(ti,to) = I - 2Gi + 2Gi2 - 2Gi3 + Gin (45)

where Gi = G(ti). This is a truncated series of the expression for V as a function of G given in (28) with

the special feature that the last term in the series lacks the multiplier 2. A more computationally efficient
algorithm than that is

18



V(ti,to) = I - Gi{2I - Gi[2I - Gi(2I - Gi)]} (46)

or better yet, if Gi4 is added to (45) to generate the true truncation of the series expansion of (I - Gi)

(I -t- Gi)-1 then the new expression can be written as

V(ti,to) = I - 2Gi{I - Gi[I - Gi(I - Gi)]} (47)

Consequently one can use either the algorithm of Table I as is or compute V(ti,to) using either (45) or (46)

or (47). These, however are not the only possible variants of the algorithm. As a result of the discussions

presented in this section it is clear that one has the following additional choices:

• Perform or not perform resets.

• Use more terms of the series

OO

V(ti,ti- 1) = I + 2E(-1)nGin
n=l

• Use either (28) or (44) to compute V(h,to) from Gi.

The choices should correspond to the particular problem on hand.

As an example we ran a 4th dimensional case where

0 -0.1 -1.0 -7.5

0.1 0 3.0 0

V(0) = I ; W(t) = sin(6.28t)
1.0 -3.0 0 -0.9

7.5 0 0.9 0
u m

the initial time to = 0.

the final time tf = l sec

the integration interval dt = 0.001sec

The algorithm used in the solution of V was the one given in Table I where reset was performed after each

integration step. Equation (I) was solved to yield a reference with which the algorithm output was com-

pared. The reference matrix was denoted by Vr and the one generated by the algorithm was denoted by V.

The integration routine which was used to solve the differential equation for Vr as well as for G was a 4-th

order Runge-Kutta routine. The difference matrix between the two solutions was computed and denoted by
E = V - Vr. A scalar which constitutes a measure of the size of the error was defined as follows

e = [Tr{EE'r}] 1/2
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The scalar e is the square root of the sum of the squares of the elements of E. The results at t = 0.5sec
were:

Vr

-.72765515E+00 .15285696E+00 -.24387237E+00 -.62263874E+00

. 10217642E-01 .58373643E+00 .79194147E+00 -.17881859E+00

-. 13935294E + 00 -.79737729E + 00 .53481405E + 00 -.24237192E + 00
.67156112E+00 -.87171959E-02 -.16531458E+00 -.72221933E+00

V

-.72765512E+00 .15285696E+00 -.24387236E+00 -.62263872E+00

.10217638E-01 .58373643E+00 .79194147E+00 -.17881859E+00

-.13935294E+00 -.79737729E+00 .53481405E+00 -.24237191E+00

.67156110E+00 -.87171923E-02 -.16531458E+00 -.72221930E+00

E

•29723949E-07 -. 18713478E-09 .83326148E-08 .24813968E-07

- .35405291E -08 - .25268088E -09 -. 11170641E -08 .71958844E -09

.42739559E-09 .12413215E-08 .86561824E-09 .83593105E-08

-.25932268E-07 .35672249E-08 .95984923E-09 .29599694E-07

e = .56724776E-07

As mentioned earlier the algorithm of Table I with a reset at the end of each integration cycle amounts
to the use of (46) in the computation of V(ti,to). As suggested, (47) can be used instead. In Table II we

show a comparison between the use of (46) and (47) for different series lengths. The table presents the error
measure, e, for the two series truncated after different powers, n, of G. The error measure was recorded at

t = 0.5sec for at that point, which is half the period of the oscillating W, the value of e is the highest dur-

ing the first period, i.e., in the domain 0. < t < 1.sec. As can be seen from the results, algorithm 2 is su-

perior. It can be also seen that there is a distinct power beyond which the addition of more terms yields
little return. In view of these conclusions we recommend the use of the algorithm listed in Table III which
in fact was used in the first example•
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Table II

n

1 2 3 4 5

1. V(ti,to) = I - 2Gi + 2Giz - ... Gin .17E01 .52E-02 .17E-04 .57E-07 .13E-09
i

2. V(ti,to) = I - 2Gi + 2Giz - .. 2Gin .10 E-01 .34 E-04 .11 E-06 .33 E-09 .63 E-10

Table III

Given: V(to) = Vo and W(t)

(1) Initialize i = 0

(2) Set the initial condition G(ti) = 0.

(3) Solve G(t) = -1[I + G(t)]W(t)[I+ G(t)] T from ti to ti + 1.

(4) Compute

V(ti + 1,ti) = I - 2Gi + l{I - Gi +l[I - Gi + 1(I - Gi + 1)]}

V(ti + 1) = V(ti + 1,ti)V(ti)

(5) If the current time is smaller than the final time go back to step (2) and increase all indices by 1,
otherwise STOP.
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VIH. CONCLUSIONS

This work addressed the problem of solving the first order differential equation, which every orthogonal
matrix satisfies, using the minimum number of parameters necessary to uniquely determine the matrix. The

major question was: which are the parameters that determine this matrix. The other questions were: what is

the differential equation which one has to solve in order to find the parameters, and: once the parameters

are found, how to use them in order to find the corresponding matrix. All these questions were answered

and several algorithms for computing the orthogonal matrix via the parameters were suggested and inves-
tigated.

In search for solutions the familiar special 3-D case was examined with the purpose of extending the
methods used there to the general n-D case. Accordingly, the first thought that came to mind was the idea

of extending the concept of Euler angles to the n-D case. It turned out that, although not well known, Euler

himself succeeded in using Euler angles to parametrize higher dimensional orthogonal matrices. Euler,

however, was not concerned with the dynamic case; that is, with the differential equation which describe

their change in time (neither did he do it for the 3-D case). Lagrange improved Euler's approach and

presented it in the first edition of his book on analytic mechanics. We did not adopt this approach because

of the multitude of the trigonometric functions that one has to trace and compute and because of the com-

plexity of the differential equations which describe the time change of the extended Euler angles.

Another popular 3-D parametrization which was considered was the quaternion of rotation. This

approach did not seem to lead to any solution and was abandoned. The last parametrization which was exa-

mined was that of Rodrigues. In the vast literature on 3-D methods the elements of this parametrization are

known as the Gibbs vector or Cayley-Rodrigues parameters; however, the presentation of these parameters

by Rodrigues in 1840 [7] preceded the work of Cayley who, as a matter of fact, credits Rodrigues with
their discovery [18, 19]. Rodrigues' work certainly preceded that of Gibbs who first published his research

on these parameters in 1884 (see Ref. 9, p. 17). Although it seems that Rodrigues was the first one to

present them, it turns out, as noted by Jacobi [13] and by Roberson [8], that even these parameters were

first presented by Euler [20] although in a different form. Ironically, while Rodrigues based his development

on the, by now, very famous theorem of Euler [21], Euler himself was not aware of the possible use of his

own theorem in the derivation of these parameters. (The theorem states that any final sequence of 3-D rota-

tions can be presented by just one rotation about a single fixed axis)*. It is, however, Rodrigues who devel-
oped the parameters in their present known form. For this reason we refer to their extension to n-D as the

Extended Rodrigues Parameters. It was shown that the parameters can be conveniently extended to n-D. In

fact there is nothing that limits their validity to 3-D only. Indeed, the theorems used in the presentation of

the Extended Rodrigues Parameters in this work do not assume any restriction on the dimensionality of the
space in which they are used.

Projecting the 3-D concepts into n-D raises the question of the correct mathematical representation of

angular rates in spaces whose dimension is not 3. It is shown that angular rate has to be represented by a

tensor of the second rank, also known as dyadic. The ability to represent angular rate as a vector is unique

to 3-D. This fact, while known before, was not paid sufficient attention because the vectorial representation

satisfied the intuition and the practical needs of its users. In other dimensions the vectorial representation

fails and the use of the dyadic representation is required. Finally it should be pointed out that when, as in

* As noted by Jacobi, Lagrange too presented this theorem in the first edition of his book on analytic

mechanics [12] but dropped it from the second edition of this book.
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our case, matrices are used, the skew-symmetric dyadic which represents angular rate in n-D is simply

represented by a skew symmetric matrix.
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