Huntsville, Alabama

N C =) m : ,dm
08 c
§ ™~ 0 ©
i Qe & .
: S £ 0 s
> o= :
P22
= —
: 584
oLt g 7
.
xl;\.M. —— e a p , \ ////70 :
3 e Y
. £go .//////M///////////%
= u — f \ “W’)VM //
D t { guv ////.//t/
5 < 0
2
2

NNASA

November 2-3, 1987

The Universily
Of Alabama
InHuntsville

Sponored by:

©

NASA Conference Publication 2492

Third Conference on
Artificial Intelligence for
Space Applications

Part Il

Compiled by
J. S. Denton,
M. S. Freeman,
and M. Vereen

Proceedings of a conference sponsored by

The University of Alabama in Huntsville and

The National Aeronautics and Space Administration
and held in Huntsville, Alabama

November 2 -3, 1987

NANASN

National Aeronautics
and Space Administration

Scientific and Technical
Information Branch

1988

CONFERENCE COORDINATOR

THOMAS S. DOLLMAN
INFORMATION AND ELECTRONIC SYSTEMS LABORATORY
MARSHALL SPACE FLIGHT CENTER

CONFERENCE CO-CHAIRMEN

JUDITH S. DENTON, MSFC GARY L. WORKMAN, UAH

PROCEEDINGS COORDINATOR

MARY VEREEN

LOGISTICS AND ARRANGEMENTS COMMITTEE

DAVID WEEKS, MSFC KAREN MACK, UAH

TECHNICAL AND PROGRAM COMMITTEE

MICHAEL FREEMAN, MSFC JAMES JOHANNES, UAH

ROWLAND BURNS, MSFC
DAN HAYS, UAH

ELAINE HINMAN, MSFC
BERNARD SCHROER, UAH

CAROLINE WANG, MSFC

PUBLICATIONS COMMITTEE

LUSTER INGRAM, MSFC BERNARD SCHROER, UAH

JEANETTE REISZ, MSFC
WILLIAM SELIG, MSFC

PUBLICITY COMMITTEE

JUDITH S. DENTON, MSFC GARY L. WORKMAN, UAH
GERRY HIGGINS, MSFC
KAREN MACK, UAH
ADVISORS
JONATHAN HAUSSLER, MSFC

ELAINE HINMAN, MSFC
GABE WALLACE, MSFC

FOREWORD

This document contains the Proceedings of the Third Conference on Artificial Intelligence for
Space Applications (CAISA), sponsored by the National Aeronautics and Space Administration's
(NASA's) George C. Marshall Space Flight Center (MSFC) and the University of Alabama in
Huntsville (UAH). There is widespread interest throughout the aerospace community in
utilizing scientific and technical developments from the field of Artificial Intelligence (Al) to
enhance our space program. For NASA, future activities in space will rely on the effective
utilization of key Al components. The intent of this conference is to provide an opportunity for
those groups and individuals who employ Al methods in space applications to identify common
goals, to compare the effectiveness of the various approaches being investigated, and to discuss
issues of general interest in the Al community. The Third CAISA brings together a diversity of
scientific and engineering work and is intended to promote thoughtful discussion concerning the
possibilities created by this work.

Al contains many components, some of which can be selectively applied to develop more
competent, less demanding flight/ground systems. This is the message of the invited speakers at
our keynote session. As the participants in this conference have recognized, there is no more
fascinating - nor more potent - combination of technologies than is found in the use of Artificial
Intelligence to support our exploration of space. The potential benefits to our society and all
mankind are literally limitless. The presentations in our technical sessions discuss various
aspects of this technology. The papers presented were selected through a careful review of the
submitted abstracts by at least five members of the Technical Committee. The selected
presentations, represented by the papers or abstracts herein, were organized into twenty-one
technical sessions. Every effort was made to minimize the conflicts arising from parallel
sessions. The broad range of topics presented is indicative of the interest in NASA's goals
commonly found in the Al community.

This conference would not have been possible without the dedicated efforts of many people. First,
| would like to thank the authors whose research and development efforts are presented here.
Second, | thank the members of all the committees, the advisors, and the volunteers who planned
and implemented the numerous activities which enable a conference such as this one. | thank the
exhibitors for their efforts to develop and demonstrate tools for implementing many of the ideas
discussed during these two days. And, finally, | thank the invited speakers and the many other
people from NASA and UAH whose interest in Artificial Intelligence and space applications makes
this conference both possible and meaningful.

Thomas Dollman

This document contains those Proceedings which were not incorporated in Part I.

TABLE OF CONTENTS

NEW TECHNOLOGIES FOR SPACE STATION AUTOMATION

MTK: An AI Tool for Model-Based Reasoning
W. K. Erickson and M. R. Rudokas

Integration of Symbolic and Algorithmic
Hardware and Software for the Automation
of Space Station Subsystems

H. Gregg, K. Healey, E. Hack and C. Wong

Connecting Remote Systems for Demonstration
of Automation Technologies
R. M. Brown and R. Yee

Knowledge Based System Verification and
Validation as Related to Automation of
Space Station Subsystems: Rationale for
a Knowledge Based System Lifecycle

K. Richardson and C. Wong

DESIGN DATA CAPTURE

TALOS: A Distributed Architecture for
Intelligent Monitoring and Anomaly
Diagnosis of the Hubble Space Telescope
Bryant G. Cruse

COMPUTER VISION

Orbital Navigation, Docking, and Obstacle
Avoidance as a Form of Three Dimensional
Model-Based Image Understanding

J. Beyer, C. Jacobus and R. Mitchell

NEURAL NETS

Genetic Algorithms for Adaptive
Real-Time Control in Space

J. van der Ziip and A. Choudry
AUTOMATIC PROGRAMMING

Automatic Program Generation from

Specifications Using Prolog
Alex Pelin and Paul Morrow

15

25

31

37

47

53

REAL-TIME APPLICATIONS

TES - A Modular Systems Approach
to Expert System Development for
Real-Time Space Applications
Ralph Cacace and Brenda England

vi

MTK: An AI Tool For Model-Based Reasoning

William K. Erickson and Mary R. Rudokas
Systems Autonomy Demonstration Project Office
NASA Ames Research Center
Moffett Field, California, 94035

Abstract

A 1988 goal for the Systems Autonomy Demonstration Project Office of the NASA Ames
Research Center is to apply model-based representation and reasoning techniques in an
knowledge-based system that will provide monitoring, fault diagnosis, control, and trend
analysis of the Space Station Thermal Control System (TCS). A number of issues raised during
the development of the first prototype system inspired the design and construction of a model-
based reasoning tool called MTK, which was used in the building of the second prototype. This
paper outlines these issues, with examples from the thermal system to highlight the motivating
factors behind them, followed by an overview of the capabilities of MTK, which was developed
to address these issues in a generic fashion.

Background

The Systems Autonomy Program is a NASA Office of Aeronautics and Space Technology
(OAST) sponsored program to develop and demonstrate the application of A.L technology with a
focus on Space Station [2][6]. As part of Ames' role as coordinating center for the Systems
Autonomy Program, the Systems Autonomy Demonstration Project Office of the Information
Sciences Division at NASA Ames Research Center is currently developing a knowledge-based
system that will support monitoring, fault diagnosis, control, and trend analysis on the Space
Station Thermal Testbed. The knowledge-based system, to be demonstrated in 1988, has been
dubbed TEXSYS for Thermal Expert System. As part of the development of this system, two
research prototypes were developed to evaluate approaches and highlight technical issues that
would arise in the development of the full-fledged knowledge-based system. These issues, to be
described later, were seen to be relevant to a large class of applications, and inspired the
development of a generic model building and inferencing tool, which has been called MTK
(Model Toolkit).

The Space Station Thermal Testbed

The Space Station Thermal Testbed, currently undergoing integration, test, and evaluation at the
NASA Johnson Space Flight Center (JSC), is being used to evaluate the utility of a number of
thermal technologies for use within the Space Station Thermal Control System (TCS) [4][5].
The Space Station TCS is used to collect excess heat that is generated by the electronics,
experiments, and crew aboard the Space Station and transport it to external radiators, where it is
radiated out into space.

The TEXSYS Prototypes

Work on the prototype system occurred in two phases, with phase I completed in June 1986 and
phase II completed in February 1987. Domain expertise for both phases was acquired from the
chief engineer on the thermal testbed and the engineer who developed a differential equation
based mathematical model of the system.

The phase I prototype focused primarily on the development of a simplified causal model of the
thermal system, performing static state simulation (deducing additional state information from
partial information at a single moment in time) and limited fault diagnosis. The prototype was

developed on a Symbolics 36701 usin g ZetaLispl KEE2 version 2, and SimKit2. The basic
architecture utilized KEE's object-oriented frame-based representation: frames with inheritance
to represent structure, rules to capture behavior and fault diagnosis, and methods for control and
bookkeeping. Two approaches for representing the topology of the system were informally
tested: one technique utilized direct component links/pointers; the other used intermediate objects
called PORTS to represent the interactions between components. While direct links yielded a
simpler design, PORTS offered greater perspicuity and power by allowing for the representation
of behavior at the boundaries of components. A simplified model of the thermal testbed was
constructed, incorporating basic versions of the relevant physical laws and the domain expert's
heuristic rules of thumb. A limited hierarchical representation capability allowed the prototype to
model system-level as well as component-level behavior.

The phase II prototype was developed on a Symbolics 3670 using KEE version 3, Common
Lisp, and MTK. KEE3 provided a number of advanced features upon which the Model Toolkit
was built. KEEpictures provided a flexible graphics interface. KEEworlds provided a set of
facilities for representing different hypothetical or temporal states of the same system in distinct
"worlds". This allowed for representing the system as it changes state over time for dynamic
simulation, or for hypothetical reasoning over different alternatives during fault diagnosis.
KEEworlds includes an assumption-based truth maintenance system which can track assumed
and derived beliefs and their associated justifications in various worlds. Model topology was
represented using CONNECTIONS, an enhanced version of PORTS. Other enhancements in
the second prototype included more detailed causal modeling of both nominal and faulty system
behavior, a more complete model of the thermal testbed, and more detailed representations of the
individual components. The availability of test results from ambient tests on the thermal testbed
[3] provided information on the performance characteristics of the components, producing more
accurate rules for modeling system behavior. Information on faults that occurred during the tests
provided additional knowledge to enhance the fault diagnosis capabilities of the prototype. In
addition, data dumps of sensor readings collected during the tests were used for simulated "test
runs" of the model to verify the accuracy of its analysis of system behavior.

Issues

A number of technical issues were raised during development of the phase I prototype that
inspired the development of MTK as a generic development tool that could be used for other
projects with similar model-based approaches. These issues are described in the next few
sections.

Causal Modeling

The thermal system is made up of distinct, easily definable pieces of hardware that fit together
and interact with one another in well-defined and limited ways. Pipes, valves, pumps,
condensers, evaporators, and other components are completely modular, behave in a reasonably
understood fashion, and interact with one another via a few defined connections. Coolant enters
and leaves a component via recognized inlets and outlets. Heat is transferred into, out of, and
within the system through pre-defined mechanisms associated with particular components:
evaporators acquire heat, radiators release heat, and pipes transport coolant that carry heat. For
these reasons, the thermal system is an ideal candidate for qualitative causal modeling,
simulation, and fault diagnosis [1].

1 Trademark Symbolics Inc.
2 Trademark IntelliCorp.

hic Representation Interf:
Trying to understand or build the model of a system by directly examining or changing the values
of attribute slots in a frame representation is awkward and slow. In addition, it is hard to geta
high-level understanding of the system as a whole by tracing out the topology via attribute slots.
A flexible graphics interface provides a useful approach for representing components and their
interactions, as well as for actually building the model by allowing for the interactive creation of
¢ >mponent instances and graphically defining how they interact with one another.

Hierarchical I

At a certain level of detail, many components within the thermal system can be viewed as "black
boxes" with specified inputs and outputs. But at another level, it may be necessary to look
inside the "black box" at the substructure within. Different levels of simulation and fault
diagnosis will require different levels of hierarchical structure, from system to subsystem to
component to subcomponent, with perhaps other levels in between.

antitative an litative Information
Qualitative causal modeling provides a good high-level picture of what is happening with the
thermal system, capturing much of the heuristic knowledge of the thermal engineer. But in
addition, a large amount of quantitative information is available, together with physical laws that
establish how these quantitative parameters relate to and interact with one another. Although
each level of modelling can be used disjointly, more effective use can be made if both could be
integrated in some fashion.
Parameter Uncertainty
In any modeled physical system, there is always a level of uncertainty concering the actual
value of parameters in the system. Sensor readings are only accurate to within some range;
temperature sensors in the thermal system are only accurate to within 3 degrees. Performance
characteristic curves of components are only approximations of how the component responds in
the system, as determined from earlier test results of that component. It is also possible to
represent some qualitative information as a numeric value with some amount of uncertainty
associated with it.

u ing an nflicting Evidenc
The value of a parameter within a system may be derivable from several different sources. A
sensor may provide one value. Another value may be derived from heuristic performance
characteristic curves. Yet another value may be derivable from first principles using physical
laws. Each value may vary in level of uncertainty, and may support one another or, if based
upon faulty assumptions, may conflict. For example, if a flow sensor is faulty, the value for
flow derived from that sensor may conflict with other values for flow derived from rules of
inference and alternate assumptions. A mechanism for evaluating supporting and conflicting
evidence can provide useful support for fault diagnosis and integrating different levels of
information.

MTK: The Model Toolkit

Originally developed as a replacement for the SimKit package used in the first prototype, MTK
soon absorbed additional support utilities designed to address the issues raised above, and
quickly became a major part of the design effort for the second phase prototype of the TEXSYS
system. '

Structures and Connections
Support for causal modeling in MTK is provided using structures to represent components and
connections to represent the interactions between components. Structures are based upon KEE's

object oriented frame representation. Structures are used to represent discrete physical
components, such as pipes, values, evaporators, and the like. In addition, structures can
represent more abstract entities, such as the entire system, subsystems, or other functional
composites that need to be represented. For each object, connections are defined which capture
all the ways in which one component will interact with others.

Graphics Interface

In MTK, pictoral icons within a model viewport window are used to represent both components
and their connections, with lines indicating links between connections. Component and
connection icons can be edited in the final version to produce a graphic representation that closely
approximates that of an engineering schematic.

Hierarchical Structures

In MTK, substructure is represented in a separate component viewport window that can be
associated with any component icon. The viewport includes icons representing the connections
of the top-level component represented, plus the icons of the subcomponents, their connections,
and the links between these connections.

Parameters
Parameters represent the significant physical measurements important in describing a given

system. In the thermal system these include temperature, pressure, flow rate, and heat.
Parameters within MTK are represented as special objects with value, best value, state, and
history attributes.

Value The value of a parameter is a quantitative amount, such as 72 degrees for a temperature.
Values can be represented as a range, such as 40 plus or minus 5: (40 +- 5). Values may be
assumed, or derived from other parameters and rules in the knowledge base. Since there can be
different rules using different assumptions to deduce a value, there can be multiple values
associated with a parameter, corresponding to different chains of inference.

Best Value The best value of a parameter is the system's best guess of the "real” value of a
parameter, given all the assumed and derived values mentioned above. Whenever a new value is
added to the knowledge base, a new best value is calculated by combining all the values
according to a selected merging function. If the merging function detects a conflict between two
values, a conflicting evidence resolution procedure is activated to evaluate the evidence in
support of each value and attempt to determine which basic assumptions may be suspect. From
this information further fault diagnosis can be performed.

State The state of a parameter is a qualitative symbolic value. Valid symbols could include
LOW, NOMINAL, HIGH, NEGATIVE, ZERO, POSITIVE, or any other designation that is
appropriate for this parameter.

History History is another qualitative parameter summarizing the recent time behavior of the
parameter. Typical values could include STEADY, INCREASING, or DECREASING. Rules
can be defined to deduce history from the current and recent past parameter values.

The ability to represent values as a range or a qualitative state is a useful mechanism for dealing
with parameter uncertainty. The use of value, state, and history information within parameters
allow for both quantitative and qualitative modelling of a system. Rules within the library
knowledge base can be used to define quantitative values (with ranges) from qualitative
information, and qualitative state from numeric values. The merging and conflicting evidence
resolution functions associated with the best value are useful mechanisms in dealing with
supporting and conflicting evidence. Together with KEEworlds and the truth maintenace
system, MTK provides mechanisms that allow the system to evaluate and compare the basic

assumptions that justify conflicting conclusions, and with appropriate rules deduce which
assumption is invalid, or at least reduce the possibilities down to a set of candidate suspect
assumptions, from which separate hypothetical worlds can be generated to evaluate each
alternative in turn.

Summary

The phase I development of a prototype system to support the Space Station Thermal Testbed
raised a number of technical issues. These issues were recognized as relevant to a large class of
problem domains associated with causal modeling. This has inspired and directed the
development of a expert system development toolkit called MTK to address these issues, which
has been used within the phase II prototype, and promises to provide useful support for future
projects involving model-based representation and reasoning.

Acknowledgements

The authors would like to acknowledge the support of a number of individuals. John Kunz and
Kristy Kocher of Intellicorp provided support in using KEE and in knowledge-based system
principles and design. Paul Marshall and Sharon Lafuse of JSC were the domain experts on the
Space Station Thermal Testbed. Roger Remington and Renate Roske-Hofstrand of the
Aerospace Human Factors Research Division at Ames offered insight into the graphics interface.
Carla Wong, Manager of the Systems Autonomy Demonstration Project Office, and Peter
Friedland, Chief of the A.I. Research and Applications Branch, gave overall guidance and
support for the development of the TEXSYS prototypes.

References

[1] Bobrow, D.G., Qualitative Reasoning About Physical Systems, MIT Press, Cambridge,
Massachusets, 1985.

[2] Bull, J.S., Brown, R.M., Friedland, P., Wong, C.M., Bates, W., Healey, K.J., Marshall,
P., "NASA Systems Autonomy Demonstration Project: Development Of Space Station
Automation Technology," Second AIAA/NASA/USAF Symposium On Automation,
Robotics, And Advanced Computing For The National Space Program, March 9-11,
Arlington, VA.

[3] Coleman, W.D., Cloyd, L.M., Chao, D.C., Ritrivi, C.A., McAdams, C.C., Patrick, J.A.,
"Initial Two Phase System Final Test Report,” NASA Contract NAS9-17505, November
1986.

[4] Marshall, P.F., "Space-Constructible Heat Pipe Radiator Thermal Vacuum Test Program,"
14th Intersociety Conference on Environmental Systems, San Diego, California, July 16-
19, 1984.

[5] Rankin, J.G., "Space Station Thermal Management System Development Status and Plans,"
15th Intersociety Conference on Environmental Systems, San Francisco, California, July
15-17, 1985.

[6] Starks, S.A., Rundus, D., Erickson, W.K., Healey, K.J., "NASA Systems Autonomy
Demonstration Program: A Step Toward Space Station Automation,” SPIE Advances In
Intelligent Robotics Systems Symposium, Oct. 26-31, 1986, Cambridge, Massachusetts.

Integration of Symbolic and Algorithmic Hardware and Software
for the Automation of Space Station Subsystems

Hugh Gregg, Lawrence Livermore National Laboratory
P.O. Box 808, L-310, Livermore, CA 94550
Kathleen Healey, Johnson Space Center
Houston, TX
Edmund Hack, Lockheed EMSC
Houston, TX
Carla Wong, Systems Autonomy Demonstration Project Office
NASA Ames Research Center
M/S 244-18, Moffett Field, CA 94035

Abstract

Traditional expert systems, such as diagnostic and training
systems, interact with users only through a keyboard and screen,
and are usually symbolic in nature. Expert systems that require
access to data bases, complex simulations and real-time
instrumentation have both symbolic as well as algorithmic
computing needs. These needs could both be met using a general
purpose workstation running both symbolic and algorithmic code,
or separate, specialized computers networked together. The
latter approach was chosen to implement TEXSYS, the thermal
expert system, developed by NASA Ames Research Center in
conjunction with Johnson Space Center to demonstrate the ability
of an expert system to autonomously control the thermal control
system of the space station. TEXSYS has been implemented on a
Symbolics workstation, and will be linked to a microVAX computer
that will control a thermal test bed. This paper will explore
the integration options, and present several possible solutions.

Introduction

As part of NASA’s Systems Autonomy Demonstration Project
(SADP), a series of four demonstrations will be conducted to show
the capability of increasingly complex expert systems applied to
space station subsystems needs. The first of these
demonstrations, the thermal expert system (TEXSYS), 1is being
developed to show the use of artificial intelligence technology
in the operation and management of the space station thermal
control system. This demonstration is a joint project of the
Ames Research Center (ARC) and Johnson Space Center (JSC) under
the direction of the Systems Autonomy Demonstration Project
Office at ARC. TEXSYS [2] will be used to monitor, control,
diagnose, and reconfigure a large space station prototype thermal
test bed (TTB) at JSC. A small thermal test bed will be used at
ARC during the development and testing of TEXSYS prior to
integration with the large TTB system at JSC.

The thermal expert system being developed at ARC will
consist of an expert system (TEXSYS) and an intelligent human
interface (HITEX). TEXSYS contains the thermal domain knowledge
provided by the Crew and Thermal division of JSC, and will be
used for autonomous control, diagnosis and reconfiguration.
HITEX is the "human interface" to the thermal expert systen,
providing explanation facilities and system status graphics.

This latter system will be developed by the Human Factors
Division at ARC to demonstrate an ergonomic interface to the TTB,
such as would be required by the thermal engineer for use on the
space station. The JSC test bed will be controlled by the TEXSYS
Data Acquisition System (TDAS ([6]).

The thermal test bed at ARC is small version of the two-
phase ammonia thermal bus prototype at JSC. The ARC TTB will be
controlled by a conventional computer control system, and data
collection and communications software will be developed by
Lawrence Livermore National Laboratory. This paper describes the
approacii taken for integration of both the symbolic and
algorithmic hardware and software used for the Ames thermal
brassboard portion of this project. It is expected that this
approach and its extensions will be compatible with and meet the
requirements of the TEXSYS system when integrated into the JSC
thermal test bed facility as described previously [6].

Identifying Algorithmic vs. Symbolic Processes

The three major sections of this project are TEXSYS, HITEX
and the TTB control functions. All three of these processes
could conceivably be executed on one computer, but overall system
performance would not be adequate. It was decided that each of
these functions would be handled by separate computers integrated
into one larger system. This approach allows the use of
optimized hardware for each subsystem, and provides the
capability for the eventual integration of cooperating expert
systems, such as the 1990 SADP demonstration for cooperating
expert systems involving the management of both the thermal and
power systems.

Separating algorithmic and symbolic processes to different
computers has been shown previously to be very effective. The
TQMSTUNE expert system developed at Lawrence Livermore National
Laboratory [1,4-5,7-8] runs on a Xerox LISP workstation, and
communicates with a conventional minicomputer (DEC PDP-11/23)
that operates the triple quadrupole mass spectrometer (TQMS).
The "tweaker" (a process of adjusting an instrumental parameter
for maximum signal) was originally implemented, in LISP, on the
Xerox workstation. When the tweaker was recoded in FORTRAN and
ported to the control computer, the time required to tune the
instrument (the goal of TQMSTUNE) was reduced by a factor of 6.
This time difference reflected the symbolic or heuristic portions
of the expert system’s ability to perform better with high level’
information rather than large amounts of low level data.

These concepts are being applied to the TEXSYS system. For
example, the control and collection of data from the thermal test
bed is an algorithmic process. These processes, as well as data
reduction, storage and display are well understood and are being
coded in standard algorithmic languages, such as FORTRAN and C.

A conventional microVAX II algorithmic processor was chosen for
this application.

The heuristics of control, fault diagnosis, and
reconfiguration are represented as symbolic processes. These
processes comprise the heuristic part of TEXSYS and were designed
using the Knowledge Engineering Environment, KEE (Intellicorp)
and a NASA-developed model tool kit (MTK) for model-based
reasoning on a Symbolics workstation [3]. The size, complexity,
and symbolic nature of TEXSYS require that it remain on a
specialized Symbolics LISP processor but must be able to freely
access high level information abstracted from all the data being
acquired from the microVaX.

The choice of algorithmic vs. symbolic workstation is less
clear for HITEX, for it has simultaneous symbolic and algorithmic
display needs. Therefore, a general purpose workstation (Sun
Microsystems) able to handle both expert system development
environments (i.e. KEE) and display process control graphics,
will be utilized.

Ccommunications Requirements

Each of the three systems briefly described above must be
able to communicate with the others. Both the expert system
TEXSYS and the human interface HITEX require current thermal test
bed information, and both must be able to control the TTB. Each
expert must be able to“interact with the other, i.e. HITEX may be
requested to explain a TEXSYS action, or HITEX (or the human
operator) may need to instruct TEXSYS to change operational
modes. Figure 1 shows the logical communications links required
to implement this system and a few of the Ames TTB hardware

Thermal Test Bed

Sensors (approx)
60 temperature

TEXSYS

2 flow meter

Control 10 pressure
2 liquid level
1 pump RPM

Outputs (approx)

HITEX 20 solenoid valve
3 heaters

Command/Data Messages

Figure 1

parameters that must be controlled. The same types of parameters
must be controlled on the JSC prototype TTB with similar data
rates, but there are considerably more parameters on the JSC test
bed.

The control computer will be acquiring sensor input at a
rate of once per second. The volume of data recorded make it
impractical for TEXSYS and HITEX to evaluate the raw data for
every decision. A second function of the control computer,
therefore, is to extract meaningful information from the
collected data. Examples of this data reduction include
calculating the rate of change for a temperature sensor and
checking all sensors for under or over limit conditions. With
both the raw and processed data available, the expert system and
the human interface can utilize whichever data is appropriate for
a given rule or time constraint. A third function of the control
computer is to moderate conflicting control commands from the two
higher level systems.

Both TEXSYS and HITEX will need to be able to control the
TTB. Control functions include opening and closing valves,
turning pumps on and off, changing set points, alarms and limits
and initializing the entire system. Although it is possible to
have both systems control the TTB at the same time, the control
software will allow only one system to issue control commands.
This allows the expert system, TEXSYS, to be in control, and know
the state of the TTB. If the HITEX system needs to issue a
command, it must request that TEXSYS issue that command. If for
some reason TEXSYS is unable to control the test bed (i.e. the
computer crashed), the data acquisition computer will detect the
lack of activity, and allow HITEX to control the TTB.

Communications Hardware
There are several possible hardware communications schemes,

two of which are shown in Figure 2. In point-to-point topology,
each process would have a dedicated link for every communication

TEXSYS . TEXSYS
Communication
Control and
Controf
HITEX HITEX
Point-to-point connections Common Bus (ethernet)
Figure 2

10

channel. This is the simplest mechanism, but when the system
grows beyond a few nodes, it becomes unmanageable. A bus
oriented topology offers an easy growth path (for adding more
systems) and often allows for logical point-to-point links.
However, as a general purpose shared resource, a common bus may
become a bottleneck and reduce overall system performance. Based
on these considerations, a combination of a common bus and a
point-to-point link was adopted for the TEXSYS project.

The choice of the communication scheme implemented is
dependent on the required throughput of the communication
channel. The throughput includes not only the bandwidth of the
communications hardware, but also includes the software overhead
associated with acce551ng that device. Each of the processors
selected for this project are able to use ethernet as a
communications bus. The protocol used to send packets over the
ethernet will be either TCP/IP or DECNET, depending on the
throughput of each package.

TEXSYS may require large quantities of information from the
data acquisition/control computer. A specialized point-to-point
link between those two computers will be used. This "bus-1link"
(made by Flavors Technology, Inc.) allows the Symbolics computer
direct access to a portion of the microVAX memory. By copying
the TTB parameters into a specified portion of the microVAX
memory, TEXSYS is able to quickly retrieve any required datum.
Control commands and communications with HITEX will use ethernet
to provide consistent interface among all three systems. The use
of both ethernet and the bus-link product give TEXSYS the best of
both systems: a point-to-point link for accessing large
quantities of data, and a common bus to provide an interface to
other systems.

Communications Software

Expert systems running under the KEE shell are able to take
advantage of a KEE feature, active values. When a rule (or LISP
code) either gets or puts the value of a slot (e.g. reads or
writes the value of a varlable), the active value method (e.g.
subroutine or function) is invoked if it exists. This active
value method may execute any code, and the the value it returns
(for a GET.VALUE function of a slot) is used by the rule that
requested the value. Both TEXSYS and HITEX use this mechanism to
retrieve TTB parameters. For example, if a TEXSYS rule premise
is based on the pressure before the condenser (eg. 1), the rule
interpreter retrieves the value of the transducer (eq. 2) and the
active value methods fires (eq. 3). This LISP code either looks
up the value in the shared memory provided by the Bus-Link, or
uses ethernet to request the value from the control computer.

The active value method then returns a value, P, to the slot
(eq. 4), and the rule uses the returned value for its comparison
(eq. 5). Values may be set in the same way.

11

if Pressure_before_condenser > limit then conclusion (1)

GET.VALUE Pressure_before_ condenser (2)
AVGET method (LISP code, returns P) (3)
Pressure_before_condenser = P (4)
if P > limit then conclusion (5)

The use of active values allows for transparent use of the
network to obtain the needed information, and can be used for all
routine messages and data between the human interface and expert
system and the control computer. This method was used for the
TOMSTUNE system described earlier. It should be noted that the
active value mechanism imposes a master/slave relationship upon
the systemns.

Both the human interface and the expert system act as a
communication master (raquestor), sending or receiving data as
necessary to derive explanations of to test the rules. The
control computer, however, must be able to quickly respond, at
any time, to requests from one or more external systems. As a
slave process (data server), the control computer cannot send any
data unless requested by the master process. In the event of an
alarm condition (i.e. sensor out of limit), the control computer
must wait until the expert system requests some data, and then
may send a warning flag indicating a potential problem. The
expert system may then request more information about the
warning. Since the expert system is constantly requesting
information and data from the control computer, the warning
condition will be recognized in short order. This configuration
assumes that the delay in the notification of a warning condition
is minimal when compared to the overall response time required to
service the alarm condition by the expert system.

A second method of communicating between the expert system
and the control computer is to have the expert system explicitly
request information from the communications interface. This
allows the expert system complete control over the knowledge
base, and all information in it will be consistent. A separate
process can receive data and alarms from the control computer,
and the diagnostic portion of the system initiated if an alarm
occurs.

Communications Subsystem

The active value mechanism works well for communications
between the expert system and the control computer, but for
lengthy, information messages (i.e. TEXSYS explaining to HITEX
why certain actions were taken), a different approach should be
taken. Two possible solutions are a direct logical connection
between TEXSYS and HITEX over ethernet, or a microVAX buffered
communications system between the human interface and the expert
system. Both configurations are under consideration.

Ethernet is used as the common communications bus; a
communications interface, implemented on the microVAX, is used as

12

the software communications bus. Figure 3 is a block diagram of
this interface software. The communications interface acts as a
central clearing agent for informational messages, warning
messages and commands. Information messages, from whatever
source, are saved until requested, while warning messages and
commands are immediately sent to the target processes. In this
way, only urgent messages (warnings and commands) interrupt the
expert system, and routine informational messages are retrieved
only when the expert system needs that information.

Dedicated
hardware Control
mwégg ’;&;‘
interface
Ethernet 0
[o]
-3
23
[=
33
HITEX g8
® =
Ethernet Interface S
@
other
tunctions
- Other
) Interfaces
Figure 3

All systems interfaced to this message router have access to
the TTB parameters and status (via the control system 1nterface)
Daemon processes analyze the collected data ("other functions" in
Figure 3) and issue warning messages when needed (i.e. if a
pressure is rising too rapidly or is out of acceptable limits).

In theory, commands to control the TTB may be given by any
connected process, but command conflicts would be a major
problem, and would best be handled by the expert system. For this
reason, it is expected that all commands will originate from
TEXSYS, and HITEX will request TEXSYS to issue commands as
necessary.

The dedicated TEXSYS to control computer link is essentially
a virtual memory device. This link is in addition to the
ethernet link, and bypasses much of the software overhead
associated with the ethernet link. TEXSYS could operate without
this link, but its use allows a significant decrease in TEXSYS
access time to TTB parameters.

conclusions

The division of processes among algorithmic and symbolic
processors is usually straight forward. Accessing data bases or
real-time instrumentation are algorlthmlc processes, while expert
systems are generally symbolic in nature. To effectively
integrate these these processes into a composite system requires -
an effective communications scheme. For small systems, point-to-

13

point links are simple and sufficient; however, for large
systems, bus topology and a message server are usually required.

Acknowledgements

Work performed under the auspices of the U.S. Department of
Energy by the Lawrence Livermore National Laboratory under
contract number W-7405-ENG-48. The support of the the Systems
Automony Demonstration Project Office at NASA Ames Research
Center (proposal L-792) is gratefully acknowledged.

References

(1] Brand, H.R. and Wong, C.M., "Application of Knowledge based
Systems Technology to Triple Quadrupole Mass Spectrometry",
Proceedings of American Association of Artificial
Intelligence (AAAI-86), Vol. 2 (1986) 812-819.

(2] Bull, J.S., Brown, R., Friedland, P., Wong, C.M., Bates, W.,
Healey, K.J. and Marshall, P., "NASA System Autonomy
Demonstration Project: Development of Space Station
Automation Technology", 2nd AIAA/NASA/USAF Symposium on
Automation, Robotics and Advanced Computing for the National
Space Program; Arlington, VA, March 9-11, 1987.

[3] Erickson, W.K. and Schwartz, M.R., "MTK: An AI Tool For
Model-Based Reasoning”, 3rd Annual Conference On Artificial
Intelligence for Space Applications, NASA/MSFC, Huntsville,
AL, Nov. 2-3, 1987.

(4] Gregg, H.R., Brand, H.R. and Wong, C.M., "A Knowledge based
System for Tuning MS/MS Instruments in Various Operational
Modes", 34th Annual Conference on Mass Spectrometry and
Allied Topics, Cincinnati, OH, June 8-13, 1986.

[5] Gregg, H.R. and Wong, C.M., "TQMSTUNE: The Rules", 35th
Annual Conference on Mass Spectrometry and Allied Topics,
Denver, CO, May 24-29, 1987.

(6] Healey, K. and Hack, E., "TDAS: A Thermal Expert System Data
Acquisition System", SOAR-87: 1st Annual Workshop on Space
Operation, Automation and Robotics; NASA/USAF/Univ Houston,
Houston, TX, August 5-7, 1987.

(7] Wong, C.M., Crawford, R.W., Kunz, J.C. and Kehler, T.P.,
"Applications of Artificial Intelligence to Triple
Quadrupole Mass Spectrometry", IEEE Transactions on Nuclear
Science, Vol NS-31, 1, (1984), 804-810.

(8] Wong, C.M., Lanning, S.M., Crawford, R.W. and Brand, H.R.,
"Application of Artificial Intelligence Programming
Techniques to the Development of an Expert System for Tuning-
a Triple Quadrupole Mass Spectrometer", 32nd Annual
Conference on Mass Spectrometry and Allied Topics, May 1984.

14

Connecting Remote Systems for
Demonstration of Automation Technologies

R. M. Brown and R. Yee
Systems Autonomy Demonstration Project Office
NASA/Ames Research Center
Moffett Field, CA

ABSTRACT

Work will begin this year on the development of the second
of four demonstrations of automation technology under the Systems
Autonomy Demonstration Project (SADP). This demonstration will
involve elements of four NASA Centers: ARC, JSC, LeRC, and MSFC.
Intercenter digital data communications will be a vital element
of this demo.

This paper presents an initial estimate of the communica-
tions requirements of the SADP development and demonstration
environments, a proposed network paradigm is developed, and
options for network topologies are explored.

INTRODUCTION

The Systems Autonomy Demonstration Project (SADP) was
established to conduct a series of demonstrations of the use of
advanced automation technology in solving problems applicable to
the Space Station. The first demonstration, scheduled for 1988,
will use expert system technology and model-based reasoning to
monitor and control the operation of Johnson Space Center’s
Thermal Test Bed.

Work will begin this year on the second SADP demonstration,
this one scheduled for completion in 1990. Unlike the 1988
demonstration, intercenter digital data communications will be a
vital element of the 1990 demo. To accomplish the 1990 demo,
elements of Lewis Research Center (LeRC) and Marshall Space
Flight Center (MSFC) will be included in the SADP. The demon-
stration itself requires the interaction of systems located at
LeRC and JSC, and cannot be accomplished without intercenter data
communications.

Within NASA, intercenter data communications are provided
through the Program Support Communications Network (PSCN). The
PSCN employs terrestrial and satellite transmission facilities to
support all elements of the agency and provides a wide variety of
services, including intercenter telephone, FAX, voice and video
teleconferencing, electronic mail, and digital data communica-
tions. The PSCN is based on a foundation of equipment and leased
lines tying together all sixteen major NASA locations.

15

SADPNET REQUIREMENTS

In designing a network like SADPnet, the first step is to
define the overall network goals, including functions, connectiv-
tivity, interfaces, operational quality and cost, expansion
capability, and implementation cost.

Hardware capabilities

To understand the limits posed by the systems at each site,
a study was made of the file transfer capabilities between a
Symbolics 3600 system and two other computers on a 10-Mbit/sec
Ethernet LAN. These measurements were made using the TCP-IP
protocol and FTP service. The results are shown in Table 1.

Table 1 -- Measured file transfer rates
Path No of File size Av time variance transfer
trials (bytes) (sec) (sec) rate
(bytes/sec)
1 ->2 7 0 0.780 0.003 n/a
1 <-2 6 0 2.345 0.738 n/a
1 -> 2 10 1210 1.165 0.010 1039
1 -> 2 5 1209 KB 214.1 10.2 5647
1 ->3 1 1209 KB 111.0 0.0 10892

System 1 is a Symbolics 3600 running Genera 7.1
System 2 is a DEC microVAX II running Ultrix 2.0-12
System 3 is a DEC VAX 11/780 running VMS 4.5

It is clear that the measured transfer rates are relatively
low, reflecting in part the overhead posed by the Symbolics oper-
ating system. However, the transfer rate between the Symbolics
and the VAX for a large file was double that to the microVAX for
the same file, showing that the microVAX also limited the
transfer rate. These data are preliminary, and tuning of the
systems may provide improvements. However, they suggest that the
overall performance of the SADPnet may be strongly constrained by
the computers at each end of the link.

End-user functions

For SADPnet, three major end-user functions dominate the
design: process-to-process communications services; virtual
terminal services; and file transfer services.

The links that will be needed between expert systems are

examples of process to process (p-p) communications. Figure 1
shows one possible requirement for links between JSC and LeRC to

16

connect testbeds at each site. When connected, the expert system
controllers will share information and coordinate actions in a
manner similar to that needed in a Space Station environment.

{) 'd —\
PMAD
Scheduler P TEXSYS
T
T Grumman
PMAD ¢ P TTB thermal
monitor heat ctri bus
L v J _ i J
meceesoam Heavy communications load I-* Heat load

Light communications load

Figure 1. Possible 90 Demo p-p communications

Because these systems have little direct interaction, there
is no apparent need for high data rate between the TEXSYS con-
troller and the PMAD controller. After initial setup, the aver-
age data rate will probably not exceed one packet per second.
Link periods will range from two hours, during the installation
and integration activities, up to several days for the demonstra-
tions. Outages during this period must be avoided or the demon-
stration activity may have to be aborted and rescheduled.

In addition to the general p-p links, SADP needs to have a
virtual terminal (VT) service. VT service allows any of a wide
range of terminals at one site to act as if it were connected to
equipment at another site. A VT session will need to provide an
equivalent to 9600 baud service with link periods of a few
minutes to a few hours.

Because it is so visible to the end user, VT service will be
difficult to provide. Outages, failures to connect, or other
communications failures will interfere directly with the effic-
iency of project staff. In addition, personnel who use this ser-
vice on a local area network get close to 100% availability and
reliability, and will likely use this as the criterion for suc-
cess when evaluating an SADPnet implementation.

17

The third service required for SADPnet is a reliable file
transmission capability. Large file transfers will occur infre-
quently. The distribution of major system builds, for example,
are expected to occur no more than once per month, on the
average. These files are expected to be approximately 2-10
MBytes in size, and data transfer times for these large files
should be accomplished in no more - than a few hours.

Small files will be transferred more often. These files,
less than 1 MByte in size, should be transmitted in a few minutes
or tens of minutes. The transfer rate implied by the above
requirements is modest, less than 15 Kbits/sec.

It is reasonable to expect file transfers to be efficient
users of the provided bandwidth of SADPnet. For example, large
files were recently sent between Langley Research Center and Ames
Research Center over a dedicated 224 Kb/s PSCN line using TCP-IP
protocols. The measured transfer rate was 219 Kb/s, exactly as
predicted by the percentage of overhead in the packet.

Connectivity and Interfaces to Intra-center networks

Each center involved in SADPnet will need to communicate
with at least 2 other centers via SADPnet. 1In fact, the only
path where a need for connectivity has not yet been established
is the MSFC-JSC link.

A possible configuration of the network at JSC for the 88
demonstration provides an example of the local elements of the
overall SADP system. Figure 2 shows a simplified diagram of the
elements of the TEXSYS system, together with other elements of
the Thermal Test Bed. The configuration at ARC is similar -- an
Ethernet bus with computers and controllers directly attached.

Simultaneous service

The SADPnet cannot be effectively used if it is the equiv-
alent to a large party-line where only one connection can be sup-
ported at any moment. The number of simultaneous connections to
be maintained by SADPnet for the 90 demo will be determined by
further studies, but is expected to be less than ten.

Protocols

The SADP communication service will have to support several
protocols. Digital Equipment Corp.’s Digital Network Architec-
ture (DNA) and the ARPAnet TCP/IP protocols are currently used.
As the SADP progresses, it may be found to be appropriate to
convert to the ISO standard. Therefore, it is prudent to design
a network that will simultaneously support all three. This is
not an unreasonable requirement, as both TCP-IP and DNA are
designed to be co-resident with multiple protocols.

18

Ethernet using DECnet protocols

uVAX It uVAX i Sun Symbolics

Figure 2 -- Possible network configuration for 88 demo

Reliability, Availability, and Maintainability

A basic requirement for the SADPnet is that it provide
reliable service, that it be available when requested, and that
an maintenance organization is available and competent to repair
the service when it fails. These requirements are typically
known as Reliability/Availability/Maintainability, or RAM.

Error rate is generally the metric used when considering
reliability. Based upon recent studies of seventeen PSCN links,
a reasonable expectation for packet error rate is that it will
not exceed one packet in a thousand. The PSCN goal for packet
error rate -- based upon ATT standards -- is that it not exceed
0.5 packets per hundred.

Availability is the probability that the service will be
available for use when needed, and that no outages (as opposed to
burst errors) will be encountered once the connection is estab-
lished. An appropriate availability goal is that the system be
available for use at least as often as telephonic access to the
same location. This implies that a request for connection to
another site should be satisfied with an 0.99 probability at an
0.50 confidence level.

Finally, the maintainability of the service should approach
that provided by most long distance digital common carriers.
Though the PSCN is a new network, the service provided by PSCN
operations staff is approaching the level needed.

Expandability

Expansion of the SADPnet is a distinct possibility. It
therefore should be designed now to allow this expansion --
adding sites, services or levels of performance. Expansion
should be possible without hurting the existing service and
without unusual cost impact.

19

PSCN RELIABILITY

Accurate data are available to judge the PSCN performance in
terms of error rate. These come from an unpublished study® of
NASnet, a communications network using PSCN that ties computers
at ARC to 17 other sites, including all of the sites associated
with SADP. These links include dedicated T1 services, switched
56 Kb/s services staying on the PSCN backbone, switched 56 Kb/s
service with tail circuits from the backbone, and dedicated 224
Kb/s lines through the PSCN backbone. All of these links are
provided through terrestrial, rather than satellite, services.

Table 2, below, summarizes the NASnet measurements of the
PSCN error-rate on 15 of the 17 circuits over a 30 day period.
Two of the 17 sites had no traffic during this period.

Table 2 - NASnet traffic statistics

Site up time MBytes MBytes % CRC Circuit
sent rcvd errors type

1 736.0 253.3 155.0 0.00 Ded. ATT T1

2 720.5 5740.2 1272.4 0.02 Ded. 224 Kb no tail
3 699.5 50.2 10.5 0.92 Sw. 56 Kb

4 517.9 1965.0 83.2 0.18 Ded. 224 Kb no tail
5 445.5 14.2 15.2 0.00 Sw. 56 Kb no tail
6 226.0 30.1 18.0 0.00 Sw. 56 Kb

7 90.3 32.8 10.5 0.01 Sw. 56 Kb

8 82.8 21.1 6.8 0.02 Sw. 56 Kb

9 58.7 38.2 13.8 0.01 Sw. 56 Kb
10 44.3 74.1 - 19.3 0.01 Sw. 56 Kb

11 41.5 13.3 5.7 0.05 Sw. 56 Kb

12 37.8 69.3 56.2 0.50 Sw. 56 Kb

13 34.6 42.6 44.2 0.01 Sw. 56 Kb
14 16.7 12.2 40.0 0.02 Sw. 56 Kb
15 4.3 0.0 0.0 0.00 Sw. 56 Kb no tail
16 2.8 0.2 0.1 0.58 Sw. 56 Kb no tail
17 0.0 0.0 0.0 0.00 Sw. 56 Kb

One conclusion that can be drawn from this study is that the
dedicated and switched 56 Kb/s PSCN lines can provide error rates
that are acceptably low when measured against SADPnet require-
ments. Eleven of the fifteen sites demonstrated packet error
rates less than one in a thousand, and all had error rates less
than one in a hundred. The PSCN goal for error rate is 1 in 200,
limited by the commercial carrier offering.

1 Dpata here were provided by Judy McWilliams, General
Electric Corp, from studies covering the 15 week period from May
24, 1987 through Sep 4, 1987.

20

However, the study reveals some problems in terms of avail-
ability. The three dedicated line circuits in this network
should have had 100% availability; only one of these lines
achieved that goal.

That line (to Site 1) provides a standard by which the
others can be judged. It is a dedicated T1 service running over
ATT lines that had an uptime of 100%. No packet errors were seen
on this line under moderate to heavy system loads.

On the other hand, site 2 had over 15 hours of downtime and
a resultant availability of 98%, while site 4 achieved only 70%
availability. The level of service was reported to be considered
"good’ by the users at site 2 and ‘poor’ at site 4.

SADPIET OPTIONS

Since the switched and dedicated line services of PSCN can
provide connectivity with acceptably low error rates, the design
process now involves establishing a network paradigm, topology,
and channel speed; then fleshing these out with hardware and
software options.

SADPnet Paradigm

Because the goal of SADPnet is to connect LANs at each site,
the basic network paradigm proposed is that it be an extended
Ethernet service, though one that has a lower bandwidth for
inter-center traffic than that provided intra-center. This para-
digm permits the use of existing hardware, software, and proto-
cols, and allows for the addition or removal of computer equip-
ment at each site without coordination problems. 1In addition,
experience with this approach has shown it to be both feasible
and economical.

This paradigm involves three major elements, as shown in
Figure 3. The top element is the communications network provided
by PSCN lines, whether dedicated or switched. The bottom element
is the local network, containing the existing and planned
development and testbed computers. In between is an Ethernet
bridge device and communications interface.

The bridge is the critical element in this network. It
transmits to the other sites only those packets being sent to
remote systems. This keeps local Ethernet traffic from being
transmitted through the network, a feature that reduces network
bandwidth requirements enormously. The bridge makes use of
configuration information to manage the network traffic, and to
provide network statistics and security.

21

Program Support Communications Network

Ethernet Ethernet Ethernet
bridge bridge bridge
LAN A LAN C

LAN B

Figure 3 -- Basic SADPnet paradigm

Possible Topologies

The network topology can be a star, a bus, or a series of
point-to-point links. Figure 4 shows four possibilities.

JC

Bus Network Star Network

Point to point network Dial-up network

Figure 4 - SADP Topology Options

22

The bus, star, and point-to-point options shown in Figure 4
can meet all SADPnet requirements; the dial-up option can meet
them under conditions of very light load. Choosing among these
options will require cost/performance tradeoffs, and a complete
analysis of these tradeoffs is beyond the scope of this paper.

CONCLUSIONS

This study has focussed on communications requirements for
the SADP 1990 demonstration. The next step is to validate the
requirements, explore the network options, and select a design.
A project team, including members from each site, should then be
formed to implement the network, a schedule and budget for this
project established, and implementation begun.

SADPnet will be the first within NASA to be used to connect
interacting automated controllers, and to do so over long
distances. The SADPnet has every chance of meeting technical
requirements, cost constraints, and schedule requirements, if the
steps noted above are initiated promptly.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the help provided by the
NASA/ARC NAS Systems Division by making available the unpublished
results of the tests of PSCN reliability and transfer rates.

23

Knowledge Based System Verification and Validation
as Related to Automation of Space Station Subsystems:
Rationale for a Knowledge Based System Lifecycle

Keith Richardson
Carla Wong

Systems Autonomy Demonstration Project Office
NASA/Ames Research Center
Moffett Field, CA 94035

Abstract

The role of Verification and Validation (V&V) in software has been to support and
strengthen the software lifecycle and to ensure that the resultant code meets the standards of
the requirements documents. Knowledge Based System (KBS) V&V should serve the same
role, but the KBS lifecycle is ill-defined. The rationale of a simple form of the KBS lifecycle
is presented, including accommodation to certain critical KBS differences from traditional
software development,

Introduction

This paper discusses the rationale for using a KBS lifecycle to solve some problems of
KBS V&V, describes the agents of this process, and presents three key aspects of variance
from traditional software lifecycles. The KBS lifecycle is described in greater detail in a
longer paper titled : "Workshop on Verification and Validation of Knowledge Based
Systems: Recommendations for Procedures and Research.”"

V&V is the process of overseeing the construction and testing of a software program
according to specifications. The purpose of V&V is to ensure that software is:

1 Designed to be testable,
2) Completed according to defined specifications which lead to testability,
3) Tested according to requirements. ,

The software lifecycle is used to structure this process. Since such a lifecycle has not
been generally accepted for KBS it was natural that one of the major topics of conversation
during the Ames KBS V&V workshop was definition of a KBS lifecycle. (Two proposals
which outline some aspects of KBS lifecycle are discussed in the workshop summary.)

The KBS lifecycle presented here, however, addresses V&V issues in the context of a
complete, high-level, lifecycle description. This lifecycle may be seen as the simplest form,
applicable to a single KBS acting without interaction with other systems, but including the
human interface. Some other complex situations will only need reasonably straightforward
adaptations of the lifecycle, while others using new AI methodologies or with

25

interdependencies to external systems will not be accommodated by a KBS lifecycle without
the benefit of further experience and research.

For the purposes of this paper the lifecycle is further simplified to the following
structure:

- Requirements Phase

- Prototype Phase

- KBS Build Phase

- Test Phase

- Delivery and Monitor Phase

The basic format of the KBS lifecycle is derived from traditional software lifecycles,
both for the reason that these lifecycles are better understood by the sponsoring organizations
and software developers and because there are many aspects of KBS software methodology
which are similar, or the same as, traditional software. Where software development
methcds are similar it is cost effective to capitalize on this extensive experience in
traditional scftware.

Satisfving Azents of KBS Devel I

Among the critical problems which must be solved by a KBS lifecycle is the
satisfaction of all the agents in the process. The major three agents are:

1) The agents who sponsor the project: the organization, managers, and
investors.
2) The agents who build the KBS, the domain experts, knowledge engineers, test

engineers, etc.
3 The end users of the KBS,

A person may serve as more than one agent in the KBS development.
The reason for satisfaction of the first set of agents is self-evident.

Satisfaction of the KBS builders is necessary because there are some aspects of the
KBS development only they are familiar with - not every programming decision can be
recorded. Some have suggested that independent testing and V&V agents will have a better
understanding of the KBS than the builders; what they mean is that certain blind spots in the
developer’s perception are better discovered by people with different blind spots. Among the
ultimate authorities for the integrity of a KBS must be the people who have been involved in
the experimental process of prototyping - no other group will understand design decisions in
such precise detail. For this reason the KBS lifecycle should support testability as defined by
the KBS requirements, and support only secondarily independent code evaluators.

The third set of agents is the users. User acceptance is the final step in the KBS
process before the KBS will be used and can be called successful. The importance of the users
to the acceptance of a KBS can be more important than in acceptance of traditional software
in three related ways: '

1) Some users, e.g. astronauts, mission controllers, or doctors and lawyers,
(and their professional organizations, the AMA, and ABA) have almost complete authority to
decide whether software will be used in their domain - independent of their ability to
substantiate their concerns.

26

2) A KBS may need to perform a range of functions, such as diagnose, monitor,
control, educate, etc. Which of these functions are important, and in what manner they may
be fulfilled is largely the decision of the users.

3 Users must evaluate how effectively they are able to use the KBS information
in their real world domain.

The satisfaction of these three sets of agents, the sponsors, the builders, and the users,
is the goal of the KBS lifecycle. This satisfaction should provide direction to all phases of the
KBS lifecycle, and each stage must contribute to the end result of the process.

Three Aspects of the KBS Lifecvcle

Among the important aspects of adaptation of traditional lifecycles to KBS
development are:

D Changes and improvements to requirements documents.
1D Addition of a reiterative prototyping loop.
n Inclusion of the user in the development process.

D _Requirements Documents,

Some in the Ames workshop felt that the documents which are produced before
prototyping in the KBS development process needed to be mare completely specified - some
went as far as to say that inadequate requirements were the primary cause of the failure of
KBS development efforts. Others insistently pointed out that the result of the experimental
process cannot be predicted before prototyping, and that precise specifications were unlikely
or impossible.

Issues can be confused by this simple polemic distinction between requiring more or
less thorough requirements documents. The suggestion made by this paper is that a different
sort of requirements document is necessary which at once suits the experimental nature of
KBS development, the pragmatics of funding and time constraints, and the necessity to be
able to test function and assess the KBS success.

Experimental concerns dictate that the KBS development process be as unconstrained
as possible and able to exploit fortuitous discoveries during the pmtotypmg phase. Because
neither the domain experts or the knowledge engineers have a precise idea of which
experimental areas will be practicable at the beginning of the prototyping phase, enough time
and resources must be available to pursue the certain number of investigations which will
not contribute directly to the final KBS. Any requirements documents should be written to
accommodate the prototyping process, and should specify money, time, and other resources
available for prototyping.

Constraints dictated by KBS development sponsors, besides including restrictions on
resources, should also specify as closely as possible criteria for success. In a "proof-of-
concept' KBS development project , such as the Systems Autonomy Demonstration Project,
the criteria for success will be the proof or dis-proof of the practicality of KBS application in
an environment generally - no specific function may be required of the final stage of the
KBS. A commercial KBS project intended for delivery and/or sale will be measured by
utility functions such as: customer satisfaction, number of units sold, profit, repeat sales,
maintenance costs, etc. KBS intended for NASA will use various criteria of success which
will depend on program goals, intended use, hazard analysis, etc.

27

The requirements documents, where it measures KBS success in terms of utility,
must take in account the uncertain process of the prototyping phase. It should include
statements of goals as well as of resources. The format which is liable to be crucial to KBS
development is the specification of a range of results, or a number of solutions. The sponsors
of KBS development need to put considerable thought into the various combinations of
constraint satisfaction which will prove satisfactory to them.

ID.Reiterative Prototype L

Incremental refinement in prototyping is an inseparable feature of KBS
development. Traditional software management is uncomfortable with this seemingly
open-ended process, but costs and other resources can be controlled by astute specification of
requirements.

The prototyping loop has also caused controversy in that the documentation style of a
traditional software prototype seems to be overly cumbersome for KBS development.
Traditioxalists are uncomfortable with less than "complete” documentation, while KBS
developers point out that design decisions early in the prototyping process which are later
superceded are expensive to document and do not serve in a direct way to satisfy
requirements. A goal should be that complete documentation be kept of any aspect of the
project likely to be incorporated into a final version of the code. An experimental notebook
may be an example of a format which satisfies all parties; decisions on what to include will
be made partly by the prototype development team, and partly by system requirements.

The KBS prototype loop's duration and experimental extent will be limited by the
requirements specification.

Where the requirements documents are intertionally incomplete one of the goals of
the prototyping phase is to add further details to them. Thus a complete loop in the prototyping
phase involves:

1) Knowledge Acquisition/Extraction.,

2) Building of a Prototype.

3) Evaluation of Results, .

4) Augmentation of Requirements Documents.
5) Decision on Direction of Next Prototype.

Decisions about project directions are made on the basis of newly revised
requirements documents, and experimental results from the most recent prototype, and are
used to determine whether: a) another prototype is needed, b) the project should be
discontinued, being unable to satisfy requirements, ¢) the project should continue into the
next lifecycle phase, which is to build a less experimentally oriented KBS which will serve as
a platform for associated development efforts in interfaces, testing plans, user facilities,
formal documentation, etc.

Following prototyping, changes to fundamental aspects of the KBS become less
practical. During the prototyping, efforts to KBS development are restricted so that they rely
on mostly inflexible assumptions, after prototyping, KBS-related efforts rely on the stability
of the prototype itself. Major design decisions should be made during prototyping phase, later
changes are possible, but at greater cost for associated efforts.

28

IID User in the Loop,

Another major difference between traditional software lifecycles and KBS lifecycles
is the increased involvement of the user. It has been suggested that the end user of a KBS may
have much discretionary power in approving use of a KBS. This hurdle can be anticipated
and surmounted by including users in the development process.

In traditional software lifecycles precise user requirements can be included, or
tacitly implied, in the requirements documents; but these documents can remain incomplete
in the KBS lifecycle until a fairly late stage. At KBS requirements specification the
incomplete user input is mitigated by the presence of the domain expert during prototyping,
who in some ways will typify the concerns of the general user.

In traditional software another point of user input in the development process is the
Alpha or Beta test, where a nearly finished version of the software is placed in an
environment typical of expected use. In a KBS it is much more difficult to define "typical
environment' and "expected user”. One solution, indeed, is to limit KBS use to narrowly
defined situations. An approach which is more appropriate for a KBS to be used in a variety
of situations, and by users of varying skills, is to attempt to accommodate as many
environments as possible. These accommodations will start by a direct user contribution to
the requirements documents.

To the extent a KBS is liable to be used in situations which were unanticipated by the
designers, or which change over the lifespan of KBS use, it is necessary to extend the KBS
lifecycle to include user reaction and comment after KBS delivery. The overhead incurred
by this additional burden should be designed to be of less cost than the combined benefit: to
current users, to addition of new areas of utility, and of the value of direct user input for later
versions of the KBS,

User interaction is liable to be least effective in the prototyping phase, where the state
of the development process is complicated to explain , and the state of domain knowledge is
non-coherent. The writing of requirements documents, however, provides an opportunity in
that at that early point it is efficient to catch misconceptions about expectations of the user
community, and relatively easy to explain project plans. The user will also have an
important perspective on utility tradeoffs among various possible development options.

Conclusion

These changes, and others which can be found in our related papers, do not represent
a complete plan for a KBS lifecycle. The KBS lifecycle will be improved with experience
following these fundamentally important changes, especially in areas where there is not an
analogous process in traditional software development. The KBS development process also
will benefit from a significant amount of research over the next few years to improve
predictability, costing, enhanceability, and so on. Research suggestions include
improvements to supporting hardware and software, new KBS tools, automated testing
facilities, and continued improvement to the KBS lifecycle.

Good V&V of KBS will follow improved specification and control of the KBS
development process. Since the KBS V&V process is now being formalized it will be in the
position to accommodate the latest software concerns; if the KBS V&V process seems difficult
it is partly because more stringent demands are now being made on all software
development. KBS V&V, then, in some ways will be the first to incorporate new standards of
quality for software.

29

Acknowledgements

The technical assistance and comments of Dr. H. Lum, Dr. P. Friedland , and M.
Dutton were much appreciated in the production of this paper.

30

TALOS: A Distributed Architecture
for
Intelligent Monitoring and Anomaly Diagnosis of
the Hubble Space Telescope

Bryant G. Cruse
Lockheed Missiles and Space Company
Code 400.8, NASA/GSFC
Greenbelt, Maryland 20771
(301) 286-3105

ABSTRACT

Lockheed, the Hubble Space Telescope Mission Operations
Contractor, is currently engaged in a project to develop a
distributed architecture of communicating expert systems to
support vehicle operations. This architecture, named TALOS
(Telemetry Analysis Logic for Operating Spacecraft) has the
potential for wide applicability in spacecraft operations.
The architecture mirrors the organization of the human
experts within an operations control center,

The Hubble Space Telescope (HST) is presently scheduled
for launch in June, 1989. When launched it will be the most
complex spacecraft yet operated from Goddard Space Flight
Center. Lockheed Missiles and Space Company is the prime
integration contractor for the HST and is also the Mission
Operations Contractor (MOC) for Goddard.

Operating the vehicle will be a knowledge intemnsive
task. MOC personnel will be checking more than 4900
individual telemetry ©parameters on 200 CRT displays
against a daily Mission Timeline printout several inches
thick to verify spacecraft operation. Monitoring operations
will continue around the <clock on an almost continuous
basis.

31

0Off-line operations consist of diagnosing malfunctions
and anomalies recognized by the on-line persomnel, devising
recovery procedures to restore normal operation once an
anomaly has been understood and to track long term trends in
vehicle performance. The systems engineer must be prepared
to wade through a sea of data including telemetry, on-board
computer memory dumps, schedule information, orbital data,
and design specifications.

The MoOC began to evaluate the potential of
Knowledge-based software late in 1984, Interest was
anything but academic. The MOC is not a research
organization. If AI could help it operate the Space
Telescope with greater safety and efficiency it would be
used, Otherwise, effort would continue to be
concentrated on conventional approaches.

The MOC's first expert system based application for

the space telescope was demonstrated in the fall of 1986.
The system extracted 70 different engineering
parameters from a history tape recording of the vehicle
engineering downlink and analyzed them with respect to
vehicle safemode events. The system contained 230 rules and
was able to perform in 5 or 10 minutes an analysis that
would have takem a trained engineer about an hour.

This application married a telemetry extraction program
written in FORTRAN with an expert system written using LES,
the Lockheed Expert System. LES was a good choice for a

number of reasons. First, it runs on the HST VAXes sparing
the expense and difficulty of buying and integrating a LISP
machine into the ground system. More importantly, LES's
knowledge representation syntax is relatively
straight-forward and approachable by the average spacecraft
engineer. Learning to wuse LES 1is no more difficult than

learning the PSTOL operating language of the HST ground
system. This characteristic saves the expense and difficulty
of finding or becoming LISP programmers. Finally, "customer
support” for LES from the Lockheed AI center 1is excellent.
Numerous changes have been 1incorporated into LES directly to
support the MOC's needs.

Encouraged by the success of the first application, the
MOC has, in partnership with the ST program in Sunnyvale and

32

the AI Center, expanded +{(le architecture to one which has
potential capabilities for automation in all our monitoring
and diagnostic functions. Work has been conducted within a
number of practical constraints. Development and test of
TALOS cannot be allowed to place any risk or processing
burdens on the existing ground system. It must be hardware
and software compatible with the existing ground system.
Also to be useful in the area of real-time monitoring in the
STOCC it must perform very fast if it is to keep up with

the incoming data. At the same time 1in the off-line
diagnostic mode it must be flexible and offer a good
explanation facility.

While LES is well suited for the off-line
diagnostic role it does not have the speed to handle the
quantity and rate of the HST real-time engineering
downlinks, Fortunately, a symbolic processing tool
several orders of magnitude faster than the current
generation of expert system shells is being developed at the
Lockheed AI Center. L*STAR, with it's high speed and
high resolution <color graphics, is an ideal tool for the
on-line portions of the architecture. Like LES, L*STAR
is VAX/ VMS compatible and has a user-friendly knowledge
representation syntax.

If there is a "classic" approach to developing an expert
system it is something like this: A knowledge engineer,
who knows everything about an expert system shell but
nothing (initially) about the problem to be solved,
"extracts" knowledge from a domain expert, who knows nothing
about AI, and captures the domain knowledge in the syntax
of the shell., This approach has worked well enough for
small applications of 100 rules or so but it is doubtful
whether it will work on a very large system. A
knowledge engineer camnot build a working system if the
knowledge that goes into it is unintelligible to him. He
must come to understand the knowledge of the domain
expert to a certain critical level to build a truly useful
system. This is not a terribly tall order for a simple
machine like a soup sterilizer but for the Space Telescope
it is daunting.

Providing a significant 1level of automation in the
operation of a machine as complex as the Space Telescope
could easily require 10,000 rules. The expertise that would
be represented in the rules lies not in a single expert but

33

in tens, even hundreds, of experts throughout the
Space Telescope community. These experts have years of

spacecraft engineering and operational experience, A
further complication is that the expertise that does exist
is of a particular kind. At this point experts in

operating the space telescope are really experts on how it
is planned to operate and how it is expected to work on
orbit, Only by sifting through experience accumulated
through tests and with other spacecraft can the expert come
up with a sound rule for application to the HST.

It is expected to be easier to train spacecraft
engineers (who, after all, are no strangers to computers and
programming) how to effectively use expert system shells than
to teach professional knowledge engineers how to fly the
space telescope. Experience thus far has borne out this
approach. '

That the TALOS architecture must be a distributed one

a given due to the number and over-all complexity of desired
tasks. Data analysis must be shared between several expert
system modules if knowledge bases are to be kept to a
reasonable size. The approach in partitioning the
knowledge bases has been to mirror the organization of human
experts within the MOC. Modules which support on-line
STOCC operations are termed "monitor modules." These
modules will Dbe active on a continuous basis and
will have capabilities based on the functional
responsibilities initially defined for the MOC Operations
Engineering console positions. Modules which support
off-line operations are, with one exception, termed
"diagnostic modules." The exception is the Datamaster
module which identifies and subsets telemetry or other data
required by the diagnostic modules,

Since the analysis of telemetry from one subsystem is
often relevant to another, TALOS modules must communicate.
Monitor modules must also have the <capability to send a
message to a diagnostic module when an anomaly has occurred
that needs to be diagnosed. Since the diagnostic modules are
not active at all times, messages from the on-line modules
will cause the diagnostic module to activate.

Functions supported by the monitors will be essentially
identical to those performed by operations personnel,
anomaly recognition, uplink management and command execution
verification.

Each subsystem monitor module will recognize and provide

34

a warning when any vehicle operating constraint, restriction
or limitation has been violated or is approaching a viola-
tion, When some immediate action should be taken in response
to a malfunction the operator will be directed to the correct
procedure.

Subsystem modules will generate knowledge of expected
events relevant to that subsystem derived from the mission
timeline. Modules will, at the time of the expected event,
monitor the appropriate telemetry monitors to assure that
the on-board stored commands are executing properly to
accomplish the expert operation.

A special monitor system, the Operations Controller
module, will <check real-time commands prior to wuplink
to ensure that execution of the command by the spacecraft
is appropriate for the current vehicle operating mode as
determined through analysis of the telemetry. The Operations
Controller module will also check wuplink 1loads prior to
transmission to ensure the correct load is being uplinked.

Diagnostic modules have two primary functions. First is
to reduce the time required to analyze the cause of anomalies
and recover from them. The second is to identify anomalous
or adverse long term trends in telemetry.
Diagnostic subsystem modules will be activated
automatically by a monitor module when an anomaly is
detected or by a human subsystem engineer. When
activated automatically, a module determines what data to
analyze and will attempt to diagnose the problem. Results
of the analysis, either determination of a probable cause or
at minimum elimination of some of the possibilities, will
be printed out. Diagnostic modules will also be activated
periodically to amalyze archived data for anomalous or
adverse trends.

Near term prospects for implementing TALOS on a large
scale for the Hubble Space Telescope are uncertain due to
budget and schedule constraints. Development work 1is
expected to proceed, however. The general TALOS capabilities
are applicable to almost any spacecraft operations control
center. The integration of rule-based shells, telemetry data
handling wutilities, communications capabilities and other
spacecraft related wutilities that are part of the TALOS
architecture can be seen as a generic system for development
of highly automated spacecraft control centers.

35

. TALOS:
@7 & EXPERT SYSTEM BASED ARCHITECTURE

SPACE

LES BASED EXPERT SYSTEMS
FOR OFF-LINE DIAGNOSIS

O

TELESCOPE ==—=MISSION OPERATIONS CONTRACTOR

STOCC L-STAR BASED EXPERT SYSTEMS SCAR
FOR REAL-TIME VEHICLE MONITORING |

DISPLAY PROCESSES

OO

9¢

| t ¢
£ ; 3 T : !
T PCS PCS
SUP REAL-TIME >! bracnosTIC
SUPERVISOR MONITOR | MODULE
MODULE 4 4
3 DMS o DMS
REAL-TIME I DIAGNOSTIC
OPERATIONY 4 4
CONTROLLER EPS EPS
REAL-TIME PIDIAGNOSTIC
MONITOR MODULE

@ DATA-
' MASTER |4

DATA
HANDLING %EAL'T”\AE
—
PROCESS A TELEMETRY

Orbital Navigation, Docking, and Obstacle Avoidance
As A Form Of Three Dimensional Model-Based Image Understanding

J. Beyer, C. Jacobus, B. Mitchell

Environmental Research Institute of Michigan
P.0O. Box 8618, Ann Arbor, MI 48107

ABSTRACT

Range imagery from a laser scanner developed at ERIM can be used
to provide sufficient information for docking and obstacle avoidance
procedures to be performed automatically. Three dimensional
model-based computer vision algorithms 1in development at ERIM can
perform these tasks even with targets which may not be cooperative
(that 1is, objects without special targets or markers to provide
unambiguous location points). Roll, Pitch, and Yaw of vehicle can be
taken into account as image scanning takes place, so that these can be
corrected when the image is converted from egocentric to world
coordinates. Other attributes of the sensor, such as the registered
reflectance and texture channels, provide additional data sources for
algorithm robustness.

1. INTRODUCTION

ERIM has been working towards a laser collision avoidance and
spacecraft docking system over the last year. Our interest in this
project has been motivated by several key events. We have had a long
history of using laser radar techniques for precision robotics control
for manipulation of parts in jumbled environments, for navigation and
obstacle avoidance for vehicle systems (for both factory and natural
environments), and for remote data collection for mapping. We
recently (October 1987) were selected by NASA Code IC to be the second
Center for Commercial Development of Space Automation and Robotics,
and have been tasked with developing the sensing systems component of
the Fairchild Space Company Team's Flight Telerobotic Servicer (for
NASA Goddard).

To support these activities we began working on the design of a
system which will allow imaging and docking with uncooperative
spacecraft (or other material). By uncooperative, we mean craft which
may not have special reflectors or patterns to facilitate the docking
operation. This is in contrast to the work currently underway at
Johnson Space Center to demonstrate a system which requires designed
targets mounted on the spacecraft (i.e. works with cooperative
craft). The concept is based on forming range images from a sensor
mounted on a maneuverable spacecraft (Figure 1). These range images
‘are then processed by a model-based image processing system to find
distinct object 1locations which can be used to drive a
docking/tracking algorithm.

We discuss how this technology, in two different forms, 1is
applicable to both the obstacle avoidance and the precision inspection
(and robot control) problems in a Flight Telerobotic Servicer system,
and can be used to validate and analyse large space structures, like

37

the Space Station.

Figure 1 shows a schematic form of the basic docking problem. To
be able to maneuver to a given spacecraft, it is necessary to be able
to measure its orientation and motion relative to the maneuverable

platform precisely. In open space (free from other significant
gravitational forces), docking can be directly computed from the
relative orientation and motion parameters. In an orbital

environment, the computations are more complicated, and also require
description of the orbital parameters of one of the spacecrafts.

To determine the relative orientation of a craft, the radial
measurements from a sensor on the maneuvering platform to three or
more known points (Pl, P2, P3) on the craft are sufficient. Figure 2
shows three such measurements, R1, R2, and R3. To calculate the
satellite coordinate system's unit vectors, U, V, W, as a function of
the maneuvering platform's, X, Y, Z (centered at the sensor) :

U
AY

(R3 — R2)/abs(R3 - R2)
(R1 - R3)/abs(Rl — R3)
W=U=xV

|

The direction cosine matrix, D, can be converted into any
equivalent form, such as pitch, roll, yaw, and is computed as follows:

transpose(U)
transpose(V)
transpose(W)

D=

The difference in D from measurement to measurement can be used to
estimate changes in orientation (pitch, roll, and yaw) and position
for motion estimation. These calculations can be made for any three
locations P1, P2, and P3 as long as they are not colinear.

Because of errors in measurement, and because of the possibility
of missing measurements (due to loosing identification of P1, P2, P3),
it is advisable to feed the the measurements into a Kalman filter.
This provides for continuous prediction of spacecraft motion and
estimation of probable errors in location.

Table 1. summarizes the design goals for the Johnson Space
Center cooperative docking experiment. These have been taken by us as
reasonable specifications for the docking sensor, with the exception
of the maximum bearing angle, which we believe should be as close to
180 degrees as possible (to allow docking and obstacle avoidance over
an entire hemisphere), and pitch/yaw which should allow for +/-180
degrees of rotation.

38

Table 1. Docking Sensor Requirements and Accuracy

Quantity Measurement Range Measurement Accuracy

Range 0-5 mi 1% of range to 0.016 ft

Range Rate +/-20 ft/s 0.7% of range**1/3 to 0.01 ft/s
Bearing Angle +/-10 deg 0.05 deg nominally

Bearing Angle Rate +/-1 deg/s 0.003 deg/s nominally

Pitch and Yaw +/-45 deg 0.3 deg within 100 ft

Roll +/-180 deg 0.3 deg within 100 ft

Attitude Rate +/-6 deg/s 0.01 deg/s within 100 ft

3. THE SENSOR

ERIM's approach to performing the ranging task involves using a
three dimensional laser ranger. This technique and the associated
technology has been developed and used for obstacle avoidance,
robotics applications, and mapping for over ten years. The three
dimensional ranger is essentially an optical radar, and is shown in
functional form in Figure 3. The laser ranger uses a laser diode
operating at 820nm as its source. This diode is amplitude modulated
and scanned across the field of view using moving mirrors. The beam
is reflected off of the target satellite, and the reflected 1light is
gathered by the receive optics and focused on an avalanche photodiode.
The signal from the detector has the same frequency as the laser diode

modulation, but displaced in phase. This phase shift is proportional
to range.

To measure the phase precisely, a lower frequency waveform is
mixed with limiter amplified transmitted and received signals, and the

resulting lower frequencies are phase compared digitally. This
technique allows range measurement to be made real time, without post
processing, except for sensor model correction. By taking

measurements in an array, two dimensional images of range data (along
with registered reflectance data) are formed. Figures 4 and 5 show
representative reflectance and range images of part of a shuttle model
(on a non-reflective background to simulated space). Note that range
data 1is indeterminate where reflectance values are zero (black in the
reflectance data). Figure 6 shows the range data plotted as a three
dimensional surface, after the reflectance channel data is used to
gate accurate range values only.

There are two key issues which make the ranging system required
for this application somewhat different from those previously designed
for vehicle guidance and robotics. The first is the necessity to
achieve prescribed ranging accuracies. The basic signal to noise
relation is:

S/N = Isg**2/(Ishl**2 + Iss**2 + Inep**2)
Where Isg is the signal current from the reflected beam, Ishl is the
shot noise in the detector due to this signal current, Iss is the shot

noise due to solar illumination, and Inep is the detector noise
equivalent power current. The range measurement accuracy is limited

39

by this S/N ratio. Figure 7 shows a set of design curves relating
range error to S/N for targets at several ranges, and demonstrated
some nominal values for an achievable docking system using this
technology.

Another issue is the likely necessity for measuring range over
progressively shorter range distances to higher accuracies. The basic
phase detection-based ranging scheme is limited to range measurement
over fixed ambiguity distances which are determined by the laser
modulation frequency, f, (and the speed of light, c):

Ra = Ambiguity Interval = c/2f
Measurement over varying ambiguity ranges can either be handled
by having programmable modulation sources, or by mixing two
frequencies, f(1) and f£(2). If the ambiquity intervals of each are:
Ra(l) = c¢/2f(1) Ra(2) = c/2f(2)

Then there will be a beat frequency of £(B) and a corresponding
ambiguity interval, Ra(B):

Ra(B) = Ra(1l)Ra(2)/(Ra(l) - Ra(2))

4. MODEL-BASED IMAGE PROCESSING

After acquisition of sufficiently accurate range imagery, the
problem of docking becomes one of finding usable (accurately
locatable, non-colinear) satellite locating points. In the case of
the JSC demonstration system, the problem is simplified by mounting
highly reflective, coded targets on the satellite in known
configurations. In this way, each reflector point can be located and
identified without significant image processing being done.

The problem with this approach is that every object may not have
these reflectors mounted on it. For instance, every strut used to
construct Space Station space frames will probably not be marked this
way. If the strut is dropped by either a construction robot or an EVA
astronaut, and retrieval is required, features inherent to the strut
will have to be used to determine its position and orientation for
docking.

To provide this more general capability ERIM has applied a newly
developed model-based vision system, VISTA, developed around the
Cytocomputer highspeed flight qualified image processing system, a
Symbolics 3600 Lisp machine, and algorithms developed for three
dimensional surface identification. VISTA (Figure 8) contains three
phases: 1) transformations of images into state—-labeled feature maps
using conventional image processing (for instance to group co-planar
adjacent points), 2) transformation of state-labeled maps into
composite symbolic feature maps (in Lisp 1list form) which describe
features (such as lines, surfaces, and vertices) and the relationships
between them, and 3) identification by matching prototypical
feature-based object models with portions of composite feature
symbolic feature maps. VISTA system software 1is comprised of the

40

image processing language CA4PL, which supports conventional and
morphological image processing on the Cytocomputer and the
VISTA-WORKBENCH which defines object structures, relations between
features, and the VISTA model matching language (and matcher), for
defining object (in this case satellite) 1libraries to drive
recognition.

To find and match satellite features, satellite surfaces, and
then surface junctions (or edges and vertices) must be found, grouped
and coded symbolically. These symbolic quantities can then be matched
against pre-coded satellite models in VISTA's library of known
objects. The satellite encoded models are currently hand built, but
will be build from symbolic input constructed from the range data
taken under controlled conditions in the future. The method for
aggregating surfaces is also under development, however two methods
have been implemented previously. The first finds co-planar points by
using local plane estimates, and then the degree of fit of each
neighborhood range point to the estimated planes. If the individual
range points fit the estimated plane well, then the local area is
marked as flat (the flat state). If the points do not fit the plane
well, then the areas is marked as discontinuous. If the range points
jump discontinuously, then the region is marked as a step
discontinuity, otherwise it is left as a roof discontinuity. These
states are then used to extract a composite feature map, and matched
against models for object segmentation, and then satellite (and
therefore, satellite feature point) identification.

A similar surface aggregation algorithm developed by Besl and
Jain 1is being coded to allow generalization from planar surfaces to
surfaces which are described by more general polynomials. This
enhancement may not be required for satellite docking, because for the
large number of planar surface typically found in man constructed
objects.

5. APPLICATIONS AND FURTHER WORK

This approach to docking is actually a direct application of
three dimensional imaging and model-based image processing to the
satellite location and orientation finding problem. This problem is
also part of the solution to the collision avoidance problem between
controlled multiple robots, between the robots and their workspaces,
and between free-flying objects. These problems are all important for
the Flight Telerobotic Servicer system, and will be addressed as this
project continues.

The automatic generation of VISTA object models is related to the
problem of making a consistent CAD database (composed of high-level
graphical entities, as opposed to simple collections of range points)
from range measurements. We have solved this problem for encoding
complex surfaces as meshes, but must do more work to reliably convert
these meshes into simpler, and more general graphical entities. This
capability allows the accurate capture of solid objects, and can be
used as input to solids modelling system to verify accurate object
mating, without building and fitting mock-ups. As structures in space
become more complex, this capability will be routinely required as

41

part of subsystem physical checkout.

6. REFERENCES

1. Besl, P. and Jain, R. 1985. Intrinsic and extrinsic surface
characteristics. Proceedings of Computer Vision and Pattern
Recognition Conference (San Francisco, CA, June 9-13), pp.
226—233.

2. Sampson, R., Swonger, C. W., VanAtta, P. 1984. Real Time 3
Dimensional Image Processing for Robot Applications. SME Robots
8, (Detroit, June).

3. Crimmins, T. R., W. M. Brown, 1985. Image Algebra and
Automatic Shape Recognition. IEEE Transactions on Aerospace and
Electronic Systems.

4, Jacobus, C., 1986. Autonomous Delivery Vehicle Systems. USPS
Advanced Technology Conference, (Washington, D.C., September).

5. Mitchell, B., Gillies, A. 1987. A System for Feature-Model-Based
Image Understanding. ERIM Report.

42

satellite

Scanning Beam

satellite //

Coordinates

Docking. Sensor

Maneuverable Craft

Figure 1. The Laser Docking System Concept

X

Sensor — Gj
Y
7 .

Figure 2. Laser Range Measurcments

43

Rellectance

s 3 gl

o _ {. Fgircmeen Range rf:e sot 1

;: A Dclector'i - Prase t P e eass
Yaraaanae s ' '_’_‘Dc !

RNl

:3 Scanning ¥

- ;.'é Oscitlator
Mechanism

. amomermrnee

AN

RN
Transmn < Digitized Range
Oplics)\'
— 255
* Image Frame 0 -
0 360°-0° 360°-0°

Figure 3. 3D Scanner Block Diagram

Figure 4. Shuttle Reflectance Image Figure 5. Shuttle Range Image

44

Figure 6. Shuttle Range Image Plotted From Perspective

1000.

100.

-
e

T
1>

RMS Rangs Error, f1

Ty

=
@
<

Rg = 1ft
Rg = 10ft

Rg = 100ft

T TTT

Rg = 3280ft
Rg = 12,000 ft

0o ogq x b O 0O

Rg = 22,000 ft

120.

SNR, dB

Figure 7. RMS Range Error versus SNR For a Typical Design

45

Lbrary of

Feature
Detectors

image m————
—_—
Cyto-
Computar

State-labeled
Feature
Maps

FIGURE 8: VISTA System Overview

Simple Segmenter &
Lbrary of Fearure
Attnbutes
Algormhms

Modei
Faas

Compilation
of Facts

Feature
Maodels

A

Composite
> Symboic
Feature
Map
Symbolics
Computar

46

Hiararchcal
Symbolic
Matcher

&

(Semantic Nets)

Oynamc
Compilatqn
of rules

Modei Specitic
Interoretation Ruled

Genenc Matching
Knowiecge (Rules)

Genetic Algorithms for Adaptive Real-Time Control in Space Systems
J. van der Zijp and A. Choudry

Center for Applied Optics
The University of Huntsville in Alabama

ABSTRACT

The U.S. Space Station planned for the 90's will comprise a large
number of interacting control systems, a situation which will be too
complex for humans to deal with without the aid of knowledge based
systems. However, current knowledge based systems have two undesirable
aspects. Brittleness: problem-solving performance degrades precipi-
tously when the system is operating outside its intended domain, and
adaptation: the ability of the knowledge base to deal with a changing
environment.

Learning systems try to alleviate these problems, by organising
their own knowledge base. These systems can be divided into two cate-
gories: the more traditional rule-based systems on one hand,: and
neural nets and genetic algorithms on the other. The latter two
systems do not operate in the domain, but are ‘sandwiched' between a
pre- and post processing phase.

Systems based on genetic algorithms are characterized by on-the-
fly improvement through a continuous contention -of the available
rules, while maintaining performance levels as new rules are '"tried
out." The most salient feature is the employment of techniques from

microbiology to conquer the combinatorial explosion involved in in-
duction of the new rules.

INTRODUCTION

Classifier systems are a domain independent way of manipulating
knowledge about, say, the characteristics of a real-time control

process. The classifier system 1is embedded into a pre- and post
translation phase that relates the knowledge of the classifier system
to the environment (the domain). Since it is usually not possible to

incorporate all the required knowledge into the system a priori, we
want the system to be able to learn.

Genetic Algorithms are used for learning as one way to control the
combinatorial explosion associated with generation of plausible new
rules. The Genetic Algorithm approach tends to work best when it can
be applied to a domain independent knowledge representation.

As important as the generation of new rules is, the evaluation of
existing rules is even more influential. Whithout it, the system will
not be able to attain better performance.

47

CLASSIFIER SYSTEMS

As stated, a classifier system is 'sandwiched' between a separate
pre- and post processing phase. The preprocessing phase will pick up
the relevant information from the environment and encode this into the
internal representation wused by the classifier system, called a
message. Likewise, the postprocessing phase converts back from the
internal representation to a meaningful output signal, such as an
actuator, a horn signal or whatever.

We will not discus the pre- and postprocessing phases in greater
detail here, although for applications of classifier systems in real-
world situations these are of course tantamount to good performance.

A classifier system comprises two parts, a message buffer and a
rule base. Communication with the world outside takes place
exclusively by placement or removal of messages into or from the
message buffer. Also acting on the message buffer is the rule base
itself. 1In each classification step, all messages are matched to all
rules, and the matching pairs (rule,message) are allowed to write a
new message into the buffer.

MESSAGE REPRESENTATION

A message is internally represented as a string of K symbols from
{0,1} i.e. a binary representation. Each symbol denotes some aspect
or attribute of the environment. As will be seen, this representation
is very suited for genetic algorithms.

Rules in the rule base consist of two parts: a condition part and
an action part. The condition part is represented as a number of
strings of length K, over the alphabet {0,1,#}. The new symbol # is
used here to match ANY symbol in the corresponding position in the
message. For instance, condition 0101#01# will match messages
01010010, 01010011, 01011010 and 01011011]. Each condition can be
either asserted or negated.

The rule is said to MATCH if ALL the conditions match some message
in the buffer (i.e. a match does NOT mean that one message satisfies
all conditions, but rather that there is a satisfying message in the
buffer for each condition). The message matching the first condition
is arbitrarily called the matching message.

The action part is also represented as a string over {0,1,#}. In
this case, however, the symbol # is used to denote the corresponding
symbol of the message matching this rule. In other words, should a
rule with action part 0101#01# match a message 11011000, then the
message placed into the buffer by this rule will be 01011010.

BASIC EXECUTION CYCLE OF A CLASSIFIER SYSTEM

A classifier system goes through the following steps for each

classification cycle. For 1legibility, this 1is here presented in
(pseudo-) pascal style:

repeat
input_messages_&_place_them_into_buffer;
for r := 1 to no_of_rules do begin
condition := first_condition_of_rule_r;
messagelconditionl := 0;
repeat
messagelcondition] := message(conditionl+l;
if messagelcondition] < no_of_messages then begin
if match(condition,messagelconditionl]) then begin
if condition=last_condition_of_rule_r then
record_match(r,condition,messagelconditionl])
else begin
condition := condition+l;
message(condition] := 0;
end;
end;
end else
condition := condition-1;
until condition<0;
end;
for each_recorded_match do place_action message_in_new_buffer;
update_strength_of_matching_rules;
replace_current_message_buffer_ by_new_buffer;

remove_messages_from_buffer_& output_them;
until hell_freezes_over;

It should be noted that not all messages are recognized by the
output interface as messages to be removed; only those marked as such
will be output. Also note that there may be several different
assignments of messages to one rule; these are all recorded.

49

RULE COMPETITION

Since the number of pairs (rule,message) can be extraordinarily
large (with N rules, an average of C conditions per rule, and M
messages there can be as much as N*C*M pairs), the number of messages
that are eventually placed in the buffer are reduced by letting the
matching rules enter a competition. Each matching pair produces a
number called the BID, which determines the probability that the pair
is allowed ¢to place 1its message into the Dbuffer. The bid is
calculated as follows:

bid=factor*support(messages)*strength(rule)*specificity(rule)

where:

factor = attenuation factor;

support = sum of the bids of all messages satisfying a
condition of the rule;

strength = the current "successfulness" of the rule;

specificity l-(number of #'s in condition)/(length of condition).

The bid computed above is an exact quantity; were we to use this
gquatity directly, only the strongest few rules would ever be selected
in the competition and new, potentially better rules, would never have
the opportunity to demonstrate their worth. Therefore, the bid used in
the competition 1is some stochastic function of the wvalue computed
above (at the moment, normally distributed around the computed bid).

RULE ACCREDITATION

In order to allow new (low-strength) rules to acquire more
strength in those situations where they are applicable, some mechanism
must be devised that "gives credit to whom credit is due." That |is,
the well working new rules must be rewarded for providing good
answers, whereas those that do not do well must sink into oblivion.

Such a mechanism has been devised by Holland. It is <called ¢the
"bucket brigade." The bucket brigade algorithm works by applying the

following adjustments to a rule's strength at each classification
cycle:

I

strength(r,t+1) strength(r,t) - bid(r,t)
strength(i,t+1l) = strength(i,t) + bid(r,t)/card({R}) for i in {R}

where {R} is the set of rules responsible for the match of rule r.

-- 50

In words, each rule which wins the bidding contest gets 1its
strength reduced by the amount of its bid; each of the rules that put
a message 1into the buffer that eventually matched one of the rule's
conditions are rewarded for this by having their strength 1increased;
they share the bid among each other.

Eventually, the rule placing a message into the buffer that is
consumed by the output interface gets a reward directly by the
environment.

In this way, benign "mutations" are able to gain strength. Chains
of non-productive rules are eventually broken down because they will
receive no credit from the environment.

RESEARCH GOALS

Our interest in classifier systems falls into two categories. On
the one hand, we are concerned with the use of classifier systems for
real-time adaptive control applications, and the implications of on-
the-fly learning for robustness. On the other hand, we envisage some
improvements to the mechanism of the classifier system 1itself, e.g.
the guiding of the 'mutation' process by meta-rules, other kinds of
genetic operators etc. Also, we want to study the effects of
'teaching' to the speed of adaptation.

REFERENCES

Holland, J. H. "Adaptation 1in Natural and Artificial Systems," The
Univerity of Michigan Press, Ann Arbor.

Holland, J. H. "Escaping Brittleness: The Possibilities of General
Purpose Learning Algorithms Applied to Parallel Rule-Based Systems,"
Machine Learning, Vol II.

Holland, J.H., Holyoak, e.a. "Introduction to Processing of Interface
Learning and Discovery," 1986 MIT Press.

Hilliard, M. R., Liepins, "A Classifier Based System for Discovering

Scheduling Heuristics," 2nd Int. Conf. on Genetic Algorithms, July
1897.

Goldberg, D.E. Segrest, P., "Finite Markov Analysis of Genetic
Algorithms," 2nd Int. Conf. on Genetic Algorithms.

AUTOMATIC PROGRAM GENERATION FROM SPECIFICATIONS

USING PROLOG

ALEX PELIN PAUL MORROW
School of Computer Science AFWL / SCR
Florida International University Kirtland AFB; NM 87117

Miami, Florida 33199

Abstract

This paper describes an automatic program generator which creates PROLOG
programs from input/output specifications. The generator takes as input
descriptions of the input and output data types, a set of tests, a set of
transformations and the input/output relation. Abstract data types are used as
models for data. They are defined as sets of terms satisfying a system of
equations. The tests, the transformations and the input/output relation are
also specified by equations.

The program generator creates a PROLOG program which takes as input a data
item, iteml, of the input data type and outputs a data item, item2, of the
output data type such that the input/output relation is satisfied by the pair
iteml,item2. In building the program the generator uses only the tests and the
transformations given as input. The program generator was writen in PROLOG. It
was able to generate correct PROLOG programs for sorting lists with and without
eliminating duplicate elements. The system contains specifications of the
abstract data types natural number, boolean, list and array. The system can be
used in two modes: in the first mode the user defines his/her own data types
and in the second mode he/she uses the definitions that are already in the
system library. A user interface is being constructed for the second class of
users.

The paper also presents several methods for validating the input/output
specifications. Some of them were implemented in the system. Descriptions of
the heuristics employed by the program synthesizer are also included. Finally,
the paper compares this system with the approaches taken by other researchers
in automatic program generation : Prywes, Manna and Dershowitz.

Introduction

This paper describes a project whose goal is to create a knowledge base
for automatic program generation from input/output specifications . By its
scope the project falls into the category of program synthesis. The goal of
program synthesis is two-fold : to develop specification languages in which
one can describe programming tasks and to develop heuristics which translate
these specifications into high level language code.

The system described in this paper took as input the following items:

1. A description of the input data type;

2. A description of the output data type;

3. A description of the input/output relation;
4. A set of transformations;

53

5. A set of tests.
Figure 1

Based on the input data, the system tries to generate a program P which
takes as input an item i of the input data type and outputs an item o of the
output data type such that the input/output relation holds for the pair i,o.
The program P is constructed by using only the tests and the transformations
given as input to the program synthesizer. For example, the problem of sorting
a list of natural numbers in increasing order is specified by the 5 items shown
below.

1. The input data type is list of natural numbers;

2. The output data type is list of natural numbers sorted in increasing
order;

3. The input/output relation is standard;

4. The set of transformations is inversion of consecutive elements;

5. The set of tests consists of the predicate SORTED, which checks if a

list of natural numbers is sorted in increasing order, and the
predicate less which checks if two consecutive elements in the list
are in the right order,i.e. the first element is less than or equal to
the second element.

Figure 2

Two data items i and o satisfy a standard input/output relation if o is
obtained from i by applying a sequence of transformations. Each transformation
in the sequence must be a member of the set listed in item 4 of figure 1. The
tests listed in item 5 can be used to guide the transformations. The program
synthesizer was able to generate a correct PROLOG program for the
specifications shown in figure 2.

The paper is organized as follows: issues pertaining to the problem of
validating program specifications are presented in section 2, heuristics used
to generate PROLOG code are described in section 3 and the user interface is
presented in section 4.

2. Validation of Specifications

The system uses abstract data types ([3]) as models for data. A data type
is a set of terms, freely generated by some operations, which satisfies a set
of equations (conditional equations). For example, the data type list of
natural numbers consists of the data types :natural number, list of natural
number and boolean. The terms of the data type are generated by the productions
(rules) shown in figure 3.

natural ---> 0

natural ---> successor(natural)

list -—=> []

list -—-> [natural | list]

boolean ---> True

boolean ---> False

boolean ---> natural <= natural
Figure 3

54

The variable 'natural’ generates all the natural numbers, the variable
rlist’ generates all lists of natural numbers and the variable boolean produces
all terms of type boolean. The operator ’successor’ is the successor operator
on the set of natural numbers. The semantics of the data type is given by the
set of (conditional) equations presented below.

1. n <= n = True

2. n <= m = True ---> successor(m) <= n = False

3. n <=m = True —---> n <= successor (m) = True
Figure 4

The equations given in figure 4 describe the relation <= on the set of
natural numbers. Since the user specifies the data types that are used by the
system, it is fundamental that the system validates these specifications. An
example of a validation problem is the following : for all natural numbers m
and n, either m <= n = True or n <= m = False. In this system, data type
validation questions become theorem proving problems. A data type
validates a property if that property is a theorem produced by the system of
axioms that define the data type. There are several methods that can be used to
accomplish this goal. One can use first order logic, term rewriting systems and
induction. The system described in this paper uses term rewriting systems as
the main tool for validating data types. The system has a Knuth-Bendix
completion procedure ([7]) that can be used to generate a complete set of
reductions for a system of equations. At present the completion procedure
operates only with pure equations but there are ways of extending it to
conditional equations([5]). Several experiments were made with the
interactive theorem prover ITP. There were many problems with the use of ITP
for validating data type specifications. This theorem prover, like all theorem
provers based on resolution, tends to generate a tremendous amount of useless
clauses. It is therefore imperative to develop heuristics that eliminate
clauses that are irrelevant to the proof of the question to be validated. The
other problem is that the relation between first order logic and PROLOG is a
complicated one. The translation of a set of first order logic sentences into
a set of Prolog clauses is not easy. The third problem with using first order
logic to validate questions in this system is that, since the data types are
inductively defined, theorems that require induction cannot be proved. For
example the theorem which states that for all natural numbers m,

m <= successor(m) requires induction. Since the progress in automating
induction has been slow, the system does not use direct inductive methods.

3. Heuristics Used by the System

So far the system can deal with problems in which the output data type
is a subset of the input data type. Sorting problems fall in this category. The
data type list of natural numbers sorted in increasing order can be defined as
the subset of the data type list which satisfies the predicate SORTED
described below:

1. SORTED([])

2. SORTED([m])

3. m<=n = True ---> SORTED([m |[n |list]]) = SORTED([n |list])
4, m <= n = False --->-SORTED([m|[n|list]])

55

Figure 5,

In figure 5 - stands for negation. The condition m <= n = True, m <= n =
False correspond, respectively, to tests -less(n,m) and less(n,m) shown on line
5 of figure 2.For the class of problems in which the output data type is a
subset of the input data type and the input/output relation is standard, the
system focuses on the predicate that defines the output data type. For the
problem described in figure 2, the system transforms the third clause of the
specification shown in figure 5 into two clauses:

True , SORTED([n|list]) ---> SORTED([m]|[n]|list}])

5. m<=n
6. m <= n = True ,-SORTED([n|list]) ~—->-SORTED([m|[n]|list]})

Figure 6

Then the system employs a method which focuses on the negative clauses
from figures 5 and 6. If SORTED(list) is false then the clause ~SORTED(1list)
must occur either at the right of the ---> sign in clause 4 of figure 5 or at
the right of the ---> sign in clause 6 of figure 6. The system assigns higher
priority to clause 6 than to clause 4. In general clauses that contain
recursive calls have higher priority than those that do not have them. If
-SORTED(1list) is derived from rule 4 of figure 5 then the system establishes
the negation of the condition m <= n = False as its goal. In this case the
system looks for a transformation, or a sequence of transformations y» T list
such that: if -SORTED(list) is obtained from rule 4 then the precondition of
rule 4 does not apply to T list(list). In this particular case the system looks
for a transformation that carries the argument [m][n]|list]] of the rule 4 of
figure 5 into a list which is sorted, or it has length less than the original
argument, or it is of the form [p|[q|list’]] and p <= q = False does not hold.
The system has a generate and test algorithm for finding T list. The states are
pairs of the type <Term, Tramsformationd, where Tranformation is a sequence of
transformations that brings the original argument to the list Term. It uses
various guiding functions for searching the state space. The method was tested
using the sets of transformations {EXCHANGE} and {EXCHANGE,REDUCE}.The
equations for EXCHANGE and REDUCE can be found in figure 7.

1. EXCHANGE([m|[n|list]] = [n |[m [list]]
2. REDUCE([m|[m|list]) = [m |list]

Figure 7
The system produced correct ansvers in both cases. The predicates must be

defined in a hierarchical manner. This means that testl can be defined as a
function of test2, but test2 cannot also be defined as a function of testl.
4. The User Interface

The system can be used in two ways. In the first mode the user defines his
own data types, tests, transformations and input/output relation. In the second
mode the user employs the definitions that are already in the system library.
The system has an interface that allows the user to enter commands in English.

The user can enter statements like the ones shown in figure 8.

1. X is a real array

56

2. 3 is the size of X
3. Y is X reversed
4. Display Y

Figure 8

These types of instructions allow users to employ the system like a
calculator. Work is under way to enrich the interface to the point where it can
accept atatements like the ones shown in figure 2 . In this case the user will
receive from the system the program that accomplishes the task described in
English.

5. Conclusions

Automatic program generation is an important problem in automating the
software development cycle ([1],[4]). It can be used do develop program modules
from task specifications. Defining specifications languages is a difficult job
([61,[10]). Validating the specifications is more difficult. The system uses
equations for specifications. The system MODEL, developed by the group led by
N. Prywes ([9]), also uses equations for specifications. Dershowitz ([2])
employs term writing systems to synthesize programs. In the system presented in
this paper, term rewriting systems are used for validating specifications and
as an intermediate step in translating equations into PROLOG clauses.
Dershowitz uses Pascal to carry out program synthesis. PROLOG seems better
suited for implementing heuristics. The programs generated by the system are
quite different than those which are constructed through informal means. This
fact is mentioned by Manna ([8]).

Acknowledgement

This work was supported by the Air Force Office of Scientific
Research/AFSC under contract F496-C-0013.

Bibliography
1.Boehm, B. : 'Improving Software Productivity’, Computer, Vol. 20, No. 9,
September, 1987, pp. 43-57.
2.Dershowitz, N. : ’Synthesis by Completion’, proceedings of IJCAI-85, Morgan

Kaufmann, 1985, pp. 208-214.

3.Ehrig, H. and Mahr, B, : Fundamentals of Algebraic Specification 1,
Springer Verlag, 1985.

4 .Frenkel, K. :’Towards Automating the Software-Development Cycle’, CACM, Vol.
28, No. 6, June, 1985, pp. 578-591. ,

5.Ganzinger, H. : 'A Completion Procedure for Conditional Equations’,
University of Dortmund Technical Report 234, October,1987.

6.Hoare, C. :'An Overview of Some Formal Methods for Program Design’,Computer,
Vol. 20, No. 9, September, 1987, pp. 85-91.

7.Knuth, D. and Bendix, P. : ’Simple Word Problems in Universal Algebras’,
Computational Problems in Abstract Algebra, Pergamon Press, 1970, pp.80-149.

8.Manna, Z. and Waldinger, R. :’The Origin of the Binary Search Paradigm’,
proceedings of IJCAI-85, Morgan Kaufmann, 1985, pp. 222-224.

9.Prywes, N. , Shi, Y. ,Szymansky, B. and Tseng, T. :’Supersystem Programming
with Model’ , Computer, Vol. 19, No. 2, February, 1986, pp. 50-60.

10.Roman, G. : ‘A Taxonomy of Current Issues in Requirements Engineering’,
Computer, Vol. 18, No. 4, April, 1985, pp. 14-22.

57

TES - A Modular Systems Ap_Proach to Expert System
Development for Real-Time Space Applications

Ralph Cacace
Brenda England
UNITED TECHNOLOGIES CORPORATION
Hamilton Standard Division
One Hamilton Road
Windsor Locks, CT 06096

Abstract

A major goal of the Space Station Era is to reduce reliance on support
from ground based experts. The development of software programs using
expert systems technology is one means of reaching this goal without
requiring crew members to become intimately familiar with the many
complex spacecraft subsystems. Development of ‘an exFert sKstems program
requires a validation of the software with actual flight hardware. =~ By
combining accurate hardware and software modelling™ techniques with a
modular systems approach to expert systems development, the validation of
these software pro%ﬁrams can be successfully completed with minimum risk
and effort. The TIMES Expert System (TES) is an application that monitors
and evaluates real-time data to perform fault detection and fault isolation
tasks as they would otherwise be carried out by a knowledgeable designer.
This paper discusses (1) the development process and primary features of
TES, (2) a modular systems approach and (3) lessons learned.

Introduction

The Thermoelectric Integrated Membrane Evaporation Subsystem
TIMES) is a spacecraft_life support system designed and produced by
amilton Standard . The TIMES Expert System (TES) is a prototype developed
as a first step toward capturing in-house diagnostic expertise on this
subsystem. The primary goals of the prototype development effort were to
(1) investigate expert systems as space-based tools for reducing reliance on
ground based support and (2) explore a modular systems approach to
developing real-time expert systems. To address these goals, TES was
developed as a fault detection and fault isolation expert system to monitor
real-time TIMES data. The TIMES Expert System was created under
NASA/Johnson Space Flight Center contract number NAS 9-17200.

TIMES is a spacecraft

o
Display | O
waste water processor that

employs vacuum distillation, T,

What is TIMES?

thermoelectric heat pumping,

and membrane separation to . NI Draptey
reclaim high quality product 5 o - Cantrot
water [2]. A" system TIMES| 3 | 5| 5 [usise | Conson
controller” contains the R N =]
electrical and software logic

necessary fOl’ DFOCQSS Figure 1: Present TIMES Delivery Configuration D D [l D

56

control, instrumentation and critical fault detection. In addition to data
provided to a MS-1553B bus, sensor readings and performance calculations
are made available by the controller via RS-232C tor use by data checkout
and recording systems. An electrical driver box standardizes all signals
between the hardware and the controller. The TIMES, along with numerous
other life support subsystems, is operated and visually monitored from a
central Display and Control Console (DCC) via a MS-1553B bus (see Figure 1).

Primary TES Features

The TIMES Expert System was developed using Knowledge Engineering
Environment (KEE) and Common Lisp on a Symbolics computer.
Approximately 45 potential subsystem and sensor problems have been
addressed as both independent and concurrent failures. The TIMES controller
relies on threshold violations to provide limited error detection and will
shut the subsystem down if a critical problem is suspected. TES enhances
controller capabilities by operating as an early warning system, providing
additional fault tolerance and acting as an extended problem explanation tool
for the astronaut.

Combinin? the graghics features of KEE and Common Lisp has given TES
versatile display capabilities. Some examples are dynamic flows, valve
;]y_ositions, and sensor readings presented on an operational schematic of the
IMES. In addition to these features, the operator also has the ability to
customize the monitoring environment by replacing some or all numerical
displays with dials and to view real-time historical trend plots of expected
and actual values for all sensor and performance data.

A Modular System Desian

When real-time prototype hardware output results in inputs to an expert
system, the following key issues must be addressed:

1. Limited availability of system hardware for expert system
testing and verification due to:
* A limited number of each prototype system s
usually developed and available.
Prototype systems are often dedicated to
rigorous test schedules and numerous design changes.
System testing often has priority over expert
system testing.
It is costly and difficult to move hardware from one
site to another for demonstration or testing
purposes.
2. Actual insertion of faults into prototype hardware is
unrealistic in many cases because:
* Altering a system component to introduce a fault
can be costly and sometimes hazardous.
Many system sensors and components are not
physically accessible for alteration.

*
*

*

*

These issues may be addressed by taking a modular approach to system
design. The modular approach involves the development of an accurate

AN

software simulation of the hardware (See Figure 2). The closer the model is
to duplicating the hardware's data output in terms of content, format and
protocol, the more valuable it will be when addressing the above issues.

Concept Modularity has been applied
to the TES program by using a
$ thermodynamic model of TIMES as

the expert system test data
source. The TIMES model was

developed using Quick BASIC on an
| y ol N IBM PC. The RS-232C output from

Design

Simulation Hardware this mode! realistically duplicates
Development Development the RS-232C test data output from
v / the TIMES controller in_content,
Expert a format and protocol. This data
System S supplies TES with the sensor,
Testing [control and erformance
and information it needs to monitor
Yerification the TIMES (model).

Figure 2: Modular Real Time Testing

The TIMES model can be operated as_a stand alone system or in
conjunction with the TIMES Expert System. The model's graphics interface
allow the user to visually monitor simulated normal TIMES operation, or to
insert faults and observe the effects on subsystem operation independent of
the TIMES Expert System. This
allows for independent model
verification using TIMES data and IBM PC Symbolics
makes the model itself a valuable
tool in understanding detailed TmEes | 0
TIMES performance and fault Model | O TES
characteristics. The model, with RS-232
its interface (Figure :?E) =

MES

effectively replaces the TI frmemmresans —_I/ —
hardware ‘and the DCC (Figure 1) —=
: II—OErS teSting and demonstratiOn of Figure 3: The TIMES Expert System

The modular approach taken in the TES design has helped to reduce
development costs by providing a more flexible and accessible testing and
verification platform. or example, TIMES operates on an approximate 24
hour cycle and fault symptoms often vary as a function of the cycle duration.
To test the TES fault detection capabilities and insure that cyclic data is
being handled successfully, testing must be conducted at numerous cycle
points. Tests must be repeated a number of times because expert system
evaluation is an iterative process [4] . These test constraints would demand
valuable subsystem time and may require costly repair or replacement of
components damaged during testing or additional hardware to simulate
failures. By using a software model as the test bed, an open circuit in a
thermoelectric module or a separator motor magnetic drive decoupling can be
generated repeatedly. Simulation rates can be adjusted to decrease test
time. In these ways, the TIMES model facilitates testing without damaging
subsystem hardware or interrupting hardware testing.

61

A Modular Diagnostic Approach

Remaining consistent with a modular systems approach, TES's
diagnostic content is also structured modularly. Application of verbal
reporting techniques [3] during the formalization phase [4] of TES's
development revealed a distinctly two level diagnostic approach used by the
experts. High level performance parameters provide the first clues to a
subsystem performance problem. Detailed diagnostics are only employed
when such a problem is detected. Because it is the function of the TIMES to
efficiently reclaim high quality product water, there are three rimary
indicators of degraded performance: (1) low water production rate, (2) poor
Eroduct water quality, and (3%_ high power consumption. The first two areas
ave been addressed by the TES prototype. This approach has been captured
in a modular fashion modelled after that of the experts allowing for rapid
expert system performance, and facilitating future expansion to include
other systems [15), [5].

A front end processor in TES

monitors TIME performance High Level Health Parameter Monitor
parameters usinfc; trend analysis to RS-232 Front End| | Health }
watch for significant indication of in [Processor| T| Monitor

a problem. During normal f

operation, the only other * \
functions performed by TES are the Control —| |Knowledge| g, Rule
storing of trend data, real-time Data _—*p> Base Base
dlsplay Update and perlodlq sensor Figure 4: TES Functional Modularity
checkout to flag drifts or

inconsistent readin1gs. Only when subsystem performance appears to have
deteriorated does TES perform detailed dia?nosis to isolate the problem and
warn the astronaut before shutdown thresholds are exceeded. (Figure 4)

The rules in the TIMES expert system have been divided into four major
categories: (1) General Health rules, (2) Water Production Rate rules, 83)
Water Quality rules and (4) Sensor Health rules. Division of the rule base
into problem areas has further enabled rapid fault diagnosis. For instance,
if a low water production rate were detected, TES would reason over rule
tyPes (1) and (2) drawing on the current knowledge base and trend
information to diagnose the problem. A separate Sensor Health rule base has
increased TES credibility by flagging unreliable sensors so that they are not
relied on in future reasoning, and by differentiating between sensor drifts or
failures and actual subsystem health problems (i.e.” high temperature).

Conclusions

Using the TIMES model as an input to the TIMES Expert System provides
a flexible and portable means of addressing the availability, cost, and time
issues associated with developing an expert system to monitor real-time
hardware data. It also increases TES's diagnostic credibility by separating
fault insertion and fault detection. The operator can observe TIMES sensor
readings and performance indicators on the model to reach his own
conclusions, while the expert system provides the expert diagnosis.

TES's, functional modularity, patterned after the expert's own
diagnostic approach, increases its monitoring efficiency without limiting

€2

future growth. The front end processor makes TES an efficient, high level
health monitor until detailed anomaly analysis is needed. The front end
processor also supplies TES (and hence the operator) with a trend history of
all sensors and gerformance parameters. Detailed trend analysis on this data
supplies the TES reasoning system with the information that the expert uses
by either visually examining trend plots or performing detailed analysis of
historical data.

Independent sensor monitoring increases TES's diagnostic capability by
flagging unreliable sensors thus excluding them from use in future reasoning
andblby distinguishing between sensor drift or failure and actual performance
problems.

Future TES expansion areas could include: (1) further development of
the front end processor to address more complex data characteristics, (2) a
detailed feasibility study that would address the modular system design to
multiple systems, (3) connection to TIMES hardware, and (4) further
investigation of multiple faults.

References

[1] A. K. Colling Jr., T. A. Nalette, et.al., "Development Status of Regenerable
Solid Amine CO2 Control Systems," SAE_Technical Paper Series,
Proceedings of the 15 Intersociety Conf on Environmental Systems, San
Francisco, CA, July 15-17, 1985.

[2] G. F. Dehner and D. F. Price, "Thermoelectric Integrated Membrane
Evaporation subsystem Testing," SAE Technical Paper Series, Proceedings
of grée 11gth Intl. Conf. on Environmental Systems, Seattle, WA, July
13-15, 87.

[3] A. H. Silva and D. C. Regan, "Using Cognitive Psychology Techniques for
Knowled%e Acquisition,” EE Trans. on_Systems. Man_and Cybernetics,
Atlanta, GA, October 1986.

[4] M. Stefik, J. Aikins et. al., "Basic Concepts for Building Expert Sgstems,"
in F. Hayes-roth, D. Waterman and D. Lenat (eds), Building Expert Systems,
Addison-Wesley Publishing, Reeding, MA, 1983.

[5] C. E. Verostko and R. K. Forsythe, "A Study of Sabatier Reactor Operation
in Zero 'G' ," SAE Technical Paper Series, Proceedings of the 14th
I1néte1rss)oci19g\é Conference on Environmental Systems, San Diego, CA, July

-19, 4.

KEE is a registered trademark of Intellicorp Inc.
Quick Basic is a registered trademark of Microsoft Inc.

63

. REPORT NO, 2. GOVERNMENT ACCESSION NO. 3. RECIPIENT'S CATALOG NO.

NASA CP-2492

4, TITLE AND SUBTITLE 5. REPORT DATE
Third Conference on Artificial Intelligence for June 1988
Space Appl ications - Part II 6. PERFORMING ORGANIZATION CUDE
7. AUTHOR(S) Compiled by 8. PERFORMING ORGANIZATION REPORT #
J, S. Denton, M. S. Freeman, M. Vereen
9, PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO.
George C. Marshall Space Flight Center M~576
Marshall Space Flight Center, Alabama 35812 11. CONTRACT OR GRANT NO.
13, TYPE OF REPOR" & PERIOD COVERED
12. SPONSORING AGENCY NAME AND ADDRESS

National Aeronautics and Space Administration . .
Washington, D.C. 20546 Conference Publication

14, SPONSORING AGENCY CODE

. SUPPLEMENTARY NOTES

Conference Coordinator - Thomas Dollman, Information and
Electronic Systems Lab, Marshall Space Flight Center
Co-sponsored by The University of Alabama in Huntsville

18,

ABSTRACT

Proceedings of a conference held at Huntsville, Alabama, on
November 2 and 3, 1987. This Third Conference on Artificial Intelligency
for Space Applications brings together a diversity of scientific and
engineering work and is intended to provide an opportunity for those
who employ AI methods in space applications to identify common goals
and to discuss issues of general interest in the AI community.

- KEY WORDS 18. DISTRIBUTION STATEMENT
Artificial Intelligence
Computer Vision Unclassified/Unlimited
Design Data Capture Subject Category: 61
Robotics

Space Station Automation

19. SECURITY CLASSIF, (of this report) 20. SECURITY CLASSIF, (of this page) 21. NO. OF PAGES | 22. PRICE
Unclassified Unclassified 69 A04
MSFC- Form 3292 (Rev. December 1972) For sale by National Technical Information Service, Springfield, Virginia 22151

NASA-Langley, 1988

National Aeronautics and
Space Administration
Code NTT-4

Washington, D.C.
20546-0001

Otticial Business
Penatty for Private Use, $300

POSTAGE & FEES PAID

BULK RATE

NASA
Permit No. G-27

POSTMASTER:

If Undeliverable (Section 158
Postal Manual) Do Not Return

	00992
	00993
	00994
	00995
	00996
	00997
	00998
	00999
	01000
	01001
	01002
	01003
	01004
	01005
	01006
	01007
	01008
	01009
	01010
	01011
	01012
	01013
	01014
	01015
	01016
	01017
	01018
	01019
	01020
	01021
	01022
	01023
	01024
	01025
	01026
	01027
	01028
	01029
	01030
	01031
	01032
	01033
	01034
	01035
	01036
	01037
	01038
	01039
	01040
	01041
	01042
	01043
	01044
	01045
	01046
	01047
	01048
	01049
	01050
	01051
	01052
	01053
	01054
	01055
	01056
	01057
	01058
	01059
	01060
	01061
	01062
	01063
	01064
	01065

