
Knowledge Based System Verification and Validation
as Related to Automation of Space Station Subsystems:
Rationale for a Knowledge Based System Lifecycle

Keith Richardson
Carla Wong

Systems Autonomy Demonstration Project Office
NASA/Ames Research Center

Moffett Field, CA 94035

Abstract

The role of Verification and Validation (V&V) in software has been to support and
strengthen the software lifecycle and to ensure that the resultant code meets the standards of
the requirements documents. Knowledge Based System (KBS) V&V should serve the same
role, but the KBS lifecycle is ill_iefined. The rationale of a simple form of the KBS lifecycle
is presented, including accommodation to certain critical KBS differences from traditional
software development.

This paper discusses the rationale for using a KBS lifecycle to solve some problems of
KBS V&V, describes the agents of this process, and presents three key aspects of variance
from traditional software lifecycles. The KBS lifecyele is described in greater detail in a
longer paper rifled: %Vorkshop on Verification and Validation of Knowledge Based
Systems: Recommendations for Procedures and Research."

V&V is the process of overseeing the construction and testing of a software program
according to specifications. The purpose OfV&V is to ensure that software is:

1) Designed to be testable,

2) Completed according to defined specifications which lead to testability,
3) Tested according to requirements.

The software llfecycle is used to structure this process. Since such a llfecycle has not
been generally accepted for KBS it was natural that one of the major topics of conversation
during the Ames KBS V&V workshop was definition of a KBS lifecycle. (Two proposals
which outline some aspects OfKBS Hfecycle are discussed in the workshop summary.)

The KBS lifecycle presented here, however, addresses V&V issues in the context of a
complete, high-level, lifecycle description. This lifecycle may be seen as the simplest form,
applicable to a single KBS acting without interaction with other systems, but including the
human intexface. Some other complex situations will only need reasonably straightforward
adaptations of the lifecycle, while others using new AI methodologies or with

25



interdependencies to external systems will not be accommodated by a KBS lifecycle without
the benefit of further experience and researc_

For the purposes of this paper the lifecycle is further simplified to the following
structur_

- Requirements Phase
-Pro_q_e Phase
- KBS Build Phase
- Test Phase

- Delivery and Monitor Phase

The basic format of the KBS lifecycle is derived from traditional software lifecycles,
both fur the reason that these lifecycles are better understood by the sponsoring organizations
and software developers and because there are many aspects of KBS software methodology
which are similar, or the same as, traditional software. Where software development
methods are s_ it is cost effective to capitalize on this extensive experience in
traditionnl software.

Satisfvin_ A_ents ofKBS Develovment

Among the critical problems which must be solved by a KBS lifccycle is the
satisfaction of all the agents in the proces_ The major three agents are:

1) The agents who sponsor the projec_ the organization, managers, and
investors.

2) The agents who build the KBS, the domain experts, knowledge engineers, test
engineers, etc.

3) The end users of the KBS.

A person may serve as more than one agent in the KBS development.

The reason for satisfaction of the first set of agents is self_ident.

Satisfaction of the KBS builders is necessary because there are some aspects of the
KBS development only they are f_m_iAr with - not every programming decision can be
recorded. Some have suggested that independent testing and V&V agents win have a better
understanding of the KBS than the builders; what they mean is that certain blind spots in the
developer's _tion are better discovered by people with different blind _ Among the
ultimate authorities for the integrity of a KBS must be the people who have been involved in
the experimental process of prototyping - no other group will understand design decisions in
such precise detail For this reason the KBS lifecycle should support testability as defined by
the KBS requirements, and support only secondarily independent code evaluator_

The third set of agents is the user_ User acceptance is the final step in the KBS
process before the KBS will be used and can be called successful The impcwtance of the users
to the acceptance of a KBS can be mare important than in acceptance of traditional soRware
in three related ways:

1) Some users, e_. astronauts, mission controllers, or doctors and lawyers,
(and their professional o_izations, the AMA, and ABA) have almost complete authority to
decide whether software will be used in their domain - independent of their ability to
substantiate their concern_

26



2) A KBS may need to perform a range of functions, such as diagnose, monitor,
control, educate, etc_ Which of these functions are important, and in what manner they may
be fulfilled is largely the decision of the users.

3) Users must evaluate how effectively they are able to use the KBS information
in their real world domain.

The satisfaction of these three sets of agents, the sponsors, the builders, and the users,
is the goal of the KBS lifeeycle. This satisfaction should provide direction to all phases of the
KBS lifecycle, and each stage must contribute to the end result of the process.

Three Aspects of the KBS Lifecvcle

Among the important aspects of adaptation of traditional lifecycles to KBS
development are:

I) CT.anges and improvements to requirements documents.
ID Addit:on rjf a reiterative prototyping loop.
HI) Inclusion of the user in the development process.

D Requirements Documents.

Some in the Ames workshop felt that the documents which are produced before
prototyping in the KBS development process needed to be more completely specified - some
went as fro-as to say that inadequate requirements were the primary cause of the f_ure of
KBS development effurta Others insistently pointed out that the result of the experimental
process cannot be predicted before prototyping, and that precise specifications were uniR_ly
or impossible.

Issues can be confused by this simple polemic distinction between requiring more or
less thorough requirements document_ The suggestion made by this paper is that a different
sort of requlrements docu_nt is necessary which at once suits the experimental nature of
KBS development, the pragnmtics of funding and time constraints, and the necessity to be
able to test function and assess the KBS success.

Experimental concerns dictate that the KBS development process be as unconstrained
as poss_le and able to exploit fortuitous discoveries during the prototyping phase. Because
neither the domain experts or the knowledge engineers have a precise idea of which
experimental areas will be practicable at the beginning of the prototyping phase, enough time
and resources must be available to pursue the certain number of investigations which will
not contribute directly to the final KB_ Any requirements documents should be written to
accommodate the prototyping process, and should specify money, time, and other resources
available for prototyping.

Constraints dictated by KBS development sponsors, besides including restrictions on
resources, should also specify as closely as possible criteria for success. In a'_oof-of-
concept' KBS development projeet, such as the Systems Autonomy Demonstration Project,
the criteria for success _ be the proof or dis-proof of the practicality of KBS application in
an environment generally - no specific function may be required of the final stage of the
KBS. A commercial KBS project intended for delivery and/or sale will be measured by
utility functions such as: customer satisfaction, number of units sold, pr_t, repeat sales,
maintenance costs, etc_ KBS intended for NASA will use various criteria of success which
will depend on program goals, intended use, hazard analysis, etc.

27



The requirements documents, where it measures KBS success in terms of utility,
must take in account the uncertain process of the prototyping phase. It should include
statements of goals as well as of resource_ The format which is liable to be crucial to KBS
development is the specification of a range of results, or a n_ of solution_ The sponsors
of KBS development need to put considerable thought into the various combinations of
constraint satisfaction which will prove satisfactory to thei_

ID Relter_tive Prototv_ Lcov

Incremental refinement in prototyping is an inseparable feature of KBS
development. Traditional software management is uncomfortable with this seemingly
open,haled process, but costs and other resourc_ can be controIled by astute specification of
requirements.

The prototyping loop has also caused controversy in that the documentation style of a
traditional so_vare prototype seems to be overly cumbersome for KBS development.
Traditione.tists are uncomfortable with less than "complete" documentation, while KBS
developers l_'.'nt out that design decisions early in the prototyping process which are later
superceded are expensive to document and do not serve in a dlrect way to satisfy
requirement_ A goal should be that complete documentation be kept of any aspect of the
project h_ely to be incorporated into a final version of the code. An experimental notebook
may be an example of a format which satisfies all parties; decisions on what to include will
be made partly by the prototype development team, and partly by system requirement_

The KBS prototype loop's duration and experimental extent _ be limited by the
requirements specification.

Where the requirements documents are intentionally incomplete one of the goals af
the prototyping phase is to add further details to theva Thus a complete loop in the prototyping
phase involves:

1) Knowledge Acquisition/Extraction.
2) Building of a Prototype.
3) Evaluation of Resulta
4) Augmentation of Requirements Documenta
5) Decision on Direction of Next Prototype.

Decisions about project directions are made on the basis of newly revised
requirements documents, and _ntal results from the most recent prototype, and are
used to determine whefls_, a) another prototype is needed, b) the pruject should be
discontinued, being unable to satisfy requirements, c) the project should continue into the
next Hfecycle phase, which is to build a less experimentally oriented KBS which will serve as
a platform for associated development efforts in interfaces, testing plans, user facilities,
formal documentation, etc.

Following prototFping, changes to fundamental aspects of the KBS become less
practical During the prototypin_ efforts to KBS development are restricted so that they rely
on mostly inflexible assumptions, after prototyping, KB_related efforts rely on the stability
of the prototype itself. Major design decisions should be made during prototyping phase, later
changesarepossible,butatgreatercostforassociatedefforts.

28



lid User in the Loon.

Another major difference between traditional software lifecycles and KBS lifecyeles
is the increased involvement of the user. It has been suggested that the end user ofa KBS may
have much discretionary power in approving use of a KBS. This hurdle can be anticipated
and surmounted by including users in the development process.

In traditional software lifecyeles precise user requirements can be included, or
tacitly implied, in the requirements documents; but these documents can remain incomplete
in the KBS lifecyele until a fairly late stage. At KBS requirements specification the
incomplete user input is mitigated by the presence of the domain expert during prototyping,
who in some ways will typify the concerns of the general user.

In traditional software another point of user input in the development process is the
Alpha or Beta test, where a nearly finished version of the software is placed in an
environment typical of expected use. In a KBS it is much more difficult to define'%ypical
environmenf' and"expected usex". One solution, indeed, is to limit KBS use to narrowly
defined situation_ An apuroach which is more appropriate for a KBS to be used in a variety
of situations, and by users of varying skills, is to attempt to accommodate as many
environments as poss_le. These accommodations will start by a direct user contribution to
the requirements documents.

To the extent a KBS is liable to be used in situations which were unanticipated by the
designers, or which change over the lifespan of KBS use, it is necessary to extend the KBS
lifecycle to include user reaction and comment after KBS delivery. The overhead incurred
by this additional burden should be designed to be of less cost than the combined benefit: to
current users, to addition of new areas of utflity, and of the value of direct user input for later
versions of the KB_

User interaction is liable to be least effective in the prototyping phase, where the state
of the development process is complicated to explain, and the state of domain knowledge is
non_oherent. The writing of requirements documents, however, provides an opportunity in
that at that early point it is efficient to catch misconceptions about expectations of the user
community, and relatively easy to explain project plans. The user will also have an
important perspective on utility tradeoffs among various possible development options.

 ncl on

These changes, and others which can be found in our related papers, do not represent
a complete plan for a KBS lifecycle. The KBS lifecycle will be improved with experience
following these fundamentally important changes, especially in _ where there is not an
analogous process in traditional software development. The KBS development process also
will benefit from a significant amount of research over the next few years to improve
predictability, costing, enhanceability, and so on. Research suggestions include
improvements to supporting hardware and software, new KBS tools, automated testing
facilities, and continued improvement to the KBS lifecycle.

Good V&V of KBS wffl follow improved specification and control of the KBS
development process. Since the KBS V&V process is now being formalized it will be in the
position to accommodate the latest software concerns; if the KBS V&V process seems difficult
it is partly because more stringent demands are now being made on all software
development. KBS V&V, then, in some ways _ be the first to incorporate new standards of
quality for software.

29



Acknowledlrements

The technical assistance and comments of Dr. I-LLure, Dr. P. Friedland, and M.
Dutton were much appreciated in the production of this paper.

3O




