
AUTOMATIC PROGRAM GENERATION FROM SPECIFICATIONS

USING PROLOG

ALEX PELIN PAUL MORROW

School of Computer Science AFWL / SCR
Florida International University Kirtland AFB_ NM 87117

Miami, Florida 33199

Abstract

This paper describes an automatic program generator which creates PROLOG
programs from input/output specifications. The generator takes as input
descriptions of the input and output data types, a set of tests, a set of
transformations and the input/output relation. Abstract data types are used as
models for data. They are defined as sets of terms satisfying a system of

equations. The tests, the transformations and the input/output relation are

also specified by equations.

The program generator creates a PROLOG program which takes as input a data
item, iteml, of the input data type and outputs a data item, item2, of the

output data type such that the input/output relation is satisfied by the pair
iteml,item2. In building the program the generator uses only the tests and the
transformations given as input. The program generator was writen in PROLOG. It

was able to generate correct PROLOG programs for sorting lists with and without
eliminating duplicate elements. The system contains specifications of the

abstract data types natural number, boolean, list and array. The system can be
used in two modes: in the first mode the user defines his/her own data types
and in the second mode he/she uses the definitions that are already in the

system library. A user interface is being constructed for the second class of
users.

The paper also presents several methods for validating the input/output

specifications. Some of them were implemented in the system. Descriptions of
the heuristics employed by the program synthesizer are also included. Finally,

the paper compares this system with the approaches taken by other researchers
in automatic program generation : Prywes, Manna and Dershowitz.

Introduction

This paper describes a project whose goal is to create a knowledge base
for automatic program generation from input/output specifications . By its

scope the project falls into the category of program synthesis. The goal of
program synthesis is two-fold : to develop specification languages in which
one can describe programming tasks and to develop heuristics which translate
these specifications into high level language code.

The system described in this paper took as input the following items:

i. A description of the input data type;

2. A description of the output data type;
3. A description of the input/output relation;
4. A set of transformations;

53



5. A set of tests.

Figure 1

Based on the input data, the system tries to generate a program P which

takes as input an item i of the input data type and outputs an item o of the
output data type such that the input/output relation holds for the pair i,o.
The program P is constructed by using only the tests and the transformations

given as input to the program synthesizer. For example, the problem of sorting

a list of natural numbers in increasing order is specifie d by the 5 items shown
below.

I. The input data type is list of natural numbers;
2. The output data type is list of natural numbers sorted in increasing

order;

3. The input/output relation is standard;

4. The set of transformations is inversion of consecutive elements;
5. The set of tests consists of the predicate SORTED, which checks if a

list of natural numbers is sorted in increasing order, and the
predicate less which checks if two consecutive elements in the list
are in the right order,i.e, the first element is less than or equal to
the second element.

Figure 2

Two data items i and o satisfy a standard input/output relation if o is
obtained from i by applying a sequence of transformations. Each transformation
in the sequence must be a member of the set listed in item 4 of figure I. The

tests listed in item 5 can be used to guide the transformations. The program
synthesizer was able to generate a correct PROLOG program for the

specifications shown in figure 2.

The paper is organized as follows: issues pertaining to the problem of
validating program specifications are presented in section 2, heuristics used

to generate PROLOG code are described in section 3 and the user interface is

presented in section 4.

2. Validation of Specifications

The system uses abstract data types ([3]) as models for data. A data type

is a set of terms, freely generated by some operations, which satisfies a set

of equations (conditional equations). For example, the data type list of
natural numbers consists of the data types :natural number, list of natural
number and boolean. The terms of the data type are generated by the productions
(rules) shown in figure 3.

natural ---> 0

natural ---> successor(natural)

list ---> []
list ---> [ natural I list]
boolean ---> True
boolean ---> False

boolean ---> natural <= natural

Figure 3

54



The variable 'natural' generates all the natural numbers, the variable

'list' generates all lists of natural numbers and the variable boolean produces

all terms of type boolean. The operator 'successor' is the successor operator
on the set of natural numbers. The semantics of the data type is given by the

set of (conditional) equations presented below.

I. n <= n = True

2. n <= m = True ---> successor(m) <= n = False
3. n <= m = True ---> n <= successor (m) = True

Figure 4

The equations given in figure 4 describe the relation <= on the set of
natural numbers. Since the user specifies the data types that are used by the

system, it is fundamental that the system validates these specifications. An
example of a validation problem is the following : for all natural numbers m
and n, either m <= n = True or n <= m = False. In this system, data type
validation questions become theorem proving problems. A data type
validates a property if that property is a theorem produced by the system of
axioms that define the data type. There are several methods that can be used to

accomplish this goal. One can use first order logic, term rewriting systems and
induction. The system described in this paper uses term rewriting systems as

the main tool for validating data types. The system has a Knuth-Bendix

completion procedure ([7]) that can be used to generate a complete set of
reductions for a system of equations. At present the completion procedure

operates only with pure equations but there are ways of extending it to
conditional equations(J5]). Several experiments were made with the
interactive theorem prover ITP. There were many problems with the use of ITP
for validating data type specifications. This theorem prover, like all theorem

provers based on resolution, tends to generate a tremendous amount of useless
clauses. It is therefore imperative to develop heuristics that eliminate
clauses that are irrelevant to the proof of the question to be validated. The

other problem is that the relation between first order logic and PROLOG is a

complicated one. The translation of a set of first order logic sentences into
a set of Prolog clauses is not easy. The third problem with using first order

logic to validate questions in this system is that, since the data types are
inductively defined, theorems that require induction cannot be proved. For

example the theorem which states that for all natural numbers m,
m <= successor(m) requires induction. Since the progress in automating
induction has been slow, the system does not use direct inductive methods.

3. Heuristics Used by the System

So far the system can deal with problems in which the output data type
is a subset of the input data type. Sorting problems fall in this category. The

data type list of natural numbers sorted in increasing order can be defined as
the subset of the data type list which satisfies the predicate SORTED
described below:

1. SORTED([I)
2. SORTED([m])
3. m <= n = True ---> SORTED([m l[n llist]]) = SORTED([n llist])
4. m <= n = False --->-SORTEm([ml[nllist]])

55



Figure 5

In figure 5 - stands for negation. The condition m <= n = True, m <= n =

False correspond, respectively, to tests -less(n,m) and less(n,m) shown on line
5 of figure 2.For the class of problems in which the output data type is a
subset of the input data type and the input/output relation is standard, the

system focuses on the predicate that defines the output data type. For the
problem described in figure 2, the system transforms the third clause of the
specification shown in figure 5 into two clauses:

5. m <= n = True , SORTED([nlIist]) ---> SORTED([ml[nllist]])
6. m <= n = True ,-SORTED([nlIist]) ___>_SORTED([ml[nllist]])

Figure 6

Then the system employs a method which focuses on the negative clauses
from figures 5 and 6. If SORTED(list) is false then the clause -SORTED(list)
must occur either at the right of the ---> sign in clause 4 of figure 5 or at

the right of the ---> sign in clause 6 of figure 6. The system assigns higher
priority to clause 6 than to clause 4. In general clauses that contain
recursive calls have higher priority than those that do not have them. If

-SORTED(list) is derived from rule 4 of figure 5 then the system establishes
the negation of the condition m <= n = False as its goal. In this case the

system looks for a transformation, or a sequence of transformations , T list
such that: if -SORTED(list) is obtained from rule 4 then the precondition of

rule 4 does not apply to T list(list). In this particular case the system looks
for a transformation that carries the argument [m[[nIlist]] of the rule 4 of

figure 5 into a list which is sorted, or it has length less than the original
argument, or it is of the form [pI[q[list']] and p <= q = False does not hold.

The system has a generate and test algorithm for finding T list. The states are

pairs of the type <Term, Tramsformation>, where Tranformat_on is a sequence of
transformations that brings the original argument to the list Term. It uses

various guiding functions for searching the state space. The method was tested

using the sets of transformations {EXCHANGE} and {EXCHANGE,REDUCE}.The
equations for EXCHANGE and REDUCE can be found in figure 7.

I. EXCHANGE([mI[nlIist]] = [n I[m llist]]
2. REDUCE([mI[mlIist]) = [m Ilist]

Figure 7

The system produced correct answers in both cases. The predicates must be
defined in a hierarchical manner. This means that testl can be defined as a
function of test2, but test2 cannot also be defined as a function of testl.

4. The User Interface

The system can be used in two ways. In the first mode the user defines his

own data types, tests, transformations and input/output relation. In the second

mode the user employs the definitions that are already in the system library.

The system has an interface that allows the user to enter commands in English.
The user can enter statements like the ones shown in figure 8.

i. X is a real array

56



2. 3 is the size of X
3. Y is X reversed

4. Display Y

Figure 8

These types of instructions allow users to employ the system like a

calculator. Uork is under way to enrich the interface to the point where it can
accept atatements like the ones shown in figure 2 . In this case the user will
receive from the system the program that accomplishes the task described in

English.

5. Conclusions

Automatic program generation is an important problem in automating the
software development cycle ([I],[4]). It can be used do develop program modules

from task specifications. Defining specifications languages is a difficult job
([6],[10]). Validating the specifications is more difficult. The system uses

equations for specifications. The system MODEL, developed by the group led by
N. Prywes ([9]), also uses equations for specifications. Dershowitz ([2])
employs term writing systems to synthesize programs. In the system presented in

this paper, term rewriting systems are used for validating specifications and
as an intermediate step in translating equations into PROLOG clauses.
Dershowitz uses Pascal to carry out program synthesis. PROLOG seems better

suited for implementing heuristics. The programs generated by the system are

quite different than those which are constructed through informal means. This
fact is mentioned by Manna ([8]).

Acknowledgement

This work was supported by the Air _orce Office of Scientific
Research/AFSC under contract F496-C-0013.

Bibliography

l.Boehm, B. : 'Improving Software Productivity', Computer, Vol. 20, No. 9,

September, 1987, pp. 43-57.
2.Dershowitz, N. : 'Synthesis by Completion', proceedings of IJCAI-85, Morgan

Kaufmann, 1985, pp. 208-214.
3.Ehrig, H. and Mahr, B. : Fundamentals of Algebraic Specification I,

Springer Verlag, 1985.
4.Frenkel, K. :'Towards Automating the Software-Development Cycle', CACM, Vol.

28, No. 6, June, 1985, pp. 578-591.

5.Ganzinger, H. : 'A Completion Procedure for Conditional Equations',
University of Dortmund Technical Report 234, October,1987.

6.Hoare, C. :'An Overview of Some Formal Methods for Program Design',Computer,

Vol. 20, No. 9, September, 1987, pp. 85-91.
7.Knuth, D. and Bendix, P. : 'Simple Uord Problems in Universal Algebras',

Computational Problems in Abstract Algebra, Pergamon Press, 1970, pp.80-149.
8.Manna, Z. and Ualdinger, R. :'The Origin of the Binary Search Paradigm',

proceedings of IJCAI-85, Morgan Kaufmann, 1985, pp. 222-224.
9.Prywes, N. , Shi, Y. ,Szymansky, B. and Tseng, T. :'Supersystem Programming

with Model' , Computer, Vol. 19, No. 2, February, 1986, pp. 50-60.

lO.Roman, G. : 'A Taxonomy of Current Issues in Requirements Engineering',

Computer, Vol. 18, No. 4, April, 1985; pp. 14-22.

57




